[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013057930A1 - 電気自動車の駆動制御装置 - Google Patents

電気自動車の駆動制御装置 Download PDF

Info

Publication number
WO2013057930A1
WO2013057930A1 PCT/JP2012/006615 JP2012006615W WO2013057930A1 WO 2013057930 A1 WO2013057930 A1 WO 2013057930A1 JP 2012006615 W JP2012006615 W JP 2012006615W WO 2013057930 A1 WO2013057930 A1 WO 2013057930A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
distribution
output
lower limit
torques
Prior art date
Application number
PCT/JP2012/006615
Other languages
English (en)
French (fr)
Inventor
智 加藤
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2013057930A1 publication Critical patent/WO2013057930A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive control device for an electric vehicle that drives an electric rotating machine coupled to drive wheels of the electric vehicle with an output corresponding to engine operation information.
  • front and rear electric rotating machines that are power sources are connected to the front and rear shafts of front and rear driving wheels, and electric power of a battery that is an in-vehicle power source is supplied to each of these electric rotating machines via a power supply circuit.
  • the power supply circuit is provided with a power controller, which adjusts the power supply during running to adjust the running torque, and further reduces the electric energy from the drive wheels to the front and rear electric rotating machines during deceleration running. The regenerative state is adjusted.
  • the power controller controls the output torque of the front and rear electric rotating machines by controlling the output power from the battery according to the operation amount of the accelerator pedal in the driver's seat.
  • the above-mentioned regenerative state is controlled according to the operation of the brake pedal in the driver's seat.
  • the front / rear electric rotating machine operates as a generator, and converts the rotational energy of the drive wheels into electric energy.
  • a braking force is applied to the driving wheel, and the converted electric energy is charged in the battery.
  • the electric vehicle calculates a required torque (required torque) according to the driving information, and generates the obtained required torque by at least one electric rotating machine of the front and rear drive wheels.
  • a required torque (required torque) according to the driving information
  • Patent Document 1 Such a prior art is disclosed in Patent Document 1. Further, the electric vehicle of Patent Document 2 employs a motor driven at a predetermined power ratio as each front wheel and rear wheel electric rotating machine, and the front wheel and rear wheel electric rotating machines are used according to the running state. It is driven selectively. Further, in the electric vehicle of Patent Document 3, the maximum torque and the minimum torque are given in advance in consideration of the failure of the electric rotating machine and the output limitation, and the low determination value and the high determination value are set based on this.
  • both the low and high rated output electric rotating machines are selectively regeneratively braked according to the degree of braking to improve the power generation efficiency during regenerative braking and to improve the amount of charge.
  • the distribution torque of one of the front and rear electric rotating machines is low and high (value limit value). If the calculation exceeds the limit value, the torque exceeding the output limit value is not output as it is, and the output torque decreases with respect to the required torque, resulting in an acceleration (deceleration) failure.
  • the present invention when the calculated required torque is distributed to the respective distributed torques of the front and rear electric rotating machines, the non-operating state in which one of the front and rear distributed torques becomes zero is eliminated. It is an object of the present invention to provide a drive control device for an electric vehicle that can prevent a decrease in feeling and that can secure necessary torque even when the distribution torque on one of the front and rear sides is low and does not exceed a high judgment value. .
  • a distribution torque value calculation device for calculating a distribution torque for distributing a required output torque according to operating conditions to the front and rear electric rotating machines, and for eliminating a non-operating state of the front electric rotating machine and the rear electric rotating machine;
  • An output distribution control device that controls power supply from the in-vehicle power source to the front and rear electric rotating machines according to each distributed torque, and the front electric rotating machine has a maximum acceleration torque according to a driving condition of the vehicle.
  • the upper electric torque has a first torque output characteristic that defines an upper limit torque and a lower limit torque that is the maximum of the deceleration torque
  • the rear electric rotating machine has an upper limit torque and a deceleration torque that maximize the acceleration torque according to the driving conditions of the vehicle.
  • a second torque output characteristic that defines a maximum lower-limit torque of the first and second distributed torques, the first and second torque output characteristics of the front electric rotating machine and the rear electric rotating machine, respectively. of Characterized in that it is set to a value in the range of limit torque.
  • the first torque output characteristic may be a large output characteristic having a wider range of upper limit torque and lower limit torque than the second torque output characteristic.
  • the second torque output characteristic may be a large output characteristic having a wider range of upper limit torque and lower limit torque than the first torque output characteristic.
  • the required output torque according to the operating conditions is calculated as a distribution torque distributed to the front and rear electric rotating machines, and the distribution torque is set as a value within the range of the upper limit torque and the lower limit torque. Therefore, the non-actuated state in which each distribution torque is zero after that is eliminated, and therefore there is no torque fluctuation when the distribution torque is switched from non-operation to operation during torque fluctuation, and the driving feeling is good It becomes.
  • the above-mentioned one upper distribution torque exceeding the lower limit torque threshold value is corrected to the lower limit torque threshold value. Since each distribution torque is not given an excessively small value or an excessively large value, it is possible to prevent excessive acceleration and deceleration only on one of the front and rear shafts. It becomes good.
  • the distribution torque on one of the front and rear sides is a threshold value and exceeds the lower limit torque, it is corrected to the threshold value of the lower limit torque to prevent excessive acceleration and deceleration.
  • the other distributed torque in the front and rear with the difference correction torque and canceling the increase / decrease, the initial required output torque can be ensured, and the uncomfortable feeling during acceleration and deceleration operations can be prevented.
  • the corrected distribution torque obtained by increasing or decreasing the other distributed torque by the amount corresponding to the differential correction torque is corrected to the upper limit threshold value, so that excessive acceleration and deceleration can be prevented more accurately and the driving feeling is good. Become. Furthermore, by adding torque that could not be output by the electric rotating machine to the output of the brake, an accurate braking characteristic can be obtained. Furthermore, it is possible to freely select whether the front wheels are the main drive system or the rear wheels are the main drive system. Furthermore, the degree of freedom of the mounting layout increases as the motor generators become larger and smaller.
  • FIG. 1 is an overall view of a drive control device for an electric vehicle as one embodiment of the present invention.
  • FIG. 2 is a torque map characteristic (first torque output characteristic) diagram of a front side of a motor generator used in the drive control device of the electric vehicle of FIG. 1.
  • FIG. 2 is a torque map characteristic (second torque output characteristic) diagram on the rear side of a motor generator used in the drive control apparatus for the electric vehicle of FIG. 1.
  • It is a flowchart of the distribution control process of the front-and-back distribution torque performed with the drive control apparatus of the electric vehicle of FIG. 2 is a calculation map of output torque corresponding to an accelerator opening used in the drive control device for the electric vehicle of FIG. 1. These are correction explanatory drawings when the pre-distributed torque performed by the drive control apparatus for an electric vehicle according to the second embodiment is corrected. These are correction explanatory drawings when the rear distribution torque performed by the drive control apparatus for an electric vehicle of the second embodiment is corrected. It is a flowchart of the distribution control process of the front and rear distribution torque performed with the drive control apparatus of the electric vehicle of 2nd Embodiment. It is a calculation characteristic explanatory drawing explaining the state calculated and corrected by a different characteristic according to the magnitude of each value of the front-and-back distribution torque performed with the drive control device of the electric vehicle of a 2nd embodiment.
  • FIG. 1 shows an overall schematic configuration of a hybrid vehicle (hereinafter simply referred to as a vehicle) 10 as an electric vehicle equipped with a drive control device for an electric vehicle to which the present invention is applied.
  • a vehicle 10 shown in FIG. 1 includes a front and rear motor generators (MG1, MG2) 11, 12 that are electric rotating machines, and a large-capacity driving battery 13 (a power source for the motor generators 11, 12).
  • MG1, MG22 motor generators
  • MG1 motor generators
  • 12 large-capacity driving battery 13
  • a traveling engine 14 and front and rear rotation transmission mechanisms 15 and 20 that connect the front and rear drive sources and the front and rear drive wheels 21.
  • the battery 13 is configured to obtain a high voltage of 100 volts or more by connecting a plurality of cells in series.
  • the battery 13 can be charged with electric power supplied from a commercial power supply 17 via a charging cable (not shown) and an in-vehicle charger 16.
  • the front-side motor generator 11 rotates the front wheels 21 via the front rotation transmission mechanism 15.
  • the motor generator 12 on the rear side rotates the rear wheel 23 via the rear rotation transmission mechanism 15.
  • the engine 14 is controlled by the engine ECU 30.
  • the engine 14 is operated by the fuel supplied from the fuel tank 80, rotates the front wheels 21 via the front rotation transmission mechanism 15, and drives the generator 32.
  • the output of the generator 32 is also supplied to a 12V vehicle-mounted battery 34 via a power conversion circuit (inverter) 31.
  • the power conversion circuit 31 is also connected to the air conditioning device 35 and is also used as a power source for the air conditioning device 35. Exhaust gas from the engine 14 is discharged into the atmosphere through an exhaust treatment device 50 and a muff
  • the vehicle 10 includes a hybrid ECU 55, front and rear motor ECUs 56 and 57, and a battery ECU 58 as control devices.
  • the calculation results of the front and rear motor ECUs 56 and 57 and the calculation result of the battery ECU 58 are also input to the hybrid ECU 55.
  • the vehicle 10 includes a driving condition detection device S, which detects the driving condition of the vehicle by using the electric power that has become a low voltage from the battery 13 via a transformer (not shown) as a power source.
  • a position sensor 61, a vehicle speed sensor 62, and a brake sensor 63 are provided.
  • the accelerator position sensor 61 detects an accelerator opening A as an operation amount of an accelerator operating unit such as an accelerator pedal in an accelerator device (not shown), and an electric signal corresponding to the detected amount is sent to the hybrid ECU 55 as an accelerator opening A. Output.
  • the vehicle speed sensor 62 detects the vehicle speed V and outputs an electric signal corresponding to the detected amount as the vehicle speed V.
  • the brake sensor 63 detects a brake degree B as an operation amount of a brake operation unit such as a brake pedal in a brake device (not shown), and outputs an electric signal corresponding to the detected amount as the brake degree B.
  • a battery detection unit 70 is provided to detect the state of the battery 13.
  • the battery ECU 58 includes an SOC calculator 71 that detects the charging rate SOC of the battery 13 based on the output of the battery detection unit 70, a battery internal resistance calculator 72 that detects the internal resistance of the battery 13, and a deterioration state of the battery 13.
  • a battery deterioration state calculator 73 to be detected is included.
  • the rotational speeds of the front and rear motor generators (MG1, MG2) 11, 12 which are electric rotating machines are detected by the rotational speed sensors 80f, 80r and input to the motor ECUs 56, 57. Further, the temperatures of the front and rear motor generators 11 and 12 are detected by the temperature sensors 81f and 81r and input to the motor ECUs 56 and 57, respectively.
  • the motor ECUs 56 and 57 monitor the states of the front and rear motor generators 11 and 12 based on these data.
  • the first and second power conversion circuits 31 and 33 convert the DC voltage from the battery 13 into an AC voltage and output the AC voltage to the first and second motor generators 11 and 12. Furthermore, it has a function as an inverter that converts the AC voltage generated by the regenerative operation of the first and second motor generators 11 and 12 into a DC voltage and charges the battery 13.
  • the first and second power converters 31 and 33 also have a function as a converter that boosts the DC voltage received from the battery 13 and outputs the boosted DC voltage to the first and second motor generators 11 and 12.
  • the front and rear motor ECUs 56 and 57 of the first and second power converters 31 and 33 receive the front and rear shaft output torques (torque command values) TF and TR, and the current values of the first and second motor generators 11 and 12, respectively.
  • each phase coil voltage (not shown) is calculated, a PWM (Pulse Width Modulation) signal is generated based on the calculation result, and voltage control of the first and second motor generators 11 and 12 is performed.
  • PWM Pulse Width Modulation
  • the hybrid ECU 55 determines whether the first and second power converters 31 and 33 are based on the front and rear shaft output torques (torque command values) TF and TR and the motor speed, the vehicle speed V, the accelerator opening A, and the brake degree B.
  • the torque distribution control function for optimizing the input voltage of is provided.
  • the front motor generator 11 is described as having a larger output characteristic than the rear motor generator 12, but the output characteristics of the front and rear motor generators 11 and 12 may be reversed. Thereby, it is possible to freely select whether the front wheels are the main drive system or the rear wheels are the main drive system. Furthermore, the degree of freedom of the mounting layout increases as the motor generators become larger and smaller.
  • the hybrid ECU 55 is configured as a microcomputer that uses power from the battery 13 via a transformer (not shown) as a power source, and operates according to a program preset as a system base in the memory of the microcomputer. Specifically, a storage device 551, a required output torque calculation device 552, a distribution torque value calculation device 553, and an output distribution control device 554 are provided.
  • the storage device 551 stores the vehicle speed V and the maximum torque (upper limit torque) TMAXF, TMAXR (A> 0 during acceleration) and the lower limit torques TFMIN, TRMAX obtained as experimental results.
  • Stored is torque output characteristic data (see FIGS. 2A and 2B, torque output characteristics) that defines the relationship with B ⁇ 0 during deceleration.
  • the distribution torque value calculation device 553 reads a predetermined distribution ratio based on a preset operation condition, and performs an operation for distributing the required output torque T to the front and rear distribution torques TFreq and TRreq at the distribution ratio ⁇ , that is, necessary.
  • the distribution torque value calculation device 553 sets the front / rear distribution torques TFreq and TRreq ( ⁇ mark) within the range E of the upper limit torque that is the maximum acceleration torque and the lower limit torque that is the maximum deceleration torque according to the driving conditions of the vehicle ( The values are corrected to the values shown in FIGS. 3 (a) and 3 (b).
  • the triangle mark is marked as the circle mark.
  • At least one of the front and rear distribution torques TFreq and TRreq is the upper limit, the lower limit torque threshold TMAXF, R (during acceleration), and the lower limit torque TFMINF, R.
  • TMAXF lower limit torque threshold
  • TFMINF lower limit torque
  • FIGS. 3A and 3B at least one of the front and rear distribution torques TFreq and TRreq is the upper limit, the lower limit torque threshold TMAXF, R (during acceleration), and the lower limit torque TFMINF, R.
  • the output distribution control device 554 generates a PWM signal for supplying power in accordance with the front / rear distribution torques TFreq and TRreq input from the distribution torque value calculation device 553, and the first and the second through the motor ECUs 56 and 57.
  • the amount of power supplied from the battery 13 to the front and rear motor generators 11 and 12 is controlled by performing voltage control using the second power converters 31 and 33.
  • the front / rear distribution torque distribution control process according to the first embodiment will be described with reference to the flowchart of FIG.
  • the main switch (not shown) is turned on, the accelerator operation unit is operated, and the vehicle travels by the action on the power running side of the front and rear motor generators 11 and 12 under the control of the main routine (not shown).
  • step s1 the accelerator opening A detected by the accelerator sensor 61, the vehicle speed V detected by the vehicle speed sensor 62, and the brake degree B detected by the brake sensor 63 are read, and the process proceeds to step s2, where the vehicle speed V and the accelerator opening A are determined.
  • the required output torque T is calculated.
  • Arithmetic formula (1): T A (B) ⁇ TMAXF (-TMINF) + TMAXR (-TMINR) ⁇
  • a calculation formula (1) based on a predetermined MAP (for example, a map m3 in FIG.
  • T MAP From (V, A)
  • the required output torque T during acceleration is calculated in consideration of the accelerator opening A and the vehicle speed V.
  • the necessary regenerative torque -T during braking is calculated.
  • step s3 TMAXF, TMAXR, TMINF, and TMINR are calculated. Specifically, the maximum torques TMAXF and TMAXR and the minimum torques TMINF and TMINR of the front and rear motor generators 11 and 12 are extracted from torque characteristic data D (not shown) with the current vehicle speed V as a reference. Further, the TMAXF, TMAXR, TMINF, and TMINR values obtained from the torque characteristic data of the rotary motor based on the heat generation, failure, SOC value, and the like of the front and rear motor generators 11 and 12, the front and rear power conversion circuits 31 and 33, and the high voltage battery 13. Alternatively, it may be reduced and corrected.
  • step s4 it is determined whether T ⁇ 0. If Yes, the vehicle is accelerating, step s5 is NO, the vehicle is decelerating (during braking), and the process moves to step s6.
  • the front / rear distribution torques TFreq and TRreq are values within the upper limit torque range E (see FIG. 3 (a)) between the upper limit torque at which the acceleration torque becomes maximum and the maximum deceleration torque. Then, the current front and rear distribution torques TFreq and TRreq are set as they are.
  • the process proceeds to step s7, and it is assumed that at least one of the calculated front / rear distribution torques TFreq and TRreq is a value that deviates from the upper and lower limit torque range E.
  • the front side is separated from the upper limit torque threshold value TMAXF, and the rear side is separated from the upper limit torque threshold value TMAXR in FIG.
  • the exceeding threshold value is corrected as one distribution torque, and the value after the correction is calculated as the front and rear distribution torques TFreq and TRreq at that time (FIGS. 3A and 3B). Then, correct it as shown by the mark ⁇ ).
  • step s8 output command signals of the calculated front / rear distribution torques TFreq, TRreq are output to the front / rear power conversion circuits 31, 33 via the front / rear motor ECUs 56, 57, whereby the front / rear motor generators (MG1, MG2) 11, 12 outputs the front and rear distribution torques TFreq and TRreq, and returns to the main routine.
  • the process proceeds from step s4 to step s6.
  • the front and rear regenerative torques -TFreq, -TRreq (power generation torque by deceleration) are output as they are within the range of the upper and lower limit torques.
  • at least one of the calculated front-rear distribution torques -TFreq, -TRreq is a value that deviates from the upper and lower limit torque range E.
  • the threshold value TMINF for the front lower limit torque is shown in FIG. 3A, and the threshold value TMINF for the rear side is released from the threshold value TMINR for the rear side in FIG.
  • the lower one is corrected to the minimum torques TMINF and TMINR.
  • the value after the correction is regarded as the front / rear distribution torque -TFreq, -TRreq (regenerative torque) at that time, and is output.
  • step s10 from step s9, it will be judged whether the brake degree B is increasing by further depression operation of a brake pedal, and if not increasing, it will progress to step s12, and if it has increased, it will progress to step s11.
  • step s11 in order to secure more braking characteristics, both -TFreq and -TRreq are set to the minimum torque -TMINF and -TMINR, and the process proceeds to step s12.
  • step s12 output command signals corresponding to the front and rear regenerative torques -TFreq and -TRreq are output to the front and rear power conversion circuits 31 and 33 via the front and rear motor ECUs 56 and 57, whereby the front and rear motor generators (MG1, MG2) 11, 12 functions as a generator, generates power corresponding to the front / rear distribution torques -TFreq, -TRreq (regenerative torque), and returns to the main routine.
  • the front and rear motor generators MG1, MG2
  • the braking function is further enhanced and the braking force applied to the vehicle is reliably increased.
  • step s12 in addition to the generator braking process, the lower limit torque threshold (minimum torque -TMINF, -TMINR) is exceeded, and the regenerative torque is generated by the front and rear motor generators (MG1, MG2) 11, 12.
  • an auxiliary braking actuator (not shown) provided in the brake device of the vehicle may be turned on to add a braking output. In this case, more accurate braking characteristics can be obtained by adding braking torque, which could not be output by the front and rear motor generators (MG1, MG2) 11, 12, to the output of the brake.
  • the required output torques TF and TR are calculated as the front and rear distribution torques ⁇ TFreq and ⁇ TRreq using the distribution ratio ⁇ based on the operating conditions, and the upper and lower distribution torques ⁇ TFreq and ⁇ TRreq are the threshold values and the upper limit torque TMAXF.
  • TMAXR and lower limit torques TMINF and TMINR are set as values within a range E, so that the non-actuated state where the front and rear distributed torques ⁇ TFreq and ⁇ TRreq are zero can be eliminated. For this reason, there is little discomfort due to torque fluctuation when the distribution torque is switched from non-operation to operation in the case of torque fluctuation, and driving feeling is improved.
  • one of the distribution torques exceeding the threshold value is corrected to that threshold value, it is possible to reliably prevent excessive acceleration / deceleration on only one of the front and rear axes, and there is less sense of incongruity. Become.
  • the drive control device for an electric vehicle includes a storage device 551 that stores the characteristics of the front and rear motor generators 11 and 12, and a required output torque calculation device that calculates the required output torque T. 552, the distribution torque value calculation device 553 for calculating the front and rear distribution torques TFreq and TRreq, and the first and second power converters 31 and 33 are voltage-controlled so as to supply power according to the front and rear distribution torques TFreq and TRreq.
  • the output distribution control device 554 is provided, the functional configuration of the distribution torque value calculation device 553a here is different from that of the first embodiment. For this reason, here, avoiding repeated description, the functional configuration of the distributed torque value calculation device 553a will be mainly described.
  • the distributed torque value calculation device 553a used by the drive control apparatus for an electric vehicle as the second embodiment is similar to the distribution torque value calculation device 553 of the first embodiment, and uses the front and rear distribution torques TFreq and TRreq ( ⁇ mark) as the upper limit torque. And a value within the lower limit torque range E (see FIGS. 6A and 6B).
  • the motor generators 11 and 12 on one of the front and rear sides do not stop, so that a situation in which a relatively large torque fluctuation occurs can be eliminated and the driving feeling can be maintained well. Further, as shown in FIGS.
  • At least one of the front / rear distribution torques TFreq, TRreq is higher, the lower limit torque threshold TMAXF, R (acceleration), and the lower limit torque TFMINF, R (deceleration) )
  • the front side in FIG. 6 (a) and the rear side in FIG. 6 (b) correspond to the rear side
  • one of the distribution torques exceeding the threshold value is corrected to the threshold value exceeding it (correction arrow; when dT is increased and corrected) , -DT is corrected to decrease)
  • the value after correction (marked by ⁇ ) is set considering the front and rear distribution torques (corrected distribution torques) TFreq and TRreq at that time.
  • the front / rear distribution torque (corrected distribution torque) TFreq, TRreq is corrected as a value within the range of the upper limit and the lower limit torque
  • the difference correction torque used is used.
  • the other distributed torque is increased or decreased by an amount corresponding to the difference correction torque ⁇ dT so as to compensate the output of the necessary drive torque T with respect to ⁇ dT. That is, when the front shaft distribution torque TFreq is corrected within the range E as shown in FIG. 6 (a), the other rear shaft distribution torque TRreq 'is increased / decreased by an amount corresponding to the difference correction torque ⁇ dT.
  • the required output torque T calculated by the required output torque calculation device 552 is compensated.
  • the front-shaft distribution torque TFreq ′ which is the other, is corrected to increase / decrease by the amount corresponding to the difference correction torque ⁇ dT.
  • the output torque calculation device 552 compensates the required output torque T calculated.
  • the first and second power conversion devices 31 and 33 are voltage-controlled so that the output distribution control device 554 supplies power according to the front and rear distribution torques TFreq and TRreq.
  • this flowchart has steps s5 ′ and s7 ′ added between steps s5 and s8, and steps s6 ′ and s6 ′ between steps s6 and s10.
  • step s9 ' is added. Therefore, here, the description of the overlapping steps is avoided, and steps s5 ′ to s7 ′ and steps s6 ′ to s9 ′ are mainly described.
  • the arithmetic expression explanatory drawing of FIG. 8 is demonstrated simultaneously.
  • front shaft output torque TF
  • rear shaft output torque TR
  • front shaft distribution torque TFreq
  • rear shaft distribution torque TRreq
  • required torque T TFreq + TRreq
  • front shaft minimum torque TFmin
  • Front axis maximum torque TFmax
  • rear axis minimum torque TRmin
  • rear axis maximum torque TRmax
  • step s5 of the flowchart of FIG. 7 the front / rear distribution torques TFreq and TRreq are values within a range E (see FIG. 6A) of the upper limit torque that maximizes the acceleration torque and the lower limit torque that maximizes the deceleration torque.
  • the region e is (e1), and the current front-rear distribution torques TFreq and TRreq are set as they are.
  • step s7 the rear distribution torques TFreq and TRreq both exceed the threshold, that is, the front and rear exceed the upper limit torque TMAXF and TMAXR (the front upper limit torque TMAXF in FIG. 6A and the rear upper limit torque TMAXR in FIG. 6B).
  • the arithmetic expression in the area (e7) in FIG. 8 is adopted, and the process proceeds to step s8.
  • step s7 ′ it is assumed that at least one of the calculated front and rear distribution torques TFreq and TRreq is a value that deviates from the upper limit torque range E.
  • the front side in FIG. 6A corresponds to the case where the upper side is separated from the upper limit torque threshold value TMAXF, and the rear side is separated from the upper limit torque threshold value TMAXR in FIG.
  • the threshold value that has been exceeded is corrected as one distribution torque, and the corrected value is calculated as the front and rear distribution torques TFreq and TRreq at that time.
  • arithmetic expressions in the areas (e3) and (e6) of FIG. 8 are employed.
  • step s7 ′ as shown in FIGS. 6 (a) and 6 (b), the front and rear shaft distribution torques TFreq and TRreq are within the range E of the upper limit torque and the lower limit torque by the difference correction torque ⁇ dT.
  • the distribution torque on the other side of the front shaft and the rear shaft is inversely increased or decreased by an amount corresponding to the difference correction torque ⁇ dT.
  • the distribution torques TFreq ′ and TRreq ′ which are the other on the front and rear axes, are increased / decreased by an amount corresponding to the difference correction torque ⁇ dT, and the arithmetic expressions of the regions e3 and e6 Is used.
  • the required output torque T calculated by the required output torque calculation device 552 is compensated, and the process proceeds to step s8, where the output command signals of the calculated front and rear distribution torques TFreq and TRreq are sent to the front and rear power conversion circuits 31 and 33. Output and return to the main routine.
  • step s6 in the flowchart of FIG.
  • the front / rear distribution torques TFreq and TRreq are values within the range E (see FIG. 6A) of the upper limit torque and the lower limit torque of the deceleration torque. If it is determined, it is the area e of (e1) in FIG. 8, and the current front and rear distribution torques TFreq and TRreq are set as they are.
  • step s6 it is determined whether or not the front / rear distribution torques TFreq and TRreq both exceed the lower limit torque that is the minimum of the deceleration torque.
  • step s9 when the front and rear regenerative torques -TFreq and -TRreq both fall below the lower limit torque, braking is performed in the region (e4) in FIG. 8, and both are corrected to the minimum torques -TMINF and -TMINR.
  • the front and rear shaft distribution torques TFreq and TRreq are corrected within the upper limit torque and lower limit torque range E, and one of the front and rear is corrected to the minimum torque ⁇ TMINF and ⁇ TMINR.
  • it is the area of (e2) and (e5) in FIG. 8, and the arithmetic expression here is adopted.
  • the other of the front and rear is corrected to compensate for the output of the necessary driving torque T.
  • the distribution torque on the other side of the corrected front shaft and rear shaft is increased or decreased by the amount corresponding to the difference correction torque ⁇ dT.
  • the distribution torques TFreq ′ and TRreq ′ which are the other on the front and rear axes are increased / decreased by an amount corresponding to the difference correction torque ⁇ dT.
  • the front and rear distribution torques TFreq and TRreq are set.
  • step s10 it is determined whether or not the brake degree B has increased. If it has increased, step s11 is reached.
  • both TFreq and TRreq are set to the minimum torque ⁇ TMINF and ⁇ TMINR, and the process proceeds to step s12.
  • step s12 front and rear regenerative torque -TFreq, -TRreq output command signals are output to front and rear power conversion circuits 31 and 33 via front and rear motor ECUs 56 and 57, whereby front and rear motor generators (MG1, MG2) 11, 12 are output.
  • front and rear motor generators MG1, MG2
  • Functions as a generator generates power corresponding to the front / rear distributed torques -TFreq, -TRreq (regenerative torque), and returns to the main routine.
  • the driver since the driver further depresses the brake pedal, the braking function is enhanced and the braking force applied to the vehicle is reliably increased.
  • the necessary drive is performed with respect to the difference correction torque ⁇ dT used.
  • the other distributed torque is increased / decreased by an amount corresponding to the difference correction torque ⁇ dT so as to compensate the output of the torque T.
  • the rear-shaft distribution torque TRreq ′ which is the other side, is increased / decreased by an amount corresponding to the difference correction torque ⁇ dT, or before the other side, as shown in FIG.
  • the shaft distribution torque TFreq ′ is corrected to increase or decrease by an amount corresponding to the difference correction torque ⁇ dT, so that the required output torque T calculated by the required output torque calculation device 552 is compensated. For this reason, since the initial required output torque can be ensured, a sense of incongruity during acceleration and deceleration operations can be reliably prevented.
  • a hybrid vehicle has been described as an electric vehicle.
  • the present invention can also be applied to an EV vehicle, which can be configured in substantially the same manner, and the same effects can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

前、後の配分トルクがゼロとなる非作動の状態を排除してトルク変動による運転フィーリングの低下を防止する電気自動車の駆動制御装置を提供する。ここでは、バッテリ13と、駆動輪21,23に連結された前後モータジェネレータ11,12と、車両10の運転条件を検出する運転条件検出装置Sと、運転条件に応じて必要出力トルクTを演算する必要出力トルク演算装置552と、分配比率αを用いて必要出力トルクを配分トルクとして演算する配分トルク値演算装置553と、バッテリから前後電動回転機への電力供給を制御する出力配分制御装置554と、を備える。特に、前後の配分トルクは車両の運転条件に応じた加速トルクの最大となる上限トルクTMAXF,TMAXRと減速トルクの最大となる下限トルクTFMIN,TRMINの範囲内の値として設定される。

Description

電気自動車の駆動制御装置
 本発明は、電気自動車の駆動輪に連結された電動回転機をエンジン運転情報に応じた出力で駆動する電気自動車の駆動制御装置に関するものである。
 電気自動車として、前後駆動輪の前後軸に動力源である前後電動回転機(モータ)を連結し、これら各電動回転機に対し、車載電源であるバッテリの電力を電力供給回路を介して供給することで走行するものが知られている。ここで、電力供給回路には電力制御器が配備され、これにより、走行時に供給電力を調整して走行トルクの調整を行い、しかも、減速走行時に駆動輪から前後電動回転機へ向かう電気エネルギの回生状態を調整している。
 例えば、運転席のアクセルペダルの操作量に応じて、電力制御器がバッテリからの出力電力を制御して前後電動回転機の各出力トルクをそれぞれ制御している。更に、運転席のブレーキペダルの操作に応じて、上述の回生状態を制御している。なお、回生状態では前後電動回転機が発電機として作動し、駆動輪の回転エネルギを電気エネルギに変換させる。この際、駆動輪に制動力を与えるとともに、変換された電気的エネルギがバッテリに充電されている。
 ところで、電気自動車は運転情報に応じて必要トルク(必要トルク)を演算し、求めた必要トルクを前後駆動輪の少なくとも一方の電動回転機で発生させる。この場合、モータ負荷が小さい市街地走行では低定格出力の電動回転機を使用することが好ましく、最高速度や加速性能を要求される走行時には高定格出力の電動回転機を使用することが好ましい。
 そこで、前後一方のみの大定格出力の電動回転機で出力要求に応じるより、前後複数の電動回転機の内の前後いずれか一方を駆動し、あるいは両方同時に駆動するという使い分けを行う。これにより、走行時のモータ負荷の増減に応じてモータ効率の良い運転を継続して省エネすることができ、一回の充電あたりの走行距離を伸ばすことができる。
 なお、このような従来技術が特許文献1に開示される。
 更に、特許文献2の電気自動車では、前輪と後輪の各電動回転機として所定の動力比で駆動するものを採用し、しかも、走行状態に応じてこれら前輪と後輪の各電動回転機を選択的に駆動させている。
 更に、特許文献3の電気自動車では、予め電動回転機の故障や出力制限を考慮して最大トルクや最小トルクが与えられ、これに基づき低判定値、高判定値を設定している。その上で、必要トルクが所定の低判定値以下では低定格出力の電動回転機のみで走行し、所定の低判定値を上回り高判定値以下では高定格出力の電動回転機のみで走行し、所定の高判定値を上回ると低、高定格出力の両電動回転機で走行する。更に、制動時にはブレーキ度合いに応じて、低、高定格出力の両電動回転機を選択的に回生制動作動させて、回生制動時の発電効率を向上させ、充電量を向上させている。
特開平7-67216号公報 特開2009-95230号公報 特開平5-76106号公報
 ところで、特許文献3のように、必要トルクが大きくなるのに従い、低定格出力の電動回転機、高定格出力の電動回転機、低高両定格出力の電動回転機をこの順で使い分けた場合、低定格出力時のバッテリ消費を抑え、高定格出力の高速、高出力走行を容易化できる。しかし、低定格出力や高定格出力の電動回転機のみを駆動させる運転域があり、このような運転域では一方の電動回転機が不使用となり、電動回転機の非作動と作動との運転状態の切換え時のトルク変動により、切換え時の運転フィーリングが低下する。
 更に、低高両定格出力の、即ち、前、後の電動回転機を共に使用する高出力時において、前、後の電動回転機の一方の配分トルクが低、高判定値(出力制限値)を越えるような演算が成された場合、出力制限値を超えた部分のトルクはそのまま出力されず、必要トルクに対して出力トルクが減少するため加速(減速)不良が生じる。
 したがって、この発明は、演算された必要トルクを前後の電動回転機の各配分トルクに配分する際、前後の各配分トルクの一方がゼロとなる非作動状態を排除することで、トルク変動による運転フィーリングの低下を防止でき、更に、前後一方の配分トルクが低、高判定値を越えないよう修正した場合であっても、必要トルクを確保できる電気自動車の駆動制御装置を提供することにある。
 運転条件に応じた必要出力トルクを前後の電動回転機に配分する配分トルクを演算し、前記前電動回転機及び後電動回転機の非作動状態を排除する配分トルク値演算装置と、前記前後の各配分トルクに応じて前記車載電源から前記前後電動回転機への電力供給を制御する出力配分制御装置と、を備え、前記前電動回転機は、車両の運転条件に応じた加速トルクの最大となる上限トルクと減速トルクの最大となる下限トルクとを定めた第1トルク出力特性を有し、前記後電動回転機は、車両の運転条件に応じた加速トルクの最大となる上限トルクと減速トルクの最大となる下限トルクとを定めた第2トルク出力特性を有し、前記前後の配分トルクは、前記前電動回転機及び前記後電動回転機のそれぞれの第1トルク出力特性及び第2出力特性の上限トルクの範囲内の値に設定されることを特徴とする。
 さらに、別発明として、前記第1トルク出力特性は、前記第2トルク出力特性と比べ、上限トルクと下限トルクとの幅が広い大出力特性であるとすることができる。
 さらに、別発明として、前記第2トルク出力特性は、前記第1トルク出力特性と比べ、上限トルクと下限トルクとの幅が広い大出力特性であるとすることができる。
 したがって本発明によれば、運転条件に応じた必要出力トルクを前後の電動回転機に配分する配分トルクとして演算し、その配分トルクを上限トルクと下限トルクの範囲内の値として設定するので、前、後の各配分トルクがゼロである非作動の状態を排除することとなり、このため、トルク変動の際に配分トルクが非作動より作動に切換えられる際のトルク変動がなく、運転フィーリングが良好となる。
 さらに、配分トルクが非作動より作動に切換えられる時のトルク変動がないとの効果に加え、前記上、下限トルクの閾値を越える一方の配分トルクをその上、下限トルクの閾値に修正することで、各配分トルクが過度に小さい値あるいは過度に大きい値を与えられることがないため、前後一方軸のみでの過度な加速、減速を防止できるとの効果が得られ、この点でも運転フィーリングが良好となる。
 さらに、前後一方の配分トルクが閾値である上、下限トルクを越えた場合にはその上、下限トルクの閾値に修正することで、過度な加速、減速を防止できる。しかもその差分修正トルクで前後他方の配分トルクを修正して増減打ち消すことで、当初の必要出力トルクを確保することができ、加速、減速操作時の違和感を防止できる。
 さらに、他方の配分トルクを差分修正トルク相当分だけ増減修正した修正配分トルクが上、下限トルクの閾値に修正することで、より的確に過度の加速、減速を防止でき、運転フィーリングが良好となる。
 さらに、電動回転機によって出力できなかったトルクをブレーキの出力に加えることで、的確な制動特性が得られる。
 さらに、前輪を主駆動系とするか後輪を主駆動系とするかを自由に選択することができる。さらには、各モータジェネレータの大型化、小型化によって搭載レイアウトの自由度が増すこととなる。
本発明の一実施形態としての電気自動車の駆動制御装置の全体図である。 は図1の電気自動車の駆動制御装置で用いるモータジェネレータの前側のトルクマップ特性(第1トルク出力特性)線図である。 は図1の電気自動車の駆動制御装置で用いるモータジェネレータの後側のトルクマップ特性(第2トルク出力特性)線図である。 は図1の電気自動車の駆動制御装置で行なう前配分トルクが修正される場合の修正説明図である。 は図1の電気自動車の駆動制御装置で行なう後配分トルクが修正される場合の修正説明図である。 図1の電気自動車の駆動制御装置で行なう前後配分トルクの配分制御処理のフローチャートである。 図1の電気自動車の駆動制御装置で用いるアクセル開度に対応した出力トルクの演算マップである。 は第2実施形態の電気自動車の駆動制御装置で行なう前配分トルクが修正される場合の修正説明図である。 は第2実施形態の電気自動車の駆動制御装置で行なう後配分トルクが修正される場合の修正説明図である。 第2実施形態の電気自動車の駆動制御装置で行なう前後配分トルクの配分制御処理のフローチャートである。 第2実施形態の電気自動車の駆動制御装置で行なう前後配分トルクの各値の大小に応じ、異なる特性で演算され修正される状態を説明する演算特性説明図である。
 以下、本発明の第1実施形態である電気自動車の駆動制御装置について説明する。
 図1は、本発明を適用した電気自動車の駆動制御装置を装備する電気自動車としてのハイブリッド車両(以後単に車両と記す)10の全体の概略構成を示す。
 図1に示された車両10は、電動回転機である走行用の前後のモータジェネレータ(MG1,MG2)11,12と、これらモータジェネレータ11,12の電源である大容量の駆動用バッテリ13(これ以降は単にバッテリ13と称する)と、走行用のエンジン14と、これら前後の駆動源と前後の駆動輪21を連結する前後の回転伝達機構15、20とを備える。
 バッテリ13は、複数のセルを直列に接続するなどして百ボルト以上の高電圧を得るようにしたものである。このバッテリ13は、充電用ケーブル(図示せず)と車載の充電器16を介して、商用電源17から供給される電力によって充電することができる。
 フロント側のモータジェネレータ11は、前回転伝達機構15を介して前輪21を回転させる。リヤ側のモータジェネレータ12は、後回転伝達機構15を介して後輪23を回転させる。
 エンジン14は、エンジンECU30によって制御される。エンジン14は燃料タンク80から供給される燃料によって作動し、前回転伝達機構15を介して前輪21を回転させるとともに、発電機32を駆動するようになっている。発電機32の出力は電力変換回路(インバータ)31を介して12Vの車載バッテリ34にも供給される。なお、電力変換回路31は空調用機器35にも接続され、空調用機器35の電源としても利用される。エンジン14の排気は排気処理装置50とマフラ51を経て大気中に排出される。
 車両10は制御装置としてハイブリッドECU55と、前後モータ用ECU56,57と、バッテリECU58を備えている。前後モータ用ECU56,57の演算結果と、バッテリECU58の演算結果もハイブリッドECU55に入力されている。
 車両10は運転条件検出装置Sを備え、これらはバッテリ13から図外のトランスを介して低電圧となった電力を電源として、車両の運転条件を検出するものであり、具体的には、アクセルポジションセンサ61と車速センサ62とブレーキセンサ63とを備えている。
 アクセルポジションセンサ61は、図外のアクセル装置におけるアクセルペダルのようなアクセル操作部の操作量としてのアクセル開度Aを検出し、この検出量に応じた電気信号をアクセル開度AとしてハイブリッドECU55に出力する。車速センサ62は、車両の速度Vを検出し、この検出量に応じた電気信号を車速Vとして出力する。ブレーキセンサ63は、図外のブレーキ装置におけるブレーキペダルのようなブレーキ操作部の操作量としてのブレーキ度合いBを検出し、この検出量に応じた電気信号をブレーキ度合いBとして出力する。
 図1に示されるように、バッテリ13の状態を検出するためにバッテリ検出ユニット70が設けられている。バッテリECU58は、バッテリ検出ユニット70の出力に基いてバッテリ13の充電率SOCを検出するSOC演算器71と、バッテリ13の内部抵抗を検出するバッテリ内部抵抗演算器72と、バッテリ13の劣化状態を検出するバッテリ劣化状態演算器73などを含んでいる。
 電動回転機である前後モータジェネレータ(MG1,MG2)11,12の回転数が回転数センサ80f、80rによって検出され、モータ用ECU56,57に入力される。また前後モータジェネレータ11,12の温度が温度センサ81f、81rによって検出され、モータ用ECU56,57に入力される。モータ用ECU56,57はこれらのデータに基いて前後モータジェネレータ11,12の状態を監視する。
 ところで、第1、第2電力変換回路31、33は、バッテリ13からの直流電圧を交流電圧に変換して第1、第2モータジェネレータ11、12へ出力する。更に、第1、第2モータジェネレータ11、12の回生動作によって発電された交流電圧を直流電圧に変換してバッテリ13を充電するインバータとしての機能を備える。
 しかも、第1、第2電力変換装置31、33は、バッテリ13から受ける直流電圧を昇圧して第1、第2モータジェネレータ11、12に出力するコンバータとしての機能も備える。これら第1、第2電力変換装置31、33の前後モータ用ECU56,57は入力された前後軸出力トルク(トルク指令値)TF,TR、第1、第2モータジェネレータ11、12の各電流値、および不図示の各相コイル電圧を演算し、その演算結果に基づくPWM(Pulse Width Modulation)信号を生成して第1、第2モータジェネレータ11、12の電圧制御をする。
 さらに、ハイブリッドECU55は入力された前後軸出力トルク(トルク指令値)TF,TRおよびモータ回転数、車速V、アクセル開度A、ブレーキ度合いBに基づいて第1、第2電力変換装置31、33の入力電圧を最適にするためのトルク配分制御機能を備える。
 ここで、前後モータジェネレータ11,12には電力がバッテリ13から個別の電力変換回路31,33を通して供給される。また、これらの前後モータジェネレータ11,12の出力特性は異なっている。具体的には、前モータジェネレータ(MG1)11は、図2(a)に示す前トルクマップm1のトルク特性L1で示すように、車速Vに対する最大出力たる最大トルクTMAXFが、例えば車速V=0で8kgfmを有するような大出力モータになっている(第1トルク出力特性)。後モータジェネレータ(MG2)12は、図2(b)に示す後トルクマップm2のトルク特性L2で示すように、車速Vに対する最大トルクTMAXRが、例えば車速V=0で2kgfmを有するような小出力モータになっている(第2トルク出力特性)。つまり、前後モータジェネレータ11,12の出力特性は、TMAXF>TMAXRの関係になっている。これに応じて、回収トルク(-)の特性も同様に-TMINF>-TMINRの関係になっている。なお、図2(a),図2(b)中の符号P1が前後モータジェネレータ11,12の定格出力点を示し、更に、曲線L1-1~L1n、L2-1~L2-nは、効率特性を示す。
 なお、本説明では、前モータジェネレータ11の方が後モータジェネレータ12よりも大出力特性を有するとして述べるが、前後モータジェネレータ11,12の出力特性の大小は逆でもよい。これにより、前輪を主駆動系とするか後輪を主駆動系とするかを自由に選択することができる。さらには、各モータジェネレータの大型化、小型化によって搭載レイアウトの自由度が増すこととなる。
 ハイブリッドECU55は、バッテリ13から図外のトランスを介して低電圧となった電力を電源とするマイクロコンピュータに構成されており、マイクロコンピュータのメモリにシステムベースとして予め設定されたプログラムにしたがって動作するようになっており、具体的には、記憶装置551と必要出力トルク演算装置552と配分トルク値演算装置553と出力配分制御装置554とを備えている。
 ここで、記憶装置551は、実験結果として得られた、車速Vと前後モータジェネレータ11、12毎の最大トルク(上限トルク)TMAXF,TMAXR(加速時であるA>0)、下限トルクTFMIN,TRMAX(減速時であるB<0)との関係を規定するトルク出力特性データ(図2(a)、図2(b)参照、トルク出力特性)を記憶している。
 次に、必要出力トルク演算装置552は運転条件に応じて必要出力トルクT(=TFreq+TRreq)を演算する。
 具体的には、アクセル開度Aに対応した車速Vを保つのに必要な必要出力トルクTを予め設定してある所定のトルク演算式(1):T=A(B){TMAXF(-TMINF)+TMAXR(―TMINR)}により、アクセル開度A、車速V、ブレーキ度合いBを考慮して算出する。
 次に、配分トルク値演算装置553は予め設定される運転条件に基づく所定の配分比率を読み取り、必要出力トルクTをその配分比率αで、前後配分トルクTFreq、TRreqに配分する演算、即ち、必要出力トルクT(=α×TFreq+(α-1)×TRreq)を演算して、設定する(図3(a)、図3(b)の△印参照)。
 次いで、配分トルク値演算装置553は前後配分トルクTFreq、TRreq(△印)を、車両の運転条件に応じた加速トルクの最大となる上限トルクと減速トルクの最大となる下限トルクの範囲E内(図3(a)、図3(b)参照)の値となるように修正する。なお、図3(a)、図3(b)では、修正不要時はそのまま△印が○印となるよう記載した。
 この処理により、走行時における前後配分トルクTFreq、TRreqの少なくとも一方の値がゼロとならず、即ち、一時的に、前後一方のモータジェネレータ11、12が停止とならない。このため、停止より再稼動を行うことにより比較的大きなトルク変動が生じるという事態を排除でき、トルクショックが運転フィーリングを低下させることを防止できる。
 更に、ここでは、図3(a)、図3(b)に示すように、前後配分トルクTFreq、TRreqの少なくとも一方が上、下限トルクの閾値TMAXF,R(加速時)、下限トルクTFMINF,R(減速時)を越える場合(図3(a)は前輪側,図3(b)は後輪側が該当)には、その閾値を超える一方の配分トルクをその超える閾値に修正し(修正矢印;dTが増加時の差分修正トルクの場合,-dTが減少時の差分修正トルクの場合)、その修正後の値(◎印)をその時の前後配分トルクTFreq、TRreqと見做して設定する。
 ここでの処理により、一時的に、前後一方のモータジェネレータ11、12が停止と再稼動を行った場合に比較的大きなトルク変動によるトルクショックが生じるという事態をより確実に排除でき、運転フィーリングを良好に保持できる。
 次に、出力配分制御装置554は配分トルク値演算装置553より入力された前後配分トルクTFreq、TRreqに応じた電力供給を行うPWM信号を生成して、モータ用ECU56,57を介して第1、第2電力変換装置31、33を用いて電圧制御することで、バッテリ13から前後モータジェネレータ11,12への電力供給量を制御する。
 次に、この第1実施形態の前後配分トルクの配分制御処理を図4のフローチャートに沿って説明する。
 ここでは、不図示のメインスイッチがオンされ、アクセル操作部が操作され、不図示のメインルーチン側の制御により前後モータジェネレータ11,12の力行側の作用により車両が走行する。
 不図示のメインルーチンで定常の制御処理がなされ、所定の時点で図4に示したフローチャートのステップs1に達するとする。
 ステップs1ではアクセルセンサ61が検出したアクセル開度Aと、車速センサ62が検出した車速Vと、ブレーキセンサ63が検出したブレーキ度合いBを読み込み、ステップs2に進み、車速Vとアクセル開度Aとより必要出力トルクTを算出する。
 演算式(1):T=A(B){TMAXF(-TMINF)+TMAXR(―TMINR)}
 具体的には、実験によって得られたアクセル開度Aに対応した出力トルクTの特性を予め設定してある所定のMAP(例えば、図5のマップm3)による演算式(1):T=MAP(V,A)により、アクセル開度A、車速Vを考慮して加速時の必要出力トルクTを算出する。または、ブレーキ度合いBを考慮して、制動時の必要回生トルク-Tを算出する。
 ステップs3では、TMAXF、TMAXR,TMINF、TMINRを演算する。
 具体的には,現在の車速Vを基準として、不図示のトルク特性データDから前後モータジェネレータ11,12の最大トルクTMAXF、TMAXRおよび最小トルクTMINF、TMINRを抽出する。
 また,前後モータジェネレータ11,12,前後電力変換回路31,33及び高圧バッテリ13の発熱,故障,SOCの値等によって,回転電動機にトルク特性データより求めたTMAXF、TMAXR,TMINF、TMINRの各値よりも低減修正されるようにしても良い。
 次いで、ステップs4では、T≧0か否か判断し、Yesでは加速時であり、ステップs5に、Noでは減速時(制動時)であり、ステップs6に移動する。
 ステップs5に進むと、ここでは特に、前後配分トルクTFreq、TRreqが加速トルクの最大となる上限トルクと減速トルクの最大となる下限トルクの範囲E(図3(a)参照)内の値であると、そのまま現在の前後配分トルクTFreq、TRreqが設定される。
 次いでステップs7に進み、演算された前後配分トルクTFreq、TRreqの少なくとも一方が、上下限トルクの範囲Eを離脱した値であるとする。
 ここで、加速時であると、即ち、図3(a)では前側が上限トルクの閾値TMAXFを、図3(b)では後側が上限トルクの閾値TMAXRを離脱しているような場合であると、その越えた閾値を一方の配分トルクと見做して修正し、その見做し修正後の値をその時の前後配分トルクTFreq、TRreqとして演算する(図3(a),図3(b)では、印◎で示すように修正する)。
 このように、上下限トルクの閾値TMAXF,TMAXR(加速時)を越える点を修正後に、ステップs8に進む。ここでは、演算済みの前後配分トルクTFreq、TRreqの出力指令信号を前後モータ用ECU56,57を介して前後電力変換回路31,33へ出力し、これにより、前後モータジェネレータ(MG1,MG2)11,12が前後配分トルクTFreq、TRreqを出力し、メインルーチンにリターンする。
 一方、制動時には、ステップs4よりステップs6に進む。ここでは前後の回生トルク-TFreq、-TRreq(減速で発電トルク)が上下限トルクの範囲内ではそのままの値が出力される。
 次いでステップs9に進み、演算された前後配分トルク-TFreq、-TRreqの少なくとも一方が、上下限トルクの範囲Eを離脱した値であるとする。
 ここで、減速時であるとすると、図3(a)では前側下限トルクの閾値TMINFを,図3(b)では後側が下限トルクの閾値TMINRを離脱し下回るような場合にあたる。ここでは下回った方を最小トルクTMINF、TMINRに修正する。その修正後の値をその時の前後配分トルク-TFreq、-TRreq(回生トルク)と見做して出力する。
 ここで、ステップs9よりs10に進むと、ブレーキペダルの更なる踏み込み操作により、ブレーキ度合いBが増しているか判断し、増してないとステップs12に、増しているとステップs11に進む。
 ステップs11ではより制動特性を確保するため、-TFreq、-TRreqを共に最小トルク-TMINF、-TMINRに設定し、ステップs12に進む。
 ステップs12では前後回生トルク-TFreq、-TRreq相当の出力指令信号を前後モータ用ECU56,57を介して前後電力変換回路31,33へ出力し、これにより、前後モータジェネレータ(MG1,MG2)11,12が発電機として機能し、前後配分トルク-TFreq、-TRreq(回生トルク)相当の発電を行い、メインルーチンにリターンする。
 これと同時に、ブレーキペダルの更なる踏み込みが運転者により成された場合には、制動機能が更に高められ、車両に加わる制動力が確実に増加することとなる。
 なお、ステップs12の制動操作において、ここで発電機の制動処理に加えて、下限トルクの閾値(最小トルク-TMINF、-TMINR)を越え、前後モータジェネレータ(MG1,MG2)11,12によって回生トルクとして出力できなかったトルク(負の値)を補うため、例えば、車両のブレーキ装置に装備する不図示の補助制動アクチュエーターをオン操作して、制動出力を追加するように構成しても良い。この場合、前後モータジェネレータ(MG1,MG2)11,12によって出力できなかった制動トルクをブレーキの出力に加えることで、より的確な制動特性が得られる。
 このように、運転条件に基づく分配比率αを用いて必要出力トルクTF,TRを、前後配分トルク±TFreq、±TRreqとして演算し、その前後配分トルク±TFreq、±TRreqを閾値である上限トルクTMAXF,TMAXRと下限トルクTMINF、TMINRの範囲E内の値として設定するので、前、後の各配分トルク±TFreq、±TRreqがゼロである非作動の状態を排除することができる。このため、トルク変動の際に配分トルクが非作動より作動に切換えられる際のトルク変動による違和感が少なく、運転フィーリングが良好となる。
 しかも、閾値を越える一方の配分トルクをその閾値に修正するので、確実に前後一方軸のみでの過度な加速、減速を防止でき、違和感が少なく、この点で運転フィーリングがより確実に良好となる。
 次に、第2実施形態としての電気自動車の駆動制御装置の説明を行なう。
 この第2実施形態の電気自動車の駆動制御装置は、第1実施形態と同様に、前後モータジェネレータ11、12の特性を記憶する記憶装置551と、必要出力トルクTを演算する必要出力トルク演算装置552と、前後配分トルクTFreq、TRreqを演算する配分トルク値演算装置553と、前後配分トルクTFreq、TRreqに応じた電力供給を行うよう、第1、第2電力変換装置31、33を電圧制御する出力配分制御装置554を備えるが、ここでの配分トルク値演算装置553aの機能構成が第1実施形態と相違している。
 このため、ここでは重複説明を避け、配分トルク値演算装置553aの機能構成を主に説明する。
 第2実施形態としての電気自動車の駆動制御装置が用いる配分トルク値演算装置553aは第1実施形態の配分トルク値演算装置553と同様に、前後配分トルクTFreq、TRreq(△印)を、上限トルクと下限トルクの範囲E内(図6(a)、図6(b)参照)の値となるように修正する。この処理により、前後一方のモータジェネレータ11、12が停止とならないため、比較的大きなトルク変動が生じるという事態を排除でき、運転フィーリングを良好に保持できる。
 更に、図6(a)、図6(b)に示すように、前後配分トルクTFreq、TRreqの少なくとも一方が上、下限トルクの閾値TMAXF,R(加速時)、下限トルクTFMINF,R(減速時)を越える場合(図6(a)は前側,図6(b)は後側が該当)には、その閾値を超える一方の配分トルクをその超える閾値に修正し(修正矢印;dTが増加修正時,-dTが減少修正時)、その修正後の値(◎印)をその時の前後配分トルク(修正配分トルク)TFreq、TRreqと見做して設定する。
 これに加えて、前後配分トルク(修正配分トルク)TFreq、TRreqが上限、下限トルクの範囲内の値として修正されるにあたり、更に、次の処理が加えられる。
 ここでは、図6(a)、図6(b)に示すように、前軸、後軸配分トルクTFreq、TRreqが上限トルクと下限トルクの範囲E内に修正された場合、用いた差分修正トルク±dTに対して、必要駆動トルクTの出力を補償するよう他方の配分トルクを差分修正トルク±dT相当分だけ、逆に、増減修正する。
 即ち、図6(a)のように前軸配分トルクTFreqが範囲E内に修正された場合、他方となる後軸配分トルクTRreq’を差分修正トルク±dT相当分だけ逆に増減修正し、これにより、必要出力トルク演算装置552で算出の必要出力トルクTを補償するようにしている。
 同様に、図6(b)のように後軸配分トルクTRreqが修正された場合、他方となる前軸配分トルクTFreq’を差分修正トルク±dT相当分だけ逆に増減修正し、これにより、必要出力トルク演算装置552で算出の必要出力トルクTを補償するようにしている。
 この後、出力配分制御装置554が前後配分トルクTFreq、TRreqに応じた電力供給を行うよう、第1、第2電力変換装置31、33を電圧制御することとなる。
 次に、この第2実施形態の前後配分トルクの配分制御処理を図7のフローチャートおよび図8の演算式説明図に沿って説明する。
 なお、このフローチャートは第1実施形態で用いた図4のフローチャートと対比して、ステップs5とs8の間にステップs5’、ステップs7’が追加され、ステップs6とs10の間にステップs6’、ステップs9’が追加された点でのみ相違する。
 このため、ここでは重複するステップの説明を避け、ステップs5’~s7’、ステップs6’~s9’を主に説明する。
 なお、ここでの説明にあたり、図8の演算式説明図を同時に説明する。同演算式説明図では、前軸出力トルク:TF, 後軸出力トルク:TR, 前軸配分トルク:TFreq, 後軸配分トルク:TRreq, 要求トルクT(=TFreq+TRreq)、 前軸最小トルク:TFmin, 前軸最大トルク:TFmax, 後軸最小トルク:TRmin, 後軸最大トルク:TRmax,を符号として用いる。更に、ここでmax( ):最大値演算値,min( ):最小値演算値として示した。
 図7のフローチャートのステップs5では、前後配分トルクTFreq、TRreqが加速トルクの最大となる上限トルクと減速トルクの最大となる下限トルクの範囲E(図6(a)参照)内の値であると、図8中の(e1)の領域eであり、そのまま現在の前後配分トルクTFreq、TRreqが設定される。
 ステップs5よりステップs5’に進むと、前後配分トルクTFreq、TRreqが共に加速トルクの最大となる上限トルクを上回るか否か判断し、上回るとステップs7に、そうでないとステップs7’に進む。
 ステップs7は後配分トルクTFreq、TRreqが共に閾値を上回り、即ち、前後が上限トルクのTMAXF、TMAXR(図6(a)の前上限トルクTMAXF,図6(b)の後上限トルクTMAXR)を上回り、図8中の(e7)の領域での演算式が採用され、ステップs8に進む。
 一方、ステップs7’に進み、演算された前後配分トルクTFreq、TRreqの少なくとも一方が、上限トルクの範囲Eを離脱した値であるとする。
 ここで、加速時であると、図6(a)では前側が上限トルクの閾値TMAXFを,(b)では後側が上限トルクの閾値TMAXRを離脱しているような場合にあたる。ここでは、その越えた閾値を一方の配分トルクと見做して修正し、その見做し修正後の値をその時の前後配分トルクTFreq、TRreqとして演算する。ここでは、図8の(e3),(e6)の領域での演算式が採用される。
 しかも、ステップs7’では、図6(a)、図6(b)に示すように、前軸、後軸配分トルクTFreq、TRreqが上限トルクと下限トルクの範囲E内に差分修正トルク±dTにより修正されたのに応じて、必要駆動トルクTの出力を補償するため、前軸、後軸で他方側の配分トルクを差分修正トルク±dT相当分だけ、逆に、増減修正する。
 この場合、図6(a)のように、前軸、後軸で他方となる配分トルクTFreq’、TRreq’を差分修正トルク±dT相当分だけ逆に増減修正し、領域e3、e6の演算式が用いられる。これにより、必要出力トルク演算装置552で算出の必要出力トルクTを補償するようにして、ステップs8に進み、演算済みの前後配分トルクTFreq、TRreqの出力指令信号を前後電力変換回路31,33へ出力し、メインルーチンにリターンする。
 一方、減速時に、図7のフローチャートのステップs6に達すると、ここでは、前後配分トルクTFreq、TRreqが減速トルクの上限トルクと下限トルクの範囲E(図6(a)参照)内の値であると判断すると、図8中の(e1)の領域eであり、そのまま現在の前後配分トルクTFreq、TRreqが設定される。
 ステップs6よりステップs6’に進むと、前後配分トルクTFreq、TRreqが共に減速トルクの最小となる下限トルクを上回るか否か判断し、共に下回るとステップs9に、そうでないとステップs9’に進む。
 ステップs9では、前後の回生トルク-TFreq、-TRreqが共に下限トルクを下回ると、図8中の(e4)の領域で制動時にあり、共に最小トルク-TMINF、-TMINRに修正する。
 ここで、ステップs6’よりs9’に進むと、前軸、後軸配分トルクTFreq、TRreqが上限トルクと下限トルクの範囲E内に前後一方が最小トルク-TMINF、-TMINRに修正される。ここでは図8中の(e2)、(e5)の領域であり、ここでの演算式が採用される。
 しかも、ここでは前後一方が修正されたのに応じて、前後他方が修正されて必要駆動トルクTの出力を補償する。ここでは修正された前軸、後軸で他方側の配分トルクを差分修正トルク±dT相当分だけ、逆に、増減修正する。この場合、図6(a)、図6(b)のように、前軸、後軸で他方となる配分トルクTFreq’、TRreq’を差分修正トルク±dT相当分だけ逆に増減修正して、前後配分トルクTFreq、TRreqが設定される。
 これにより、必要出力トルク演算装置552で算出の必要出力トルクTを補償するようにして、ステップs10に進む。
 ステップs10ではブレーキ度合いBが増しているか判断し、増加しているとステップs11に達し、ここではTFreq、TRreqを共に最小トルク-TMINF、-TMINRに設定し、ステップs12に進む。
 ステップs12では前後回生トルク-TFreq、-TRreqの出力指令信号を前後モータ用ECU56,57を介して前後電力変換回路31,33へ出力し、これにより、前後モータジェネレータ(MG1,MG2)11,12が発電機として機能し、前後配分トルク-TFreq、-TRreq(回生トルク)相当の発電を行い、メインルーチンにリターンする。これと同時に、ブレーキペダルの更なる踏み込みが運転者により成されるため、制動機能が高められ、車両に加わる制動力が確実に増加することとなる。
 この第2実施形態によれば、特に、前軸、後軸配分トルクTFreq、TRreqが上限トルクと下限トルクの範囲E内に修正された場合、用いた差分修正トルク±dTに対して、必要駆動トルクTの出力を補償するよう他方の配分トルクを差分修正トルク±dT相当分だけ、逆に、増減修正する。例えば、図6(a)のように、他方となる後軸配分トルクTRreq’を差分修正トルク±dT相当分だけ逆に増減修正し、あるいは、図6(b)のように、他方となる前軸配分トルクTFreq’を差分修正トルク±dT相当分だけ逆に増減修正し、これにより、必要出力トルク演算装置552で算出の必要出力トルクTを補償するようにしている。このため、当初の必要出力トルクを確保することができるので、加速、減速操作時の違和感を確実に防止できる。
 上述のところで、電気自動車としてハイブリッド車両を説明したが、これに代えて、EV車両にも本発明を適用でき、ほぼ同様に構成でき、同様の作用効果が得られる。
 10  車両
 11 前モータジェネレータ(電動回転機)
 12 後モータジェネレータ(電動回転機)
 13  バッテリ
 21,23  駆動輪
 552  必要出力トルク演算装置
 553  配分トルク値演算装置
 554  出力配分制御装置
 α  分配比率
 TMAXF,TMAXR  上限トルク
 TFMIN,TRMAX  下限トルク
 S  運転条件検出装置
 T  必要出力トルク

Claims (7)

  1.  車載電源と、
     前駆動輪に連結された前電動回転機と、
     後駆動輪に連結された後電動回転機と、
     車両のアクセル開度又は車速を含む運転条件を検出する運転条件検出装置と、
     前記運転条件に応じて必要出力トルクを演算する必要出力トルク演算装置と、
     前記運転条件に基づく分配比率を用いて、前記必要出力トルクを前後電動回転機に配分するための配分トルクを演算し、前記前電動回転機及び後電動回転機の非作動状態を排除する配分トルク値演算装置と、
     前記前後の各配分トルクに応じて前記車載電源から前記前後電動回転機への電力供給を制御する出力配分制御装置と、を備え、
     前記前電動回転機は、車両の運転条件に応じた加速トルクの最大となる上限トルクと減速トルクの最大となる下限トルクとを定めた第1トルク出力特性を有し、
    前記後電動回転機は、車両の運転条件に応じた加速トルクの最大となる上限トルクと減速トルクの最大となる下限トルクとを定めた第2トルク出力特性を有し、
    前記前後の配分トルクは、前記前電動回転機及び前記後電動回転機のそれぞれの第1トルク出力特性及び第2出力特性の上限トルクと下限トルクの範囲内の値としてそれぞれ設定されることを特徴とする電気自動車の駆動制御装置。
  2.  前記配分トルク値演算装置は前記前後軸の各配分トルクの少なくとも一方が前記上、下限トルクの閾値を越える場合には該一方の配分トルクを前記上、下限トルクの閾値とすることを特徴とする請求項1記載の電気自動車の駆動制御装置。
  3.  前記一方の配分トルクが前記上、下限トルクの閾値に修正されたことにより該回転電動機によって出力できなかった差分修正トルクによって、他方の回転電動機の前記配分トルクを増減修正することを特徴とする請求項2記載の電気自動車の駆動制御装置。
  4.  前記他方の配分トルクを前記差分修正トルク相当分だけ増減修正した修正配分トルクが前記他方の電動回転機の前記上、下限トルクの閾値を越える場合に該他方の修正配分トルクを前記上、下限トルクの閾値とすることを特徴とする請求項3記載の電気自動車の駆動制御装置。
  5.  減速時において,前記他方の電動回転機の前記下限トルクの閾値を越え,電動回転機によって回生できなかったトルクをブレーキの出力に加えることを特徴とする請求項4記載の電気自動車の駆動制御装置。
  6.  前記第1トルク出力特性は、前記第2トルク出力特性比べ、上限トルクと下限トルクとの幅が広い大出力特性であることを特徴とする請求項1記載の電気自動車の駆動制御装置。
  7.  前記第2トルク出力特性は、前記第1トルク出力特性比べ、上限トルクと下限トルクとの幅が広い大出力特性であることを特徴とする請求項1記載の電気自動車の駆動制御装置。
PCT/JP2012/006615 2011-10-19 2012-10-16 電気自動車の駆動制御装置 WO2013057930A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011230129A JP2015006013A (ja) 2011-10-19 2011-10-19 電気自動車の駆動制御装置
JP2011-230129 2011-10-19

Publications (1)

Publication Number Publication Date
WO2013057930A1 true WO2013057930A1 (ja) 2013-04-25

Family

ID=48140596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006615 WO2013057930A1 (ja) 2011-10-19 2012-10-16 電気自動車の駆動制御装置

Country Status (2)

Country Link
JP (1) JP2015006013A (ja)
WO (1) WO2013057930A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107487188A (zh) * 2016-12-23 2017-12-19 宝沃汽车(中国)有限公司 用于双轴驱动车辆的制动回馈控制方法和装置
EP3514003A4 (en) * 2016-09-16 2019-08-07 Hitachi Automotive Systems, Ltd. CONTROL DEVICE FOR AN ELECTRICALLY DRIVEN VEHICLE, CONTROL SYSTEM FOR AN ELECTRICALLY DRIVEN VEHICLE, AND METHOD FOR CONTROLLING AN ELECTRICALLY DRIVEN VEHICLE
GB2571331A (en) * 2018-02-26 2019-08-28 Jaguar Land Rover Ltd BEV torque split control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151691A (ja) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd 電動車両の制御装置
JP2005151633A (ja) * 2003-11-12 2005-06-09 Honda Motor Co Ltd ハイブリッド車両
JP2005204436A (ja) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd 車輪独立駆動式電気自動車の駆動力制御装置
JP2009177994A (ja) * 2008-01-28 2009-08-06 Honda Motor Co Ltd 複数駆動源の駆動力制御装置
JP2009278770A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp 車両およびその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151633A (ja) * 2003-11-12 2005-06-09 Honda Motor Co Ltd ハイブリッド車両
JP2005151691A (ja) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd 電動車両の制御装置
JP2005204436A (ja) * 2004-01-16 2005-07-28 Nissan Motor Co Ltd 車輪独立駆動式電気自動車の駆動力制御装置
JP2009177994A (ja) * 2008-01-28 2009-08-06 Honda Motor Co Ltd 複数駆動源の駆動力制御装置
JP2009278770A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp 車両およびその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514003A4 (en) * 2016-09-16 2019-08-07 Hitachi Automotive Systems, Ltd. CONTROL DEVICE FOR AN ELECTRICALLY DRIVEN VEHICLE, CONTROL SYSTEM FOR AN ELECTRICALLY DRIVEN VEHICLE, AND METHOD FOR CONTROLLING AN ELECTRICALLY DRIVEN VEHICLE
CN107487188A (zh) * 2016-12-23 2017-12-19 宝沃汽车(中国)有限公司 用于双轴驱动车辆的制动回馈控制方法和装置
GB2571331A (en) * 2018-02-26 2019-08-28 Jaguar Land Rover Ltd BEV torque split control
GB2571331B (en) * 2018-02-26 2021-06-23 Jaguar Land Rover Ltd BEV torque split control
US11472411B2 (en) 2018-02-26 2022-10-18 Jaguar Land Rover Limited Battery electric vehicle (BEV) torque split control

Also Published As

Publication number Publication date
JP2015006013A (ja) 2015-01-08

Similar Documents

Publication Publication Date Title
JP3879650B2 (ja) 車両の制御装置
JP6730667B2 (ja) 車両の走行駆動装置
JP5514661B2 (ja) 電動車両の駆動制御装置
JP5510116B2 (ja) ハイブリッド車の回生制御装置
JP5879251B2 (ja) 電動機の駆動制御装置
KR100981119B1 (ko) 차량 구동 장치 및 차량 구동 장치의 제어 방법
WO2012104924A1 (ja) ハイブリッド車両の駆動制御装置及びその方法、並びにハイブリッド車両
JP5447346B2 (ja) ハイブリッド電気自動車の制御装置
KR101963945B1 (ko) 차량 및 차량 제어 방법
CN110316019B (zh) 车辆电源系统
JP6730668B2 (ja) 車両の走行駆動装置
US10059324B2 (en) Travel driving apparatus of vehicle
JP2008067436A (ja) 車両の制御装置及び制御方法
CN104245387A (zh) 车辆及车辆的控制方法
WO2012104923A1 (ja) ハイブリッド車両の駆動制御装置及びその方法、並びにハイブリッド車両
JP5668946B2 (ja) 車両用制御装置
JP5912624B2 (ja) ハイブリッド車両の制御装置
WO2013057930A1 (ja) 電気自動車の駆動制御装置
JP2012045996A (ja) ハイブリッド車両の発電制御装置
JP3167880B2 (ja) ハイブリッド車の発電装置
JPH1014010A (ja) ハイブリッド車の発電制御装置
JP2013251988A (ja) モータジェネレータ制御装置
CN113924238B (zh) 电动装置控制方法以及电动装置
JP2024129910A (ja) 車両
JP2023119119A (ja) 電動車両の制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP