WO2013051264A1 - 電磁接触器 - Google Patents
電磁接触器 Download PDFInfo
- Publication number
- WO2013051264A1 WO2013051264A1 PCT/JP2012/006359 JP2012006359W WO2013051264A1 WO 2013051264 A1 WO2013051264 A1 WO 2013051264A1 JP 2012006359 W JP2012006359 W JP 2012006359W WO 2013051264 A1 WO2013051264 A1 WO 2013051264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contact
- conductive plate
- movable contact
- external connection
- fixed
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/58—Electric connections to or between contacts; Terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/50—Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
- H01H1/54—Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by magnetic force
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/10—Electromagnetic or electrostatic shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/14—Terminal arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/54—Contact arrangements
- H01H50/546—Contact arrangements for contactors having bridging contacts
Definitions
- the present invention relates to an electromagnetic contactor having a stationary contact and a movable contact inserted in a current path, and generates a Lorentz force that resists an electromagnetic repulsion force that separates the movable contact from the stationary contact during energization. It is what I did.
- an electromagnetic contactor that opens and closes a current path
- the fixed contact is folded in a U shape when viewed from the side, a fixed contact is formed at the folded portion, and the movable contact of the movable contact is connected to the fixed contact.
- a switch having a configuration that can be separated. This switch increases the opening speed by increasing the electromagnetic repulsion force that acts on the movable contact when a large current is interrupted, so that the arc is rapidly stretched (see, for example, Patent Document 1).
- a contactor structure of an electromagnetic contactor that drives an arc by a magnetic field generated by a flowing current in a similar configuration (for example, see Patent Document 2).
- JP 2001-210170 A Japanese Patent Laid-Open No. 4-123719
- the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and without moving up the overall configuration, without being affected by the magnetic field of the external connection conductor, the movable contactor when energized It is an object of the present invention to provide an electromagnetic contactor that can suppress an electromagnetic repulsive force that opens a pole.
- the first aspect of the magnetic contactor according to the present invention is capable of contacting and separating a fixed contact having a pair of fixed contact portions inserted in a current path and the pair of fixed contact portions. And a movable contact having a pair of movable contact portions.
- the shape of at least one of the pair of fixed contact and the movable contact of the contact mechanism is a Lorentz force that resists an electromagnetic repulsion force in the opening direction generated between the fixed contact and the movable contact when energized.
- the shape forms a generated magnetic field.
- it has an external connection conductor connected to the external connection terminal of the fixed contact, and the mounting direction of the fixed portion attached to the external connection terminal of the external connection conductor intersects the direction of the current flowing through the movable contact The direction to do.
- the electromagnetic repulsive force in the opening direction generated between the fixed contact and the movable contact when energized with at least one of the fixed contact and the movable contact being L-shaped or C-shaped, for example. Therefore, the opening of the movable contact when a large current is applied is suppressed.
- the mounting direction of the fixed portion of the external connection conductor connected to the external connection terminal of the fixed contact is set to intersect the direction of the current flowing through the movable contact. For this reason, the magnetic field generated at the fixed portion of the external connection conductor is prevented from affecting the magnetic field generating the Lorentz force.
- a second aspect of the electromagnetic contactor according to the present invention is such that the external connection conductor is connected to the opposite side of the fixed portion to the external connection terminal, and is parallel to the extending direction of the movable contact and A conductor portion whose direction is opposite to that of the movable contact is provided.
- the conductor portion connected to the fixed portion of the external connection conductor is arranged so as to be parallel to the extending direction of the movable contact and the current direction is opposite to the movable contact. For this reason, the direction of the magnetic flux generated in the conductor portion can be matched with the direction of the magnetic flux forming the magnetic field that generates the Lorentz force, thereby increasing the magnetic flux density that generates the Lorentz force.
- the 3rd aspect of the magnetic contactor which concerns on this invention is comprised by the bus bar which the said external connection conductor comprises a protection unit. According to this configuration, it is possible to increase the magnetic flux density of the magnetic field that generates the Lorentz force against the electromagnetic repulsive force in the opening direction that is generated between the fixed contact and the movable contact during energization with the bus bar that configures the protection unit.
- a fourth aspect of the electromagnetic contactor includes a fixed contact having a pair of fixed contact portions inserted in the energization path and a pair of movable contact portions capable of coming into contact with and separating from the pair of fixed contact portions. And a contact mechanism having a movable contact.
- This contact mechanism has a Lorentz force that resists at least one of the pair of fixed contacts and the movable contact against an electromagnetic repulsion force in the opening direction generated between the fixed contact portion and the movable contact portion when energized.
- the shape forms a magnetic field that generates And the magnetic body which suppresses the influence of the magnetic field produced by the external connection conductor connected to the said stationary contact so that the said contact mechanism may be covered was arrange
- the magnetic field generated by the current flowing through the external connection conductor connected to the external connection terminal of the fixed contact shields the magnetic field that generates the Lorentz force with the magnetic material, and the Lorentz force is reduced. Can be suppressed.
- the 5th aspect of the electromagnetic contactor which concerns on this invention is equipped with the electrically conductive board with which the said movable contact is supported by the movable part, and has a contact part in the both ends in the one surface of the front and back, respectively.
- the fixed contact supports a fixed contact portion facing the contact portion of the conductive plate, and each of the first conductive plate portions extends outward from both ends of the conductive plate in parallel with the conductive plate;
- An L-shaped conductive plate portion formed from an outer end portion of one conductive plate portion and a second conductive plate portion extending through the outside of the end portion of the conductive plate.
- the second conductive plate portion constituting the L-shaped conductive plate portion generates a Lorentz force that resists the electromagnetic repulsion force that opens the contact between the movable contact and the fixed contact when the electromagnetic contactor is energized. Increase the magnetic flux density.
- the 6th aspect of the electromagnetic contactor which concerns on this invention is a 3rd electrically-conductive board part which the said stationary contact extends inward in parallel with the said electrically conductive plate from the edge part of the said 2nd electrically conductive plate part. And is configured in a C-shape. According to this configuration, since the current flowing through the third conductive plate portion is in the opposite direction to the current flowing through the movable contact, the magnetic flux density that generates the Lorentz force can be further increased.
- the movable contact is a conductive plate portion supported by the movable portion, and a C-shaped folded portion formed at both ends of the conductive plate portion, A contact portion formed on a surface of the C-shaped folded portion facing the conductive plate portion.
- an L-shaped conductive plate portion that includes a second conductive plate portion that extends from the inner ends of the pair of first conductive plate portions through the inside of the end portion of the U-shaped folded portion.
- an electromagnetic repulsion force in the opening direction generated in the stator contact and the movable contact when a large current is supplied to the contact mechanism having the fixed contact and the movable contact inserted in the energization path is resisted.
- Lorentz force can be generated. For this reason, it is possible to reliably prevent the opening of the movable contact when energizing a large current without using a mechanical pressing force. Further, the magnetic field generated by the current flowing through the external connection conductor is prevented from affecting the magnetic field that generates the Lorentz force against the electromagnetic repulsion force in the opening direction when energized, thereby preventing the Lorentz force from being lowered. Furthermore, if a conductor portion is formed in the external connection conductor to pass a current in a direction opposite to the direction of the current flowing through the movable contact, the magnetic flux density that generates the Lorentz force can be increased.
- FIG. 1B is a view showing a state where external connection conductors extend in the same direction.
- a top view and (c) are top views which show a prior art example. It is a figure which shows the contact mechanism which can be applied to this invention, (a) is a perspective view, (b) is sectional drawing which shows the contact mechanism at the time of opening, (c) is a cross section which shows the contact mechanism at the time of closing
- FIG. 4D is a cross-sectional view showing the magnetic flux when the pole is closed.
- FIG. 1 It is a top view which shows the 2nd Embodiment of this invention, Comprising: (a) is a top view which shows a U-shaped external connection conductor, (b) is a top view which shows an L-shaped external connection conductor, (c) ) Is a plan view showing a crank-shaped external connection conductor. It is a block diagram which shows a protection unit. It is sectional drawing which shows 3rd Embodiment of the electromagnetic contactor of this invention. It is a figure which shows the other example of the contact mechanism which can be applied to this invention, (a) is a perspective view, (b) is sectional drawing of an open state, (c) is sectional drawing of a closing state. It is a figure which shows the further another example of the contact mechanism which can be applied to this invention, Comprising: (a) is a perspective view, (b) is sectional drawing of an open state, (c) is sectional drawing of a closing state. .
- FIG. 1 is a sectional view showing an electromagnetic contactor to which a contact mechanism according to the present invention is applied.
- 1 is a main body case made of, for example, a synthetic resin.
- the main body case 1 has a two-part structure of an upper case 1a and a lower case 1b.
- the upper case 1a is internally provided with a contact mechanism CM.
- the contact mechanism CM includes a fixed contact 2 fixedly disposed on the upper case 1a, and a movable contact 3 disposed so as to be able to contact with and separate from the fixed contact 2.
- an operation electromagnet 4 for driving the movable contact 3 is disposed.
- the electromagnet 4 for operation has a stationary iron core 5 formed of an E-shaped laminated steel plate and a movable iron core 6 formed of an E-shaped laminated steel plate facing each other.
- An electromagnetic coil 8 supplied with a single-phase alternating current wound around a coil holder 7 is fixed to the central leg 5a of the fixed iron core 5.
- a return spring 9 is provided between the upper surface of the coil holder 7 and the root of the central leg 6 a of the movable iron core 6 to urge the movable iron core 6 in a direction away from the fixed iron core 5.
- a shading coil 10 is embedded in the upper end surface of the outer leg portion of the fixed iron core 5.
- the shading coil 10 can suppress fluctuations in electromagnetic attraction, noise, and vibration due to changes in alternating magnetic flux in the single-phase AC electromagnet.
- a contact holder 11 is connected to the upper end of the movable iron core 6. The contact holder 11 is pressed downward into an insertion hole 11a formed in a direction perpendicular to the axis on the upper end side thereof so that the movable contact 3 obtains a predetermined contact pressure against the fixed contact 2 by the contact spring 12. Being held. As shown in an enlarged view in FIG.
- the movable contact 3 is composed of an elongated bar-shaped conductive plate portion 3a whose central portion is pressed by a contact spring 12, and a movable contact point is formed on the lower surface of both ends of the conductive plate portion 3a. Portions 3b and 3c are formed respectively.
- the fixed contact 2 supports a pair of fixed contact portions 2a, 2b facing the movable contact portions 3b, 3c of the movable contact 3 from below as shown in an enlarged view in FIG.
- the first conductive plate portions 2c and 2d facing outward in parallel with the outer edge portion of the conductive plate portion 3a from the outer end portion outside the conductive plate portion 3a of the first conductive plate portions 2c and 2d.
- L-shaped conductive plate portions 2g and 2h formed with second conductive plate portions 2e and 2f extending upward through. And as shown in FIG. 1, it connects with the external connection terminals 2i and 2j extended and fixed to the outer side of the upper case 1a at the upper end of these L-shaped electroconductive board parts 2g and 2h.
- the external connection conductors 20 and 21 are connected to the external connection terminals 2i and 2j as shown in FIG. These external connection conductors 20 and 21 are connected so that fixed portions 22 and 23 connected to the external connection terminals 2 i and 2 j extend in a direction orthogonal to the direction of current flowing through the conductive plate portion 3 a of the movable contact 3. .
- the extending direction of the external connection conductors 20 and 21 is any of the case where they extend in opposite directions as shown in FIG. 2A and the case where they extend in the same direction as shown in FIG. 2B. Good.
- the movable contact 3 In the state where the movable iron core 6 is in the current interruption position, the movable contact 3 is in contact with the bottom of the insertion hole 11a of the contact holder 11 by the contact spring 12 as shown in FIG. In this state, the movable contact portions 3b and 3c formed on both ends of the conductive plate portion 3a of the movable contact 3 are spaced upward from the fixed contact portions 2a and 2b of the fixed contact 2, and the contact mechanism CM is The contact is open.
- a large current of, for example, several tens of kA input from the external connection terminal 2i of the fixed contact 2 connected to a DC power source (not shown) is applied to the second conductive plate portion 2e, 1 is supplied to the movable contact portion 3b of the movable contact 3 through the conductive plate portion 2c and the fixed contact portion 2a.
- the large current supplied to the movable contact portion 3b is supplied to the fixed contact portion 2b through the conductive plate portion 3a and the movable contact portion 3c.
- the large current supplied to the fixed contact portion 2b is supplied to the first conductive plate portion 2d, the second conductive plate portion 2f, and the external connection terminal 2j to form an energization path that is supplied to an external load.
- the machining of the stationary contact 2 can be easily performed, and the electromagnetic repulsive force in the opening direction is separately provided. Since the member which generate
- the magnetic field generated by the current flowing through the fixed portion 22 of the external connection conductor 20 does not act in the direction of weakening the magnetic field generated by the current flowing through the conductive plate portion 3a of the movable contact 3, and generates a large Lorentz force. can do.
- the current flowing through the conductive plate portion 3 a of the movable contact 3 passes through the fixed portions 22 and 23 of the external connection conductors 20 and 21 to the external connection terminals 2 i and 2 h of the fixed contact 2.
- the connection is extended parallel to the direction.
- the magnetic field generated by the current flowing through the fixed portions 22 and 23 of the external connection conductors 20 and 21 interferes with the magnetic field generated by the current flowing through the conductive plate portion 3 a of the movable contact 3.
- the Lorentz force against the electromagnetic repulsion force in the direction of opening the movable contact 3 when energized is reduced.
- the arc generated in this way is extinguished by an arc extinguishing mechanism such as an arc extinguishing magnet arranged along the movable contact 3 (not shown), and the contact portions 2a and 2b of the fixed contact 2 and The electric current between the movable contact portions 3b and 3c of the movable contact 3 is interrupted, and the state of opening is restored.
- an arc extinguishing mechanism such as an arc extinguishing magnet arranged along the movable contact 3 (not shown), and the contact portions 2a and 2b of the fixed contact 2 and
- the electric current between the movable contact portions 3b and 3c of the movable contact 3 is interrupted, and the state of opening is restored.
- the external connection conductors connected to the external connection terminals 2 i and 2 j of the fixed contact 2 are configured to increase the magnetic field generated in the conductive plate portion 3 a of the movable contact 3. That is, in the second embodiment, as shown in FIG. 4A, the configuration of the external connection conductors 20 and 21 in FIG. 2A in the first embodiment described above is changed.
- the external connection conductor 20 extends in parallel with the conductive plate portion 3a of the movable contact 3 along the front surface of the upper case 1a to the other end of the fixed portion 22 connected to the external connection terminal 2i of the fixed contact 2.
- An external connection conductor portion 27 extending from the other end of the portion 26 in the same direction as the extending direction of the conductive plate portion 3 a of the movable contact 3 is provided.
- the external connection conductor 21 also includes a first conductor portion 28, a second conductor portion 29, and an external connection conductor portion 30 so as to be point-symmetric with the external connection conductor 20.
- the fixed portions 22 and 23 of the external connection conductors 20 and 21 are affected by the magnetic field generated by the current flowing in the conductive plate portion 3a of the movable contact 3 as in the first embodiment. Arranged so as not to affect.
- the external connection conductors 20 and 21 have first conductor portions 25 and 28 extending in parallel with the conductive plate portion 3a of the movable contact 3, and currents flowing through the first conductor portions 25 and 28 are provided. As shown in FIG. 4A, the direction is opposite to the direction of the current flowing through the conductive plate portion 3 a of the movable contact 3.
- the magnetic field generated in the first conductor portions 25 and 28 of the external connection conductors 20 and 21 is superimposed on the magnetic field generated in the conductive plate portion 3a of the movable contact 3, so that the conduction of the movable contact 3 is reduced.
- the magnetic flux density around the plate portion 3a can be increased. Therefore, it is possible to generate a larger Lorentz force that resists the electromagnetic force in the opening direction generated in the movable contact 3 when energized. As a result, the opening of the movable contact 3 during energization can be reliably prevented.
- the pressing force of the contact spring 12 that supports the movable contact 3 can be made smaller, the thrust generated by the electromagnet 4 for operation can be made smaller accordingly, and the overall configuration can be made smaller.
- the present invention is not limited to this, and as shown in FIG. Even if the portions 22 and 23 and the first conductor portions 25 and 28 that also serve as external connection conductor portions are configured in an L shape, the same effect as described above can be obtained. Further, as shown in FIG. 4 (c), the first conductor portions 25 and 28 are halved in length, and external connection conductor portions 31 and 32 extending from the free ends in the direction opposite to the fixing portions 22 and 23 are provided. You may make it form.
- the protection unit 40 of the magnetic contactor 1 includes a bus bar 42 in which a fuse 41 is interposed between a DC power source and the external connection terminal 2 i of the fixed contact 2 of the electromagnetic contactor 1.
- the external connection terminal 2j of the fixed contact 2 of the bus bar 42 and the connection portion are formed in the same shape as the external connection conductor 20 shown in FIG. 4A, and the bus bar 43 is formed in the same shape as the external connection conductor 21. Even if it does so, the effect similar to 2nd Embodiment mentioned above can be acquired.
- the contact mechanism CM is not affected by the magnetic field of the external connection conductors 20 and 21. That is, in the third embodiment, as shown in FIG. 6, the L-shaped conductive plate portion is formed on the inner wall of the contact storage space 50 that stores the L-shaped conductive plate portions 2g and 2h of the stationary contact 2 of the upper case 1a.
- the magnetic shield 51 is arranged so as to surround 2g and 2h.
- the magnetic shield 51 is made of a magnetic material and is formed in a bowl shape with its lower end open, and has an inner circumference that contacts at least the second conductive plate portions 2e and 2f of the L-shaped conductive plate portions 2g and 2h.
- An insulating film or an insulating layer is formed on the surface.
- the external connection conductor 20 connected to the external connection terminals 2i and 2j arranged outside the upper case 1a and The magnetic field generated by the current flowing through 21 can be magnetically shielded. For this reason, it is possible to reliably prevent the external magnetic field from affecting the magnetic field generated by the current flowing through the L-shaped conductive plate portions 2g and 2h of the fixed contact 2 and the conductive plate portion 3a of the movable contact 3. . Therefore, the opening of the movable contact 3 during energization can be reliably prevented without weakening the Lorentz force against the electromagnetic force that opens the movable contact 3 during energization. In this case, since the magnetic field generated in the external connection conductors 20 and 21 is magnetically shielded by the magnetic shield 51, the connection direction of the external connection conductors 20 and 21 can be arbitrarily set.
- the entire magnetic contact shield CM is composed of the magnetic shield 51 composed of the L-shaped conductive plate portions 2g and 2h of the stationary contact and the conductive plate portion 3a of the movable contact 3.
- the present invention is not limited to the above-described configuration, as long as it prevents the magnetic field generated by the current flowing through the external connection conductors 20 and 21 from affecting the part that generates the Lorentz force. Good. For this reason, it can be formed only on the opposing side surface facing the external connection terminals 2i and 2j, or the front and rear side surfaces can be omitted from the configuration of FIG.
- the present invention is not limited to the above-described configuration.
- FIGS. 7A to 7C in the configuration of FIG.
- the second conductive plate portions 2e and 2f in the letter-shaped conductive plate portions 2g and 2h are bent so as to cover the upper end side of the end portion of the conductive plate portion 3a of the movable contact 3, and a third parallel to the conductive plate portion 3a is formed.
- the conductive plate portions 2m and 2n are formed to form the U-shaped conductive plate portions 2o and 2p
- the configuration is the same as that of the first to third embodiments described above.
- the large current supplied to the fixed contact portion 2b is supplied to the first conductive plate portion 2d, the second conductive plate portion 2f, the third conductive plate portion 2n, and the external connection terminal 2j, and is applied to an external load.
- a supplied energization path is formed.
- an electromagnetic repulsive force is generated between the fixed contact portions 2a and 2b of the fixed contact 2 and the movable contact portions 3b and 3c of the movable contact 3 in a direction to open the movable contact portions 3b and 3c.
- the fixed contact 2 has a U-shaped conductive plate by the first conductive plate portions 2c and 2d, the second conductive plate portions 2e and 2f, and the third conductive plate portions 2m and 2n. Since the portions 2o and 2p are formed, a current in the reverse direction flows between the third conductive plate portions 2m and 2n of the fixed contact 2 and the conductive plate portion 3a of the movable contact 3 facing the third conductive plate portions 2m and 2n. .
- the conductive plate portion of the movable contact 3 is determined by the Fleming left-hand rule.
- Lorentz force that presses 3a against the stationary contact portions 2a and 2b of the stationary contact 2 can be generated.
- This Lorentz force can resist the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 2a and 2b of the fixed contact 2 and the movable contact portions 3b and 3c of the movable contact 3. It is possible to prevent the three movable contact portions 3b and 3c from opening.
- the shape of the movable contact 3 may be changed to generate a Lorentz force that resists the electromagnetic force in the opening direction during energization. That is, as shown in FIGS. 8A to 8C, the first conductive plate portions 3d and 3e extending upward from both ends of the conductive plate portion 3a of the movable contact 3, and the first conductive plate portions 3d and 3e The second conductive plate portions 3f and 3g extending inward from the upper ends of the conductive plate portions 3d and 3e form U-shaped folded portions 3h and 3i that are folded upward on the conductive plate portion 3a. Movable contact portions 3j and 3k are formed on the lower surfaces of the distal ends of the second conductive plate portions 3f and 3g of the U-shaped folded portions 3h and 3i.
- the fixed contact 2 is between the conductive plate portion 3a and the second conductive plate portions 3f and 3g forming the U-shaped folded portions 3h and 3i of the movable contact 3 in the open state of the contact mechanism CM.
- L-shaped conductive plate portions 2u and 2v are formed by fifth conductive plate portions 2s and 2t extending upward through the inside of the inner end portion.
- the fixed contact portions 2w and 2x are formed at positions facing the movable contact portions 3j and 3k of the movable contact 3 of the fourth conductive plate portions 2q and 2r.
- the large current supplied to the movable contact portion 3j includes the second conductive plate portion 3f, the first conductive plate portion 3d, the conductive plate portion 3a, the first conductive plate portion 3e, the second conductive plate portion 3g, It is supplied to the fixed contact portion 2x through the contact portion 3k.
- the large current supplied to the fixed contact portion 2x forms an energization path that is supplied to an external load through the fourth conductive plate portion 2r, the fifth conductive plate portion 2t, and the external connection terminal 2j.
- the movable contact 3 has U-shaped folded portions 3h and 3i formed by the conductive plate portion 3a, the first conductive plate portions 3d and 3e, and the second conductive plate portions 3f and 3g.
- a current in the reverse direction flows through the conductive plate portion 3a of the child 3 and the fourth conductive plate portions 2q and 2r of the stationary contact 2. Therefore, as shown in FIG. 8C, the conductive plate portion 3a is generated by the current flowing through the conductive plate portion 3a of the movable contact 3 and the magnetic field formed by the fourth conductive plate portions 2q and 2r of the fixed contact 2.
- the Lorentz force that presses the movable contact portions 3j, 3k of the movable contact 3 against the fixed contact portions 2w, 2x of the fixed contact 2 can be generated.
- This Lorentz force it becomes possible to resist the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 2w and 2x of the fixed contact 2 and the movable contact portions 3j and 3k of the movable contact 3, and a large current It is possible to prevent the movable contact portions 3j and 3k of the movable contact 3 from opening when energized.
- the L-shaped conductive plate portions 2u and 2v are formed on the fixed contact 2, the L-shaped conductive plate is located above the second conductive plate portions 3f and 3g of the movable contact 3. Since the magnetic flux strengthening portion is formed by the fifth conductive plate portions 2s and 2t of the plate portions 2u and 2v, the same Lorentz force as in the first embodiment described above can be generated, and the movable contact 3 can be more powerfully generated. Can be prevented.
- the present invention is not limited, and the magnetic fields generated by the currents flowing through the fixed portions 22 and 23 may intersect at an angle that does not reduce the Lorentz force.
- an electromagnetic contactor capable of suppressing the electromagnetic repulsion force that opens the movable contact when energized without being affected by the magnetic field of the external connection conductor.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Contacts (AREA)
- Switch Cases, Indication, And Locking (AREA)
Abstract
Description
また、同様の構成において流れる電流により発生する磁界によってアークを駆動させる電磁接触器の接触子構造が提案されている(例えば、特許文献2参照)。
しかしながら、ヒューズや回路遮断器と組み合わせて回路を構成する電磁接触器は、大電流の通電時に可動接触子が電磁反発力によって開極することを阻止する必要があり、上述した特許文献2に記載の従来例を適用するには、一般的には可動接触子の固定接触子に対する接触圧を確保する接触スプリングのばね力を大きくすることで対処している。
この未解決の課題を解決するために、前記固定接触子及び可動接触子の少なくとも一方の形状を、通電時に前記固定接触子及び前記可動接触子間に発生する開極方向の電磁反発力に抗するローレンツ力を高める形状とすることが考えられる。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、全体の構成を大型化することなく、外部接続導体の磁界の影響を受けることなく通電時に可動接触子を開極させる電磁反発力を抑制することができる電磁接触器を提供することを目的としている。
この構成によると、外部接続導体の固定部に接続された導体部が、可動接触子の延長方向と平行で且つ電流方向が可動接触子と逆方向となるように配置されている。このため、導体部で発生する磁束の向きを、ローレンツ力を発生する磁界を形成する磁束の向きと一致させてローレンツ力を発生する磁束密度を増加できる。
この構成によると、保護ユニットを構成するブスバーで、通電時に固定接触子及び可動接触子間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する磁界の磁束密度を増加できる。
この構成によると、固定接触子の外部接続端子に接続された外部接続導体に流れる電流によって発生する磁界が前記ローレンツ力を発生する磁界に影響することを磁性体でシールドして、ローレンツ力の低下を抑制できる。
この構成によると、L字状導電板部を構成する第2の導電板部で、電磁接触器の通電時に可動接触子及び固定接触子間を開極させる電磁反発力に抗するローレンツ力を発生させる磁束密度を増加させる。
この構成によると、第3の導電板部を流れる電流が可動接触子を流れる電流と逆方向となるので、ローレンツ力を発生する磁束密度をより増加することができる。
この構成によると、可動接触子側で電磁接触器の通電時に可動接触子及び固定接触子間を開極させる電磁反発力に抗するローレンツ力を発生させることができる。
図1において、1は例えば合成樹脂製の本体ケースである。この本体ケース1は、上部ケース1aと下部ケース1bの2分割構造を有する。上部ケース1aには、接点機構CMが内装されている。この接点機構CMは、上部ケース1aに固定配置された固定接触子2と、この固定接触子2に接離自在に配設された可動接触子3とを備えている。
固定鉄心5の中央脚部5aにはコイルホルダ7に巻装された単相交流が供給される電磁コイル8が固定されている。また、コイルホルダ7の上面と可動鉄心6の中央脚6aの付け根との間に可動鉄心6を固定鉄心5から離れる方向に付勢する復帰スプリング9が配設されている。
そして、可動鉄心6の上端に接触子ホルダ11が連結されている。この接触子ホルダ11にはその上端側に軸直角方向に形成された挿通孔11aに、可動接触子3が接触スプリング12によって固定接触子2に対して所定の接触圧を得るように下方に押圧されて保持されている。
この可動接触子3は、図3に拡大図示するように、中央部が接触スプリング12によって押圧された細長い棒状の導電板部3aで構成され、この導電板部3aの両端側の下面に可動接点部3b,3cがそれぞれ形成されている。
今、操作用電磁石4の電磁コイル8が非通電状態である状態では、固定鉄心5及び可動鉄心6間に電磁吸引力が生じることはなく、復帰スプリング9によって、可動鉄心6が固定鉄心5から上方に離れる方向に付勢され、この可動鉄心6の上端がストッパ13に当接することにより電流遮断位置に保持される。
しかしながら、固定接触子2は、図3(a)に示すように、第1の導電板部2c,2d及び第2の導電板部2e,2fによってL字状導電板部2g,2hが形成されているので、上述した図3(c)に示す電流路が形成されることにより、可動接触子3を流れる電流に対し、図3(d)に示す磁界を形成する。このため、フレミングの左手の法則により、可動接触子3の導電板部3aに可動接点部3b,3cを固定接点部2a,2b側に押し付ける開極方向の電磁反発力に抗するローレンツ力を作用させることができる。
さらに、固定接触子2の外部接続端子2i及び2jに接続された外部接続導体20及び21の固定部22及び23が可動接触子3の導電板部3aを流れる電流の方向と直交する方向に延長している。このため、外部接続導体20の固定部22を流れる電流によって発生する磁界が可動接触子3の導電板部3aを流れる電流によって発生する磁界を弱める方向に作用することはなく、大きなローレンツ力を発生することができる。
このようにして発生するアークは、図示しないが可動接触子3に沿って配置されたアーク消弧用磁石等のアーク消弧機構によって消弧されて、固定接触子2の接点部2a及び2bと可動接触子3の可動接点部3b及び3cとの間の電流が遮断されて開極状態に復帰する。
この第2の実施形態では、固定接触子2の外部接続端子2i及び2jに接続される外部接続導体を可動接触子3の導電板部3aで発生する磁界を強めるように構成したものである。
すなわち、第2の実施形態では、図4(a)に示すように、前述した第1の実施形態における図2(a)における外部接続導体20及び21の構成を変更している。
この第2の実施形態によると、外部接続導体20及び21の固定部22及び23については前述した第1の実施形態と同様に、可動接触子3の導電板部3aで流れる電流により生じる磁界に影響を与えることがないように配置されている。そして、外部接続導体20及び21には、可動接触子3の導電板部3aと平行に延長する第1の導体部25及び28を有し、これら第1の導体部25及び28に流れる電流の方向が図4(a)に示すように、可動接触子3の導電板部3aに流れる電流の方向とは逆方向とされている。
この第3の実施形態では、接点機構CMが外部接続導体20及び21の磁界の影響を受けないようにしたものである。
すなわち、第3の実施形態では、図6に示すように、上部ケース1aの固定接触子2のL字状導電板部2g及び2hを収納した接点収納空間50の内壁にL字状導電板部2g及び2hを囲むように磁性体シールド体51を配置した構成を有する。
ここで、磁性体シールド体51は、磁性体で下端を開放した桶状に形成されており、少なくともL字状導電板部2g及び2hの第2の導電板部2e及び2fと接触する内周面に絶縁膜又は絶縁層が形成されている。
この場合には、外部接続導体20及び21で発生する磁界が磁性体シールド体51によって磁気シールドされるので、外部接続導体20及び21の接続方向を任意に設定することができる。
このとき、固定接触子2の固定接点部2a,2b及び可動接触子3の可動接点部3b、3c間に可動接点部3b,3cを開極させる方向の電磁反発力が発生する。
すなわち、図8(a)~図8(c)に示すように、可動接触子3の導電板部3aの両端側から上方に延長する第1の導電板部3d,3eと、この第1の導電板部3d,3eの上端から内方に延長する第2の導電板部3f,3gとで、導電板部3aの上方側に折り返すU字状折り返し部3h,3iが形成されている。これらU字状折り返し部3h,3iの第2の導電板部3f,3gにおける先端側の下面に可動接点部3j,3kが形成されている。
このとき、固定接触子2の固定接点部2w,2x及び可動接触子3の可動接点部3j、3k間に可動接点部3j,3kを開極させる方向の電磁反発力が発生する。
Claims (7)
- 通電路に介挿された一対の固定接点部を有する固定接触子と該一対の固定接点部に接離可能な一対の可動接点部を有する可動接触子とを有する接点機構を有し、前記一対の固定接触子及び前記可動接触子の少なくとも一方の形状を、通電時に前記固定接点部及び前記可動接点部間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する磁界を形成する形状とし、
前記固定接触子の外部接続端子に接続する外部接続導体を有し、該外部接続導体の前記外部接続端子に取付ける固定部の取付方向を前記可動接触子に流れる電流の方向に対して交差する方向とした
ことを特徴とする電磁接触器。 - 前記外部接続導体は、前記固定部の前記外部接続端子とは反対側に連結されて前記可動接触子の延長方向と平行で且つ電流方向が当該可動接触子と逆方向となる導体部を備えていることを特徴とする請求項1に記載の電磁接触器。
- 前記外部接続導体は、保護ユニットを構成するブスバーで構成されていることを特徴とする請求項2に記載の電磁接触器。
- 通電路に介挿された一対の固定接点部を有する固定接触子と該一対の固定接点部に接離可能な一対の可動接点部を有する可動接触子とを有する接点機構を有し、前記一対の固定接触子及び前記可動接触子の少なくとも一方の形状を、通電時に前記固定接点部及び前記可動接点部間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する磁界を形成する形状とし、
前記接点機構を覆うように前記固定接触子に接続される外部接続導体で生じる磁界の影響を抑制する磁性体を配置した
ことを特徴とする電磁接触器。 - 前記可動接触子は、可動部に支持され、表裏の一方の面における両端側にそれぞれ接点部を有する導電板を備え、
前記固定接触子は、前記導電板の接点部に対向する固定接点部を支持してそれぞれ前記導電板と平行に当該導電板の両端より外側に向かう第1の導電板部と、該第1の導電板部の外方端部から前記導電板の端部の外側を通って延長する第2の導電板部とで形成されたL字状導電板部を備えている
ことを特徴とする請求項1乃至4の何れか1項に記載の電磁接触器。 - 前記固定接触子は、前記第2の導電板部の端部から前記導電板と平行に内方に延長する第3の導電板部を有してC字状に構成されている
ことを特徴とする請求項5に記載の電磁接触器。 - 前記可動接触子は、可動部に支持される導電板部と、該導電板部の両端に形成されたC字状折り返し部と、該C字状折り返し部の前記導電板部との対向面に形成された接点部とを備え、
前記固定接触子は、前記U字状折り返し部内に前記導電板部と平行に配設された前記可動接触子の接点部と接触する接点部を形成した一対の第1の導電板部と、該一対の第1の導電板部の内側端からそれぞれ前記U字状折り返し部の端部の内側を通って延長する第2の導電板部とで構成されるL字状導電板部を備えている
ことを特徴とする請求項1乃至4の何れか1項に記載の電磁接触器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280048732.7A CN103843099B (zh) | 2011-10-07 | 2012-10-03 | 电磁接触器 |
US14/344,789 US10056200B2 (en) | 2011-10-07 | 2012-10-03 | Electromagnetic contactor |
EP12837693.6A EP2765588B1 (en) | 2011-10-07 | 2012-10-03 | Electromagnetic contactor |
KR1020147008803A KR20140071408A (ko) | 2011-10-07 | 2012-10-03 | 전자 접촉기 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-223144 | 2011-10-07 | ||
JP2011223144A JP5793048B2 (ja) | 2011-10-07 | 2011-10-07 | 電磁接触器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051264A1 true WO2013051264A1 (ja) | 2013-04-11 |
Family
ID=48043444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/006359 WO2013051264A1 (ja) | 2011-10-07 | 2012-10-03 | 電磁接触器 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10056200B2 (ja) |
EP (1) | EP2765588B1 (ja) |
JP (1) | JP5793048B2 (ja) |
KR (1) | KR20140071408A (ja) |
CN (1) | CN103843099B (ja) |
WO (1) | WO2013051264A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101545893B1 (ko) | 2014-01-28 | 2015-08-20 | 엘에스산전 주식회사 | 릴레이 |
US9673009B2 (en) | 2015-10-14 | 2017-06-06 | Lsis Co., Ltd. | Direct current relay |
WO2018131639A1 (ja) * | 2017-01-11 | 2018-07-19 | パナソニックIpマネジメント株式会社 | 接点装置、電磁継電器、電気機器 |
WO2019064778A1 (ja) * | 2017-09-27 | 2019-04-04 | オムロン株式会社 | 接続ユニット |
WO2019103064A1 (ja) * | 2017-11-27 | 2019-05-31 | パナソニックIpマネジメント株式会社 | 接点装置、電磁継電器及び電気機器 |
WO2019103063A1 (ja) * | 2017-11-27 | 2019-05-31 | パナソニックIpマネジメント株式会社 | 接点モジュール、接点装置、電磁継電器モジュール、及び電気機器 |
WO2019167825A1 (ja) * | 2018-03-02 | 2019-09-06 | パナソニックIpマネジメント株式会社 | 接点装置モジュール、電磁継電器モジュール及び電気機器 |
WO2020013225A1 (ja) * | 2018-07-10 | 2020-01-16 | パナソニックIpマネジメント株式会社 | 接点装置モジュール、電磁継電器モジュール及び電気機器 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5856426B2 (ja) * | 2011-10-07 | 2016-02-09 | 富士電機株式会社 | 接点装置及びこれを使用した電磁接触器 |
JP5793048B2 (ja) * | 2011-10-07 | 2015-10-14 | 富士電機株式会社 | 電磁接触器 |
JP6841047B2 (ja) * | 2017-01-16 | 2021-03-10 | 富士電機機器制御株式会社 | 電磁接触器 |
JP2019036434A (ja) | 2017-08-10 | 2019-03-07 | オムロン株式会社 | 接続ユニット |
CN109427506B (zh) * | 2017-08-25 | 2020-11-20 | 佛山市顺德区美的电热电器制造有限公司 | 压力开关及电压力锅 |
JP6964252B2 (ja) * | 2017-11-27 | 2021-11-10 | パナソニックIpマネジメント株式会社 | 接点装置、及び電磁継電器 |
US10549000B2 (en) * | 2017-12-20 | 2020-02-04 | Healthy Signoff, LLC | Handheld UV disinfectant unit |
JP7077890B2 (ja) * | 2018-09-14 | 2022-05-31 | 富士電機機器制御株式会社 | 接点機構及びこれを使用した電磁接触器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04123719A (ja) | 1990-09-14 | 1992-04-23 | Fuji Electric Co Ltd | 固定接触子ならびにその製造方法 |
JP2001210170A (ja) | 2000-01-24 | 2001-08-03 | Mitsubishi Electric Corp | 開閉器 |
JP2004071512A (ja) * | 2002-08-09 | 2004-03-04 | Omron Corp | 開閉装置 |
JP2010101241A (ja) * | 2008-10-23 | 2010-05-06 | Mitsubishi Electric Corp | スタータ用電磁スイッチ |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3465270A (en) * | 1967-07-06 | 1969-09-02 | Pollak Corp Joseph | Heavy duty relay with wiping contacts |
US3651437A (en) * | 1971-03-19 | 1972-03-21 | Matsushita Electric Works Ltd | Electromagnetic contactor |
JP2812810B2 (ja) * | 1990-02-14 | 1998-10-22 | 三菱電機株式会社 | 開閉器 |
JPH0612957A (ja) * | 1992-06-24 | 1994-01-21 | Omron Corp | リレー |
JPH07182961A (ja) * | 1993-12-22 | 1995-07-21 | Fuji Electric Co Ltd | 電磁接触器の鉄心保持構造 |
DE19602118C2 (de) * | 1996-01-22 | 1999-12-30 | Siemens Ag | Elektrisches Schaltgerät |
DZ2952A1 (fr) * | 1998-12-01 | 2004-03-15 | Schneider Electric Ind Sa | Conacteur électromécanique logeant dans un corps un électroaimant et un porte-contacts mobile. |
KR20000073458A (ko) * | 1999-05-11 | 2000-12-05 | 권수영 | 스타-델타 결선용 전자개폐기 |
JP2006310251A (ja) | 2005-03-28 | 2006-11-09 | Matsushita Electric Works Ltd | リレー用導電バー及びこの製造方法 |
US20090315653A1 (en) * | 2008-06-18 | 2009-12-24 | Fuji Electric Fa Components & Systems Co., Ltd | Electromagnet device and electromagnetic contactor |
JP5521852B2 (ja) | 2010-03-30 | 2014-06-18 | アンデン株式会社 | 電磁継電器 |
JP2012028253A (ja) * | 2010-07-27 | 2012-02-09 | Fuji Electric Fa Components & Systems Co Ltd | 接点機構及びこれを使用した電磁接触器 |
JP5134657B2 (ja) * | 2010-07-27 | 2013-01-30 | 富士電機機器制御株式会社 | 接点機構及びこれを使用した電磁接触器 |
JP2012038684A (ja) * | 2010-08-11 | 2012-02-23 | Fuji Electric Fa Components & Systems Co Ltd | 接点装置及びこれを使用した電磁開閉器 |
JP5385877B2 (ja) * | 2010-08-31 | 2014-01-08 | 富士電機機器制御株式会社 | 電磁開閉器 |
JP5778989B2 (ja) * | 2011-05-19 | 2015-09-16 | 富士電機機器制御株式会社 | 電磁接触器 |
JP5689741B2 (ja) * | 2011-05-19 | 2015-03-25 | 富士電機株式会社 | 電磁接触器 |
JP5767508B2 (ja) * | 2011-05-19 | 2015-08-19 | 富士電機株式会社 | 電磁接触器 |
JP5809443B2 (ja) * | 2011-05-19 | 2015-11-10 | 富士電機株式会社 | 接点機構及びこれを使用した電磁接触器 |
JP5793048B2 (ja) * | 2011-10-07 | 2015-10-14 | 富士電機株式会社 | 電磁接触器 |
JP5856426B2 (ja) * | 2011-10-07 | 2016-02-09 | 富士電機株式会社 | 接点装置及びこれを使用した電磁接触器 |
JP2015033162A (ja) * | 2013-07-31 | 2015-02-16 | キヤノン株式会社 | 駆動装置、荷電粒子線照射装置、リソグラフィ装置 |
JP2015032609A (ja) * | 2013-07-31 | 2015-02-16 | キヤノン株式会社 | 駆動装置、荷電粒子線照射装置、及びデバイスの製造方法 |
-
2011
- 2011-10-07 JP JP2011223144A patent/JP5793048B2/ja active Active
-
2012
- 2012-10-03 EP EP12837693.6A patent/EP2765588B1/en active Active
- 2012-10-03 CN CN201280048732.7A patent/CN103843099B/zh active Active
- 2012-10-03 KR KR1020147008803A patent/KR20140071408A/ko not_active Application Discontinuation
- 2012-10-03 WO PCT/JP2012/006359 patent/WO2013051264A1/ja active Application Filing
- 2012-10-03 US US14/344,789 patent/US10056200B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04123719A (ja) | 1990-09-14 | 1992-04-23 | Fuji Electric Co Ltd | 固定接触子ならびにその製造方法 |
JP2001210170A (ja) | 2000-01-24 | 2001-08-03 | Mitsubishi Electric Corp | 開閉器 |
JP2004071512A (ja) * | 2002-08-09 | 2004-03-04 | Omron Corp | 開閉装置 |
JP2010101241A (ja) * | 2008-10-23 | 2010-05-06 | Mitsubishi Electric Corp | スタータ用電磁スイッチ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2765588A4 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101545893B1 (ko) | 2014-01-28 | 2015-08-20 | 엘에스산전 주식회사 | 릴레이 |
US9613771B2 (en) | 2014-01-28 | 2017-04-04 | Lsis Co., Ltd. | Relay |
US9673009B2 (en) | 2015-10-14 | 2017-06-06 | Lsis Co., Ltd. | Direct current relay |
JPWO2018131639A1 (ja) * | 2017-01-11 | 2019-11-14 | パナソニックIpマネジメント株式会社 | 接点装置、電磁継電器、電気機器 |
WO2018131639A1 (ja) * | 2017-01-11 | 2018-07-19 | パナソニックIpマネジメント株式会社 | 接点装置、電磁継電器、電気機器 |
US11139133B2 (en) | 2017-01-11 | 2021-10-05 | Panasonic Intellectual Property Management Co., Ltd. | Contact device, electromagnetic relay and electrical device |
JP7117567B2 (ja) | 2017-01-11 | 2022-08-15 | パナソニックIpマネジメント株式会社 | 接点装置、電磁継電器、電気機器 |
WO2019064778A1 (ja) * | 2017-09-27 | 2019-04-04 | オムロン株式会社 | 接続ユニット |
JP2019061899A (ja) * | 2017-09-27 | 2019-04-18 | オムロン株式会社 | 接続ユニット |
US11276538B2 (en) | 2017-09-27 | 2022-03-15 | Omron Corporation | Connection unit |
WO2019103064A1 (ja) * | 2017-11-27 | 2019-05-31 | パナソニックIpマネジメント株式会社 | 接点装置、電磁継電器及び電気機器 |
WO2019103063A1 (ja) * | 2017-11-27 | 2019-05-31 | パナソニックIpマネジメント株式会社 | 接点モジュール、接点装置、電磁継電器モジュール、及び電気機器 |
WO2019167825A1 (ja) * | 2018-03-02 | 2019-09-06 | パナソニックIpマネジメント株式会社 | 接点装置モジュール、電磁継電器モジュール及び電気機器 |
WO2020013225A1 (ja) * | 2018-07-10 | 2020-01-16 | パナソニックIpマネジメント株式会社 | 接点装置モジュール、電磁継電器モジュール及び電気機器 |
Also Published As
Publication number | Publication date |
---|---|
CN103843099A (zh) | 2014-06-04 |
JP5793048B2 (ja) | 2015-10-14 |
KR20140071408A (ko) | 2014-06-11 |
EP2765588A4 (en) | 2015-12-09 |
JP2013084424A (ja) | 2013-05-09 |
EP2765588A1 (en) | 2014-08-13 |
US20150002250A1 (en) | 2015-01-01 |
US10056200B2 (en) | 2018-08-21 |
CN103843099B (zh) | 2016-06-29 |
EP2765588B1 (en) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5793048B2 (ja) | 電磁接触器 | |
JP5134657B2 (ja) | 接点機構及びこれを使用した電磁接触器 | |
JP5809443B2 (ja) | 接点機構及びこれを使用した電磁接触器 | |
JP5856426B2 (ja) | 接点装置及びこれを使用した電磁接触器 | |
KR101377342B1 (ko) | 회로 차단기 | |
CN110323105B (zh) | 继电器 | |
EP2251887B1 (en) | Electromagnetic trip device | |
WO2013153815A1 (ja) | 接点装置及びこれを使用した電磁開閉器 | |
EP2919248B1 (en) | Electromagnetic relay | |
JP5600577B2 (ja) | 接点機構及びこれを使用した電磁接触器 | |
JP7380455B2 (ja) | 電磁継電器 | |
KR101232453B1 (ko) | 회로차단기 | |
JP2012028253A (ja) | 接点機構及びこれを使用した電磁接触器 | |
JP5374630B2 (ja) | 接点機構及びこれを使用した電磁接触器 | |
JP5323244B2 (ja) | 接点機構及びこれを使用した電磁接触器 | |
US11587749B2 (en) | Contact unit for a switching device and switching device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12837693 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14344789 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012837693 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012837693 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147008803 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |