WO2013052050A1 - Downhole tester valve having rapid charging capabilities and method for use thereof - Google Patents
Downhole tester valve having rapid charging capabilities and method for use thereof Download PDFInfo
- Publication number
- WO2013052050A1 WO2013052050A1 PCT/US2011/055021 US2011055021W WO2013052050A1 WO 2013052050 A1 WO2013052050 A1 WO 2013052050A1 US 2011055021 W US2011055021 W US 2011055021W WO 2013052050 A1 WO2013052050 A1 WO 2013052050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- assembly
- fluid chamber
- valve
- annulus pressure
- fluid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 239000012530 fluid Substances 0.000 claims abstract description 278
- 238000012360 testing method Methods 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 238000004891 communication Methods 0.000 description 15
- 238000007667 floating Methods 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/08—Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/10—Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/008—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/081—Obtaining fluid samples or testing fluids, in boreholes or wells with down-hole means for trapping a fluid sample
- E21B49/0813—Sampling valve actuated by annulus pressure changes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/04—Ball valves
Definitions
- This invention relates, in general, to equipment utilized in conjunction with operations performed in subterranean wells and, in particular, to downhole tester valves operable for rapid charging of biasing fluid and methods for use thereof.
- a testing string including a tester valve is typically lowered into the well on a string of drill pipe above a packer. After the packer is set, the tester valve is opened and closed periodically to determine formation flow, pressure and rapidity of pressure recovery.
- tester valves are responsive to pressure changes in the annulus between the testing string and the wellbore casing.
- tester valves also provide a biasing source, such as an inert gas like nitrogen, to aid in certain operations of the tester valve, including closure of the tester valve.
- annulus pressure is used to shift a ball valve assembly in the tester valve from the closed position to the open position.
- the annulus pressure is used to charge the biasing source by, for example, compressing nitrogen in a chamber.
- the compressed nitrogen is used to shift a ball valve assembly from the open position to the closed position.
- a time delay feature such as a fluid metering section, is used to allow the annulus pressure to first open the ball valve assembly and then charge the nitrogen.
- the present invention disclosed herein is directed to a downhole tester valve that is operable to perform flow testing of a well.
- the downhole tester valve of the present invention is operated between the open position and the closed position responsive to annulus pressure.
- the downhole tester valve of the present invention does not have a time period during which closure of the tester valve is uncertain or impossible.
- the present invention is directed to a downhole tester valve.
- the downhole tester valve includes a housing assembly and a mandrel assembly disposed within the housing assembly.
- the housing assembly and a mandrel assembly define therebetween an operating fluid chamber, a biasing fluid chamber and a power fluid chamber.
- a valve assembly is disposed within the housing assembly and is operable between open and closed positions.
- a piston assembly is operably associated with the valve assembly such that annulus pressure entering the power fluid chamber pressurizes operating fluid in the operating fluid chamber which acts on the piston assembly to shift the valve assembly from the closed position to the open position and such that predetermined travel of the piston assembly opens a bypass passageway for the pressurized operating fluid to charge biasing fluid in the biasing fluid chamber, thereby enabling closure of the valve assembly upon reducing annulus pressure by a predetermined amount.
- the operating fluid is oil.
- the power fluid is wellbore fluid.
- the biasing fluid is nitrogen.
- the piston assembly includes a collet assembly and a snap sleeve having first and second positions relative to the collet assembly.
- a first portion of the piston assembly may be shiftable relative to a second portion of the piston assembly such that the collet assembly releases the snap sleeve prior to the piston assembly shifting the valve assembly from the closed position to the open position.
- the piston assembly includes a check valve assembly having opposing check valves.
- the check valves may be end of travel opposing check valves such that the travel of the piston within the downhole tester valve actuates one or more of the check valves.
- the present invention is directed to a method of operating a downhole tester valve.
- the method includes positioning the downhole tester valve at a location in a wellbore, the downhole tester valve having an operating fluid chamber, a biasing fluid chamber and a power fluid chamber; applying increased annulus pressure to the power fluid chamber to pressurize operating fluid in the operating fluid chamber; applying the pressurized operating fluid on a piston assembly of the downhole tester valve to shift a valve assembly from a closed position to an open position; and after predetermined travel of the piston assembly, opening a bypass passageway for the pressurized operating fluid to charge biasing fluid in the biasing fluid chamber, thereby enabling closure of the valve assembly upon reducing annulus pressure by a predetermined amount.
- the method may also include pressurizing oil in the operating fluid chamber, compressing nitrogen in the biasing fluid chamber, shifting a snap sleeve of the piston assembly from a first position to a second position relative to a collet assembly of the piston assembly, actuating at least one check valve in a check valve assembly, actuating at least one check valve responsive to travel of the piston assembly, opening a bypass passageway through the piston assembly, preventing application of the pressurized operating fluid on the piston assembly until annulus pressure is increased above a predetermined level or increasing annulus pressure above a burst pressure of a rupture disk.
- the present invention is directed to a method of operating a downhole tester valve.
- the method includes positioning the downhole tester valve at a location in a wellbore, the downhole tester valve having an operating fluid chamber, a biasing fluid chamber and a power fluid chamber; applying increased annulus pressure to the power fluid chamber to pressurize operating fluid in the operating fluid chamber; applying the pressurized operating fluid on a piston assembly of the downhole tester valve to shift a valve assembly of the downhole tester valve from a closed position to an open position; charging biasing fluid in the biasing fluid chamber with the pressurized operating fluid; and reducing annulus pressure at a predetermined rate to retain the valve assembly in the open position without the continued application of the increased annulus pressure.
- the method may also include reducing annulus pressure in stages or substantially equalizing pressure in the biasing fluid chamber and the operating fluid chamber by passing operating fluid through a metering section of the downhole tester valve.
- the present invention is directed to a method of operating a downhole tester valve.
- the method includes positioning the downhole tester valve at a location in a wellbore, the downhole tester valve having an operating fluid chamber, a biasing fluid chamber and a power fluid chamber; increasing annulus pressure to a level below a predetermined level; applying the increased annulus pressure to the power fluid chamber to pressurize operating fluid in the operating fluid chamber; applying the pressurized operating fluid on a piston assembly of the downhole tester valve to shift a valve assembly of the downhole tester valve from a closed position to an open position; charging biasing fluid in the biasing fluid chamber with the pressurized operating fluid; and increasing annulus pressure above the predetermined level to disable further operation of the valve assembly.
- the method may also include increasing annulus pressure above a burst pressure of a rupture disk, reducing annulus pressure and applying operating fluid pressurized by the charged biasing fluid on the piston assembly to shift the valve assembly from the open position to the closed position prior to increasing annulus pressure above the predetermined level, increasing annulus pressure above the predetermined level at a predetermined rate, increasing annulus pressure in stages or substantially equalizing pressure in the biasing fluid chamber and the operating fluid chamber by passing operating fluid through a metering section of the downhole tester valve.
- Figure 1 is a schematic illustration of an offshore oil and gas platform operating a downhole tester valve according to an embodiment of the present invention
- Figures 2A-G are quarter sectional views of a downhole tester valve according to an embodiment of the present invention.
- Figures 3A-F are cross sectional views at various locations along a downhole tester valve according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION
- a downhole tester valve is being deployed from an offshore oil and gas platform that is schematically illustrated and generally designated 10.
- a semi-submersible platform 12 is centered over a submerged oil and gas formation 14 located below sea floor 16.
- a subsea conduit 18 extends from deck 20 of platform 12 to wellhead installation 22, including blowout preventers 24.
- Platform 12 has a hoisting apparatus 26 and a derrick 28 for raising and lowering pipe strings such as drill string 30.
- a wellbore 32 has been drilled through the various earth strata including formation 14.
- Wellbore 32 has a casing string 34 installed therein.
- testing string 36 is shown disposed in wellbore 32, with blowout preventer 24 closed thereabout.
- Testing string 36 includes upper drill pipe string 30 which extends downward from platform 12 to wellhead 22.
- a hydraulically operated test tree 38 is positioned between upper drill pipe string 30 and intermediate pipe string 40.
- a slip joint 42 may be included in string 40 for enabling proper positioning of downhole equipment and to compensate for tubing length changes due to pressure and temperature changes.
- intermediate string 40 extends downwardly to a downhole tester valve 44 of the present invention.
- a lower pipe string 46 that extends to tubing seal assembly 48, which stabs into packer 50. When set, packer 50 isolates a wellbore annulus 52 from the lower portion of wellbore 54.
- Packer 50 may be any suitable packer well known to those skilled in the art.
- Tubing seal assembly 48 permits testing string 36 to communicate with lower wellbore 54 through a perforated tailpipe 56. In this manner, formation fluids from potential producing formation 14 may enter lower wellbore 54 through perforations 58 in casing 34 and be routed into testing string 36.
- a formation test controlling the flow of fluid from potential producing formation 14 through testing string 36 may be conducted using variations in pressure affected in upper annulus 52 by pump 60 and control conduit 62, with associated relief valves (not shown). Formation pressure, temperature and recovery time may be measured during the flow test through the use of instruments incorporated in testing string 36, as downhole tester valve 44 is opened and closed in accordance with the present invention.
- figure 1 depicts the present invention in a vertical wellbore
- the present invention is equally well suited for use in wellbores having other directional configurations including horizontal wellbores, deviated wellbores, slanted wells, lateral wells and the like.
- Downhole tester valve 100 includes an upper adaptor 102 having threads 104 at its upper end, whereby downhole tester valve 100 may be secured to drill pipe or other components within the testing string.
- Downhole tester valve 100 has a housing assembly 106 that is secured to upper adaptor 102 at its upper end.
- Housing assembly 106 is formed from a plurality of housing members that are threadedly, sealing, weldably or otherwise secured together.
- Housing assembly 106 includes upper housing member 108, an upper housing connector 110, an upper intermediate housing member 112, an intermediate housing connector 114, a lower intermediate housing member 116, a lower housing connector 118 and a lower housing member 120. At its lower end, lower housing member 120 is secured to a lower adaptor 122 having threads 124 at its lower end, whereby downhole tester valve 100 may be secured to drill pipe or other components within the testing string.
- valve assembly Generally positioned within upper housing member 108 is a valve assembly
- Valve assembly 126 includes an upper cage support 128, a ball cage 130, an upper annular seat 132 that is downwardly biased by one or more springs 134, a pair of operating pins 136 (only one being visible in figure 2B), a rotating ball member 138, a lower annular seat 140 and a lower cage support 142. Together, the components of valve assembly 126 cooperate to open and close the central pathway 144 of downhole tester valve 100 to selectively allow and prevent fluid flow therethrough.
- Piston assembly 146 Generally positioned within upper intermediate housing member 112 is a piston assembly 146.
- Piston assembly 146 includes a valve operating member 148 that is coupled at its upper end (see figure 2B) to operating pins 136 of valve assembly 126.
- Piston assembly 146 also includes a check valve assembly 150, a snap sleeve 152, a split ring 154 and a collet assembly 156 that is securably coupled at its lower end to intermediate housing connector 1 14.
- check valve assembly 150 is slidably and sealingly positioned between valve operating member 148 and upper intermediate housing member 112.
- Check valve assembly 150 includes a pair of oppositely disposed check valves 158, 160, having a fluid passageway 162 therebetween that may be referred to as a bypass passageway.
- Check valves 158, 160 each has a stem that is extendable outwardly from check valve assembly 150, the operation and purpose of the stems are discussed in greater detail below.
- split ring 154 is received in a radially reduced section of valve operating member 148.
- a gap exists between split ring 154 and the lower surface of check valve assembly 150 and likewise, gap exists between split ring 154 and an upper shoulder of a snap sleeve 152, the operation and purpose of the gaps are discussed in greater detail below.
- Collet assembly 156 includes a plurality of collet fingers 164, only one being visible in the figure 2D. Each collet finger 164 has a detent 166. Snap sleeve 152 includes a pair of annular grooves 168, 170 that are designed to selectively and releasably cooperate with detents 166 of collet fingers 164.
- upper mandrel 172 Generally positioned within lower intermediate housing member 116 is an upper mandrel 172.
- upper mandrel 172 is threadedly and sealably coupled to intermediate housing connector 114 at its upper end and sealably coupled to lower housing connector 118 at its lower end.
- lower mandrel 174 Generally positioned within lower housing member 120 is a lower mandrel 174.
- lower mandrel 174 is sealably coupled to lower housing connector 118 at its upper end and threadedly and sealably coupled to lower adaptor 122 at its lower end.
- upper mandrel 172 and lower mandrel 174 may be referred to herein as a mandrel assembly.
- lower intermediate housing member 116 and upper mandrel 172 define a generally annular operating fluid chamber 176, which extends between a lower surface of intermediate housing connector 114 and an upper surface of a floating piston 178 that is disposed between lower intermediate housing member 116 and upper mandrel 172.
- operating fluid chamber 176 contains an operating fluid in the form of a substantially incompressible fluid such as an oil including hydraulic fluid.
- Lower intermediate housing member 116 and upper mandrel 172 also define a generally annular power fluid chamber 180, which extends between a lower surface of floating piston 178 and an upper surface of lower housing connector 118.
- Power fluid chamber 180 is aligned with one or more housing ports 182 that extend through lower intermediate housing member 116 to provide fluid communication with annulus fluid pressure.
- a housing port 182 is depicted in dashed lines as it is not actually located in the illustrated cross section but instead is circumferentially offset from the illustrated view.
- biasing fluid chamber 184 contains a biasing fluid in the form of a compressible fluid such as a gas and more preferably, biasing fluid chamber 184 contains an inert gas such as nitrogen.
- Downhole tester valve 100 includes an operating fluid communication network.
- operating fluid is used not only to actuate the valve assembly between open and closed positions but also for rapid charging of the biasing fluid after shifting the valve assembly from the closed position to the open position.
- the operating fluid communication network includes a plurality of fluid passageways that are formed in various section of housing assembly 106.
- operating fluid used to downwardly shift piston assembly 146 and open valve assembly 126 has a communication path from operating fluid chamber 176 through fluid passageway 188 in intermediate housing connector 114 and fluid passageway 190 in upper intermediate housing member 112. The operating fluid is then operable to act on an upper surface of check valve assembly 150 of piston assembly 146.
- the operating fluid has a communication path through fluid passageway 162 in check valve assembly 150, through the annular region between upper intermediate housing member 112 and valve operating member 148, through fluid passageway 192 in intermediate housing connector 114 (a portion of which is depicted in dashed lines in figures 2D and 2E, and as best seen in figure 3A), through fluid passageway 194 in lower intermediate housing member 116 (a portion of which is depicted in dashed lines in figures 2E and 2F, and as best seen in figure 3B) and through fluid passageway 196 in lower housing connector 1 18 (a portion of which is depicted in dashed lines in figure 2F, and as best seen in figure 3C).
- the operating fluid is then operable to act on an upper surface of floating piston 186.
- the operating fluid has a communication path through fluid passageway 196 in lower housing connector 118 (a portion of which is depicted in dashed lines in figure 2F, and as best seen in figure 3C), through fluid passageway 194 in lower intermediate housing member 116 (a portion of which is depicted in dashed lines in figures 2F and 2E, and as best seen in figure 3B), through fluid passageway 192 in intermediate housing connector 114 (a portion of which is depicted in dashed lines in figures 2E and 2D, and as best seen in figure 3 A) and through the annular region between upper intermediate housing member 112 and valve operating member 148.
- the operating fluid is then operable to act on a lower surface of check valve assembly 150.
- the operating fluid communication network of downhole tester valve 100 includes a metered fluid pathway between operating fluid chamber 176 and the upper side of floating piston 186, the purpose and operation of which is discussed in greater detail below.
- a fluid pathway 198 in intermediate housing connector 114 includes a metering section 200 having a fluid resistance assembly such as an orifice disposed therein to limit the rate at which operating fluid can pass therethrough.
- Fluid pathway 198 is in fluid communication with fluid pathway 202 in lower intermediate housing member 116 (as best seen in figures 2E, 2F and 3B) which is in fluid communication with fluid passageway 204 in lower housing connector 118 (as best seen in figures 2F, 2G and 3C). The operating fluid is then operable to act on an upper surface of floating piston 186.
- downhole tester valve 100 In one operating mode, downhole tester valve 100 is run downhole on a testing string in the closed position as depicted in figures 2A-2G.
- a packer positioned downhole of downhole tester valve 100 on the testing string may be set which creates a sealed annulus between the casing string and the testing string above the packer as seen in figure 1.
- the pressure in operating fluid chamber 176 and biasing fluid chamber 184 are generally equalized to wellbore or annulus pressure due to fluid communication through port 182 acting on floating piston 178 and fluid passing through metering section 200 of downhole tester valve 100 acting on floating piston 186.
- annulus pressure is increased to a predetermined level.
- the annulus pressure enters downhole tester valve 100 via port 182 and acts on floating piston 178.
- Pressure is increased in operation fluid chamber 178 which forces operating fluid into fluid passageways 188 and 198. Fluid travel is resisted through fluid passageway 198 by metering section 200.
- the fluid in passageway 188 is communicated to fluid passageway 190 which in turn is communicated to an upper surface of check valve assembly 150 of piston assembly 146.
- check valve 158 allows downward flow therethrough but, downward flow is prevented by check valve 160.
- check valve assembly 150 The fluid pressure generates a downward force on check valve assembly 150 which is transmitted through piston assembly 146 to annular groove 170 of snap sleeve 152 and detents 166 of collet fingers 164.
- annular groove 170 When the downward force of annular groove 170 is sufficient to cause radial outward expansion of collet fingers 164, snap sleeve 152 begins to translate downwardly relative to collet assembly 156.
- the lower surface of check valve assembly 150 then closes the gap and moves into contact with the upper surface of split ring 154 which causes valve operating member 148 to begin downward travel.
- check valve assembly 150 ensures that the force required to overcome the spring force of collet assembly 156 and the force required to rotate ball member 138 are not additive of one another, instead, the spring force of collet assembly 156 is overcome prior to operation of ball member 138.
- the fluid pressure acting on check valve assembly 150 now moves all the components of piston assembly 146, with the exception of collet assembly 156, downwardly.
- the downward movement of valve operating member 148 also caused downward movement of operating pins 136 which rotates ball member 138 to the open position.
- a lower surface of operating pins 136 may contact an upper surface of lower cage support 142.
- a stem mechanism of check valve 160 comes in contact with an upper surface of collet assembly 156 which opens check valve 160 as piston assembly 146 nears its end of travel.
- check valve 160 opens, a bypass passageway is established allowing operating fluid to pass from fluid passageway 162 into the annular region between upper intermediate housing member 112 and valve operating member 148 and communicate fluid pressure through fluid passageway 192, fluid passageway 194 and fluid passageway 196.
- the operating fluid is then operable to act on an upper surface of floating piston 186 which compresses or charges the biasing fluid in biasing fluid chamber 184.
- the present invention enables rapid charging of the biasing fluid as soon as the valve assembly is operated from the closed position to the open position. This rapid charging enables immediate closure of the valve assembly using the rapidly charged biasing fluid.
- annulus pressure is decreased to a predetermined level which reduces the pressure in operating fluid chamber 176, fluid passageway 188, fluid passageway 190 and on the top side of check valve assembly 150. Fluid does not travel upwardly through check valve assembly 150, however, as check valve 158 prevents such upward flow.
- the charged biasing fluid in biasing fluid chamber 184 now acts as the energy source for operating valve assembly 126.
- the biasing fluid acts on the lower surface of floating piston 186 which pressurizes the operating fluid above floating piston 186 in fluid passageway 196, fluid passageway 194, fluid passageway 192 and the annular region between upper intermediate housing member 112.
- the pressurized operating fluid acts on the lower surfaces of check valve assembly 150 of piston assembly 146.
- the fluid pressure generates an upward force on check valve assembly 150 which is transmitted through piston assembly 146 to annular groove 168 of snap sleeve 152 and detents 166 of collet fingers 164.
- annular groove 168 of snap sleeve 152 and detents 166 of collet fingers 164.
- snap sleeve 152 begins to translate upwardly relative to collet assembly 156.
- An upper surface of snap sleeve 152 then closes the gap and moves into contact with the lower surface of split ring 154 which causes valve operating member 148 to begin upward travel.
- the gap between the upper surface of snap sleeve 152 and the lower surface of split ring 154 ensures that the force required to overcome the spring force of collet assembly 156 and the force required to rotate ball member 138 are not additive of one another, instead, the spring force of collet assembly 156 is overcome prior to operation of ball member 138.
- the fluid pressure acting on check valve assembly 150 now moves all the components of piston assembly 146, with the exception of collet assembly 156, upwardly.
- the upward movement of valve operating member 148 also caused upward movement of operating pins 136 which rotates ball member 138 to the closed position.
- annulus pressure is stepped down to a desired annulus pressure slowly or in increments.
- the annulus pressure can be lower at a predetermined rate such as in a plurality of stages, wherein the annulus pressure is lower incrementally in each stage.
- annulus pressure is simply increased to a sufficient level to charge the biasing fluid in biasing fluid chamber 184 in the manner discussed above, wherein annulus pressure is used to pressurize the operation fluid in operation fluid chamber 176 which is communicated through the operating fluid network via fluid passageways 188, 190 and 162, the annular region between upper intermediate housing member 112 and valve operating member 148, and fluid passageways 192, 194 and 196 to the top side of floating piston 186.
- the annulus pressure is then reduced such that the charged biasing fluid in biasing fluid chamber 184 acts as the energy source for operating valve assembly 126 to the closed position as described above.
- the pressure to port 182 may be released after communication is allowed between fluid passageway 192 and fluid passageway 188 via bypass fluid passageway 206. Thereafter, plugs 208, 210 are repositioned to isolate fluid passageway 192 from fluid passageway 188 and downhole tester valve 100 may be run into the well in the open position.
- annulus pressure is applied, as described above, to charge the biasing fluid in biasing fluid chamber 184 then annulus pressure is reduced such that the charged biasing fluid in biasing fluid chamber 184 acts as the energy source for operating valve assembly 126 to the closed position.
- a rupture disk 210 (as seen in figure 3E) may be positioned in fluid passageway 188 to prevent the communication of pressure from operation fluid chamber 176 to piston assembly 146.
- Other pressure operated tools may then be operated, so long as the annulus pressure remains below the burst pressure of rupture disk 210.
- annulus pressure can be increased above the burst pressure of rupture disk 210. Thereafter, downhole tester valve 100 will operate as described above.
- a shuttle valve 214 may be installed in a bypass passageway 216 between fluid passageway 192 and fluid passageway 188.
- pressure from fluid passageway 188 which is in communication with operating fluid chamber 176 and therefore the annulus pressure, is routed to one side of rupture disk 212.
- the other side of rupture disk 212 defines an air chamber at low pressure. In this case, once testing operations have been completed, increasing the annulus pressure above the burst pressure of rupture disk 212 will burst rupture disk 212 causing shuttle valve 214 to shift and open bypass passageway 216 between fluid passageway 192 and fluid passageway 188.
- downhole tester valve 100 is disabled as operating fluid chamber 176 and biasing fluid chamber 184 are permanently equalized as pressure is routed around metering assembly 200. It is noted that in order to disable downhole tester valve 100 in the closed position, annulus pressure must be raised at a predetermined rate such as a slow rate or incrementally as described above to enable the pressure differential between biasing fluid chamber 184 and operating fluid chamber 176 is equalized over time due to the operation of metering section 200, which allows fluid flow therethrough at a predetermined rate. In this manner, the annulus pressure can be raised above the burst pressure of rupture disk 212 without operating downhole tester valve 100 from the closed position to the open position.
- a predetermined rate such as a slow rate or incrementally as described above
Landscapes
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Check Valves (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/055021 WO2013052050A1 (en) | 2011-10-06 | 2011-10-06 | Downhole tester valve having rapid charging capabilities and method for use thereof |
AU2011378455A AU2011378455B2 (en) | 2011-10-06 | 2011-10-06 | Downhole tester valve having rapid charging capabilities and method for use thereof |
BR112014008147A BR112014008147A2 (en) | 2011-10-06 | 2011-10-06 | downhole check valve and method for operating a downhole check valve |
EP11873594.3A EP2748418B1 (en) | 2011-10-06 | 2011-10-06 | Downhole tester valve having rapid charging capabilities and method for use thereof |
US13/626,618 US8701778B2 (en) | 2011-10-06 | 2012-09-25 | Downhole tester valve having rapid charging capabilities and method for use thereof |
US14/061,945 US9133686B2 (en) | 2011-10-06 | 2013-10-24 | Downhole tester valve having rapid charging capabilities and method for use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/055021 WO2013052050A1 (en) | 2011-10-06 | 2011-10-06 | Downhole tester valve having rapid charging capabilities and method for use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013052050A1 true WO2013052050A1 (en) | 2013-04-11 |
Family
ID=48044028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/055021 WO2013052050A1 (en) | 2011-10-06 | 2011-10-06 | Downhole tester valve having rapid charging capabilities and method for use thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US8701778B2 (en) |
EP (1) | EP2748418B1 (en) |
AU (1) | AU2011378455B2 (en) |
BR (1) | BR112014008147A2 (en) |
WO (1) | WO2013052050A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9359864B2 (en) | 2013-11-06 | 2016-06-07 | Team Oil Tools, Lp | Method and apparatus for actuating a downhole tool |
WO2015117221A1 (en) * | 2014-02-04 | 2015-08-13 | Rapid Design Group Inc. | Pressure activated completion tools and methods of use |
SG11201906459YA (en) * | 2017-02-10 | 2019-08-27 | Halliburton Energy Services Inc | Hydrostatic equalizing stem check valve |
US10982507B2 (en) * | 2019-05-20 | 2021-04-20 | Weatherford Technology Holdings, Llc | Outflow control device, systems and methods |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4234043A (en) * | 1977-10-17 | 1980-11-18 | Baker International Corporation | Removable subsea test valve system for deep water |
US4422506A (en) | 1980-11-05 | 1983-12-27 | Halliburton Company | Low pressure responsive APR tester valve |
US4633952A (en) * | 1984-04-03 | 1987-01-06 | Halliburton Company | Multi-mode testing tool and method of use |
US4736798A (en) * | 1986-05-16 | 1988-04-12 | Halliburton Company | Rapid cycle annulus pressure responsive tester valve |
US20060196675A1 (en) * | 2002-04-16 | 2006-09-07 | Schlumberger Technology Corporation | Tubing Fill and Testing Valve |
Family Cites Families (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3494417A (en) * | 1968-01-29 | 1970-02-10 | Otis Eng Corp | Well tools |
US3976136A (en) * | 1975-06-20 | 1976-08-24 | Halliburton Company | Pressure operated isolation valve for use in a well testing apparatus and its method of operation |
US4125165A (en) * | 1977-07-21 | 1978-11-14 | Baker International Corporation | Annulus pressure controlled test valve with locking annulus pressure operated pressure trapping means |
US4113012A (en) * | 1977-10-27 | 1978-09-12 | Halliburton Company | Reclosable circulation valve for use in oil well testing |
US4341266A (en) * | 1980-09-15 | 1982-07-27 | Lynes, Inc. | Pressure operated test tool |
US4448254A (en) * | 1982-03-04 | 1984-05-15 | Halliburton Company | Tester valve with silicone liquid spring |
US4444268A (en) * | 1982-03-04 | 1984-04-24 | Halliburton Company | Tester valve with silicone liquid spring |
US4489786A (en) * | 1983-09-19 | 1984-12-25 | Halliburton Company | Low pressure responsive downhole tool with differential pressure holding means |
US4537258A (en) * | 1983-09-19 | 1985-08-27 | Halliburton Company | Low pressure responsive downhole tool |
US4515219A (en) * | 1983-09-19 | 1985-05-07 | Halliburton Company | Low pressure responsive downhole tool with floating shoe retarding means |
US4621695A (en) * | 1984-08-27 | 1986-11-11 | Camco, Incorporated | Balance line hydraulically operated well safety valve |
US4589485A (en) * | 1984-10-31 | 1986-05-20 | Halliburton Company | Downhole tool utilizing well fluid compression |
US4617999A (en) * | 1984-11-28 | 1986-10-21 | Halliburton Company | Downhole tool with compression chamber |
US4577692A (en) * | 1985-03-04 | 1986-03-25 | Hughes Tool Company | Pressure operated test valve |
US4753292A (en) | 1985-07-03 | 1988-06-28 | Halliburton Company | Method of well testing |
US5156207A (en) * | 1985-09-27 | 1992-10-20 | Halliburton Company | Hydraulically actuated downhole valve apparatus |
US4667743A (en) | 1985-12-12 | 1987-05-26 | Halliburton Company | Low pressure responsive tester valve with ratchet |
US4691779A (en) * | 1986-01-17 | 1987-09-08 | Halliburton Company | Hydrostatic referenced safety-circulating valve |
US4665983A (en) | 1986-04-03 | 1987-05-19 | Halliburton Company | Full bore sampler valve with time delay |
US4694903A (en) | 1986-06-20 | 1987-09-22 | Halliburton Company | Flapper type annulus pressure responsive tubing tester valve |
US4729430A (en) | 1986-10-27 | 1988-03-08 | Halliburton Company | Pressure limiter for a downhole pump and testing apparatus |
US4706746A (en) * | 1986-10-27 | 1987-11-17 | Halliburton Company | Downhole inflatable packer pump and testing apparatus |
US4756364A (en) * | 1986-12-10 | 1988-07-12 | Halliburton Company | Packer bypass |
US4848463A (en) | 1988-11-09 | 1989-07-18 | Halliburton Company | Surface read-out tester valve and probe |
US4903765A (en) | 1989-01-06 | 1990-02-27 | Halliburton Company | Delayed opening fluid sampler |
US5050681A (en) * | 1990-07-10 | 1991-09-24 | Halliburton Company | Hydraulic system for electronically controlled pressure activated downhole testing tool |
US5180015A (en) * | 1990-10-04 | 1993-01-19 | Halliburton Company | Hydraulic lockout device for pressure controlled well tools |
US5058674A (en) | 1990-10-24 | 1991-10-22 | Halliburton Company | Wellbore fluid sampler and method |
US5103906A (en) | 1990-10-24 | 1992-04-14 | Halliburton Company | Hydraulic timer for downhole tool |
US5127477A (en) * | 1991-02-20 | 1992-07-07 | Halliburton Company | Rechargeable hydraulic power source for actuating downhole tool |
US5101907A (en) * | 1991-02-20 | 1992-04-07 | Halliburton Company | Differential actuating system for downhole tools |
US5101904A (en) * | 1991-03-15 | 1992-04-07 | Bruce Gilbert | Downhole tool actuator |
US5180007A (en) * | 1991-10-21 | 1993-01-19 | Halliburton Company | Low pressure responsive downhold tool with hydraulic lockout |
US5209303A (en) * | 1991-11-20 | 1993-05-11 | Halliburton Company | Compressible liquid mechanism for downhole tool |
US5228516A (en) * | 1992-01-14 | 1993-07-20 | Halliburton Company | Tester valve |
US5316087A (en) * | 1992-08-11 | 1994-05-31 | Halliburton Company | Pyrotechnic charge powered operating system for downhole tools |
US5335731A (en) * | 1992-10-22 | 1994-08-09 | Ringgenberg Paul D | Formation testing apparatus and method |
US5558162A (en) * | 1994-05-05 | 1996-09-24 | Halliburton Company | Mechanical lockout for pressure responsive downhole tool |
US5482119A (en) * | 1994-09-30 | 1996-01-09 | Halliburton Company | Multi-mode well tool with hydraulic bypass assembly |
US5649597A (en) | 1995-07-14 | 1997-07-22 | Halliburton Company | Differential pressure test/bypass valve and method for using the same |
US5819853A (en) | 1995-08-08 | 1998-10-13 | Schlumberger Technology Corporation | Rupture disc operated valves for use in drill stem testing |
US5906220A (en) * | 1996-01-16 | 1999-05-25 | Baker Hughes Incorporated | Control system with collection chamber |
US5813460A (en) | 1996-06-03 | 1998-09-29 | Halliburton Energy Services, Inc. | Formation evaluation tool and method for use of the same |
US5826660A (en) * | 1996-06-18 | 1998-10-27 | Schlumberger Technology Corporation | Dual action valve including a built in hydraulic circuit |
US5791414A (en) | 1996-08-19 | 1998-08-11 | Halliburton Energy Services, Inc. | Early evaluation formation testing system |
US5887654A (en) | 1996-11-20 | 1999-03-30 | Schlumberger Technology Corporation | Method for performing downhole functions |
US5826657A (en) | 1997-01-23 | 1998-10-27 | Halliburton Energy Services, Inc. | Selectively locking open a downhole tester valve |
US5826662A (en) | 1997-02-03 | 1998-10-27 | Halliburton Energy Services, Inc. | Apparatus for testing and sampling open-hole oil and gas wells |
US5890542A (en) | 1997-04-01 | 1999-04-06 | Halliburton Energy Services, Inc. | Apparatus for early evaluation formation testing |
US6065355A (en) | 1997-09-23 | 2000-05-23 | Halliburton Energy Services, Inc. | Non-flashing downhole fluid sampler and method |
US5984014A (en) * | 1997-12-01 | 1999-11-16 | Halliburton Energy Services, Inc. | Pressure responsive well tool with intermediate stage pressure position |
US6109351A (en) * | 1998-08-31 | 2000-08-29 | Baker Hughes Incorporated | Failsafe control system for a subsurface safety valve |
US6325146B1 (en) | 1999-03-31 | 2001-12-04 | Halliburton Energy Services, Inc. | Methods of downhole testing subterranean formations and associated apparatus therefor |
GB9913557D0 (en) * | 1999-06-10 | 1999-08-11 | French Oilfield Services Ltd | Hydraulic control assembly |
WO2001033045A1 (en) | 1999-11-05 | 2001-05-10 | Halliburton Energy Services, Inc. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
US7096976B2 (en) | 1999-11-05 | 2006-08-29 | Halliburton Energy Services, Inc. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
US6536530B2 (en) * | 2000-05-04 | 2003-03-25 | Halliburton Energy Services, Inc. | Hydraulic control system for downhole tools |
US6427778B1 (en) * | 2000-05-18 | 2002-08-06 | Baker Hughes Incorporated | Control system for deep set subsurface valves |
US6491104B1 (en) | 2000-10-10 | 2002-12-10 | Halliburton Energy Services, Inc. | Open-hole test method and apparatus for subterranean wells |
US6622554B2 (en) | 2001-06-04 | 2003-09-23 | Halliburton Energy Services, Inc. | Open hole formation testing |
AU2003207626B2 (en) * | 2002-01-22 | 2008-01-17 | Baker Hughes Incorporated | System and method for a failsafe control of a downhole valve in the event of tubing rupture |
US7191672B2 (en) | 2002-08-27 | 2007-03-20 | Halliburton Energy Services, Inc. | Single phase sampling apparatus and method |
US7201230B2 (en) * | 2003-05-15 | 2007-04-10 | Halliburton Energy Services, Inc. | Hydraulic control and actuation system for downhole tools |
US7191844B2 (en) * | 2004-01-09 | 2007-03-20 | Schlumberger Technology Corp. | Inflate control system for inflatable straddle stimulation tool |
US7197923B1 (en) * | 2005-11-07 | 2007-04-03 | Halliburton Energy Services, Inc. | Single phase fluid sampler systems and associated methods |
US7389821B2 (en) | 2006-11-14 | 2008-06-24 | Baker Hughes Incorporated | Downhole trigger device having extrudable time delay material |
US7552774B2 (en) * | 2006-12-05 | 2009-06-30 | Baker Hughes Incorporated | Control line hydrostatic minimally sensitive control system |
US7464755B2 (en) | 2006-12-12 | 2008-12-16 | Schlumberger Technology Corporation | Methods and systems for sampling heavy oil reservoirs |
US20090250224A1 (en) * | 2008-04-04 | 2009-10-08 | Halliburton Energy Services, Inc. | Phase Change Fluid Spring and Method for Use of Same |
US8540035B2 (en) * | 2008-05-05 | 2013-09-24 | Weatherford/Lamb, Inc. | Extendable cutting tools for use in a wellbore |
US7926575B2 (en) * | 2009-02-09 | 2011-04-19 | Halliburton Energy Services, Inc. | Hydraulic lockout device for pressure controlled well tools |
US8157016B2 (en) * | 2009-02-23 | 2012-04-17 | Halliburton Energy Services, Inc. | Fluid metering device and method for well tool |
US20110083859A1 (en) * | 2009-10-08 | 2011-04-14 | Schlumberger Technology Corporation | Downhole valve |
-
2011
- 2011-10-06 EP EP11873594.3A patent/EP2748418B1/en not_active Not-in-force
- 2011-10-06 BR BR112014008147A patent/BR112014008147A2/en not_active Application Discontinuation
- 2011-10-06 WO PCT/US2011/055021 patent/WO2013052050A1/en active Application Filing
- 2011-10-06 AU AU2011378455A patent/AU2011378455B2/en not_active Ceased
-
2012
- 2012-09-25 US US13/626,618 patent/US8701778B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4234043A (en) * | 1977-10-17 | 1980-11-18 | Baker International Corporation | Removable subsea test valve system for deep water |
US4422506A (en) | 1980-11-05 | 1983-12-27 | Halliburton Company | Low pressure responsive APR tester valve |
US4633952A (en) * | 1984-04-03 | 1987-01-06 | Halliburton Company | Multi-mode testing tool and method of use |
US4736798A (en) * | 1986-05-16 | 1988-04-12 | Halliburton Company | Rapid cycle annulus pressure responsive tester valve |
US20060196675A1 (en) * | 2002-04-16 | 2006-09-07 | Schlumberger Technology Corporation | Tubing Fill and Testing Valve |
Non-Patent Citations (1)
Title |
---|
See also references of EP2748418A4 |
Also Published As
Publication number | Publication date |
---|---|
BR112014008147A2 (en) | 2017-04-11 |
AU2011378455A1 (en) | 2014-04-24 |
US20130087326A1 (en) | 2013-04-11 |
EP2748418B1 (en) | 2018-10-24 |
AU2011378455B2 (en) | 2015-08-06 |
US8701778B2 (en) | 2014-04-22 |
EP2748418A1 (en) | 2014-07-02 |
EP2748418A4 (en) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2442981C (en) | Mechanically opened ball seat and expandable ball seat | |
US6216785B1 (en) | System for installation of well stimulating apparatus downhole utilizing a service tool string | |
EP0088550B1 (en) | Tester valve with liquid spring | |
US6354378B1 (en) | Method and apparatus for formation isolation in a well | |
US7866392B2 (en) | Method and apparatus for sealing and cementing a wellbore | |
US4116272A (en) | Subsea test tree for oil wells | |
US7543651B2 (en) | Non-elastomer cement through tubing retrievable safety valve | |
US4979568A (en) | Annulus fluid pressure operated testing valve | |
AU735560B2 (en) | Pressure responsive well tool with intermediate stage pressure position | |
US5890542A (en) | Apparatus for early evaluation formation testing | |
US9133686B2 (en) | Downhole tester valve having rapid charging capabilities and method for use thereof | |
US4804044A (en) | Perforating gun firing tool and method of operation | |
US8701778B2 (en) | Downhole tester valve having rapid charging capabilities and method for use thereof | |
EP3194708B1 (en) | Fast-setting retrievable slim-hole test packer and method of use | |
US11828127B2 (en) | Tubing hanger with shiftable annulus seal | |
US20150233209A1 (en) | Control line damper for valves | |
AU2015252060B2 (en) | Downhole tester valve having rapid charging capabilities and method for use thereof | |
CA2358896C (en) | Method and apparatus for formation isolation in a well | |
WO2014081957A1 (en) | Downhole tool anchoring system | |
US9745827B2 (en) | Completion assembly with bypass for reversing valve | |
CN116457550A (en) | Downhole tool actuator with viscous fluid gap path | |
WO2015191417A1 (en) | System and methodology using annulus access valve | |
AU2003248454B2 (en) | Mechanically Opened Ball Seat and Expandable Ball Seat | |
US20240328269A1 (en) | Expandable packer assembly and setting assembly | |
CA2755607A1 (en) | Sleeve valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11873594 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011873594 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201401897 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011378455 Country of ref document: AU Date of ref document: 20111006 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014008147 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014008147 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140404 |