[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013054672A1 - 鉛蓄電池システム - Google Patents

鉛蓄電池システム Download PDF

Info

Publication number
WO2013054672A1
WO2013054672A1 PCT/JP2012/075316 JP2012075316W WO2013054672A1 WO 2013054672 A1 WO2013054672 A1 WO 2013054672A1 JP 2012075316 W JP2012075316 W JP 2012075316W WO 2013054672 A1 WO2013054672 A1 WO 2013054672A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
state
storage battery
soc
lead storage
Prior art date
Application number
PCT/JP2012/075316
Other languages
English (en)
French (fr)
Inventor
圭子 安部
井上 秀樹
敏之 澤
渡辺 雅浩
高林 久顯
下浦 一朗
啓介 福原
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2013538494A priority Critical patent/JP5741701B2/ja
Priority to CN201280049839.3A priority patent/CN103918120B/zh
Priority to US14/351,158 priority patent/US9711976B2/en
Publication of WO2013054672A1 publication Critical patent/WO2013054672A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead storage battery system.
  • the storage battery system for suppressing the fluctuation of the output of the wind power generation charges and discharges the storage battery so as to smooth the output of the wind power generation which fluctuates greatly in a short time. Thereby, the wind power generation and the output of the storage battery system are combined, and stable power can be supplied to the power system.
  • the storage battery system is required to have the same long life and cost as a wind power generator.
  • the storage battery used for this storage battery system is operated in a half-discharged state (PSOC: Partial State of Charge) so that it can be discharged or charged according to the output fluctuation of wind power generation.
  • PSOC Partial State of Charge
  • Patent Document 1 discloses an example in which the frequency of uniform charging of the storage battery is changed according to the temperature.
  • Patent Document 2 discloses that when the storage battery is uniformly charged, the overcharge amount is set to be lower (99% to 102%) than the conventional (110% to 115%) to prevent deterioration of the positive electrode.
  • Patent Document 3 the relationship between the operation of the storage battery and the life and deterioration is evaluated based on the data collected by the storage battery operation / storage battery deterioration data collection unit, and the necessary life requirement is satisfied based on the obtained information.
  • a storage battery control system for wind power generation is disclosed, in which a method of operating a storage battery is planned and a storage battery is operated according to the plan.
  • Patent Document 4 discloses a storage battery device that estimates a current battery state using a multi-dimensional characteristic model in which a plurality of relationship models of measured terminal voltage, current, and battery state are prepared for each deterioration degree.
  • Non-Patent Document 1 discloses a method of creating an SOC model (discharge model) that represents the relationship between the voltage, current, and temperature of a lead storage battery and the state of charge (SOC) of the lead storage battery.
  • SOC state of charge
  • the inventor has made it possible to estimate the SOC using the multidimensional characteristic model described in Patent Document 4 so far.
  • An object of the present invention is to suppress the deterioration of each lead storage battery constituting the lead storage battery group and to prolong the life of the lead storage battery.
  • battery states including current, voltage and temperature are measured individually for the lead-acid battery or lead-acid battery module constituting the lead-acid battery group, and each charge state is carried out by performing estimation using a charge state model. Calculate the maximum value and the minimum value of. And charge and discharge of a lead storage battery group are controlled by implementing equal charge so that the lead storage battery or lead storage battery module which has these charge states may not deteriorate.
  • ADVANTAGE OF THE INVENTION According to this invention, it can operate
  • the power cost for equalizing can be reduced.
  • the lead storage battery can be extended in life, the frequency of stopping the operation of the wind power storage system can be reduced, and management of the operation can be facilitated.
  • the present invention grasps the change over time of the charge condition (SOC: State of Charge) of the storage battery corresponding to natural energy such as a wind power generation system, and accordingly executes uniform charging at appropriate timing.
  • SOC State of Charge
  • the present invention relates to a storage battery system capable of prolonging the life and reducing the cost associated with even charging and loss associated with the shutdown of a wind power storage system.
  • the invention is particularly suitable for wind power fluctuation control applications.
  • the storage battery system for wind power fluctuation control is required to have the same long life and low cost as the wind power generator.
  • a storage battery system shall contain a storage battery, a control part etc. which control the operation.
  • FIG. 6 shows an example of a lead acid battery system for wind power fluctuation suppression.
  • the system output 603 is stabilized by charging and discharging the lead storage battery 602 in a form corresponding to the output of the wind power generator 601 having a large fluctuation, and combining the outputs. Thereby, smooth and stable power can be supplied to the power system.
  • Lead storage batteries for wind power generation fluctuation suppression are operated in partial discharge of state (PSOC: Partial State of Charge) so that both discharge and charge can be performed according to the power fluctuation of wind power generation.
  • PSOC Partial State of Charge
  • the frequency of equal charge may be less than the current about 2 weeks to prevent deterioration due to sulfation of the negative electrode.
  • uniform charging is performed too often for the purpose of grasping SOC, deterioration due to overcharging of the positive electrode is caused, and there is a problem that the life becomes short.
  • the purpose of equalizing the variation (hereinafter also referred to as “SOC variation”) of the SOC of each lead storage battery, ie, the variation of SOC was expanded Also, it is an object of the present invention to prevent the SOCs of many lead storage batteries constituting the lead storage battery group from reaching a sulfation region or an overcharge region which is a deterioration acceleration region. It focuses on the problem in the case of operating a lead storage battery system using the average value of SOC as an index without grasping the variation of SOC.
  • FIG. 3 is a graph showing an example of the temporal change of the variation of the SOC.
  • the SOC range in which the deterioration of the lead-acid battery does not accelerate is 30% to 90%.
  • SOC the SOC range in which the deterioration of the lead-acid battery does not accelerate.
  • the region where SOC is less than 30% it becomes a region (sulfation region) where deterioration due to sulfation of the negative electrode is promoted, and in the region where SOC exceeds 90%, the region where overcharge occurs in the positive electrode (overcharged region) It becomes. Therefore, in the drawing, the upper limit value of the sulfation region is 30%, and the lower limit value of the overcharged region is 90%.
  • the SOCs of all lead storage batteries are 100%. Thereafter, as charging and discharging are repeated, the difference between the SOC of the lead storage battery having a higher SOC and the lead storage battery of a lower SOC gradually increases.
  • the lead storage battery is controlled using the average SOC value as an index, for example, although the average SOC value (average SOC) is within the SOC use range of 30% to 90%, the SOC In lead-acid batteries (battery cells) with a low value, problems such as use in the sulfation region occur.
  • the causes of such variations include subtle individual differences that occur during manufacturing, variations in the temperature of each lead-acid battery in repetition of charging and discharging due to differences in the installed position, voltage and current of each lead-acid battery
  • the variation, the variation of the electrochemical reaction which occurs in the electrolyte solution inside a lead storage battery and the electrode surface in charge and discharge, etc. can be considered.
  • the uniform charging is performed periodically (every two weeks) before the variation of the SOC among the battery units thus predicted becomes large.
  • the lead storage battery system is a lead storage battery system capable of controlling charging and discharging of a lead storage battery group in which one or a plurality of lead storage battery modules in which a plurality of lead storage batteries or a plurality of lead storage batteries are connected in series are connected in parallel.
  • Individual battery state measurement unit that measures the battery state including current, voltage, and temperature individually for a lead storage battery or lead storage battery module, and a charge state model (SOC model) that is a correlation between the battery state and the charge state (SOC) ),
  • a charge state estimation unit for estimating an individual charge state which is a charge state of each lead storage battery or lead storage battery module from the charge state model and the battery state, a charge state maximum value and a charge state
  • a charging condition including a charge condition variation range grasping unit for calculating a local minimum value and a uniform charging execution management unit for controlling the uniform charging of the lead storage battery group
  • the local maximum value is the maximum value of the individual charge state
  • the local minimum value of the charge state is the minimum value of the individual charge state
  • the uniform charge implementation management unit enters the range where the local maximum value of charge is lower than the overcharge region and It is characterized in that the above-mentioned equal charge is carried out so that the state of charge minimum value falls within the range higher than the sulfation region.
  • the “state of charge maximum value” and the “state of charge minimum value” indicate the upper end which is an index with respect to the distribution of the value of the charge state in the case where statistical processing is performed on the finite number of values of the charge state. It means what was regarded as the value of and the value of the lower end. Therefore, as described above, the “maximum charge state value” may be set as the maximum value of the individual charge state, and the “minimum charge state value” may be set as the minimum value of the individual charge state. Further, as described next, the “state of charge maximum value” and the “state of charge minimum value” may be set based on the average value of the individual states of charge and the variation thereof.
  • the charge state variation range grasping part calculates an average value of the individual charge states and the variation thereof, and the charge state maximum value is a sum of the above average value and one half of the above variation, It is desirable that the state of charge minimum value be a difference between the above average value and one half of the above variation.
  • the lead storage battery system further includes a charge state use range adjustment unit for limiting the state of charge maximum value and the state of charge minimum value to an even narrower limit range in consideration of the influence of deterioration of the lead acid battery or the lead acid battery module; If the value and the state of charge local minimum fall out of the above-mentioned limit range, the equal charge implementation plan unit that plans the implementation of the equal charge, the equal charge implementation schedule notifier that notifies the implementation schedule of the equal charge, and the equal charge plan It is desirable to have an equal charge implementation manager that implements equal charge according to the above plan of the department.
  • the lead storage battery system further includes a charge state variation display unit that displays the state of charge maximum value and the state of charge minimum value or the above variation, a degradation model storage unit that stores the above state of degradation, and a degradation model storage unit.
  • a deterioration-ready charge state storage unit for storing the relationship between the deterioration degree estimation unit that estimates the deterioration degree that is the above-mentioned deterioration degree, the relationship between the deterioration degree and the above-described limited range according to the deterioration degree; It is desirable to have a charge condition and use range display unit for displaying the above-mentioned limit range after the change.
  • the above-mentioned limit range is a value obtained by adding half of the difference between the charge state maximum value and the charge state minimum value to the upper limit value of the sulfation region and the lower limit value of the overcharge region. It may be between a value and a value obtained by subtracting 1/2 of the difference between the value and the charge state minimum value.
  • the intervals of performing the equal charge may be different each time.
  • the interval of implementation of the uniform charge changes in accordance with the above-mentioned variation.
  • the lead storage battery system detects the full charge state individually for the lead storage battery or the lead storage battery module from the above battery state at the time of performing the equal charge, and the lead storage battery or the lead storage battery module which is fully charged is a charging circuit It is desirable to perform control to prevent overcharge by opening the
  • the "full charge state” refers to a 100% charge state. This control can suppress the deterioration of the positive electrode due to overcharging in equal charging.
  • FIG. 1 is a block diagram showing the configuration of a lead storage battery system according to an embodiment.
  • the lead storage battery system 1 includes a lead storage battery group 101, an individual battery state measurement unit 102, an SOC model storage unit 103 (charging state model storage unit), an SOC estimation unit 104 (charging state estimation unit), an SOC variation range grasping unit 105 (charging State variation range grasping unit), SOC usage range adjusting unit 106 (charging condition use range adjusting unit), equal charge implementation plan unit 107, equal charge implementation schedule notification unit 108, and equal charge implementation manager 109.
  • the lead storage battery group 101 is formed by connecting a plurality of lead storage batteries in series or in parallel. More specifically, one or a plurality of lead-acid battery modules 152 in which a plurality of lead-acid batteries 151 (hereinafter also referred to as "cells" or “cells”) are connected in series are connected in parallel.
  • the lead storage battery group 101 may be one lead storage battery module 152, or may be a pair of a plurality of lead storage batteries 151 connected in parallel.
  • the individual battery state measurement unit 102 includes a current measurement unit 161, a voltage measurement unit 162, and a temperature measurement unit 163, and is also referred to as a lead storage battery 151 of the lead storage battery group 101 (hereinafter also referred to as “individual cell” or “individual battery”. Or current (A), voltage (V), temperature (° C.), etc. of each lead-acid battery module 152 (hereinafter also referred to as “individual cell module” or “individual cell module”) To measure).
  • the SOC model storage unit 103 is a part storing an SOC model.
  • the SOC model is a model that represents the relationship between the current, voltage, temperature, and the like of the lead storage battery 151 and the state of charge (SOC) of the lead storage battery 151. This SOC model is prepared in advance by examining the characteristics of the lead storage battery 151.
  • the SOC model creation method is described in detail in Non-Patent Document 1 including the model creation procedure, as an example.
  • the SOC estimation unit 104 measures measurement information on the current (A), voltage (V), temperature (° C.), etc. of the individual cells or individual battery modules of the lead-acid battery group 101 measured by the individual battery state measurement unit 102 From the information on the relationship between the state of the lead storage battery such as current (A), voltage (V), temperature (° C.) and the state of charge (SOC) of the lead storage battery stored in the unit 103, charging of the individual lead storage battery Estimate the state (SOC).
  • the SOC variation range grasping unit 105 determines the maximum value and the minimum value (state of charge maximum value and state of charge minimum value) of the SOC in the lead storage battery group 101 or the lead storage battery module 152 from the SOC of the individual battery calculated by the SOC estimation unit 104. calculate. That is, statistical processing of the SOC is performed, and how the range of the variation is changing is grasped, and the state of the variation is grasped, and it is also determined whether the variation does not exceed the predetermined threshold or is exceeded. It is a site.
  • the SOC use range adjustment unit 106 adjusts the use range of the SOC to a range not affected by the deterioration of the lead storage battery 151 when the SOC variation is within a predetermined threshold. That is, the use range of the SOC is limited to a narrower range (limit range) between the lower limit value of the overcharge region and the upper limit value of the sulfation region to cope with the deterioration.
  • the equal charge implementation plan unit 107 plans implementation of equal charge when the SOC variation exceeds a predetermined threshold value.
  • the equal charge implementation schedule notification unit 108 notifies the implementation schedule of the equal charge.
  • uniform charging was performed regularly (every two weeks), so the implementation timing of the uniform charging was clear, but when performing uniform charging according to the variation of SOC as in the present invention
  • prediction time the next implementation time (prediction time) of equal charge is predicted in advance, management of the lead storage battery system becomes easy.
  • the equal charge implementation management unit 109 performs equal charge according to the plan of the equal charge implementation plan unit 107.
  • the “variation” of the SOC refers to what quantified differences in SOC of the plurality of lead storage batteries 151 or the plurality of lead storage battery modules 152.
  • the variation may be equal to the difference between the maximum value and the minimum value of all the estimated SOCs. Since the number of lead storage batteries 151 or lead storage battery modules 152 is limited, the variation is maximum in this case. In this case, it is possible to prevent all lead storage batteries 151 or lead storage battery modules 152 from reaching the sulfation area or the overcharge area.
  • the variation may be the difference between the upper limit value and the lower limit value of the error range of the SOC obtained along with the calculation of the average value of the SOC. That is, it is possible to use twice the average error, twice the standard deviation ( ⁇ ) (2 ⁇ ), full width at half maximum (FWHM), or the like as SOC variation. In this case, it is possible to prevent the lead storage battery 151 or the lead storage battery module 152 from reaching the sulfation area or the overcharge area.
  • SOC a value (4 ⁇ or 6 ⁇ ) or the like four or six times the standard deviation can be used.
  • 4 ⁇ or 6 ⁇ as SOC variation, it is possible to prevent most lead storage batteries 151 or lead storage battery modules 152 from reaching a sulfation area or an overcharge area.
  • Drawing 2 is a flow figure showing processing of a lead storage battery system concerning an embodiment.
  • the individual battery state measurement unit 102 measures the states (current (A), voltage (V), temperature (° C.), etc.) of individual modules or cells of the lead storage battery group 101 (S-201).
  • the SOC estimation unit 104 utilizes the SOC model storage unit 103 that indicates the relationship between the current, voltage, and temperature of an individual lead storage battery (also simply referred to as "battery”) and the SOC, and the current module of the lead storage battery Or estimate the SOC of the cell (S-202).
  • the SOC variation range grasping unit 105 examines the variation range of the SOC of the individual battery, and determines in the following step whether the variation is within the predetermined range or exceeds the predetermined range (S-203).
  • the SOC use range adjustment unit adjusts the use range of the SOC based on the variation range of the SOC of the individual battery (S-204-a). In addition, the method of adjustment of the use range of SOC is later mentioned in description of FIG.
  • the even charge implementation plan unit 107 plans the implementation (execution timing, implementation method, etc.) of the equal charge (S-204-b1).
  • the uniform charging implementation schedule notification unit 108 outputs the uniform charging implementation schedule information (S-204-b2).
  • S-204-b2 the uniform charging implementation schedule information
  • an example of the equal charge implementation schedule information is shown in FIG.
  • the even charge implementation management unit 109 carries out equal charge to the lead storage battery group 101 according to the plan of the equal charge planning unit 107 (S-204-b3).
  • uniform charging can be performed at an appropriate timing according to the SOC variation of individual battery cells or modules, and the lead storage battery can be extended in life.
  • the normal SOC use range (use range of SOC not promoting deterioration) is a range of 30% to 90% SOC. That is, the width of the use range is 60%.
  • SOC occurs in SOC of each battery (each lead storage battery), and in this example, the average value of SOC is 50%, and SOC is high Is 55% (average + 5%), and the low SOC is 45% (average-5%), resulting in SOC variation.
  • the use range of this limited SOC is called "limit range".
  • the width of the limit range in this example is 50%.
  • the normal use range of the SOC (use range of the SOC not promoting deterioration) is in the range of 30% to 90% of the SOC as in the example shown in FIG.
  • the SOC within a limited range of SOC (based on the average value of SOC and taking into account variation ( ⁇ 15%)
  • FIG. 7 is an SOC model (FIG. 7) showing the relationship between the voltage of the lead storage battery and the SOC of the lead storage battery when the current value of the lead storage battery is constant and the temperature is constant (temperature: 25 ° C., discharge current: 8 A) Discharge model) is shown.
  • FIG. 8 shows an example of an SOC model (discharge model) representing the relationship between the voltage of the lead storage battery and the SOC of the lead storage battery using the current value of the lead storage battery as a parameter when the temperature is fixed. .
  • the vertical axis represents voltage (V) (terminal voltage (V)), and the horizontal axis represents SOC.
  • FIG. 7 shows only the temperature: 25 ° C. and the discharge current: 8 A, for example, even in the case of the SOC model having the temperature: 25 ° C., as shown in FIG.
  • SOC models of such multiple curves at different temperatures and different degrees of deterioration It is preferable to further provide a characteristic curve for each temperature and each degree of deterioration.
  • Non-Patent Document 1 describes in detail the procedure of creating the SOC model.
  • FIG. 9 is a block diagram showing the configuration of a lead storage battery system according to another embodiment.
  • the change in the SOC use range of the lead acid battery which has deteriorated can also be taken into consideration.
  • lead storage battery group 101 individual battery state measurement unit 102, SOC model storage unit 103, SOC estimation unit 104 (charge condition estimation unit), SOC variation range grasping unit 105 (charge condition variation range grasping unit), SOC Variation display unit 901 (charged state variation display unit), deterioration model storage unit 902, deterioration degree estimation unit 903, deterioration corresponding SOC storage unit 904 (deterioration corresponding charge state storage unit: stores the relationship between deterioration degree and SOC usage range Part), SOC usage range adjustment unit 106, SOC usage range display unit 905 (charging state usage range display unit), equal charge implementation plan unit 107, equal charge implementation schedule notification unit 108, and equal charge implementation manager 109.
  • the SOC variation display unit 901 outputs (displays etc.) the SOC variation of the individual battery held by the SOC variation range grasping unit 105 to a user or an external system.
  • the deterioration model storage unit 902 is a part storing a model (deterioration model) of the degree of deterioration (degree of deterioration) of the lead storage battery.
  • the deterioration degree estimation unit 903 is a part that estimates the degree of deterioration of the lead storage battery using the deterioration model.
  • Various methods have been devised for degradation models and estimation methods of degradation. As a typical example, there is a method of estimating the degree of deterioration from the value of the internal resistance of a lead storage battery. This utilizes the property that the internal resistance increases as the lead-acid battery deteriorates.
  • the degradation model storage unit 902 and the degradation degree estimation unit 903 may be constructed using a method as shown in Patent Document 3.
  • FIG. 10 shows an example of the screen on which the state of SOC variation (SOC variation state) and the notice (notice) of equal charge are output.
  • SOC use range adjustment is performed until the SOC usage width is halved It can be said that equal charge will be performed when it is halved.
  • the threshold value can be determined by the battery capacity (margin) and how much the deterioration is desired to be prevented (the degree of deviation of the usage range is allowed).
  • the graph of (6) is displayed on the screen in the figure.
  • the variation of SOC of the individual battery is indicated by the average value of SOC, the high value of SOC or the low value of SOC, but the method of displaying the variation of SOC is also the average value And standard deviation, or other commonly used display method of variation degree may be used.
  • FIG. 11 shows an example of the relationship between the degree of deterioration and the use range of the SOC.
  • Deterioration of a lead storage battery means that the capacity is reduced from the viewpoint of electrical measurement data. For example, when the capacity is reduced by 30% from the rated capacity, it may be defined as the life of the battery.
  • the relationship between the degree of deterioration stored in the deterioration-correspondence SOC storage unit 904 and the use range of SOC is shown in FIG. As shown in. If the use range of the SOC is determined in consideration of the capacity decrease due to the deterioration of the battery, the SOC use range adjusting unit 106 considers both the degree of deterioration of the battery and the degree of variation of the individual battery. An appropriate SOC usage range can be defined.
  • the degradation of the battery is not promoted.
  • the lead storage battery is described as an example of the storage battery, even in the case of other types of storage batteries, if the range (upper limit value and lower limit value) of the appropriate charge state of the storage battery can be set, Equal charge can be controlled using the means of.
  • Example and comparative example regarding the operation condition of a lead storage battery system are described.
  • FIG. 12 shows the operation status of the lead storage battery system according to the embodiment.
  • the abscissa represents the elapsed time after the implementation of the equal charge, and the ordinate represents the SOC.
  • the use range of SOC (acceptable range of SOC) is 30% to 90%.
  • next equal charge is performed before the lower limit value of the variation of SOC reaches 30%.
  • uniform charging can be performed even before the upper limit value of SOC variation reaches 90%.
  • FIG. 13 shows an operation state of a lead storage battery system according to an example in which the deterioration degree of the lead storage battery is taken into consideration.
  • the abscissa represents the elapsed time after the implementation of the equal charge, and the ordinate represents the SOC.
  • the usage range of SOC at the start of operation (the allowable range of SOC) is 30% to 90%.
  • the lower limit value of the variation of SOC rises from 30% with the passage of time.
  • the upper limit value of SOC variation drops from 90% with the passage of time. Even when the deterioration of the lead storage battery progresses in this manner, the uniform charging can be performed so as to fall within the use range of the SOC.
  • FIG. 14 shows the operation state of the lead storage battery system according to the comparative example.
  • the abscissa represents the elapsed time after the implementation of the equal charge, and the ordinate represents the SOC.
  • the use range of SOC (acceptable range of SOC) is 30% to 90%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本発明は、鉛蓄電池群を構成するそれぞれの鉛蓄電池の劣化を抑制し、鉛蓄電池の寿命を長くすることができるようにしたものである。 鉛蓄電池群101を構成する鉛蓄電池151又は鉛蓄電池モジュール152について、個別に電流・電圧・温度などを測定する個別電池状態測定部102と、充電状態モデルを蓄積した充電状態モデル記憶部103と、充電状態モデル及び電池状態からそれぞれの鉛蓄電池151又は鉛蓄電池モジュール152の個別充電状態を推定する充電状態推定部104と、充電状態極大値及び充電状態極小値を算出する充電状態バラツキ範囲把握部105と、鉛蓄電池群101の均等充電の実施を制御する均等充電実施管理部109とを備え、均等充電実施管理部109は、充電状態極大値が過充電領域よりも低い範囲に入り、かつ、充電状態極小値がサルフェーション領域よりも高い範囲に入るように均等充電を実施する。

Description

鉛蓄電池システム
 本発明は、鉛蓄電池システムに関する。
 地球温暖化は、全人類にとって重大な問題である。各国において、温暖化の進行を遅らせ、食い止めるため、スマートグリッドを構築し、省エネルギーを推進するとともに、COを排出しない新エネルギー、即ち、太陽光や風力発電等の大量導入を推進しようとしている。
 風力発電は、自然エネルギーを利用しており、COを排出しないというメリットがあるものの、風まかせのため、発電出力が安定せず、電力系統への悪影響として電力品質の低下が懸念されている。このような電力系統への悪影響を防ぎ、エネルギーを有効利用するため、鉛蓄電池などを用いた風力発電・蓄電システムに期待が集まっている。
 風力発電の出力の変動を抑制するための蓄電池システムは、短時間に大きく変動する風力発電の出力を平滑化するように蓄電池の充放電を行う。これにより、風力発電及び蓄電池システムの出力が合成され、電力系統に安定した電力を供給することができる。
 この蓄電池システムは、風力発電機と同等程度に長寿命であることや低コストであることが求められている。
 この蓄電池システムに用いる蓄電池は、風力発電の出力変動に合わせ、放電も充電もできるように半放電状態(PSOC:Partial State of Charge)で運用される。従来の非常用(通常は満充電にしておき、必要な時に放電する。)や、産業用(夜間は満充電にしておき、昼間負荷の多い時に放電する。)とは異なり、通常の運用状態では満充電とならない。このように特殊な用途であるため、定期的(通常、1~2週間毎)に蓄電池を満充電とする均等充電(回復充電)が実施されている。
 特許文献1には、蓄電池の均等充電の頻度を気温に応じて変更する例が開示されている。特許文献2には、蓄電池の均等充電の際、過充電量を従来(110%~115%)より低い設定(99%~102%)とし、正極の劣化を防止する旨の開示がある。
 特許文献3には、蓄電池運用・蓄電池劣化データ収集部により収集されたデータをもとに蓄電池の運用と寿命及び劣化の関係を評価し、得られた情報に基づいて必要な寿命要件を満足する蓄電池の運用方法を計画し、その計画に従って蓄電池の運用する風力発電用蓄電池制御システムが開示されている。
 特許文献4には、測定された端子電圧、電流と電池状態の関係モデルを劣化度ごとに複数用意した多次元の特性モデルを用いて現在の電池状態を推定する蓄電池装置が開示されている。
 非特許文献1には、鉛蓄電池の電圧、電流及び温度と鉛蓄電池の充電状態(SOC)との関係を表すSOCモデル(放電モデル)の作成方法が開示されている。
特開2003-288947号公報 特開2004-39434号公報 特開2010-159661号公報 特開2011-75364号公報
階段状電流を用いた鉛蓄電池シミュレーションモデリング手法:電気学会論文誌B,128巻8号,2008年
 風力発電装置に組み合わせた鉛蓄電池システムにおいては、現在は、定期的(2週間毎)に均等充電を実施している。しかし、充電状態(SOC)の低下に伴う負極のサルフェーションによる劣化を防止する観点からは、均等充電の頻度を少なくしても間に合うことがわかってきた。
 一方、SOCの把握を目的として過頻度に均等充電を実施すると、正極の過充電による劣化を引き起こしてしまい、寿命が短くなってしまうという問題がある。
 発明者は、これまでに、特許文献4に記載した多次元の特性モデルを用いてSOCを推定することを可能とした。
 しかしながら、鉛蓄電池群を構成するそれぞれの鉛蓄電池のSOCを考慮した制御としては十分ではなかった。
 本発明の目的は、鉛蓄電池群を構成するそれぞれの鉛蓄電池の劣化を抑制し、鉛蓄電池の寿命を長くすることにある。
 本発明においては、鉛蓄電池群を構成する鉛蓄電池又は鉛蓄電池モジュールについて個別に電流、電圧及び温度を含む電池状態を測定し、充電状態モデルを用いた推定を実施することにより、それぞれの充電状態の極大値及び極小値を算出する。そして、これらの充電状態を有する鉛蓄電池又は鉛蓄電池モジュールが劣化しないように均等充電を実施することにより、鉛蓄電池群の充電及び放電を制御する。
 本発明によれば、それぞれの鉛蓄電池について劣化を抑制した状態で運用することができ、鉛蓄電池の寿命を長くすることができる。
 また、本発明によれば、均等充電のための電力コストを低減することができる。
 さらに、本発明によれば、鉛蓄電池を長寿命化することができるため、風力発電蓄電システムの運用を停止する頻度を減らすことができ、運用の管理をしやすくすることができる。
鉛蓄電池システムの構成を示すブロック図である。 鉛蓄電池システムの処理を示すフロー図である。 SOCのバラツキの経時変化の例を示すグラフである。 SOCの調整範囲の例を示すグラフである。 SOCのバラツキに基づいて均等充電を実施するタイミングを決定する状態を示すグラフである。 風力発電装置に組み合わせた鉛蓄電池システムを示す概略構成図である。 SOCモデルを利用したSOCの推定の例を示すグラフである。 SOCモデルの一例を示すグラフである。 鉛蓄電池システムの構成を示すブロック図である。 SOCのバラツキの状況及び均等充電の予告を表示する出力画面の模式図である。 劣化度とSOCの使用範囲との関係の例を示す図である。 実施例1に係る鉛蓄電池システムの運用状況を示すグラフである。 実施例2に係る鉛蓄電池システムの運用状況を示すグラフである。 比較例に係る鉛蓄電池システムの運用状況を示すグラフである。
 本発明は、風力発電システムなどの自然エネルギーに対応した蓄電池の充電状態(SOC:State of Charge)の経時変化を把握し、これに応じて適切なタイミングで均等充電を実施することにより、蓄電池の寿命を長くし、かつ、均等充電のコストや風力発電蓄電システムの停止に伴う損失を低減することを可能とした蓄電池システムに関するものである。本発明は、特に、風力発電の変動抑制用途に適している。
 すなわち、風力変動抑制用の蓄電池システムは、風力発電機と同等の長寿命を有すること及び低コストであることが求められている。
 なお、本明細書においては、蓄電池システムは、蓄電池と、その運用を制御する制御部等とを含むものとする。
 以下では、蓄電池の例として鉛蓄電池を用いた場合について説明する。
 図6は、風力変動抑制用鉛蓄電池システムの例を示したものである。
 本図においては、変動が激しい風力発電機601の出力に対応する形で鉛蓄電池602を充放電し、その出力を合成することにより、系統出力603を安定化させている。これにより、電力系統に滑らかで安定した電力を供給することができる。
 風力発電変動抑制用の鉛蓄電池は、風力発電の出力変動に合わせて、放電も充電もできるように半放電状態(PSOC:Partial State of Charge)で運用される。従来の非常用(通常は満充電にしておき、必要な時に放電する。)や、産業用(夜間は満充電にしておき、昼間負荷の多い時に放電する。)と異なり、通常運用状態では満充電とならない。
 このような特殊な用途においては、下記(a)及び(b)の目的から、定期的(通常、1~2週間毎)に鉛蓄電池を満充電とする均等充電(回復充電)を実施することが望ましいとされている。
 (a)SOCの低い状態が続くことによる負極のサルフェーションを原因とする劣化を防止する。
 (b)均等充電後にSOCを100%とすることにより SOCを把握する。
 しかし、負極のサルフェーションによる劣化を防止するためには、均等充電の頻度を現状の約2週間より少なくしてもよいことがわかってきた。一方、SOCの把握が目的で過頻度に均等充電を実施すると、正極の過充電による劣化を引き起こしてしまい、寿命が短くなってしまうという問題がある。
 本発明においては、上記(a)及び(b)に加えて、それぞれの鉛蓄電池のSOCのバラツキ(以下、「SOCバラツキ」とも呼ぶ。)を均一化する目的、すなわち、SOCのバラツキが拡大したとしても、鉛蓄電池群を構成する多くの鉛蓄電池のSOCが、劣化加速領域であるサルフェーション領域又は過充電領域に達してしまうことを防止することを目的とする。SOCのバラツキを把握せずにSOCの平均値を指標として鉛蓄電池システムを運用した場合の問題点に着目したものである。
 この問題点について図を用いて説明する。
 図3は、SOCのバラツキの経時変化の例を示すグラフである。
 本図においては、鉛蓄電池の劣化が加速しないSOCの範囲を30%~90%と仮定している。SOCが30%未満の領域では、負極のサルフェーションによる劣化を促進してしまう領域(サルフェーション領域)となり、SOCが90%を超えた領域では、正極に過充電による劣化が起こる領域(過充電領域)となる。よって、本図においては、サルフェーション領域の上限値が30%であり、過充電領域の下限値が90%である。
 均等充電を実施した直後は、全ての鉛蓄電池のSOCが100%となっている。その後、充放電を繰り返していくに従って、SOCが高めの鉛蓄電池と低めの鉛蓄電池との間のSOCの差が次第に大きくなっていく。平均的なSOCの値を指標として鉛蓄電池を制御していると、例えば、SOCの平均値(平均SOC)では、30%~90%のSOC使用範囲内となっているにもかかわらず、SOCが低い鉛蓄電池(電池個体)では、サルフェーション領域で使用してしまうといった問題が起こる。
 このようなバラツキの原因としては、製造の際に生じる微妙な個体差、設置された位置が異なることによる充放電の繰り返しにおけるそれぞれの鉛蓄電池の温度のバラツキ、それぞれの鉛蓄電池の電圧や電流のバラツキ、充放電において鉛蓄電池の内部の電解液や電極表面で生じる電気化学反応のバラツキ等が考えられる。
 したがって、現在は、このように予想される電池個体毎のSOCのバラツキが大きくなる前に、定期的(2週間毎)に均等充電を実施している。
 しかしながら、均等充電を頻繁に行い過ぎると、正極に過充電による劣化が起こり、寿命を早めるなどの問題があった。さらに、均等充電の頻度が多いと、その間は風力発電の変動抑制ができないため、運用管理面及びコスト面でもデメリットとなっていた。
 以下、本発明の一実施形態に係る鉛蓄電池システムについて説明する。
 前記鉛蓄電池システムは、鉛蓄電池又はこの鉛蓄電池を複数個直列に接続した鉛蓄電池モジュールを、1個又は複数個並列に接続した鉛蓄電池群の充電及び放電を制御可能とした鉛蓄電池システムであって、鉛蓄電池又は鉛蓄電池モジュールについて個別に電流、電圧及び温度を含む電池状態を測定する個別電池状態測定部と、電池状態と充電状態(SOC)との相関関係である充電状態モデル(SOCモデル)を蓄積した充電状態モデル記憶部と、充電状態モデル及び電池状態からそれぞれの鉛蓄電池又は鉛蓄電池モジュールの充電状態である個別充電状態を推定する充電状態推定部と、充電状態極大値及び充電状態極小値を算出する充電状態バラツキ範囲把握部と、鉛蓄電池群の均等充電の実施を制御する均等充電実施管理部とを備え、充電状態極大値は、個別充電状態の最大値とし、充電状態極小値は、個別充電状態の最小値とし、均等充電実施管理部は、充電状態極大値が過充電領域よりも低い範囲に入り、かつ、充電状態極小値がサルフェーション領域よりも高い範囲に入るように上記の均等充電を実施することを特徴とする。
 ここで、「充電状態極大値」及び「充電状態極小値」とは、有限個の充電状態の値について統計的な処理を行った場合における充電状態の値の分布に関して、それぞれ、指標となる上端の値及び下端の値とみなしたものをいう。よって、上記のように、「充電状態極大値」を個別充電状態の最大値とし、「充電状態極小値」を個別充電状態の最小値としてもよい。また、次に述べるように、「充電状態極大値」及び「充電状態極小値」を個別充電状態の平均値及びそのバラツキに基づいて設定してもよい。
 前記鉛蓄電池システムは、充電状態バラツキ範囲把握部は、個別充電状態の平均値及びそのバラツキを算出し、充電状態極大値は、上記の平均値と上記のバラツキの1/2との和とし、充電状態極小値は、上記の平均値と上記のバラツキの1/2との差としたものであることが望ましい。
 前記鉛蓄電池システムは、さらに、鉛蓄電池又は鉛蓄電池モジュールの劣化の影響を考慮して充電状態極大値及び充電状態極小値を更に狭い制限範囲に制限する充電状態使用範囲調整部と、充電状態極大値及び充電状態極小値が上記の制限範囲から外れた場合に均等充電の実施の計画をする均等充電実施計画部と、均等充電の実施予定を通知する均等充電実施予定通知部と、均等充電計画部の上記の計画に従って均等充電を実施する均等充電実施管理部とを備えたものであることが望ましい。
 前記鉛蓄電池システムは、さらに、充電状態極大値及び充電状態極小値又は上記のバラツキを表示する充電状態バラツキ表示部と、上記の劣化の状況を記憶する劣化モデル記憶部と、劣化モデル記憶部を用いて上記の劣化の度合いである劣化度を推定する劣化度推定部と、劣化度と劣化度に応じた上記の制限範囲との関係を記憶する劣化対応充電状態記憶部と、上記の調整をした後の上記の制限範囲を表示する充電状態使用範囲表示部とを備えたものであることが望ましい。
 前記鉛蓄電池システムにおいて、上記の制限範囲は、サルフェーション領域の上限値に充電状態極大値と充電状態極小値との差の1/2を加えた値と、過充電領域の下限値から充電状態極大値と充電状態極小値との差の1/2を引いた値との間としたものであってもよい。
 前記鉛蓄電池システムは、均等充電の実施の間隔は、毎回異なってもよい。
 前記鉛蓄電池システムは、均等充電の実施の間隔は、上記のバラツキに応じて変わる。
 前記鉛蓄電池システムは、均等充電の実施の際、上記の電池状態から鉛蓄電池又は鉛蓄電池モジュールについて個別に満充電状態を検知し、満充電状態となった鉛蓄電池又は鉛蓄電池モジュールは、充電回路を開として過充電を防止する制御を行うことが望ましい。ここで、「満充電状態」とは、充電状態100%をいう。この制御により、均等充電における過充電による正極の劣化を抑制することができる。
 以下、図面を用いて詳しく説明する。
 図1は、実施形態に係る鉛蓄電池システムの構成を示すブロック図である。
 鉛蓄電池システム1は、鉛蓄電池群101、個別電池状態測定部102、SOCモデル記憶部103(充電状態モデル記憶部)、SOC推定部104(充電状態推定部)、SOCバラツキ範囲把握部105(充電状態バラツキ範囲把握部)、SOC使用範囲調整部106(充電状態使用範囲調整部)、均等充電実施計画部107、均等充電実施予定通知部108及び均等充電実施管理部109を含む。
 これらの機能について説明する。
 鉛蓄電池群101は、複数個の鉛蓄電池を直列又は並列に接続したものである。更に具体的には、複数個の鉛蓄電池151(以下、「セル」又は「電池」とも呼ぶ。)を直列に接続した鉛蓄電池モジュール152を1個又は複数個並列に接続したものである。鉛蓄電池群101は、一個の鉛蓄電池モジュール152であってもよく、複数個の鉛蓄電池151を並列に接続したもの一組であってもよい。
 個別電池状態測定部102は、電流測定部161、電圧測定部162及び温度測定部163を含み、鉛蓄電池群101のそれぞれの鉛蓄電池151(以下、「個別セル」若しくは「個別電池」とも呼ぶ。)又はそれぞれの鉛蓄電池モジュール152(以下、「個別セルモジュール」若しくは「個別電池モジュール」とも呼ぶ。)の電流(A)、電圧(V)、温度(℃)など、鉛蓄電池の状態(電池状態と呼ぶ。)を測定する。
 SOCモデル記憶部103は、SOCモデルを記憶した部位である。SOCモデルは、鉛蓄電池151の電流、電圧、温度などと鉛蓄電池151の電池充電状態(SOC)との関係を表すモデルである。このSOCモデルは、予め、鉛蓄電池151の特性を調べて作成しておく。
 なお、SOCモデルの作成方法については、一例として、非特許文献1にモデルの作成手順を含め、詳しく記載されている。
 SOC推定部104は、個別電池状態測定部102によって測定した鉛蓄電池群101の個別セル又は個別電池モジュールの電流(A)、電圧(V)、温度(℃)などに関する測定情報と、SOCモデル記憶部103に格納されている電流(A)、電圧(V)、温度(℃)等の鉛蓄電池の状態と鉛蓄電池の充電状態(SOC)との関係に関する情報とから、個別の鉛蓄電池の充電状態(SOC)を推定する。
 なお、SOCモデルを用いた蓄電池の充電状態(SOC)の推定方法については、特許文献4に詳しく実施方法を記載している。
 SOCバラツキ範囲把握部105は、SOC推定部104が算出した個別電池のSOCから、鉛蓄電池群101又は鉛蓄電池モジュール152におけるSOCの極大値及び極小値(充電状態極大値及び充電状態極小値)を算出する。すなわち、SOCの統計的な処理を行い、そのバラツキの範囲がどのように変化しているか、バラツキの状態を把握するとともに、バラツキが所定のしきい値を超えないか、あるいは超えたかの判定も行う部位である。
 SOC使用範囲調整部106は、SOCバラツキが所定のしきい値内の場合にSOCの使用範囲を鉛蓄電池151が劣化の影響を受けない範囲に調整するものである。すなわち、SOCの使用範囲を、過充電領域の下限値とサルフェーション領域の上限値との間の更に狭い範囲(制限範囲)に制限し、劣化に対応するものである。
 均等充電実施計画部107は、SOCバラツキが所定のしきい値を超えた場合に均等充電の実施を計画するものである。
 また、本図においては、均等充電実施予定通知部108が均等充電の実施予定を通知するようになっている。従来は、定期的に(2週間毎に)均等充電を実施していたので、均等充電の実施時期が明確であったが、本発明のようにSOCのバラツキに応じて均等充電を実施する場合には、予め、次回の均等充電の実施時期(予測時期)を予告するようにすると、鉛蓄電池システムの利用者にとって管理が容易となる。
 均等充電実施管理部109は、均等充電実施計画部107の計画に従って均等充電を実施するものである。
 本明細書においてSOCの「バラツキ」とは、複数個の鉛蓄電池151又は複数個の鉛蓄電池モジュール152のそれぞれのSOCの差異を定量化したものをいう。当該バラツキは、推定したすべてのSOCの最大値と最小値との差と等しいとしてもよい。鉛蓄電池151又は鉛蓄電池モジュール152の個数は有限であるから、当該バラツキは、この場合に最大となる。そして、この場合、すべての鉛蓄電池151又は鉛蓄電池モジュール152についてサルフェーション領域又は過充電領域に達してしまうことを防止することができる。
 また、当該バラツキは、SOCの平均値の算出に伴って得られるSOCの誤差範囲の上限値と下限値との差であってもよい。すなわち、SOCのバラツキとして平均誤差の2倍、標準偏差(σ)の2倍(2σ)、半値全幅(FWHM:full width at half maximum)等を用いることができる。この場合、多くの鉛蓄電池151又は鉛蓄電池モジュール152についてサルフェーション領域又は過充電領域に達してしまうことを防止することができる。
 また、SOCのバラツキとして標準偏差の4倍又は6倍の値(4σ又は6σ)等を用いることができる。SOCのバラツキとして4σ又は6σを用いれば、大部分の鉛蓄電池151又は鉛蓄電池モジュール152についてサルフェーション領域又は過充電領域に達することを防止することができる。
 次に、処理フローについて説明する。
 図2は、実施形態に係る鉛蓄電池システムの処理を示すフロー図である。
 まず、個別電池状態測定部102が鉛蓄電池群101の個別のモジュール又はセルの状態(電流(A)、電圧(V)、温度(℃)など)を測定する(S-201)。
 次に、SOC推定部104が個別の鉛蓄電池(単に「電池」とも呼ぶ。)の電流・電圧・温度とSOCとの関係を示すSOCモデル記憶部103を利用し、現在の鉛蓄電池の個別モジュール又はセルのSOCを推定する(S-202)。
 そして、SOCバラツキ範囲把握部105が個別電池のSOCのバラツキの範囲を調べるとともに、バラツキが所定の範囲内か、所定の範囲を超えたか、について以下のステップで判定する(S-203)。
 バラツキが「所定の範囲内」?それとも「所定の範囲を超えた」?いずれの状況か?(S-204)。
 もし、「所定の範囲内」であるならば、SOC使用範囲調整部は、SOCの使用範囲を個別電池のSOCのバラツキ範囲をもとに調整する(S-204-a)。なお、SOCの使用範囲の調整の仕方は、図4の説明において後述する。
 また、もし、「所定の範囲を超えた」場合には、均等充実施計画部107が均等充電の実施(実施タイミング、実施方法など)を計画する(S-204-b1)。
 均等充電実施予定通知部108が均等充電実施予定情報を出力する(S-204-b2)。なお、均等充電実施予定情報の一例は、図10に示している。
 そして、均等充電実施管理部109が、均等充計画部107の計画に従って、鉛蓄電池群101に対して均等充電を実施する(S-204-b3)。
 以上の処理により、個別の電池セル又はモジュールのSOCバラツキに応じて適切なタイミングで均等充電を実施することができ、鉛蓄電池を長寿命化することができる。
 図4及び5を用いてSOCの使用範囲の調整の例を説明する。
 図4に示す例においては、通常のSOCの使用範囲(劣化を促進しないSOCの使用範囲)は、SOCが30%~90%の領域である。すなわち、当該使用範囲の幅は60%である。
 均等充電を実施した後、しばらく充放電を繰り返しているうちに、電池個体毎(それぞれの鉛蓄電池)のSOCにバラツキが発生し、この例では、SOCの平均値が50%、SOCの高い方が55%(平均+5%)、SOCの低い方が45%(平均-5%)となってSOCのバラツキが発生している。
 この場合、SOCが高い個体(セル)及び低い個体(セル)のいずれも劣化を促進しない範囲内にSOCを収めようとすると、SOCの使用範囲(SOCの平均値を基準とし、バラツキ(±5%)を考慮したSOCの使用範囲)は、35%~85%(30+5=35%から90-5=85%までの間の領域)に制限することが望ましい。この制限されたSOCの使用範囲を「制限範囲」と呼ぶ。この例における制限範囲の幅は50%である。
 また、図5に示す例において、通常のSOCの使用範囲(劣化を促進しないSOCの使用範囲)は、図4に示す例と同様に、SOCが30%~90%の領域である。
 均等充電を実施した後、しばらく充放電を繰り返しているうちに、電池個体毎のSOCにバラツキが発生し、この例では、SOCの平均値が50%、SOCの高い方(最大値)が65%(平均+15%)、SOCの低い方(最小値)が35%(平均-15%)となってSOCのバラツキが増大している。
 この場合、SOCが高い個体及び低い個体のいずれも劣化を促進しない範囲内にSOCを収めようとすると、SOCの制限範囲(SOCの平均値を基準とし、バラツキ(±15%)を考慮したSOCの使用範囲)は、45%~75%(30+15=45%から、90-15=75%までの領域)となる。
 そうすると、実質使用できるSOCの幅は、75-45=30%分であり、もとの幅(90-30=60%分)の半分となってしまう。このようにバラツキが大きくなってしまうと、劣化を促進せずに使用できる電池のSOCの範囲が狭くなってしまうので、その場合には、均等充電を実施し、電池個体のSOCのバラツキを補正する必要がある。
 次に、図7及び図8を用いて、SOCモデル及びこれを用いた充電状態(SOC)の推定について説明する。
 図7は、鉛蓄電池の電流値を一定とし、かつ、温度を一定とした場合(温度:25℃、放電電流:8A)の鉛蓄電池の電圧と鉛蓄電池のSOCとの関係を表すSOCモデル(放電モデル)の例を示したものである。
 また、図8は、温度を一定とした場合に鉛蓄電池の電流値をパラメータとして、鉛蓄電池の電圧と鉛蓄電池のSOCとの関係を表すSOCモデル(放電モデル)の例を示したものである。
 図7及び図8においては、ともに、縦軸に電圧(V)(端子電圧(V))、横軸にSOCをとっている。
 図7に示すように、例えば、温度が25℃で8Aの電流を流している場合に端子電圧を測定した結果が2.04(V)であったとする。この場合、図7から、鉛蓄電池のSOCは0.85(85%)であると推定することができる。
 図7の例では、温度:25℃、放電電流:8Aのみの例を示したが、例えば、温度:25℃のSOCモデルであっても、図8に示すように、電流値毎に複数の特性カーブが存在する。また、異なる温度や異なる劣化度毎に、このような複数のカーブのSOCモデルが存在する。温度毎や劣化度毎にも、更に特性カーブを設けるとよい。
 なお、SOCモデルや、SOCモデルを用いたSOC推定方法(図7及び図8)の詳細は、特許文献4に詳しく実施方法を記載している。また、SOCモデルの作成方法については、一例として、非特許文献1にSOCモデルの作成手順を含め、詳しく記載されている。
 図9は、他の実施形態に係る鉛蓄電池システムの構成を示すブロック図である。
 本図に示す実施形態においては、劣化してきた鉛蓄電池のSOC使用範囲の変化も考慮することができる。
 本図においては、鉛蓄電池群101、個別電池状態測定部102、SOCモデル記憶部103、SOC推定部104(充電状態推定部)、SOCバラツキ範囲把握部105(充電状態バラツキ範囲把握部)、SOCバラツキ表示部901(充電状態バラツキ表示部)、劣化モデル記憶部902、劣化度推定部903、劣化対応SOC記憶部904(劣化対応充電状態記憶部:劣化度とSOC使用範囲との関係を記憶する部位)、SOC使用範囲調整部106、SOC使用範囲表示部905(充電状態使用範囲表示部)、均等充電実施計画部107、均等充電実施予定通知部108及び均等充電実施管理部109を含む。
 これらの機能のうち、図1と異なる部分を中心に説明する。
 SOCバラツキ表示部901は、SOCバラツキ範囲把握部105が保持している個別電池のSOCバラツキをユーザや外部のシステムに出力(表示等)するものである。
 劣化モデル記憶部902は、鉛蓄電池の劣化具合(劣化の度合い)のモデル(劣化モデル)を記憶した部位である。また、劣化度推定部903は、劣化モデルを用いて鉛蓄電池の劣化具合を推定する部分である。劣化モデル及び劣化の推定方法には様々な方法が考案されている。代表的な例としては、鉛蓄電池の内部抵抗の値から劣化度を推定する方法がある。これは、鉛蓄電池の劣化が進むに従って、内部抵抗が増大するという性質を利用したものである。他にも、特許文献3に示されるような方法を用いて劣化モデル記憶部902及び劣化度推定部903を構築しても良い。
 図10は、SOCのバラツキの状況(SOCバラツキ状況)及び均等充電の予告(通知)を出力した画面の例を示したものである。
 本図において画面には、次のものを表示している。
 (1)SOCバラツキ状況
 (2)均等充電を実施するバラツキ(しきい値)
 (3)均等充電の実施予定
 (4)通常のSOCの使用範囲
 (5)バラツキ・劣化防止を考慮し調整したSOC使用範囲
 (6)均等充電からの経過時間、個別電池のSOCバラツキ状況、次回の均等充電実施予定などを表示するグラフ
 上記(1)~(5)のうち、(2)均等充電を実施するバラツキ(しきい値)については、鉛蓄電池を使って風力変動抑制を実施するシステム側で適切に定めることができる。即ち、風力変動抑制を行うために必要な鉛蓄電池の容量を、どの程度の余裕をもって備えているかによって、定めることができる。例えば、将来の電池の劣化(容量低下)やその他の変動要因も見越して、必要な容量の2倍の電池を設置しているならば、SOC使用幅が半分となるまでSOC使用範囲調整を実施し、半分となったところで均等充電を実施するということにすることができる。
 しかし、もし、鉛蓄電池の容量の余裕が30%しかないならば、SOCの使用範囲の調整で対応できるのは、SOCの使用範囲が30%減少するまでであり、それを超える前に均等充電を実施して、SOCのバラツキを補正する方法が考えられる。あるいは、状況によっては、推奨されるSOCの使用範囲を多少逸脱しても、それが短期間であればOKとするということも可能である。しきい値については、電池の容量(余裕具合)や、劣化をどの程度防ぎたいか(使用範囲の逸脱をどの程度許容するか)によって、定めることができる。
 また、本図において画面には、上記(6)のグラフを表示している。このグラフにおいては、個別電池のSOCのバラツキを、SOCの平均値、SOCのうち高い値及びSOCのうち低い値で表示しているが、SOCのバラツキの表示方法は、他にも、平均値及び標準偏差で表してもよいし、他の一般に用いられるバラツキ具合の表示方法を用いてもよい。
 図11は、劣化度とSOCの使用範囲との関係の例を示したものである。
 「鉛蓄電池が劣化する」とは、電気的な測定データの観点からは、容量が少なくなることを意味する。例えば、容量が定格容量から30%減少した場合をその電池の寿命と定める場合もある。
 鉛蓄電池の容量が減少してきた場合、均等充電を実施した後のSOCを100%であると規定すると、見かけ上は、SOCの使用範囲が低い方から減っていくように見える。例えば、容量が定格容量から10%減少してしまった場合、その電池はSOC10%(=0+10%)~100%の電池(推奨されるSOCの使用範囲が40%(=30+10%)~90%)の電池というように捉えることができる。
 このような劣化に伴う容量低下を考慮した場合、劣化対応SOC記憶部904に記憶された劣化度とSOCの使用範囲(劣化を促進しない推奨されるSOCの使用範囲)との関係は、本図に示す通りである。このような電池の劣化に伴う容量低下を考慮して、SOCの使用範囲を定めておくと、SOC使用範囲調整部106は、電池の劣化具合及び個別電池のバラツキ具合の両方を考慮して、適切なSOCの使用範囲を定めることができる。
 具体的には、例えば、容量が10%減少した劣化電池においてSOCのバラツキが平均値から高い方が+5%、平均値から低い方が-5%である場合、電池の劣化を促進しないように調整した後のSOCの使用範囲を45%(=40+5%)~85%(=90-5%)と定めることができる。
 以上の説明においては、蓄電池の例として鉛蓄電池を用いて説明したが、他の種類の蓄電池の場合も、蓄電池の適正な充電状態の範囲(上限値及び下限値)が設定できる場合は、同様の手段を用いて均等充電を制御することができる。
 以下、鉛蓄電池システムの運用状況に関する実施例及び比較例について説明する。
 図12は、実施例に係る鉛蓄電池システムの運用状況を示したものである。横軸に均等充電実施後の経過時間をとり、縦軸にSOCをとっている。SOCの使用範囲(SOCの許容範囲)は、30%~90%である。
 本図においては、SOCのバラツキの下限値が30%に達する前に次の均等充電を実施する。一方、SOCのバラツキの上限値が90%に達する前にも均等充電を実施することができる。
 これにより、多くの鉛蓄電池がサルフェーション領域に達することなく充電されるため、鉛蓄電池の劣化を抑制することができる。
 図13は、鉛蓄電池の劣化度を考慮した実施例に係る鉛蓄電池システムの運用状況を示したものである。横軸に均等充電実施後の経過時間をとり、縦軸にSOCをとっている。運用開始時におけるSOCの使用範囲(SOCの許容範囲)は、30%~90%である。
 本図においては、SOCのバラツキの下限値が30%から時間の経過とともに上昇する。一方、SOCのバラツキの上限値は90%から時間の経過とともに下降する。このように鉛蓄電池の劣化が進行する場合も、SOCの使用範囲に収まるように均等充電を実施することができる。
 これにより、多くの鉛蓄電池がサルフェーション領域に達することなく充電されるため、鉛蓄電池の劣化を抑制することができる。
 (比較例)
 図14は、比較例に係る鉛蓄電池システムの運用状況を示したものである。横軸に均等充電実施後の経過時間をとり、縦軸にSOCをとっている。SOCの使用範囲(SOCの許容範囲)は、30%~90%である。
 本図においては、SOCの平均値は30%より大きい値を示しているが、SOCの平均値よりも低いSOCとなった鉛蓄電池が30%以下に達している。この状態から次の均等充電を実施したとしても、このような運用を繰り返していると、鉛蓄電池の半数程度が劣化しやすくなる。
 以上より、SOCのバラツキを考慮することにより、多くの鉛蓄電池の劣化を抑制することができるようになることがわかる。
 1:鉛蓄電池システム、101:鉛蓄電池群、102:個別電池状態測定部、103:SOCモデル記憶部、104:SOC推定部、105:SOCバラツキ範囲把握部、106:SOC使用範囲調整部、107:均等充電実施計画部、108:均等充電実施予定通知部、109:均等充電実施管理部、151:鉛蓄電池、152:鉛蓄電池モジュール、161:電流測定部、162:電圧測定部、163:温度測定部、901:SOCバラツキ表示部、902:劣化モデル記憶部、903:劣化度推定部、904:劣化対応SOC記憶部、905:SOC使用範囲表示部。

Claims (8)

  1.  鉛蓄電池又はこの鉛蓄電池を複数個直列に接続した鉛蓄電池モジュールを、1個又は複数個並列に接続した鉛蓄電池群の充電及び放電を制御可能とした鉛蓄電池システムであって、前記鉛蓄電池又は前記鉛蓄電池モジュールについて個別に電流、電圧及び温度を含む電池状態を測定する個別電池状態測定部と、前記電池状態と充電状態との相関関係である充電状態モデルを蓄積した充電状態モデル記憶部と、前記充電状態モデル及び前記電池状態からそれぞれの前記鉛蓄電池又は前記鉛蓄電池モジュールの充電状態である個別充電状態を推定する充電状態推定部と、充電状態極大値及び充電状態極小値を算出する充電状態バラツキ範囲把握部と、前記鉛蓄電池群の均等充電の実施を制御する均等充電実施管理部とを備え、前記充電状態極大値は、前記個別充電状態の最大値とし、前記充電状態極小値は、前記個別充電状態の最小値とし、前記均等充電実施管理部は、前記充電状態極大値が過充電領域よりも低い範囲に入り、かつ、前記充電状態極小値がサルフェーション領域よりも高い範囲に入るように前記均等充電を実施することを特徴とする鉛蓄電池システム。
  2.  前記充電状態バラツキ範囲把握部は、前記個別充電状態の平均値及びそのバラツキを算出し、前記充電状態極大値は、前記平均値と前記バラツキの1/2との和とし、前記充電状態極小値は、前記平均値と前記バラツキの1/2との差としたことを特徴とする請求項1記載の鉛蓄電池システム。
  3.  さらに、前記鉛蓄電池又は前記鉛蓄電池モジュールの劣化の影響を考慮して前記充電状態極大値及び前記充電状態極小値を更に狭い制限範囲に制限する充電状態使用範囲調整部と、前記充電状態極大値及び前記充電状態極小値が前記制限範囲から外れた場合に前記均等充電の実施の計画をする均等充電実施計画部と、前記均等充電の実施予定を通知する均等充電実施予定通知部と、前記均等充電計画部の前記計画に従って前記均等充電を実施する均等充電実施管理部とを備えたことを特徴とする請求項1又は2に記載の鉛蓄電池システム。
  4.  さらに、前記充電状態極大値及び前記充電状態極小値又は前記バラツキを表示する充電状態バラツキ表示部と、前記劣化の状況を記憶する劣化モデル記憶部と、前記劣化モデル記憶部を用いて前記劣化の度合いである劣化度を推定する劣化度推定部と、前記劣化度と前記劣化度に応じた前記制限範囲との関係を記憶する劣化対応充電状態記憶部と、前記調整をした後の前記制限範囲を表示する充電状態使用範囲表示部とを備えたことを特徴とする請求項3記載の鉛蓄電池システム。
  5.  前記制限範囲は、前記サルフェーション領域の上限値に前記充電状態極大値と前記充電状態極小値との差の1/2を加えた値と、前記過充電領域の下限値から前記充電状態極大値と前記充電状態極小値との差の1/2を引いた値との間としたことを特徴とする請求項3又は4に記載の鉛蓄電池システム。
  6.  前記均等充電の実施の間隔は、毎回異なることを特徴とする請求項1~5のいずれか一項に記載の鉛蓄電池システム。
  7.  前記均等充電の実施の間隔は、前記バラツキに応じて変わることを特徴とする請求項1~6のいずれか一項に記載の鉛蓄電池システム。
  8.  前記均等充電の実施の際、前記電池状態から前記鉛蓄電池又は前記鉛蓄電池モジュールについて個別に満充電状態を検知し、前記満充電状態となった前記鉛蓄電池又は前記鉛蓄電池モジュールは、充電回路を開として過充電を防止する制御を行うことを特徴とする請求項1~7のいずれか一項に記載の鉛蓄電池システム
PCT/JP2012/075316 2011-10-11 2012-10-01 鉛蓄電池システム WO2013054672A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013538494A JP5741701B2 (ja) 2011-10-11 2012-10-01 鉛蓄電池システム
CN201280049839.3A CN103918120B (zh) 2011-10-11 2012-10-01 铅蓄电池系统
US14/351,158 US9711976B2 (en) 2011-10-11 2012-10-01 Lead storage battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-223644 2011-10-11
JP2011223644 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013054672A1 true WO2013054672A1 (ja) 2013-04-18

Family

ID=48081729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075316 WO2013054672A1 (ja) 2011-10-11 2012-10-01 鉛蓄電池システム

Country Status (5)

Country Link
US (1) US9711976B2 (ja)
JP (1) JP5741701B2 (ja)
CN (1) CN103918120B (ja)
TW (1) TWI569029B (ja)
WO (1) WO2013054672A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178994A3 (en) * 2013-04-30 2015-01-08 Nuvera Fuel Cells, Inc. Battery state-of-charge aggregation method
WO2016009389A1 (en) * 2014-07-16 2016-01-21 Wayne State University Balanced control strategies for interconnected heterogeneous battery systems in smart grid applications
JP2016195495A (ja) * 2015-03-31 2016-11-17 古河電気工業株式会社 二次電池充電制御装置および二次電池充電制御方法
KR20160146032A (ko) * 2015-06-11 2016-12-21 삼성전자주식회사 배터리의 상태를 추정하는 장치 및 방법
WO2018147194A1 (ja) * 2017-02-07 2018-08-16 日本電気株式会社 蓄電池制御装置、充放電制御方法、及び記録媒体
WO2018180520A1 (ja) * 2017-03-31 2018-10-04 三洋電機株式会社 監視装置および蓄電システム
JP2019140716A (ja) * 2018-02-06 2019-08-22 日立化成株式会社 蓄電制御装置、蓄電制御方法、および蓄電制御プログラム
WO2019188889A1 (ja) * 2018-03-26 2019-10-03 古河電気工業株式会社 蓄電システムおよび充電制御方法
WO2020166246A1 (ja) * 2019-02-13 2020-08-20 古河電気工業株式会社 蓄電システムおよび充電制御方法
WO2023149302A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122250A1 (en) * 2011-03-07 2012-09-13 A123 Systems, Inc. Method for opportunistically balancing charge between battery cells
DE102014208316A1 (de) * 2014-05-05 2015-11-05 Siemens Aktiengesellschaft Erfassen der Betriebsführung eines Batteriespeichers
EP3078073B1 (en) * 2014-06-18 2017-10-04 Koninklijke Philips N.V. Device and method for controlling a plurality of cells of a battery
JP2016220450A (ja) * 2015-05-22 2016-12-22 三菱重工業株式会社 電源制御装置、電源システム、電源制御方法およびプログラム
DE102015221807A1 (de) * 2015-11-06 2017-05-11 Robert Bosch Gmbh Verfahren zum Betrieb einer Batterie und Batterie
CN105652206A (zh) * 2015-12-26 2016-06-08 深圳市沃特玛电池有限公司 一种电池组Soc估算方法及系统
CN106058339A (zh) * 2016-07-28 2016-10-26 东南大学 一种含辅助功率环的储能系统soc均衡控制方法
JP6455497B2 (ja) * 2016-11-16 2019-01-23 トヨタ自動車株式会社 車両の電池システム及びその制御方法
EP3398818B1 (en) * 2017-05-04 2022-07-06 Volvo Car Corporation Voltage supply unit, battery balancing method
JP6590029B1 (ja) * 2018-06-13 2019-10-16 株式会社Gsユアサ 行動生成装置、蓄電素子評価装置、コンピュータプログラム、学習方法及び評価方法
CN108899975A (zh) * 2018-08-10 2018-11-27 肇庆市高新区甜慕新能源技术有限公司 一种蓄电池系统
KR20200112248A (ko) * 2019-03-21 2020-10-05 주식회사 엘지화학 배터리 뱅크 제어 장치 및 방법
CN112272908B (zh) * 2019-10-21 2024-04-09 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
CN111276718B (zh) * 2019-11-27 2021-10-29 肇庆理士电源技术有限公司 基于电化学原理的辅助铅酸电池设计与检验的模拟方法
CN113364068A (zh) * 2020-03-04 2021-09-07 南京德朔实业有限公司 充电管理方法和电池包
CN113067047B (zh) * 2020-09-01 2022-09-16 国网浙江省电力有限公司双创中心 串联浮充铅酸蓄电池组在线维护方法
DE102020215201A1 (de) * 2020-12-02 2022-06-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur Vorhersage eines Alterungszustands einer Gerätebatterie in einem batteriebetriebenen Gerät
CN116134694B (zh) * 2021-09-08 2024-01-26 宁德时代新能源科技股份有限公司 动力电池充电的方法和电池管理系统
JP7372295B2 (ja) * 2021-09-30 2023-10-31 横河電機株式会社 診断装置、診断方法及び診断プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101565A (ja) * 2000-09-22 2002-04-05 Denso Corp 組電池の電圧調整装置及び組電池の電圧調整方法
JP2003259501A (ja) * 2002-02-27 2003-09-12 Japan Storage Battery Co Ltd 電動車輌用鉛蓄電池の充・放電制御方法
JP2004186087A (ja) * 2002-12-05 2004-07-02 Matsushita Electric Ind Co Ltd 蓄電池の制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975801B2 (ja) 2002-03-27 2007-09-12 松下電器産業株式会社 蓄電池システム
JP2004039434A (ja) 2002-07-03 2004-02-05 Japan Storage Battery Co Ltd 鉛蓄電池の充電制御方法
US7197487B2 (en) * 2005-03-16 2007-03-27 Lg Chem, Ltd. Apparatus and method for estimating battery state of charge
JP5310003B2 (ja) 2009-01-07 2013-10-09 新神戸電機株式会社 風力発電用鉛蓄電池制御システム
WO2011030380A1 (ja) * 2009-09-10 2011-03-17 株式会社日立エンジニアリング・アンド・サービス 発電システムの電力貯蔵装置およびその電力貯蔵装置の運用方法
US8339100B2 (en) * 2009-09-29 2012-12-25 O2Micro Inc Systems and methods for cell balancing
JP5493657B2 (ja) 2009-09-30 2014-05-14 新神戸電機株式会社 蓄電池装置並びに蓄電池の電池状態評価装置及び方法
JP2011073564A (ja) 2009-09-30 2011-04-14 Toyota Motor Corp ハイブリッド車およびその制御方法
CN101813754B (zh) * 2010-04-19 2012-09-05 清华大学 一种用于汽车起动照明型铅酸蓄电池的状态估算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101565A (ja) * 2000-09-22 2002-04-05 Denso Corp 組電池の電圧調整装置及び組電池の電圧調整方法
JP2003259501A (ja) * 2002-02-27 2003-09-12 Japan Storage Battery Co Ltd 電動車輌用鉛蓄電池の充・放電制御方法
JP2004186087A (ja) * 2002-12-05 2004-07-02 Matsushita Electric Ind Co Ltd 蓄電池の制御方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9588184B2 (en) 2013-04-30 2017-03-07 Nuvera Fuel Cells, Inc. Battery state-of-charge aggregation method
AU2014260382B2 (en) * 2013-04-30 2017-05-25 Nuvera Fuel Cells, LLC Battery state-of-charge aggregation method
WO2014178994A3 (en) * 2013-04-30 2015-01-08 Nuvera Fuel Cells, Inc. Battery state-of-charge aggregation method
US10374441B2 (en) 2014-07-16 2019-08-06 Wayne State University Balanced control strategies for interconnected heterogeneous battery systems in smart grid applications
WO2016009389A1 (en) * 2014-07-16 2016-01-21 Wayne State University Balanced control strategies for interconnected heterogeneous battery systems in smart grid applications
JP2016195495A (ja) * 2015-03-31 2016-11-17 古河電気工業株式会社 二次電池充電制御装置および二次電池充電制御方法
KR20160146032A (ko) * 2015-06-11 2016-12-21 삼성전자주식회사 배터리의 상태를 추정하는 장치 및 방법
JP2017004955A (ja) * 2015-06-11 2017-01-05 三星電子株式会社Samsung Electronics Co.,Ltd. バッテリ状態推定装置及び方法
KR102424528B1 (ko) 2015-06-11 2022-07-25 삼성전자주식회사 배터리의 상태를 추정하는 장치 및 방법
JPWO2018147194A1 (ja) * 2017-02-07 2020-01-09 日本電気株式会社 蓄電池制御装置、充放電制御方法、及びプログラム
WO2018147194A1 (ja) * 2017-02-07 2018-08-16 日本電気株式会社 蓄電池制御装置、充放電制御方法、及び記録媒体
JP7039563B2 (ja) 2017-03-31 2022-03-22 三洋電機株式会社 監視装置および蓄電システム
WO2018180520A1 (ja) * 2017-03-31 2018-10-04 三洋電機株式会社 監視装置および蓄電システム
JPWO2018180520A1 (ja) * 2017-03-31 2020-02-06 三洋電機株式会社 監視装置および蓄電システム
US11180032B2 (en) 2017-03-31 2021-11-23 Sanyo Electric Co., Ltd. Monitoring device and power storage system
JP7039563B6 (ja) 2017-03-31 2022-04-01 三洋電機株式会社 監視装置および蓄電システム
JP2019140716A (ja) * 2018-02-06 2019-08-22 日立化成株式会社 蓄電制御装置、蓄電制御方法、および蓄電制御プログラム
CN111937269A (zh) * 2018-03-26 2020-11-13 古河电气工业株式会社 蓄电系统以及充电控制方法
JPWO2019188889A1 (ja) * 2018-03-26 2021-03-25 古河電気工業株式会社 蓄電システムおよび充電制御方法
WO2019188889A1 (ja) * 2018-03-26 2019-10-03 古河電気工業株式会社 蓄電システムおよび充電制御方法
WO2020166246A1 (ja) * 2019-02-13 2020-08-20 古河電気工業株式会社 蓄電システムおよび充電制御方法
JPWO2020166246A1 (ja) * 2019-02-13 2020-08-20
JP7382940B2 (ja) 2019-02-13 2023-11-17 古河電気工業株式会社 蓄電システムおよび充電制御方法
WO2023149302A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法

Also Published As

Publication number Publication date
JP5741701B2 (ja) 2015-07-01
JPWO2013054672A1 (ja) 2015-03-30
US9711976B2 (en) 2017-07-18
CN103918120A (zh) 2014-07-09
TW201337298A (zh) 2013-09-16
US20140239900A1 (en) 2014-08-28
CN103918120B (zh) 2016-07-06
TWI569029B (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2013054672A1 (ja) 鉛蓄電池システム
EP2452413B1 (en) Battery charging method and apparatus
US10205335B2 (en) Storage battery management device, method, and computer program product
US9431832B2 (en) Stationary electrical storage system and control method
JP6208213B2 (ja) 二次電池の充電システム及び方法並びに電池パック
US10840567B2 (en) Storage battery cooling control device and storage battery cooling control method
US20130187465A1 (en) Power management system
WO2017046870A1 (ja) 蓄電池制御装置、制御方法、プログラム、蓄電システム、電力システム
JP2019219193A (ja) 蓄電池の充放電曲線推定装置および充放電曲線推定方法
US11054475B2 (en) Electric storage capacity estimation apparatus and method for operating the same
CN111106400B (zh) 一种电池控制方法和电池管理设备
JP2015208061A (ja) 充放電制御装置および充放電制御方法
US20180278064A1 (en) Storage battery management device, method, and computer program product
JP2013183509A (ja) 充放電量予測システム及び充放電量予測方法
CA3116572C (en) Secondary battery management system with charging device for effecting degradation corrected target state of charge
JP2013146159A (ja) 組電池の充電制御システムおよび充電制御方法
CN117154268A (zh) 一种基于水系钠离子储能电池柜的soc校正方法、装置、设备及存储介质
EP2658074B1 (en) Discharge controller
WO2013042712A1 (ja) 電池ブロックの充放電制御装置
JPWO2017022251A1 (ja) 二次電池の充放電装置、二次電池を用いた蓄電システム、二次電池の充放電方法、および二次電池の充放電プログラムが格納された非一時的なコンピュータ可読媒体
AU2010271408B2 (en) Battery charging method and apparatus
JP2016093057A (ja) 蓄電システム、蓄電制御方法、および蓄電制御プログラム
JP2013106506A (ja) 蓄電装置及び電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14351158

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12840017

Country of ref document: EP

Kind code of ref document: A1