[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013051264A1 - 電磁接触器 - Google Patents

電磁接触器 Download PDF

Info

Publication number
WO2013051264A1
WO2013051264A1 PCT/JP2012/006359 JP2012006359W WO2013051264A1 WO 2013051264 A1 WO2013051264 A1 WO 2013051264A1 JP 2012006359 W JP2012006359 W JP 2012006359W WO 2013051264 A1 WO2013051264 A1 WO 2013051264A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
conductive plate
movable contact
external connection
fixed
Prior art date
Application number
PCT/JP2012/006359
Other languages
English (en)
French (fr)
Inventor
鹿志村 修
磯崎 優
立川 裕之
幸悦 高谷
中 康弘
雄二 柴
Original Assignee
富士電機株式会社
富士電機機器制御株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 富士電機機器制御株式会社 filed Critical 富士電機株式会社
Priority to CN201280048732.7A priority Critical patent/CN103843099B/zh
Priority to US14/344,789 priority patent/US10056200B2/en
Priority to EP12837693.6A priority patent/EP2765588B1/en
Priority to KR1020147008803A priority patent/KR20140071408A/ko
Publication of WO2013051264A1 publication Critical patent/WO2013051264A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/58Electric connections to or between contacts; Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/54Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by magnetic force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/10Electromagnetic or electrostatic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/14Terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/546Contact arrangements for contactors having bridging contacts

Definitions

  • the present invention relates to an electromagnetic contactor having a stationary contact and a movable contact inserted in a current path, and generates a Lorentz force that resists an electromagnetic repulsion force that separates the movable contact from the stationary contact during energization. It is what I did.
  • an electromagnetic contactor that opens and closes a current path
  • the fixed contact is folded in a U shape when viewed from the side, a fixed contact is formed at the folded portion, and the movable contact of the movable contact is connected to the fixed contact.
  • a switch having a configuration that can be separated. This switch increases the opening speed by increasing the electromagnetic repulsion force that acts on the movable contact when a large current is interrupted, so that the arc is rapidly stretched (see, for example, Patent Document 1).
  • a contactor structure of an electromagnetic contactor that drives an arc by a magnetic field generated by a flowing current in a similar configuration (for example, see Patent Document 2).
  • JP 2001-210170 A Japanese Patent Laid-Open No. 4-123719
  • the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and without moving up the overall configuration, without being affected by the magnetic field of the external connection conductor, the movable contactor when energized It is an object of the present invention to provide an electromagnetic contactor that can suppress an electromagnetic repulsive force that opens a pole.
  • the first aspect of the magnetic contactor according to the present invention is capable of contacting and separating a fixed contact having a pair of fixed contact portions inserted in a current path and the pair of fixed contact portions. And a movable contact having a pair of movable contact portions.
  • the shape of at least one of the pair of fixed contact and the movable contact of the contact mechanism is a Lorentz force that resists an electromagnetic repulsion force in the opening direction generated between the fixed contact and the movable contact when energized.
  • the shape forms a generated magnetic field.
  • it has an external connection conductor connected to the external connection terminal of the fixed contact, and the mounting direction of the fixed portion attached to the external connection terminal of the external connection conductor intersects the direction of the current flowing through the movable contact The direction to do.
  • the electromagnetic repulsive force in the opening direction generated between the fixed contact and the movable contact when energized with at least one of the fixed contact and the movable contact being L-shaped or C-shaped, for example. Therefore, the opening of the movable contact when a large current is applied is suppressed.
  • the mounting direction of the fixed portion of the external connection conductor connected to the external connection terminal of the fixed contact is set to intersect the direction of the current flowing through the movable contact. For this reason, the magnetic field generated at the fixed portion of the external connection conductor is prevented from affecting the magnetic field generating the Lorentz force.
  • a second aspect of the electromagnetic contactor according to the present invention is such that the external connection conductor is connected to the opposite side of the fixed portion to the external connection terminal, and is parallel to the extending direction of the movable contact and A conductor portion whose direction is opposite to that of the movable contact is provided.
  • the conductor portion connected to the fixed portion of the external connection conductor is arranged so as to be parallel to the extending direction of the movable contact and the current direction is opposite to the movable contact. For this reason, the direction of the magnetic flux generated in the conductor portion can be matched with the direction of the magnetic flux forming the magnetic field that generates the Lorentz force, thereby increasing the magnetic flux density that generates the Lorentz force.
  • the 3rd aspect of the magnetic contactor which concerns on this invention is comprised by the bus bar which the said external connection conductor comprises a protection unit. According to this configuration, it is possible to increase the magnetic flux density of the magnetic field that generates the Lorentz force against the electromagnetic repulsive force in the opening direction that is generated between the fixed contact and the movable contact during energization with the bus bar that configures the protection unit.
  • a fourth aspect of the electromagnetic contactor includes a fixed contact having a pair of fixed contact portions inserted in the energization path and a pair of movable contact portions capable of coming into contact with and separating from the pair of fixed contact portions. And a contact mechanism having a movable contact.
  • This contact mechanism has a Lorentz force that resists at least one of the pair of fixed contacts and the movable contact against an electromagnetic repulsion force in the opening direction generated between the fixed contact portion and the movable contact portion when energized.
  • the shape forms a magnetic field that generates And the magnetic body which suppresses the influence of the magnetic field produced by the external connection conductor connected to the said stationary contact so that the said contact mechanism may be covered was arrange
  • the magnetic field generated by the current flowing through the external connection conductor connected to the external connection terminal of the fixed contact shields the magnetic field that generates the Lorentz force with the magnetic material, and the Lorentz force is reduced. Can be suppressed.
  • the 5th aspect of the electromagnetic contactor which concerns on this invention is equipped with the electrically conductive board with which the said movable contact is supported by the movable part, and has a contact part in the both ends in the one surface of the front and back, respectively.
  • the fixed contact supports a fixed contact portion facing the contact portion of the conductive plate, and each of the first conductive plate portions extends outward from both ends of the conductive plate in parallel with the conductive plate;
  • An L-shaped conductive plate portion formed from an outer end portion of one conductive plate portion and a second conductive plate portion extending through the outside of the end portion of the conductive plate.
  • the second conductive plate portion constituting the L-shaped conductive plate portion generates a Lorentz force that resists the electromagnetic repulsion force that opens the contact between the movable contact and the fixed contact when the electromagnetic contactor is energized. Increase the magnetic flux density.
  • the 6th aspect of the electromagnetic contactor which concerns on this invention is a 3rd electrically-conductive board part which the said stationary contact extends inward in parallel with the said electrically conductive plate from the edge part of the said 2nd electrically conductive plate part. And is configured in a C-shape. According to this configuration, since the current flowing through the third conductive plate portion is in the opposite direction to the current flowing through the movable contact, the magnetic flux density that generates the Lorentz force can be further increased.
  • the movable contact is a conductive plate portion supported by the movable portion, and a C-shaped folded portion formed at both ends of the conductive plate portion, A contact portion formed on a surface of the C-shaped folded portion facing the conductive plate portion.
  • an L-shaped conductive plate portion that includes a second conductive plate portion that extends from the inner ends of the pair of first conductive plate portions through the inside of the end portion of the U-shaped folded portion.
  • an electromagnetic repulsion force in the opening direction generated in the stator contact and the movable contact when a large current is supplied to the contact mechanism having the fixed contact and the movable contact inserted in the energization path is resisted.
  • Lorentz force can be generated. For this reason, it is possible to reliably prevent the opening of the movable contact when energizing a large current without using a mechanical pressing force. Further, the magnetic field generated by the current flowing through the external connection conductor is prevented from affecting the magnetic field that generates the Lorentz force against the electromagnetic repulsion force in the opening direction when energized, thereby preventing the Lorentz force from being lowered. Furthermore, if a conductor portion is formed in the external connection conductor to pass a current in a direction opposite to the direction of the current flowing through the movable contact, the magnetic flux density that generates the Lorentz force can be increased.
  • FIG. 1B is a view showing a state where external connection conductors extend in the same direction.
  • a top view and (c) are top views which show a prior art example. It is a figure which shows the contact mechanism which can be applied to this invention, (a) is a perspective view, (b) is sectional drawing which shows the contact mechanism at the time of opening, (c) is a cross section which shows the contact mechanism at the time of closing
  • FIG. 4D is a cross-sectional view showing the magnetic flux when the pole is closed.
  • FIG. 1 It is a top view which shows the 2nd Embodiment of this invention, Comprising: (a) is a top view which shows a U-shaped external connection conductor, (b) is a top view which shows an L-shaped external connection conductor, (c) ) Is a plan view showing a crank-shaped external connection conductor. It is a block diagram which shows a protection unit. It is sectional drawing which shows 3rd Embodiment of the electromagnetic contactor of this invention. It is a figure which shows the other example of the contact mechanism which can be applied to this invention, (a) is a perspective view, (b) is sectional drawing of an open state, (c) is sectional drawing of a closing state. It is a figure which shows the further another example of the contact mechanism which can be applied to this invention, Comprising: (a) is a perspective view, (b) is sectional drawing of an open state, (c) is sectional drawing of a closing state. .
  • FIG. 1 is a sectional view showing an electromagnetic contactor to which a contact mechanism according to the present invention is applied.
  • 1 is a main body case made of, for example, a synthetic resin.
  • the main body case 1 has a two-part structure of an upper case 1a and a lower case 1b.
  • the upper case 1a is internally provided with a contact mechanism CM.
  • the contact mechanism CM includes a fixed contact 2 fixedly disposed on the upper case 1a, and a movable contact 3 disposed so as to be able to contact with and separate from the fixed contact 2.
  • an operation electromagnet 4 for driving the movable contact 3 is disposed.
  • the electromagnet 4 for operation has a stationary iron core 5 formed of an E-shaped laminated steel plate and a movable iron core 6 formed of an E-shaped laminated steel plate facing each other.
  • An electromagnetic coil 8 supplied with a single-phase alternating current wound around a coil holder 7 is fixed to the central leg 5a of the fixed iron core 5.
  • a return spring 9 is provided between the upper surface of the coil holder 7 and the root of the central leg 6 a of the movable iron core 6 to urge the movable iron core 6 in a direction away from the fixed iron core 5.
  • a shading coil 10 is embedded in the upper end surface of the outer leg portion of the fixed iron core 5.
  • the shading coil 10 can suppress fluctuations in electromagnetic attraction, noise, and vibration due to changes in alternating magnetic flux in the single-phase AC electromagnet.
  • a contact holder 11 is connected to the upper end of the movable iron core 6. The contact holder 11 is pressed downward into an insertion hole 11a formed in a direction perpendicular to the axis on the upper end side thereof so that the movable contact 3 obtains a predetermined contact pressure against the fixed contact 2 by the contact spring 12. Being held. As shown in an enlarged view in FIG.
  • the movable contact 3 is composed of an elongated bar-shaped conductive plate portion 3a whose central portion is pressed by a contact spring 12, and a movable contact point is formed on the lower surface of both ends of the conductive plate portion 3a. Portions 3b and 3c are formed respectively.
  • the fixed contact 2 supports a pair of fixed contact portions 2a, 2b facing the movable contact portions 3b, 3c of the movable contact 3 from below as shown in an enlarged view in FIG.
  • the first conductive plate portions 2c and 2d facing outward in parallel with the outer edge portion of the conductive plate portion 3a from the outer end portion outside the conductive plate portion 3a of the first conductive plate portions 2c and 2d.
  • L-shaped conductive plate portions 2g and 2h formed with second conductive plate portions 2e and 2f extending upward through. And as shown in FIG. 1, it connects with the external connection terminals 2i and 2j extended and fixed to the outer side of the upper case 1a at the upper end of these L-shaped electroconductive board parts 2g and 2h.
  • the external connection conductors 20 and 21 are connected to the external connection terminals 2i and 2j as shown in FIG. These external connection conductors 20 and 21 are connected so that fixed portions 22 and 23 connected to the external connection terminals 2 i and 2 j extend in a direction orthogonal to the direction of current flowing through the conductive plate portion 3 a of the movable contact 3. .
  • the extending direction of the external connection conductors 20 and 21 is any of the case where they extend in opposite directions as shown in FIG. 2A and the case where they extend in the same direction as shown in FIG. 2B. Good.
  • the movable contact 3 In the state where the movable iron core 6 is in the current interruption position, the movable contact 3 is in contact with the bottom of the insertion hole 11a of the contact holder 11 by the contact spring 12 as shown in FIG. In this state, the movable contact portions 3b and 3c formed on both ends of the conductive plate portion 3a of the movable contact 3 are spaced upward from the fixed contact portions 2a and 2b of the fixed contact 2, and the contact mechanism CM is The contact is open.
  • a large current of, for example, several tens of kA input from the external connection terminal 2i of the fixed contact 2 connected to a DC power source (not shown) is applied to the second conductive plate portion 2e, 1 is supplied to the movable contact portion 3b of the movable contact 3 through the conductive plate portion 2c and the fixed contact portion 2a.
  • the large current supplied to the movable contact portion 3b is supplied to the fixed contact portion 2b through the conductive plate portion 3a and the movable contact portion 3c.
  • the large current supplied to the fixed contact portion 2b is supplied to the first conductive plate portion 2d, the second conductive plate portion 2f, and the external connection terminal 2j to form an energization path that is supplied to an external load.
  • the machining of the stationary contact 2 can be easily performed, and the electromagnetic repulsive force in the opening direction is separately provided. Since the member which generate
  • the magnetic field generated by the current flowing through the fixed portion 22 of the external connection conductor 20 does not act in the direction of weakening the magnetic field generated by the current flowing through the conductive plate portion 3a of the movable contact 3, and generates a large Lorentz force. can do.
  • the current flowing through the conductive plate portion 3 a of the movable contact 3 passes through the fixed portions 22 and 23 of the external connection conductors 20 and 21 to the external connection terminals 2 i and 2 h of the fixed contact 2.
  • the connection is extended parallel to the direction.
  • the magnetic field generated by the current flowing through the fixed portions 22 and 23 of the external connection conductors 20 and 21 interferes with the magnetic field generated by the current flowing through the conductive plate portion 3 a of the movable contact 3.
  • the Lorentz force against the electromagnetic repulsion force in the direction of opening the movable contact 3 when energized is reduced.
  • the arc generated in this way is extinguished by an arc extinguishing mechanism such as an arc extinguishing magnet arranged along the movable contact 3 (not shown), and the contact portions 2a and 2b of the fixed contact 2 and The electric current between the movable contact portions 3b and 3c of the movable contact 3 is interrupted, and the state of opening is restored.
  • an arc extinguishing mechanism such as an arc extinguishing magnet arranged along the movable contact 3 (not shown), and the contact portions 2a and 2b of the fixed contact 2 and
  • the electric current between the movable contact portions 3b and 3c of the movable contact 3 is interrupted, and the state of opening is restored.
  • the external connection conductors connected to the external connection terminals 2 i and 2 j of the fixed contact 2 are configured to increase the magnetic field generated in the conductive plate portion 3 a of the movable contact 3. That is, in the second embodiment, as shown in FIG. 4A, the configuration of the external connection conductors 20 and 21 in FIG. 2A in the first embodiment described above is changed.
  • the external connection conductor 20 extends in parallel with the conductive plate portion 3a of the movable contact 3 along the front surface of the upper case 1a to the other end of the fixed portion 22 connected to the external connection terminal 2i of the fixed contact 2.
  • An external connection conductor portion 27 extending from the other end of the portion 26 in the same direction as the extending direction of the conductive plate portion 3 a of the movable contact 3 is provided.
  • the external connection conductor 21 also includes a first conductor portion 28, a second conductor portion 29, and an external connection conductor portion 30 so as to be point-symmetric with the external connection conductor 20.
  • the fixed portions 22 and 23 of the external connection conductors 20 and 21 are affected by the magnetic field generated by the current flowing in the conductive plate portion 3a of the movable contact 3 as in the first embodiment. Arranged so as not to affect.
  • the external connection conductors 20 and 21 have first conductor portions 25 and 28 extending in parallel with the conductive plate portion 3a of the movable contact 3, and currents flowing through the first conductor portions 25 and 28 are provided. As shown in FIG. 4A, the direction is opposite to the direction of the current flowing through the conductive plate portion 3 a of the movable contact 3.
  • the magnetic field generated in the first conductor portions 25 and 28 of the external connection conductors 20 and 21 is superimposed on the magnetic field generated in the conductive plate portion 3a of the movable contact 3, so that the conduction of the movable contact 3 is reduced.
  • the magnetic flux density around the plate portion 3a can be increased. Therefore, it is possible to generate a larger Lorentz force that resists the electromagnetic force in the opening direction generated in the movable contact 3 when energized. As a result, the opening of the movable contact 3 during energization can be reliably prevented.
  • the pressing force of the contact spring 12 that supports the movable contact 3 can be made smaller, the thrust generated by the electromagnet 4 for operation can be made smaller accordingly, and the overall configuration can be made smaller.
  • the present invention is not limited to this, and as shown in FIG. Even if the portions 22 and 23 and the first conductor portions 25 and 28 that also serve as external connection conductor portions are configured in an L shape, the same effect as described above can be obtained. Further, as shown in FIG. 4 (c), the first conductor portions 25 and 28 are halved in length, and external connection conductor portions 31 and 32 extending from the free ends in the direction opposite to the fixing portions 22 and 23 are provided. You may make it form.
  • the protection unit 40 of the magnetic contactor 1 includes a bus bar 42 in which a fuse 41 is interposed between a DC power source and the external connection terminal 2 i of the fixed contact 2 of the electromagnetic contactor 1.
  • the external connection terminal 2j of the fixed contact 2 of the bus bar 42 and the connection portion are formed in the same shape as the external connection conductor 20 shown in FIG. 4A, and the bus bar 43 is formed in the same shape as the external connection conductor 21. Even if it does so, the effect similar to 2nd Embodiment mentioned above can be acquired.
  • the contact mechanism CM is not affected by the magnetic field of the external connection conductors 20 and 21. That is, in the third embodiment, as shown in FIG. 6, the L-shaped conductive plate portion is formed on the inner wall of the contact storage space 50 that stores the L-shaped conductive plate portions 2g and 2h of the stationary contact 2 of the upper case 1a.
  • the magnetic shield 51 is arranged so as to surround 2g and 2h.
  • the magnetic shield 51 is made of a magnetic material and is formed in a bowl shape with its lower end open, and has an inner circumference that contacts at least the second conductive plate portions 2e and 2f of the L-shaped conductive plate portions 2g and 2h.
  • An insulating film or an insulating layer is formed on the surface.
  • the external connection conductor 20 connected to the external connection terminals 2i and 2j arranged outside the upper case 1a and The magnetic field generated by the current flowing through 21 can be magnetically shielded. For this reason, it is possible to reliably prevent the external magnetic field from affecting the magnetic field generated by the current flowing through the L-shaped conductive plate portions 2g and 2h of the fixed contact 2 and the conductive plate portion 3a of the movable contact 3. . Therefore, the opening of the movable contact 3 during energization can be reliably prevented without weakening the Lorentz force against the electromagnetic force that opens the movable contact 3 during energization. In this case, since the magnetic field generated in the external connection conductors 20 and 21 is magnetically shielded by the magnetic shield 51, the connection direction of the external connection conductors 20 and 21 can be arbitrarily set.
  • the entire magnetic contact shield CM is composed of the magnetic shield 51 composed of the L-shaped conductive plate portions 2g and 2h of the stationary contact and the conductive plate portion 3a of the movable contact 3.
  • the present invention is not limited to the above-described configuration, as long as it prevents the magnetic field generated by the current flowing through the external connection conductors 20 and 21 from affecting the part that generates the Lorentz force. Good. For this reason, it can be formed only on the opposing side surface facing the external connection terminals 2i and 2j, or the front and rear side surfaces can be omitted from the configuration of FIG.
  • the present invention is not limited to the above-described configuration.
  • FIGS. 7A to 7C in the configuration of FIG.
  • the second conductive plate portions 2e and 2f in the letter-shaped conductive plate portions 2g and 2h are bent so as to cover the upper end side of the end portion of the conductive plate portion 3a of the movable contact 3, and a third parallel to the conductive plate portion 3a is formed.
  • the conductive plate portions 2m and 2n are formed to form the U-shaped conductive plate portions 2o and 2p
  • the configuration is the same as that of the first to third embodiments described above.
  • the large current supplied to the fixed contact portion 2b is supplied to the first conductive plate portion 2d, the second conductive plate portion 2f, the third conductive plate portion 2n, and the external connection terminal 2j, and is applied to an external load.
  • a supplied energization path is formed.
  • an electromagnetic repulsive force is generated between the fixed contact portions 2a and 2b of the fixed contact 2 and the movable contact portions 3b and 3c of the movable contact 3 in a direction to open the movable contact portions 3b and 3c.
  • the fixed contact 2 has a U-shaped conductive plate by the first conductive plate portions 2c and 2d, the second conductive plate portions 2e and 2f, and the third conductive plate portions 2m and 2n. Since the portions 2o and 2p are formed, a current in the reverse direction flows between the third conductive plate portions 2m and 2n of the fixed contact 2 and the conductive plate portion 3a of the movable contact 3 facing the third conductive plate portions 2m and 2n. .
  • the conductive plate portion of the movable contact 3 is determined by the Fleming left-hand rule.
  • Lorentz force that presses 3a against the stationary contact portions 2a and 2b of the stationary contact 2 can be generated.
  • This Lorentz force can resist the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 2a and 2b of the fixed contact 2 and the movable contact portions 3b and 3c of the movable contact 3. It is possible to prevent the three movable contact portions 3b and 3c from opening.
  • the shape of the movable contact 3 may be changed to generate a Lorentz force that resists the electromagnetic force in the opening direction during energization. That is, as shown in FIGS. 8A to 8C, the first conductive plate portions 3d and 3e extending upward from both ends of the conductive plate portion 3a of the movable contact 3, and the first conductive plate portions 3d and 3e The second conductive plate portions 3f and 3g extending inward from the upper ends of the conductive plate portions 3d and 3e form U-shaped folded portions 3h and 3i that are folded upward on the conductive plate portion 3a. Movable contact portions 3j and 3k are formed on the lower surfaces of the distal ends of the second conductive plate portions 3f and 3g of the U-shaped folded portions 3h and 3i.
  • the fixed contact 2 is between the conductive plate portion 3a and the second conductive plate portions 3f and 3g forming the U-shaped folded portions 3h and 3i of the movable contact 3 in the open state of the contact mechanism CM.
  • L-shaped conductive plate portions 2u and 2v are formed by fifth conductive plate portions 2s and 2t extending upward through the inside of the inner end portion.
  • the fixed contact portions 2w and 2x are formed at positions facing the movable contact portions 3j and 3k of the movable contact 3 of the fourth conductive plate portions 2q and 2r.
  • the large current supplied to the movable contact portion 3j includes the second conductive plate portion 3f, the first conductive plate portion 3d, the conductive plate portion 3a, the first conductive plate portion 3e, the second conductive plate portion 3g, It is supplied to the fixed contact portion 2x through the contact portion 3k.
  • the large current supplied to the fixed contact portion 2x forms an energization path that is supplied to an external load through the fourth conductive plate portion 2r, the fifth conductive plate portion 2t, and the external connection terminal 2j.
  • the movable contact 3 has U-shaped folded portions 3h and 3i formed by the conductive plate portion 3a, the first conductive plate portions 3d and 3e, and the second conductive plate portions 3f and 3g.
  • a current in the reverse direction flows through the conductive plate portion 3a of the child 3 and the fourth conductive plate portions 2q and 2r of the stationary contact 2. Therefore, as shown in FIG. 8C, the conductive plate portion 3a is generated by the current flowing through the conductive plate portion 3a of the movable contact 3 and the magnetic field formed by the fourth conductive plate portions 2q and 2r of the fixed contact 2.
  • the Lorentz force that presses the movable contact portions 3j, 3k of the movable contact 3 against the fixed contact portions 2w, 2x of the fixed contact 2 can be generated.
  • This Lorentz force it becomes possible to resist the electromagnetic repulsion force in the opening direction generated between the fixed contact portions 2w and 2x of the fixed contact 2 and the movable contact portions 3j and 3k of the movable contact 3, and a large current It is possible to prevent the movable contact portions 3j and 3k of the movable contact 3 from opening when energized.
  • the L-shaped conductive plate portions 2u and 2v are formed on the fixed contact 2, the L-shaped conductive plate is located above the second conductive plate portions 3f and 3g of the movable contact 3. Since the magnetic flux strengthening portion is formed by the fifth conductive plate portions 2s and 2t of the plate portions 2u and 2v, the same Lorentz force as in the first embodiment described above can be generated, and the movable contact 3 can be more powerfully generated. Can be prevented.
  • the present invention is not limited, and the magnetic fields generated by the currents flowing through the fixed portions 22 and 23 may intersect at an angle that does not reduce the Lorentz force.
  • an electromagnetic contactor capable of suppressing the electromagnetic repulsion force that opens the movable contact when energized without being affected by the magnetic field of the external connection conductor.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Contacts (AREA)
  • Switch Cases, Indication, And Locking (AREA)

Abstract

 全体の構成を大型化することなく、外部接続導体の磁界の影響を受けることなく通電時に可動接触子を開極させる電磁反発力を抑制することができる電磁接触器を提供する。電路に介挿された一対の固定接点部(2a),(2b)を有する固定接触子(2)と、該一対の固定接点部に接離可能な一対の可動接点部(3b),(3c)を有する可動接触子3とを有する接点機構(CM)を有し、前記一対の固定接触子及び前記可動接触子の少なくとも一方の形状を、通電時に前記固定接点部及び前記可動接点部間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する磁界を形成する形状としている。また、前記固定接触子2の外部接続端子(2i),(2j)に接続する外部接続導体(20),(21)を有し、該外部接続導体の前記外部接続端子に取付ける固定部(22),(23)の取付方向を前記可動接触子に流れる電流の方向に対して交差する方向とした。

Description

電磁接触器
 本発明は、電流路に介挿された固定接触子及び可動接触子を備えた電磁接触器に関し、通電時の可動接触子を固定接触子から離反させる電磁反発力に抗するローレンツ力を発生させるようにしたものである。
 電流路の開閉を行う電磁接触器としては、従来、例えば、固定接触子を側面からみてU字形状に折り返し、折り返し部に固定接点を形成し、この固定接点に可動接触子の可動接点を接離可能に配設した構成を有する開閉器が提案されている。この開閉器は、大電流遮断時に可動接触子に作用する電磁反発力を大きくすることにより開極速度を大きくして、アークを急速に引き伸ばすようにしている(例えば、特許文献1参照)。
 また、同様の構成において流れる電流により発生する磁界によってアークを駆動させる電磁接触器の接触子構造が提案されている(例えば、特許文献2参照)。
特開2001-210170号公報 特開平4-123719号公報
 ところで、上記特許文献1に記載の従来例にあっては、固定接触子を側面から見てU字形状として発生する電磁反発力を大きくするようにしており、この大きな電磁反発力によって、短絡等による大電流を遮断する大電流遮断時の可動接触子の開極速度を大きくして、アークを急速に引き伸ばし、事故電流を小さな値に限流することができるものである。
 しかしながら、ヒューズや回路遮断器と組み合わせて回路を構成する電磁接触器は、大電流の通電時に可動接触子が電磁反発力によって開極することを阻止する必要があり、上述した特許文献2に記載の従来例を適用するには、一般的には可動接触子の固定接触子に対する接触圧を確保する接触スプリングのばね力を大きくすることで対処している。
 このように接触スプリングによる接触圧を大きくすると、可動接触子を駆動する電磁石で発生する推力も大きくする必要があり、全体の構成が大型化する。あるいは、より限流効果が高く、遮断性能に優れるヒューズや回路遮断器と組み合わせる必要があるという未解決の課題がある。
 この未解決の課題を解決するために、前記固定接触子及び可動接触子の少なくとも一方の形状を、通電時に前記固定接触子及び前記可動接触子間に発生する開極方向の電磁反発力に抗するローレンツ力を高める形状とすることが考えられる。
 この場合には、通電時の固定接触子及び可動接触子間に発生する開極方向の電磁反発力に抗するローレンツ力を高めて、開極方向の電磁反発力を抑制することができる。しかしながら、電磁接触器の固定接触子の外部接続端子に接続される外部接続導体の形状よっては、開極方向の電磁反発力を抑制するローレンツ力が外部接続導体に流れる電流によって外部接続導体回りに発生する磁界の影響により、弱められるという未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、全体の構成を大型化することなく、外部接続導体の磁界の影響を受けることなく通電時に可動接触子を開極させる電磁反発力を抑制することができる電磁接触器を提供することを目的としている。
 上記目的を達成するために、本発明に係る電磁接触器の第1の態様は、通電路に介挿された一対の固定接点部を有する固定接触子と該一対の固定接点部に接離可能な一対の可動接点部を有する可動接触子とを有する接点機構を有する。この接点機構の前記一対の固定接触子及び前記可動接触子の少なくとも一方の形状を、通電時に前記固定接点部及び前記可動接点部間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する磁界を形成する形状としている。さらに、前記固定接触子の外部接続端子に接続する外部接続導体を有し、該外部接続導体の前記外部接続端子に取付ける固定部の取付方向を前記可動接触子に流れる電流の方向に対して交差する方向とした。
 この構成によると、固定接触子及び可動接触子の少なくとも一方の形状を、例えば、L字形状やC字形状として、通電時に固定接触子及び可動接触子間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する形状としたので、大電流通電時の可動接触子の開極を抑制する。また、固定接触子の外部接続端子に接続する外部接続導体の固定部の取付方向を可動接触子に流れる電流の方向に対して交差する方向としている。このため、外部接続導体の固定部で発生する磁界がローレンツ力を発生する磁界に影響することを防止する。
 また、本発明に係る電磁接触器の第2の態様は、前記外部接続導体が、前記固定部の前記外部接続端子とは反対側に連結されて前記可動接触子の延長方向と平行で且つ電流方向が当該可動接触子と逆方向となる導体部を備えている。
 この構成によると、外部接続導体の固定部に接続された導体部が、可動接触子の延長方向と平行で且つ電流方向が可動接触子と逆方向となるように配置されている。このため、導体部で発生する磁束の向きを、ローレンツ力を発生する磁界を形成する磁束の向きと一致させてローレンツ力を発生する磁束密度を増加できる。
 また、本発明に係る電磁接触器の第3の態様は、前記外部接続導体が、保護ユニットを構成するブスバーで構成されている。
 この構成によると、保護ユニットを構成するブスバーで、通電時に固定接触子及び可動接触子間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する磁界の磁束密度を増加できる。
 また、本発明に係る電磁接触器の第4の態様は、通電路に介挿された一対の固定接点部を有する固定接触子と該一対の固定接点部に接離可能な一対の可動接点部を有する可動接触子とを有する接点機構を有する。この接点機構は、前記一対の固定接触子及び前記可動接触子の少なくとも一方の形状を、通電時に前記固定接点部及び前記可動接点部間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する磁界を形成する形状としている。そして、前記接点機構を覆うように前記固定接触子に接続される外部接続導体で生じる磁界の影響を抑制する磁性体を配置した。
 この構成によると、固定接触子の外部接続端子に接続された外部接続導体に流れる電流によって発生する磁界が前記ローレンツ力を発生する磁界に影響することを磁性体でシールドして、ローレンツ力の低下を抑制できる。
 また、本発明に係る電磁接触器の第5の態様は、前記可動接触子が、可動部に支持され、表裏の一方の面における両端側にそれぞれ接点部を有する導電板を備えている。また、前記固定接触子が、前記導電板の接点部に対向する固定接点部を支持してそれぞれ前記導電板と平行に当該導電板の両端より外側に向かう第1の導電板部と、該第1の導電板部の外方端部から前記導電板の端部の外側を通って延長する第2の導電板部とで形成されたL字状導電板部を備えている。
 この構成によると、L字状導電板部を構成する第2の導電板部で、電磁接触器の通電時に可動接触子及び固定接触子間を開極させる電磁反発力に抗するローレンツ力を発生させる磁束密度を増加させる。
 また、本発明に係る電磁接触器の第6の態様は、前記固定接触子が、前記第2の導電板部の端部から前記導電板と平行に内方に延長する第3の導電板部を有してC字状に構成されている。
 この構成によると、第3の導電板部を流れる電流が可動接触子を流れる電流と逆方向となるので、ローレンツ力を発生する磁束密度をより増加することができる。
 また、本発明に係る電磁接触器の第7の態様は、前記可動接触子が、可動部に支持される導電板部と、該導電板部の両端に形成されたC字状折り返し部と、該C字状折り返し部の前記導電板部との対向面に形成された接点部とを備えている。また、前記固定接触子が、前記U字状折り返し部内に前記導電板部と平行に配設された前記可動接触子の接点部と接触する接点部を形成した一対の第1の導電板部と、該一対の第1の導電板部の内側端からそれぞれ前記U字状折り返し部の端部の内側を通って延長する第2の導電板部とで構成されるL字状導電板部を備えている。
 この構成によると、可動接触子側で電磁接触器の通電時に可動接触子及び固定接触子間を開極させる電磁反発力に抗するローレンツ力を発生させることができる。
 本発明によれば、通電路に介挿された固定接触子及び可動接触子を有する接点機構の大電流通電時の固定子接触子及び可動接触子に生じる開極方向の電磁反発力に抗するローレンツ力を発生することができる。このため、機械的押圧力を使用することなく大電流通電時の可動接触子の開極を確実に防止することができる。また、外部接続導体を流れる電流による磁界が通電時に開極方向の電磁反発力に抗するローレンツ力を発生させる磁界に影響することを防止して、ローレンツ力の低下を防止する。さらには、外部接続導体に可動接触子を流れる電流方向とは逆方向の電流を流す導体部を形成すると、上記ローレンツ力を発生する磁束密度を増加できる。
本発明に係る電磁接触器の第1の実施形態を示す断面図である。 図1の平面図であって、(a)は外部接続導体が互いに逆方向に延長している状態を示す平面図、(b)は外部接続導体が互いに同一方向に延長している状態を示す平面図、(c)は従来例を示す平面図である。 本発明に適用し得る接点機構を示す図であって、(a)は斜視図、(b)は開極時の接点機構を示す断面図、(c)は閉極時の接点機構を示す断面図、(d)は閉極時の磁束を示す断面図である。 本発明の第2の実施形態を示す平面図であって、(a)はU字状の外部接続導体を示す平面図、(b)はL字状の外部接続導体を示す平面図、(c)はクランク状の外部接続導体を示す平面図である。 保護ユニットを示す構成図である。 本発明の電磁接触器の第3の実施形態を示す断面図である。 本発明に適用し得る接点機構の他の例を示す図であって、(a)は斜視図、(b)は開極状態の断面図、(c)は閉極状態の断面図である。 本発明に適用し得る接点機構のさらに他の例を示す図であって、(a)は斜視図、(b)は開極状態の断面図、(c)は閉極状態の断面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。 図1は本発明による接点機構を適用した電磁接触器を示す断面図である。
 図1において、1は例えば合成樹脂製の本体ケースである。この本体ケース1は、上部ケース1aと下部ケース1bの2分割構造を有する。上部ケース1aには、接点機構CMが内装されている。この接点機構CMは、上部ケース1aに固定配置された固定接触子2と、この固定接触子2に接離自在に配設された可動接触子3とを備えている。
 また、下部ケース1bには、可動接触子3を駆動する操作用電磁石4が配設されている。この操作用電磁石4は、E字脚型の積層鋼板で形成された固定鉄心5と、同様にE字脚型の積層鋼板で形成された可動鉄心6とが対向して配置されている。
 固定鉄心5の中央脚部5aにはコイルホルダ7に巻装された単相交流が供給される電磁コイル8が固定されている。また、コイルホルダ7の上面と可動鉄心6の中央脚6aの付け根との間に可動鉄心6を固定鉄心5から離れる方向に付勢する復帰スプリング9が配設されている。
 さらに、固定鉄心5の外側脚部の上端面にはシェーディングコイル10が埋め込まれている。このシェーディングコイル10によって、単相交流電磁石において交番磁束の変化による電磁吸引力の変動、騒音及び振動を抑制することができる。
 そして、可動鉄心6の上端に接触子ホルダ11が連結されている。この接触子ホルダ11にはその上端側に軸直角方向に形成された挿通孔11aに、可動接触子3が接触スプリング12によって固定接触子2に対して所定の接触圧を得るように下方に押圧されて保持されている。
 この可動接触子3は、図3に拡大図示するように、中央部が接触スプリング12によって押圧された細長い棒状の導電板部3aで構成され、この導電板部3aの両端側の下面に可動接点部3b,3cがそれぞれ形成されている。
 一方、固定接触子2は、図3に拡大図示するように、可動接触子3の可動接点部3b,3cに下側から対向する一対の固定接点部2a,2bを支持して導電板部3aと平行に外側に向かう第1の導電板部2c,2dと、これら第1の導電板部2c,2dの導電板部3aより外側となる外側端部から導電板部3aの端部の外側を通って上方に延長する第2の導電板部2e,2fとで形成されたL字状導電板部2g,2hを備えている。そして、これらL字状導電板部2g,2hの上端に、図1に示すように、上部ケース1aの外側に延長して固定された外部接続端子2i,2jに連結されている。
 そして、外部接続端子2i及び2jには、図2に示すように、外部接続導体20及び21が接続されている。これら外部接続導体20及び21は、外部接続端子2i及び2jに連結される固定部22及び23が可動接触子3の導電板部3aを流れる電流方向と直交する方向に延長して連結されている。ここで、外部接続導体20及び21の延長方向は、図2(a)に示すように互いに逆方向に延長する場合及び図2(b)に示すように互いに同一方向に延長する場合の何れでもよい。
 次に、上記第1の実施形態の動作を説明する。
 今、操作用電磁石4の電磁コイル8が非通電状態である状態では、固定鉄心5及び可動鉄心6間に電磁吸引力が生じることはなく、復帰スプリング9によって、可動鉄心6が固定鉄心5から上方に離れる方向に付勢され、この可動鉄心6の上端がストッパ13に当接することにより電流遮断位置に保持される。
 この可動鉄心6が電流遮断位置にある状態では、可動接触子3が、図3(a)に示すように、接触子ホルダ11の挿通孔11aの底部に接触スプリング12によって接触されている。この状態で、可動接触子3の導電板部3aの両端側に形成された可動接点部3b,3cが固定接触子2の固定接点部2a,2bから上方に離間しており、接点機構CMが開極状態となっている。
 この接点機構CMの開極状態から、操作用電磁石4の電磁コイル8に単相交流を供給すると、固定鉄心5と可動鉄心6との間で吸引力が発生し、可動鉄心6が復帰スプリング9に抗して下方に吸引される。これにより、接触子ホルダ11に支持されている可動接触子3が下降して、可動接点部3b,3cが固定接触子2の固定接点部2a,2bに接触スプリング12の接触圧で接触し、閉極状態となる。
 この閉極状態となると、例えば、直流電源(図示せず)に接続された固定接触子2の外部接続端子2iから入力される例えば数十kA程度の大電流が第2導電板部2e、第1導電板部2c、固定接点部2aを通じて可動接触子3の可動接点部3bに供給される。この可動接点部3bに供給された大電流は導電板部3a、可動接点部3cを通じて固定接点部2bに供給される。この固定接点部2bに供給された大電流は、第1導電板部2d、第2導電板部2f、外部接続端子2jに供給されて、外部の負荷に供給される通電路が形成される。
 このとき、固定接触子2の固定接点部2a,2b及び可動接触子3の可動接点部3b、3c間に可動接点部3b,3cを開極させる方向の電磁反発力が発生する。
 しかしながら、固定接触子2は、図3(a)に示すように、第1の導電板部2c,2d及び第2の導電板部2e,2fによってL字状導電板部2g,2hが形成されているので、上述した図3(c)に示す電流路が形成されることにより、可動接触子3を流れる電流に対し、図3(d)に示す磁界を形成する。このため、フレミングの左手の法則により、可動接触子3の導電板部3aに可動接点部3b,3cを固定接点部2a,2b側に押し付ける開極方向の電磁反発力に抗するローレンツ力を作用させることができる。
 したがって、可動接触子3を開極させる方向の電磁反発力が発生しても、これに抗するローレンツ力を発生させることができるので、可動接触子3が開極することを確実に抑制することができる。このため、可動接触子3を支持する接触スプリング12の押圧力を小さくすることができ、これに応じて操作用電磁石4で発生する推力も小さくすることができ、全体の構成を小型化することができる。
 しかも、この場合、固定接触子2にL字状導電板部2g,2hを形成するだけで良く、固定接触子2の加工を容易に行うことができるとともに、別途開極方向の電磁反発力に抗する電磁力又は機械力を発生する部材を必要としないので、部品点数が増加することはなく、全体の構成が大型化することを抑制することができる。
 さらに、固定接触子2の外部接続端子2i及び2jに接続された外部接続導体20及び21の固定部22及び23が可動接触子3の導電板部3aを流れる電流の方向と直交する方向に延長している。このため、外部接続導体20の固定部22を流れる電流によって発生する磁界が可動接触子3の導電板部3aを流れる電流によって発生する磁界を弱める方向に作用することはなく、大きなローレンツ力を発生することができる。
 因みに、図2(c)に示すように、固定接触子2の外部接続端子2i及び2hに外部接続導体20及び21の固定部22及び23を可動接触子3の導電板部3aを流れる電流の方向と平行に延長して接続した場合を考える。この場合には、外部接続導体20及び21の固定部22及び23を流れる電流によって発生する磁界が可動接触子3の導電板部3aを流れる電流によって発生する磁界に干渉することなる。このため、可動接触子3の導電板部3aで発生する磁界が弱められることにより、通電時に可動接触子3を開極させる方向の電磁反発力に抗するローレンツ力が小さくなってしまう。
 その後、接点機構CMの閉極状態から操作用電磁石4への通電を遮断して、電流遮断状態とすると、図3(b)に示すように、固定接触子2のL字状導電板部2g,2hの固定接点部2a,2bから可動接触子3の可動接点部3b,3cが上方に離間する。このとき、固定接点部2a,2b及び可動接点部3b,3c間にアークが発生する。
 このようにして発生するアークは、図示しないが可動接触子3に沿って配置されたアーク消弧用磁石等のアーク消弧機構によって消弧されて、固定接触子2の接点部2a及び2bと可動接触子3の可動接点部3b及び3cとの間の電流が遮断されて開極状態に復帰する。
 次に、本発明の第2の実施形態を図4について説明する。
 この第2の実施形態では、固定接触子2の外部接続端子2i及び2jに接続される外部接続導体を可動接触子3の導電板部3aで発生する磁界を強めるように構成したものである。
 すなわち、第2の実施形態では、図4(a)に示すように、前述した第1の実施形態における図2(a)における外部接続導体20及び21の構成を変更している。
 先ず、外部接続導体20は、固定接触子2の外部接続端子2iに接続された固定部22の他端に上部ケース1aの正面に沿って可動接触子3の導電板部3aと平行に延長する第1の導体部25と、この導体部25の他端から上部ケース1aの側面に沿って後方に外部接続端子2jに対向する位置まで延長する第2の導体部26と、この第2の導体部26の他端から可動接触子3の導電板部3aの延長方向と同一方向に延長する外部接続導体部27とを備えている。
 また、外部接続導体21も、外部接続導体20と点対称となるように、第1の導体部28、第2の導体部29及び外部接続導体部30を備えている。
 この第2の実施形態によると、外部接続導体20及び21の固定部22及び23については前述した第1の実施形態と同様に、可動接触子3の導電板部3aで流れる電流により生じる磁界に影響を与えることがないように配置されている。そして、外部接続導体20及び21には、可動接触子3の導電板部3aと平行に延長する第1の導体部25及び28を有し、これら第1の導体部25及び28に流れる電流の方向が図4(a)に示すように、可動接触子3の導電板部3aに流れる電流の方向とは逆方向とされている。
 このため、外部接続導体20及び21の第1の導体部25及び28で発生する磁界が可動接触子3の導電板部3aで発生する磁界に重畳されることになり、可動接触子3の導電板部3aの回りの磁束密度を高めることができる。したがって、通電時に可動接触子3に発生する開極方向の電磁力に抗するより大きなローレンツ力を発生することができる。この結果、通電時における可動接触子3の開極を確実に防止することができる。このため、可動接触子3を支持する接触スプリング12の押圧力をより小さくすることができ、これに応じて操作用電磁石4で発生する推力もより小さくすることができ、全体の構成をより小型化することができる。
 なお、上記第2の実施形態においては、外部接続導体20及び21をU字状に形成した場合について説明したが、これに限定されるものではなく、図4(b)に示すように、固定部22及び23と外部接続導体部を兼ねる第1の導体部25及び28とでL字状に構成するようにしても上記と同様の作用効果を得ることができる。さらには、図4(c)に示すように、第1の導体部25及び28を半分の長さとし、その自由端から固定部22及び23と反対方向に延長する外部接続導体部31及び32を形成するようにしてもよい。
 また、図5に示すように、電磁接触器1の保護ユニット40を、直流電力源と電磁接触器1の固定接触子2の外部接続端子2iとの間にヒューズ41を介挿したブスバー42と、電磁接触器1の固定接触子112の外部接続端子2jと負荷とを結ぶブスバー43とで構成する。そして、ブスバー42の固定接触子2の外部接続端子2jと接続部分を前述した図4(a)に示す外部接続導体20と同一形状に形成し、ブスバー43を外部接続導体21と同一形状に形成するようにしても上述した第2の実施形態と同様の作用効果を得ることができる。
 さらに、本願発明の第3の実施形態を図6について説明する。
 この第3の実施形態では、接点機構CMが外部接続導体20及び21の磁界の影響を受けないようにしたものである。
 すなわち、第3の実施形態では、図6に示すように、上部ケース1aの固定接触子2のL字状導電板部2g及び2hを収納した接点収納空間50の内壁にL字状導電板部2g及び2hを囲むように磁性体シールド体51を配置した構成を有する。
 ここで、磁性体シールド体51は、磁性体で下端を開放した桶状に形成されており、少なくともL字状導電板部2g及び2hの第2の導電板部2e及び2fと接触する内周面に絶縁膜又は絶縁層が形成されている。
 この第3の実施形態によると、接点機構CM全体が磁性体シールド体51によって覆われているので、上部ケース1aの外部に配置された外部接続端子2i及び2jに接続される外部接続導体20及び21に流れる電流によって発生する磁界を磁気シールドすることができる。このため、固定接触子2のL字状導電板部2g及び2hと可動接触子3の導電板部3aとを流れる電流によって発生する磁界に外部磁界が影響することを確実に阻止することができる。したがって、通電時の可動接触子3を開極させる電磁力に抗するローレンツ力が弱められることなく、通電時の可動接触子3の開極を確実に防止することができる。
 この場合には、外部接続導体20及び21で発生する磁界が磁性体シールド体51によって磁気シールドされるので、外部接続導体20及び21の接続方向を任意に設定することができる。
 なお、上記第3の実施形態においては、磁性体シールド体51を固定接触子のL字状導電板部2g及び2hと可動接触子3の導電板部3aとで構成される接点機構CMの全体を覆うように配置した場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、磁性体シールド体51を外部接続導体20及び21に流れる電流によって発生する磁界がローレンツ力を発生する部位に影響することを防止さえすればよい。このため、外部接続端子2i及び2jと対向する対向側面部のみに形成したり、図6の構成から前後側面を削除した構成としたりすることができる。
 なお、上記第1~第3の実施形態においては、固定接触子2にL字状導電板部2g及び2hを形成してローレンツ力を発生する形状とした場合について説明した。しかしながら、本発明は、上記構成に限定されるものではなく、図7(a)~(c)に示すように、前述した第1の実施形態における図3の構成において、固定接触子2のL字状導電板部2g,2hにおける第2の導電板部2e,2fを可動接触子3の導電板部3aの端部の上端側を覆うように折り曲げて、導電板部3aと平行な第3の導電板部2m,2nを形成してU字状導電板部2o,2pを形成したことを除いては前述した第1~第3の実施形態と同様の構成を有する。
 この構成によると、接点機構CMが、図7(c)に示すように、閉極状態となると、例えば、直流電源(図示せず)に接続された固定接触子2の外部接続端子2iから入力される例えば数十kA程度の大電流が第3の導電板部2m、第2の導電板部2e、第1の導電板部2c、固定接点部2aを通じて可動接触子3の可動接点部3bに供給される。この可動接点部3bに供給された大電流は導電板部3a、可動接点部3cを通じて固定接点部2bに供給される。この固定接点部2bに供給された大電流は、第1の導電板部2d、第2の導電板部2f、第3の導電板部2n、外部接続端子2jに供給されて、外部の負荷に供給される通電路が形成される。
 このとき、固定接触子2の固定接点部2a,2b及び可動接触子3の可動接点部3b、3c間に可動接点部3b,3cを開極させる方向の電磁反発力が発生する。
 しかしながら、固定接触子2は、図3に示すように、第1の導電板部2c,2d、第2の導電板部2e,2f及び第3の導電板部2m,2nによってU字状導電板部2o,2pが形成されているので、固定接触子2の第3の導電板部2m,2nとこれに対向する可動接触子3の導電板部3aとで逆方向の電流が流れることになる。このため、固定接触子2の第3の導電板部2m,2nが形成する磁界と可動接触子3の導電板部3aに流れる電流の関係からフレミング左手の法則により可動接触子3の導電板部3aを固定接触子2の固定接点部2a,2bに押し付けるローレンツ力を発生することができる。このローレンツ力によって、固定接触子2の固定接点部2a,2b及び可動接触子3の可動接点部3b,3c間に発生する開極方向の電磁反発力に抗することが可能となり、可動接触子3の可動接点部3b,3cが開極することを防止することができる。
 さらに、図8(a)~(c)に示すように、可動接触子3の形状を変更して通電時の開極方向の電磁力に抗するローレンツ力を発生させるようにしてもよい。
 すなわち、図8(a)~図8(c)に示すように、可動接触子3の導電板部3aの両端側から上方に延長する第1の導電板部3d,3eと、この第1の導電板部3d,3eの上端から内方に延長する第2の導電板部3f,3gとで、導電板部3aの上方側に折り返すU字状折り返し部3h,3iが形成されている。これらU字状折り返し部3h,3iの第2の導電板部3f,3gにおける先端側の下面に可動接点部3j,3kが形成されている。
 また、固定接触子2は、接点機構CMの開極状態で、可動接触子3のU状折り返し部3h,3iを形成する導電板部3aと第2の導電板部3f,3gとの間に対向し、内方に延長する第4の導電板部2q,2rと、これら第4の導電板部2q,2rの内方端から上方に可動接触子3のU字状折り返し部3h,3iの内側端部の内側を通って上方に延長する第5の導電板部2s,2tとでL字状導電板部2u,2vが形成されている。そして、第4の導電板部2q,2rの可動接触子3の可動接点部3j,3kに対向する位置に固定接点部2w,2xが形成されている。
 この図8の構成によると、接点機構CMが閉極状態となると、図8(c)に示すように、例えば、直流電源(図示せず)に接続された固定接触子2の外部接続端子2iから入力される例えば数十kA程度の大電流が第5の導電板部2s、第4の導電板部2q、固定接点部2wを通じて可動接触子3の可動接点部3jに供給される。この可動接点部3jに供給された大電流は第2の導電板部3f、第1の導電板部3d、導電板部3a、第1の導電板部3e、第2の導電板部3g、可動接点部3kを通じて固定接点部2xに供給される。この固定接点部2xに供給された大電流は、第4の導電板部2r、第5の導電板部2t、外部接続端子2jを通じて、外部の負荷に供給される通電路が形成される。
 このとき、固定接触子2の固定接点部2w,2x及び可動接触子3の可動接点部3j、3k間に可動接点部3j,3kを開極させる方向の電磁反発力が発生する。
 しかしながら、可動接触子3は、導電板部3a、第1の導電板部3d,3e及び第2の導電板部3f,3gによってU字状折り返し部3h,3iが形成されているので、可動接触子3の導電板部3aと固定接触子2の第4の導電板部2q,2rとに逆方向の電流が流れることになる。このため、図8(c)に示すように、可動接触子3の導電板部3aに流れる電流と固定接触子2の第4の導電板部2q,2rが形成する磁界により、導電板部3aに可動接触子3の可動接点部3j,3kを固定接触子2の固定接点部2w,2xに押し付けるローレンツ力を発生することができる。このローレンツ力によって、固定接触子2の固定接点部2w,2x及び可動接触子3の可動接点部3j,3k間に発生する開極方向の電磁反発力に抗することが可能となり、大電流の通電時に可動接触子3の可動接点部3j,3kが開極することを防止することができる。
 さらに、図8の構成では、固定接触子2にL字状導電板部2u,2vが形成されているので、可動接触子3の第2の導電板部3f,3gの上側にL字状導電板部2u,2vの第5の導電板部2s,2tによる磁束強化部が形成されるので、前述した第1の実施形態と同様のローレンツ力も発生することができ、より強力に可動接触子3の開極を防止することができる。
 なお、上記第1~第3の実施形態においては、外部接続導体20及び21の固定部22及び23を可動接触子3の電流方向と直交するする方向に配置した場合について説明したが、これに限定されるものではなく、固定部22及び23に流れる電流によって発生する磁界がローレンツ力を低減させない程度の角度で交差させるようにしてもよい。
 本発明によれば、外部接続導体の磁界の影響を受けることなく通電時に可動接触子を開極させる電磁反発力を抑制することができる電磁接触器を提供することができる。
 1…本体ケース、1a…上部ケース、1b…下部ケース、2…固定接点、2a,2b…固定接点部、2c,2d…第1の導電板部、2e,2f…第2の導電板部、2g,2h…L字状導電板部、2i,2j…外部接続端子、2m,2n…第3の導電板部、2o,2p…U字状導電板部、2q,2r…第4の導電板部、2s,2t…第5の導電板部、2u,2v…L字状導電板部、2w,2x…固定接点部、3…可動接触子、3a…導電板部、3b,3c…可動接点部、3d,3e…第1の導電板部、3f,3g…第2の導電板部、3h,3i…U字状折り返し部、3j,3k…可動接点部、4…操作用電磁石、5…固定鉄心、6…可動鉄心、8…電磁コイル、9…復帰スプリング、11…接触子ホルダ、12…接触スプリング、13…ストッパ、20,21…外部接続導体、22,23…固定部、225,28…第1の導体部、26,29…第2の導体部、27,30…外部接続導体部、31,32…外部接続導体部、40…保護ユニット、41…ヒューズ、42,43…ブスバー、50…接点収納空間、51…磁性体シールド体

Claims (7)

  1.  通電路に介挿された一対の固定接点部を有する固定接触子と該一対の固定接点部に接離可能な一対の可動接点部を有する可動接触子とを有する接点機構を有し、前記一対の固定接触子及び前記可動接触子の少なくとも一方の形状を、通電時に前記固定接点部及び前記可動接点部間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する磁界を形成する形状とし、
     前記固定接触子の外部接続端子に接続する外部接続導体を有し、該外部接続導体の前記外部接続端子に取付ける固定部の取付方向を前記可動接触子に流れる電流の方向に対して交差する方向とした
     ことを特徴とする電磁接触器。
  2.  前記外部接続導体は、前記固定部の前記外部接続端子とは反対側に連結されて前記可動接触子の延長方向と平行で且つ電流方向が当該可動接触子と逆方向となる導体部を備えていることを特徴とする請求項1に記載の電磁接触器。
  3.  前記外部接続導体は、保護ユニットを構成するブスバーで構成されていることを特徴とする請求項2に記載の電磁接触器。
  4.  通電路に介挿された一対の固定接点部を有する固定接触子と該一対の固定接点部に接離可能な一対の可動接点部を有する可動接触子とを有する接点機構を有し、前記一対の固定接触子及び前記可動接触子の少なくとも一方の形状を、通電時に前記固定接点部及び前記可動接点部間に発生する開極方向の電磁反発力に抗するローレンツ力を発生する磁界を形成する形状とし、
     前記接点機構を覆うように前記固定接触子に接続される外部接続導体で生じる磁界の影響を抑制する磁性体を配置した
     ことを特徴とする電磁接触器。
  5.  前記可動接触子は、可動部に支持され、表裏の一方の面における両端側にそれぞれ接点部を有する導電板を備え、
     前記固定接触子は、前記導電板の接点部に対向する固定接点部を支持してそれぞれ前記導電板と平行に当該導電板の両端より外側に向かう第1の導電板部と、該第1の導電板部の外方端部から前記導電板の端部の外側を通って延長する第2の導電板部とで形成されたL字状導電板部を備えている
     ことを特徴とする請求項1乃至4の何れか1項に記載の電磁接触器。
  6.  前記固定接触子は、前記第2の導電板部の端部から前記導電板と平行に内方に延長する第3の導電板部を有してC字状に構成されている
     ことを特徴とする請求項5に記載の電磁接触器。
  7.  前記可動接触子は、可動部に支持される導電板部と、該導電板部の両端に形成されたC字状折り返し部と、該C字状折り返し部の前記導電板部との対向面に形成された接点部とを備え、
     前記固定接触子は、前記U字状折り返し部内に前記導電板部と平行に配設された前記可動接触子の接点部と接触する接点部を形成した一対の第1の導電板部と、該一対の第1の導電板部の内側端からそれぞれ前記U字状折り返し部の端部の内側を通って延長する第2の導電板部とで構成されるL字状導電板部を備えている
     ことを特徴とする請求項1乃至4の何れか1項に記載の電磁接触器。
PCT/JP2012/006359 2011-10-07 2012-10-03 電磁接触器 WO2013051264A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280048732.7A CN103843099B (zh) 2011-10-07 2012-10-03 电磁接触器
US14/344,789 US10056200B2 (en) 2011-10-07 2012-10-03 Electromagnetic contactor
EP12837693.6A EP2765588B1 (en) 2011-10-07 2012-10-03 Electromagnetic contactor
KR1020147008803A KR20140071408A (ko) 2011-10-07 2012-10-03 전자 접촉기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-223144 2011-10-07
JP2011223144A JP5793048B2 (ja) 2011-10-07 2011-10-07 電磁接触器

Publications (1)

Publication Number Publication Date
WO2013051264A1 true WO2013051264A1 (ja) 2013-04-11

Family

ID=48043444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006359 WO2013051264A1 (ja) 2011-10-07 2012-10-03 電磁接触器

Country Status (6)

Country Link
US (1) US10056200B2 (ja)
EP (1) EP2765588B1 (ja)
JP (1) JP5793048B2 (ja)
KR (1) KR20140071408A (ja)
CN (1) CN103843099B (ja)
WO (1) WO2013051264A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545893B1 (ko) 2014-01-28 2015-08-20 엘에스산전 주식회사 릴레이
US9673009B2 (en) 2015-10-14 2017-06-06 Lsis Co., Ltd. Direct current relay
WO2018131639A1 (ja) * 2017-01-11 2018-07-19 パナソニックIpマネジメント株式会社 接点装置、電磁継電器、電気機器
WO2019064778A1 (ja) * 2017-09-27 2019-04-04 オムロン株式会社 接続ユニット
WO2019103064A1 (ja) * 2017-11-27 2019-05-31 パナソニックIpマネジメント株式会社 接点装置、電磁継電器及び電気機器
WO2019103063A1 (ja) * 2017-11-27 2019-05-31 パナソニックIpマネジメント株式会社 接点モジュール、接点装置、電磁継電器モジュール、及び電気機器
WO2019167825A1 (ja) * 2018-03-02 2019-09-06 パナソニックIpマネジメント株式会社 接点装置モジュール、電磁継電器モジュール及び電気機器
WO2020013225A1 (ja) * 2018-07-10 2020-01-16 パナソニックIpマネジメント株式会社 接点装置モジュール、電磁継電器モジュール及び電気機器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5856426B2 (ja) * 2011-10-07 2016-02-09 富士電機株式会社 接点装置及びこれを使用した電磁接触器
JP5793048B2 (ja) * 2011-10-07 2015-10-14 富士電機株式会社 電磁接触器
JP6841047B2 (ja) * 2017-01-16 2021-03-10 富士電機機器制御株式会社 電磁接触器
JP2019036434A (ja) 2017-08-10 2019-03-07 オムロン株式会社 接続ユニット
CN109427506B (zh) * 2017-08-25 2020-11-20 佛山市顺德区美的电热电器制造有限公司 压力开关及电压力锅
JP6964252B2 (ja) * 2017-11-27 2021-11-10 パナソニックIpマネジメント株式会社 接点装置、及び電磁継電器
US10549000B2 (en) * 2017-12-20 2020-02-04 Healthy Signoff, LLC Handheld UV disinfectant unit
JP7077890B2 (ja) * 2018-09-14 2022-05-31 富士電機機器制御株式会社 接点機構及びこれを使用した電磁接触器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123719A (ja) 1990-09-14 1992-04-23 Fuji Electric Co Ltd 固定接触子ならびにその製造方法
JP2001210170A (ja) 2000-01-24 2001-08-03 Mitsubishi Electric Corp 開閉器
JP2004071512A (ja) * 2002-08-09 2004-03-04 Omron Corp 開閉装置
JP2010101241A (ja) * 2008-10-23 2010-05-06 Mitsubishi Electric Corp スタータ用電磁スイッチ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3465270A (en) * 1967-07-06 1969-09-02 Pollak Corp Joseph Heavy duty relay with wiping contacts
US3651437A (en) * 1971-03-19 1972-03-21 Matsushita Electric Works Ltd Electromagnetic contactor
JP2812810B2 (ja) * 1990-02-14 1998-10-22 三菱電機株式会社 開閉器
JPH0612957A (ja) * 1992-06-24 1994-01-21 Omron Corp リレー
JPH07182961A (ja) * 1993-12-22 1995-07-21 Fuji Electric Co Ltd 電磁接触器の鉄心保持構造
DE19602118C2 (de) * 1996-01-22 1999-12-30 Siemens Ag Elektrisches Schaltgerät
DZ2952A1 (fr) * 1998-12-01 2004-03-15 Schneider Electric Ind Sa Conacteur électromécanique logeant dans un corps un électroaimant et un porte-contacts mobile.
KR20000073458A (ko) * 1999-05-11 2000-12-05 권수영 스타-델타 결선용 전자개폐기
JP2006310251A (ja) 2005-03-28 2006-11-09 Matsushita Electric Works Ltd リレー用導電バー及びこの製造方法
US20090315653A1 (en) * 2008-06-18 2009-12-24 Fuji Electric Fa Components & Systems Co., Ltd Electromagnet device and electromagnetic contactor
JP5521852B2 (ja) 2010-03-30 2014-06-18 アンデン株式会社 電磁継電器
JP2012028253A (ja) * 2010-07-27 2012-02-09 Fuji Electric Fa Components & Systems Co Ltd 接点機構及びこれを使用した電磁接触器
JP5134657B2 (ja) * 2010-07-27 2013-01-30 富士電機機器制御株式会社 接点機構及びこれを使用した電磁接触器
JP2012038684A (ja) * 2010-08-11 2012-02-23 Fuji Electric Fa Components & Systems Co Ltd 接点装置及びこれを使用した電磁開閉器
JP5385877B2 (ja) * 2010-08-31 2014-01-08 富士電機機器制御株式会社 電磁開閉器
JP5778989B2 (ja) * 2011-05-19 2015-09-16 富士電機機器制御株式会社 電磁接触器
JP5689741B2 (ja) * 2011-05-19 2015-03-25 富士電機株式会社 電磁接触器
JP5767508B2 (ja) * 2011-05-19 2015-08-19 富士電機株式会社 電磁接触器
JP5809443B2 (ja) * 2011-05-19 2015-11-10 富士電機株式会社 接点機構及びこれを使用した電磁接触器
JP5793048B2 (ja) * 2011-10-07 2015-10-14 富士電機株式会社 電磁接触器
JP5856426B2 (ja) * 2011-10-07 2016-02-09 富士電機株式会社 接点装置及びこれを使用した電磁接触器
JP2015033162A (ja) * 2013-07-31 2015-02-16 キヤノン株式会社 駆動装置、荷電粒子線照射装置、リソグラフィ装置
JP2015032609A (ja) * 2013-07-31 2015-02-16 キヤノン株式会社 駆動装置、荷電粒子線照射装置、及びデバイスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123719A (ja) 1990-09-14 1992-04-23 Fuji Electric Co Ltd 固定接触子ならびにその製造方法
JP2001210170A (ja) 2000-01-24 2001-08-03 Mitsubishi Electric Corp 開閉器
JP2004071512A (ja) * 2002-08-09 2004-03-04 Omron Corp 開閉装置
JP2010101241A (ja) * 2008-10-23 2010-05-06 Mitsubishi Electric Corp スタータ用電磁スイッチ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765588A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545893B1 (ko) 2014-01-28 2015-08-20 엘에스산전 주식회사 릴레이
US9613771B2 (en) 2014-01-28 2017-04-04 Lsis Co., Ltd. Relay
US9673009B2 (en) 2015-10-14 2017-06-06 Lsis Co., Ltd. Direct current relay
JPWO2018131639A1 (ja) * 2017-01-11 2019-11-14 パナソニックIpマネジメント株式会社 接点装置、電磁継電器、電気機器
WO2018131639A1 (ja) * 2017-01-11 2018-07-19 パナソニックIpマネジメント株式会社 接点装置、電磁継電器、電気機器
US11139133B2 (en) 2017-01-11 2021-10-05 Panasonic Intellectual Property Management Co., Ltd. Contact device, electromagnetic relay and electrical device
JP7117567B2 (ja) 2017-01-11 2022-08-15 パナソニックIpマネジメント株式会社 接点装置、電磁継電器、電気機器
WO2019064778A1 (ja) * 2017-09-27 2019-04-04 オムロン株式会社 接続ユニット
JP2019061899A (ja) * 2017-09-27 2019-04-18 オムロン株式会社 接続ユニット
US11276538B2 (en) 2017-09-27 2022-03-15 Omron Corporation Connection unit
WO2019103064A1 (ja) * 2017-11-27 2019-05-31 パナソニックIpマネジメント株式会社 接点装置、電磁継電器及び電気機器
WO2019103063A1 (ja) * 2017-11-27 2019-05-31 パナソニックIpマネジメント株式会社 接点モジュール、接点装置、電磁継電器モジュール、及び電気機器
WO2019167825A1 (ja) * 2018-03-02 2019-09-06 パナソニックIpマネジメント株式会社 接点装置モジュール、電磁継電器モジュール及び電気機器
WO2020013225A1 (ja) * 2018-07-10 2020-01-16 パナソニックIpマネジメント株式会社 接点装置モジュール、電磁継電器モジュール及び電気機器

Also Published As

Publication number Publication date
CN103843099A (zh) 2014-06-04
JP5793048B2 (ja) 2015-10-14
KR20140071408A (ko) 2014-06-11
EP2765588A4 (en) 2015-12-09
JP2013084424A (ja) 2013-05-09
EP2765588A1 (en) 2014-08-13
US20150002250A1 (en) 2015-01-01
US10056200B2 (en) 2018-08-21
CN103843099B (zh) 2016-06-29
EP2765588B1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
JP5793048B2 (ja) 電磁接触器
JP5134657B2 (ja) 接点機構及びこれを使用した電磁接触器
JP5809443B2 (ja) 接点機構及びこれを使用した電磁接触器
JP5856426B2 (ja) 接点装置及びこれを使用した電磁接触器
KR101377342B1 (ko) 회로 차단기
CN110323105B (zh) 继电器
EP2251887B1 (en) Electromagnetic trip device
WO2013153815A1 (ja) 接点装置及びこれを使用した電磁開閉器
EP2919248B1 (en) Electromagnetic relay
JP5600577B2 (ja) 接点機構及びこれを使用した電磁接触器
JP7380455B2 (ja) 電磁継電器
KR101232453B1 (ko) 회로차단기
JP2012028253A (ja) 接点機構及びこれを使用した電磁接触器
JP5374630B2 (ja) 接点機構及びこれを使用した電磁接触器
JP5323244B2 (ja) 接点機構及びこれを使用した電磁接触器
US11587749B2 (en) Contact unit for a switching device and switching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14344789

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012837693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012837693

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147008803

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE