[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013057857A1 - Boost rectifier circuit system - Google Patents

Boost rectifier circuit system Download PDF

Info

Publication number
WO2013057857A1
WO2013057857A1 PCT/JP2012/004585 JP2012004585W WO2013057857A1 WO 2013057857 A1 WO2013057857 A1 WO 2013057857A1 JP 2012004585 W JP2012004585 W JP 2012004585W WO 2013057857 A1 WO2013057857 A1 WO 2013057857A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
circuit
gate
voltage
rectifier circuit
Prior art date
Application number
PCT/JP2012/004585
Other languages
French (fr)
Japanese (ja)
Inventor
修二 玉岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013057857A1 publication Critical patent/WO2013057857A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a step-up / step-down rectifier circuit system, and more particularly to a technique for widely varying an output voltage.
  • the inverter can be driven by a PAM (Pulse Amplitude Modulation) method.
  • PAM Pulse Amplitude Modulation
  • the current to be supplied to the motor is higher when the motor speed is in the low speed range than when the motor speed is in the high speed range. ⁇
  • the voltage may be small.
  • the input voltage to the inverter can be reduced as the output current / voltage of the inverter is reduced according to the rotational speed of the motor. The switching loss can be reduced.
  • FIG. 1 An example of a motor drive system using an inverter driven by the PAM method is shown in FIG. 1
  • the motor drive system includes an inverter 1003 for driving the motor 1004 and a boost rectifier circuit 1050 that supplies a DC voltage to the inverter 1003.
  • the boost rectifier circuit 1050 has a reactor L1 having one end connected to the output end of the AC power supply 1001, and a rectifier circuit 1051 connected between the other end of the reactor L1 and the output end of the AC power supply 1001. And a bidirectional switch circuit 1002 connected between the input terminals of the rectifier circuit 1051.
  • the rectifier circuit 1051 includes a diode bridge composed of diodes D1 to D4, a capacitor C3 connected between the output ends of the diode bridge, and a series circuit composed of capacitors C1 and C2 connected in parallel to the capacitor C3; A switch SW1 connected between the connection point of the capacitors C1 and C2 and the input terminal of the diode bridge is provided.
  • the bidirectional switch circuit 1002 includes a diode bridge composed of diodes D5 to D8 and a switching element Q1.
  • the step-up rectifier circuit 1050 performs a step-up operation when the switching element Q1 of the bidirectional switch 1002 performs a switching operation.
  • step-up rectifier circuit 1050 will be described in relation to the rotation speed of the motor 1004.
  • FIG. 19 shows the relationship between the rotation speed of the motor 1004 and the output voltage (input voltage to the inverter 1003) Vi of the step-up rectifier circuit 1050.
  • the rectification operation of the step-up rectifier circuit is switched between a low rotation area where the rotation speed of the motor 1004 is around 60 rps and a high rotation area where the rotation speed is around 120 rps.
  • the boost rectifier circuit 1050 When the rotation speed of the motor 1004 is in the high rotation region, the boost rectifier circuit 1050 performs a boost operation in a state where the switch SW1 is closed (a state in which the double rectification operation is performed), and the voltage Vi is between 220V and 280V. It changes in accordance with the number of revolutions 1004 (see the portion surrounded by the one-dot chain line B1 in FIG. 19).
  • the boost rectifier circuit 1050 performs a boost operation with the switch SW1 open (a state in which normal rectification operation is performed), and the voltage Vi is between 105V and 140V.
  • the boost rectifier circuit 1050 changes in accordance with the number of revolutions of the motor 1004 (see the portion surrounded by the one-dot chain line B2 in FIG. 19).
  • the boost rectifier circuit 1050 reduces the switching loss in the switching element of the inverter 1003 by the PAM-type inverter control in which the input voltage to the inverter 1003 is set to the minimum necessary level according to the rotational speed of the motor 1004. This can reduce power consumption in the motor drive system.
  • the motor 1004 when the motor 1004 starts to move from a stopped state, the motor 1004 may be driven in a rotation region lower than the low rotation region (see the region surrounded by the one-dot chain line B2 in FIG. 19).
  • the step-up rectifier circuit 1050 having the configuration shown in FIG. 18 can only perform a step-up operation, the input voltage to the inverter 1003 (the output voltage of the step-up rectifier circuit 1050) in the rotation range lower than the low rotation range of the motor 1004. Cannot be set to the minimum necessary voltage according to the rotation speed of the motor 1004. Therefore, in this rotational range, the input voltage to the inverter 1003 must be set to a value larger than necessary, and the switching loss in the switching element of the inverter 1003 cannot be reduced. That is, the variable range of the input voltage to the inverter 1003 (the output voltage of the step-up rectifier circuit 1050) is smaller than the input voltage range corresponding to the entire rotation range of the motor 1004.
  • the input voltage to the inverter 1003 cannot be set to the minimum necessary voltage according to the number of revolutions of the motor 1004, and the switching loss in the switching element of the inverter 1003 cannot be sufficiently reduced.
  • the present invention has been made in view of the above reasons, and is to provide a step-up / step-down rectifier circuit in which the variable range of the output voltage is expanded.
  • a buck-boost rectifier circuit system is a buck-boost rectifier circuit system comprising a buck-boost rectifier circuit and a rectification control circuit for controlling the buck-boost rectifier circuit.
  • the pressure type rectifier circuit includes a plurality of dual gate type switching elements, a first circuit connected to the output end of the AC power supply, a reactor connected to the output end of the first circuit, and at least two single gate type A second circuit including a switching element and at least one dual-gate switching element and connected to the reactor, and a third circuit including at least two capacitors and connected to the second circuit, and rectifying control The circuit is different between the first circuit and the second circuit when the step-up / step-down rectifier circuit operates in the single rectification method and the double rectification method.
  • the two switching elements included in the first circuit are alternately turned on and off.
  • the step-up operation is performed by storing the energy in the reactor and releasing the energy stored in the reactor, the two single-gate switching elements included in the second circuit are alternately switched.
  • a control signal is input to the gates of the switching elements included in the first circuit and the second circuit so that the switching operation is repeated in a manner of repeatedly turning on and off.
  • the step-up / step-down rectifier circuit is operated by the single rectification method and the double rectification method, and the boost operation is performed when the single rectification method and the double rectification method are operated. Since the step-down operation can be performed, the variable range of the output voltage of the step-up / step-down rectifier circuit can be expanded. Further, if the step-up / step-down rectifier circuit is connected to the inverter, the input voltage from the step-up / step-down rectifier circuit to the inverter can be changed in a wide voltage range, so that the inverter is driven while being driven by the PAM method. The variable range of voltage can be expanded.
  • the step-up / step-down rectifier circuit further includes at least two capacitors and is connected to the second circuit to smooth the output from the second circuit.
  • a bridge circuit including dual gate type first, second, third, and fourth switching elements, and a first output terminal and an input terminal of the bridge circuit. Connection between a dual gate type fifth switching element and a sixth switching element connected in series between the first output terminal of the bridge circuit and a series circuit including the fifth switching element and the sixth switching element on one end side
  • a dual gate type seventh switching element connected to the point, and the second circuit is between the other end side of the seventh switching element and the second output end of the bridge circuit.
  • the fifth and sixth switching elements are single-gate FETs, and the first to fourth and seventh to tenth switching elements are two single gates. It may be a dual gate FET formed by connecting the drains of a type FET.
  • the bridge circuit is configured by the dual gate FET, power loss in the bridge circuit can be reduced as compared with the case where the bridge circuit is configured by only the diode.
  • the single gate FET is provided with a semiconductor layer stack made of a nitride semiconductor formed on a semiconductor substrate and a semiconductor layer stack spaced apart from each other.
  • the heterojunction field effect transistor may include a drain terminal and a source terminal, and a gate terminal provided between the drain terminal and the source terminal.
  • the dual gate FET is provided with a semiconductor layer stack made of a nitride semiconductor formed on a semiconductor substrate and a semiconductor layer stack spaced apart from each other. And a first output terminal and a second output terminal, and a first gate terminal and a second gate terminal which are provided separately between the first output terminal and the second output terminal. .
  • control signal may be a signal having a pulse train-like time waveform.
  • the step-up / step-down rate can be continuously changed by continuously changing the pulse width of the control signal. Therefore, if the step-up / step-down rectifier circuit is connected to the inverter, The input voltage can be continuously changed. Therefore, it is possible to continuously change the output voltage of the inverter connected to the step-up / step-down rectifier circuit while performing PAM control.
  • the present invention also includes a first circuit including a plurality of dual gate type switching elements and connected to an output terminal of an AC power source, a reactor connected to the first circuit, and at least one single gate type switching element.
  • a step-up / step-down rectifier circuit including a second circuit connected to the reactor, and a third circuit including at least two capacitors and connected to the second circuit. Also good.
  • the current path can be switched between the single rectification method and the double rectification method, but the step-up rate is continuously increased by switching the at least one switching element included in the second circuit.
  • the step-up operation can be performed by changing the step-down rate, and the step-down operation can be performed by continuously changing the step-down rate by switching the at least one switching element included in the first circuit. Therefore, by connecting to the inverter, the input voltage to the inverter can be continuously changed over a wide voltage range. Therefore, it is possible to continuously change the output voltage in a wide voltage range while performing PAM control for the inverter to which the buck-boost rectifier circuit is connected.
  • the first circuit includes a bridge circuit including dual gate type first, second, third, and fourth switching elements, and a first output terminal and an input terminal of the bridge circuit. And a connection point between a fifth switching element and a sixth switching element of a dual gate type connected in series with each other, and a series circuit having one end side of the first output terminal of the bridge circuit and the fifth switching element and the sixth switching element A single gate connected in series between the other end side of the seventh switching element and the second output end of the bridge circuit.
  • Type eighth switching element and ninth switching element, and a dual gate having one end connected to a connection point between the eighth switching element and the ninth switching element.
  • a first capacitor connected between both ends of a series circuit composed of an eighth switching element and a ninth switching element, and one end side of the first capacitor. And a second capacitor connected between the other end side of the tenth switching element and a third capacitor connected between the other end side of the first capacitor and the other end side of the tenth switching element.
  • the reactor has one end connected to a connection point between the fifth switching element and the sixth switching element, and the other end connected to a connection point between the eighth switching element and the ninth switching element.
  • a step-up / step-down rectifier circuit may be used.
  • FIG. 1 is a circuit block diagram of a motor drive system according to Embodiment 1.
  • FIG. FIG. 4 is an IV characteristic diagram of the single gate type switching element according to the first embodiment.
  • FIG. 5 is an operation explanatory diagram of the single gate type switching element according to the first embodiment.
  • 1 is a cross-sectional view of a single gate type switching element according to a first embodiment.
  • FIG. 6 is an operation explanatory diagram of the dual gate type switching element according to the first embodiment.
  • 1 is a cross-sectional view of a dual gate type switching element according to a first embodiment.
  • 3 is a time chart illustrating an operation of a switching element constituting the step-up / step-down rectifier circuit according to the first embodiment.
  • FIG. 4 is an operation explanatory diagram of the step-up / step-down rectifier circuit according to the first embodiment.
  • 3 is a time chart illustrating an operation of a switching element constituting the step-up / step-down rectifier circuit according to the first embodiment.
  • FIG. 4 is an operation explanatory diagram of the step-up / step-down rectifier circuit according to the first embodiment.
  • 3 is a time chart illustrating an operation of a switching element constituting the step-up / step-down rectifier circuit according to the first embodiment.
  • FIG. 4 is an operation explanatory diagram of the step-up / step-down rectifier circuit according to the first embodiment.
  • FIG. 10 is an operation explanatory diagram of the step-up / step-down rectifier circuit according to the second embodiment. It is a figure which shows the relationship between the rotation speed of the motor in the buck-boost type rectifier circuit which concerns on Embodiment 2, and the input voltage to an inverter.
  • FIG. 1 is a circuit block diagram showing a motor drive system according to the present embodiment.
  • the motor drive system is a system that receives power supply from an AC power supply 1 and drives a three-phase motor 4.
  • This motor drive system includes a step-up / step-down rectifier circuit 50 that rectifies the alternating current supplied from the AC power supply 1 by a single rectification operation or a double rectification operation, a rectification control circuit 200 that controls the step-up / step-down rectifier circuit 50, and a step-up / step-down type.
  • An inverter circuit 3 that converts a DC voltage input from the rectifier circuit 50 into a three-phase pulse train voltage and inputs the voltage to the motor 4, an inverter control circuit 41 that controls the operation of the inverter circuit 3, a rectifier control circuit 200, And a control instruction circuit 40 for instructing the inverter control circuit 41 of control contents.
  • the AC power source 1 is, for example, a power source that outputs AC with a frequency of 60 Hz.
  • the inverter circuit 3 is a three-phase output inverter and includes six switching elements 31, 32, 33, 34, 35, and 36.
  • the inverter circuit 3 changes the magnitudes of the output current and the output voltage according to the rotation speed of the motor 4.
  • Io is the magnitude of the output current of the inverter circuit 3
  • Vo is the magnitude of the output voltage of the inverter circuit 3
  • Vi is the magnitude of the input voltage to the inverter circuit 3
  • Duty is the switching element 31.
  • 32, 33, 34, 35, and 36 the modulation rate (duty ratio) of the signal PWM having a pulse train-like time waveform input to the gate.
  • the on-duty ratio of the signal PWM input to the gates of the switching elements 31, 32, 33, 34, 35, and 36 is the same.
  • the inverter circuit 3 of the present embodiment is driven by a PAM (Pulse Amplitude Modulation) method. This will be described using equations (1) and (2).
  • Io and Vo are AC waveforms. This AC waveform is generated by changing the duty of PWM drive in accordance with the AC cycle.
  • PAM driving PWM is driven so that the maximum value of the duty is fixed to 100%, and the amplitude Vo of the AC output voltage of the inverter circuit 3 is changed by changing the magnitude Vi of the input voltage to the inverter circuit 3.
  • the amplitude Io of the AC output current is changed.
  • the inverter control circuit 41 is based on the motor rotation speed designation signal Nrm input from the control instruction circuit 40, and the switching elements 31, 32, 33, 34, and 35 that constitute the inverter circuit 3. , 36, the frequency is adjusted while fixing the maximum duty ratio of the PWM signal inputted to the gates to 100%. Specifically, when the motor rotation speed designation signal Nrm increases, the frequency of the PWM signal is increased and the input voltage Vi is increased so that the amplitude of the AC output voltage Vo or the AC output current Io is increased. When the motor rotation speed designation signal Nrm decreases, the frequency of the PWM signal is decreased and the input voltage Vi is decreased so that the amplitude of the AC output voltage Vo or the AC output current Io is decreased. As a result, when the frequency of the PWM signal increases, the rotational speed of the motor 4 increases, and when the frequency of the PWM signal decreases, the rotational speed of the motor 4 decreases.
  • the control instruction circuit 40 inputs the motor rotation speed designation signal Nrm to the inverter control circuit 41, and also inputs the direct current input from the step-up / step-down rectifier circuit 50 to the inverter circuit 3 to the rectification control circuit 200.
  • a voltage instruction signal VdcIN that indicates the magnitude of the voltage is input.
  • This voltage instruction signal VdcIN indicates the magnitude of the voltage input from the step-up / step-down rectifier circuit 50 to the inverter circuit 3, and it is several% to several% of the target value of the output voltage of the step-up / step-down rectifier circuit 50.
  • the size is 10%.
  • the target value of the output voltage of the step-up / step-down rectifier circuit 50 is an optimum value when the motor 4 rotates at the rotation speed designated by the motor rotation speed designation signal Nrm when the inverter circuit 3 is driven by the PAM method. Equivalent to.
  • control instruction circuit 40 inputs a rectification method switching signal Rectsw for switching the rectification method between the single rectification method and the double rectification method to the rectification control circuit 200.
  • This rectification method switching signal Rectsw instructs whether the step-up / step-down rectifier circuit 50 is operated by the single rectification method or the double rectification method.
  • Step-up / step-down rectifier circuit The step-up / step-down rectifier circuit 50 performs a one-fold rectification operation or a double rectification operation as well as a step-up / step-down operation under the control of the rectification control circuit 200.
  • the magnitude of the DC voltage input to the inverter 3 changes according to the rotation speed of the motor 4. Thereby, the inverter 3 can be driven by the PAM method.
  • the step-up / step-down rectifier circuit 50 includes a first circuit 50a connected to the AC power supply 1, a reactor 61 connected to the first circuit 50a, and a second circuit 50b connected to the reactor 61. And a third circuit 50c connected to the second circuit 50b.
  • the first circuit 50a includes a bridge circuit composed of four dual gate type switching elements 51, 52, 53, 54, a first output terminal (the upper output terminal in FIG. 1) and an input terminal of the bridge circuit.
  • Two dual-gate switching elements 55 and 56 connected between each other, and a dual-gate switching element 65 whose one end is connected to a connection point between the first output terminal of the bridge circuit and the switching element 56, Have
  • the second circuit 50b includes two single-gate switching elements 57, which are connected in series between the other end side of the switching element 65 and the second output end (lower output end in FIG. 1) of the bridge circuit. 58 and a dual gate type switching element 59 having one end connected to a connection point between the two switching elements 57 and 58.
  • the third circuit 50 c is a smoothing circuit, and is connected between both ends of a series circuit composed of two switching elements 57 and 58, and between one end side of the capacitor 64 and the other end side of the switching element 59. And a capacitor 63 connected between the other end side of the capacitor 64 and the other end side of the switching element 59.
  • Reactor 61 has one end connected to a connection point between two switching elements 55 and 56 and the other end connected to a connection point between two switching elements 57 and 58.
  • a current sensor 60 for detecting the magnitude of a current flowing through the reactor 61 (hereinafter referred to as “reactor current”) is interposed between the reactor 61 and the switching element 55. As will be described later, the current sensor 60 is for the rectification control circuit 200 to control the step-up / step-down rectifier circuit 50 by PFC (Power Factor Correction).
  • the single gate type switching element 57 is composed of an FET, and has the current-voltage characteristics (IV characteristics) shown in FIGS. 2 (a) to 2 (c). have.
  • the drain voltage based on the source voltage is VDS
  • the current flowing from the drain to the source at this time is IDS.
  • the single gate type switching element 58 is the same as the switching element 57, and thus the description thereof is omitted.
  • the IV characteristics of the switching element 57 include a so-called triode region and saturation region.
  • the triode region is a region where the IV characteristic is linear, that is, a region where the current IDS and the voltage VDS are in a substantially direct relationship (in FIGS. 2A and 2B).
  • the slope of the straight line representing the IV characteristic corresponds to the resistance value Ron.
  • the IV characteristic of the switching element 57 in a state where the drain voltage is lower than the source voltage and the current flows from the source to the drain as shown in b) is referred to as an inverse FET characteristic.
  • the saturation region is a region where the current IDS hardly changes even when the voltage VDS changes.
  • the IV characteristic of the switching element 57 indicates that the source voltage is higher than the drain voltage (Vth ⁇ Vgs). A region where the current from the source to the drain is interrupted until it becomes high appears.
  • the switching element 57 even when the gate-source voltage Vgs is lower than the predetermined threshold voltage Vth, the gate voltage is higher than the drain voltage, and the voltage (Vgs ⁇ VDS) is a predetermined voltage. If it is higher than the threshold voltage Vth, the current IDS flows from the source to the drain. Thereafter, as shown in FIG.
  • the IV characteristic of the switching element 57 in which a current flows from the source to the drain is reversed conduction characteristic.
  • the switching element 57 when the gate-source voltage Vgs is 0V, that is, when the gate and the source are short-circuited, the source side is the anode, the drain side is the cathode, and the forward voltage is the threshold voltage Vth. This is the same as the IV characteristic of the diode (see the region surrounded by the one-dot chain line A2 in FIG. 2C).
  • the state where the ON signal “High” is inputted to the gate of the switching element 57 is as shown in FIG. 3 (a-2). This corresponds to a state in which the voltage Vgs is larger than the threshold voltage Vth, and can be regarded as equivalent to the resistor Ron.
  • the state shown in FIG. 3A-1 is referred to as a “conduction mode”.
  • the state in which the OFF signal “Low” is input to the gate of the switching element 57 is the voltage Vgs between the gate and the source as shown in FIG. 3 (b-2).
  • Vgs between the gate and the source as shown in FIG. 3 (b-2).
  • the state shown in FIG. 3B-1 is referred to as “reverse conduction mode”.
  • the switching element 57 is a normally-off type heterojunction FET. As shown in FIG. 4, the switching element 57 is a silicon substrate 301, a buffer layer 302 stacked on the silicon substrate 301, and a nitride semiconductor formed on the buffer layer 302.
  • a semiconductor layer stack 303 including layers, electrodes 306a and 306b provided in the semiconductor layer stack 303, wirings 310 electrically connected to the electrodes 306a and 306b, and electrodes 306a and 306a in the semiconductor stack 303, respectively.
  • a control layer 309 for controlling the characteristics of the switching element 57, a gate electrode 308 formed on the control layer 309, and a protective film 307 are provided between 306b.
  • the buffer layer 302 is formed by alternately laminating aluminum nitride and gallium nitride.
  • the semiconductor layer stack 303 is composed of an undoped gallium nitride layer 304 and an n-type aluminum gallium nitride layer 305 stacked on the gallium nitride layer 304, and between the gallium nitride layer 304 and the aluminum gallium nitride layer 305.
  • a heterointerface is formed. In the vicinity of this hetero interface, a region having a high carrier concentration called a two-dimensional electron gas is formed and becomes a channel region of the single gate type switching element 57.
  • the electrodes 306a and 306b are formed in a portion of the semiconductor layer stack 303 where the gallium nitride layer 304 is exposed, and are in ohmic contact with the gallium nitride layer 304.
  • the electrodes 306a and 306b function as a source terminal and a drain terminal of the single gate type switching element 57.
  • the control layer 309 is made of a p-type semiconductor layer and is formed on the aluminum gallium nitride layer 305.
  • the gate electrode 308 is in ohmic contact with the control layer 309.
  • the distance from the electrode 306b functioning as the drain terminal to the gate electrode 308 is longer than the distance from the electrode 306a functioning as the source terminal to the gate electrode 308. This is because the breakdown voltage required between the drain and the gate is larger than the breakdown voltage required between the source and the gate.
  • the switching element 57 formed using a nitride semiconductor described above is called a so-called GaN transistor, and can be driven with a high current with a high breakdown voltage like an IGBT, for example.
  • the switching element 57 has no offset voltage unlike the IGBT, has FET characteristics and reverse FET characteristics as shown in FIGS. 2A and 2B, and is a chip that constitutes the switching element 57.
  • the on-resistance value Ron with respect to the area is very small.
  • the dual gate type switching element 51 is formed by connecting the drains of two FETs.
  • the dual gate type switching elements 52, 53, 54, 55, 56, 59, and 65 are the same as the switching element 51, and thus description thereof is omitted.
  • FIG. 5 (a-1) the state where the ON signal “High” is inputted to the gates “A” and “B” of the switching element 51 is shown in FIG. 5 (a-2).
  • this corresponds to a state in which the gate-source voltage Vgs of both two FETs is larger than the threshold voltage Vth, and can be regarded as equivalent to a circuit formed by connecting two resistors Ron in series.
  • the state shown in FIG. 5A-1 is referred to as a “conduction mode”.
  • the switching element 51 can flow current in both directions.
  • the state where the ON signal “High” is input to the gate “A” of the switching element 57 and the OFF signal “Low” is input to the gate “B” is shown in FIG.
  • the gate-source voltage Vgs of the FET on the gate “A” side is larger than the threshold voltage
  • the gate-source voltage Vgs of the gate “B” -side FET is 0V. It corresponds to a certain state and can be regarded as equivalent to a circuit comprising a diode and a resistor Ron connected to the cathode of the diode.
  • the state shown in FIG. 5B-1 is referred to as “reverse conduction mode 1”.
  • the switching element 51 can flow a current (current flowing upward in FIG. 5) from the off-state FET to the on-state FET side, but cannot flow a current in the reverse direction.
  • the state where the off signal “Low” is inputted to the gate “A” of the switching element 57 and the on signal “High” is inputted to the gate “B” is shown in FIG.
  • the gate-source voltage Vgs of the FET on the gate “A” side is 0 V
  • the gate-source voltage Vgs of the gate “B” -side FET is greater than the threshold voltage Vth.
  • the state shown in FIG. 5C-1 is referred to as “reverse conduction mode 2”.
  • the switching element 51 can flow a current (current flowing downward in FIG. 5) from the off-state FET to the on-state FET side, but cannot flow a current in the reverse direction.
  • the state where the OFF signal “Low” is input to the gate “A” of the switching element 57 and the OFF signal “Low” is input to the gate “B” is as shown in FIG. As shown in (d-2), this corresponds to a state where the gate-source voltage Vgs of both two FETs is 0 V, and is regarded as equivalent to a circuit formed by connecting the cathodes of two diodes. Can do.
  • the state shown in FIG. 5B-1 is referred to as a “cut-off mode”. In this case, no current can flow through the switching element 51.
  • the switching element 51 is formed by connecting drains of normally-off type heterojunction FETs. As shown in FIG. 6, the switching element 51 includes a silicon substrate 311, a buffer layer 312 stacked on the silicon substrate 311, and a buffer layer. A semiconductor layer stack 313 composed of a nitride semiconductor layer formed on 312; electrodes 316a and 316b provided on the semiconductor layer stack 313; and a wiring 320 electrically connected to each of the electrodes 316a and 316b; The first control layer 319a and the second control layer 319b provided between the electrodes 316a and 316b in the semiconductor stacked body 313 for controlling the characteristics of the switching element 51, and the gate formed on the first control layer 319a A gate formed on the electrode 318a and the second control layer 319b. Comprising an electrode 318b, and a protective film 317.
  • the buffer layer 312 is formed by alternately laminating aluminum nitride and gallium nitride.
  • the semiconductor layer stack 313 is composed of an undoped gallium nitride layer 314 and an n-type aluminum gallium nitride layer 315 stacked on the gallium nitride layer 314, and between the gallium nitride layer 314 and the aluminum gallium nitride layer 315.
  • a heterointerface is formed. In the vicinity of this hetero interface, a region having a high carrier concentration called a two-dimensional electron gas is formed and becomes a channel region of the switching element 51.
  • the drains of the two FETs constituting the switching element 51 are provided in common on the channel region.
  • the electrodes 316a and 316b are formed in a portion of the semiconductor layer stack 313 where the gallium nitride layer 314 is exposed, and are in ohmic contact with the gallium nitride layer 314.
  • the electrodes 316a and 316b function as source terminals of two FETs constituting the switching element 51.
  • the first control layer 319a and the second control layer 319b are made of a p-type semiconductor layer, and are formed on the aluminum gallium nitride layer 315.
  • the gate electrodes 318a and 319b are in ohmic contact with the control layers 319a and 319b.
  • the current flowing through the FET having the gate electrode 318a is controlled by a control signal input to the gate electrode 318a.
  • the current flowing through the FET having the gate electrode 318b is controlled by a control signal input to the gate electrode 318b.
  • the distance between the two gate electrodes 318a and 318b is longer than the distance from the gate electrode 318a to the electrode 316a and the distance from the gate electrode 318b to the electrode 316b. This is because the region between the two gate electrodes 318a and 318b is a drain region shared by the two FETs when the two FETs are connected in series. Yes.
  • this switching element 51 has a configuration in which two FETs sharing a drain region are connected in series, and therefore, for example, compared to a configuration in which two single-gate switching elements are connected in series.
  • the circuit scale can be reduced.
  • the dual gate type switching element 51 composed of two so-called GaN transistors has a high withstand voltage and can be driven with a large current similarly to the switching element composed of the GaN transistors described above.
  • the on-resistance value Ron with respect to the area of the chip constituting the element 51 is very small.
  • the switching element 51 has a low forward voltage in the reverse conduction modes 1 and 2, and power loss due to a voltage drop at the switching element is reduced.
  • the so-called GaN transistor described above has almost no accumulation effect due to minority carriers, there is almost no influence of the tail current effect at the time of turn-off like IGBT and other silicon-based semiconductor elements.
  • the switching loss during the switching operation is extremely small as compared with a switching element formed of a silicon-based semiconductor. Therefore, an increase in power consumption due to switching loss can be suppressed even when used at a high switching frequency. If the switching frequency can be increased, the size of the inductor required for the reactor 61 can be reduced, so that the reactor 61 can be reduced in size.
  • Rectification Control Circuit 200 controls a signal voltage input to the gate of each switching element included in the step-up / step-down rectifier circuit 50.
  • the rectification control circuit 200 further includes a step-up / step-down rectifier circuit 50 so that the current waveform of the reactor current detected by the current sensor 60 and the voltage waveform of the output voltage of the AC power supply 1 are similar to each other.
  • a so-called PFC control is also performed to control a signal input to the gate of each switching element included.
  • the rectification control circuit 200 attempts to improve the power factor of the step-up / step-down rectifier circuit 50 by controlling the reactor current and the output voltage and output current of the AC power supply 1 so that the phases are substantially the same. Thereby, the harmonic noise generated in the step-up / step-down rectifier circuit 50 can be reduced.
  • the rectification control circuit 200 includes voltage dividing resistors 120 and 121 connected between the output terminal on the high potential side of the step-up / step-down rectifier circuit 50 and a ground terminal, and an inverting input terminal having a resistor 120. , 121 and a first error amplifier 101 having a non-inverting input terminal connected to a reference voltage output terminal of the control instruction circuit 40 and a first absolute value connected to the current sensor 60 of the buck-boost rectifier circuit 50.
  • a first comparator 107 having an output terminal on the high potential side of the buck-boost rectifier circuit 50 connected to the inverting input terminal, an output terminal of the differential amplifier 116 connected to the non-inverting input terminal, and an inverting input terminal connected to the ground terminal.
  • a second error amplifier 104 having a multiplier circuit 102 connected to a terminal; a PWM comparator 106 having a non-inverting input terminal connected to an output terminal of the second error amplifier 104 and an inverting input terminal connected to a triangular wave generating circuit 105; And an output terminal of a first comparator 107, an output terminal of a second comparator 118, a drive logic circuit 108 to which a first absolute value circuit 103 and a PWM comparator 106 are connected.
  • the drive logic circuit 108 also receives the rectification method switching signal Rectsw from the control instruction circuit 40.
  • the first error amplifier 101 receives a voltage generated at the connection point of the resistors 120 and 121, that is, a voltage obtained by dividing the output voltage Vdc of the step-up / step-down control circuit 50 by the resistors 120 and 121 and the control instruction circuit 40.
  • a differential voltage VE1 from the voltage instruction signal VdcIN is output. This is for the rectification control circuit 200 to perform a constant value control so that the output voltage Vdc of the step-up / step-down control circuit 50 is maintained at a voltage indicated by the voltage instruction signal VdcIN.
  • the multiplication circuit 102 outputs a voltage VE2 obtained by analog multiplication of the voltage VE1 output from the first error amplifier 101 and the voltage output from the second absolute value circuit 117.
  • the second error amplifier 104 outputs a differential voltage VE3 between the output voltage VIR of the first absolute value circuit 103 and the output voltage VE2 of the multiplication circuit 102.
  • the triangular wave generation circuit 105 is configured by combining, for example, a Schmitt circuit constituted by an operational amplifier and an integration circuit, and outputs a voltage Vsaw having a triangular waveform (sawtooth shape) time waveform.
  • the PWM comparator 106 outputs a rectangular pulse train signal PWM based on the output voltage VE3 of the second error amplifier 104 and the voltage Vsaw output from the triangular wave generation circuit 105.
  • the drive logic circuit 108 is configured by appropriately combining a combination circuit and a flip-flop circuit, for example.
  • the drive logic circuit 108 performs each switching so that the step-up / step-down rectifier circuit 50 performs a single rectification operation.
  • a control signal is input to the gate of the element. Specifically, for each of the dual gate transistors 55, 59, 65, the control signals input to the two gates are both maintained at "Low", and the dual gate transistors 55, 59, 65 are maintained in the cutoff mode.
  • the control signals input to the two gates of the dual gate transistor 56 are both maintained at “High”, and the dual gate transistor 56 is maintained in the conduction mode.
  • the drive logic circuit 108 controls the gate of each switching element so that the buck-boost rectifier circuit 50 performs the double rectification operation. Enter.
  • the control signals input to the two gates are both maintained at “High”, the dual gate transistors 55 and 65 are maintained in the conduction mode, and the dual gate transistors For the type transistor 56, the control signals input to the two gates are both maintained at "Low”, and the dual gate type transistor 56 is maintained in the cutoff mode.
  • the time waveform of the signal input to the gate of each switching element will be described in detail in ⁇ 2>.
  • the drive logic circuit 108 performs a boost operation on the step-up / step-down rectifier circuit 50 based on the binary output signal DR input from the first comparator 107. Alternatively, a step-down operation is performed. Specifically, when the output voltage of the step-up / step-down rectifier circuit 50 is equal to or higher than the output voltage of the AC power supply 1 (when the binary output signal DR is “High”), the drive logic circuit 108 performs step-up / step-down rectification. The circuit 50 is caused to perform a boosting operation.
  • the drive logic circuit 108 performs a step-down operation on the step-up / step-down rectifier circuit 50. Let it be done.
  • the first error amplifier 101 detects a differential voltage between the voltage instruction signal VdcIN and the voltage obtained by dividing the output voltage Vdc by the resistors 120 and 121, and this error output is detected by the multiplication circuit 102.
  • the phase difference between the signal on which the AC output power supply voltage is superimposed and the current detected by the current sensor 60 is detected, and the PWM comparator 106 is based on the phase difference and the differential voltage detected by the two error amplifiers 104 and 101.
  • the duty ratio of the PWM signal to be output is changed.
  • the rectification control circuit 200 can feed back the fluctuation of the output voltage of the step-up / step-down rectifier circuit 50 to the duty ratio of the signal PWM input to the step-up / step-down rectifier circuit 50, and the step-up / step-down rectifier circuit 50 can be fed into the PFC (Power Power factor of the step-up / step-down control circuit 50 can be improved by controlling the factor control.
  • the drive logic circuit 108 causes the step-up / step-down rectifier circuit 50 to perform a boost operation when the rectification method switching signal Rectsw is a signal indicating the double rectification method.
  • the step-up / step-down rectifier circuit 50 is stepped down based on the magnitude relationship between a signal obtained by full-wave rectification of the output voltage of the AC power supply 1 and the output voltage Vdc of the step-up / step-down rectifier circuit 50. Decide whether to operate or boost.
  • Step-Down Operation When performing step-down operation, the time waveform of the control signal input to each gate of the dual gate type switching elements 51 to 56, 59, 65 constituting the step-up / step-down rectifier circuit 50
  • FIG. 7 shows time waveforms of control signals input to the gates of the single gate type switching elements 57 and 58.
  • the drive logic circuit 108 inputs an off signal “Low” to the two gates of the switching elements 55, 59 and 65.
  • the gates and the sources of the two gates of the switching elements 55, 59 and 65 are short-circuited.
  • the switching elements 55, 59, 65 are maintained in the cutoff mode.
  • the rectification control circuit 200 inputs an ON signal “High” to the two gates of the switching element 56.
  • the gate-source voltage Vgs is maintained at the threshold voltage Vth or higher for the two gates of the switching element 56.
  • the switching element 56 is maintained in the conduction mode.
  • the series circuit formed by connecting the smoothing capacitors 62 and 63 in series and the smoothing capacitor 64 are in a parallel connection relationship, and a single rectification system operation is realized.
  • the drive logic circuit 108 inputs the off signal “Low” to the two gates of the switching element 53, and The switching element 53 is set to the cut-off mode by short-circuiting the gate and the source for one gate.
  • the polarity is negative, an ON signal “High” is input to the two gates of the switching element 53, and the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth for the two gates of the switching element 53. Is set to the conduction mode.
  • the polarity of the output voltage of the AC power supply 1 being positive means that the first output terminal of the AC power supply 1 in FIG.
  • the drive logic circuit 108 detects the polarity of the output voltage of the AC power supply 1 based on the signal PN output from the second comparator 118 and the signal DR output from the first comparator 107.
  • the drive logic circuit 108 inputs an ON signal “High” to the two gates of the switching element 54, and For one gate, the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth, and the switching element 54 is set in the conduction mode.
  • an OFF signal “Low” is input to the two gates of the switching element 54, and the switching element 54 is set in the cutoff mode with the two gates of the switching element 54 short-circuited between the gate and the source. . That is, the switching elements 53 and 54 repeat the cutoff mode and the conduction mode every half cycle of the output voltage of the AC power supply 1, and the switching elements 53 and 54 are shifted in the cutoff mode and the conduction mode by a half cycle. ing.
  • the drive logic circuit 108 inputs the signal PWM to the gate “A” of the switching element 51 and turns on the gate “B”. Enter “High”.
  • the ON signal “High” is input to the gate “A” of the switching element 51 and the signal PWMX whose phase is inverted from that of the signal PWM signal is input to the gate “B”.
  • the signal PWM is a so-called PWM control signal in the form of a rectangular pulse train
  • the signal PWMX is a rectangle whose phase is shifted by a half cycle from the signal PWM so as to complement the signal PWM in synchronization with the signal PWM.
  • This signal PWM is the signal PWM itself output from the PWM comparator 106, and the signal PWMX is a signal obtained by inverting the phase of the signal PWM. Further, when the polarity of the output voltage of the AC power supply 1 is positive, the rectification control circuit 200 inputs the ON signal “High” to the gate “A” of the switching element 52 and the signal PWMX to the gate “B”. On the other hand, when the polarity is negative, the signal PWM is input to the gate “A” of the switching element 52 and the ON signal “High” is input to the gate “B”. As a result, the switching element 51 and the switching element 53 perform a switching operation such that they are alternately turned on and off.
  • FIG. 8A shows the flow of current in the buck-boost rectifier circuit 50 when the polarity of the output voltage of the AC power supply 1 is positive
  • FIG. 8B shows the polarity of the output voltage of the AC power supply 1 being negative.
  • the flow of current in the buck-boost rectifier circuit 50 in the case of FIG.
  • a broken line (H) indicates a current flow when the signal PWM is “High” and the signal PWMX is “Low”.
  • the current flows from the first output terminal of the AC power supply 1 to the switching element 51, the switching element 56, the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, and the switching element 54 in this order. Via, it flows into the second output terminal of the AC power supply 1.
  • the AC power source 1 accumulates magnetic energy in the reactor 61 while charging the smoothing capacitors 62, 63 and 64.
  • a broken line (L) indicates a current flow when the signal PWM is “Low” and the signal PWMX is “High”.
  • the current returns to the reactor 61 via the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, the switching element 54, the switching element 52, and the switching element 56 in this order, and the AC Do not go through power supply 1.
  • the AC power source 1 cannot flow current through the reactor 61, magnetic energy cannot be accumulated in the reactor 61.
  • the magnetic energy accumulated in the reactor 61 is released through a current path indicated by a broken line (L).
  • the drain side (side connected to the reactor 61) in the switching element 58 is at a higher potential than the source side, and no current flows from the source side to the drain side. . This is because the source side is always maintained at substantially the same potential as the low potential side of the AC power supply or at the same potential as the low potential side of the reactor 61.
  • a broken line (H) indicates a current flow when the signal PWM is “High” and the signal PWMX is “Low”.
  • the current passes from the second output terminal of the AC power supply 1 through the switching element 52, the switching element 56, the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, and the switching element 53. Then, it flows into the first output terminal of the AC power supply 1.
  • the AC power supply 1 stores magnetic energy in the reactor 61 while charging the smoothing capacitors 62, 63 and 64.
  • a broken line (L) indicates a current flow when the signal PWM is “Low” and the signal PWMX is “High”.
  • the current returns to the reactor 61 through the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, the switching element 53, the switching element 51, and the switching element 56 in this order, and the AC power supply Do not go through 1.
  • the AC power source 1 cannot flow current through the reactor 61, magnetic energy cannot be accumulated in the reactor 61.
  • the magnetic energy accumulated in the reactor 61 is released through a current path indicated by a broken line (L).
  • the drain side (the side connected to the reactor 61) of the switching element 58 is at a higher potential than the source side, and no current flows from the source side to the drain side. .
  • the reason is the same as described above.
  • the rectification control circuit 200 includes the magnetic energy accumulated in the reactor 61 by the current path indicated by the broken line (H) from the AC power supply 1 and the magnetic energy released by the current path indicated by the broken line (L). So that the energy is equal. Thereby, even if the output voltage of the AC power supply 1 is higher than the output voltage Vdc of the step-up / step-down rectifier circuit 50, the voltage Vdc is controlled to a voltage lower than the AC amplitude voltage value of the AC power supply 1 determined by the voltage instruction signal Vdcin.
  • the current flowing through the reactor 61 is indicated by a broken line ( It flows in the direction opposite to the direction indicated by L).
  • the charges accumulated in the smoothing capacitors 62, 63, 64 are discharged, which may lead to a decrease in the output voltage of the buck-boost rectifier circuit 50 and an increase in pulsation components. Therefore, in the present embodiment, in the rectification control circuit 200, the current flowing through the reactor 61 is detected by the current sensor 60, and the detected current is converted into the voltage VIR by the absolute value circuit 117 and input to the drive logic circuit 108.
  • the drive logic circuit 108 switches the signal PWMX input to the switching element 51 or the switching element 52 from “High” to “Low”. That is, when the current flowing through the reactor 61 becomes approximately 0 A, the signal PWMX is switched from “High” to “Low”.
  • the switching element 52 is switched from the conduction mode to the reverse conduction mode 1 by switching the signal PWMX to “Low”, the current flows in the direction opposite to the direction indicated by the broken line (L). It is possible to prevent the smoothing capacitors 62, 63, 64 from being discharged.
  • the step-up / step-down rectifier circuit 50 when operating by the single rectification method, the current supplied from the AC power supply 1 to the reactor 61 is cut off at the cycle of the signal PWM (signal PWMX). This realizes step-down operation.
  • the step-down operation is realized by using the characteristics of the dual gate type switching elements 51 and 52 as shown in FIGS. As described above, by using the dual gate type switching elements 51 and 52 having circuit symmetry, the possibility of further developing the configuration of the step-up / step-down rectifier circuit 50 according to the present embodiment is expanded.
  • FIG. 9 shows time waveforms of control signals input to the gates of the single gate type switching elements 57 and 58.
  • the drive logic circuit 108 inputs the off signal “Low” to the two gates of the switching elements 55, 59, 65 in the same manner as in the step-down operation, thereby switching the switching elements 55, 59, 65 is maintained in the shut-off mode.
  • the rectification control circuit 200 inputs the ON signal “High” to the two gates of the switching element 56, whereby the switching element 56 is maintained in the conduction mode.
  • the series circuit formed by connecting the smoothing capacitors 62 and 63 in series and the smoothing capacitor 64 are in a parallel connection relationship, thereby realizing a single rectification operation.
  • the drive logic circuit 108 inputs an off signal “Low” to each of the two gates of the switching elements 52 and 53.
  • the two gates 52 and 53 are short-circuited between the gate and the source, and the switching elements 52 and 53 are both set to the cutoff mode.
  • an ON signal “High” is input to the two gates of the switching elements 52 and 53, and the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth for the two gates of the switching elements 52 and 53.
  • both the switching elements 52 and 53 are set to the conduction mode.
  • the polarity of the output voltage of the AC power source 1 means that the first output terminal of the AC power source 1 in FIG. 10 is on the high potential side and the second output terminal is on the low potential side.
  • the negative polarity of the output voltage of the AC power supply 1 means that the first output terminal of the AC power supply 1 in FIG. 10 is on the low potential side and the second output terminal is on the high potential side. means.
  • the drive logic circuit 108 inputs an ON signal “High” to each of the two gates of the switching elements 51 and 54.
  • the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth, and the switching elements 51 and 54 are set in the conduction mode.
  • an OFF signal “Low” is input to the two gates of the switching elements 51 and 54, and the two gates of the switching elements 51 and 54 are short-circuited between the gate and the source. 54 is set to the cutoff mode.
  • the switching elements 52 and 53 and the switching elements 51 and 54 repeat the cutoff mode and the conduction mode every half cycle of the output voltage of the AC power supply 1, and the switching elements 52 and 53 and the switching elements 51 and 54 The timing for entering the cutoff mode and the conduction mode is shifted by a half cycle.
  • the drive logic circuit 108 continues to input the signal PWMX to the gate of the switching element 57 and continues to input the signal PWM signal to the gate of the switching element 58.
  • the switching element 57 and the switching element 58 are switched on and off alternately.
  • FIG. 10A shows the flow of current in the buck-boost rectifier circuit 50 when the polarity of the output voltage of the AC power supply 1 is positive
  • FIG. 10B shows the polarity of the output voltage of the AC power supply 1 being negative.
  • the flow of current in the buck-boost rectifier circuit 50 in the case of FIG.
  • the broken line (H) indicates the flow of current when the signal PWM is “High” and the signal PWMX is “Low”. As indicated by the broken line (H), the current flows from the first output terminal of the AC power source 1 through the switching element 51, the switching element 56, the reactor 61, the switching element 58, and the switching element 54 in this order. It flows into the second output terminal. In this case, AC power supply 1 accumulates magnetic energy in reactor 61.
  • a broken line (L) indicates a current flow when the signal PWM is “Low” and the signal PWMX is “High”.
  • the current passes from the first output terminal of the AC power supply 1 through the switching element 51, the switching element 56, the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, and the switching element 54. Then, it flows into the second output terminal of the AC power source 1. In this case, magnetic energy is released from the reactor 61, and the smoothing capacitors 62, 63, and 64 are charged. As a result, the output voltage Vdc of the step-up / step-down rectifier circuit 50 is boosted to a voltage larger than the voltage amplitude of the AC power supply 1.
  • a broken line (H) indicates a current flow in a state where the signal PWM is “High” and the signal PWMX is “Low”.
  • the current flows from the second output terminal of the AC power supply 1 through the switching element 52, the switching element 56, the reactor 61, the switching element 58, and the switching element 53, and the current of the AC power supply 1 is changed. 1 flows into the output terminal. In this case, the AC power supply 1 stores magnetic energy in the reactor 61.
  • a broken line (L) indicates a current flow in a state where the signal PWM is “Low” and the signal PWMX is “High”.
  • the current passes from the second output terminal of the AC power supply 1 through the switching element 52, the switching element 56, the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, and the switching element 53. Then, it flows into the first output terminal of the AC power supply 1. In this case, magnetic energy is released from the reactor 61, and the smoothing capacitors 62, 63, and 64 are charged. As a result, the output voltage Vdc of the step-up / step-down rectifier circuit 50 is boosted to a voltage larger than the voltage amplitude of the AC power supply 1.
  • the rectification control circuit 200 includes the magnetic energy accumulated in the reactor 61 by the current path indicated by the broken line (H) from the AC power supply 1 and the magnetic energy released by the current path indicated by the broken line (L). So that the energy is equal. Thereby, even if the output voltage of the AC power supply 1 is higher than the output voltage Vdc of the step-up / step-down rectifier circuit 50, the voltage Vdc is controlled to a voltage lower than the AC amplitude voltage value of the AC power supply 1 determined by the voltage instruction signal Vdcin.
  • the current flowing through the reactor 61 is indicated by a broken line ( It flows in the direction opposite to the direction indicated by L).
  • the charges accumulated in the smoothing capacitors 62, 63, 64 are discharged, which may lead to a decrease in the output voltage of the buck-boost rectifier circuit 50 and an increase in pulsation components. Therefore, in the present embodiment, in the rectification control circuit 200, the current flowing through the reactor 61 is detected by the current sensor 60, and the detected current is converted into the voltage VIR by the absolute value circuit 117 and input to the drive logic circuit 108.
  • the drive logic circuit 108 switches the signal PWMX input to the switching element 51 or the switching element 52 from “High” to “Low”. That is, when the current flowing through the reactor 61 becomes approximately 0 A, the signal PWMX is switched from “High” to “Low”.
  • the switching element 52 is switched from the conduction mode to the reverse conduction mode 1 by switching the signal PWMX to “Low”, the current flows in the direction opposite to the direction indicated by the broken line (L). It is possible to prevent the smoothing capacitors 62, 63, 64 from being discharged.
  • the rectification control circuit 200 inputs an off signal “Low” to the two gates of the switching elements 52, 54, and 56. In other words, the gates and the sources of the two gates of the switching elements 52, 54, and 56 are short-circuited. Thereby, the switching elements 52, 54, and 56 are maintained in the cutoff mode. Further, the rectification control circuit 200 inputs an ON signal “High” to the two gates of the switching elements 55 and 65. In other words, the gate-source voltage Vgs is maintained at the threshold voltage Vth or higher for the two gates of the switching elements 55 and 65. Thereby, the switching elements 55 and 65 are maintained in the conduction mode.
  • the smoothing capacitors 62 and 63 are charged only when the polarity of the AC power source 1 is positive, and charged only when the polarity of the AC power source 1 is negative.
  • movement of a double rectification system is implement
  • the smoothing capacitor 64 plays a role of removing ripples included in the voltage between both ends of the smoothing capacitors 62 and 63.
  • the rectification control circuit 200 inputs the off signal “Low” to the two gates of the switching element 53, and The switching element 53 is set to the cut-off mode by short-circuiting the gate and the source for one gate.
  • an ON signal “High” is input to the two gates of the switching element 53, and the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth for the two gates of the switching element 53. Is set to the conduction mode.
  • the polarity of the output voltage of the AC power supply 1 being positive means that the first output terminal of the AC power supply 1 in FIG.
  • the drive logic circuit 108 of the rectification control circuit 200 sets the polarity of the output voltage of the AC power supply 1 based on the signal PN output from the second comparator 118 and the signal DR output from the first comparator 107. Detect.
  • the rectification control circuit 200 inputs an ON signal “High” to the two gates of the switching element 51, and For one gate, the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth, and the switching element 51 is set in the conduction mode.
  • an OFF signal “Low” is input to the two gates of the switching element 51, and the switching element 51 is placed in the cutoff mode with the two gates of the switching element 51 short-circuited between the gate and the source. .
  • the switching element 53 and the switching element 51 repeat the cutoff mode and the conduction mode every half cycle of the output voltage of the AC power supply 1, and the switching element 53 and the switching element 51 are in the cutoff mode and the conduction mode. Is shifted by a half cycle.
  • the rectification control circuit 200 inputs the signal PWM to the gate of the switching element 57 when the polarity of the output voltage of the AC power supply 1 is positive.
  • an OFF signal “Low” is input to the gate of the switching element 57.
  • the rectification control circuit 200 inputs an off signal “Low” to the gate of the switching element 58 when the polarity of the output voltage of the AC power supply 1 is positive.
  • the signal PWM is input to the gate of the switching element 58.
  • the rectification control circuit 200 inputs the ON signal “High” to the gate “A” of the switching element 59 and the signal PWMX to the gate “B”.
  • the signal PWMX is input to the gate “A” of the switching element 59 and the ON signal “High” is input to the gate “B”.
  • the switching element 57 and the switching element 59 perform switching operations so as to be alternately turned on and off, and when the polarity of the output voltage of the AC power supply 1 is negative, The switching element 58 and the switching element 59 perform a switching operation such that they are alternately turned on and off.
  • FIG. 12A shows the flow of current in the step-up / step-down rectifier circuit 50 when the polarity of the output voltage of the AC power supply 1 is positive
  • FIG. 12B shows the polarity of the output voltage of the AC power supply 1 being negative.
  • a broken line (H) indicates a current flow in a state where the signal PWM is “High” and the signal PWMX is “Low”.
  • the current flows from the positive output terminal of the AC power supply 1 through the switching element 51, the switching element 65, the switching element 57, the reactor 61, and the switching element 55 in this order, and the current of the AC power supply 1 is changed. 2 into the output terminal.
  • the AC power supply 1 stores magnetic energy in the reactor 61.
  • a broken line (L) indicates a current flow in a state where the signal PWM is “Low” and the signal PWMX is “High”.
  • the current flows from the first output terminal of the AC power supply 1 through the switching element 51, the switching element 65, the smoothing capacitor 62, the switching element 59, the reactor 61, and the switching element 55 in this order. It flows into the second output terminal of the AC power supply 1. In this case, magnetic energy is released from the reactor 61 and the smoothing capacitor 62 is charged. As a result, the voltage across the smoothing capacitor 62 is boosted to a voltage larger than the voltage amplitude of the AC power supply 1.
  • a broken line (H) indicates a current flow when the signal PWM is “High” and the signal PWMX is “Low”.
  • the current flows from the second output terminal of the AC power supply 1 through the switching element 55, the reactor 61, the switching element 58, and the switching element 53 in this order, and the first output of the AC power supply 1 is output. Flow into the terminal. In this case, AC power supply 1 accumulates magnetic energy in reactor 61.
  • a broken line (L) indicates a current flow in a state where the signal PWM is “Low” and the signal PWMX is “High”.
  • the current flows from the second output terminal of the AC power source 1 through the switching element 55, the reactor 61, the switching element 59, the smoothing capacitor 63, and the switching element 53 in this order. 1 to the output terminal.
  • magnetic energy is released from the reactor 61, and the smoothing capacitor 63 is charged.
  • the voltage across the smoothing capacitor 63 is boosted to a voltage larger than the voltage amplitude of the AC power supply 1.
  • the output voltage Vdc of the step-up / step-down rectifier circuit 50 is the sum of the voltages across the two smoothing capacitors 62 and 63, and the voltage across the smoothing capacitors 62 and 63 is an alternating current as described above. It is larger than the voltage amplitude of the power source 1. Therefore, the output voltage Vdc of the step-up / step-down rectifier circuit 50 has a value larger than twice the voltage amplitude of the output voltage of the AC power supply 1.
  • the rectification control circuit 200 includes the magnetic energy accumulated in the reactor 61 by the current path indicated by the broken line (H) from the AC power supply 1 and the magnetic energy released by the current path indicated by the broken line (L). So that the energy is equal.
  • the output voltage of the step-up / step-down rectifier circuit 50 is controlled at a constant value with the voltage determined by the voltage instruction signal Vdcin.
  • the step-up / step-down rectifier circuit 50 has a voltage from around 0V to a voltage V2 that is about twice the voltage amplitude V1 of the AC power supply 1 by the single rectification system operation, as shown in FIG. In the range, the output voltage Vi can be controlled to increase. Then, by the operation of the double rectification method, it is possible to control the output voltage Vi to be increased in a voltage range equal to or higher than the voltage V2 that is twice the voltage amplitude of the AC power supply 1. As a result, the step-up / step-down rectifier circuit 50 has a wider variable range of output voltage than the step-up rectifier circuit 1050 configured as shown in FIG.
  • this step-up / step-down rectifier circuit 50 is connected to the inverter 3, the input voltage to the inverter 3 can be changed in a wide voltage range, so that the variable range of the output voltage can be increased while the inverter 3 is driven by the PAM method. Can be enlarged.
  • the inverter 3 can be driven by the PAM method using the input voltage to the inverter 3 as a voltage corresponding to the rotation range of the motor 4 in almost all rotation ranges from the lower limit to the upper limit of the rotation range of the motor 4. Therefore, since the input voltage (output voltage Vi) of the inverter 3 can be set to the minimum necessary level, the switching element 31, 32, 33, 34, 35, 36 constituting the inverter 3 is connected between the source and drain. Since the applied voltage can be lowered, the switching loss in each of the switching elements 31, 32, 33, 34, 35, and 36 can be reduced.
  • the smaller the output voltage Vi the smaller the magnitude of the pulsating flow component included in the output voltage Vi.
  • the pulsating component included in the output voltage (input voltage to the inverter 3) Vi is also included in the output current of the inverter 3 (driving current of the motor 4) as a pulsating component. Therefore, by reducing the output voltage Vi as much as possible as in the present embodiment, the pulsating flow component included in the drive current of the motor 4 can be reduced correspondingly, so the iron loss generated in the motor 4 is reduced. There is also an advantage that it can be done.
  • the step-up rate required for the step-up operation is relatively narrow. Since it can limit to a range, the design of the reactor 61 can be made easy.
  • step-down operation in the double rectification method which is a difference from the first embodiment, will be described.
  • the configuration of the motor drive system according to the present embodiment, the step-down operation using the single rectification method, and the step-up operation using the double rectification method are the same as those in the first embodiment, and thus description thereof is omitted here.
  • the drive logic circuit 108 included in the rectification control circuit 200 receives the rectification method switching signal Rectsw indicating the double rectification method from the control instruction circuit 40, the drive logic circuit 108 A control signal for operating the double rectification method is output.
  • the step-up / step-down rectifier circuit 50 is stepped down based on the magnitude relationship between a signal obtained by full-wave rectification of the output voltage of the AC power supply 1 and the output voltage Vdc of the step-up / step-down rectifier circuit 50. Decide whether to operate or boost.
  • the rectification control circuit 200 When the rectification control circuit 200 receives the rectification method switching signal Rrectsw indicating the single rectification method from the control instruction circuit 40, the rectification control circuit 200 causes the step-up / step-down rectifier circuit 50 to perform only the step-down operation, and between the step-down operation and the step-up operation. Do not switch the operation.
  • the time waveform of the control signal input to each gate of the dual gate type switching elements 51 to 56, 59, 65 constituting the step-up / step-down type rectifier circuit 50, and the single gate type FIG. 14 shows time waveforms of control signals input to the gates of the switching elements 57 and 58.
  • the rectification control circuit 200 continues to input the off signal “Low” to the two gates of the switching element 56. In other words, the two gates of the switching element 56 are kept short-circuited between the gate and the source. Thereby, the switching element 56 is maintained in the cutoff mode.
  • the rectification control circuit 200 continues to input the ON signal “High” to the two gates of the switching elements 55, 59, and 65. In other words, the gate-source voltage Vgs is maintained at the threshold voltage Vth or higher for the two gates of the switching elements 55, 59, 65. Thereby, the switching elements 55, 59, 65 are maintained in the conduction mode.
  • the smoothing capacitors 62 and 63 are charged only when the polarity of the AC power source 1 is positive, and charged only when the polarity of the AC power source 1 is negative.
  • movement of a double rectification system is implement
  • the smoothing capacitor 64 plays a role of removing ripples included in the voltage between both ends of the smoothing capacitors 62 and 63.
  • the rectification control circuit 200 inputs the signal PWM to the gate “A” of the switching element 51 and turns on the gate “B”. “High” is input, the ON signal “High” is input to the gate “A” of the switching element 52, and the signal PWMX is input to the gate “B”.
  • the drive logic circuit 108 of the rectification control circuit 200 sets the polarity of the output voltage of the AC power supply 1 based on the signal PN output from the second comparator 118 and the signal DR output from the first comparator 107. Detect.
  • the rectification control circuit 200 inputs an off signal “Low” to each of the two gates of the switching elements 53 and 54, The switching elements 53 and 54 are set to the cutoff mode with the two gates 53 and 54 short-circuited to the source.
  • the signal PWM is input to the gate “A” of the switching element 53, the ON signal “High” is input to the gate “B”, and the ON signal “High” is input to the gate “A” of the switching element 54. “High” is input, and the signal PWMX is input to the gate “B”.
  • the switching elements 51 and 52 and the switching elements 53 and 54 repeat the cutoff mode every half cycle of the output voltage of the AC power supply 1, and the switching elements 51 and 52 and the switching elements 53 and 54 enter the cutoff mode.
  • the timing is shifted by half a cycle.
  • the rectification control circuit 200 continues to input the off signal “Low” to the gates of the switching elements 57 and 58.
  • the gates and sources of the switching elements 57 and 58 are kept short-circuited. Thereby, the switching elements 57 and 58 are maintained in the cutoff mode.
  • FIG. 15A shows the flow of current in the buck-boost rectifier circuit 50 when the polarity of the output voltage of the AC power supply 1 is positive, and FIG. 15B shows the polarity of the output voltage of the AC power supply 1 being negative.
  • a broken line (H) indicates a current flow when the signal PWM is “High” and the signal PWMX is “Low”.
  • the current flows from the first output terminal of the AC power supply 1 through the switching element 51, the switching element 65, the smoothing capacitor 62, the switching element 59, the reactor 61, and the switching element 55 in this order. It flows into the second output terminal of the AC power supply 1. In this case, the AC power supply 1 accumulates magnetic energy in the reactor 61 while charging the smoothing capacitor 62.
  • a broken line (L) indicates a current flow in a state where the signal PWM is “Low” and the signal PWMX is “High”.
  • the current returns from the reactor 61 to the reactor 61 through the switching element 55, the switching element 52, the switching element 65, the smoothing capacitor 62, and the switching element 59 in this order, and then passes through the AC power source 1. do not do.
  • the AC power source 1 cannot flow current through the reactor 61, magnetic energy cannot be accumulated in the reactor 61.
  • the magnetic energy accumulated in the reactor 61 is released through a current path indicated by a broken line (L).
  • a broken line (H) indicates a current flow in a state where the signal PWM is “High” and the signal PWMX is “Low”.
  • the current flows from the second output terminal of the AC power source 1 through the switching element 55, the reactor 61, the switching element 59, the smoothing capacitor 63, and the switching element 53 in this order. Flow into the first output terminal.
  • the AC power supply 1 accumulates magnetic energy in the reactor 61 while charging the smoothing capacitor 62.
  • the broken line (L) indicates the flow of current when the signal PWM is “Low” and the signal PWMX is “High”.
  • the current returns from the reactor 61 to the reactor 61 through the switching element 59, the smoothing capacitor 63, the switching element 54, and the switching element 55 in this order, and then passes through the AC power source 1. do not do.
  • the AC power source 1 cannot flow current through the reactor 61, magnetic energy cannot be accumulated in the reactor 61.
  • the magnetic energy accumulated in the reactor 61 is released through a current path indicated by a broken line (L).
  • the output voltage Vdc of the step-up / step-down rectifier circuit 50 is a sum of voltages between both ends of the two smoothing capacitors 62 and 63.
  • the voltage across the smoothing capacitors 62 and 63 is smaller than the voltage amplitude of the AC power supply 1. Therefore, the output voltage Vdc of the step-up / step-down rectifier circuit 50 has a value smaller than twice the voltage amplitude of the output voltage of the AC power supply 1.
  • the step-up / step-down rectifier circuit 50 generates the output voltage Vi in the voltage range from around 0 V to the voltage amplitude V1 of the AC power supply 1 by the single rectification operation as shown in FIG. It can be controlled to increase. Then, by the operation of the double rectification method, the output voltage Vi is set in the voltage range from the voltage amplitude V1 of the AC power supply 1 to more than twice the voltage amplitude centering on the voltage V2 that is twice the voltage amplitude of the AC power supply 1. It can be controlled to increase. If the step-up / step-down rectifier circuit 50 is connected to the inverter 3, the input voltage to the inverter 3 can be changed in a wide voltage range. Therefore, the inverter 3 to which the step-up / step-down rectifier circuit 50 is connected is driven by the PAM method. However, the output voltage can be changed over a wide voltage range.
  • the input voltage to the inverter 3 is set to a voltage corresponding to the rotation range of the motor 4, and the inverter 3 is set to PAM.
  • the inverter 3 can be driven and the input voltage (output voltage Vi) of the inverter 3 can be set to the minimum necessary level, so that the switching loss in the switching elements 31 to 36 of the inverter 3 can be reduced.
  • the smaller the output voltage Vi the smaller the magnitude of the pulsating flow component included in the output voltage Vi.
  • the pulsating component included in the output voltage (input voltage to the inverter 3) Vi is also included in the output current of the inverter 3 (driving current of the motor 4) as a pulsating component. Therefore, by reducing the output voltage Vi as much as possible as in the present embodiment, the pulsating flow component included in the drive current of the motor 4 can be reduced correspondingly, so the iron loss generated in the motor 4 is reduced. There is also an advantage that it can be done.
  • the voltage range from the voltage amplitude V1 of the output voltage of the AC power supply 1 to the voltage V2 that is twice the voltage amplitude of the input voltage to the inverter 3 is boosted by a single rectification method.
  • the example of the step-up / step-down rectifier circuit 50 that outputs by the double rectification step-down operation has been described, but the present invention is not limited to this.
  • a specified voltage V3 that is larger than the voltage V1 and smaller than the voltage V2 is set, and the voltage range between the voltage V1 and the voltage V3 is output by the boosting operation of the single rectification method.
  • the voltage range between the voltage V3 and the voltage V2 may be output by the double rectification step-down operation.
  • the present invention relates to a rectifier circuit that converts alternating current into direct current, and in particular, when the output voltage of the rectifier circuit is desired to be variable in a voltage range from near 0 V to a voltage value that is twice or more the voltage amplitude of the alternating current power supply.
  • the step-up / step-down rectifier circuit system according to the present invention is useful as a power supply source to an inverter for driving a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A boost rectifier circuit (50) is provided with: a first circuit (50a) which includes switching elements (51, 52, 53, 54, 55, 56, 65) and is connected to the output end of an alternating-current power source (1); a reactor (61) which is connected to the output end of the first circuit (50a); a second circuit (50b) which includes switching elements (57, 58, 59) and is connected to the reactor (61); and a third circuit (50c) which is connected to the second circuit (50b). A rectification control circuit (200) switches the current path of the second circuit (50b) when the boost rectifier circuit (50) operates by using a single-rectification method and when the boost rectifier circuit operates by using a double-rectification method, causes switching elements (51, 52) in the first circuit (50a) to perform switching operations when the boost rectifier circuit (50) performs a step-down operation, and causes switching elements (57, 58) in the second circuit (50b) to perform switching operations when the boost rectifier circuit performs a step-up operation.

Description

昇降圧型整流回路システムBuck-boost rectifier circuit system
 本発明は、昇降圧型整流回路システムに関し、特に、出力電圧を広範に可変する技術に関する。 The present invention relates to a step-up / step-down rectifier circuit system, and more particularly to a technique for widely varying an output voltage.
 従来、一倍整流方式による動作と二倍整流方式による動作と昇圧動作とを組み合わせることにより、出力電圧を可変とした整流回路が提案されている(特許文献1参照)。 Conventionally, a rectifier circuit has been proposed in which the output voltage is variable by combining the operation by the single rectification method, the operation by the double rectification method, and the boosting operation (see Patent Document 1).
 この整流回路をインバータに接続することにより、インバータをPAM(Pulse Amplitude Modulation:パルス振幅波形変調)方式で駆動させることが可能となる。 接 続 By connecting this rectifier circuit to an inverter, the inverter can be driven by a PAM (Pulse Amplitude Modulation) method.
 また、三相モータを駆動させるために用いられるインバータであれば、モータの回転数が高回転領域にある場合に比べてモータの回転数が低回転領域にある場合のほうがモータに供給すべき電流・電圧は小さくてもよい。ここで、インバータをPAM方式で駆動させれば、モータの回転数に応じてインバータの出力電流・電圧を小さくするに伴い、インバータへの入力電圧を小さくすることができるので、その分、インバータでのスイッチング損失の低減を図ることができる。 For an inverter used to drive a three-phase motor, the current to be supplied to the motor is higher when the motor speed is in the low speed range than when the motor speed is in the high speed range.・ The voltage may be small. Here, if the inverter is driven by the PAM method, the input voltage to the inverter can be reduced as the output current / voltage of the inverter is reduced according to the rotational speed of the motor. The switching loss can be reduced.
 PAM方式で駆動するインバータを用いたモータ駆動システムの一例を図18に示す。 An example of a motor drive system using an inverter driven by the PAM method is shown in FIG.
 図18に示すように、モータ駆動システムは、モータ1004を駆動させるためのインバータ1003と、インバータ1003に直流電圧を供給する昇圧型整流回路1050とを備える。ここで、昇圧型整流回路1050は、一端側が交流電源1001の出力端に接続されたリアクトルL1と、リアクトルL1の他端側と交流電源1001の出力端との間に接続された整流回路1051と、整流回路1051の入力端間に接続された双方向スイッチ回路1002とを備える。ここで、整流回路1051は、ダイオードD1乃至D4からなるダイオードブリッジと、ダイオードブリッジの出力端間に接続されたコンデンサC3と、コンデンサC3に並列に接続されたコンデンサC1,C2からなる直列回路と、コンデンサC1,C2の接続点とダイオードブリッジの入力端との間に接続されたスイッチSW1とを備える。また、双方向スイッチ回路1002は、ダイオードD5乃至D8からなるダイオードブリッジと、スイッチング素子Q1とから構成される。この昇圧型整流回路1050は、双方向スイッチ1002のスイッチング素子Q1がスイッチング動作を行うことで昇圧動作を行う。 As shown in FIG. 18, the motor drive system includes an inverter 1003 for driving the motor 1004 and a boost rectifier circuit 1050 that supplies a DC voltage to the inverter 1003. Here, the boost rectifier circuit 1050 has a reactor L1 having one end connected to the output end of the AC power supply 1001, and a rectifier circuit 1051 connected between the other end of the reactor L1 and the output end of the AC power supply 1001. And a bidirectional switch circuit 1002 connected between the input terminals of the rectifier circuit 1051. Here, the rectifier circuit 1051 includes a diode bridge composed of diodes D1 to D4, a capacitor C3 connected between the output ends of the diode bridge, and a series circuit composed of capacitors C1 and C2 connected in parallel to the capacitor C3; A switch SW1 connected between the connection point of the capacitors C1 and C2 and the input terminal of the diode bridge is provided. The bidirectional switch circuit 1002 includes a diode bridge composed of diodes D5 to D8 and a switching element Q1. The step-up rectifier circuit 1050 performs a step-up operation when the switching element Q1 of the bidirectional switch 1002 performs a switching operation.
 次に、昇圧型整流回路1050の動作をモータ1004の回転数と関連づけて説明する。 Next, the operation of the step-up rectifier circuit 1050 will be described in relation to the rotation speed of the motor 1004.
 図19に、モータ1004の回転数と、昇圧型整流回路1050の出力電圧(インバータ1003への入力電圧)Viとの関係を示す。図19では、モータ1004の回転数が60rps近辺の低回転領域と、該回転数が120rps近辺の高回転領域とで、昇圧整流回路の整流動作を切り替えている。 FIG. 19 shows the relationship between the rotation speed of the motor 1004 and the output voltage (input voltage to the inverter 1003) Vi of the step-up rectifier circuit 1050. In FIG. 19, the rectification operation of the step-up rectifier circuit is switched between a low rotation area where the rotation speed of the motor 1004 is around 60 rps and a high rotation area where the rotation speed is around 120 rps.
 モータ1004の回転数が高回転領域にある場合、昇圧型整流回路1050は、スイッチSW1が閉じた状態(倍整流動作を行う状態)で昇圧動作を行い、電圧Viが220V乃至280Vの間でモータ1004の回転数に応じて変化するようにする(図19の一点鎖線B1で囲んだ部分参照)。 When the rotation speed of the motor 1004 is in the high rotation region, the boost rectifier circuit 1050 performs a boost operation in a state where the switch SW1 is closed (a state in which the double rectification operation is performed), and the voltage Vi is between 220V and 280V. It changes in accordance with the number of revolutions 1004 (see the portion surrounded by the one-dot chain line B1 in FIG. 19).
 一方、モータ1004の回転数が低回転領域にある場合、昇圧型整流回路1050は、スイッチSW1が開いた状態(通常整流動作を行う状態)で昇圧動作を行い、電圧Viが105V乃至140Vの間でモータ1004の回転数に応じて変化するようにする(図19の一点鎖線B2で囲んだ部分参照)。 On the other hand, when the rotation speed of the motor 1004 is in the low rotation range, the boost rectifier circuit 1050 performs a boost operation with the switch SW1 open (a state in which normal rectification operation is performed), and the voltage Vi is between 105V and 140V. Thus, it changes in accordance with the number of revolutions of the motor 1004 (see the portion surrounded by the one-dot chain line B2 in FIG. 19).
 このように、昇圧型整流回路1050は、インバータ1003への入力電圧をモータ1004の回転数に応じて最低限必要な大きさにするPAM方式のインバータ制御によりインバータ1003のスイッチング素子におけるスイッチング損失を低減することができ、モータ駆動システムでの消費電力の低減を図ることができる。 As described above, the boost rectifier circuit 1050 reduces the switching loss in the switching element of the inverter 1003 by the PAM-type inverter control in which the input voltage to the inverter 1003 is set to the minimum necessary level according to the rotational speed of the motor 1004. This can reduce power consumption in the motor drive system.
特開2001-95262号JP 2001-95262 A
 ところで、モータ1004が、停止した状態から動きだす場合等、モータ1004を低回転領域(図19の一点鎖線B2で囲んだ領域参照)よりも低い回転域で駆動させる場合がある。 By the way, when the motor 1004 starts to move from a stopped state, the motor 1004 may be driven in a rotation region lower than the low rotation region (see the region surrounded by the one-dot chain line B2 in FIG. 19).
 しかしながら、図18に示す構成の昇圧型整流回路1050は、昇圧動作しかできないため、モータ1004を低回転領域よりも低い回転域では、インバータ1003への入力電圧(昇圧型整流回路1050の出力電圧)をモータ1004の回転数に応じた必要最小限の電圧に設定することができない。従って、この回転域では、インバータ1003への入力電圧を必要以上に大きな値に設定せざるを得ず、インバータ1003のスイッチング素子でのスイッチング損失の低減を図ることができない。つまり、インバータ1003への入力電圧(昇圧型整流回路1050の出力電圧)の可変範囲が、モータ1004の回転域全体に対応する入力電圧の範囲に比べて小さいので、モータ1004の回転域によっては、インバータ1003への入力電圧をモータ1004の回転数に応じた必要最小限の電圧に設定することができない場合があり、インバータ1003のスイッチング素子でのスイッチング損失の低減を十分に図ることができない。 However, since the step-up rectifier circuit 1050 having the configuration shown in FIG. 18 can only perform a step-up operation, the input voltage to the inverter 1003 (the output voltage of the step-up rectifier circuit 1050) in the rotation range lower than the low rotation range of the motor 1004. Cannot be set to the minimum necessary voltage according to the rotation speed of the motor 1004. Therefore, in this rotational range, the input voltage to the inverter 1003 must be set to a value larger than necessary, and the switching loss in the switching element of the inverter 1003 cannot be reduced. That is, the variable range of the input voltage to the inverter 1003 (the output voltage of the step-up rectifier circuit 1050) is smaller than the input voltage range corresponding to the entire rotation range of the motor 1004. Therefore, depending on the rotation range of the motor 1004, In some cases, the input voltage to the inverter 1003 cannot be set to the minimum necessary voltage according to the number of revolutions of the motor 1004, and the switching loss in the switching element of the inverter 1003 cannot be sufficiently reduced.
 本発明は、上記事由に鑑みてなされたものであり、出力電圧の可変範囲を拡大した昇降圧型整流回路を提供することにある。 The present invention has been made in view of the above reasons, and is to provide a step-up / step-down rectifier circuit in which the variable range of the output voltage is expanded.
 上記目的を達成するために、本発明に係る昇降圧型整流回路システムは、昇降圧型整流回路と当該昇降圧型整流回路を制御するための整流制御回路とを備える昇降圧型整流回路システムであって、昇降圧型整流回路が、複数のデュアルゲート型のスイッチング素子を含み、交流電源の出力端に接続された第1回路と、第1回路の出力端に接続されたリアクトルと、少なくとも2つのシングルゲート型のスイッチング素子と少なくとも1つのデュアルゲート型のスイッチング素子とを含み且つリアクトルに接続された第2回路と、少なくとも2つのコンデンサを含み且つ第2回路に接続された第3回路とを有し、整流制御回路が、昇降圧型整流回路が一倍整流方式で動作する場合と二倍整流方式で動作する場合とで第1回路および第2回路の電流経路を切り替えるとともに、昇降圧型整流回路がリアクトルへのエネルギの蓄積およびリアクトルに蓄積されたエネルギの放出を行うことで降圧動作を行うとき、第1回路に含まれる2つのスイッチング素子に交互にオンオフを繰り返す形でスイッチング動作をさせ、リアクトルへのエネルギの蓄積およびリアクトルに蓄積されたエネルギの放出を行うことで昇圧動作を行うとき、第2回路に含まれる2つのシングルゲート型のスイッチング素子に交互にオンオフを繰り返す形でスイッチング動作をさせるように、第1回路および第2回路に含まれる各スイッチング素子のゲートに制御信号を入力する。 In order to achieve the above object, a buck-boost rectifier circuit system according to the present invention is a buck-boost rectifier circuit system comprising a buck-boost rectifier circuit and a rectification control circuit for controlling the buck-boost rectifier circuit. The pressure type rectifier circuit includes a plurality of dual gate type switching elements, a first circuit connected to the output end of the AC power supply, a reactor connected to the output end of the first circuit, and at least two single gate type A second circuit including a switching element and at least one dual-gate switching element and connected to the reactor, and a third circuit including at least two capacitors and connected to the second circuit, and rectifying control The circuit is different between the first circuit and the second circuit when the step-up / step-down rectifier circuit operates in the single rectification method and the double rectification method. When the step-down operation is performed by switching the flow path and the buck-boost rectifier circuit storing the energy in the reactor and releasing the energy stored in the reactor, the two switching elements included in the first circuit are alternately turned on and off. When the step-up operation is performed by storing the energy in the reactor and releasing the energy stored in the reactor, the two single-gate switching elements included in the second circuit are alternately switched. A control signal is input to the gates of the switching elements included in the first circuit and the second circuit so that the switching operation is repeated in a manner of repeatedly turning on and off.
 本構成よれば、昇降圧型整流回路を一倍整流方式および二倍整流方式で動作させるとともに、一倍整流方式で動作している場合および二倍整流方式で動作している場合それぞれについて、昇圧動作および降圧動作を行わせることが可能であることにより、昇降圧型整流回路の出力電圧の可変範囲の拡大を図れる。また、昇降圧型整流回路をインバータに接続してなる構成とすれば、昇降圧型整流回路からインバータへの入力電圧を広い電圧範囲で変化させることができるので、当該インバータをPAM方式で駆動させつつ出力電圧の可変範囲を拡大することができる。 According to this configuration, the step-up / step-down rectifier circuit is operated by the single rectification method and the double rectification method, and the boost operation is performed when the single rectification method and the double rectification method are operated. Since the step-down operation can be performed, the variable range of the output voltage of the step-up / step-down rectifier circuit can be expanded. Further, if the step-up / step-down rectifier circuit is connected to the inverter, the input voltage from the step-up / step-down rectifier circuit to the inverter can be changed in a wide voltage range, so that the inverter is driven while being driven by the PAM method. The variable range of voltage can be expanded.
 また、本発明に係る昇降圧型整流回路システムは、上記昇降圧型整流回路が、更に、少なくとも2つのコンデンサを含み且つ上記第2回路に接続され、上記第2回路からの出力を平滑化するための第3回路を有し、上記第1回路が、デュアルゲート型の第1、第2、第3および第4スイッチング素子から構成されるブリッジ回路と、ブリッジ回路の第1出力端と入力端との間に直列に接続されたデュアルゲート型の第5スイッチング素子および第6スイッチング素子と、一端側がブリッジ回路の第1出力端と第5スイッチング素子および第6スイッチング素子からなる直列回路との間の接続点に接続されたデュアルゲート型の第7スイッチング素子とを有し、第2回路が、第7スイッチング素子の他端側とブリッジ回路の第2出力端との間に直列に接続されたシングルゲート型の第8スイッチング素子および第9スイッチング素子と、一端側が第8スイッチング素子と第9スイッチング素子との間の接続点に接続されたデュアルゲート型の第10スイッチング素子とを有し、上記第3回路が、第8スイッチング素子と第9スイッチング素子とからなる直列回路の両端間に接続された第1コンデンサと、第1コンデンサの一端側と第10スイッチング素子の他端側との間に接続された第2コンデンサと、第1コンデンサの他端側と第10スイッチング素子の他端側との間に接続された第3コンデンサとを有し、上記リアクトルが、一端側が第5スイッチング素子と第6スイッチング素子との間の接続点に接続され、他端側が第8スイッチング素子と第9スイッチング素子との間の接続点に接続されてなるものであってもよい。 In the step-up / step-down rectifier circuit system according to the present invention, the step-up / step-down rectifier circuit further includes at least two capacitors and is connected to the second circuit to smooth the output from the second circuit. A bridge circuit including dual gate type first, second, third, and fourth switching elements, and a first output terminal and an input terminal of the bridge circuit. Connection between a dual gate type fifth switching element and a sixth switching element connected in series between the first output terminal of the bridge circuit and a series circuit including the fifth switching element and the sixth switching element on one end side A dual gate type seventh switching element connected to the point, and the second circuit is between the other end side of the seventh switching element and the second output end of the bridge circuit. A single-gate eighth switching element and a ninth switching element connected in series; a dual-gate tenth switching element having one end connected to a connection point between the eighth switching element and the ninth switching element; A first capacitor connected between both ends of the series circuit including the eighth switching element and the ninth switching element, one end side of the first capacitor, and the other end of the tenth switching element. A second capacitor connected between the first capacitor and a third capacitor connected between the other end side of the first capacitor and the other end side of the tenth switching element. It is connected to the connection point between the fifth switching element and the sixth switching element, and the other end side is connected to the eighth switching element and the ninth switching element. Or it may be formed by connecting the point.
 また、本発明に係る昇降圧型整流回路システムは、上記第5および第6スイッチング素子が、シングルゲート型FETからなり、上記第1乃至第4および第7乃至第10スイッチング素子が、2つのシングルゲート型FETのドレイン同士を接続してなるデュアルゲート型FETであってもよい。 In the step-up / step-down rectifier circuit system according to the present invention, the fifth and sixth switching elements are single-gate FETs, and the first to fourth and seventh to tenth switching elements are two single gates. It may be a dual gate FET formed by connecting the drains of a type FET.
 本構成によれば、ブリッジ回路がデュアルゲート型FETで構成されることにより、ブリッジ回路がダイオードのみで構成されている場合に比べて、ブリッジ回路での電力損失を低減することができる。 According to this configuration, since the bridge circuit is configured by the dual gate FET, power loss in the bridge circuit can be reduced as compared with the case where the bridge circuit is configured by only the diode.
 また、本発明に係る昇降圧型整流回路システムは、上記シングルゲート型FETが、半導体基板上に形成された窒化物半導体からなる半導体層積層体と、半導体層積層体上に互いに離間して設けられたドレイン端子およびソース端子と、ドレイン端子およびソース端子の間に設けられたゲート端子とを備えるヘテロ接合電界効果トランジスタであってもよい。 In the step-up / step-down rectifier circuit system according to the present invention, the single gate FET is provided with a semiconductor layer stack made of a nitride semiconductor formed on a semiconductor substrate and a semiconductor layer stack spaced apart from each other. The heterojunction field effect transistor may include a drain terminal and a source terminal, and a gate terminal provided between the drain terminal and the source terminal.
 本構成によれば、少数キャリア蓄積効果がなく、リカバリー電流やターンオフ時のテール電流が少ないので、スイッチング動作時のスイッチング損失を小さくすることができ、消費電力の低減を図ることができる。また、本構成よれば、オン抵抗が小さく導通損失を低減することができるので、消費電力の低減を図ることができる。 According to this configuration, since there is no minority carrier accumulation effect and there is little recovery current and tail current at turn-off, switching loss during switching operation can be reduced, and power consumption can be reduced. Further, according to this configuration, since the on-resistance is small and the conduction loss can be reduced, the power consumption can be reduced.
 また、本発明に係る昇降圧型整流回路システムは、上記デュアルゲート型FETが、半導体基板上に形成された窒化物半導体からなる半導体層積層体と、半導体層積層体上に互いに離間して設けられた第1出力端子および第2出力端子と、第1出力端子および前記第2出力端子の間に離間して設けられた第1ゲート端子および第2のゲート端子とを備えるものであってもよい。 In the step-up / step-down rectifier circuit system according to the present invention, the dual gate FET is provided with a semiconductor layer stack made of a nitride semiconductor formed on a semiconductor substrate and a semiconductor layer stack spaced apart from each other. And a first output terminal and a second output terminal, and a first gate terminal and a second gate terminal which are provided separately between the first output terminal and the second output terminal. .
 本構成によれば、少数キャリア蓄積効果がなく、リカバリー電流やターンオフ時のテール電流が無いので、スイッチング動作時のスイッチング損失を小さくすることができ、消費電力の低減を図ることができる。また、オン抵抗が小さく導通損失を低減することができるので、消費電力の低減を図ることができる。更に、2つのシングルゲート型FETのドレイン同士を接続してなる構成に比べて小型化を図ることができる。 According to this configuration, there is no minority carrier accumulation effect, and there is no recovery current or tail current at turn-off, so that switching loss during switching operation can be reduced, and power consumption can be reduced. In addition, since the on-resistance is small and conduction loss can be reduced, power consumption can be reduced. Furthermore, the size can be reduced as compared with a configuration in which the drains of two single gate FETs are connected to each other.
 また、本発明に係る昇降圧型整流回路システムは、上記制御信号が、パルス列状の時間波形を有する信号であってもよい。 In the step-up / step-down rectifier circuit system according to the present invention, the control signal may be a signal having a pulse train-like time waveform.
 本構成によれば、制御信号のパルス幅を連続的に変化させることにより、昇圧率または降圧率を連続的に変化させることができるので、昇降圧型整流回路をインバータに接続すれば、インバータへの入力電圧を連続的に変化させることができる。従って、昇降圧型整流回路が接続されるインバータについて、PAM制御を行いながらも出力電圧を連続的に変化させることができる。 According to this configuration, the step-up / step-down rate can be continuously changed by continuously changing the pulse width of the control signal. Therefore, if the step-up / step-down rectifier circuit is connected to the inverter, The input voltage can be continuously changed. Therefore, it is possible to continuously change the output voltage of the inverter connected to the step-up / step-down rectifier circuit while performing PAM control.
 また、本発明は、複数のデュアルゲート型のスイッチング素子を含み且つ交流電源の出力端に接続された第1回路と、第1回路に接続されたリアクトルと、少なくとも1つのシングルゲート型のスイッチング素子と少なくとも1つのデュアルゲート型のスイッチング素子とを含み且つリアクトルに接続された第2回路と、少なくとも2つのコンデンサを含み第2回路に接続された第3回路とを備える昇降圧型整流回路であってもよい。 The present invention also includes a first circuit including a plurality of dual gate type switching elements and connected to an output terminal of an AC power source, a reactor connected to the first circuit, and at least one single gate type switching element. A step-up / step-down rectifier circuit including a second circuit connected to the reactor, and a third circuit including at least two capacitors and connected to the second circuit. Also good.
 本構成によれば、一倍整流方式と二倍整流方式とで電流経路の切り替えを可能としながらも、第2回路に含まれる少なくとも1つのスイッチング素子をスイッチング動作させることにより昇圧率を連続的に変化させる形で昇圧動作を行うことが可能であるとともに、第1回路に含まれる少なくとも1つのスイッチング素子をスイッチング動作させることにより降圧率を連続的に変化させる形で降圧動作を行うことが可能であるので、インバータに接続することにより、インバータへの入力電圧を広い電圧範囲で連続的に変化させることができる。従って、昇降圧型整流回路が接続されるインバータについて、PAM制御を行いながらも出力電圧を広い電圧範囲で連続的に変化するようにできる。 According to this configuration, the current path can be switched between the single rectification method and the double rectification method, but the step-up rate is continuously increased by switching the at least one switching element included in the second circuit. The step-up operation can be performed by changing the step-down rate, and the step-down operation can be performed by continuously changing the step-down rate by switching the at least one switching element included in the first circuit. Therefore, by connecting to the inverter, the input voltage to the inverter can be continuously changed over a wide voltage range. Therefore, it is possible to continuously change the output voltage in a wide voltage range while performing PAM control for the inverter to which the buck-boost rectifier circuit is connected.
 また、本発明は、上記第1回路が、デュアルゲート型の第1、第2、第3および第4スイッチング素子から構成されるブリッジ回路と、ブリッジ回路の第1出力端と入力端との間に直列に接続されたデュアルゲート型の第5スイッチング素子および第6スイッチング素子と、一端側がブリッジ回路の第1出力端と第5スイッチング素子および第6スイッチング素子からなる直列回路との間の接続点に接続されたデュアルゲート型の第7スイッチング素子とを有し、上記第2回路が、第7スイッチング素子の他端側とブリッジ回路の第2出力端との間に直列に接続されたシングルゲート型の第8スイッチング素子および第9スイッチング素子と、一端側が第8スイッチング素子と第9スイッチング素子との間の接続点に接続されたデュアルゲート型の第10スイッチング素子とを有し、上記第3回路が、第8スイッチング素子と第9スイッチング素子とからなる直列回路の両端間に接続された第1コンデンサと、第1コンデンサの一端側と第10スイッチング素子の他端側との間に接続された第2コンデンサと、第1コンデンサの他端側と第10スイッチング素子の他端側との間に接続された第3コンデンサとを有し、上記リアクトルが、一端側が第5スイッチング素子と第6スイッチング素子との間の接続点に接続され、他端側が第8スイッチング素子と第9スイッチング素子との間の接続点に接続されてなる昇降圧型整流回路であってもよい。 According to the present invention, the first circuit includes a bridge circuit including dual gate type first, second, third, and fourth switching elements, and a first output terminal and an input terminal of the bridge circuit. And a connection point between a fifth switching element and a sixth switching element of a dual gate type connected in series with each other, and a series circuit having one end side of the first output terminal of the bridge circuit and the fifth switching element and the sixth switching element A single gate connected in series between the other end side of the seventh switching element and the second output end of the bridge circuit. Type eighth switching element and ninth switching element, and a dual gate having one end connected to a connection point between the eighth switching element and the ninth switching element. A first capacitor connected between both ends of a series circuit composed of an eighth switching element and a ninth switching element, and one end side of the first capacitor. And a second capacitor connected between the other end side of the tenth switching element and a third capacitor connected between the other end side of the first capacitor and the other end side of the tenth switching element. The reactor has one end connected to a connection point between the fifth switching element and the sixth switching element, and the other end connected to a connection point between the eighth switching element and the ninth switching element. A step-up / step-down rectifier circuit may be used.
実施の形態1に係るモータ駆動システムの回路ブロック図である。1 is a circuit block diagram of a motor drive system according to Embodiment 1. FIG. 実施の形態1に係るシングルゲート型のスイッチング素子のI-V特性図である。FIG. 4 is an IV characteristic diagram of the single gate type switching element according to the first embodiment. 実施の形態1に係るシングルゲート型のスイッチング素子の動作説明図である。FIG. 5 is an operation explanatory diagram of the single gate type switching element according to the first embodiment. 実施の形態1に係るシングルゲート型のスイッチング素子の断面図である。1 is a cross-sectional view of a single gate type switching element according to a first embodiment. 実施の形態1に係るデュアルゲート型のスイッチング素子の動作説明図である。FIG. 6 is an operation explanatory diagram of the dual gate type switching element according to the first embodiment. 実施の形態1に係るデュアルゲート型のスイッチング素子の断面図である。1 is a cross-sectional view of a dual gate type switching element according to a first embodiment. 実施の形態1に係る昇降圧型整流回路を構成するスイッチング素子の動作を示すタイムチャートである。3 is a time chart illustrating an operation of a switching element constituting the step-up / step-down rectifier circuit according to the first embodiment. 実施の形態1に係る昇降圧型整流回路の動作説明図である。FIG. 4 is an operation explanatory diagram of the step-up / step-down rectifier circuit according to the first embodiment. 実施の形態1に係る昇降圧型整流回路を構成するスイッチング素子の動作を示すタイムチャートである。3 is a time chart illustrating an operation of a switching element constituting the step-up / step-down rectifier circuit according to the first embodiment. 実施の形態1に係る昇降圧型整流回路の動作説明図である。FIG. 4 is an operation explanatory diagram of the step-up / step-down rectifier circuit according to the first embodiment. 実施の形態1に係る昇降圧型整流回路を構成するスイッチング素子の動作を示すタイムチャートである。3 is a time chart illustrating an operation of a switching element constituting the step-up / step-down rectifier circuit according to the first embodiment. 実施の形態1に係る昇降圧型整流回路の動作説明図である。FIG. 4 is an operation explanatory diagram of the step-up / step-down rectifier circuit according to the first embodiment. 実施の形態1に係る昇降圧型整流回路におけるモータの回転数とインバータへの入力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation speed of the motor in the buck-boost type rectifier circuit which concerns on Embodiment 1, and the input voltage to an inverter. 実施の形態2に係る昇降圧型整流回路を構成するスイッチング素子の動作を示すタイムチャートである。6 is a time chart showing an operation of a switching element constituting the step-up / step-down rectifier circuit according to Embodiment 2. 実施の形態2に係る昇降圧型整流回路の動作説明図である。FIG. 10 is an operation explanatory diagram of the step-up / step-down rectifier circuit according to the second embodiment. 実施の形態2に係る昇降圧型整流回路におけるモータの回転数とインバータへの入力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation speed of the motor in the buck-boost type rectifier circuit which concerns on Embodiment 2, and the input voltage to an inverter. 変形例に係る昇降圧型整流回路におけるモータの回転数とインバータへの入力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation speed of the motor in the buck-boost type rectifier circuit which concerns on a modification, and the input voltage to an inverter. 従来例に係るモータ駆動システムの回路ブロック図である。It is a circuit block diagram of the motor drive system which concerns on a prior art example. 従来例に係るモータ駆動システムにおけるモータの回転数とインバータへの入力電圧との関係を示す図である。It is a figure which shows the relationship between the rotation speed of the motor in the motor drive system which concerns on a prior art example, and the input voltage to an inverter.
 <実施の形態1>
 <1>構成
 図1は、本実施の形態に係るモータ駆動システムを示す回路ブロック図である。
<Embodiment 1>
<1> Configuration FIG. 1 is a circuit block diagram showing a motor drive system according to the present embodiment.
 図1に示すように、モータ駆動システムは、交流電源1から電力供給を受けて3相モータ4を駆動させるシステムである。 As shown in FIG. 1, the motor drive system is a system that receives power supply from an AC power supply 1 and drives a three-phase motor 4.
 このモータ駆動システムは、交流電源1から供給される交流を一倍整流動作または二倍整流動作により整流する昇降圧型整流回路50と、昇降圧型整流回路50を制御する整流制御回路200と、昇降圧型整流回路50から入力される直流電圧を3相のパルス列状の電圧に変換してモータ4に入力するインバータ回路3と、インバータ回路3の動作を制御するインバータ制御回路41と、整流制御回路200およびインバータ制御回路41に制御内容を指示する制御指示回路40とを備える。ここで、交流電源1は、例えば、周波数60Hzの交流を出力する電源である。 This motor drive system includes a step-up / step-down rectifier circuit 50 that rectifies the alternating current supplied from the AC power supply 1 by a single rectification operation or a double rectification operation, a rectification control circuit 200 that controls the step-up / step-down rectifier circuit 50, and a step-up / step-down type. An inverter circuit 3 that converts a DC voltage input from the rectifier circuit 50 into a three-phase pulse train voltage and inputs the voltage to the motor 4, an inverter control circuit 41 that controls the operation of the inverter circuit 3, a rectifier control circuit 200, And a control instruction circuit 40 for instructing the inverter control circuit 41 of control contents. Here, the AC power source 1 is, for example, a power source that outputs AC with a frequency of 60 Hz.
 <1-1>インバータ回路
 インバータ回路3は、3相出力インバータであって、6つのスイッチング素子31,32,33,34,35,36から構成される。そして、インバータ回路3は、モータ4の回転数に応じて出力電流および出力電圧の大きさを変化させる。
<1-1> Inverter Circuit The inverter circuit 3 is a three-phase output inverter and includes six switching elements 31, 32, 33, 34, 35, and 36. The inverter circuit 3 changes the magnitudes of the output current and the output voltage according to the rotation speed of the motor 4.
 ここで、インバータ回路3の出力電流の大きさIoおよび出力電圧の大きさVoと、インバータ回路3への入力電圧Vi(図1ではVdcと明記)の大きさとの間には、式(1)および式(2)の関係が成立する。 Here, between the magnitude Io and the magnitude Vo of the output voltage of the inverter circuit 3 and the magnitude of the input voltage Vi (denoted as Vdc in FIG. 1) to the inverter circuit 3, the formula (1) And the relationship of Formula (2) is materialized.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Ioは、インバータ回路3の出力電流の大きさ、Voは、インバータ回路3の出力電圧の大きさ、Viは、インバータ回路3への入力電圧の大きさ、Dutyは、各スイッチング素子31,32,33,34,35,36のゲートに入力されるパルス列状の時間波形を有する信号PWMの変調率(デューティ比)を意味する。なお、各スイッチング素子31,32,33,34,35,36のゲートに入力される信号PWMのオンデューティ比は同一である。 Here, Io is the magnitude of the output current of the inverter circuit 3, Vo is the magnitude of the output voltage of the inverter circuit 3, Vi is the magnitude of the input voltage to the inverter circuit 3, and Duty is the switching element 31. , 32, 33, 34, 35, and 36, the modulation rate (duty ratio) of the signal PWM having a pulse train-like time waveform input to the gate. The on-duty ratio of the signal PWM input to the gates of the switching elements 31, 32, 33, 34, 35, and 36 is the same.
 本実施の形態のインバータ回路3は、PAM(Pulse Amplitude Modulation:パルス振幅波形変調)方式で駆動される。式(1)および(2)で説明する。式(1)および式(2)のIo、Voは交流波形である。この交流波形は、PWM駆動のDutyを交流周期にあわせて変化させ、生成される。PAM方式の駆動ではこのDutyの最大値が100%に固定されるようにPWM駆動され、インバータ回路3への入力電圧の大きさViを変化させることにより、インバータ回路3の交流出力電圧の振幅Voおよび交流出力電流の振幅Ioを変化させている。 The inverter circuit 3 of the present embodiment is driven by a PAM (Pulse Amplitude Modulation) method. This will be described using equations (1) and (2). In the expressions (1) and (2), Io and Vo are AC waveforms. This AC waveform is generated by changing the duty of PWM drive in accordance with the AC cycle. In PAM driving, PWM is driven so that the maximum value of the duty is fixed to 100%, and the amplitude Vo of the AC output voltage of the inverter circuit 3 is changed by changing the magnitude Vi of the input voltage to the inverter circuit 3. The amplitude Io of the AC output current is changed.
 <1-2>インバータ制御回路
 インバータ制御回路41は、制御指示回路40から入力されるモータ回転数指定信号Nrmに基づいて、インバータ回路3を構成する各スイッチング素子31,32,33,34,35,36のゲートに入力されるPWM信号の最大デューティ比を100%に固定しつつ周波数を調節する。具体的には、モータ回転数指定信号Nrmの大きさが大きくなると、PWM信号の周波数を大きくし、且つ交流出力電圧Voあるいは交流出力電流Ioの振幅が大きくなるように入力電圧Viを大きくする。モータ回転数指定信号Nrmの小さくなると、PWM信号の周波数を小さくし、且つ交流出力電圧Voあるいは交流出力電流Ioの振幅が小さくなるように入力電圧Viを小さくする。その結果、PWM信号の周波数が大きくなると、モータ4の回転数が上昇し、PWM信号の周波数を小さくすると、モータ4の回転数が下降する。
<1-2> Inverter Control Circuit The inverter control circuit 41 is based on the motor rotation speed designation signal Nrm input from the control instruction circuit 40, and the switching elements 31, 32, 33, 34, and 35 that constitute the inverter circuit 3. , 36, the frequency is adjusted while fixing the maximum duty ratio of the PWM signal inputted to the gates to 100%. Specifically, when the motor rotation speed designation signal Nrm increases, the frequency of the PWM signal is increased and the input voltage Vi is increased so that the amplitude of the AC output voltage Vo or the AC output current Io is increased. When the motor rotation speed designation signal Nrm decreases, the frequency of the PWM signal is decreased and the input voltage Vi is decreased so that the amplitude of the AC output voltage Vo or the AC output current Io is decreased. As a result, when the frequency of the PWM signal increases, the rotational speed of the motor 4 increases, and when the frequency of the PWM signal decreases, the rotational speed of the motor 4 decreases.
 <1-3>制御指示回路
 制御指示回路40は、インバータ制御回路41にモータ回転数指定信号Nrmを入力するとともに、整流制御回路200に、昇降圧型整流回路50からインバータ回路3に入力される直流電圧の大きさを指示する電圧指示信号VdcINを入力する。この電圧指示信号VdcINは、昇降圧型整流回路50からインバータ回路3に入力される電圧の大きさを指示するものであり、昇降圧型整流回路50の出力電圧の目標値の大きさの数%乃至数十%の大きさである。なお、昇降圧型整流回路50の出力電圧の目標値は、インバータ回路3がPAM方式で駆動する場合において、モータ4がモータ回転数指定信号Nrmで指定される回転数で回転するときの最適値に相当する。
<1-3> Control Instruction Circuit The control instruction circuit 40 inputs the motor rotation speed designation signal Nrm to the inverter control circuit 41, and also inputs the direct current input from the step-up / step-down rectifier circuit 50 to the inverter circuit 3 to the rectification control circuit 200. A voltage instruction signal VdcIN that indicates the magnitude of the voltage is input. This voltage instruction signal VdcIN indicates the magnitude of the voltage input from the step-up / step-down rectifier circuit 50 to the inverter circuit 3, and it is several% to several% of the target value of the output voltage of the step-up / step-down rectifier circuit 50. The size is 10%. Note that the target value of the output voltage of the step-up / step-down rectifier circuit 50 is an optimum value when the motor 4 rotates at the rotation speed designated by the motor rotation speed designation signal Nrm when the inverter circuit 3 is driven by the PAM method. Equivalent to.
 更に、制御指示回路40は、整流制御回路200に、整流方式を一倍整流方式と二倍整流方式との間で切り替えるための整流方式切り替え信号Rectswを入力する。この整流方式切り替え信号Rectswは、昇降圧型整流回路50を一倍整流方式で動作させるか、或いは、2倍整流方式で動作させるかを指示するものである。 Further, the control instruction circuit 40 inputs a rectification method switching signal Rectsw for switching the rectification method between the single rectification method and the double rectification method to the rectification control circuit 200. This rectification method switching signal Rectsw instructs whether the step-up / step-down rectifier circuit 50 is operated by the single rectification method or the double rectification method.
 <1-4>昇降圧型整流回路
 昇降圧型整流回路50は、整流制御回路200の制御により、一倍整流動作または二倍整流動作を行うとともに昇降圧動作も行う。そして、インバータ3に入力する直流電圧の大きさが、モータ4の回転数に応じて変化する。これにより、インバータ3をPAM方式で駆動させることを可能としている。
<1-4> Step-up / step-down rectifier circuit The step-up / step-down rectifier circuit 50 performs a one-fold rectification operation or a double rectification operation as well as a step-up / step-down operation under the control of the rectification control circuit 200. The magnitude of the DC voltage input to the inverter 3 changes according to the rotation speed of the motor 4. Thereby, the inverter 3 can be driven by the PAM method.
 図1に示すように、昇降圧型整流回路50は、交流電源1に接続された第1回路50aと、第1回路50aに接続されたリアクトル61と、リアクトル61に接続された第2回路50bと、第2回路50bに接続された第3回路50cとを備える。 As shown in FIG. 1, the step-up / step-down rectifier circuit 50 includes a first circuit 50a connected to the AC power supply 1, a reactor 61 connected to the first circuit 50a, and a second circuit 50b connected to the reactor 61. And a third circuit 50c connected to the second circuit 50b.
 第1回路50aは、4つのデュアルゲート型のスイッチング素子51,52,53,54から構成されるブリッジ回路と、当該ブリッジ回路の第1出力端(図1における上側の出力端)と入力端との間に接続された2つのデュアルゲート型のスイッチング素子55,56と、一端側がブリッジ回路の第1出力端とスイッチング素子56との間の接続点に接続されたデュアルゲート型のスイッチング素子65とを有する。 The first circuit 50a includes a bridge circuit composed of four dual gate type switching elements 51, 52, 53, 54, a first output terminal (the upper output terminal in FIG. 1) and an input terminal of the bridge circuit. Two dual-gate switching elements 55 and 56 connected between each other, and a dual-gate switching element 65 whose one end is connected to a connection point between the first output terminal of the bridge circuit and the switching element 56, Have
 第2回路50bは、スイッチング素子65の他端側とブリッジ回路の第2出力端(図1における下側の出力端)との間に直列に接続された2つのシングルゲート型のスイッチング素子57,58と、一端側が2つのスイッチング素子57,58の間の接続点に接続されたデュアルゲート型のスイッチング素子59とを有する。 The second circuit 50b includes two single-gate switching elements 57, which are connected in series between the other end side of the switching element 65 and the second output end (lower output end in FIG. 1) of the bridge circuit. 58 and a dual gate type switching element 59 having one end connected to a connection point between the two switching elements 57 and 58.
 第3回路50cは、平滑回路であって、2つのスイッチング素子57,58からなる直列回路の両端間に接続されたコンデンサ64と、コンデンサ64の一端側とスイッチング素子59の他端側との間に接続されたコンデンサ62と、コンデンサ64の他端側とスイッチング素子59の他端側との間に接続されたコンデンサ63とを有する。 The third circuit 50 c is a smoothing circuit, and is connected between both ends of a series circuit composed of two switching elements 57 and 58, and between one end side of the capacitor 64 and the other end side of the switching element 59. And a capacitor 63 connected between the other end side of the capacitor 64 and the other end side of the switching element 59.
 リアクトル61は、一端側が2つのスイッチング素子55,56の間の接続点に接続され、他端側が2つのスイッチング素子57,58の間の接続点に接続されてなる。 Reactor 61 has one end connected to a connection point between two switching elements 55 and 56 and the other end connected to a connection point between two switching elements 57 and 58.
 また、リアクトル61とスイッチング素子55との間には、リアクトル61に流れる電流(以下、「リアクトル電流」と称す。)の大きさを検出するための電流センサ60が介挿されている。この電流センサ60は、後述するように、整流制御回路200が昇降圧型整流回路50をPFC(Power Factor Correction)制御するためのものである。 Further, a current sensor 60 for detecting the magnitude of a current flowing through the reactor 61 (hereinafter referred to as “reactor current”) is interposed between the reactor 61 and the switching element 55. As will be described later, the current sensor 60 is for the rectification control circuit 200 to control the step-up / step-down rectifier circuit 50 by PFC (Power Factor Correction).
 <1-4-1>シングルゲート型のスイッチング素子
 シングルゲート型のスイッチング素子57は、FETから構成されており、図2(a)乃至(c)に示す電流-電圧特性(I-V特性)を持つ。ここにおいて、ソース電圧を基準にしたドレイン電圧をVDSとし、このときにドレインからソースに流れる電流をIDSとしている。なお、シングルゲート型のスイッチング素子58は、スイッチング素子57と同様なので説明を省略する。
<1-4-1> Single Gate Type Switching Element The single gate type switching element 57 is composed of an FET, and has the current-voltage characteristics (IV characteristics) shown in FIGS. 2 (a) to 2 (c). have. Here, the drain voltage based on the source voltage is VDS, and the current flowing from the drain to the source at this time is IDS. Note that the single gate type switching element 58 is the same as the switching element 57, and thus the description thereof is omitted.
 ゲート・ソース間電圧Vgsが所定の閾値電圧Vthより高い場合、図2(a)および(b)に示すように、スイッチング素子57のI-V特性には、いわゆる3極管領域と飽和領域とが現れる。ここで、3極管領域とは、I-V特性が直線性を有する領域、つまり、電流IDSと電圧VDSとが略正比例の関係にある領域である(図2(a)および(b)における一点鎖線A1で囲んだ領域)。この3極管領域における特性は、I-V特性に類似して直線性があるため、スイッチング素子57が3極管領域で動作している限りは、抵抗とみなすことができる。そして、このI-V特性を表す直線の傾きが抵抗値Ronに相当することになる。以後、図2(a)に示すような、ドレイン電圧がソース電圧より高く、ドレインからソースへと電流が流れている状態でのスイッチング素子57のI-V特性をFET特性と称し、図2(b)に示すような、ドレイン電圧がソース電圧より低く、ソースからドレインへと電流が流れている状態でのスイッチング素子57のI-V特性を逆FET特性と称する。 When the gate-source voltage Vgs is higher than a predetermined threshold voltage Vth, as shown in FIGS. 2A and 2B, the IV characteristics of the switching element 57 include a so-called triode region and saturation region. Appears. Here, the triode region is a region where the IV characteristic is linear, that is, a region where the current IDS and the voltage VDS are in a substantially direct relationship (in FIGS. 2A and 2B). A region surrounded by an alternate long and short dash line A1). Since the characteristic in the triode region is linear similar to the IV characteristic, it can be regarded as resistance as long as the switching element 57 operates in the triode region. The slope of the straight line representing the IV characteristic corresponds to the resistance value Ron. Hereinafter, the IV characteristics of the switching element 57 in a state where the drain voltage is higher than the source voltage and current flows from the drain to the source as shown in FIG. The IV characteristic of the switching element 57 in a state where the drain voltage is lower than the source voltage and the current flows from the source to the drain as shown in b) is referred to as an inverse FET characteristic.
 一方、飽和領域とは、電圧VDSが変化しても電流IDSがほとんど変化しない領域である。 On the other hand, the saturation region is a region where the current IDS hardly changes even when the voltage VDS changes.
 また、ゲート・ソース間電圧Vgsが閾値電圧Vthより低い場合、図2(c)に示すように、スイッチング素子57のI-V特性は、ソース電圧がドレイン電圧よりも電圧(Vth-Vgs)以上高くなるまで、ソースからドレインへの電流が遮断される領域が現れる。ここにおいて、スイッチング素子57は、ゲート・ソース間の電圧Vgsが、所定の閾値電圧Vthよりも低い場合であっても、ゲート電圧がドレイン電圧よりも高く、電圧(Vgs-VDS)が、所定の閾値電圧Vthよりも高ければ、ソースからドレインに電流IDSが流れる。以後、図2(c)に示すような、ソース電圧がドレイン電圧よりも電圧(Vth-Vgs)以上高くなると、ソースからドレインへ電流が流れるようなスイッチング素子57のI-V特性を逆導通特性と称する。ここで、スイッチング素子57について、ゲート・ソース間の電圧Vgsが0Vの状態、即ち、ゲートとソースとを短絡させた状態では、ソース側をアノード、ドレイン側をカソードとし順方向電圧が閾値電圧VthであるダイオードのI-V特性(図2(c)中の一点鎖線A2で囲んだ領域参照)と同じになる。 When the gate-source voltage Vgs is lower than the threshold voltage Vth, as shown in FIG. 2C, the IV characteristic of the switching element 57 indicates that the source voltage is higher than the drain voltage (Vth−Vgs). A region where the current from the source to the drain is interrupted until it becomes high appears. Here, in the switching element 57, even when the gate-source voltage Vgs is lower than the predetermined threshold voltage Vth, the gate voltage is higher than the drain voltage, and the voltage (Vgs−VDS) is a predetermined voltage. If it is higher than the threshold voltage Vth, the current IDS flows from the source to the drain. Thereafter, as shown in FIG. 2C, when the source voltage becomes higher than the drain voltage (Vth−Vgs) by more than the voltage (Vth−Vgs), the IV characteristic of the switching element 57 in which a current flows from the source to the drain is reversed conduction characteristic. Called. Here, regarding the switching element 57, when the gate-source voltage Vgs is 0V, that is, when the gate and the source are short-circuited, the source side is the anode, the drain side is the cathode, and the forward voltage is the threshold voltage Vth. This is the same as the IV characteristic of the diode (see the region surrounded by the one-dot chain line A2 in FIG. 2C).
 ここにおいて、図3(a-1)に示すように、スイッチング素子57のゲートにオン信号「High」が入力されている状態は、図3(a-2)に示すように、ゲート・ソース間の電圧Vgsが閾値電圧Vthよりも大きい状態に相当し、抵抗Ronと等価なものとみなすことができる。以後、図3(a-1)に示す状態を「導通モード」と称する。 Here, as shown in FIG. 3 (a-1), the state where the ON signal “High” is inputted to the gate of the switching element 57 is as shown in FIG. 3 (a-2). This corresponds to a state in which the voltage Vgs is larger than the threshold voltage Vth, and can be regarded as equivalent to the resistor Ron. Hereinafter, the state shown in FIG. 3A-1 is referred to as a “conduction mode”.
 図3(b-1)に示すように、スイッチング素子57のゲートにオフ信号「Low」が入力されている状態は、図3(b-2)に示すように、ゲート・ソース間の電圧Vgsが0Vの状態に相当し、ソースをアノード、ドレインをカソードとするダイオードと等価なものとみなすことができる。以後、図3(b-1)に示す状態を「逆導通モード」と称する。 As shown in FIG. 3 (b-1), the state in which the OFF signal “Low” is input to the gate of the switching element 57 is the voltage Vgs between the gate and the source as shown in FIG. 3 (b-2). Can be regarded as equivalent to a diode having a source as an anode and a drain as a cathode. Hereinafter, the state shown in FIG. 3B-1 is referred to as “reverse conduction mode”.
 次に、このスイッチング素子57の構造について説明する。 Next, the structure of the switching element 57 will be described.
 スイッチング素子57は、ノーマリオフ型のヘテロ接合FETであり、図4に示すように、シリコン基板301と、シリコン基板301上に積層されたバッファ層302と、バッファ層302上に形成された窒化物半導体層から構成される半導体層積層体303と、半導体層積層体303に設けられた電極306a,306bと、電極306a,306bそれぞれに電気的に接続する配線310と、半導体積層体303における電極306a,306bの間に設けられ、スイッチング素子57の特性を制御するためのコントロール層309と、コントロール層309上に形成されたゲート電極308と、保護膜307とを備える。 The switching element 57 is a normally-off type heterojunction FET. As shown in FIG. 4, the switching element 57 is a silicon substrate 301, a buffer layer 302 stacked on the silicon substrate 301, and a nitride semiconductor formed on the buffer layer 302. A semiconductor layer stack 303 including layers, electrodes 306a and 306b provided in the semiconductor layer stack 303, wirings 310 electrically connected to the electrodes 306a and 306b, and electrodes 306a and 306a in the semiconductor stack 303, respectively. A control layer 309 for controlling the characteristics of the switching element 57, a gate electrode 308 formed on the control layer 309, and a protective film 307 are provided between 306b.
 ここで、バッファ層302は、窒化アルミニウムと窒化ガリウムとを交互に積層されたものである。 Here, the buffer layer 302 is formed by alternately laminating aluminum nitride and gallium nitride.
 半導体層積層体303は、アンドープの窒化ガリウム層304と、窒化ガリウム層304上積層されたn型の窒化アルミウムガリウム層305とから構成され、窒化ガリウム層304と窒化アルミニウムガリウム層305との間にヘテロ界面が形成される。このヘテロ界面の近傍には、2次元電子ガスと呼ばれるキャリア濃度の高い領域が形成され、シングルゲート型スイッチング素子57のチャネル領域となる。 The semiconductor layer stack 303 is composed of an undoped gallium nitride layer 304 and an n-type aluminum gallium nitride layer 305 stacked on the gallium nitride layer 304, and between the gallium nitride layer 304 and the aluminum gallium nitride layer 305. A heterointerface is formed. In the vicinity of this hetero interface, a region having a high carrier concentration called a two-dimensional electron gas is formed and becomes a channel region of the single gate type switching element 57.
 電極306a,306bは、半導体層積層体303における窒化ガリウム層304が露出した部位に形成されており、窒化ガリウム層304にオーミック接合されている。この電極306a,306bは、シングルゲート型スイッチング素子57のソース端子およびドレイン端子として機能する。 The electrodes 306a and 306b are formed in a portion of the semiconductor layer stack 303 where the gallium nitride layer 304 is exposed, and are in ohmic contact with the gallium nitride layer 304. The electrodes 306a and 306b function as a source terminal and a drain terminal of the single gate type switching element 57.
 コントロール層309は、p型の半導体層からなり、窒化アルミニウムガリウム層305の上に形成されている。 The control layer 309 is made of a p-type semiconductor layer and is formed on the aluminum gallium nitride layer 305.
 ゲート電極308は、コントロール層309上にオーミック接合されている。 The gate electrode 308 is in ohmic contact with the control layer 309.
 図4に示すように、スイッチング素子57では、ドレイン端子として機能する電極306bからゲート電極308までの距離が、ソース端子として機能する電極306aからゲート電極308までの距離より長い。これは、ドレインとゲートとの間で要求される耐圧が、ソースとゲートとの間で要求される耐圧よりも大きいためである。 As shown in FIG. 4, in the switching element 57, the distance from the electrode 306b functioning as the drain terminal to the gate electrode 308 is longer than the distance from the electrode 306a functioning as the source terminal to the gate electrode 308. This is because the breakdown voltage required between the drain and the gate is larger than the breakdown voltage required between the source and the gate.
 以上に説明した、窒化物半導体を用いて形成されたスイッチング素子57は、いわゆるGaNトランジスタと呼ばれ、例えば、IGBTのように高耐圧で大電流駆動することができる。そして、このスイッチング素子57は、IGBTのようにオフセット電圧がなく、図2(a)および(b)に示すような、FET特性と逆FET特性とを有し、スイッチング素子57を構成するチップの面積に対するオン抵抗の値Ronが、非常に小さいという特徴がある。 The switching element 57 formed using a nitride semiconductor described above is called a so-called GaN transistor, and can be driven with a high current with a high breakdown voltage like an IGBT, for example. The switching element 57 has no offset voltage unlike the IGBT, has FET characteristics and reverse FET characteristics as shown in FIGS. 2A and 2B, and is a chip that constitutes the switching element 57. The on-resistance value Ron with respect to the area is very small.
 <1-4-2>デュアルゲート型スイッチング素子
 デュアルゲート型のスイッチング素子51は、2つのFETのドレイン同士を接続してなる。なお、デュアルゲート型のスイッチング素子52,53,54,55,56,59,65は、スイッチング素子51と同様なので説明を省略する。
<1-4-2> Dual Gate Type Switching Element The dual gate type switching element 51 is formed by connecting the drains of two FETs. The dual gate type switching elements 52, 53, 54, 55, 56, 59, and 65 are the same as the switching element 51, and thus description thereof is omitted.
 ここにおいて、図5(a-1)に示すように、スイッチング素子51のゲート「A」および「B」にオン信号「High」が入力されている状態は、図5(a-2)に示すように、2つのFET両方のゲート・ソース間の電圧Vgsが閾値電圧Vthよりも大きい状態に相当し、2つの抵抗Ronを直列に接続してなる回路と等価なものとみなすことができる。以後、図5(a-1)に示す状態を「導通モード」と称する。この場合、スイッチング素子51は、電流を双方向に流すことができる。 Here, as shown in FIG. 5 (a-1), the state where the ON signal “High” is inputted to the gates “A” and “B” of the switching element 51 is shown in FIG. 5 (a-2). As described above, this corresponds to a state in which the gate-source voltage Vgs of both two FETs is larger than the threshold voltage Vth, and can be regarded as equivalent to a circuit formed by connecting two resistors Ron in series. Hereinafter, the state shown in FIG. 5A-1 is referred to as a “conduction mode”. In this case, the switching element 51 can flow current in both directions.
 図5(b-1)に示すように、スイッチング素子57のゲート「A」にオン信号「High」が入力され、ゲート「B」にオフ信号「Low」が入力されている状態は、図5(b-2)に示すように、ゲート「A」側のFETのゲート・ソース間の電圧Vgsが閾値電圧よりも大きく、ゲート「B」側のFETのゲート・ソース間の電圧Vgsが0Vである状態に相当し、ダイオードと当該ダイオードのカソードに接続された抵抗Ronとからなる回路と等価なものとみなすことができる。以後、図5(b-1)の示す状態を「逆導通モード1」と称する。この場合、スイッチング素子51は、オフ状態のFETからオン状態のFET側に向かう電流(図5の上方に向かって流れる電流)を流すことができるが、逆方向に電流を流すことができない。 As shown in FIG. 5 (b-1), the state where the ON signal “High” is input to the gate “A” of the switching element 57 and the OFF signal “Low” is input to the gate “B” is shown in FIG. As shown in (b-2), the gate-source voltage Vgs of the FET on the gate “A” side is larger than the threshold voltage, and the gate-source voltage Vgs of the gate “B” -side FET is 0V. It corresponds to a certain state and can be regarded as equivalent to a circuit comprising a diode and a resistor Ron connected to the cathode of the diode. Hereinafter, the state shown in FIG. 5B-1 is referred to as “reverse conduction mode 1”. In this case, the switching element 51 can flow a current (current flowing upward in FIG. 5) from the off-state FET to the on-state FET side, but cannot flow a current in the reverse direction.
 図5(c-1)に示すように、スイッチング素子57のゲート「A」にオフ信号「Low」が入力され、ゲート「B」にオン信号「High」が入力されている状態は、図5(c-2)に示すように、ゲート「A」側のFETのゲート・ソース間の電圧Vgsが0Vであり、ゲート「B」側のFETのゲート・ソース間の電圧Vgsが閾値電圧Vthよりも大きい状態に相当し、ダイオードと当該ダイオードのカソードに接続された抵抗Ronとからなる回路と等価なものとみなすことができる。以後、図5(c-1)の示す状態を「逆導通モード2」と称する。この場合、スイッチング素子51は、オフ状態のFETからオン状態のFET側に向かう電流(図5の下方に向かって流れる電流)を流すことができるが、逆方向に電流を流すことができない。 As shown in FIG. 5C-1, the state where the off signal “Low” is inputted to the gate “A” of the switching element 57 and the on signal “High” is inputted to the gate “B” is shown in FIG. As shown in (c-2), the gate-source voltage Vgs of the FET on the gate “A” side is 0 V, and the gate-source voltage Vgs of the gate “B” -side FET is greater than the threshold voltage Vth. Can be regarded as being equivalent to a circuit comprising a diode and a resistor Ron connected to the cathode of the diode. Hereinafter, the state shown in FIG. 5C-1 is referred to as “reverse conduction mode 2”. In this case, the switching element 51 can flow a current (current flowing downward in FIG. 5) from the off-state FET to the on-state FET side, but cannot flow a current in the reverse direction.
 図5(d-1)に示すように、スイッチング素子57のゲート「A」にオフ信号「Low」が入力され、ゲート「B」にオフ信号「Low」が入力されている状態は、図5(d-2)に示すように、2つのFET両方のゲート・ソース間の電圧Vgsが0Vである状態に相当し、2つのダイオードのカソード同士を接続してなる回路と等価なものとみなすことができる。以後、図5(b-1)の示す状態を「遮断モード」と称する。この場合、スイッチング素子51には、電流を流すことができない。 As shown in FIG. 5D-1, the state where the OFF signal “Low” is input to the gate “A” of the switching element 57 and the OFF signal “Low” is input to the gate “B” is as shown in FIG. As shown in (d-2), this corresponds to a state where the gate-source voltage Vgs of both two FETs is 0 V, and is regarded as equivalent to a circuit formed by connecting the cathodes of two diodes. Can do. Hereinafter, the state shown in FIG. 5B-1 is referred to as a “cut-off mode”. In this case, no current can flow through the switching element 51.
 次に、このスイッチング素子51の構造について説明する。 Next, the structure of the switching element 51 will be described.
 スイッチング素子51は、ノーマリオフ型のヘテロ接合FETのドレイン同士を接続してなるものであり、図6に示すように、シリコン基板311と、シリコン基板311上に積層されたバッファ層312と、バッファ層312上に形成された窒化物半導体層から構成される半導体層積層体313と、半導体層積層体313に設けられた電極316a,316bと、電極316a,316bそれぞれに電気的に接続する配線320と、半導体積層体313における電極316a,316bの間に設けられ、スイッチング素子51の特性を制御するための第1コントロール層319aおよび第2コントロール層319bと、第1コントロール層319a上に形成されたゲート電極318aと、第2コントロール層319b上に形成されたゲート電極318bと、保護膜317とを備える。 The switching element 51 is formed by connecting drains of normally-off type heterojunction FETs. As shown in FIG. 6, the switching element 51 includes a silicon substrate 311, a buffer layer 312 stacked on the silicon substrate 311, and a buffer layer. A semiconductor layer stack 313 composed of a nitride semiconductor layer formed on 312; electrodes 316a and 316b provided on the semiconductor layer stack 313; and a wiring 320 electrically connected to each of the electrodes 316a and 316b; The first control layer 319a and the second control layer 319b provided between the electrodes 316a and 316b in the semiconductor stacked body 313 for controlling the characteristics of the switching element 51, and the gate formed on the first control layer 319a A gate formed on the electrode 318a and the second control layer 319b. Comprising an electrode 318b, and a protective film 317.
 ここで、バッファ層312は、窒化アルミニウムと窒化ガリウムとを交互に積層されたものである。 Here, the buffer layer 312 is formed by alternately laminating aluminum nitride and gallium nitride.
 半導体層積層体313は、アンドープの窒化ガリウム層314と、窒化ガリウム層314上積層されたn型の窒化アルミウムガリウム層315とから構成され、窒化ガリウム層314と窒化アルミニウムガリウム層315との間にヘテロ界面が形成される。このヘテロ界面の近傍には、2次元電子ガスと呼ばれるキャリア濃度の高い領域が形成され、スイッチング素子51のチャネル領域となる。なお、スイッチング素子51では、当該スイッチング素子51を構成する2つのFETのドレインがチャネル領域上に共通に設けられている。 The semiconductor layer stack 313 is composed of an undoped gallium nitride layer 314 and an n-type aluminum gallium nitride layer 315 stacked on the gallium nitride layer 314, and between the gallium nitride layer 314 and the aluminum gallium nitride layer 315. A heterointerface is formed. In the vicinity of this hetero interface, a region having a high carrier concentration called a two-dimensional electron gas is formed and becomes a channel region of the switching element 51. In the switching element 51, the drains of the two FETs constituting the switching element 51 are provided in common on the channel region.
 電極316a,316bは、半導体層積層体313における窒化ガリウム層314が露出した部位に形成されており、窒化ガリウム層314にオーミック接合されている。この電極316a,316bは、スイッチング素子51を構成する2つのFETのソース端子として機能する。 The electrodes 316a and 316b are formed in a portion of the semiconductor layer stack 313 where the gallium nitride layer 314 is exposed, and are in ohmic contact with the gallium nitride layer 314. The electrodes 316a and 316b function as source terminals of two FETs constituting the switching element 51.
 第1コントロール層319aおよび第2コントロール層319bは、p型の半導体層からなり、窒化アルミニウムガリウム層315の上に形成されている。 The first control layer 319a and the second control layer 319b are made of a p-type semiconductor layer, and are formed on the aluminum gallium nitride layer 315.
 ゲート電極318a,319bは、コントロール層319a,319b上にオーミック接合されている。ここで、ゲート電極318aに入力する制御信号により、当該ゲート電極318aを有するFETに流れる電流を制御する。同様に、ゲート電極318bに入力する制御信号により、当該ゲート電極318bを有するFETに流れる電流を制御する。
ここで、2つのゲート電極318a,318b間の距離が、ゲート電極318aから電極316aまでの距離、およびゲート電極318bから電極316bまでの距離に比べて長い。これは、2つのゲート電極318a,318bの間の領域は、2つのFETを直列に接続したときに当該2つのFETで共有するドレイン領域となっている為、耐圧の関係でこのようになっている。しかしながら、図6に示すように、このスイッチング素子51は、ドレイン領域を共有する2つのFETを直列接続した構成であるので、例えば、シングルゲート型のスイッチング素子を2個直列に接続した構成に比べて、回路規模を小さくすることができる。
The gate electrodes 318a and 319b are in ohmic contact with the control layers 319a and 319b. Here, the current flowing through the FET having the gate electrode 318a is controlled by a control signal input to the gate electrode 318a. Similarly, the current flowing through the FET having the gate electrode 318b is controlled by a control signal input to the gate electrode 318b.
Here, the distance between the two gate electrodes 318a and 318b is longer than the distance from the gate electrode 318a to the electrode 316a and the distance from the gate electrode 318b to the electrode 316b. This is because the region between the two gate electrodes 318a and 318b is a drain region shared by the two FETs when the two FETs are connected in series. Yes. However, as shown in FIG. 6, this switching element 51 has a configuration in which two FETs sharing a drain region are connected in series, and therefore, for example, compared to a configuration in which two single-gate switching elements are connected in series. Thus, the circuit scale can be reduced.
 以上で説明した、2つのいわゆるGaNトランジスタから構成されたデュアルゲート型スイッチング素子51は、前述のGaNトランジスタから構成されたスイッチング素子と同様に、高耐圧であり且つ大電流駆動が可能であり、スイッチング素子51を構成するチップの面積に対するオン抵抗の値Ronが非常に小さいという特徴がある。 As described above, the dual gate type switching element 51 composed of two so-called GaN transistors has a high withstand voltage and can be driven with a large current similarly to the switching element composed of the GaN transistors described above. The on-resistance value Ron with respect to the area of the chip constituting the element 51 is very small.
 更に、スイッチング素子51は、逆導通モード1,2における順方向電圧が低く、スイッチング素子での電圧降下に起因した電力損失が少なくなる。 Furthermore, the switching element 51 has a low forward voltage in the reverse conduction modes 1 and 2, and power loss due to a voltage drop at the switching element is reduced.
 また、前述のいわゆるGaNトランジスタは、少数キャリアによる蓄積効果がほとんどないため、IGBTや他のシリコン系半導体素子のような、ターンオフ時におけるテール電流効果の影響もほとんどない。その結果、スイッチング動作時におけるスイッチング損失がシリコン系半導体により形成されたスイッチング素子に比べて極めて小さい。従って、高いスイッチング周波数で使用してもスイッチング損失に起因した消費電力の増加を抑制できる。そして、スイッチング周波数を高くして使用することができれば、リアクトル61に要求されるインダクタの大きさを小さくすることができるので、リアクトル61の小型化を図ることができる。 In addition, since the so-called GaN transistor described above has almost no accumulation effect due to minority carriers, there is almost no influence of the tail current effect at the time of turn-off like IGBT and other silicon-based semiconductor elements. As a result, the switching loss during the switching operation is extremely small as compared with a switching element formed of a silicon-based semiconductor. Therefore, an increase in power consumption due to switching loss can be suppressed even when used at a high switching frequency. If the switching frequency can be increased, the size of the inductor required for the reactor 61 can be reduced, so that the reactor 61 can be reduced in size.
 <1-5>整流制御回路
 整流制御回路200は、昇降圧型整流回路50が備える各スイッチング素子のゲートに入力する信号電圧を制御するものである。
<1-5> Rectification Control Circuit The rectification control circuit 200 controls a signal voltage input to the gate of each switching element included in the step-up / step-down rectifier circuit 50.
 また、この整流制御回路200は、更に、電流センサー60で検出されるリアクトル電流の電流波形と、交流電源1の出力電圧の電圧波形とが互いに相似形となるように、昇降圧型整流回路50に含まれる各スイッチング素子のゲートに入力する信号制御する、いわゆるPFC制御も行う。具体的には、整流制御回路200は、リアクトル電流と交流電源1の出力電圧および出力電流とで位相が略一致するように制御することで昇降圧型整流回路50の力率改善を図る。これにより、昇降圧型整流回路50で発生する高調波ノイズを低減することができる。 Further, the rectification control circuit 200 further includes a step-up / step-down rectifier circuit 50 so that the current waveform of the reactor current detected by the current sensor 60 and the voltage waveform of the output voltage of the AC power supply 1 are similar to each other. A so-called PFC control is also performed to control a signal input to the gate of each switching element included. Specifically, the rectification control circuit 200 attempts to improve the power factor of the step-up / step-down rectifier circuit 50 by controlling the reactor current and the output voltage and output current of the AC power supply 1 so that the phases are substantially the same. Thereby, the harmonic noise generated in the step-up / step-down rectifier circuit 50 can be reduced.
 図1に示すように、整流制御回路200は、昇降圧型整流回路50の高電位側の出力端と接地端子との間に接続された分圧用の抵抗120,121と、反転入力端子が抵抗120,121の接続点に接続され非反転入力端子が制御指示回路40の基準電圧出力端子に接続された第1エラーアンプ101と、昇降圧型整流回路50の電流センサ60に接続された第1絶対値回路103と、交流電源1に接続された差動アンプ116と、差動アンプ116の出力端に接続された第2絶対値回路117と、反転入力端子に第2絶対値回路117が接続され非反転入力端子に昇降圧型整流回路50の高電位側の出力端が接続された第1コンパレータ107と、非反転入力端子に差動アンプ116の出力端が接続され反転入力端子が接地端子に接続された第2コンパレータ118と、入力端に第1エラーアンプ101の出力端および第2絶対値回路117に接続された乗算回路102と、反転入力端子に第1絶対値回路103が接続され非反転入力端子に乗算回路102が接続された第2エラーアンプ104と、非反転入力端子に第2エラーアンプ104の出力端が接続され反転入力端子に三角波発生回路105が接続されたPWMコンパレータ106と、第1コンパレータ107の出力端、第2コンパレータ118の出力端、第1絶対値回路103およびPWMコンパレータ106が接続されたドライブロジック回路108とを備える。また、ドライブロジック回路108には、制御指示回路40から整流方式切り替え信号Rectswが入力される。 As shown in FIG. 1, the rectification control circuit 200 includes voltage dividing resistors 120 and 121 connected between the output terminal on the high potential side of the step-up / step-down rectifier circuit 50 and a ground terminal, and an inverting input terminal having a resistor 120. , 121 and a first error amplifier 101 having a non-inverting input terminal connected to a reference voltage output terminal of the control instruction circuit 40 and a first absolute value connected to the current sensor 60 of the buck-boost rectifier circuit 50. The circuit 103, the differential amplifier 116 connected to the AC power source 1, the second absolute value circuit 117 connected to the output terminal of the differential amplifier 116, and the second absolute value circuit 117 connected to the inverting input terminal. A first comparator 107 having an output terminal on the high potential side of the buck-boost rectifier circuit 50 connected to the inverting input terminal, an output terminal of the differential amplifier 116 connected to the non-inverting input terminal, and an inverting input terminal connected to the ground terminal. The second comparator 118, the multiplication circuit 102 connected to the output terminal of the first error amplifier 101 and the second absolute value circuit 117 at the input terminal, and the first absolute value circuit 103 connected to the inverting input terminal. A second error amplifier 104 having a multiplier circuit 102 connected to a terminal; a PWM comparator 106 having a non-inverting input terminal connected to an output terminal of the second error amplifier 104 and an inverting input terminal connected to a triangular wave generating circuit 105; And an output terminal of a first comparator 107, an output terminal of a second comparator 118, a drive logic circuit 108 to which a first absolute value circuit 103 and a PWM comparator 106 are connected. The drive logic circuit 108 also receives the rectification method switching signal Rectsw from the control instruction circuit 40.
 第1エラーアンプ101は、抵抗120,121の接続点に生じる電圧、即ち、昇降圧型制御回路50の出力電圧Vdcを抵抗120,121で分圧してなる電圧と、制御指示回路40から入力される電圧指示信号VdcINとの差分電圧VE1を出力する。これは、整流制御回路200が、昇降圧型制御回路50の出力電圧Vdcを電圧指示信号VdcINで指示される電圧に維持されるよう定値制御するためのものである。 The first error amplifier 101 receives a voltage generated at the connection point of the resistors 120 and 121, that is, a voltage obtained by dividing the output voltage Vdc of the step-up / step-down control circuit 50 by the resistors 120 and 121 and the control instruction circuit 40. A differential voltage VE1 from the voltage instruction signal VdcIN is output. This is for the rectification control circuit 200 to perform a constant value control so that the output voltage Vdc of the step-up / step-down control circuit 50 is maintained at a voltage indicated by the voltage instruction signal VdcIN.
 乗算回路102は、第1エラーアンプ101から出力される電圧VE1と第2絶対値回路117から出力される電圧とのアナログ乗算を行って得られる電圧VE2を出力する。 The multiplication circuit 102 outputs a voltage VE2 obtained by analog multiplication of the voltage VE1 output from the first error amplifier 101 and the voltage output from the second absolute value circuit 117.
 第2エラーアンプ104は、第1絶対値回路103の出力電圧VIRと乗算回路102の出力電圧VE2との差分電圧VE3を出力する。 The second error amplifier 104 outputs a differential voltage VE3 between the output voltage VIR of the first absolute value circuit 103 and the output voltage VE2 of the multiplication circuit 102.
 三角波発生回路105は、例えば、オペアンプにより構成されたシュミット回路と積分回路とを組み合わせて構成されたものであり、三角波形状(鋸刃形状)の時間波形を有する電圧Vsawを出力する。 The triangular wave generation circuit 105 is configured by combining, for example, a Schmitt circuit constituted by an operational amplifier and an integration circuit, and outputs a voltage Vsaw having a triangular waveform (sawtooth shape) time waveform.
 PWMコンパレータ106は、第2エラーアンプ104の出力電圧VE3と三角波発生回路105が出力する電圧Vsawとに基づいて矩形パルス列状の信号PWMを出力する。 The PWM comparator 106 outputs a rectangular pulse train signal PWM based on the output voltage VE3 of the second error amplifier 104 and the voltage Vsaw output from the triangular wave generation circuit 105.
 ドライブロジック回路108は、例えば、組み合わせ回路、フリップフロップ回路を適宜組み合わせることにより構成される。このドライブロジック回路108は、制御指示回路40から入力される整流方式切り替え信号Rectswが一倍整流方式を示す信号である場合は、昇降圧型整流回路50が一倍整流動作を行うように、各スイッチング素子のゲートに制御信号を入力する。具体的には、デュアルゲート型トランジスタ55、59、65それぞれについて、2つのゲートに入力する制御信号を共に「Low」で維持して、デュアルゲート型トランジスタ55、59、65を遮断モードで維持するとともに、デュアルゲート型トランジスタ56について、2つのゲートに入力する制御信号を共に「High」で維持して、デュアルゲート型トランジスタ56を導通モードで維持する。一方、整流方方式切り替え信号Rectswが2倍整流方式を示す信号である場合は、ドライブロジック回路108は、昇降圧型整流回路50が2倍整流動作を行うように、各スイッチング素子のゲートに制御信号を入力する。具体的には、デュアルゲート型トランジスタ55,65それぞれについて、2つのゲートに入力する制御信号を共に「High」で維持して、デュアルゲート型トランジスタ55,65を導通モードで維持するとともに、デュアルゲート型トランジスタ56について、2つのゲートに入力する制御信号を共に「Low」で維持して、デュアルゲート型トランジスタ56を遮断モードで維持する。この各スイッチング素子のゲートに入力される信号の時間波形については、<2>で詳細に説明する。 The drive logic circuit 108 is configured by appropriately combining a combination circuit and a flip-flop circuit, for example. When the rectification method switching signal Rectsw input from the control instruction circuit 40 is a signal indicating a single rectification method, the drive logic circuit 108 performs each switching so that the step-up / step-down rectifier circuit 50 performs a single rectification operation. A control signal is input to the gate of the element. Specifically, for each of the dual gate transistors 55, 59, 65, the control signals input to the two gates are both maintained at "Low", and the dual gate transistors 55, 59, 65 are maintained in the cutoff mode. At the same time, the control signals input to the two gates of the dual gate transistor 56 are both maintained at “High”, and the dual gate transistor 56 is maintained in the conduction mode. On the other hand, when the rectification method switching signal Rectsw is a signal indicating the double rectification method, the drive logic circuit 108 controls the gate of each switching element so that the buck-boost rectifier circuit 50 performs the double rectification operation. Enter. Specifically, for each of the dual gate transistors 55 and 65, the control signals input to the two gates are both maintained at “High”, the dual gate transistors 55 and 65 are maintained in the conduction mode, and the dual gate transistors For the type transistor 56, the control signals input to the two gates are both maintained at "Low", and the dual gate type transistor 56 is maintained in the cutoff mode. The time waveform of the signal input to the gate of each switching element will be described in detail in <2>.
 また、ドライブロジック回路108は、整流方式切り替え信号Rectswが一倍整流方式を示す信号である場合、第1コンパレータ107から入力される2値出力信号DRに基づいて、昇降圧型整流回路50に昇圧動作または降圧動作を行わせる。具体的には、ドライブロジック回路108は、昇降圧整流回路50の出力電圧が交流電源1の出力電圧の大きさ以上である場合(2値出力信号DRが「High」の場合)、昇降圧整流回路50に昇圧動作を行わせる。一方、昇降圧整流回路50の出力電圧が交流電源1の出力電圧よりも小さい場合(2値出力信号DRが「Low」の場合)、ドライブロジック回路108は、昇降圧整流回路50に降圧動作を行わせる。 Further, when the rectification method switching signal Rectsw is a signal indicating the single rectification method, the drive logic circuit 108 performs a boost operation on the step-up / step-down rectifier circuit 50 based on the binary output signal DR input from the first comparator 107. Alternatively, a step-down operation is performed. Specifically, when the output voltage of the step-up / step-down rectifier circuit 50 is equal to or higher than the output voltage of the AC power supply 1 (when the binary output signal DR is “High”), the drive logic circuit 108 performs step-up / step-down rectification. The circuit 50 is caused to perform a boosting operation. On the other hand, when the output voltage of the step-up / step-down rectifier circuit 50 is smaller than the output voltage of the AC power supply 1 (when the binary output signal DR is “Low”), the drive logic circuit 108 performs a step-down operation on the step-up / step-down rectifier circuit 50. Let it be done.
 結局、この整流制御回路200では、電圧指示信号VdcINと出力電圧Vdcを抵抗120、121により分圧してなる電圧との差分電圧を第1エラーアンプ101で検出し、このエラー出力に乗算回路102により交流出力電源電圧を重畳させた信号と電流センサー60で検出される電流との位相差を検出し、PWMコンパレータ106が、2つのエラーアンプ104,101で検出される位相差および差分電圧に基づいて出力するPWM信号のデューティ比を変化させるものである。これにより、整流制御回路200は、昇降圧型整流回路50の出力電圧の変動を昇降圧型整流回路50に入力する信号PWMのデューティ比にフィードバックさせることができるとともに、昇降圧型整流回路50をPFC(Power Factor Control)制御することで昇降圧型制御回路50の力率改善を図ることができる。また、この整流制御回路200では、ドライブロジック回路108が、整流方式切り替え信号Rectswが二倍整流方式を示す信号である場合、昇降圧整流回路50に昇圧動作を行わせる。 Eventually, in this rectification control circuit 200, the first error amplifier 101 detects a differential voltage between the voltage instruction signal VdcIN and the voltage obtained by dividing the output voltage Vdc by the resistors 120 and 121, and this error output is detected by the multiplication circuit 102. The phase difference between the signal on which the AC output power supply voltage is superimposed and the current detected by the current sensor 60 is detected, and the PWM comparator 106 is based on the phase difference and the differential voltage detected by the two error amplifiers 104 and 101. The duty ratio of the PWM signal to be output is changed. Thereby, the rectification control circuit 200 can feed back the fluctuation of the output voltage of the step-up / step-down rectifier circuit 50 to the duty ratio of the signal PWM input to the step-up / step-down rectifier circuit 50, and the step-up / step-down rectifier circuit 50 can be fed into the PFC (Power Power factor of the step-up / step-down control circuit 50 can be improved by controlling the factor control. In the rectification control circuit 200, the drive logic circuit 108 causes the step-up / step-down rectifier circuit 50 to perform a boost operation when the rectification method switching signal Rectsw is a signal indicating the double rectification method.
 <2>動作
 次に、本実施の形態に係る昇降圧型整流回路システムの動作について説明する。ここでは、昇降圧型整流回路50が、一倍整流方式で動作する場合と、二倍整流方式で動作する場合とに分けて説明する。以下、交流電源1の出力端のうち、トランジスタ51,53の接続点に接続される側を第1の出力端子と称し、トランジスタ52,54の接続点に接続される側を第2の出力端子と称して説明する。
<2> Operation Next, the operation of the step-up / step-down rectifier circuit system according to the present embodiment will be described. Here, the case where the step-up / step-down rectifier circuit 50 operates by the single rectification method and the case of the double rectification method will be described separately. Hereinafter, of the output terminals of the AC power supply 1, the side connected to the connection point of the transistors 51 and 53 is referred to as a first output terminal, and the side connected to the connection point of the transistors 52 and 54 is the second output terminal. Will be described.
 <2-1>一倍整流方式による動作
 昇降圧型整流回路50が、一倍整流動作を行う場合について説明する。まず、整流制御回路200に含まれるドライブロジック回路108が、制御指示回路40から一倍整流方式を示す整流方式切り替え信号Rrectswを受信すると、ドライブロジック回路108は、昇降圧型整流回路50に対して、一倍整流方式で動作させる制御信号を入力する。ここでは、昇降圧型整流回路50が、降圧動作を行う場合を昇圧動作を行う場合とに分けて説明する。ここにおいて、整流制御回路200では、交流電源1の出力電圧を全波整流して得られる信号と、昇降圧型整流回路50の出力電圧Vdcとの大小関係に基づいて、昇降圧型整流回路50を降圧動作させるか昇圧動作させるかを決定する。
<2-1> Operation by Single Rectification Method A case where the step-up / step-down rectifier circuit 50 performs a single rectification operation will be described. First, when the drive logic circuit 108 included in the rectification control circuit 200 receives the rectification method switching signal Rrectsw indicating the single rectification method from the control instruction circuit 40, the drive logic circuit 108 Input a control signal to operate in the single rectification method. Here, the case where the step-up / step-down rectifier circuit 50 performs the step-down operation is described separately from the case where the step-up operation is performed. Here, in the rectification control circuit 200, the step-up / step-down rectifier circuit 50 is stepped down based on the magnitude relationship between a signal obtained by full-wave rectification of the output voltage of the AC power supply 1 and the output voltage Vdc of the step-up / step-down rectifier circuit 50. Decide whether to operate or boost.
 <2-1-1>降圧動作
 降圧動作を行う場合において、昇降圧型整流回路50を構成する、デュアルゲート型のスイッチング素子51乃至56,59,65の各ゲートに入力する制御信号の時間波形と、シングルゲート型のスイッチング素子57,58の各ゲートに入力する制御信号の時間波形とを図7示す。
<2-1-1> Step-Down Operation When performing step-down operation, the time waveform of the control signal input to each gate of the dual gate type switching elements 51 to 56, 59, 65 constituting the step-up / step-down rectifier circuit 50 FIG. 7 shows time waveforms of control signals input to the gates of the single gate type switching elements 57 and 58.
 図7に示すように、ドライブロジック回路108は、スイッチング素子55,59,65の2つのゲートにオフ信号「Low」を入力する。言い換えれば、スイッチング素子55,59,65の2つのゲートについてゲート・ソース間を短絡した状態にする。これにより、スイッチング素子55,59,65が遮断モードで維持される。また、整流制御回路200は、スイッチング素子56の2つのゲートにオン信号「High」を入力する。言い換えれば、スイッチング素子56の2つのゲートについてゲート・ソース間の電圧Vgsを閾値電圧Vth以上で維持する。これにより、スイッチング素子56が導通モードで維持される。これにより、平滑コンデンサ62,63を直列に接続してなる直列回路と、平滑コンデンサ64とが並列接続の関係になり、一倍整流方式の動作が実現される。 As shown in FIG. 7, the drive logic circuit 108 inputs an off signal “Low” to the two gates of the switching elements 55, 59 and 65. In other words, the gates and the sources of the two gates of the switching elements 55, 59 and 65 are short-circuited. Thereby, the switching elements 55, 59, 65 are maintained in the cutoff mode. Further, the rectification control circuit 200 inputs an ON signal “High” to the two gates of the switching element 56. In other words, the gate-source voltage Vgs is maintained at the threshold voltage Vth or higher for the two gates of the switching element 56. As a result, the switching element 56 is maintained in the conduction mode. Thereby, the series circuit formed by connecting the smoothing capacitors 62 and 63 in series and the smoothing capacitor 64 are in a parallel connection relationship, and a single rectification system operation is realized.
 また、図7に示すように、ドライブロジック回路108は、交流電源1の出力電圧の極性が正の場合、スイッチング素子53の2つのゲートにオフ信号「Low」を入力し、スイッチング素子53の2つのゲートについてゲート・ソース間を短絡した状態にしてスイッチング素子53を遮断モードとする。一方、極性が負の場合、スイッチング素子53の2つのゲートにオン信号「High」を入力し、スイッチング素子53の2つのゲートについてゲート・ソース間の電圧Vgsを閾値電圧Vth以上にしてスイッチング素子53を導通モードとする。ここで、交流電源1の出力電圧の極性が正であるとは、図8における交流電源1の第1の出力端子が高電位側であり第2の出力端子が低電位側であることを意味し、一方、交流電源1の出力電圧の極性が負であるとは、図8における交流電源1の第1の出力端子が低電位側であり第2の出力端子が高電位側であることを意味する。ここにおいて、ドライブロジック回路108は、第2コンパレータ118から出力される信号PNと、第1コンパレータ107から出力される信号DRとに基づいて、交流電源1の出力電圧の極性を検知する。 Further, as shown in FIG. 7, when the polarity of the output voltage of the AC power supply 1 is positive, the drive logic circuit 108 inputs the off signal “Low” to the two gates of the switching element 53, and The switching element 53 is set to the cut-off mode by short-circuiting the gate and the source for one gate. On the other hand, when the polarity is negative, an ON signal “High” is input to the two gates of the switching element 53, and the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth for the two gates of the switching element 53. Is set to the conduction mode. Here, the polarity of the output voltage of the AC power supply 1 being positive means that the first output terminal of the AC power supply 1 in FIG. 8 is on the high potential side and the second output terminal is on the low potential side. On the other hand, the polarity of the output voltage of the AC power supply 1 being negative means that the first output terminal of the AC power supply 1 in FIG. 8 is on the low potential side and the second output terminal is on the high potential side. means. Here, the drive logic circuit 108 detects the polarity of the output voltage of the AC power supply 1 based on the signal PN output from the second comparator 118 and the signal DR output from the first comparator 107.
 また、図7に示すように、ドライブロジック回路108は、交流電源1の出力電圧の極性が正の場合、スイッチング素子54の2つのゲートにオン信号「High」を入力し、スイッチング素子54の2つのゲートについてゲート・ソース間の電圧Vgsを閾値電圧Vth以上にしてスイッチング素子54を導通モードとする。一方、極性が負の場合、スイッチング素子54の2つのゲートにオフ信号「Low」を入力し、スイッチング素子54の2つのゲートについてゲート・ソース間を短絡した状態としてスイッチング素子54を遮断モードとする。つまり、スイッチング素子53,54は、交流電源1の出力電圧の半周期毎に遮断モードと導通モードとを繰り返し、スイッチング素子53,54とでは、遮断モード、導通モードになるタイミングが半周期だけずれている。 As shown in FIG. 7, when the polarity of the output voltage of the AC power supply 1 is positive, the drive logic circuit 108 inputs an ON signal “High” to the two gates of the switching element 54, and For one gate, the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth, and the switching element 54 is set in the conduction mode. On the other hand, when the polarity is negative, an OFF signal “Low” is input to the two gates of the switching element 54, and the switching element 54 is set in the cutoff mode with the two gates of the switching element 54 short-circuited between the gate and the source. . That is, the switching elements 53 and 54 repeat the cutoff mode and the conduction mode every half cycle of the output voltage of the AC power supply 1, and the switching elements 53 and 54 are shifted in the cutoff mode and the conduction mode by a half cycle. ing.
 また、図7に示すように、ドライブロジック回路108は、交流電源1の出力電圧の極性が正の場合、スイッチング素子51のゲート「A」に信号PWMを入力するとともにゲート「B」にオン信号「High」を入力する。一方、極性が負の場合、スイッチング素子51のゲート「A」にオン信号「High」を入力するとともにゲート「B」に信号PWM信号とは位相が反転している信号PWMXを入力する。ここで、信号PWMは、矩形パルス列状のいわゆるPWM制御用の信号であり、信号PWMXとは、信号PWMに同期し信号PWMを補完するように信号PWMとは位相が半周期だけずれている矩形パルス列状の信号である。この信号PWMは、PWMコンパレータ106から出力される信号PWMそのものであり、信号PWMXは、信号PWMの位相を反転してなる信号である。また、整流制御回路200は、交流電源1の出力電圧の極性が正の場合、スイッチング素子52のゲート「A」にオン信号「High」を入力するとともにゲート「B」に信号PWMXを入力する。一方、極性が負の場合、スイッチング素子52のゲート「A」に信号PWMを入力するとともにゲート「B」にオン信号「High」を入力する。これにより、スイッチング素子51とスイッチング素子53とは、交互にオンオフする形でスイッチング動作することになる。 As shown in FIG. 7, when the polarity of the output voltage of the AC power supply 1 is positive, the drive logic circuit 108 inputs the signal PWM to the gate “A” of the switching element 51 and turns on the gate “B”. Enter “High”. On the other hand, when the polarity is negative, the ON signal “High” is input to the gate “A” of the switching element 51 and the signal PWMX whose phase is inverted from that of the signal PWM signal is input to the gate “B”. Here, the signal PWM is a so-called PWM control signal in the form of a rectangular pulse train, and the signal PWMX is a rectangle whose phase is shifted by a half cycle from the signal PWM so as to complement the signal PWM in synchronization with the signal PWM. It is a pulse train signal. This signal PWM is the signal PWM itself output from the PWM comparator 106, and the signal PWMX is a signal obtained by inverting the phase of the signal PWM. Further, when the polarity of the output voltage of the AC power supply 1 is positive, the rectification control circuit 200 inputs the ON signal “High” to the gate “A” of the switching element 52 and the signal PWMX to the gate “B”. On the other hand, when the polarity is negative, the signal PWM is input to the gate “A” of the switching element 52 and the ON signal “High” is input to the gate “B”. As a result, the switching element 51 and the switching element 53 perform a switching operation such that they are alternately turned on and off.
 次に、図8(a)および(b)に基づいて、降圧動作時における昇降圧型整流回路50内の電流の流れについて説明する。 Next, the flow of current in the buck-boost rectifier circuit 50 during the step-down operation will be described with reference to FIGS.
 図8(a)に、交流電源1の出力電圧の極性が正の場合における昇降圧型整流回路50内の電流の流れを示し、図8(b)に、交流電源1の出力電圧の極性が負の場合における昇降圧型整流回路50内の電流の流れを示す。 FIG. 8A shows the flow of current in the buck-boost rectifier circuit 50 when the polarity of the output voltage of the AC power supply 1 is positive, and FIG. 8B shows the polarity of the output voltage of the AC power supply 1 being negative. The flow of current in the buck-boost rectifier circuit 50 in the case of FIG.
 図8(a)において、破線(H)は、信号PWMが「High」で、信号PWMXが「Low」の状態における電流の流れを示している。破線(H)が示すように、電流は、交流電源1の第1の出力端子からスイッチング素子51、スイッチング素子56、リアクトル61、スイッチング素子57、平滑コンデンサ62、63、64、スイッチング素子54の順に経由して、交流電源1の第2の出力端子に流れ込む。この場合、交流電源1は、平滑コンデンサ62、63、64を充電しながらも、リアクトル61に磁気的エネルギを蓄積している。 8A, a broken line (H) indicates a current flow when the signal PWM is “High” and the signal PWMX is “Low”. As indicated by the broken line (H), the current flows from the first output terminal of the AC power supply 1 to the switching element 51, the switching element 56, the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, and the switching element 54 in this order. Via, it flows into the second output terminal of the AC power supply 1. In this case, the AC power source 1 accumulates magnetic energy in the reactor 61 while charging the smoothing capacitors 62, 63 and 64.
 図8(a)において、破線(L)は、信号PWMが「Low」で、信号PWMXが「High」の状態における電流の流れを示している。破線(L)が示すように、電流は、リアクトル61、スイッチング素子57、平滑コンデンサ62、63、64、スイッチング素子54、スイッチング素子52、スイッチング素子56の順に経由して、リアクトル61に戻り、交流電源1を経由しない。この場合、交流電源1は、リアクトル61に電流を流すことができないので、リアクトル61に磁気的なエネルギを蓄積させることができない。ここでは、リアクトル61に蓄積された磁気的なエネルギが、破線(L)の電流の経路を介して放出される。 8A, a broken line (L) indicates a current flow when the signal PWM is “Low” and the signal PWMX is “High”. As indicated by the broken line (L), the current returns to the reactor 61 via the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, the switching element 54, the switching element 52, and the switching element 56 in this order, and the AC Do not go through power supply 1. In this case, since the AC power source 1 cannot flow current through the reactor 61, magnetic energy cannot be accumulated in the reactor 61. Here, the magnetic energy accumulated in the reactor 61 is released through a current path indicated by a broken line (L).
 なお、図8(a)において、スイッチング素子58におけるドレイン側(リアクトル61に接続される側)は、ソース側に比べて高電位の状態にあり、ソース側からドレイン側へ電流が流れることはない。これは、ソース側が常に交流電源の低電位側と略同電位かあるいはリアクトル61の低電位側と略同電位に維持されるからである。 In FIG. 8A, the drain side (side connected to the reactor 61) in the switching element 58 is at a higher potential than the source side, and no current flows from the source side to the drain side. . This is because the source side is always maintained at substantially the same potential as the low potential side of the AC power supply or at the same potential as the low potential side of the reactor 61.
 図8(b)において、破線(H)は、信号PWMが「High」で、信号PWMXが「Low」の状態における電流の流れを示している。破線(H)が示すように、電流は、交流電源1の第2の出力端子からスイッチング素子52、スイッチング素子56、リアクトル61、スイッチング素子57、平滑コンデンサ62、63、64、スイッチング素子53を経由して、交流電源1の第1の出力端子に流れ込む。この場合、交流電源1は、平滑コンデンサ62、63、64を充電しながらも、リアクトル61に磁気的エネルギを蓄えている。 8B, a broken line (H) indicates a current flow when the signal PWM is “High” and the signal PWMX is “Low”. As indicated by the broken line (H), the current passes from the second output terminal of the AC power supply 1 through the switching element 52, the switching element 56, the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, and the switching element 53. Then, it flows into the first output terminal of the AC power supply 1. In this case, the AC power supply 1 stores magnetic energy in the reactor 61 while charging the smoothing capacitors 62, 63 and 64.
 図8(b)において、破線(L)は、信号PWMが「Low」で、信号PWMXが「High」の状態における電流の流れを示している。破線(L)が示すように、電流は、リアクトル61、スイッチング素子57、平滑コンデンサ62、63、64、スイッチング素子53、スイッチング素子51、スイッチング素子56の順に経由してリアクトル61に戻り、交流電源1を経由しない。この場合、交流電源1は、リアクトル61に電流を流すことができないので、リアクトル61に磁気的なエネルギを蓄積させることができない。ここでは、リアクトル61に蓄積された磁気的なエネルギが、破線(L)の電流の経路を介して放出される。 8B, a broken line (L) indicates a current flow when the signal PWM is “Low” and the signal PWMX is “High”. As indicated by a broken line (L), the current returns to the reactor 61 through the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, the switching element 53, the switching element 51, and the switching element 56 in this order, and the AC power supply Do not go through 1. In this case, since the AC power source 1 cannot flow current through the reactor 61, magnetic energy cannot be accumulated in the reactor 61. Here, the magnetic energy accumulated in the reactor 61 is released through a current path indicated by a broken line (L).
 なお、図8(b)において、スイッチング素子58におけるドレイン側(リアクトル61に接続される側)は、ソース側に比べて高電位の状態にあり、ソース側からドレイン側へ電流が流れることはない。理由は、前述と同様である。 In FIG. 8B, the drain side (the side connected to the reactor 61) of the switching element 58 is at a higher potential than the source side, and no current flows from the source side to the drain side. . The reason is the same as described above.
 ここにおいて、整流制御回路200は、交流電源1から破線(H)で示した電流経路によりリアクトル61に蓄積される磁気的なエネルギと、破線(L)で示した電流経路により放出される磁気的なエネルギとが等しくなるように制御する。これにより、交流電源1の出力電圧が昇降圧型整流回路50の出力電圧Vdcより高くても、電圧Vdcが、電圧指示信号Vdcinで定められた交流電源1の交流振幅電圧値より低い電圧に制御される。 Here, the rectification control circuit 200 includes the magnetic energy accumulated in the reactor 61 by the current path indicated by the broken line (H) from the AC power supply 1 and the magnetic energy released by the current path indicated by the broken line (L). So that the energy is equal. Thereby, even if the output voltage of the AC power supply 1 is higher than the output voltage Vdc of the step-up / step-down rectifier circuit 50, the voltage Vdc is controlled to a voltage lower than the AC amplitude voltage value of the AC power supply 1 determined by the voltage instruction signal Vdcin. The
 ところで、信号PWMXが「High」の状態で維持される時間が、リアクトル61に蓄積された磁気的なエネルギの放出が完了するまでの時間に比べて長い場合、リアクトル61に流れる電流は、破線(L)で示す方向とは逆向きに流れてしまう。このとき、平滑コンデンサ62、63、64に蓄積された電荷が放電されてしまい、昇降圧型整流回路50の出力電圧の低下や脈動成分の増大に繋がるおそれがある。そこで、本実施の形態では、整流制御回路200において、リアクトル61に流れる電流を電流センサ60で検出するとともに、検出した電流を絶対値回路117により電圧VIRに変換してドライブロジック回路108に入力する構成としている。そして、ドライブロジック回路108は、電圧VIRが略0Vである場合、スイッチング素子51またはスイッチング素子52に入力する信号PWMXを「High」から「Low」に切り替える。即ち、リアクトル61に流れる電流が略0Aになった時点で、信号PWMXを「High」から「Low」に切り替える。このように、信号PWMXを「Low」に切り替えることにより、スイッチング素子52が、導通モードから逆導通モード1に切り替わるので、電流が破線(L)で示す方向とは逆方向に流れてしまうことを防止でき、平滑コンデンサ62,63,64が放電してしまうことを防止できる。 By the way, when the time during which the signal PWMX is maintained in the “High” state is longer than the time until the release of the magnetic energy accumulated in the reactor 61 is completed, the current flowing through the reactor 61 is indicated by a broken line ( It flows in the direction opposite to the direction indicated by L). At this time, the charges accumulated in the smoothing capacitors 62, 63, 64 are discharged, which may lead to a decrease in the output voltage of the buck-boost rectifier circuit 50 and an increase in pulsation components. Therefore, in the present embodiment, in the rectification control circuit 200, the current flowing through the reactor 61 is detected by the current sensor 60, and the detected current is converted into the voltage VIR by the absolute value circuit 117 and input to the drive logic circuit 108. It is configured. Then, when the voltage VIR is substantially 0 V, the drive logic circuit 108 switches the signal PWMX input to the switching element 51 or the switching element 52 from “High” to “Low”. That is, when the current flowing through the reactor 61 becomes approximately 0 A, the signal PWMX is switched from “High” to “Low”. Thus, since the switching element 52 is switched from the conduction mode to the reverse conduction mode 1 by switching the signal PWMX to “Low”, the current flows in the direction opposite to the direction indicated by the broken line (L). It is possible to prevent the smoothing capacitors 62, 63, 64 from being discharged.
 以上のように、本実施の形態に係る昇降圧型整流回路50では、一倍整流方式で動作する場合、交流電源1からリアクトル61へ供給する電流を信号PWM(信号PWMX)の周期で遮断することにより降圧動作を実現している。そして、図5(a)乃至(d)に示すような、デュアルゲート型のスイッチング素子51,52の持つ特性を利用することにより、降圧動作を実現している。このように、回路対称性を有するデュアルゲート型のスイッチング素子51,52を用いて構成することにより、本実施の形態に係る昇降圧型整流回路50の構成を更に発展させる可能性が広がる。 As described above, in the step-up / step-down rectifier circuit 50 according to the present embodiment, when operating by the single rectification method, the current supplied from the AC power supply 1 to the reactor 61 is cut off at the cycle of the signal PWM (signal PWMX). This realizes step-down operation. The step-down operation is realized by using the characteristics of the dual gate type switching elements 51 and 52 as shown in FIGS. As described above, by using the dual gate type switching elements 51 and 52 having circuit symmetry, the possibility of further developing the configuration of the step-up / step-down rectifier circuit 50 according to the present embodiment is expanded.
 <2-1-2>昇圧動作
 昇圧動作を行う場合において、昇降圧型整流回路50を構成する、デュアルゲート型のスイッチング素子51乃至56,59,65の各ゲートに入力する制御信号の時間波形と、シングルゲート型のスイッチング素子57,58の各ゲートに入力する制御信号の時間波形とを図9示す。
<2-1-2> Boosting Operation In the case of performing the boosting operation, the time waveform of the control signal input to each gate of the dual gate type switching elements 51 to 56, 59, 65 constituting the step-up / step-down rectifier circuit 50; FIG. 9 shows time waveforms of control signals input to the gates of the single gate type switching elements 57 and 58.
 図9に示すように、ドライブロジック回路108は、降圧動作の場合と同様に、スイッチング素子55,59,65の2つのゲートにオフ信号「Low」を入力することにより、スイッチング素子55,59,65が遮断モードで維持する。また、整流制御回路200は、スイッチング素子56の2つのゲートにオン信号「High」を入力することにより、スイッチング素子56が導通モードで維持する。これにより、平滑コンデンサ62,63を直列に接続してなる直列回路と、平滑コンデンサ64とが並列接続の関係になるようにして、一倍整流方式の動作を実現している。 As shown in FIG. 9, the drive logic circuit 108 inputs the off signal “Low” to the two gates of the switching elements 55, 59, 65 in the same manner as in the step-down operation, thereby switching the switching elements 55, 59, 65 is maintained in the shut-off mode. Further, the rectification control circuit 200 inputs the ON signal “High” to the two gates of the switching element 56, whereby the switching element 56 is maintained in the conduction mode. Thereby, the series circuit formed by connecting the smoothing capacitors 62 and 63 in series and the smoothing capacitor 64 are in a parallel connection relationship, thereby realizing a single rectification operation.
 また、図9に示すように、ドライブロジック回路108は、交流電源1の出力電圧の極性が正の場合、スイッチング素子52,53それぞれの2つのゲートにオフ信号「Low」を入力し、スイッチング素子52,53の2つのゲートについてゲート・ソース間を短絡した状態にしてスイッチング素子52,53を共に遮断モードとする。一方、極性が負の場合、スイッチング素子52,53の2つのゲートにオン信号「High」を入力し、スイッチング素子52,53の2つのゲートについてゲート・ソース間の電圧Vgsを閾値電圧Vth以上にしてスイッチング素子52,53を共に導通モードとする。ここで、交流電源1の出力電圧の極性が正であるとは、図10における交流電源1の第1の出力端子が高電位側であり第2の出力端子が低電位側であることを意味し、一方、交流電源1の出力電圧の極性が負であるとは、図10における交流電源1の第1の出力端子が低電位側であり第2の出力端子が高電位側であることを意味する。 As shown in FIG. 9, when the polarity of the output voltage of the AC power supply 1 is positive, the drive logic circuit 108 inputs an off signal “Low” to each of the two gates of the switching elements 52 and 53. The two gates 52 and 53 are short-circuited between the gate and the source, and the switching elements 52 and 53 are both set to the cutoff mode. On the other hand, when the polarity is negative, an ON signal “High” is input to the two gates of the switching elements 52 and 53, and the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth for the two gates of the switching elements 52 and 53. Thus, both the switching elements 52 and 53 are set to the conduction mode. Here, the polarity of the output voltage of the AC power source 1 means that the first output terminal of the AC power source 1 in FIG. 10 is on the high potential side and the second output terminal is on the low potential side. On the other hand, the negative polarity of the output voltage of the AC power supply 1 means that the first output terminal of the AC power supply 1 in FIG. 10 is on the low potential side and the second output terminal is on the high potential side. means.
 また、図9に示すように、ドライブロジック回路108は、交流電源1の出力電圧の極性が正の場合、スイッチング素子51,54それぞれの2つのゲートにオン信号「High」を入力し、スイッチング素子51,54の2つのゲートについてゲート・ソース間の電圧Vgsを閾値電圧Vth以上にしてスイッチング素子51,54を導通モードとする。一方、極性が負の場合、スイッチング素子51,54の2つのゲートにオフ信号「Low」を入力し、スイッチング素子51,54の2つのゲートについてゲート・ソース間を短絡した状態としてスイッチング素子51,54を遮断モードとする。つまり、スイッチング素子52,53とスイッチング素子51,54とは、交流電源1の出力電圧の半周期毎に遮断モードと導通モードとを繰り返し、スイッチング素子52,53とスイッチング素子51,54とでは、遮断モード、導通モードになるタイミングが半周期だけずれている。 As shown in FIG. 9, when the polarity of the output voltage of the AC power supply 1 is positive, the drive logic circuit 108 inputs an ON signal “High” to each of the two gates of the switching elements 51 and 54. For the two gates 51 and 54, the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth, and the switching elements 51 and 54 are set in the conduction mode. On the other hand, when the polarity is negative, an OFF signal “Low” is input to the two gates of the switching elements 51 and 54, and the two gates of the switching elements 51 and 54 are short-circuited between the gate and the source. 54 is set to the cutoff mode. That is, the switching elements 52 and 53 and the switching elements 51 and 54 repeat the cutoff mode and the conduction mode every half cycle of the output voltage of the AC power supply 1, and the switching elements 52 and 53 and the switching elements 51 and 54 The timing for entering the cutoff mode and the conduction mode is shifted by a half cycle.
 また、図9に示すように、ドライブロジック回路108は、スイッチング素子57のゲートに信号PWMXを入力し続け、スイッチング素子58のゲートに信号PWM信号を入力し続ける。これにより、スイッチング素子57とスイッチング素子58とは、交互にオンオフする形でスイッチング動作することになる。 Also, as shown in FIG. 9, the drive logic circuit 108 continues to input the signal PWMX to the gate of the switching element 57 and continues to input the signal PWM signal to the gate of the switching element 58. As a result, the switching element 57 and the switching element 58 are switched on and off alternately.
 次に、図10(a)および(b)に基づいて、昇圧動作時における昇降圧型整流回路50内の電流の流れについて説明する。 Next, the flow of current in the buck-boost rectifier circuit 50 during the boosting operation will be described with reference to FIGS.
 図10(a)に、交流電源1の出力電圧の極性が正の場合における昇降圧型整流回路50内の電流の流れを示し、図10(b)に、交流電源1の出力電圧の極性が負の場合における昇降圧型整流回路50内の電流の流れを示す。 FIG. 10A shows the flow of current in the buck-boost rectifier circuit 50 when the polarity of the output voltage of the AC power supply 1 is positive, and FIG. 10B shows the polarity of the output voltage of the AC power supply 1 being negative. The flow of current in the buck-boost rectifier circuit 50 in the case of FIG.
 図10(a)において、破線(H)は、信号PWMが「High」で、信号PWMXが「Low」の状態における電流の流れを示している。破線(H)が示すように、電流は、交流電源1の第1の出力端子からスイッチング素子51、スイッチング素子56、リアクトル61、スイッチング素子58、スイッチング素子54の順に経由して、交流電源1の第2の出力端子に流れ込む。この場合、交流電源1は、リアクトル61に磁気的なエネルギを蓄積する。 10A, the broken line (H) indicates the flow of current when the signal PWM is “High” and the signal PWMX is “Low”. As indicated by the broken line (H), the current flows from the first output terminal of the AC power source 1 through the switching element 51, the switching element 56, the reactor 61, the switching element 58, and the switching element 54 in this order. It flows into the second output terminal. In this case, AC power supply 1 accumulates magnetic energy in reactor 61.
 図10(a)において、破線(L)は、信号PWMが「Low」で、信号PWMXが「High」の状態における電流の流れを示している。破線(L)が示すように、電流は、交流電源1の第1の出力端子からスイッチング素子51、スイッチング素子56、リアクトル61、スイッチング素子57、平滑コンデンサ62、63、64、スイッチング素子54を経由して、交流電源1の第2の出力端子へ流れ込む。この場合、リアクトル61から磁気的なエネルギが放出され、平滑コンデンサ62、63、64に電荷が充電される。これにより、昇降圧型整流回路50の出力電圧Vdcは、交流電源1の電圧振幅よりも大きい電圧に昇圧されることになる。 10A, a broken line (L) indicates a current flow when the signal PWM is “Low” and the signal PWMX is “High”. As indicated by a broken line (L), the current passes from the first output terminal of the AC power supply 1 through the switching element 51, the switching element 56, the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, and the switching element 54. Then, it flows into the second output terminal of the AC power source 1. In this case, magnetic energy is released from the reactor 61, and the smoothing capacitors 62, 63, and 64 are charged. As a result, the output voltage Vdc of the step-up / step-down rectifier circuit 50 is boosted to a voltage larger than the voltage amplitude of the AC power supply 1.
 図10(b)において、破線(H)は、信号PWMが「High」で、信号PWMXが「Low」の状態における電流の流れを示している。破線(H)が示すように、電流は、交流電源1の第2の出力端子からスイッチング素子52、スイッチング素子56、リアクトル61、スイッチング素子58、スイッチング素子53を経由して、交流電源1の第1の出力端子に流れ込む。この場合、交流電源1は、リアクトル61に磁気的エネルギを蓄えている。 10B, a broken line (H) indicates a current flow in a state where the signal PWM is “High” and the signal PWMX is “Low”. As indicated by the broken line (H), the current flows from the second output terminal of the AC power supply 1 through the switching element 52, the switching element 56, the reactor 61, the switching element 58, and the switching element 53, and the current of the AC power supply 1 is changed. 1 flows into the output terminal. In this case, the AC power supply 1 stores magnetic energy in the reactor 61.
 図10(b)において、破線(L)は、信号PWMが「Low」で、信号PWMXが「High」の状態における電流の流れを示している。破線(L)が示すように、電流は、交流電源1の第2の出力端子からスイッチング素子52、スイッチング素子56、リアクトル61、スイッチング素子57、平滑コンデンサ62、63、64、スイッチング素子53を経由して、交流電源1の第1の出力端子へ流れ込む。この場合、リアクトル61から磁気的なエネルギが放出され、平滑コンデンサ62、63、64に電荷が充電される。これにより、昇降圧型整流回路50の出力電圧Vdcは、交流電源1の電圧振幅よりも大きい電圧に昇圧されることになる。 10B, a broken line (L) indicates a current flow in a state where the signal PWM is “Low” and the signal PWMX is “High”. As indicated by the broken line (L), the current passes from the second output terminal of the AC power supply 1 through the switching element 52, the switching element 56, the reactor 61, the switching element 57, the smoothing capacitors 62, 63, 64, and the switching element 53. Then, it flows into the first output terminal of the AC power supply 1. In this case, magnetic energy is released from the reactor 61, and the smoothing capacitors 62, 63, and 64 are charged. As a result, the output voltage Vdc of the step-up / step-down rectifier circuit 50 is boosted to a voltage larger than the voltage amplitude of the AC power supply 1.
 ここにおいて、整流制御回路200は、交流電源1から破線(H)で示した電流経路によりリアクトル61に蓄積される磁気的なエネルギと、破線(L)で示した電流経路により放出される磁気的なエネルギとが等しくなるように制御する。これにより、交流電源1の出力電圧が昇降圧型整流回路50の出力電圧Vdcより高くても、電圧Vdcが、電圧指示信号Vdcinで定められた交流電源1の交流振幅電圧値より低い電圧に制御される。 Here, the rectification control circuit 200 includes the magnetic energy accumulated in the reactor 61 by the current path indicated by the broken line (H) from the AC power supply 1 and the magnetic energy released by the current path indicated by the broken line (L). So that the energy is equal. Thereby, even if the output voltage of the AC power supply 1 is higher than the output voltage Vdc of the step-up / step-down rectifier circuit 50, the voltage Vdc is controlled to a voltage lower than the AC amplitude voltage value of the AC power supply 1 determined by the voltage instruction signal Vdcin. The
 ところで、信号PWMXが「High」の状態で維持される時間が、リアクトル61に蓄積された磁気的なエネルギの放出が完了するまでの時間に比べて長い場合、リアクトル61に流れる電流は、破線(L)で示す方向とは逆向きに流れてしまう。このとき、平滑コンデンサ62、63、64に蓄積された電荷が放電されてしまい、昇降圧型整流回路50の出力電圧の低下や脈動成分の増大に繋がるおそれがある。そこで、本実施の形態では、整流制御回路200において、リアクトル61に流れる電流を電流センサ60で検出するとともに、検出した電流を絶対値回路117により電圧VIRに変換してドライブロジック回路108に入力する構成としている。そして、ドライブロジック回路108は、電圧VIRが略0Vである場合、スイッチング素子51またはスイッチング素子52に入力する信号PWMXを「High」から「Low」に切り替える。即ち、リアクトル61に流れる電流が略0Aになった時点で、信号PWMXを「High」から「Low」に切り替える。このように、信号PWMXを「Low」に切り替えることにより、スイッチング素子52が、導通モードから逆導通モード1に切り替わるので、電流が破線(L)で示す方向とは逆方向に流れてしまうことを防止でき、平滑コンデンサ62,63,64が放電してしまうことを防止できる。 By the way, when the time during which the signal PWMX is maintained in the “High” state is longer than the time until the release of the magnetic energy accumulated in the reactor 61 is completed, the current flowing through the reactor 61 is indicated by a broken line ( It flows in the direction opposite to the direction indicated by L). At this time, the charges accumulated in the smoothing capacitors 62, 63, 64 are discharged, which may lead to a decrease in the output voltage of the buck-boost rectifier circuit 50 and an increase in pulsation components. Therefore, in the present embodiment, in the rectification control circuit 200, the current flowing through the reactor 61 is detected by the current sensor 60, and the detected current is converted into the voltage VIR by the absolute value circuit 117 and input to the drive logic circuit 108. It is configured. Then, when the voltage VIR is substantially 0 V, the drive logic circuit 108 switches the signal PWMX input to the switching element 51 or the switching element 52 from “High” to “Low”. That is, when the current flowing through the reactor 61 becomes approximately 0 A, the signal PWMX is switched from “High” to “Low”. Thus, since the switching element 52 is switched from the conduction mode to the reverse conduction mode 1 by switching the signal PWMX to “Low”, the current flows in the direction opposite to the direction indicated by the broken line (L). It is possible to prevent the smoothing capacitors 62, 63, 64 from being discharged.
 <2-2>二倍整流方式による動作
 昇降圧型整流回路50が、二倍整流動作を行う場合について説明する。まず、整流制御回路200に含まれるドライブロジック回路108が、制御指示回路40から一倍整流方式を示す整流方式切り替え信号Rrectswを受信すると、ドライブロジック回路108は、昇降圧型整流回路50に対して、二倍整流方式で動作させる制御信号を出力する。この後で、昇降圧型整流回路50が、降圧動作を行う場合を昇圧動作を行う場合とに分けて説明する。この実施の形態1においては、整流制御回路200は、昇降圧型整流回路50に昇圧動作のみを行わせ、降圧動作と昇圧動作との間での動作切り替えを行わない。
<2-2> Operation by Double Rectification Method A case where the buck-boost rectifier circuit 50 performs a double rectification operation will be described. First, when the drive logic circuit 108 included in the rectification control circuit 200 receives the rectification method switching signal Rrectsw indicating the single rectification method from the control instruction circuit 40, the drive logic circuit 108 A control signal for operating the double rectification method is output. Thereafter, the case where the step-up / step-down rectifier circuit 50 performs the step-down operation will be described separately from the case where the step-up operation is performed. In the first embodiment, the rectification control circuit 200 causes the step-up / step-down rectifier circuit 50 to perform only the boosting operation, and does not switch the operation between the step-down operation and the step-up operation.
 二倍整流方式で昇圧動作を行う場合において、昇降圧型整流回路50を構成する、デュアルゲート型のスイッチング素子51乃至56,59,65の各ゲートに入力する制御信号の時間波形と、シングルゲート型のスイッチング素子57,58の各ゲートに入力する制御信号の時間波形とを図11示す。 When the step-up operation is performed by the double rectification method, the time waveform of the control signal input to each gate of the dual gate type switching elements 51 to 56, 59, 65 constituting the step-up / step-down type rectifier circuit 50, and the single gate type FIG. 11 shows time waveforms of control signals input to the gates of the switching elements 57 and 58 of FIG.
 図11に示すように、整流制御回路200は、スイッチング素子52,54,56の2つのゲートにオフ信号「Low」を入力する。言い換えれば、スイッチング素子52,54,56の2つのゲートについてゲート・ソース間を短絡した状態にする。これにより、スイッチング素子52,54,56が遮断モードで維持される。また、整流制御回路200は、スイッチング素子55,65の2つのゲートにオン信号「High」を入力する。言い換えれば、スイッチング素子55,65の2つのゲートについてゲート・ソース間の電圧Vgsを閾値電圧Vth以上で維持する。これにより、スイッチング素子55,65が導通モードで維持される。これにより、平滑コンデンサ62と63は、交流電源1の極性が正の場合、平滑コンデンサ62だけが充電され、交流電源1の極性が負の場合、平滑コンデンサ63だけが充電される。そして、2つの平滑コンデンサ62,63それぞれの両端間の電圧が足し合わされてなる電圧が出力される構成とすることで、二倍整流方式の動作が実現される。ここで、平滑コンデンサ64は、平滑コンデンサ62,63それぞれの両端間の電圧に含まれるリップルを除去する役割を担う。 As shown in FIG. 11, the rectification control circuit 200 inputs an off signal “Low” to the two gates of the switching elements 52, 54, and 56. In other words, the gates and the sources of the two gates of the switching elements 52, 54, and 56 are short-circuited. Thereby, the switching elements 52, 54, and 56 are maintained in the cutoff mode. Further, the rectification control circuit 200 inputs an ON signal “High” to the two gates of the switching elements 55 and 65. In other words, the gate-source voltage Vgs is maintained at the threshold voltage Vth or higher for the two gates of the switching elements 55 and 65. Thereby, the switching elements 55 and 65 are maintained in the conduction mode. Thus, the smoothing capacitors 62 and 63 are charged only when the polarity of the AC power source 1 is positive, and charged only when the polarity of the AC power source 1 is negative. And the operation | movement of a double rectification system is implement | achieved by setting it as the structure which outputs the voltage which added the voltage between the both ends of two smoothing capacitors 62 and 63 together. Here, the smoothing capacitor 64 plays a role of removing ripples included in the voltage between both ends of the smoothing capacitors 62 and 63.
 また、図11に示すように、整流制御回路200は、交流電源1の出力電圧の極性が正の場合、スイッチング素子53の2つのゲートにオフ信号「Low」を入力し、スイッチング素子53の2つのゲートについてゲート・ソース間を短絡した状態にしてスイッチング素子53を遮断モードとする。一方、極性が負の場合、スイッチング素子53の2つのゲートにオン信号「High」を入力し、スイッチング素子53の2つのゲートについてゲート・ソース間の電圧Vgsを閾値電圧Vth以上にしてスイッチング素子53を導通モードとする。ここで、交流電源1の出力電圧の極性が正であるとは、図12における交流電源1の第1の出力端子が高電位側であり第2の出力端子が低電位側であることを意味し、一方、交流電源1の出力電圧の極性が負であるとは、図12における交流電源1の第1の出力端子が低電位側であり第2の出力端子が高電位側であることを意味する。ここにおいて、整流制御回路200のドライブロジック回路108は、第2コンパレータ118から出力される信号PNと、第1コンパレータ107から出力される信号DRとに基づいて、交流電源1の出力電圧の極性を検知する。 Further, as shown in FIG. 11, when the polarity of the output voltage of the AC power supply 1 is positive, the rectification control circuit 200 inputs the off signal “Low” to the two gates of the switching element 53, and The switching element 53 is set to the cut-off mode by short-circuiting the gate and the source for one gate. On the other hand, when the polarity is negative, an ON signal “High” is input to the two gates of the switching element 53, and the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth for the two gates of the switching element 53. Is set to the conduction mode. Here, the polarity of the output voltage of the AC power supply 1 being positive means that the first output terminal of the AC power supply 1 in FIG. 12 is on the high potential side and the second output terminal is on the low potential side. On the other hand, the polarity of the output voltage of the AC power supply 1 being negative means that the first output terminal of the AC power supply 1 in FIG. 12 is on the low potential side and the second output terminal is on the high potential side. means. Here, the drive logic circuit 108 of the rectification control circuit 200 sets the polarity of the output voltage of the AC power supply 1 based on the signal PN output from the second comparator 118 and the signal DR output from the first comparator 107. Detect.
 また、図11に示すように、整流制御回路200は、交流電源1の出力電圧の極性が正の場合、スイッチング素子51の2つのゲートにオン信号「High」を入力し、スイッチング素子51の2つのゲートについてゲート・ソース間の電圧Vgsを閾値電圧Vth以上にしてスイッチング素子51を導通モードとする。一方、極性が負の場合、スイッチング素子51の2つのゲートにオフ信号「Low」を入力し、スイッチング素子51の2つのゲートについてゲート・ソース間を短絡した状態としてスイッチング素子51を遮断モードとする。つまり、スイッチング素子53とスイッチング素子51とは、交流電源1の出力電圧の半周期毎に遮断モードと導通モードとを繰り返し、スイッチング素子53とスイッチング素子51とでは、遮断モード、導通モードになるタイミングが半周期だけずれている。 Further, as shown in FIG. 11, when the polarity of the output voltage of the AC power supply 1 is positive, the rectification control circuit 200 inputs an ON signal “High” to the two gates of the switching element 51, and For one gate, the gate-source voltage Vgs is set to be equal to or higher than the threshold voltage Vth, and the switching element 51 is set in the conduction mode. On the other hand, when the polarity is negative, an OFF signal “Low” is input to the two gates of the switching element 51, and the switching element 51 is placed in the cutoff mode with the two gates of the switching element 51 short-circuited between the gate and the source. . That is, the switching element 53 and the switching element 51 repeat the cutoff mode and the conduction mode every half cycle of the output voltage of the AC power supply 1, and the switching element 53 and the switching element 51 are in the cutoff mode and the conduction mode. Is shifted by a half cycle.
 また、図11に示すように、整流制御回路200は、交流電源1の出力電圧の極性が正の場合、スイッチング素子57のゲートに信号PWMを入力する。一方、極性が負の場合、スイッチング素子57のゲートにオフ信号「Low」を入力する。また、整流制御回路200は、交流電源1の出力電圧の極性が正の場合、スイッチング素子58のゲートにオフ信号「Low」を入力する。一方、極性が負の場合、スイッチング素子58のゲートに信号PWMを入力する。更に、整流制御回路200は、交流電源1の出力電圧の極性が正の場合、スイッチング素子59のゲート「A」にオン信号「High」を入力するとともにゲート「B」に信号PWMXを入力する。一方、極性が負の場合、スイッチング素子59のゲート「A」に信号PWMXを入力するとともにゲート「B」にオン信号「High」を入力する。これにより、交流電源1の出力電圧の極性が正の場合、スイッチング素子57とスイッチング素子59とが、交互にオンオフする形でスイッチング動作をし、交流電源1の出力電圧の極性が負の場合、スイッチング素子58とスイッチング素子59とが、交互にオンオフする形でスイッチング動作することになる。 As shown in FIG. 11, the rectification control circuit 200 inputs the signal PWM to the gate of the switching element 57 when the polarity of the output voltage of the AC power supply 1 is positive. On the other hand, when the polarity is negative, an OFF signal “Low” is input to the gate of the switching element 57. Further, the rectification control circuit 200 inputs an off signal “Low” to the gate of the switching element 58 when the polarity of the output voltage of the AC power supply 1 is positive. On the other hand, when the polarity is negative, the signal PWM is input to the gate of the switching element 58. Further, when the polarity of the output voltage of the AC power supply 1 is positive, the rectification control circuit 200 inputs the ON signal “High” to the gate “A” of the switching element 59 and the signal PWMX to the gate “B”. On the other hand, when the polarity is negative, the signal PWMX is input to the gate “A” of the switching element 59 and the ON signal “High” is input to the gate “B”. As a result, when the polarity of the output voltage of the AC power supply 1 is positive, the switching element 57 and the switching element 59 perform switching operations so as to be alternately turned on and off, and when the polarity of the output voltage of the AC power supply 1 is negative, The switching element 58 and the switching element 59 perform a switching operation such that they are alternately turned on and off.
 次に、図12(a)および(b)に基づいて、二倍整流動作時における昇降圧型整流回路50内の電流の流れについて説明する。 Next, the flow of current in the buck-boost rectifier circuit 50 during the double rectification operation will be described with reference to FIGS.
 図12(a)に、交流電源1の出力電圧の極性が正の場合における昇降圧型整流回路50内の電流の流れを示し、図12(b)に、交流電源1の出力電圧の極性が負の場合における昇降圧型整流回路50内の電流の流れを示す。 FIG. 12A shows the flow of current in the step-up / step-down rectifier circuit 50 when the polarity of the output voltage of the AC power supply 1 is positive, and FIG. 12B shows the polarity of the output voltage of the AC power supply 1 being negative. The flow of current in the buck-boost rectifier circuit 50 in the case of FIG.
 図12(a)において、破線(H)は、信号PWMが「High」で、信号PWMXが「Low」の状態における電流の流れを示している。破線(H)が示すように、電流は、交流電源1の正の出力端子からスイッチング素子51、スイッチング素子65、スイッチング素子57、リアクトル61、スイッチング素子55の順に経由して、交流電源1の第2の出力端子へ流れ込む。この場合、交流電源1は、リアクトル61に磁気的エネルギを蓄積している。 12A, a broken line (H) indicates a current flow in a state where the signal PWM is “High” and the signal PWMX is “Low”. As indicated by the broken line (H), the current flows from the positive output terminal of the AC power supply 1 through the switching element 51, the switching element 65, the switching element 57, the reactor 61, and the switching element 55 in this order, and the current of the AC power supply 1 is changed. 2 into the output terminal. In this case, the AC power supply 1 stores magnetic energy in the reactor 61.
 図12(a)において、破線(L)は、信号PWMが「Low」で、信号PWMXが「High」の状態における電流の流れを示している。破線(L)が示すように、電流は、交流電源1の第1の出力端子からスイッチング素子51、スイッチング素子65、平滑コンデンサ62、スイッチング素子59、リアクトル61、スイッチング素子55の順に経由して、交流電源1の第2の出力端子へ流れ込む。この場合、リアクトル61から磁気的なエネルギが放出され、平滑コンデンサ62に電荷が充電される。これにより、平滑コンデンサ62の両端間の電圧は、交流電源1の電圧振幅よりも大きい電圧に昇圧されることになる。 12A, a broken line (L) indicates a current flow in a state where the signal PWM is “Low” and the signal PWMX is “High”. As indicated by the broken line (L), the current flows from the first output terminal of the AC power supply 1 through the switching element 51, the switching element 65, the smoothing capacitor 62, the switching element 59, the reactor 61, and the switching element 55 in this order. It flows into the second output terminal of the AC power supply 1. In this case, magnetic energy is released from the reactor 61 and the smoothing capacitor 62 is charged. As a result, the voltage across the smoothing capacitor 62 is boosted to a voltage larger than the voltage amplitude of the AC power supply 1.
 図12(b)において、破線(H)は、信号PWMが「High」で、信号PWMXが「Low」の状態における電流の流れを示している。破線(H)が示すように、電流は、交流電源1の第2の出力端子からスイッチング素子55、リアクトル61、スイッチング素子58、スイッチング素子53の順に経由して、交流電源1の第1の出力端子へ流れこむ。この場合、交流電源1は、リアクトル61に磁気的なエネルギを蓄積する。 In FIG. 12B, a broken line (H) indicates a current flow when the signal PWM is “High” and the signal PWMX is “Low”. As indicated by the broken line (H), the current flows from the second output terminal of the AC power supply 1 through the switching element 55, the reactor 61, the switching element 58, and the switching element 53 in this order, and the first output of the AC power supply 1 is output. Flow into the terminal. In this case, AC power supply 1 accumulates magnetic energy in reactor 61.
 図12(b)において、破線(L)は、信号PWMが「Low」で、信号PWMXが「High」の状態における電流の流れを示している。破線(L)が示すように、電流は、交流電源1の第2の出力端子からスイッチング素子55、リアクトル61、スイッチング素子59、平滑コンデンサ63、スイッチング素子53の順に経由して交流電源1の第1の出力端子へ流れ込む。この場合、リアクトル61から磁気的なエネルギが放出され、平滑コンデンサ63に電荷が充電される。これにより、平滑コンデンサ63の両端間の電圧は、交流電源1の電圧振幅よりも大きい電圧に昇圧されることになる。 12B, a broken line (L) indicates a current flow in a state where the signal PWM is “Low” and the signal PWMX is “High”. As indicated by the broken line (L), the current flows from the second output terminal of the AC power source 1 through the switching element 55, the reactor 61, the switching element 59, the smoothing capacitor 63, and the switching element 53 in this order. 1 to the output terminal. In this case, magnetic energy is released from the reactor 61, and the smoothing capacitor 63 is charged. As a result, the voltage across the smoothing capacitor 63 is boosted to a voltage larger than the voltage amplitude of the AC power supply 1.
 ここで、昇降圧型整流回路50の出力電圧Vdcは、この2つの平滑コンデンサ62,63の両端間の電圧の和であり、各平滑コンデンサ62,63の両端間の電圧は、前述のように交流電源1の電圧振幅よりも大きい。従って、昇降圧型整流回路50の出力電圧Vdcは、交流電源1の出力電圧の電圧振幅の2倍よりも大きい値となる。 Here, the output voltage Vdc of the step-up / step-down rectifier circuit 50 is the sum of the voltages across the two smoothing capacitors 62 and 63, and the voltage across the smoothing capacitors 62 and 63 is an alternating current as described above. It is larger than the voltage amplitude of the power source 1. Therefore, the output voltage Vdc of the step-up / step-down rectifier circuit 50 has a value larger than twice the voltage amplitude of the output voltage of the AC power supply 1.
 ここにおいて、整流制御回路200は、交流電源1から破線(H)で示した電流経路によりリアクトル61に蓄積される磁気的なエネルギと、破線(L)で示した電流経路により放出される磁気的なエネルギとが等しくなるように制御する。これにより、昇降圧型整流回路50の出力電圧が、電圧指示信号Vdcinで定められた電圧で定値制御される。 Here, the rectification control circuit 200 includes the magnetic energy accumulated in the reactor 61 by the current path indicated by the broken line (H) from the AC power supply 1 and the magnetic energy released by the current path indicated by the broken line (L). So that the energy is equal. As a result, the output voltage of the step-up / step-down rectifier circuit 50 is controlled at a constant value with the voltage determined by the voltage instruction signal Vdcin.
 結局、本実施の形態に係る昇降圧型整流回路50は、図13に示すように、一倍整流方式の動作により、0V近辺から交流電源1の電圧振幅V1の2倍程度の電圧V2までの電圧範囲において、出力電圧Viを増加させるように制御することができる。そして、二倍整流方式の動作により、交流電源1の電圧振幅の2倍の電圧V2以上の電圧範囲において、出力電圧Viを増加させるように制御することができる。これにより、昇降圧型整流回路50は、図18に示す構成の昇圧型整流回路1050に比べて、出力電圧の可変範囲が拡大されている。また、この昇降圧型整流回路50をインバータ3に接続すれば、インバータ3への入力電圧を広い電圧範囲で変化させることができるので、インバータ3をPAM方式で駆動させながらも出力電圧の可変範囲を拡大することができる。 After all, the step-up / step-down rectifier circuit 50 according to the present embodiment has a voltage from around 0V to a voltage V2 that is about twice the voltage amplitude V1 of the AC power supply 1 by the single rectification system operation, as shown in FIG. In the range, the output voltage Vi can be controlled to increase. Then, by the operation of the double rectification method, it is possible to control the output voltage Vi to be increased in a voltage range equal to or higher than the voltage V2 that is twice the voltage amplitude of the AC power supply 1. As a result, the step-up / step-down rectifier circuit 50 has a wider variable range of output voltage than the step-up rectifier circuit 1050 configured as shown in FIG. Further, if this step-up / step-down rectifier circuit 50 is connected to the inverter 3, the input voltage to the inverter 3 can be changed in a wide voltage range, so that the variable range of the output voltage can be increased while the inverter 3 is driven by the PAM method. Can be enlarged.
 これにより、モータ4の回転域の下限から上限までのほぼすべての回転域において、インバータ3への入力電圧をモータ4の回転域に対応する電圧としてインバータ3をPAM方式で駆動させることができる。従って、インバータ3の入力電圧(出力電圧Vi)を必要最小限の大きさとすることができるので、インバータ3を構成する各スイッチング素子31,32,33,34,35,36のソース・ドレイン間に加わる電圧を低くできるから、各スイッチング素子31,32,33,34,35,36でのスイッチング損失を低減することができる。 Thus, the inverter 3 can be driven by the PAM method using the input voltage to the inverter 3 as a voltage corresponding to the rotation range of the motor 4 in almost all rotation ranges from the lower limit to the upper limit of the rotation range of the motor 4. Therefore, since the input voltage (output voltage Vi) of the inverter 3 can be set to the minimum necessary level, the switching element 31, 32, 33, 34, 35, 36 constituting the inverter 3 is connected between the source and drain. Since the applied voltage can be lowered, the switching loss in each of the switching elements 31, 32, 33, 34, 35, and 36 can be reduced.
 また、昇降圧型整流回路50は、出力電圧Viが小さいほど出力電圧Viに含まれる脈流成分の大きさが小さくなる。この出力電圧(インバータ3への入力電圧)Viに含まれる脈流成分は、インバータ3の出力電流(モータ4の駆動電流)にも脈流成分として含まれることになる。従って、本実施の形態のように、出力電圧Viをできるだけ小さくすることにより、その分、モータ4の駆動電流に含まれる脈流成分を低減することができるので、モータ4で生じる鉄損を低減することができるという利点もある。 In the step-up / step-down rectifier circuit 50, the smaller the output voltage Vi, the smaller the magnitude of the pulsating flow component included in the output voltage Vi. The pulsating component included in the output voltage (input voltage to the inverter 3) Vi is also included in the output current of the inverter 3 (driving current of the motor 4) as a pulsating component. Therefore, by reducing the output voltage Vi as much as possible as in the present embodiment, the pulsating flow component included in the drive current of the motor 4 can be reduced correspondingly, so the iron loss generated in the motor 4 is reduced. There is also an advantage that it can be done.
 また、一倍整流方式による動作、二倍整流方式による動作、昇圧動作および降圧動作を組み合わせて広い電圧範囲で出力電圧を変化させる構成とすることにより、昇圧動作に求められる昇圧率を比較的狭い範囲に限定できるので、リアクトル61の設計を容易にできる。 In addition, by combining the operation by the single rectification method, the operation by the double rectification method, the step-up operation and the step-down operation to change the output voltage in a wide voltage range, the step-up rate required for the step-up operation is relatively narrow. Since it can limit to a range, the design of the reactor 61 can be made easy.
 <実施の形態2>
 本実施の形態に係るモータ駆動システムの構成は、実施の形態1と同様なので説明を省略する。本実施の形態に係るモータ駆動システムは、整流制御回路200が、昇降圧型整流回路50に、二倍整流方式で降圧動作を行わせ、一倍整流方式で昇圧動作を行わせない点が実施の形態1とは相違する。
<Embodiment 2>
Since the configuration of the motor drive system according to the present embodiment is the same as that of the first embodiment, the description thereof is omitted. The motor drive system according to the present embodiment is implemented in that the rectification control circuit 200 does not cause the step-up / step-down rectifier circuit 50 to perform the step-down operation using the double rectification method and not perform the step-up operation using the single rectification method. This is different from Form 1.
 ここでは、実施の形態1との相違点である二倍整流方式での降圧動作のみについて説明する。なお、本実施の形態に係るモータ駆動システムの構成、一倍整流方式での降圧動作並びに二倍整流方式での昇圧動作については、実施の形態1と同様なのでここでは説明を省略する。 Here, only the step-down operation in the double rectification method, which is a difference from the first embodiment, will be described. The configuration of the motor drive system according to the present embodiment, the step-down operation using the single rectification method, and the step-up operation using the double rectification method are the same as those in the first embodiment, and thus description thereof is omitted here.
 まず、整流制御回路200に含まれるドライブロジック回路108が、制御指示回路40から二倍整流方式を示す整流方式切り替え信号Rrectswを受信すると、ドライブロジック回路108は、昇降圧型整流回路50に対して、二倍整流方式で動作させる制御信号を出力する。ここにおいて、整流制御回路200では、交流電源1の出力電圧を全波整流して得られる信号と、昇降圧型整流回路50の出力電圧Vdcとの大小関係に基づいて、昇降圧型整流回路50を降圧動作させるか昇圧動作させるかを決定する。なお、整流制御回路200は、制御指示回路40から一倍整流方式を示す整流方式切り替え信号Rrectswを受信すると、昇降圧型整流回路50に降圧動作のみを行わせ、降圧動作と昇圧動作との間での動作切り替えを行わない。 First, when the drive logic circuit 108 included in the rectification control circuit 200 receives the rectification method switching signal Rectsw indicating the double rectification method from the control instruction circuit 40, the drive logic circuit 108 A control signal for operating the double rectification method is output. Here, in the rectification control circuit 200, the step-up / step-down rectifier circuit 50 is stepped down based on the magnitude relationship between a signal obtained by full-wave rectification of the output voltage of the AC power supply 1 and the output voltage Vdc of the step-up / step-down rectifier circuit 50. Decide whether to operate or boost. When the rectification control circuit 200 receives the rectification method switching signal Rrectsw indicating the single rectification method from the control instruction circuit 40, the rectification control circuit 200 causes the step-up / step-down rectifier circuit 50 to perform only the step-down operation, and between the step-down operation and the step-up operation. Do not switch the operation.
 二倍整流方式で降圧動作を行う場合において、昇降圧型整流回路50を構成する、デュアルゲート型のスイッチング素子51乃至56,59,65の各ゲートに入力する制御信号の時間波形と、シングルゲート型のスイッチング素子57,58の各ゲートに入力する制御信号の時間波形とを図14に示す。 When the step-down operation is performed by the double rectification method, the time waveform of the control signal input to each gate of the dual gate type switching elements 51 to 56, 59, 65 constituting the step-up / step-down type rectifier circuit 50, and the single gate type FIG. 14 shows time waveforms of control signals input to the gates of the switching elements 57 and 58.
 図14に示すように、整流制御回路200は、スイッチング素子56の2つのゲートにオフ信号「Low」を入力し続ける。言い換えれば、スイッチング素子56の2つのゲートについてゲート・ソース間を短絡した状態で維持する。これにより、スイッチング素子56が遮断モードで維持される。また、整流制御回路200は、スイッチング素子55,59,65の2つのゲートにオン信号「High」を入力し続ける。言い換えれば、スイッチング素子55,59,65の2つのゲートについてゲート・ソース間の電圧Vgsを閾値電圧Vth以上で維持する。これにより、スイッチング素子55,59,65が導通モードで維持される。これにより、平滑コンデンサ62と63は、交流電源1の極性が正の場合、平滑コンデンサ62だけが充電され、交流電源1の極性が負の場合、平滑コンデンサ63だけが充電される。そして、2つの平滑コンデンサ62,63それぞれの両端間の電圧が足し合わされてなる電圧が出力される構成とすることで、二倍整流方式の動作が実現される。ここで、平滑コンデンサ64は、平滑コンデンサ62,63それぞれの両端間の電圧に含まれるリップルを除去する役割を担う。 As shown in FIG. 14, the rectification control circuit 200 continues to input the off signal “Low” to the two gates of the switching element 56. In other words, the two gates of the switching element 56 are kept short-circuited between the gate and the source. Thereby, the switching element 56 is maintained in the cutoff mode. In addition, the rectification control circuit 200 continues to input the ON signal “High” to the two gates of the switching elements 55, 59, and 65. In other words, the gate-source voltage Vgs is maintained at the threshold voltage Vth or higher for the two gates of the switching elements 55, 59, 65. Thereby, the switching elements 55, 59, 65 are maintained in the conduction mode. Thus, the smoothing capacitors 62 and 63 are charged only when the polarity of the AC power source 1 is positive, and charged only when the polarity of the AC power source 1 is negative. And the operation | movement of a double rectification system is implement | achieved by setting it as the structure which outputs the voltage which added the voltage between the both ends of two smoothing capacitors 62 and 63 together. Here, the smoothing capacitor 64 plays a role of removing ripples included in the voltage between both ends of the smoothing capacitors 62 and 63.
 また、図14に示すように、整流制御回路200は、交流電源1の出力電圧の極性が正の場合、スイッチング素子51のゲート「A」に信号PWMを入力し、ゲート「B」にオン信号「High」を入力するとともに、スイッチング素子52のゲート「A」にオン信号「High」を入力し、ゲート「B」に信号PWMXを入力する。一方、極性が負の場合、スイッチング素子51,52それぞれの2つのゲートにオフ信号「Low」を入力し、スイッチング素子51,52の2つのゲートをソースと短絡した状態としてスイッチング素子51,52を遮断モードとする。ここにおいて、整流制御回路200のドライブロジック回路108は、第2コンパレータ118から出力される信号PNと、第1コンパレータ107から出力される信号DRとに基づいて、交流電源1の出力電圧の極性を検知する。 Further, as shown in FIG. 14, when the polarity of the output voltage of the AC power supply 1 is positive, the rectification control circuit 200 inputs the signal PWM to the gate “A” of the switching element 51 and turns on the gate “B”. “High” is input, the ON signal “High” is input to the gate “A” of the switching element 52, and the signal PWMX is input to the gate “B”. On the other hand, when the polarity is negative, an OFF signal “Low” is input to the two gates of the switching elements 51 and 52, and the switching elements 51 and 52 are short-circuited with the sources. Set to shut-off mode. Here, the drive logic circuit 108 of the rectification control circuit 200 sets the polarity of the output voltage of the AC power supply 1 based on the signal PN output from the second comparator 118 and the signal DR output from the first comparator 107. Detect.
 また、図14に示すように、整流制御回路200は、交流電源1の出力電圧の極性が正の場合、スイッチング素子53,54それぞれの2つのゲートにオフ信号「Low」を入力し、スイッチング素子53,54の2つのゲートをソースと短絡した状態としてスイッチング素子53,54を遮断モードとする。一方、極性が負の場合、スイッチング素子53のゲート「A」に信号PWMを入力し、ゲート「B」にオン信号「High」を入力するとともに、スイッチング素子54のゲート「A」にオン信号「High」を入力し、ゲート「B」に信号PWMXを入力する。つまり、スイッチング素子51,52とスイッチング素子53,54とは、交流電源1の出力電圧の半周期毎に遮断モードを繰り返し、スイッチング素子51,52とスイッチング素子53,54とでは、遮断モードになるタイミングが半周期だけずれている。これにより、交流電源1の出力電圧の極性が正の場合、スイッチング素子51とスイッチング素子52とが、交互にオンオフする形でスイッチング動作をし、交流電源1の出力電圧の極性が負の場合、スイッチング素子53とスイッチング素子54とが、交互にオンオフする形でスイッチング動作することになる。 As shown in FIG. 14, when the polarity of the output voltage of the AC power supply 1 is positive, the rectification control circuit 200 inputs an off signal “Low” to each of the two gates of the switching elements 53 and 54, The switching elements 53 and 54 are set to the cutoff mode with the two gates 53 and 54 short-circuited to the source. On the other hand, when the polarity is negative, the signal PWM is input to the gate “A” of the switching element 53, the ON signal “High” is input to the gate “B”, and the ON signal “High” is input to the gate “A” of the switching element 54. “High” is input, and the signal PWMX is input to the gate “B”. That is, the switching elements 51 and 52 and the switching elements 53 and 54 repeat the cutoff mode every half cycle of the output voltage of the AC power supply 1, and the switching elements 51 and 52 and the switching elements 53 and 54 enter the cutoff mode. The timing is shifted by half a cycle. As a result, when the polarity of the output voltage of the AC power supply 1 is positive, the switching element 51 and the switching element 52 perform the switching operation so as to be alternately turned on and off, and when the polarity of the output voltage of the AC power supply 1 is negative, The switching element 53 and the switching element 54 perform a switching operation so as to be alternately turned on and off.
 また、図14に示すように、整流制御回路200は、スイッチング素子57,58のゲートにオフ信号「Low」を入力し続ける。言い換えれば、スイッチング素子57,58のゲート・ソース間を短絡した状態で維持する。これにより、スイッチング素子57,58が遮断モードで維持される。 Further, as shown in FIG. 14, the rectification control circuit 200 continues to input the off signal “Low” to the gates of the switching elements 57 and 58. In other words, the gates and sources of the switching elements 57 and 58 are kept short-circuited. Thereby, the switching elements 57 and 58 are maintained in the cutoff mode.
 次に、図15(a)および(b)に基づいて、二倍整流動作時における昇降圧型整流回路50内の電流の流れについて説明する。 Next, the flow of current in the buck-boost rectifier circuit 50 during the double rectification operation will be described with reference to FIGS.
 図15(a)に、交流電源1の出力電圧の極性が正の場合における昇降圧型整流回路50内の電流の流れを示し、図15(b)に、交流電源1の出力電圧の極性が負の場合における昇降圧型整流回路50内の電流の流れを示す。 FIG. 15A shows the flow of current in the buck-boost rectifier circuit 50 when the polarity of the output voltage of the AC power supply 1 is positive, and FIG. 15B shows the polarity of the output voltage of the AC power supply 1 being negative. The flow of current in the buck-boost rectifier circuit 50 in the case of FIG.
 図15(a)において、破線(H)は、信号PWMが「High」で、信号PWMXが「Low」の状態における電流の流れを示している。破線(H)が示すように、電流は、交流電源1の第1の出力端子からスイッチング素子51、スイッチング素子65、平滑コンデンサ62、スイッチング素子59、リアクトル61、スイッチング素子55の順に経由して、交流電源1の第2の出力端子へ流れ込む。この場合、交流電源1は、平滑コンデンサ62を充電しながらも、リアクトル61に磁気的エネルギを蓄積している。 15A, a broken line (H) indicates a current flow when the signal PWM is “High” and the signal PWMX is “Low”. As indicated by the broken line (H), the current flows from the first output terminal of the AC power supply 1 through the switching element 51, the switching element 65, the smoothing capacitor 62, the switching element 59, the reactor 61, and the switching element 55 in this order. It flows into the second output terminal of the AC power supply 1. In this case, the AC power supply 1 accumulates magnetic energy in the reactor 61 while charging the smoothing capacitor 62.
 図15(a)において、破線(L)は、信号PWMが「Low」で、信号PWMXが「High」の状態における電流の流れを示している。破線(L)が示すように、電流は、リアクトル61からスイッチング素子55、スイッチング素子52、スイッチング素子65、平滑コンデンサ62、スイッチング素子59の順に経由して、リアクトル61に戻り、交流電源1を経由しない。この場合、交流電源1は、リアクトル61に電流を流すことができないので、リアクトル61に磁気的なエネルギを蓄積させることができない。ここでは、リアクトル61に蓄積された磁気的なエネルギが、破線(L)の電流の経路を介して放出される。 15A, a broken line (L) indicates a current flow in a state where the signal PWM is “Low” and the signal PWMX is “High”. As indicated by the broken line (L), the current returns from the reactor 61 to the reactor 61 through the switching element 55, the switching element 52, the switching element 65, the smoothing capacitor 62, and the switching element 59 in this order, and then passes through the AC power source 1. do not do. In this case, since the AC power source 1 cannot flow current through the reactor 61, magnetic energy cannot be accumulated in the reactor 61. Here, the magnetic energy accumulated in the reactor 61 is released through a current path indicated by a broken line (L).
 図15(b)において、破線(H)は、信号PWMが「High」で、信号PWMXが「Low」の状態における電流の流れを示している。破線(H)が示すように、電流は、交流電源1の第2の出力端子からスイッチング素子55、リアクトル61、スイッチング素子59、平滑コンデンサ63、スイッチング素子53の順に経由して、交流電源1の第1の出力端子へ流れこむ。この場合、交流電源1は、平滑コンデンサ62を充電しながらも、リアクトル61に磁気的エネルギを蓄積している。 15B, a broken line (H) indicates a current flow in a state where the signal PWM is “High” and the signal PWMX is “Low”. As indicated by a broken line (H), the current flows from the second output terminal of the AC power source 1 through the switching element 55, the reactor 61, the switching element 59, the smoothing capacitor 63, and the switching element 53 in this order. Flow into the first output terminal. In this case, the AC power supply 1 accumulates magnetic energy in the reactor 61 while charging the smoothing capacitor 62.
 図15(b)において、破線(L)は、信号PWMが「Low」で、信号PWMXが「High」の状態における電流の流れを示している。破線(L)が示すように、電流は、リアクトル61からスイッチング素子59、平滑コンデンサ63、スイッチング素子54、スイッチング素子55の順に経由しての順に経由してリアクトル61に戻り、交流電源1を経由しない。この場合、交流電源1は、リアクトル61に電流を流すことができないので、リアクトル61に磁気的なエネルギを蓄積させることができない。ここでは、リアクトル61に蓄積された磁気的なエネルギが、破線(L)の電流の経路を介して放出される。 15B, the broken line (L) indicates the flow of current when the signal PWM is “Low” and the signal PWMX is “High”. As indicated by a broken line (L), the current returns from the reactor 61 to the reactor 61 through the switching element 59, the smoothing capacitor 63, the switching element 54, and the switching element 55 in this order, and then passes through the AC power source 1. do not do. In this case, since the AC power source 1 cannot flow current through the reactor 61, magnetic energy cannot be accumulated in the reactor 61. Here, the magnetic energy accumulated in the reactor 61 is released through a current path indicated by a broken line (L).
 ここで、昇降圧型整流回路50の出力電圧Vdcは、この2つの平滑コンデンサ62,63の両端間の電圧の和となる。そして、各平滑コンデンサ62,63の両端間の電圧は、交流電源1の電圧振幅よりも小さくなる。従って、昇降圧型整流回路50の出力電圧Vdcは、交流電源1の出力電圧の電圧振幅の2倍よりも小さい値となる。 Here, the output voltage Vdc of the step-up / step-down rectifier circuit 50 is a sum of voltages between both ends of the two smoothing capacitors 62 and 63. The voltage across the smoothing capacitors 62 and 63 is smaller than the voltage amplitude of the AC power supply 1. Therefore, the output voltage Vdc of the step-up / step-down rectifier circuit 50 has a value smaller than twice the voltage amplitude of the output voltage of the AC power supply 1.
 結局、本実施の形態に係る昇降圧型整流回路50は、図16に示すように、一倍整流方式の動作により、0V近辺から交流電源1の電圧振幅V1までの電圧範囲において、出力電圧Viを増加させるように制御することができる。そして、二倍整流方式の動作により、交流電源1の電圧振幅の2倍の電圧V2を中心として交流電源1の電圧振幅V1から当該電圧振幅の2倍以上までの電圧範囲において、出力電圧Viを増加させるように制御することができる。この昇降圧型整流回路50をインバータ3に接続すれば、インバータ3への入力電圧を広い電圧範囲で変化させることができるので、昇降圧型整流回路50が接続されるインバータ3について、PAM方式で駆動させながらも広い電圧範囲で出力電圧を変化させることができる。 Eventually, the step-up / step-down rectifier circuit 50 according to the present embodiment generates the output voltage Vi in the voltage range from around 0 V to the voltage amplitude V1 of the AC power supply 1 by the single rectification operation as shown in FIG. It can be controlled to increase. Then, by the operation of the double rectification method, the output voltage Vi is set in the voltage range from the voltage amplitude V1 of the AC power supply 1 to more than twice the voltage amplitude centering on the voltage V2 that is twice the voltage amplitude of the AC power supply 1. It can be controlled to increase. If the step-up / step-down rectifier circuit 50 is connected to the inverter 3, the input voltage to the inverter 3 can be changed in a wide voltage range. Therefore, the inverter 3 to which the step-up / step-down rectifier circuit 50 is connected is driven by the PAM method. However, the output voltage can be changed over a wide voltage range.
 これにより、実施の形態1と同様に、モータ4の回転域の下限から上限までのほぼすべての回転域において、インバータ3への入力電圧をモータ4の回転域に対応する電圧としてインバータ3をPAM方式で駆動させることができ、インバータ3の入力電圧(出力電圧Vi)を必要最小限の大きさとすることができるので、インバータ3のスイッチング素子31乃至36でのスイッチング損失を低減することができる。 Thus, as in the first embodiment, in almost all the rotation ranges from the lower limit to the upper limit of the rotation range of the motor 4, the input voltage to the inverter 3 is set to a voltage corresponding to the rotation range of the motor 4, and the inverter 3 is set to PAM. The inverter 3 can be driven and the input voltage (output voltage Vi) of the inverter 3 can be set to the minimum necessary level, so that the switching loss in the switching elements 31 to 36 of the inverter 3 can be reduced.
 また、昇降圧型整流回路50は、出力電圧Viが小さいほど出力電圧Viに含まれる脈流成分の大きさが小さくなる。この出力電圧(インバータ3への入力電圧)Viに含まれる脈流成分は、インバータ3の出力電流(モータ4の駆動電流)にも脈流成分として含まれることになる。従って、本実施の形態のように、出力電圧Viをできるだけ小さくすることにより、その分、モータ4の駆動電流に含まれる脈流成分を低減することができるので、モータ4で生じる鉄損を低減することができるという利点もある。 In the step-up / step-down rectifier circuit 50, the smaller the output voltage Vi, the smaller the magnitude of the pulsating flow component included in the output voltage Vi. The pulsating component included in the output voltage (input voltage to the inverter 3) Vi is also included in the output current of the inverter 3 (driving current of the motor 4) as a pulsating component. Therefore, by reducing the output voltage Vi as much as possible as in the present embodiment, the pulsating flow component included in the drive current of the motor 4 can be reduced correspondingly, so the iron loss generated in the motor 4 is reduced. There is also an advantage that it can be done.
 <変形例>
 (1)実施の形態1および2では、インバータ3への入力電圧が交流電源1の出力電圧の電圧振幅V1から当該電圧振幅の2倍の電圧V2までの電圧範囲を一倍整流方式の昇圧動作または二倍整流方式の降圧動作により出力する昇降圧型整流回路50の例について説明したが、これに限定されるものではない。例えば、図17に示すように、電圧V1よりも大きく且つ電圧V2よりも小さい規定の電圧V3を設定して、電圧V1から電圧V3までの間の電圧範囲を一倍整流方式の昇圧動作により出力し、電圧V3から電圧V2までの間の電圧範囲を二倍整流方式の降圧動作により出力するようにしてもよい。
<Modification>
(1) In the first and second embodiments, the voltage range from the voltage amplitude V1 of the output voltage of the AC power supply 1 to the voltage V2 that is twice the voltage amplitude of the input voltage to the inverter 3 is boosted by a single rectification method. Alternatively, the example of the step-up / step-down rectifier circuit 50 that outputs by the double rectification step-down operation has been described, but the present invention is not limited to this. For example, as shown in FIG. 17, a specified voltage V3 that is larger than the voltage V1 and smaller than the voltage V2 is set, and the voltage range between the voltage V1 and the voltage V3 is output by the boosting operation of the single rectification method. The voltage range between the voltage V3 and the voltage V2 may be output by the double rectification step-down operation.
 (2)実施の形態1および2では、スイッチング素子57,58として、シングルゲート型FETを用いる例について説明したが、これに限定されるものではなく、デュアルゲート型FETを用いてもよい。 (2) In the first and second embodiments, examples in which single-gate FETs are used as the switching elements 57 and 58 have been described. However, the present invention is not limited to this, and dual-gate FETs may be used.
 本発明は、交流を直流に変換する整流回路に関するものであり、特に整流回路の出力電圧を0V近くから交流電源の電圧振幅の2倍以上の電圧値までの間の電圧範囲で可変としたい場合に有用である。また、本発明に係る昇降圧型整流回路システムは、モータ駆動用のインバータへの電力供給源として有用である。 The present invention relates to a rectifier circuit that converts alternating current into direct current, and in particular, when the output voltage of the rectifier circuit is desired to be variable in a voltage range from near 0 V to a voltage value that is twice or more the voltage amplitude of the alternating current power supply. Useful for. The step-up / step-down rectifier circuit system according to the present invention is useful as a power supply source to an inverter for driving a motor.
 1   交流電源
 3   インバータ
 4   モータ
 40  制御回路
 41  インバータ制御回路
 50  昇降圧型整流回路
 51,52,53,54,55,56,59,65  デュアルゲート型のスイッチング素子
 57,58  シングルゲート型のスイッチング素子
 60  電流センサ
 61  リアクトル
 62,63,64 平滑コンデンサ
 101 第1エラーアンプ
 102 乗算回路
 103 第1絶対値回路
 104 第2エラーアンプ
 105 三角波発生回路
 106 PWMコンパレータ
 107 第1コンパレータ
 108 ドライブロジック回路
 116 差動アンプ
 117 第2絶対値回路
 118 第2コンパレータ
 120、121 抵抗
 200 整流制御回路
DESCRIPTION OF SYMBOLS 1 AC power supply 3 Inverter 4 Motor 40 Control circuit 41 Inverter control circuit 50 Buck-boost type rectifier circuit 51,52,53,54,55,56,59,65 Dual gate type switching element 57,58 Single gate type switching element 60 Current sensor 61 Reactor 62, 63, 64 Smoothing capacitor 101 First error amplifier 102 Multiplying circuit 103 First absolute value circuit 104 Second error amplifier 105 Triangular wave generation circuit 106 PWM comparator 107 First comparator 108 Drive logic circuit 116 Differential amplifier 117 Second absolute value circuit 118 Second comparator 120, 121 Resistance 200 Rectification control circuit

Claims (8)

  1.  昇降圧型整流回路と当該昇降圧型整流回路を制御するための整流制御回路とを備える昇降圧型整流回路システムであって、
     前記昇降圧型整流回路は、
     複数のデュアルゲート型のスイッチング素子を含み、交流電源に接続された第1回路と、
     前記第1回路の出力端に接続されたリアクトルと、
     少なくとも2つのシングルゲート型のスイッチング素子と少なくとも1つのデュアルゲート型のスイッチング素子とを含み且つ前記リアクトルに接続された第2回路とを有し、
     前記整流制御回路は、
     前記昇降圧型整流回路が一倍整流方式で動作する場合と二倍整流方式で動作する場合とで前記第1回路および前記第2回路の電流経路を切り替えるとともに、前記昇降圧型整流回路が、前記リアクトルへのエネルギの蓄積および前記リアクトルに蓄積されたエネルギの放出を行うことで降圧動作を行うとき、前記第1回路に含まれる2つのスイッチング素子に交互にオンオフを繰り返す形でスイッチング動作をさせ、前記リアクトルへのエネルギの蓄積および前記リアクトルに蓄積されたエネルギの放出を行うことで昇圧動作を行うとき、前記第2回路に含まれる2つのシングルゲート型のスイッチング素子に交互にオンオフを繰り返す形でスイッチング動作をさせるように、前記第1回路および前記第2回路に含まれる各スイッチング素子のゲートに制御信号を入力する
     ことを特徴とする昇降圧型整流回路システム。
    A buck-boost rectifier circuit system comprising a buck-boost rectifier circuit and a rectification control circuit for controlling the buck-boost rectifier circuit,
    The step-up / step-down rectifier circuit is:
    A first circuit including a plurality of dual gate type switching elements and connected to an AC power supply;
    A reactor connected to the output end of the first circuit;
    A second circuit including at least two single-gate switching elements and at least one dual-gate switching element and connected to the reactor;
    The rectification control circuit includes:
    The step-up / step-down rectifier circuit switches the current path between the first circuit and the second circuit depending on whether the step-up / step-down rectifier circuit operates by a single rectification method or a double rectification method. When the step-down operation is performed by storing energy in and discharging the energy stored in the reactor, the two switching elements included in the first circuit are alternately switched on and off, and the switching operation is performed. When boosting operation is performed by accumulating energy in the reactor and releasing energy accumulated in the reactor, switching is performed by alternately turning on and off the two single-gate switching elements included in the second circuit. Each switching element included in the first circuit and the second circuit so as to operate Buck-boost rectifier circuit system, wherein the control signal is input to the gate.
  2.  前記昇降圧型整流回路は、更に、少なくとも2つのコンデンサを含み且つ前記第2回路に接続され、前記第2回路からの出力を平滑化するための第3回路を有し、
     前記第1回路は、
     デュアルゲート型の第1、第2、第3および第4スイッチング素子から構成されるブリッジ回路と、
     前記ブリッジ回路の第1出力端と入力端との間に直列に接続されたデュアルゲート型の第5スイッチング素子および第6スイッチング素子と、
     一端側が前記ブリッジ回路の前記第1出力端と前記第5スイッチング素子および前記第6スイッチング素子からなる直列回路との間の接続点に接続されたデュアルゲート型の第7スイッチング素子とを有し、
     前記第2回路は、
     前記第7スイッチング素子の他端側と前記ブリッジ回路の第2出力端との間に直列に接続されたシングルゲート型の第8スイッチング素子および第9スイッチング素子と、
     一端側が前記第8スイッチング素子と前記第9スイッチング素子との間の接続点に接続されたデュアルゲート型の第10スイッチング素子とを有し、
     前記第3回路は、
     前記第8スイッチング素子と前記第9スイッチング素子とからなる直列回路の両端間に接続された第1コンデンサと、
     前記第1コンデンサの一端側と前記第10スイッチング素子の他端側との間に接続された第2コンデンサと、
     前記第1コンデンサの他端側と前記第10スイッチング素子の他端側との間に接続された第3コンデンサとを有し、
     前記リアクトルは、一端側が前記第5スイッチング素子と前記第6スイッチング素子との間の接続点に接続され、他端側が前記第8スイッチング素子と前記第9スイッチング素子との間の接続点に接続されてなる
     ことを特徴とする請求項1記載の昇降圧型整流回路システム。
    The step-up / step-down rectifier circuit further includes a third circuit including at least two capacitors and connected to the second circuit for smoothing an output from the second circuit,
    The first circuit includes:
    A bridge circuit composed of dual gate type first, second, third and fourth switching elements;
    A dual-gate fifth switching element and a sixth switching element connected in series between a first output terminal and an input terminal of the bridge circuit;
    A dual-gate seventh switching element having one end connected to a connection point between the first output terminal of the bridge circuit and a series circuit including the fifth switching element and the sixth switching element;
    The second circuit includes:
    A single gate type eighth switching element and a ninth switching element connected in series between the other end side of the seventh switching element and the second output end of the bridge circuit;
    A dual gate type tenth switching element having one end side connected to a connection point between the eighth switching element and the ninth switching element;
    The third circuit includes:
    A first capacitor connected between both ends of a series circuit composed of the eighth switching element and the ninth switching element;
    A second capacitor connected between one end side of the first capacitor and the other end side of the tenth switching element;
    A third capacitor connected between the other end side of the first capacitor and the other end side of the tenth switching element;
    The reactor has one end connected to a connection point between the fifth switching element and the sixth switching element, and the other end connected to a connection point between the eighth switching element and the ninth switching element. The step-up / step-down rectifier circuit system according to claim 1.
  3.  前記第8および第9スイッチング素子は、シングルゲート型FETからなり、
     前記第1乃至第7および第10スイッチング素子は、2つのFETのドレイン同士を接続してなるデュアルゲート型FETからなる
     ことを特徴とする請求項2記載の昇降圧型整流回路システム。
    The eighth and ninth switching elements are single gate FETs,
    The step-up / step-down rectifier circuit system according to claim 2, wherein the first to seventh and tenth switching elements are dual gate type FETs in which drains of two FETs are connected to each other.
  4.  シングルゲート型FETは、
     半導体基板上に形成された窒化物半導体からなる半導体層積層体と、
     前記半導体層積層体上に互いに離間して設けられたドレイン端子およびソース端子と、
     前記ドレイン端子およびソース端子の間に設けられたゲート端子とを備える
     ことを特徴とする請求項3に記載の昇降圧型整流回路システム。
    Single gate type FET
    A semiconductor layer stack made of a nitride semiconductor formed on a semiconductor substrate;
    A drain terminal and a source terminal provided apart from each other on the semiconductor layer stack;
    The step-up / step-down rectifier circuit system according to claim 3, further comprising: a gate terminal provided between the drain terminal and the source terminal.
  5.  前記デュアルゲート型FETは、
     半導体基板上に形成された窒化物半導体からなる半導体層積層体と、
     前記半導体層積層体上に互いに離間して設けられた第1出力端子および第2出力端子と、
     前記第1出力端子および前記第2出力端子の間に離間して設けられた第1ゲート端子および第2のゲート端子とを備える
     ことを特徴とする請求項3または請求項4に記載の昇降圧型整流回路システム。
    The dual gate FET is
    A semiconductor layer stack made of a nitride semiconductor formed on a semiconductor substrate;
    A first output terminal and a second output terminal provided on the semiconductor layer stack so as to be spaced apart from each other;
    The step-up / step-down type according to claim 3, further comprising: a first gate terminal and a second gate terminal which are provided apart from each other between the first output terminal and the second output terminal. Rectifier circuit system.
  6.  前記制御信号は、パルス列状の波形を有する信号である
     ことを特徴とする請求項1乃至5のいずれか1項に記載の昇降圧型整流回路システム。
    The step-up / step-down rectifier circuit system according to any one of claims 1 to 5, wherein the control signal is a signal having a pulse train waveform.
  7.  複数のデュアルゲート型のスイッチング素子を含み且つ交流電源に接続された第1回路と、
     前記第1回路に接続されたリアクトルと、
     少なくとも1つのシングルゲート型のスイッチング素子と少なくとも1つのデュアルゲート型のスイッチング素子とを含み且つ前記リアクトルに接続された第2回路と、
     少なくとも2つのコンデンサを含み且つ前記第2回路に接続された第3回路とを備える
     ことを特徴とする昇降圧型整流回路。
    A first circuit including a plurality of dual gate type switching elements and connected to an AC power source;
    A reactor connected to the first circuit;
    A second circuit including at least one single gate type switching element and at least one dual gate type switching element and connected to the reactor;
    A step-up / step-down rectifier circuit comprising: a third circuit including at least two capacitors and connected to the second circuit.
  8.  前記第1回路は、
     デュアルゲート型の第1、第2、第3および第4スイッチング素子から構成されるブリッジ回路と、
     前記ブリッジ回路の第1出力端と入力端との間に直列に接続されたデュアルゲート型の第5スイッチング素子および第6スイッチング素子と、
     一端側が前記ブリッジ回路の前記第1出力端と前記第5スイッチング素子および前記第6スイッチング素子からなる直列回路との間の接続点に接続されたデュアルゲート型の第7スイッチング素子とを有し、
     前記第2回路は、
     前記第7スイッチング素子の他端側と前記ブリッジ回路の第2出力端との間に直列に接続されたシングルゲート型の第8スイッチング素子および第9スイッチング素子と、
     一端側が前記第8スイッチング素子と前記第9スイッチング素子との間の接続点に接続されたデュアルゲート型の第10スイッチング素子とを有し、
     前記第3回路は、
     前記第8スイッチング素子と前記第9スイッチング素子とからなる直列回路の両端間に接続された第1コンデンサと、
     前記第1コンデンサの一端側と前記第10スイッチング素子の他端側との間に接続された第2コンデンサと、
     前記第1コンデンサの他端側と前記第10スイッチング素子の他端側との間に接続された第3コンデンサとを有し、
     前記リアクトルは、一端側が前記第5スイッチング素子と前記第6スイッチング素子との間の接続点に接続され、他端側が前記第8スイッチング素子と前記第9スイッチング素子との間の接続点に接続されてなる
     ことを特徴とする請求項7記載の昇降圧型整流回路。
    The first circuit includes:
    A bridge circuit composed of dual gate type first, second, third and fourth switching elements;
    A dual-gate fifth switching element and a sixth switching element connected in series between a first output terminal and an input terminal of the bridge circuit;
    A dual-gate seventh switching element having one end connected to a connection point between the first output terminal of the bridge circuit and a series circuit including the fifth switching element and the sixth switching element;
    The second circuit includes:
    A single gate type eighth switching element and a ninth switching element connected in series between the other end side of the seventh switching element and the second output end of the bridge circuit;
    A dual gate type tenth switching element having one end side connected to a connection point between the eighth switching element and the ninth switching element;
    The third circuit includes:
    A first capacitor connected between both ends of a series circuit composed of the eighth switching element and the ninth switching element;
    A second capacitor connected between one end side of the first capacitor and the other end side of the tenth switching element;
    A third capacitor connected between the other end side of the first capacitor and the other end side of the tenth switching element;
    The reactor has one end connected to a connection point between the fifth switching element and the sixth switching element, and the other end connected to a connection point between the eighth switching element and the ninth switching element. The step-up / step-down rectifier circuit according to claim 7.
PCT/JP2012/004585 2011-10-19 2012-07-18 Boost rectifier circuit system WO2013057857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-229420 2011-10-19
JP2011229420A JP2015006012A (en) 2011-10-19 2011-10-19 Step up/down rectification circuit system

Publications (1)

Publication Number Publication Date
WO2013057857A1 true WO2013057857A1 (en) 2013-04-25

Family

ID=48140529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004585 WO2013057857A1 (en) 2011-10-19 2012-07-18 Boost rectifier circuit system

Country Status (2)

Country Link
JP (1) JP2015006012A (en)
WO (1) WO2013057857A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056721A1 (en) * 2013-10-18 2015-04-23 三菱電機株式会社 Dc power source device, electric motor drive device, air conditioner, and refrigerator
WO2015056340A1 (en) * 2013-10-18 2015-04-23 三菱電機株式会社 Dc power source device, motor drive device, air conditioner, and refrigerator
WO2016009652A1 (en) * 2014-07-17 2016-01-21 株式会社日本マイクロニクス Semiconductor module, electric connector, and inspection device
US9692289B2 (en) 2013-06-25 2017-06-27 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
US9816737B2 (en) 2013-10-29 2017-11-14 Mitsubishi Electric Corporation DC power-supply device and refrigeration cycle device
US9960703B2 (en) 2013-09-06 2018-05-01 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
CN114726241A (en) * 2022-04-25 2022-07-08 北京索科曼正卓智能电气有限公司 Water electrolysis hydrogen production power supply device based on IGBT technology

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6959167B2 (en) * 2018-03-07 2021-11-02 シャープ株式会社 Power factor improvement circuit
KR102591130B1 (en) * 2020-07-21 2023-10-18 한국전력공사 Inverter and inverter control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095262A (en) * 1999-09-24 2001-04-06 Mitsubishi Heavy Ind Ltd Dc-voltage controller
JP2010187533A (en) * 2009-01-19 2010-08-26 Daikin Ind Ltd Bidirectional switch circuit and power converter having the same
JP2011050145A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Load control device
JP2011048978A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Load control device
JP2011087260A (en) * 2009-10-19 2011-04-28 Panasonic Electric Works Co Ltd Load control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095262A (en) * 1999-09-24 2001-04-06 Mitsubishi Heavy Ind Ltd Dc-voltage controller
JP2010187533A (en) * 2009-01-19 2010-08-26 Daikin Ind Ltd Bidirectional switch circuit and power converter having the same
JP2011050145A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Load control device
JP2011048978A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Load control device
JP2011087260A (en) * 2009-10-19 2011-04-28 Panasonic Electric Works Co Ltd Load control apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692289B2 (en) 2013-06-25 2017-06-27 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
US9960703B2 (en) 2013-09-06 2018-05-01 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
WO2015056721A1 (en) * 2013-10-18 2015-04-23 三菱電機株式会社 Dc power source device, electric motor drive device, air conditioner, and refrigerator
WO2015056340A1 (en) * 2013-10-18 2015-04-23 三菱電機株式会社 Dc power source device, motor drive device, air conditioner, and refrigerator
WO2015056341A1 (en) * 2013-10-18 2015-04-23 三菱電機株式会社 Dc power source device, motor drive device, air conditioner, and refrigerator
US10113784B2 (en) 2013-10-18 2018-10-30 Mitsubishi Electric Corporation Direct-current power supply device, motor driving device, air conditioner, and refrigerator
JPWO2015056340A1 (en) * 2013-10-18 2017-03-09 三菱電機株式会社 DC power supply, motor drive, air conditioner and refrigerator
JPWO2015056721A1 (en) * 2013-10-18 2017-03-09 三菱電機株式会社 DC power supply, motor drive, air conditioner and refrigerator
US9628003B2 (en) 2013-10-18 2017-04-18 Mitsubishi Electric Corporation Direct current power supply device, motor driving device, air conditioner, and refrigerator
US9816737B2 (en) 2013-10-29 2017-11-14 Mitsubishi Electric Corporation DC power-supply device and refrigeration cycle device
JPWO2016009652A1 (en) * 2014-07-17 2017-04-27 株式会社日本マイクロニクス Semiconductor module, electrical connection body, and inspection device
US10101365B2 (en) 2014-07-17 2018-10-16 Kabushiki Kaisha Nihon Micronics Semiconductor module, electrical connector, and inspection apparatus
WO2016009652A1 (en) * 2014-07-17 2016-01-21 株式会社日本マイクロニクス Semiconductor module, electric connector, and inspection device
CN114726241A (en) * 2022-04-25 2022-07-08 北京索科曼正卓智能电气有限公司 Water electrolysis hydrogen production power supply device based on IGBT technology

Also Published As

Publication number Publication date
JP2015006012A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2013057857A1 (en) Boost rectifier circuit system
WO2012176403A1 (en) Boost-type ac/dc converter
WO2012120788A1 (en) Boost pfc control device
KR101580721B1 (en) Power supply device
EP2143194B1 (en) Step-down switching regulator with freewheeling diode
JP5727300B2 (en) Voltage regulator
US10536074B2 (en) Power factor correcting converter
US8901906B2 (en) Control circuit and electronic apparatus using the same
US10673334B2 (en) Method for operating a power converter circuit and power converter circuit
TWI596875B (en) Buck converter with iii-nitride switch for substantially increased input-to-output voltage ratio
CN109660137B (en) Power converter using bidirectional active rectifier bridge and bidirectional active rectifier bridge
US20140266131A1 (en) Power Converter Circuit
US9036387B2 (en) Alternating-current/direct-current converter
CN109525109B (en) DC-DC converter
US20170110981A1 (en) Power Conversion Method and Power Converter
Zhang et al. Analysis and reduction method of conducted noise in GaN HEMTs based totem-pole bridgeless PFC converter
WO2012117675A1 (en) Boost pfc control device
WO2006106989A1 (en) Rectifying circuit and voltage converting circuit
JP5980009B2 (en) Switching power supply
Zhang et al. Adaptive continuous current source drivers to achieve efficiency improvement in wide load range
Matsu et al. Proposal and analyses of resonant bilateral converter employing simple zero current switches
JP2004173433A (en) Step-down chopper circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP