[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013046930A1 - 海水の浸透ろ過方法及び浸透取水ユニット - Google Patents

海水の浸透ろ過方法及び浸透取水ユニット Download PDF

Info

Publication number
WO2013046930A1
WO2013046930A1 PCT/JP2012/070002 JP2012070002W WO2013046930A1 WO 2013046930 A1 WO2013046930 A1 WO 2013046930A1 JP 2012070002 W JP2012070002 W JP 2012070002W WO 2013046930 A1 WO2013046930 A1 WO 2013046930A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
water
seawater
sand
pipe
Prior art date
Application number
PCT/JP2012/070002
Other languages
English (en)
French (fr)
Inventor
英幸 新里
井上 隆之
浩成 荒井
清和 向井
等 三村
Original Assignee
日立造船株式会社
株式会社ナガオカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社, 株式会社ナガオカ filed Critical 日立造船株式会社
Priority to CN201280036424.2A priority Critical patent/CN103702731B/zh
Priority to US14/347,499 priority patent/US20140224746A1/en
Priority to AU2012318208A priority patent/AU2012318208B2/en
Priority to ES201490021A priority patent/ES2490565B2/es
Publication of WO2013046930A1 publication Critical patent/WO2013046930A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/04Methods or installations for obtaining or collecting drinking water or tap water from surface water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2649Filtration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a filtration method for taking seawater permeating through a sand layer on the seabed, and organisms or suspensions deposited on the surface layer of the sand layer and incorporated into an intermediate layer in order to carry out this filtration method.
  • the present invention relates to an osmotic water intake unit having a reverse cleaning pipe that removes substances and prevents clogging.
  • a direct water intake method in which seawater is taken from a water intake 1 provided on the seabed through a water conduit 2 is currently used.
  • 3 in FIG. 14 is a pump for taking in seawater
  • 4 is a reverse osmosis membrane apparatus.
  • the direct water intake method collects all waste, suspended matter, living organisms, etc. at the same time as seawater, so when the jellyfish or red tide is abnormal, when oil spills occur, or when turbidity increases due to high waves, the intake is stopped You may have to.
  • the direct water intake method has a strong adherence of marine organisms such as barnacles and mussels to water intakes and conduits, so regular cleaning, addition of anti-adhesion chemicals (such as chlorine), and biological attachment in all pipes It is necessary to increase the pipe diameter in consideration of cost.
  • the indirect water intake method is drawing attention.
  • the seabed is excavated offshore several hundred meters from the shoreline and a depth of several tens of meters, and the excavation part is composed of supporting gravel layers 5a and 5b and filtered sand 5c as shown in FIG.
  • This is a method of taking in the seawater that has been filtered and permeated and purified from the intake pipe 6 installed in the supporting gravel layer 5a by refilling the bottom of the seabed again while forming the sand filtration layer 5.
  • this indirect water intake method does not cause any problems of the direct water intake method, the spread of the water is delayed due to the high initial cost and the problem of a decrease in water intake due to clogging on the infiltration surface.
  • Patent Document 1 proposes a method that can be removed and can ensure stable water intake.
  • the seawater permeation flow rate expressed in the sand filtration layer on the seabed is 1 to 8 m / day
  • the water depth of the sand filtration layer is the surface layer portion of the sand filtration layer. It is characterized by being deeper than the full movement limit water depth where sand moves 50 cm or more and shallower than the surface layer movement limit water depth where sand moves 1 cm or more.
  • Patent Document 1 has a very slow filtration rate of 1 to 8 m / day for the seawater osmotic water intake. It requires a vast area and the construction scale becomes large (Problem 1).
  • the infiltration method proposed in Patent Document 1 is installed in a sea area where optimum seawater flow is promoted in order to prevent clogging of the sand filtration layer due to silt deposited on the surface. Necessary and limited to places where seawater flows due to waves (Problem 2).
  • the applicant significantly reduced the required infiltration area by increasing the seawater infiltration speed, and a seawater infiltration filtration method that can significantly reduce the construction scale. Proposed.
  • the upper limit is 400 m / day or less as a practical speed that can be adopted.
  • the applicant has proposed an osmotic filtration method for seawater in which clogging is prevented by artificially removing organisms or suspended substances taken into the surface of the sand filtration layer. Further, in order to remove the suspended matter or the like taken into the surface layer of the sand filtration layer, the applicant must install, for example, a mechanical type, air type or jet water type device on the surface of the sand filtration layer. A clogging prevention device was proposed. As a result, the sand filtration layer can be installed, for example, in a calm sea area where there is no tidal current or wave water particle velocity.
  • the seawater permeation rate is as high as possible at 400 m / day or less, so that the amount of water intake in a short period of time becomes large, and water intake is in comparison with the conventional method.
  • the area can be reduced.
  • a clogging prevention device is installed on the surface of the sand filtration layer, it is not necessary to install it in a sea area where optimum seawater flow is promoted, and water can be taken near the seawater desalination plant. Therefore, the construction scale and the intake facility scale can be remarkably reduced, and accordingly, the influence during construction on the surrounding environment can be alleviated.
  • the method of using seawater flow or the method of ejecting water from the clogging prevention device installed on the surface of the sand filtration layer can only remove suspended substances deposited on the surface of the sand filtration layer.
  • the seawater permeation rate is as high as possible at 400 m / day or less, clogging also tends to proceed in the intermediate layer of the sand filtration layer, and the frequency of clogging increases. For this reason, the seawater infiltration rate may be reduced only by removing suspended substances and the like deposited on the surface of the sand filtration layer.
  • a support gravel layer 5a is formed in an excavation part excavating the seabed, and an intake pipe 6 is buried, and a support gravel layer 5b and a filtration sand 5c are formed above the support gravel layer 5a. Since all the work to refill the same seabed while forming the sea is done at the seafloor site, the installation work becomes large-scale. In addition, when a problem occurs in a part of the intake pipe 6 after the start of operation, it is necessary to excavate the bottom of the sea again to repair the failed part of the intake pipe 6.
  • the problem to be solved by the present invention is that the conventional osmotic water intake method is a seawater flow and washing by a clogging prevention device installed on the surface of the sand filtration layer, so that the organism taken into the intermediate layer of the sand filtration layer Alternatively, suspended solids cannot be removed, and the seawater infiltration rate may be reduced.
  • the conventional seepage water intake method requires a large scale of installation work, and if a malfunction occurs in part of the intake piping after the start of operation, it is necessary to excavate the bottom of the sea to repair the faulty part. It is a bad point.
  • the present invention solves the above problems and can remove not only organisms or suspended matter deposited on the surface of the sand filtration layer but also organisms or suspended matter taken up in the intermediate layer, and is installed on the seabed.
  • the purpose of the present invention is to provide a seawater osmotic filtration method and an osmotic intake unit that can reduce the construction scale and facilitate maintenance.
  • An infiltration water intake unit is formed in advance by embedding intake pipes in the gravel layer to form the deep sand filtration layer and embedding the backwash pipe in the sand layer to form the intermediate layer and surface layer of the sand filtration layer.
  • a seawater that forms a sand filtration layer by combining a required number of the permeate intake units at the installation location, and introduces seawater that has naturally permeated through the sand filtration layer from the sea into the intake pipe.
  • An osmotic filtration method of The seawater penetration speed is 400 m / day or less,
  • the organism or suspended matter taken into the intermediate layer is stirred by jetting water or air from the backwash tube, and rolled up with the organism or suspended matter deposited on the surface layer above the surface layer.
  • the main feature is to prevent clogging of the sand filter layer.
  • the organism or suspended substance taken into the intermediate layer of the sand filtration layer is agitated by water or air ejected from the backwash pipe, and sand filtered together with the suspended substance present in the surface layer.
  • Rolled up above the layer Suspended substances and the like wound in the sea above the sand filtration layer are diffused to the outside of the sand filtration layer by seawater flow caused by tidal currents and waves.
  • the sand filtration layer can be easily formed by combining pre-formed permeate intake units at the installation location on the seabed.
  • a malfunction occurs in a part of the intake pipe after the start of operation, it is not necessary to excavate the seabed and repair the failed part. it can.
  • an infiltration water intake unit Preliminarily forming an infiltration water intake unit further installed with a water absorption pipe above the sand layer, and combining the required number of the infiltration water intake units at the installation location on the sea floor to form the sand filtration layer,
  • the organism or suspended matter taken into the intermediate layer is stirred by jetting water or air from the backwash tube, and wound up with the organism or suspended matter deposited on the surface layer above the surface layer, What is necessary is just to prevent clogging of the said sand filtration layer by suck
  • the present invention clogging is prevented by removing organisms or suspended solids accumulated in the surface layer of the sand filtration layer and taken into the intermediate layer, and the seawater permeation rate is maintained as high as possible at 400 m / day or less.
  • High-speed filtration can be carried out continuously.
  • the construction scale at the time of installation is remarkably reduced, and after the start of operation, the osmotic intake unit including the failed part is separated in units. Since it can be exchanged, maintenance becomes easy.
  • FIG. 5 is a view showing an example of a case where the osmotic intake unit used in the seawater osmotic filtration method of the present invention has a size that can be loaded on a truck, (a) is a diagram showing a cross section taken along the line AA ′ of the plan view; (B) is a diagram showing a cross section taken along line BB ′ of the plan view, and (c) is a diagram viewed from the plane direction.
  • FIG. 1 is a view showing an embodiment of an osmotic intake unit of the present invention using a drain pipe, wherein (a) is a view showing a cross section taken along the line AA ′ of the plan view, and (b) is a view showing BB ′ of the plan view.
  • the figure which showed the cross section in a line, (c) is the figure seen from the direction of the plane.
  • FIG. 1 is a view showing an embodiment of an osmotic intake unit according to the present invention in which a water absorption pipe and a drain pipe are not provided
  • (a) is a view showing a cross section taken along the line AA ′ in the plan view
  • (b) is B in the plan view.
  • (c) is the figure seen from the direction of the plane.
  • the present invention aims to prevent clogging of the sand filtration layer in an intermediate layer of the sand filtration layer in order to continuously carry out high-speed filtration with the seawater permeation rate maintained as high as possible at 400 m / day or less.
  • Water absorption provided above the sand layer so that clogging substances contained in organisms or suspended matter rolled up above the sand filter layer do not adversely affect the environment surrounding the sand filter layer. It is desirable to collect by a tube.
  • FIG. 1 is a diagram showing an example of an osmotic intake unit 11 used in the seawater osmotic filtration method of the present invention.
  • reference numeral 12 denotes a gravel layer for forming a deep layer of a sand filtration layer on the sea floor, comprising a main pipe 12a and a plurality of branch pipes 12b branched in a direction intersecting the main pipe 12a.
  • 13 shows a water intake pipe embedded in the tank.
  • a backwash pipe 14 including a main pipe 14a and a plurality of branch pipes 14b branched in a direction intersecting the main pipe 14a is embedded. ing.
  • reference numeral 16 denotes a water absorption pipe composed of a main pipe 16a and a plurality of branch pipes 16b.
  • the main pipe 16a is installed between the side surfaces 17a and 17c of the housing 17 facing each other.
  • the ends of the plurality of branch pipes 16b branched in the direction intersecting with the main pipe 16a are supported by side surfaces 17b and 17d of the housing 17, as shown in FIG.
  • tube 16 is installed above the sand layer 15 in the state which left the fixed space
  • the osmotic water intake unit 11 of the present embodiment is, for example, an intermediate position in the height direction of a gravel layer 13 having a height of 0.5 m inside a casing 17 having a size of 10 m long ⁇ 2.5 m wide ⁇ 2.5 m high.
  • the water absorption pipe 16 installed above 15 is accommodated. Therefore, the permeate water intake unit 11 can be transported by a truck having a loading platform capable of loading the luggage of the above size, and transportation on land becomes easy.
  • an optimal material can be selected from, for example, FRP, concrete, metal, and the like according to the water quality of the sea area where the sand filtration layer is installed, the components of substances contained in the seawater, and the like.
  • FIG. 2 shows an example of each pipe of the infiltration water intake unit 11, and is a view of each pipe seen from the plane direction.
  • the lower side of the page shows the land side where the seawater desalination plant is installed, and the upper side of the page shows the ocean side.
  • the branch pipe 16b of the water absorption pipe 16 has a large number of jet holes 16ba and 16bb arranged in a row on the land side and the ocean side.
  • both the land-side suction hole 16ba and the ocean-side suction hole 16bb are opened in parallel with the longitudinal direction of the main pipe 16a, and when installed on site, the ejection angle of the ejection holes is parallel to the horizontal plane. It is trying to become the direction.
  • the land side of the main pipe 16a is connected to a water collection pump of a seawater desalination plant. Suspended water sucked from the suction holes 16ba and 16bb is collected from the branch pipes 16b to the main pipe 16 and collected by the seawater desalination plant.
  • a large number of ejection holes 14ba are arranged in a row on the top side when installed on site.
  • the ejection angle of the ejection hole 14ba is set to be 90 degrees with respect to the horizontal plane.
  • the land side of the main pipe 14a is connected to a water supply pump or an air compressor of a seawater desalination plant. Water or air supplied from the main pipe 14a to each branch pipe 14b is ejected from the ejection hole 14ba in the vertical direction toward the top.
  • the ejection hole 14ba is provided in the direction toward the top when installed on site, but the ejection hole 14ba of the backwash pipe 14 is directed downward, for example, when installed on site. You may comprise.
  • the branch pipe 12b of the intake pipe 12 is provided with a large number of intake holes over the entire surface (not shown in FIG. 2C).
  • the land side of the main pipe 12a is connected to a water collection pump of a seawater desalination plant. Seawater that has naturally permeated through the sand filtration layer is introduced into the branch pipe 12b through the water intake hole, and taken into the seawater desalination plant through the main pipe 12a.
  • the osmotic intake unit 11 as described above is previously formed on land, and a sand filtration layer is formed by combining the required number of osmotic intake units 11 at the installation location of the seabed.
  • a seawater osmotic filtration method in which seawater that has naturally permeated through the sand filtration layer from the sea is introduced into the water pipe 12 to take in seawater, and the seawater permeation rate is 400 m / day or less. .
  • the organisms or suspended substances taken into the intermediate layer 15b above the reverse cleaning pipe 14 are supplied with water or air from the ejection holes 14ba of the reverse cleaning pipe 14 in a horizontal plane. For example, it is stirred by jetting upward at an angle of +90 degrees or downward at an angle of -90 degrees, and is rolled up into the sea above the sand filtration layer together with organisms or suspended matter deposited on the surface of the sand filtration layer After that, agitation water containing organisms or suspended matter is absorbed by the water absorption pipe 16 installed above the surface layer of the sand filtration layer. By doing in this way, since the living thing or suspended matter rolled up above the sand filtration layer is recovered without being deposited again on the surface of the sand filtration layer, clogging of the sand filtration layer can be surely prevented.
  • the organisms or suspended substances rolled up above the sand filtration layer contain components such as silt that cause clogging and do not cause clogging. Also included are particles of suitable particle size to maintain the seawater filtration effect in the bed.
  • the clogging of the clogging to be inhaled is made using the difference in the sedimentation rate of the organism or suspended matter rolled up in the sea above the sand filtration layer by the water or air ejected from the backwash pipe 14.
  • the stirring water is sucked from the water suction pipe 16 at the timing when the causative substance settles on the sand filtration layer. Therefore, in the present embodiment, only substances that cause clogging can be sucked and substances useful for maintaining the filtration effect can be left in the sand filtration layer.
  • FIG. 3 is a view showing an arrangement example of the intake pipe 12 of the osmotic intake unit 11.
  • seven intake pipes 12 are arranged side by side to constitute an intake pipe block 120.
  • the intake pipe block 120 is connected to the water collecting pump by combining the five intake pipe blocks 120 into one using the common pipe 18, for example, as shown in FIG.
  • the intake pipe block 120 may be individually connected to the water collection pump pit 19.
  • FIG. 4 is a diagram showing an example of connection of the reverse cleaning pipe 14 of the osmotic intake unit 11.
  • the reverse cleaning pipe block 140 is configured by arranging seven back cleaning pipes 14 side by side.
  • water is spouted from the backwash pipe 14 in order to stir the organism or suspended matter that has accumulated in the surface layer of the sand filtration layer and taken up in the intermediate layer and wind it up into the sea above the sand filtration layer.
  • air may be ejected.
  • the backwash pipe block 140 is connected with the water supply pump 20.
  • FIG. On the other hand, when using the structure which ejects air, as shown in FIG.4 (b), the backwash pipe block 140 is connected with the air compressor 21.
  • FIG. 5 is a diagram showing an example of the dimensions and arrangement of the permeate intake unit 11.
  • the permeate water intake block 110 is configured by arranging 8 or 9 permeate water intake units 11 whose main pipes 12a, 14a, and 16a have a length of 10 m in the longitudinal direction side by side. Four more 110 are arranged side by side to form a water intake area 1100 having a size of 10 m ⁇ 105 m (not including the thickness of the casing).
  • the seawater infiltration rate is 400 m / day or less. However, if the seawater infiltration rate is 100 m / day and the infiltration area per unit of the infiltration water intake unit 11 is 30 m 2 , the infiltration water intake unit 11 The amount of water collected per unit is 3000 m 3 / day. As in the example of FIG. 5A, in the case of a water intake area 1100 composed of about 35 permeate water intake units 11, the total water collection amount is about 100,000 t / day. This is the same level of water intake as “Mamizu Pier” currently installed in Fukuoka Prefecture.
  • the water intake area 1100 shown in FIG. 5 (a) is arranged as shown in FIG. 5 (b) or (c), for example. 4 areas should be provided.
  • the water intake area 1100 shown in FIG. 5 (a) is arranged as shown in FIG. 5 (b) or (c), for example. 4 areas should be provided.
  • the water intake area 1100 shown in FIG. 5 (a) is arranged as shown in FIG. 5 (b) or (c), for example. 4 areas should be provided.
  • FIG. 5B 25 m ⁇ about 270 m
  • 210 m ⁇ about 25 m a water intake area that is much smaller than the conventional permeation water intake method, 400,000 a day A water intake of t is obtained.
  • positioning is selected according to the topography of an installation sea area. be able to. Further, by changing the number of units to be combined as described above, it is possible to cope with the required water intake amount per day.
  • FIG. 6 is a diagram showing an example of the osmotic water intake unit of the present invention when a drain pipe is used as a means for removing organisms or suspended substances rolled up in the sea. In the following description, only differences from the configuration of the embodiment of FIG.
  • 22 indicates a drain pipe comprising a main pipe 22a and a plurality of branch pipes 22b.
  • the main pipe 22a is installed between the side surfaces 17a and 17c of the housing 17 facing each other.
  • the ends of the plurality of branch pipes 22b branched in the direction intersecting with the main pipe 22a are supported on the side faces 17b and 17d of the housing 17, as shown in FIG. 6B.
  • the drain pipe 22 is installed above the sand layer 15 in a state where a certain interval is provided between the drain pipe 22 and the surface of the sand layer 15.
  • the branch pipe 22b has a large number of jet holes arranged on the ocean side (FIG. 2 (b) is not shown because it is a view from the land side).
  • the ejection holes are opened in parallel to the longitudinal direction of the main pipe 22a, and the ejection angle of the ejection holes is set to be parallel to the horizontal plane when installed on site.
  • the land side of the main pipe 22a is connected to a water supply pump of a seawater desalination plant, and the water supplied from the main pipe 22a to each branch pipe 22b is ejected horizontally from the ejection hole to the ocean side.
  • the organism or suspended substance taken in the intermediate layer of the sand filtration layer is agitated by the water or air ejected from the backwash pipe 14, and the organisms deposited on the surface of the sand filtration layer or Along with the suspended substance, it is rolled up above the surface layer, and then discharged to the outside of the sand filtration layer by water ejected from the drain pipe 22.
  • FIG. 7 (a) is an explanatory view of another embodiment of the osmotic intake unit of the present invention using a drain pipe, and shows a state in which the drain pipe 23 is viewed from a plane direction.
  • the right side of the paper indicates the land side where the seawater desalination plant is provided, and the left side (the direction of the arrow) indicates the ocean side. In this embodiment, it is assumed that no other infiltration water intake unit is adjacent to the ocean side.
  • FIG. 7B is a schematic view of the branch pipe 23b of the drain pipe 23 as viewed from the direction of the cross section, and is a view for explaining the ejection angle ⁇ of water ejected from the ejection hole 23bb.
  • the ejection angle ⁇ is set in the range of 30 to 60 degrees with respect to the horizontal plane.
  • the land side of the main pipe 23a is connected to a water supply pump of a seawater desalination plant.
  • the ejection angle of the ejection hole 23bb is 45 degrees
  • the water supplied from the main pipe 23a to each branch pipe 23b is ejected from the ejection hole 23bb to the ocean side at an angle of 45 degrees upward with respect to the horizontal plane.
  • the drain pipe 23 ejects water in a direction in which no other permeate intake unit is adjacent to the drain pipe 23, and the water ejection angle is in the range of 30 to 60 degrees with respect to the horizontal plane. It was configured as follows.
  • suspended substances or the like that cause clogging discharged by the drain pipe 23 do not settle on top of the sand filtration layers of other permeate water intake units.
  • the water ejected from the ejection hole 23bb has a parabolic shape, and suspended substances or the like that cause clogging can be discharged further away.
  • FIG. 8 is a diagram showing an example of the arrangement in the height direction of the water intake pipe 12 and the backwash pipe 14 in the unit of the osmotic water intake unit 11 of the present invention.
  • the water intake pipe 12 is not too far from the bottom surface 17e of the casing 17 of the osmotic water intake unit 11 so that the filtration capacity does not decrease.
  • the COP (pipe center) height of the intake pipe 12 may be in the range of 0.75D to 1,25D upward from the bottom surface 17e.
  • the backwash pipe 14 it is advantageous to install the backwash pipe 14 at a position as deep as possible in order to backwash the suspended matter or the like deposited on the surface of the sand filtration layer and taken in the intermediate layer over a wide range. If the installation position is too deep, it is necessary to increase the water pressure, so it is necessary to consider the balance between the two. Specifically, when the outer diameter of the reverse cleaning pipe 14 is d, the COP (pipe center) height of the reverse cleaning pipe 14 is 1.0d to 5 downward from the surface 15d of the sand layer 15 of the sand filtration layer. A range of 0.0d may be used.
  • FIG. 9 is a diagram showing an example of an osmotic water intake unit of the present invention when seawater flow is used as a means for removing organisms or suspended substances rolled up in the sea.
  • the configuration of FIG. 9 is the same as the embodiment of FIG. 1 except that the water absorption pipe 16 or the drain pipe 22 does not exist.
  • the organism or suspended substance taken into the intermediate layer of the sand filtration layer is combined with the organism or suspended substance deposited on the surface of the sand filtration layer by water or air ejected from the backwash pipe 14. And is diffused to the outside of the sand filtration layer by seawater flow caused by tidal currents or waves.
  • FIG. 10 is a diagram showing an experimental flow of the seawater osmotic filtration method of the present invention.
  • 31 is a water intake pump submerged 50 cm from the sea bottom and 3.3 m from the water surface
  • 32 is a raw water tank for storing seawater pumped by the water intake pump 31. Seawater stored in the raw water tank 32 is pumped up by the raw water pump 33 and supplied to the column device 34.
  • the column device 34 is provided with a filtration layer composed of a sand layer 34 a and a gravel layer 34 b, and the filtrate water that has passed through the filtration layer is guided to a treated water tank 35.
  • the reverse feed pipe 37 provided with the reverse feed pump 36 that sends the filtrate of the treated water tank 35 back to the column apparatus 34 and the seawater supplied to the column apparatus 34 do not overflow.
  • an overflow pipe 38 for guiding the treated water tank 35 is provided.
  • the filtration layer used for this measurement is from above, a 0.45 mm sand layer (thickness 900 mm), a ⁇ 2-4 mm gravel layer (thickness 75 mm), a ⁇ 4-8 mm gravel layer (thickness 75 mm), and a ⁇ 6-12 mm gravel (Thickness 150 mm).
  • the measurement results are shown in FIG.
  • an amount of silt was added in advance so that the osmotic water intake speed in FIG. 11 (a) was the turbidity indicated by 0 m / day.
  • the turbidity and silt concentration index SDI are the same as when the permeate water intake speed is 1 to 8 m / day, and show the same treatment performance. It was confirmed.
  • the seawater infiltration flow rate expressed in the sand filtration layer on the seabed is 1 to 8 m / day, and the water depth of the sand filtration layer is 50 cm or more of the sand in the surface layer portion of the sand filtration layer. It is assumed that it is deeper than the full movement limit water depth that moves and shallower than the surface movement limit water depth that moves 1 cm or more.
  • the water depth of the sand filtration layer is deeper than the complete movement limit water depth at which the sand of the surface layer portion of the sand filtration layer moves by 50 cm or more, and
  • the reason for making it shallower than the surface layer movement limit water depth that moves 1 cm or more is as follows.
  • the sand on the surface of the sand filtration layer at the depth of the surface layer movement limit depth which is the maximum water depth where it is confirmed that the sand particles on the seabed move to some extent by the waves, is to the extent that the seabed sand is washed. If it is deeper than this water depth, there is almost no movement of sand particles on the surface of the sand filtration layer.
  • the surface sand of the sand filtration layer moves 50 cm or more at the full water movement limit depth, which is the maximum water depth that is confirmed to erode the sand filtration layer on the seabed due to the action of waves, it is erosion of the sand filtration layer on the seabed. Because it will be accepted.
  • the particle size of silt particles is generally about 0.005 mm to 0.074 mm, and the flow rate of seawater at which the silt does not move, that is, the movement limit flow rate is obtained.
  • the limit actual flow rate of silt particles obtained using a graph showing the relationship between the particle size and the limit actual flow rate is 0.026 cm / s in the case of silt particles having a particle size of 0.08 mm.
  • a seawater permeation flow rate of at least 1 m / day is required.
  • the surface layer of the sand filtration layer is moderately agitated by waves and currents appearing in the sea by setting the infiltration rate of seawater to 1 to 8 m / day under the above conditions, It is said that suspended solids such as garbage and silt accumulated on the surface of the sand filtration layer can be removed, and stable water intake can be secured.
  • the upper limit of the infiltration rate of seawater defined in the invention of Patent Document 1 is a condition for preventing silt from entering or mixing into the sand filtration layer on the surface of the seabed.
  • the treatment performance is equivalent to that of the permeate water intake rate of 1 to 8 m / day. For example, when the permeate water intake speed is 400 m / day, it tends to absorb silt.
  • silt particles are very small compared to the voids in the filter sand, they take the form of so-called standard blockage.
  • intermolecular forces physical adsorption, static electricity
  • the silt component is added as shown in FIG. 11 (a)
  • the silt is almost deposited on the surface layer after 2 hours under the condition of 400 m / day, and the inside of the sand filter layer is only about 1 cm. Confirmed that it would not invade.
  • the standard blockage differs from the complete blockage that occurs even for particles larger than the void, and in order for the particles to completely seal the void pores, the void pores take time due to adsorption of silt particles as shown in FIG. Narrow. This means that pressure loss gradually occurs up to the air gap retention threshold, so that long-time penetration is possible even when silt is continuously removed. This elapsed time varies depending on the conditions of the filter medium and the seawater condition (silt concentration), and this time is an important factor for the forced cleaning interval.
  • the present invention is based on the experimental results of the inventors and the above knowledge, and is a conventional common sense, realizing a high seawater permeation rate of the filter medium, which was a taboo, and thereby significantly increasing the construction scale and intake facility scale. Is realized.
  • the seawater permeation rate is 400 m / day or less. With the speed.
  • the amount of water intake is 50 times that of the conventional seawater infiltration rate of 8 m / day, so the area of the intake area can be reduced to 1/50. it can. Further, installation in a sea area where optimum seawater flow is promoted becomes unnecessary, and as shown in FIG. 13, an infiltration water intake facility 42 can be installed near the seawater desalination plant 41, and the scale of construction and intake facilities can be increased. The scale can be significantly reduced, and the impact on the surrounding environment during construction can be alleviated.
  • the seawater osmotic filtration method of the present invention does not use the osmotic intake unit 11 and is installed on the seabed.
  • a method of forming a sand filtration layer by embedding the intake pipe 12 or the backwash pipe 14 may be used.
  • intake pipes are embedded deep in the sand filtration layer at the bottom of the sea
  • backwash pipes for jetting water or air are embedded in the intermediate layer of the sand filtration layer to naturally penetrate the sand filtration layer from the sea.
  • Seawater osmotic filtration method for introducing seawater into the intake pipe and taking seawater, The seawater penetration speed is 400 m / day or less
  • the organism or suspended substance taken in the intermediate layer is stirred by jetting water or air from the backwash tube, and is rolled up together with the organism or suspended substance deposited on the surface layer of the sand filtration layer. This is a seawater osmotic filtration method for preventing clogging of the sand filtration layer.
  • a water absorption pipe is further installed above the surface of the sand filtration layer, and the organisms or suspended substances taken into the intermediate layer of the sand filtration layer are back-washed.
  • Water or air is spouted from the pipe and stirred, and after being rolled up with the organism or suspended matter deposited on the surface of the sand filtration layer, the stirred water containing the organism or suspended matter from the water absorption pipe Inhalation of sand can prevent clogging of the sand filtration layer without adversely affecting the surrounding environment.
  • a drainage pipe is further installed above the surface of the sand filtration layer, and the organism or suspended matter taken into the intermediate layer of the sand filtration layer is stirred by jetting water or air from the backwash pipe. Rolling up the surface together with organisms or suspended matter deposited on the surface of the filtration layer, and then spraying water out of the drainage pipe prevents clogging of the sand filtration layer even in calm waters where seawater flow is low it can.
  • the structure in which the intermediate layer of the sand filtration layer is cleaned by ejecting water or air from the reverse cleaning tube 14 is disclosed, but in addition to the cleaning of the intermediate layer (sand layer) by the reverse cleaning tube 14, You may comprise so that the deep layer (gravel layer) of a sand filtration layer may be wash
  • the embodiment using the water absorption pipe 16 and the embodiment using the drain pipes 22 and 23 have been described separately. For example, switching between collecting and supplying water of a pump installed in a seawater desalination plant.
  • a single apparatus may be configured to have both the function of the water absorption pipe and the function of the drain pipe.
  • the filter medium used for the gravel layer and sand layer of the osmotic intake unit of the present invention is not limited to natural gravel and sand, and any material can be used.
  • the seawater osmotic filtration method of the present invention can significantly reduce the area of the water intake area.
  • the above-described artificial filter medium can also be easily adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Filtration Of Liquid (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Cultivation Of Seaweed (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】砂ろ過層の表層のみならず、中間層に取り込まれた懸濁物質等を洗浄する。 【解決手段】砂ろ過層の深層を形成するための砂利層13に取水配管12を埋め込み、砂ろ過層の中間層及び表層を形成するための砂層15に逆洗浄管14を埋め込み、砂層15の上方に吸水管16を設置した浸透取水ユニット11をあらかじめ形成しておく海水の浸透ろ過方法である。海底の設置場所で所要の数の浸透取水ユニット11を組み合わせて砂ろ過層を形成し、海中から砂ろ過層内を自然浸透してきた海水を取水配管12内に導入して海水を取水する。海水浸透速度を400m/日以下の速度とする。砂ろ過層の中間層に取り込まれた懸濁物質等を、逆洗浄管14から水又はエアーを噴出して撹拌し、砂ろ過層の表層の上部に巻き上げ、吸水管16から撹拌水を吸入して回収する。 【効果】海水浸透速度を400m/日以下のできるだけ大きい速度に維持できる。

Description

海水の浸透ろ過方法及び浸透取水ユニット
 本発明は、海底の砂層内を浸透してくる海水を取水する際のろ過方法、及びこのろ過方法を実施するために、砂層の表層に堆積し、かつ中間層に取り込まれた生物又は懸濁物質を取り除いて目詰まりを防止する逆洗浄管などを有した浸透取水ユニットに関するものである。
 海水を取水する方法として、現在は、図14に示すように、例えば海底に設けた取水口1から導水管2を介して海水を取水する直接取水法が多く採用されている。なお、図14中の3は海水を取水するためのポンプ、4は逆浸透膜装置である。
 しかしながら、直接取水法は、海水と同時にごみ、懸濁物、生物等を全て取水するので、クラゲや赤潮の異常発生時、油の流出事故時、高波による濁度の増大時には、取水を停止しなければならない場合がある。また、直接取水法は、取水口や導水管へのフジツボ、イガイ等の海洋生物の付着が激しいので、定期的な清掃、付着防止の薬品(例えば塩素等)の添加、全管路における生物付着代を考慮した管径の増大等が必要である。さらに、直接取水法において、取水した海水を逆浸透膜で処理する場合は、凝集剤を添加した海水をろ過する砂ろ過施設が必要となるので、砂ろ過施設に溜まった汚泥を処理する施設が必要になる。
 そこで、近年、取水する海水の前処理として、凝集剤等の薬品を使用しないで、図15に示すように、海底の砂層(以下、砂ろ過層という。)5内を浸透してくる海水を取水する間接取水法が注目されている。
 この間接取水法は、汀線より数百m、水深十数mの沖合にて海底を掘削し、当該掘削部に、図16に示すように、支持砂利層5a及び5b、ろ過砂5cで構成された砂ろ過層5を形成しながら、再び同じ海底面まで埋め戻すことで、支持砂利層5a中に設置した取水配管6から、ろ過浸透して浄化された海水を取水する方法である。この間接取水法は、直接取水法の問題は一切発生しないが、イニシャルコストが高いことと、浸透面での目詰まりによる取水量の低下の問題により、普及拡大が遅れている。
 そこで、このような浸透取水法において、海水を取水する海底の砂ろ過層の目詰まりを可及的に低減でき、また砂ろ過層の表面に堆積した懸濁物等を、手間をかけずに取り除くことができ、安定した取水を確保し得る方法が特許文献1で提案されている。
 この特許文献1で提案された浸透取水法は、海底の砂ろ過層内に発現される海水浸透流速を1~8m/日とし、前記砂ろ過層の水深は、当該砂ろ過層の表層部分の砂が50cm以上移動する完全移動限界水深よりも深く、かつ1cm以上移動する表層移動限界水深よりも浅くすることを特徴としている。
 しかしながら、この特許文献1で提案された浸透取水法は、海水の浸透取水速度が1~8m/日という、非常に緩速なろ過速度であるため、短期間で大量の海水を取水するには広大な面積を必要とし、工事規模が大きくなる(課題1)。
 加えて、特許文献1で提案された浸透取水法は、表面に堆積したシルト(泥分)による砂ろ過層の目詰まりを防止するために、最適な海水流動が促進される海域への設置が必要であり、波浪による海水流動がある場所に限定される(課題2)。
 そこで、出願人は、上記課題1を解決するために、海水浸透速度を高速化することにより必要浸透面積を大幅に削減し、工事規模を格段に減少させることが可能な海水の浸透ろ過方法を提案した。但し、現実的な採用可能な速度としては上限を400m/日以下としている。
 また、出願人は、上記課題2を解決するために、砂ろ過層の表層に取り込まれた生物又は懸濁物質を人為的に取り除いて目詰まりを防止する海水の浸透ろ過方法を提案した。さらに、出願人は、砂ろ過層の表層に取り込まれた前記懸濁物質等を取り除くために、例えば機械式、エアー式、噴流水式の何れかの装置を砂ろ過層の表面に設置する目詰まり防止装置を提案した。これにより、砂ろ過層を例えば潮流や波浪の水粒子速度がない静穏海域に設置することも可能にした。
 すなわち、この出願人が提案した海水の浸透ろ過方法によれば、海水浸透速度が400m/日以下のできるだけ大きい速度とすることで、短期間での取水量が大量になり、従来に比べて取水面積を小さくすることができる。また、砂ろ過層の表面に目詰まり防止装置を設置する場合は、最適な海水流動が促進される海域への設置が不要になり、海水淡水化プラントの近くで取水できる。従って、工事規模や取水施設規模を格段に小規模化することができ、これに伴い、周囲環境への工事時の影響も各段に緩和できる。
 しかしながら、海水流動を利用する方法や、砂ろ過層の表面に設置した目詰まり防止装置から水等を噴出させる方法では、砂ろ過層の表層に堆積した懸濁物質等を取り除くことができるのみで、砂ろ過層の表層よりも深い中間層に取り込まれた生物又は懸濁物質を取り除くことはできない。特に、海水浸透速度を400m/日以下のできるだけ大きい速度とする場合は、砂ろ過層の中間層にも目詰まりが進行しやすく、目詰まりの頻度も高くなる。そのため、砂ろ過層の表層に堆積した懸濁物質等を取り除くのみでは、海水浸透速度が低下するおそれがある。
 また、例えば特許文献1の浸透取水法は、海底を掘削した掘削部に支持砂利層5aを形成して取水配管6を埋設し、この支持砂利層5aの上部に支持砂利層5b、ろ過砂5cを形成しながら再び同じ海底面まで埋め戻す工事をすべて海底の現場で行うため、設置工事が大規模となる。また、運転開始後に取水配管6の一部に不具合が発生したときは、海底面を再び掘削して取水配管6の故障部位を補修する必要がある。
日本特許第3899788号公報
 本発明が解決しようとする問題点は、従来の浸透取水法は、海水流動や砂ろ過層の表面に設置した目詰まり防止装置による洗浄であるため、砂ろ過層の中間層に取り込まれた生物又は懸濁物質を取り除くことができず、海水浸透速度が低下するおそれがある点である。加えて、従来の浸透取水法は、設置時の工事が大規模となる上、運転開始後に取水配管の一部に不具合が発生すると海底面を掘削して故障部位を補修する必要があり、メンテナンス性が悪い点である。
 本発明は、上記問題を解決し、砂ろ過層の表層に堆積した生物又は懸濁物質のみならず、中間層に取り込まれた生物又は懸濁物質についても取り除くことが可能で、海底に設置する際の工事規模を小さくし、メンテナンスが容易に行える海水の浸透ろ過方法及び浸透取水ユニットを提供することを目的としてなされたものである。
 本発明の海水の浸透ろ過方法は、
 砂ろ過層の深層を形成するための砂利層に取水配管を埋め込み、砂ろ過層の中間層及び表層を形成するための砂層に逆洗浄管を埋め込んだ浸透取水ユニットをあらかじめ形成しておき、海底の設置場所で所要の数の前記浸透取水ユニットを組み合わせて前記砂ろ過層を形成し、海中から前記砂ろ過層内を自然浸透してきた海水を前記取水配管内に導入して海水を取水する海水の浸透ろ過方法であって、
 海水浸透速度を400m/日以下の速度とし、
 前記中間層に取り込まれた生物又は懸濁物質を、前記逆洗浄管から水又はエアーを噴出して撹拌し、前記表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げることにより、前記砂ろ過層の目詰まりを防止することを最も主要な特徴としている。
 上記の本発明によれば、砂ろ過層の中間層に取り込まれた生物又は懸濁物質は、逆洗浄管から噴出される水又はエアーによって撹拌され、表層に存在する懸濁物質等と共に砂ろ過層の上方に巻き上げられる。そして、砂ろ過層の上方の海中に巻き上げられた懸濁物質等は、潮流や波浪による海水流動によって砂ろ過層の外部に拡散される。
 また、上記の本発明では、あらかじめ形成しておいた浸透取水ユニットを海底の設置場所で組み合わせることにより、砂ろ過層を容易に形成することができる。また、運転開始後に取水配管の一部に不具合が発生した場合は、海底を掘削して故障部位を補修する必要はなく、配管等の故障部位を含む浸透取水ユニットをユニットの単位で切り離して交換できる。
 上記本発明において、砂ろ過層を潮流や波浪による海水流動が少ない静穏海域に設置する場合は、
 前記砂層の上方に吸水管をさらに設置した浸透取水ユニットをあらかじめ形成しておき、海底の設置場所で所要の数の前記浸透取水ユニットを組み合わせて前記砂ろ過層を形成すると共に、
 前記中間層に取り込まれた生物又は懸濁物質を、前記逆洗浄管から水又はエアーを噴出して撹拌し、前記表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げた後、前記吸水管から生物又は懸濁物質を含んだ攪拌水を吸入することにより、前記砂ろ過層の目詰まりを防止すれば良い。
 本発明では、砂ろ過層の表層に堆積し、かつ中間層に取り込まれた生物又は懸濁物質を取り除くことで目詰まりを防止し、海水浸透速度を400m/日以下のできるだけ大きい速度で維持し、高速ろ過を継続的に実施できる。また、本発明の浸透取水ユニットを組み合わせて砂ろ過層を形成する場合は、設置時の工事規模が格段に小さくなる上、運転開始後は故障部位を含む浸透取水ユニットをユニットの単位で切り離して交換できるので、メンテナンスが容易となる。
本発明の海水の浸透ろ過方法に用いる浸透取水ユニットをトラックに積載可能なサイズとした場合の一例を示した図で、(a)は平面図のA-A’線における断面を示した図、(b)は平面図のB-B’線における断面を示した図、(c)は平面の方向から見た図である。 本発明の浸透取水ユニットの各配管を平面の方向から見た図で、(a)は吸水管の平面図、(b)は逆洗浄管の平面図、(c)は取水配管の平面図である。 本発明の浸透取水ユニットの取水配管の配置例を示した図で、(a)は5ブロックの取水配管をバス型に接続する場合の配置例を示した図、(b)は5ブロックの取水配管をそれぞれ集水ポンプピットに接続する場合の配置例を示した図である。 本発明の浸透取水ユニットの逆洗浄管の接続例を示した図で、(a)は水を噴出する構成を用いる場合のポンプとの接続例を示した図、(b)はエアーを噴出する構成を用いる場合のエアコンプレッサーとの接続例を示した図である。 本発明の浸透取水ユニットの寸法及び配置の例を示した図で、(a)は取水量を10万t/日とする場合の一例を示した図、(b)と(c)は取水量を40万t/日とする場合の一例と、他の一例を示した図である。 排水管を用いた本発明の浸透取水ユニットの実施例を示した図で、(a)は平面図のA-A’線における断面を示した図、(b)は平面図のB-B’線における断面を示した図、(c)は平面の方向から見た図である。 排水管を用いた本発明の浸透取水ユニットの他の実施例を示した図で、(a)は逆洗浄管を平面の方向から見た図、(b)は排水管の枝管を横断面の方向から見た概略図で、排水管から噴出する水の噴出角度を説明する図である。 本発明の浸透取水ユニットのユニット内における取水配管と逆洗浄管の高さ方向の配置の一例を示した図である。 吸水管や排水管を設けない本発明の浸透取水ユニットの実施例を示した図で、(a)は平面図のA-A’線における断面を示した図、(b)は平面図のB-B’線における断面を示した図、(c)は平面の方向から見た図である。 海水の浸透ろ過方法の実験フロー図である。 実験結果の一例を示した図で、(a)は濁度のデータを示した図、(b)はシルト濃度指数(SDI)のデータを示した図である。 完全閉塞と標準閉塞の経過時間と圧力損失の関係を示した図である。 本発明の海水の浸透ろ過方法のイメージ図である。 従来の直接取水法の概略説明図である。 従来の間接取水法の概略説明図である。 海底浸透部の概略構成図である。
 本発明は、海水浸透速度を400m/日以下のできるだけ大きい速度に維持した高速ろ過を継続的に実施するために、砂ろ過層の目詰まりを防止するという目的を、砂ろ過層の中間層に取り込まれた生物又は懸濁物質を、逆洗浄管から噴出される水又はエアーによって撹拌し、砂ろ過層の表層に堆積した生物又は懸濁物質と共に、砂ろ過層の上方の海中に巻き上げることで実現した。
 砂ろ過層の上方に巻き上げた生物又は懸濁物質中に含まれる目詰まりの原因となる物質は、砂ろ過層の周囲の環境に悪影響を及ぼすことがないように、砂層の上方に設けた吸水管により回収することが望ましい。
 もっとも、環境保全の必要性が比較的低い海域では、砂ろ過層の上方に巻き上げた生物又は懸濁物質中に含まれる目詰まりの原因となる物質を、砂ろ過層の周囲に排出することが許される場合もある。かかる海域に砂ろ過層を設置する場合は、海水の流速に応じて、以下の何れかの構成を選択すれば良い。
 すなわち、海水の流速が遅い海域に設置する場合は、砂層の上方に設けた排水管により人為的に目詰まりの原因となる物質を排出する構成を採用する。他方、海水の流速が速い海域に設置する場合は、潮流や波浪による海水流動によって目詰まりの原因となる物質を拡散できるので、吸水管や排水管を設けない構成を採用しても良い。
 以下、本発明を実施するための形態を、図1~図13を用いて詳細に説明する。
 図1は本発明の海水の浸透ろ過方法に用いる浸透取水ユニット11の一例を示した図である。
 図1(a)及び(b)において、12は、主管12aと、主管12aと交差する方向に分岐させた複数の枝管12bからなり、海底の砂ろ過層の深層を形成するための砂利層13に埋め込まれた取水配管を示している。砂ろ過層の中間層15b,15c及び表層15aを形成するための砂層15には、主管14aと、主管14aと交差する方向に分岐させた複数の枝管14bからなる逆洗浄管14が埋め込まれている。
 図1(c)において、16は、主管16aと、複数の枝管16bからなる吸水管を示している。主管16aは、図1(a)に示すように、筐体17の対向する側面17a,17cの間に架設されている。また、主管16aと交差する方向に分岐させた複数の枝管16bの端部は、図1(b)に示すように、筐体17の側面17b,17dに支持されている。このようにすることで、吸水管16は、砂層15の表面との間に一定の間隔を空けた状態で砂層15の上方に設置されている。
 本実施例の浸透取水ユニット11は、例えば縦10m×横2.5m×高さ2.5mのサイズの筐体17の内部に、高さ0.5mの砂利層13の高さ方向の中間位置に埋め込まれた取水配管12と、高さ2.0mの砂層15の高さ方向の上部に埋め込まれた逆洗浄管14と、砂層15の表面との間に一定の間隔を空けた状態で砂層15の上方に設置された吸水管16を収容したものである。よって、この浸透取水ユニット11は、上記サイズの荷物を積載可能な荷台を有したトラックで輸送することができ、陸上における輸送が容易となる。なお、筐体17は、砂ろ過層を設置する海域の水質や海水中に含まれる物質の成分等に応じて、例えばFRP、コンクリート、金属などの中から最適な素材を選定することができる。
 図2は、浸透取水ユニット11の各配管の一例を示したもので、各配管を平面の方向から見た図である。紙面下側は海水淡水化プラントが設けられる陸側を、紙面上側は海洋側を示している。
 吸水管16の枝管16bには、図2(a)に示すように、陸側と海洋側に多数の噴出孔16ba,16bbが列設されている。本実施例においては、陸側の吸入孔16baについても海洋側の吸入孔16bbについても、主管16aの長手方向と平行に開口し、現地での設置時、噴出孔の噴出角度が水平面に対し平行の向きとなるようにしている。主管16aの陸側は海水淡水化プラントの集水ポンプと接続されている。吸入孔16ba,16bbから吸入された懸濁水は、各枝管16bから主管16に集められ、海水淡水化プラントに回収される。
 逆洗浄管14の枝管14bには、図2(b)に示すように、現地での設置時に天側となる位置に多数の噴出孔14baが列設されている。本実施例においては、噴出孔14baの噴出角度は、水平面に対し90度の向きとなるようにしている。主管14aの陸側は海水淡水化プラントの給水ポンプ又はエアコンプレッサーと接続されている。主管14aから各枝管14bに供給された水又はエアーは、噴出孔14baから、天側に垂直方向に噴出される。なお、本実施例では、一例として、現地での設置時に天側となる向きに噴出孔14baを設けているが、逆洗浄管14の噴出孔14baは、現地での設置時に例えば下向きとなるように構成しても良い。
 取水配管12の枝管12bには、表面全域に多数の取水孔が設けられている(図2(c)では図示せず)。主管12aの陸側は海水淡水化プラントの集水ポンプと接続されている。砂ろ過層内を自然浸透してきた海水は、取水孔から枝管12bに導入され、主管12aを通って海水淡水化プラントに取水される。
 本発明の海水の浸透ろ過方法は、上記のような浸透取水ユニット11をあらかじめ陸上で形成しておき、海底の設置場所で所要の数の浸透取水ユニット11を組み合わせて砂ろ過層を形成し、海中から前記砂ろ過層内を自然浸透してきた海水を取水配管12内に導入して海水を取水する海水の浸透ろ過方法であって、海水浸透速度を400m/日以下の速度とするものである。そして、砂ろ過層の中間層15b,15cのうち、逆洗浄管14よりも上部の中間層15bに取り込まれた生物又は懸濁物質は、逆洗浄管14の噴出孔14baから水又はエアーを水平面に対し例えば+90度の角度で上向きに又は-90度の角度で下向きに噴出することにより撹拌し、砂ろ過層の表層に堆積した生物又は懸濁物質と共に、砂ろ過層の上方の海中に巻き上げた後、砂ろ過層の表層の上方に設置した吸水管16により、生物又は懸濁物質を含んだ撹拌水を吸水する。このようにすることで、砂ろ過層の上方に巻き上げた生物又は懸濁物質は、再び砂ろ過層の表面に堆積することなく回収されるので、砂ろ過層の目詰まりを確実に防止できる。
 なお、砂ろ過層の上方に巻き上げた生物又は懸濁物質の中には、目詰まりの原因となるシルト等の成分が含まれているほか、目詰まりの原因とはならず、むしろ、砂ろ過層における海水のろ過効果を維持するのに適した粒径の物質も含まれている。
 そこで、本実施例では、逆洗浄管14から噴出される水又はエアーによって砂ろ過層の上方の海中に巻き上げられた生物又は懸濁物質の沈降速度差を利用して、吸入すべき目詰まりの原因となる物質が前記砂ろ過層に沈降するタイミングで、吸水管16から撹拌水を吸入するように構成した。よって、本実施例では、目詰まりの原因となる物質のみを吸引し、ろ過効果を維持するのに役立つ物質は砂ろ過層に残すことができる。
 次に、本発明の浸透取水ユニット11の配置や接続の方法、浸透取水ブロック110を組み合わせて構成される取水エリアのサイズについて、具体例を示して説明する。
 図3は、浸透取水ユニット11の取水配管12の配置例を示した図である。この例では、取水配管12を7個横並びに配置して取水配管ブロック120を構成している。このような構成とする場合、取水配管ブロック120は、例えば図3(a)に示すように、共通配管18を使用して5つの取水配管ブロック120を1つにまとめて集水ポンプに接続しても良いし、あるいは図3(b)に示すように、取水配管ブロック120をそれぞれ集水ポンプピット19に個別に接続しても良い。
 図4は、浸透取水ユニット11の逆洗浄管14の接続例を示した図である。この例では、逆洗浄管14を7個横並びに配置して逆洗浄管ブロック140を構成している。本発明では、砂ろ過層の表層に堆積し、かつ中間層に取り込まれた生物又は懸濁物質を撹拌し、砂ろ過層の上方の海中に巻き上げるために、逆洗浄管14から水を噴出させても良いし、エアーを噴出させても良い。水を噴出する構成を用いる場合は、図4(a)に示すように、逆洗浄管ブロック140を給水ポンプ20と接続する。他方、エアーを噴出する構成を用いる場合は、図4(b)に示すように、逆洗浄管ブロック140をエアコンプレッサー21と接続する。
 図5は、浸透取水ユニット11の寸法及び配置の例を示した図である。図5(a)の例では、主管12a,14a,16aの長手方向の長さが10mの浸透取水ユニット11を8又は9個横並びに配置して浸透取水ブロック110を構成し、この浸透取水ブロック110をさらに4個横並びに配置して、10m×105m(筐体の板厚を含まず)のサイズの取水エリア1100を形成している。
 本発明では、海水浸透速度を400m/日以下の速度とするが、仮に、海水浸透速度を100m/日とし、浸透取水ユニット11の1ユニットあたりの浸透面積30m2とした場合、浸透取水ユニット11の1ユニットあたりの集水量は3000m3/日となる。図5(a)の例のように、約35個の浸透取水ユニット11で構成された取水エリア1100の場合、全体での集水量は約10万t/日となる。これは現在、福岡県に設置されている「まみずピア」と同程度の取水規模である。
 また、さらに1日の取水量を例えば40万t/日に増加する必要がある場合は、図5(a)の取水エリア1100を、例えば図5(b)又は(c)のように配置して4エリア分設ければ良い。この場合、図5(b)の例では25m×約270m、図5(c)の例では210m×約25mの、従来の浸透取水方法と比較すると格段に小さい取水エリアで、1日あたり40万tの取水量が得られる。
 また、本発明では、砂ろ過層を形成する取水配管12、砂利層13、逆洗浄管14、砂層15、吸水管16をユニット化したので、設置海域の地形に応じて最適な配置を選択することができる。また、上記のように組み合わせるユニット数を変更することで、必要とされる1日あたりの取水量に対応できる。
 また、本発明によれば、一部の浸透取水ユニット11に故障が発生しても、故障した浸透取水ユニット11のみ交換すればよいため、システム全体に与える影響を小さくできる。また、浸透取水ユニット11の交換に際して海底面を掘削する必要がないため、メンテナンス工事が小規模となり、保守のコストを低減できる。
 図6は、海中に巻き上げた生物又は懸濁物質を取り除く手段として排水管を用いた場合の本発明の浸透取水ユニットの一例を示した図である。以下の説明では、吸水管16を用いた図1の実施例の構成と異なる点のみを説明する。
 図6において、22は、主管22aと複数の枝管22bからなる排水管を示している。主管22aは、図6(a)に示すように、筐体17の対向する側面17a,17cの間に架設されている。また、主管22aと交差する方向に分岐させた複数の枝管22bの端部は、図6(b)に示すように、筐体17の側面17b,17dに支持されている。このようにすることで、排水管22は、砂層15の表面との間に一定の間隔を空けた状態で砂層15の上方に設置されている。
 枝管22bには、海洋側に多数の噴出孔が列設されている(図2(b)は陸側から見た図のため不図示)。噴出孔は、主管22aの長手方向と平行に開口しており、現地での設置時、噴出孔の噴出角度が水平面に対し平行の向きとなるようにしている。主管22aの陸側は、海水淡水化プラントの給水ポンプと接続されており、主管22aから各枝管22bに供給された水は、噴出孔から海洋側に水平方向に噴出される。
 このように、本実施例は、砂ろ過層の中間層に取り込まれた生物又は懸濁物質を逆洗浄管14から噴出される水又はエアーによって撹拌し、砂ろ過層の表層に堆積した生物又は懸濁物質と共に、前記表層の上方に巻き上げた後、排水管22から噴出する水によって砂ろ過層の外部に排出するものである。
 図7(a)は、排水管を用いた本発明の浸透取水ユニットの他の実施例の説明図で、排水管23を平面の方向から見た状態を示している。紙面に向かって右側は海水淡水化プラントが設けられる陸側を、紙面に向かって左側(矢印の方向)は海洋側を示している。なお、この実施例では、海洋側に他の浸透取水ユニットが隣接していないものとする。
 排水管23の枝管23bには、図7(a)に示すように、海洋側にのみ多数の噴出孔23bbが列設されている。図7(b)は排水管23の枝管23bを横断面の方向から見た概略図で、噴出孔23bbから噴出する水の噴出角度θを説明する図である。本実施例においては、噴出孔23bbにノズルを装着することで、噴出角度θは、水平面に対し30~60度の範囲に設定している。主管23aの陸側は海水淡水化プラントの給水ポンプと接続されている。例えば、噴出孔23bbの噴出角度を45度とした場合、主管23aから各枝管23bに供給された水は、噴出孔23bbから海洋側に、水平面に対して上向き45度の角度で噴出される。
 このように、本実施例では、排水管23は、他の浸透取水ユニットが隣接していない方向に水を噴出すると共に、前記水の噴出角度は水平面に対して30~60度の範囲となるように構成した。
 よって、本実施例では、排水管23によって排出した目詰まりの原因となる懸濁物質等が他の浸透取水ユニットの砂ろ過層の上部に沈降することはない。また、本実施例では、噴出孔23bbから噴出される水が放物線状になって、目詰まりの原因となる懸濁物質等をより遠方に排出することができる。 
 ところで、海底に堆積した生物又は懸濁物質を不必要に周囲に排出すると、周辺の自然環境に何らかの影響を及ぼすおそれがある。
 そこで、本実施例では、逆洗浄管14から噴出される水又はエアーによって砂ろ過層の上方の海中に巻き上げられた生物又は懸濁物質の沈降速度差を利用して、外部に排出すべき目詰まりの原因となる物質が前記砂ろ過層に沈降するタイミングで排水管23から水を噴出するように構成した。よって、本実施例では、目詰まりの原因となる物質のみを外部に排出することで、周辺の自然環境への影響を極力小さくすることができる。
 図8は、本発明の浸透取水ユニット11のユニット内における取水配管12と逆洗浄管14の高さ方向の配置の一例を示した図である。本発明では、取水配管12は、ろ過能力が低下しないように、浸透取水ユニット11の筐体17の底面17eからあまり離れ過ぎない方が良い。具体的には、取水配管12の管外径をDとするとき、取水配管12のCOP(パイプ中心)高さは、底面17eから上方に0.75D~1,25Dの範囲とすれば良い。
 また、逆洗浄管14は、砂ろ過層の表層に堆積し、かつ中間層に取り込まれた懸濁物質等を広範囲に逆洗浄するためには、できるだけ深い位置に設置する方が有利であるが、設置位置が深すぎると水圧を高くする必要があるので、両者のバランスを考慮する必要がある。具体的には、逆洗浄管14の管外径をdとするとき、逆洗浄管14のCOP(パイプ中心)高さは、砂ろ過層の砂層15の表面15dから下方に1.0d~5.0dの範囲とすれば良い。
 図9は、海中に巻き上げた生物又は懸濁物質を取り除く手段として、海水流動を利用する場合の本発明の浸透取水ユニットの一例を示した図である。図9の構成は、吸水管16または排水管22が存在しない点を除き、図1の実施例と同じである。この実施例では、砂ろ過層の中間層に取り込まれた生物又は懸濁物質は、逆洗浄管14から噴出される水又はエアーによって砂ろ過層の表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げられ、潮流又は波浪による海水流動によって砂ろ過層の外部に拡散される。
 次に、本発明の海水の浸透ろ過方法において、海水浸透速度を400m/日以下の速度とする理由について説明する。
 図10は本発明の海水の浸透ろ過方法の実験フローを示した図である。図10において、31は海底から50cm、水面から3.3mの位置に沈めた取水ポンプ、32はこの取水ポンプ31によって汲み上げた海水を溜める原水タンクである。原水タンク32に溜められた海水は、原水ポンプ33によって汲み上げられ、カラム装置34に供給される。カラム装置34には砂層34aと砂利層34bからなるろ過層が設けられており、このろ過層を通ったろ過水は、処理水タンク35に導かれる。
 図10に示した実験フローでは、処理水タンク35のろ過水をカラム装置34に逆送する逆送ポンプ36を介設した逆送配管37と、カラム装置34に供給された海水がオーバーフローしないように処理水タンク35に案内するオーバーフロー管38を設けている。
 図10に示したフローの実験装置の取水ポンプで取水した海水を、カラム装置のろ過層を通過させたろ過水の濁度及びシルト濃度指数SDIを測定した。この測定に使用したろ過層は上方から、φ0.45mmの砂層(厚さ900mm)、φ2~4mmの砂利層(厚さ75mm)、φ4~8mmの砂利(厚さ75mm)、φ6~12mmの砂利(厚さ150mm)である。
 測定結果を図11に示す。ここで、濁度のデータを得た原水には、図11(a)の浸透取水速度が0m/日で示した濁度となるような量のシルトを予め添加している。図11の結果より、浸透取水速度を50~400m/日としても、濁度やシルト濃度指数SDIは浸透取水速度を従来の1~8m/日とした場合と変わらず、同等の処理性能を示すことが確認された。
 ところで、前記特許文献1の発明では、海底の砂ろ過層内に発現される海水浸透流速を1~8m/日とし、砂ろ過層の水深は、当該砂ろ過層の表層部分の砂が50cm以上移動する完全移動限界水深よりも深く、かつ1cm以上移動する表層移動限界水深よりも浅くすることとしている。
 この特許文献1の発明において、海水の前記浸透取水速度を実現する条件として、砂ろ過層の水深を、当該砂ろ過層の表層部分の砂が50cm以上移動する完全移動限界水深よりも深く、かつ1cm以上移動する表層移動限界水深よりも浅くする理由は、以下の通りである。
 波によって海底面にある砂粒子がある程度移動することが確認される最大水深である表層移動限界水深における砂ろ過層の表層の砂が1cm以上移動することは海底の砂が洗われる程度であって、この水深よりも深ければ、砂ろ過層表層の砂粒子の移動は殆どないからである。
 一方、波の作用によって海底の砂ろ過層が侵食されることが確認される最大水深である完全移動限界水深における砂ろ過層の表層の砂が50cm以上移動することは海底の砂ろ過層の侵食が認められることになるからである。
 また、特許文献1では、シルト粒子の粒径は、一般におおよそ0.005mm~0.074mmとし、シルトが動き出さない海水の流速、すなわち移動限界流速を求めている。この移動限界流速は、シルト粒子の限界実流速に対して面積空隙率(=0.35)を乗じた値となる。粒径と限界実流速の関係を表すグラフを使って求めたシルト粒子の限界実流速は、粒径が0.08mmのシルト粒子の場合、0.026cm/sとしている。
 従って、シルトの移動限界流速の上限は、0.026×0.35×24×3600=786.24cm/日で、約8m/日となる。この結果から、砂ろ過層内に巻き込んだシルトによる目詰まりを生じさせないためには、最大でも海水浸透流速は、8m/日以下に設定すべきであるとしている。
 また、砂ろ過層に十分な酸素を供給して生物膜を死滅に至らせないようにするためには、少なくとも1m/日の海水浸透流速が必要であるとしている。
 これらより、特許文献1の発明では、前記の条件において海水の浸透取水速度を1~8m/日とすることで、砂ろ過層の表層は海中に発現する波や流れなどにより適度に攪拌され、砂ろ過層表面に堆積したごみ、シルト等の懸濁物を除去することができ、安定した取水を確保できるとしている。
 このように特許文献1の発明で規定された海水の浸透取水速度の上限は、海底の表層の砂ろ過層にシルトが進入または混入しないための条件である。この特許文献1におけるシルト吸収抑制の限界となる8m/日の求め方を踏襲すれば、発明者らが1~8m/日の浸透取水速度の場合と同等の処理性能を示すことを確認した、例えば400m/日の浸透取水速度とした場合は、シルトを吸収する傾向となる。
 つまり、シルトを攪拌もしくは運ぼうとする流れ場がないものとすれば、浸透取水速度を400m/日とした場合のシルトの砂ろ過層への吸収速度は、(海水の浸透取水速度cm/s)×(砂粒径による空隙率)になると推察できる。従って、400m/日の浸透取水速度の場合、シルトの砂ろ過層への吸収速度は、{40000cm/(24×3600)}×0.35=0.16cm/sとなる。また、酸素を供給するための限界流速1.0m/日以上を実現するためには、{100cm/(24×3600)}×0.35=0.0004cm/sとなる。
 計算上では、海水の浸透取水速度を400m/日とした場合は、目詰まりの要因となるシルト粒子が1時間当り約6m(≒0.16×3600/100)も砂ろ過層に浸入することになって、実現性のある洗浄は困難である。
 しかしながら、シルト粒子はろ過砂の空隙に比べて非常に小さいことから、いわゆる標準閉塞の形式をとり、シルトが水と共に移動する際に、ろ過砂との分子間力(物理吸着、静電気)によって捕捉されて堆積するため、表層付近にて付着滞留していく。
 先に説明した図11(a)に示す、シルト成分を添加した実験においては、400m/日の条件下では、2時間後にシルトはほぼ表層に堆積し、砂ろ過層の内部には1cm程度しか侵入しないことを確認した。
 また、標準閉塞は空隙よりも大きな粒子に対しても起こる完全閉塞と異なり、粒子が空隙孔を完全に密閉するために、図12に示すように、シルト粒子の吸着によって空隙孔が時間をかけて狭くなる。これは、空隙の保持閾値まで緩やかに圧力損失が生じるために、シルトを除去し続けた場合でも長時間の浸透が可能であることを意味する。この経過時間は、ろ過材の条件や海水条件(シルト濃度)によっても異なり、この時間が強制洗浄の間隔となる重要な要素となる。
 本発明は、発明者らの実験結果と上記の知見に基づき、従来の常識であり、タブーであったろ過材の海水浸透速度の高速化を実現することで、工事規模や取水施設規模の格段の小規模化を実現したものである。
 海水よりも浸透性が高い地下水を使用した試験を発明者らが行った結果によれば、600m/日の浸透速度までは正常に連続運転することができた。但し、浸透速度を700m/日とした場合は、必要な浄化水量が取水量よりも多くなって、砂ろ過層で連続的に水が流れない状態となり、正常な取水ができなかった。従って、海水の浸透取水する際のろ過方法を対象とする本発明では、安全率を約1.5として、400m/日の海水浸透速度を上限とした。
 以上の理由により、本発明の海水の浸透ろ過方法では、海中から砂ろ過層内を自然浸透してきた海水を取水配管内に導入して海水を浸透取水する際、海水浸透速度を400m/日以下の速度としている。
 本発明において、海水浸透速度を400m/日とした場合は、例えば海水浸透速度が8m/日の従来に比べて取水量が50倍となるので、取水エリアの面積を1/50にすることができる。また、最適な海水流動が促進される海域への設置が不要になり、図13に示すように、海水淡水化プラント41の近くに浸透取水施設42を設置できて、工事規模や取水施設規模の格段の小規模化が可能になって、周囲環境への工事時の影響も各段に緩和できる。
 そして、本発明の海水の浸透ろ過方法では、砂ろ過層の表層のみならず、中間層に取り込まれた生物又は懸濁物質を取り除くことで目詰まりをより確実に防止するので、海水浸透速度を400m/日以下のできるだけ大きい速度で維持し、高速ろ過を継続的に実施できる。
 本発明は、前記の例に限るものではなく、各請求項に記載の技術的思想の範疇であれば適宜実施の形態を変更しても良いことは言うまでもない。
 例えば、上記の実施例では、浸透取水ユニット11をあらかじめ形成しておく場合の例を開示したが、本発明の海水の浸透ろ過方法は、浸透取水ユニット11を使用せずに、海底の設置場所で取水配管12や逆洗浄管14を埋め込んで砂ろ過層を形成する方法でも良い。
 具体的には、海底の砂ろ過層内の深層に取水配管を埋め込み、前記砂ろ過層の中間層に水又はエアーを噴出する逆洗浄管を埋め込み、海中から前記砂ろ過層内を自然浸透してきた海水を前記取水配管内に導入して海水を取水する海水の浸透ろ過方法であって、
 海水浸透速度を400m/日以下の速度とし、
 前記中間層に取り込まれた生物又は懸濁物質を、前記逆洗浄管から水又はエアーを噴出して撹拌し、前記砂ろ過層の表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げることにより、前記砂ろ過層の目詰まりを防止する海水の浸透ろ過方法である。
 また、上記のように浸透取水ユニットを使用しない場合についても、砂ろ過層の表層の上方に、吸水管をさらに設置し、砂ろ過層の中間層に取り込まれた生物又は懸濁物質を逆洗浄管から水又はエアーを噴出して撹拌し、前記砂ろ過層の表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げた後、前記吸水管から生物又は懸濁物質を含んだ攪拌水を吸入することで、周辺環境に悪影響を及ぼすことなく砂ろ過層の目詰まりを防止できる。
 あるいは、砂ろ過層の表層の上方に、排水管をさらに設置し、砂ろ過層の中間層に取り込まれた生物又は懸濁物質を逆洗浄管から水又はエアーを噴出して撹拌し、前記砂ろ過層の表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げた後、前記排水管から水を噴出することで、海水流動の少ない静穏な海域においても砂ろ過層の目詰まりを防止できる。
 また、上記の実施例では、逆洗浄管14から水又はエアーを噴出させて砂ろ過層の中間層を洗浄する構成を開示したが、逆洗浄管14による中間層(砂層)の洗浄に加え、取水配管12に対し所要のタイミングで水を逆流させて枝管12bの取水孔から水を噴出させることにより、砂ろ過層の深層(砂利層)を洗浄するように構成しても良い。
 また、上記の実施例では、吸水管16を用いる実施例と、排水管22,23を用いる実施例を別々に説明したが、例えば海水淡水化プラントに設置するポンプの集水と給水を切り換えることにより、1つの装置で吸水管の機能と排水管の機能を兼ね備えるように構成しても良い。
 また、本発明の浸透取水ユニットの砂利層及び砂層に用いるろ過材は、自然の砂利や砂に限らず、材質は問わない。例えば、環境に影響の少ない人工粒体セラミックや人工ガラスを砂利層又は砂層のろ過材として用いても良い。このような人工のろ過材を用いると、一般にはコストが高くなるという問題があるが、本発明の海水の浸透ろ過方法は、従来の方法とは異なり、取水エリアの面積を格段に小さくできるので、上記のような人工のろ過材も採用が容易となる。
 11 浸透取水ユニット
 12 取水配管
 13 砂利層
 14 逆洗浄管
 15 砂層
 16 吸水管
 22 排水管
 23 排水管

Claims (9)

  1.  砂ろ過層の深層を形成するための砂利層に取水配管を埋め込み、砂ろ過層の中間層及び表層を形成するための砂層に逆洗浄管を埋め込んだ浸透取水ユニットをあらかじめ形成しておき、海底の設置場所で所要の数の前記浸透取水ユニットを組み合わせて前記砂ろ過層を形成し、海中から前記砂ろ過層内を自然浸透してきた海水を前記取水配管内に導入して海水を取水する海水の浸透ろ過方法であって、
     海水浸透速度を400m/日以下の速度とし、
     前記中間層に取り込まれた生物又は懸濁物質を、前記逆洗浄管から水又はエアーを噴出して撹拌し、前記表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げることにより、前記砂ろ過層の目詰まりを防止することを特徴とする海水の浸透ろ過方法。
  2.  前記砂層の上方に吸水管をさらに設置した浸透取水ユニットをあらかじめ形成しておき、海底の設置場所で所要の数の前記浸透取水ユニットを組み合わせて前記砂ろ過層を形成する海水の浸透ろ過方法であって、
     前記中間層に取り込まれた生物又は懸濁物質を、前記逆洗浄管から水又はエアーを噴出して撹拌し、前記表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げた後、前記吸水管から生物又は懸濁物質を含んだ攪拌水を吸入することにより、前記砂ろ過層の目詰まりを防止することを特徴とする請求項1に記載の海水の浸透ろ過方法。
  3.  前記砂ろ過層の上方に巻き上げられた生物又は懸濁物質の沈降速度差を利用して、吸入すべき物質が前記砂ろ過層に沈降するタイミングで前記吸水管から前記攪拌水を吸入することを特徴とする請求項2に記載の海水の浸透ろ過方法。
  4.  前記砂層の上方に排水管をさらに設置した浸透取水ユニットをあらかじめ形成しておき、海底の設置場所で所要の数の前記浸透取水ユニットを組み合わせて前記砂ろ過層を形成する海水の浸透ろ過方法であって、
     前記中間層に取り込まれた生物又は懸濁物質を、前記逆洗浄管から水又はエアーを噴出して撹拌し、前記表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げた後、前記排水管から水を噴出して前記砂ろ過層の外部に排出することにより、前記砂ろ過層の目詰まりを防止することを特徴とする請求項1に記載の海水の浸透ろ過方法。
  5.  前記砂ろ過層の上方に巻き上げられた生物又は懸濁物質の沈降速度差を利用して、外部に排出すべき物質が前記砂ろ過層に沈降するタイミングで前記排水管から水を噴出することを特徴とする請求項4に記載の海水の浸透ろ過方法。
  6.  請求項4又は5に記載の海水の浸透ろ過方法に用いる浸透取水ユニットであって、前記排水管は、他の浸透取水ユニットが隣接していない方向に水を噴出すると共に、前記水の噴出角度は水平面に対して30~60度の範囲としたことを特徴とする浸透取水ユニット。 
  7.  海底の砂ろ過層内の深層に取水配管を埋め込み、前記砂ろ過層の中間層に水又はエアーを噴出する逆洗浄管を埋め込み、海中から前記砂ろ過層内を自然浸透してきた海水を前記取水配管内に導入して海水を取水する海水の浸透ろ過方法であって、
     海水浸透速度を400m/日以下の速度とし、
     前記中間層に取り込まれた生物又は懸濁物質を、前記逆洗浄管から水又はエアーを噴出して撹拌し、前記砂ろ過層の表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げることにより、前記砂ろ過層の目詰まりを防止することを特徴とする海水の浸透ろ過方法。
  8.  前記砂ろ過層の表層の上方に、吸水管をさらに設置する海水の浸透ろ過方法であって、
     前記中間層に取り込まれた生物又は懸濁物質を、前記逆洗浄管から水又はエアーを噴出して撹拌し、前記砂ろ過層の表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げた後、前記吸水管から生物又は懸濁物質を含んだ攪拌水を吸入することにより、前記砂ろ過層の目詰まりを防止することを特徴とする請求項7に記載の海水の浸透ろ過方法。
  9.  前記砂ろ過層の表層の上方に、排水管をさらに設置する海水の浸透ろ過方法であって、
     前記中間層に取り込まれた生物又は懸濁物質を、前記逆洗浄管から水又はエアーを噴出して撹拌し、前記砂ろ過層の表層に堆積した生物又は懸濁物質と共に前記表層の上方に巻き上げた後、前記排水管から水を噴出して前記砂ろ過層の外部に排出することにより、前記砂ろ過層の目詰まりを防止することを特徴とする請求項7に記載の海水の浸透ろ過方法。
PCT/JP2012/070002 2011-09-30 2012-08-06 海水の浸透ろ過方法及び浸透取水ユニット WO2013046930A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280036424.2A CN103702731B (zh) 2011-09-30 2012-08-06 海水渗透过滤方法及渗透取水单元
US14/347,499 US20140224746A1 (en) 2011-09-30 2012-08-06 Seawater infiltration method and water infiltration intake unit
AU2012318208A AU2012318208B2 (en) 2011-09-30 2012-08-06 Seawater infiltration method and water infiltration intake unit
ES201490021A ES2490565B2 (es) 2011-09-30 2012-08-06 Método de infiltración de agua de mar y unidad de absorción de infiltración de agua

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-217388 2011-09-30
JP2011217388A JP5822623B2 (ja) 2011-09-30 2011-09-30 海水の浸透ろ過方法及び浸透取水ユニット

Publications (1)

Publication Number Publication Date
WO2013046930A1 true WO2013046930A1 (ja) 2013-04-04

Family

ID=47994982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070002 WO2013046930A1 (ja) 2011-09-30 2012-08-06 海水の浸透ろ過方法及び浸透取水ユニット

Country Status (6)

Country Link
US (1) US20140224746A1 (ja)
JP (1) JP5822623B2 (ja)
CN (1) CN103702731B (ja)
AU (1) AU2012318208B2 (ja)
ES (1) ES2490565B2 (ja)
WO (1) WO2013046930A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101365391B1 (ko) 2013-10-08 2014-02-19 박상원 해수 취수장치
AU2013358367B2 (en) * 2012-12-14 2016-12-08 Hitachi Zosen Corporation Cleaning system for sand filtration layer
CN106592737A (zh) * 2016-11-18 2017-04-26 江苏花王园艺股份有限公司 一种市政道路排水系统
CN116856908A (zh) * 2023-09-01 2023-10-10 西南石油大学 一种页岩气井携砂临界流速的实验确定方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6138594B2 (ja) * 2013-06-04 2017-05-31 日立造船株式会社 海水浸透取水における移動式懸濁物質回収装置
JP6144574B2 (ja) 2013-08-23 2017-06-07 日立造船株式会社 海水淡水化システムおよび海水淡水化方法
JP2015157233A (ja) * 2014-02-21 2015-09-03 日立造船株式会社 海水浸透取水設備
JP6530205B2 (ja) 2015-03-12 2019-06-12 日立造船株式会社 浸透取水システム
JP6496577B2 (ja) 2015-03-12 2019-04-03 日立造船株式会社 護岸壁用浸透取水システム
US10279407B2 (en) 2015-10-30 2019-05-07 Black & Decker Inc. Circular saw blades
GB2551317A (en) * 2016-06-07 2017-12-20 Ide Technologies Ltd Environmentally friendly water intake and pretreatment system
KR102641622B1 (ko) * 2023-08-10 2024-02-28 강용대 해수 여과 효율이 향상된 자연 여과식 여과기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615110A (ja) * 1991-12-26 1994-01-25 Ishikawa Pref Gov ろ過池の洗浄装置
JP2004066217A (ja) * 2002-06-14 2004-03-04 Tadayoshi Nagaoka 水処理装置および水処理方法
WO2010125662A1 (ja) * 2009-04-30 2010-11-04 Miyazaki Toyofumi 微生物処理に優れた緩速濾過装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748310A (en) * 1980-09-04 1982-03-19 Fuji Electric Co Ltd Method and apparatus for taking washing water of filter apparatus
JPH0379805U (ja) * 1989-12-06 1991-08-15
US5112483A (en) * 1991-02-04 1992-05-12 Cluff C Brent Slow sand/nanofiltration water treatment system
JP2886723B2 (ja) * 1992-01-14 1999-04-26 日本鋼管株式会社 生物処理用連続空隙体および濾過用連続空隙体からなる取水設備用濾過器
JP2500838B2 (ja) * 1993-01-25 1996-05-29 株式会社東京久栄 濾過槽
JP2558056B2 (ja) * 1993-10-27 1996-11-27 株式会社東京久栄 濾過槽
JPH1157777A (ja) * 1997-08-25 1999-03-02 Koyama Kogyo:Kk 濾過機
JP2000186351A (ja) * 1998-12-22 2000-07-04 Kumagai Gumi Co Ltd 浸透式取水方法
JP2001129315A (ja) * 1999-11-02 2001-05-15 Toa Harbor Works Co Ltd 取水装置
JP3899788B2 (ja) * 2000-08-10 2007-03-28 株式会社大林組 海水取水システムおよび海水取水方法
JP2003245666A (ja) * 2002-02-25 2003-09-02 Kobe Steel Ltd 海水の処理法
JP3979203B2 (ja) * 2002-07-08 2007-09-19 株式会社大林組 集水用ろ過層の安定化方法
JP2005090212A (ja) * 2003-09-19 2005-04-07 Shigeki Odera 河床砂礫の間に水槽を設置する取水装置
JP2008144525A (ja) * 2006-12-12 2008-06-26 Ohbayashi Corp 海水の浸透取水システム及び海水の浸透取水方法
JP5094573B2 (ja) * 2008-06-09 2012-12-12 株式会社孝陽 緩速濾過装置
JP2011110533A (ja) * 2009-11-30 2011-06-09 Kazunori Koishi 上向きろ過装置
CN201746873U (zh) * 2010-01-22 2011-02-16 刘启龙 一种适应于农村的砂滤池
JP2012246711A (ja) * 2011-05-30 2012-12-13 Hitachi Zosen Corp 海水の浸透取水ろ過方法及び砂層表面の目詰まり防止装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615110A (ja) * 1991-12-26 1994-01-25 Ishikawa Pref Gov ろ過池の洗浄装置
JP2004066217A (ja) * 2002-06-14 2004-03-04 Tadayoshi Nagaoka 水処理装置および水処理方法
WO2010125662A1 (ja) * 2009-04-30 2010-11-04 Miyazaki Toyofumi 微生物処理に優れた緩速濾過装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013358367B2 (en) * 2012-12-14 2016-12-08 Hitachi Zosen Corporation Cleaning system for sand filtration layer
KR101365391B1 (ko) 2013-10-08 2014-02-19 박상원 해수 취수장치
CN106592737A (zh) * 2016-11-18 2017-04-26 江苏花王园艺股份有限公司 一种市政道路排水系统
CN116856908A (zh) * 2023-09-01 2023-10-10 西南石油大学 一种页岩气井携砂临界流速的实验确定方法
CN116856908B (zh) * 2023-09-01 2024-02-06 西南石油大学 一种页岩气井携砂临界流速的实验确定方法

Also Published As

Publication number Publication date
AU2012318208B2 (en) 2015-08-06
JP5822623B2 (ja) 2015-11-24
JP2013075268A (ja) 2013-04-25
CN103702731A (zh) 2014-04-02
ES2490565B2 (es) 2015-04-16
CN103702731B (zh) 2016-08-17
ES2490565A2 (es) 2014-09-03
US20140224746A1 (en) 2014-08-14
AU2012318208A1 (en) 2014-02-06
ES2490565R1 (es) 2014-12-29

Similar Documents

Publication Publication Date Title
JP5822623B2 (ja) 海水の浸透ろ過方法及び浸透取水ユニット
JP5822644B2 (ja) 海水の浸透取水におけるろ過層の洗浄装置
JP6530205B2 (ja) 浸透取水システム
US10272367B2 (en) Infiltration intake system for revetment wall
US20150034569A1 (en) Integrated unit for intake and pretreatment with local backwashing
JP2012246711A (ja) 海水の浸透取水ろ過方法及び砂層表面の目詰まり防止装置
US10926201B2 (en) Integrated unit for intake and pretreatment with local backwashing
JP6084897B2 (ja) 浮体式懸濁物質回収装置及び方法
JP2003245666A (ja) 海水の処理法
JP2008144525A (ja) 海水の浸透取水システム及び海水の浸透取水方法
JP3899788B2 (ja) 海水取水システムおよび海水取水方法
JP5869375B2 (ja) 海水浸透取水装置
JP2006523272A (ja) 塩水浸入防止システム
JP6138594B2 (ja) 海水浸透取水における移動式懸濁物質回収装置
CN1174541A (zh) 净化设备
JP2006152798A (ja) 海水取水システムおよび海水取水方法
JP4858142B2 (ja) 海水浄化システム及び海水浄化方法
KR20130020188A (ko) 돌적층형 수중보를 갖는 해수 취수 시스템 및 그 시공 방법
JP2005058957A (ja) 浮体式水域浄化処理装置
KR20130036975A (ko) 슬러지의 수분 및 녹조와 부유물 처리장치 그리고 이를 이용한 슬러지 수분 및 녹조와 부유물 처리방법
KR101007465B1 (ko) 해양 오폐수 실시간 정수 시스템 및 방법
KR101304761B1 (ko) 조수 간만의 차가 있는 해수환경에 적용되는 해수 취수 장치
JP4385172B1 (ja) 河川浄化システム
CN104003535A (zh) 一种地表水源的取水和净水一体化装置
KR20160070879A (ko) 저니토 슬러지 수거망 및 이를 구비한 저니토 슬러지 수거장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012318208

Country of ref document: AU

Date of ref document: 20120806

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P201490021

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 14347499

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835004

Country of ref document: EP

Kind code of ref document: A1