[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013046454A1 - ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法 - Google Patents

ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法 Download PDF

Info

Publication number
WO2013046454A1
WO2013046454A1 PCT/JP2011/072632 JP2011072632W WO2013046454A1 WO 2013046454 A1 WO2013046454 A1 WO 2013046454A1 JP 2011072632 W JP2011072632 W JP 2011072632W WO 2013046454 A1 WO2013046454 A1 WO 2013046454A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
inverter
voltage command
phase
voltage
Prior art date
Application number
PCT/JP2011/072632
Other languages
English (en)
French (fr)
Inventor
和徳 畠山
庄太 神谷
健太 湯淺
真也 松下
真作 楠部
牧野 勉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/347,704 priority Critical patent/US9829234B2/en
Priority to EP11873126.4A priority patent/EP2763303B1/en
Priority to PCT/JP2011/072632 priority patent/WO2013046454A1/ja
Priority to CN201180073753.XA priority patent/CN103828214B/zh
Priority to JP2013535792A priority patent/JP5638699B2/ja
Priority to ES11873126.4T priority patent/ES2660550T3/es
Priority to AU2011377665A priority patent/AU2011377665B2/en
Publication of WO2013046454A1 publication Critical patent/WO2013046454A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor

Definitions

  • This invention relates to a heating technique for a compressor used in a heat pump apparatus.
  • Patent Document 1 has a description of supplying a high-frequency low voltage to the compressor while the operation is stopped during heating.
  • Japanese Patent Application Laid-Open No. H10-228688 describes that when the ambient temperature of the air conditioner becomes low, a single-phase AC voltage having a frequency higher than that during normal operation, such as 25 kHz, is supplied to the compressor.
  • Each of the techniques described in Patent Documents 1 and 2 heats or keeps the compressor warm by applying a high-frequency AC voltage to the compressor in accordance with a decrease in the outside air temperature, and smoothes the lubricating action inside the compressor. It is to make.
  • the current value flowing through the inverter is detected, and when the detected current value is large, the voltage application from the inverter to the motor is stopped. Can be considered.
  • the detected current value has a high frequency even though the current value flowing through the inverter is large, and may be removed as noise.
  • An object of the present invention is to prevent a large current from flowing when a high-frequency AC voltage is supplied to a compressor to heat the compressor, thereby damaging a motor or an inverter.
  • the heat pump device is A compressor having a compression mechanism for compressing the refrigerant; A motor for operating the compression mechanism of the compressor; An inverter that applies a predetermined voltage to the motor; An inverter control unit for controlling the inverter by outputting a drive signal to the inverter; A current detection unit that detects a current value flowing through the inverter and reduces and outputs a current value of a predetermined first frequency or higher among the detected current values; A drive signal stop unit that stops output of a drive signal from the inverter control unit to the inverter when the current value output by the current detection unit is equal to or greater than a predetermined current value; The inverter control unit A voltage command generator for generating and outputting a voltage command value; A drive signal generation unit that compares the voltage command value output from the voltage command generation unit with a reference signal value of a predetermined frequency, generates a drive signal based on the comparison result, and outputs the generated drive signal to the inverter When, A voltage command value control unit that controls
  • a voltage command value equal to or higher than the lower limit value determined according to the first frequency is generated, and a drive signal is generated.
  • the frequency of the current is lowered, and the current value is not removed as noise. Therefore, it is possible to reliably detect that a large current has flowed to the inverter, and to reliably stop the output of voltage from the inverter to the motor, and to prevent the motor and the inverter from being damaged.
  • FIG. 1 is a diagram showing a configuration of a heat pump device 100 according to Embodiment 1.
  • FIG. 3 shows a configuration of an inverter 9 in the first embodiment.
  • FIG. 3 shows a configuration of an inverter control unit 10 according to the first embodiment.
  • FIG. 3 is a diagram showing input / output waveforms of a PWM signal generation unit according to the first embodiment.
  • FIG. 8 shows eight switching patterns in the first embodiment.
  • FIG. 3 shows a configuration of a heating determination unit 12 in the first embodiment.
  • 3 is a flowchart showing the operation of the inverter control unit 10 according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of an inverter control unit 10 in a second embodiment.
  • FIG. 6 shows a configuration of an inverter 9 in a third embodiment.
  • FIG. The figure which shows the relationship between voltage command value V * and the electric current value I.
  • FIG. FIG. 5 shows a configuration of an inverter control unit 10 according to a third embodiment.
  • FIG. 9 is a circuit configuration diagram of a heat pump device 100 according to a sixth embodiment. The Mollier diagram about the state of the refrigerant
  • Embodiment 1 FIG. In the first embodiment, a basic configuration and operation of the heat pump apparatus 100 will be described.
  • FIG. 1 is a diagram illustrating a configuration of a heat pump device 100 according to the first embodiment.
  • the heat pump device 100 according to the first embodiment includes a refrigeration cycle in which a compressor 1, a four-way valve 2, a heat exchanger 3, an expansion mechanism 4, and a heat exchanger 5 are sequentially connected via a refrigerant pipe 6. Inside the compressor 1, there are provided a compression mechanism 7 that compresses the refrigerant and a motor 8 that operates the compression mechanism 7.
  • the motor 8 is a three-phase motor having three-phase windings of U phase, V phase, and W phase.
  • An inverter 9 that applies a voltage to the motor 8 to drive it is electrically connected to the motor 8.
  • the inverter 9 applies voltages Vu, Vv, and Vw to the U-phase, V-phase, and W-phase windings of the motor 8, respectively.
  • An inverter control unit 10 including a high-frequency voltage generation unit 11 and a heating determination unit 12 (state detection unit) is electrically connected to the inverter 9.
  • the inverter control unit 10 determines whether or not the motor 8 needs to be heated based on the bus voltage Vdc that is the power supply voltage of the inverter 9 sent from the inverter 9 and the value of the current I that flows through the motor 8.
  • a PWM (Pulse Width Modulation) signal (drive signal) is output to the inverter 9.
  • FIG. 2 is a diagram showing a configuration of the inverter 9 in the first embodiment.
  • the inverter 9 includes an AC power supply 13, a rectifier 14 that rectifies the voltage supplied from the AC power supply 13, a smoothing capacitor 15 that smoothes the voltage rectified by the rectifier 14 and generates a DC voltage (bus voltage Vdc), A bus voltage detection unit 16 that detects the bus voltage Vdc generated by the smoothing capacitor 15 and outputs the same to the inverter control unit 10 is provided.
  • the inverter 9 includes a voltage application unit 19 that uses the bus voltage Vdc as a power source.
  • the voltage application unit 19 includes three switching elements (17a and 17d, 17b and 17e, 17c and 17f) connected in parallel, and a freewheeling diode connected in parallel with each of the switching elements 17a to 17f. This is a circuit comprising 18a to 18f.
  • the voltage application unit 19 responds to the PWM signals UP, VP, WP, UN, VN, and WN sent from the inverter control unit 10 in accordance with switching elements (UP is 17a, VP is 17b, WP is 17c, UN 17d, VN 17e, and WN 17f).
  • the voltage application unit 19 applies voltages Vu, Vv, and Vw corresponding to the driven switching element 17 to the U-phase, V-phase, and W-phase windings of the motor 8, respectively. Further, the inverter 9 detects the current I flowing from the inverter 9 to the motor 8 by applying the voltages Vu, Vv, and Vw to the U-phase, V-phase, and W-phase windings of the motor 8, and the inverter control unit 10. A current detection unit 20 for outputting to is provided.
  • FIG. 3 is a diagram illustrating a configuration of the inverter control unit 10 according to the first embodiment.
  • the inverter control unit 10 includes the high-frequency voltage generation unit 11 and the heating determination unit 12.
  • the heating determination unit 12 will be described later, and here, the high-frequency voltage generation unit 11 will be described.
  • the high-frequency voltage generation unit 11 includes table data 21, an external input unit 22, a selection unit 23, an integrator 24, a voltage command generation unit 25, and a PWM signal generation unit 26.
  • the selection unit 23 is any one of the voltage command value Vc output from the heating determination unit 12, the voltage command value Vt recorded in the table data 21, and the voltage command value Va input from the external input unit 22. Is selected as the voltage command value V * and output.
  • the selection unit 23 selects either the rotation speed command value ⁇ t recorded in the table data 21 or the rotation speed command value ⁇ a input from the external input unit 22 as the rotation speed command value ⁇ *. Output.
  • the integrator 24 obtains the voltage phase ⁇ from the rotation speed command value ⁇ * output from the selection unit 23.
  • the voltage command generation unit 25 receives the voltage command value V * output from the selection unit 23 and the voltage phase ⁇ obtained by the integrator 24, and generates and outputs voltage command values Vu *, Vv *, and Vw *. To do.
  • the PWM signal generator 26 generates PWM signals (UP, VP, WP, UN, VN, WN) based on the voltage command values Vu *, Vv *, Vw * output from the voltage command generator 25 and the bus voltage Vdc. ) And output to the inverter 9.
  • FIG. 4 is a diagram showing input / output waveforms of the PWM signal generation unit 26 according to the first embodiment.
  • the voltage command values Vu *, Vv *, and Vw * are defined as cosine waves (sine waves) whose phases are different by 2 ⁇ / 3 as shown in equations (1) to (3).
  • V * is the amplitude of the voltage command value
  • is the phase of the voltage command value.
  • Vu * V * cos ⁇
  • Vv * V * cos ( ⁇ (2/3) ⁇ )
  • Vw * V * cos ( ⁇ + (2/3) ⁇ )
  • the voltage command generation unit 25 uses the voltage command values Vu * and Vv according to equations (1) to (3). * And Vw * are calculated, and the calculated voltage command values Vu *, Vv *, and Vw * are output to the PWM signal generator 26.
  • the PWM signal generation unit 26 compares the voltage command values Vu *, Vv *, and Vw * with a carrier signal (reference signal) having a predetermined frequency and an amplitude Vdc / 2, and determines the PWM signal UP, VP, WP, UN, VN, WN are generated. For example, when the voltage command value Vu * is larger than the carrier signal, UP is a voltage for turning on the switching element 17a, and UN is a voltage for turning off the switching element 17d. When the voltage command value Vu * is smaller than the carrier signal, on the contrary, UP is a voltage that turns off the switching element 17a, and UN is a voltage that turns on the switching element 17d.
  • VP and VN are determined by comparing the voltage command value Vv * and the carrier signal
  • WP and WN are determined by comparing the voltage command value Vw * and the carrier signal.
  • UP and UN, VP and VN, and WP and WN are in opposite relations. Therefore, there are eight switching patterns in total.
  • FIG. 5 is a diagram showing eight switching patterns in the first embodiment.
  • reference symbols V0 to V7 are attached to voltage vectors generated in each switching pattern.
  • the voltage direction of each voltage vector is represented by ⁇ U, ⁇ V, ⁇ W (0 when no voltage is generated).
  • + U is a voltage that generates a current in the U-phase direction that flows into the motor 8 via the U-phase and flows out of the motor 8 via the V-phase and the W-phase
  • ⁇ U is the V-phase.
  • the same interpretation is applied to ⁇ V and ⁇ W.
  • the inverter 9 can output a desired voltage by outputting a voltage vector by combining the switching patterns shown in FIG. At this time, it is possible to output a high-frequency voltage by changing the phase ⁇ at high speed.
  • the voltage command signals Vu *, Vv *, Vw * may be obtained by two-phase modulation, third harmonic superposition modulation, space vector modulation, or the like.
  • FIG. 6 is a diagram showing a configuration of the heating determination unit 12 in the first embodiment.
  • the heating determination unit 12 Based on the bus voltage Vdc detected by the bus voltage detection unit 16 of the inverter 9 and the current I detected by the current detection unit 20 of the inverter 9, the heating determination unit 12 operates the ON / OFF state of the high-frequency voltage generation unit 11. ) To control.
  • the heating determination unit 12 includes a current comparison unit 27, a voltage comparison unit 28, a temperature detection unit 29, a temperature comparison unit 30, a first AND calculation unit 31, a stagnation determination unit 32, an elapsed time measurement unit 33, a time comparison unit 34, A reset unit 35, a logical sum calculation unit 36, a second logical product calculation unit 37, and a heating amount determination unit 38 are provided.
  • the current comparator 27 determines that the current I detected and output by the current detector 20 is in a normal state when Imin ⁇ I ⁇ Imax, and outputs 0 in other cases.
  • Imax is a current upper limit value
  • Imin is a current lower limit value.
  • the voltage comparison unit 28 determines that the bus voltage Vdc detected by the bus voltage detection unit 16 is in the normal state when Vdc_min ⁇ Vdc ⁇ Vdc_max, and outputs 1 in other cases.
  • Vdc_max is a bus voltage upper limit value
  • Vdc_min is a bus voltage lower limit value.
  • the voltage comparison unit 28 operates to stop heating by determining 0 as an abnormal state and outputting 0.
  • the temperature detector 29 detects the inverter temperature Tinv, which is the temperature of the voltage application unit 19, the temperature Tc of the compressor 1, and the outside air temperature To.
  • the temperature comparison unit 30 compares the preset protection temperature Tp_inv of the inverter with the inverter temperature Tinv, and compares the preset protection temperature Tp_c of the compressor 1 with the compressor temperature Tc. Then, the temperature comparison unit 30 determines that the operation is normal in the state of Tp_inv> Tinv and the state of Tp_c> Tc, and outputs 1 in other cases.
  • Tp_inv ⁇ Tinv the inverter temperature is high
  • Tp_c ⁇ Tc the winding temperature of the motor 8 in the compressor 1 is high.
  • the temperature comparison unit 30 operates to determine that it is dangerous and output 0 to stop heating.
  • Tp_c it is necessary to set in consideration of the point that the compressor 1 has a larger heat capacity than the winding of the motor 8 and the temperature rise rate is slower than that of the winding.
  • the first logical product calculation unit 31 outputs a logical product of the output values of the current comparison unit 27, the voltage comparison unit 28, and the temperature comparison unit 30 described above. If any one of the output values of the current comparison unit 27, voltage comparison unit 28, and temperature comparison unit 30 becomes 0 in the abnormal state, the first AND calculation unit 31 outputs 0 and stops heating. To work. Although a method for stopping heating using the current I, the bus voltage Vdc, and the temperatures Tinv and Tc has been described here, it is not necessary to use all of them. Moreover, you may comprise so that a heating may be stopped using parameters other than having described here.
  • the stagnation determination unit 32 retains the liquid refrigerant in the compressor 1 in the compressor 1 (the refrigerant has fallen). Status).
  • the compressor 1 has the largest heat capacity in the refrigeration cycle, and the compressor temperature Tc rises with a delay with respect to the rise in the outside air temperature To. Therefore, the temperature becomes the lowest. Since the refrigerant stays in the place where the temperature is lowest in the refrigeration cycle and accumulates as a liquid refrigerant, the refrigerant accumulates in the compressor 1 when the temperature rises.
  • the stagnation determination unit 32 determines that the refrigerant is staying in the compressor 1 when To> Tc, outputs 1 and starts heating, and when To ⁇ Tc Stop heating. Note that heating may be controlled to start when To is increasing or when Tc is increasing, and when it becomes difficult to detect Tc or To, control can be performed using any one of them. Highly reliable control can be realized.
  • the elapsed time measuring unit 33 measures the time (Elapse_Time) when the compressor 1 is not heated, and outputs 1 when the time limit unit Limit_Time preset by the time comparing unit 34 is exceeded. Start heating.
  • Limit_Time may be set to about 12 hours. Note that when the compressor 1 is heated, the Elapse_Time is set to 0 in the reset unit 35.
  • the logical sum calculation unit 36 outputs the logical sum of the output values of the stagnation determination unit 32 and the time comparison unit 34 described above. When either one of the output values of the stagnation determination unit 32 and the time comparison unit 34 becomes 1 indicating the start of heating, the OR calculation unit 36 outputs 1 to start heating the compressor 1. .
  • the second logical product calculation unit 37 outputs the logical product of the output values of the first logical product calculation unit 31 and the logical sum calculation unit 36 as the output value of the heating determination unit 12.
  • the output value is 1
  • the high-frequency voltage generator 11 is operated and the compressor 1 is heated.
  • the high-frequency voltage generator 11 is not operated and the compressor 1 is not heated, or the high-frequency voltage generator 11 is stopped and the compressor 1 is heated. stop.
  • the second logical product calculation unit 37 outputs a logical product
  • the first logical product calculation unit 31 outputs a heating stop signal 0 to the compressor 1
  • the logical sum calculation unit 36 performs heating. Even if the start signal 1 is output, the heating can be stopped. Therefore, it is possible to obtain a heat pump device capable of minimizing standby power consumption while ensuring reliability.
  • the stagnation determination unit 32 detects a state in which the liquid refrigerant has accumulated in the compressor 1 based on the compressor temperature Tc and the outside air temperature To. Furthermore, the heating amount determination unit 38 specifies the amount of liquid refrigerant that has accumulated in the compressor 1 from the compressor temperature Tc and the outside air temperature To. Then, the heating amount determination unit 38 calculates and outputs a voltage command value Vc necessary for driving the refrigerant out of the compressor 1 in accordance with the specified amount of liquid refrigerant. As a result, it is possible to eliminate the state in which the liquid refrigerant has accumulated in the compressor 1 with the minimum necessary electric power, and it is possible to reduce the influence on global warming due to power consumption reduction.
  • FIG. 7 is a flowchart showing the operation of the inverter control unit 10 in the first embodiment.
  • S1 heating judgment step
  • the heating determination unit 12 determines whether to operate the high-frequency voltage generation unit 11 by the above-described operation while the compressor 1 is stopped.
  • the heating determination unit 12 determines that the high-frequency voltage generation unit 11 is to be operated, that is, when the output value of the heating determination unit 12 is 1 (ON) (YES in S1), the process proceeds to S2, and the heating PWM signal Is generated.
  • the heating determination unit 12 determines that the high-frequency voltage generation unit 11 is not operated, that is, when the output value of the heating determination unit 12 is 0 (OFF) (NO in S1), the high-frequency voltage generation is performed again after a predetermined time has elapsed. It is determined whether to operate the unit 11. (S2: Voltage command value generation step)
  • the selector 23 selects the voltage command value V * and the rotational speed command value ⁇ *, and the integrator 24 obtains the voltage phase ⁇ from the rotational speed command value ⁇ * selected by the selector 23.
  • the voltage command generation unit 25 based on the voltage command value V * selected by the selection unit 23 and the voltage phase ⁇ obtained by the integrator 24, the voltage command value Vu * according to the equations (1) to (3). , Vv *, Vw * are calculated, and the calculated voltage command values Vu *, Vv *, Vw * are output to the PWM signal generator 26.
  • S3 PWM signal generation step
  • the PWM signal generation unit 26 compares the voltage command values Vu *, Vv *, and Vw * output from the voltage command generation unit 25 with the carrier signal to obtain the PWM signals UP, VP, WP, UN, VN, and WN. And output to the inverter 9.
  • the switching elements 17 a to 17 f of the inverter 9 are driven to apply a high frequency voltage to the motor 8.
  • the motor 8 is efficiently heated by the iron loss of the motor 8 and the copper loss generated by the current flowing through the winding.
  • the liquid refrigerant staying in the compressor 1 is heated and vaporized, and leaks to the outside of the compressor 1. After a predetermined time has elapsed, the process returns to S1 again to determine whether further heating is necessary.
  • the heat pump device 100 when the liquid refrigerant stays in the compressor 1, the high-frequency voltage is applied to the motor 8.
  • the motor 8 can be heated. Thereby, the refrigerant staying in the compressor 1 can be efficiently heated, and the staying refrigerant can be leaked to the outside of the compressor 1.
  • the selection unit 23 may output a rotation speed command ⁇ * that is equal to or higher than the operation frequency during the compression operation.
  • the operating frequency during the compression operation is at most 1 kHz. Therefore, a high frequency voltage of 1 kHz or higher may be applied to the motor 8.
  • the vibration sound of the iron core of the motor 8 approaches the upper limit of the audible frequency, which is effective in reducing noise. Therefore, for example, the selection unit 23 outputs a rotation speed command ⁇ * that provides a high frequency voltage of about 20 kHz.
  • the frequency of the high-frequency voltage exceeds the maximum rated frequency of the switching elements 17a to 17f, a load or a power supply short circuit due to the destruction of the switching elements 17a to 17f may occur, resulting in smoke or fire. Therefore, in order to ensure reliability, it is desirable that the frequency of the high frequency voltage be not more than the maximum rated frequency.
  • a compressor motor for a heat pump apparatus is widely used in order to increase efficiency, such as an IPM (Interior Permanent Magnet) structure motor or a concentrated winding motor having a small coil end and a low winding resistance. Since the concentrated winding motor has a small winding resistance and a small amount of heat generated by copper loss, a large amount of current needs to flow through the winding. When a large amount of current is passed through the windings, the current flowing through the inverter 9 also increases and the inverter loss increases. Therefore, when heating is performed by applying the above-described high frequency voltage, an inductance component due to a high frequency is increased, and the winding impedance is increased.
  • IPM Interior Permanent Magnet
  • the current flowing through the winding is reduced and the copper loss is reduced, the iron loss due to the application of the high frequency voltage is generated and heating can be performed effectively. Furthermore, since the current flowing through the winding is reduced, the current flowing through the inverter is also reduced, the loss of the inverter 9 can be reduced, and more efficient heating is possible. Further, when heating is performed by applying the high-frequency voltage described above, when the compressor is an IPM motor, the rotor surface where the high-frequency magnetic flux is linked also becomes a heat generating portion. For this reason, an increase in the refrigerant contact surface and rapid heating of the compression mechanism are realized, so that the refrigerant can be efficiently heated.
  • the switching elements 17a to 17f constituting the inverter 9 and the free-wheeling diodes 18a to 18f connected in parallel to the switching elements 17a to 17f are generally mainly made of a semiconductor made of silicon (Si). .
  • a wide band gap semiconductor made of silicon carbide (SiC), gallium nitride (GaN), or diamond may be used.
  • a switching element or a diode element formed of such a wide band gap semiconductor has a high withstand voltage and a high allowable current density. Therefore, the switching element and the diode element can be reduced in size, and by using these reduced switching element and diode element, the semiconductor module incorporating these elements can be reduced in size.
  • the switching element and the diode element formed by such a wide band gap semiconductor have high heat resistance.
  • the heat sink fins of the heat sink can be miniaturized and the water cooling part can be air cooled, so that the semiconductor module can be further miniaturized.
  • switching elements and diode elements formed of such a wide band gap semiconductor have low power loss. For this reason, it is possible to increase the efficiency of the switching element and the diode element, and to increase the efficiency of the semiconductor module.
  • both the switching element and the diode element are preferably formed of a wide bandgap semiconductor, either one of the elements may be formed of a wide bandgap semiconductor, and the effects described in this embodiment are achieved. Obtainable.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the compressor 1 can be efficiently heated, and the liquid refrigerant in the compressor 1 can be prevented from staying. Therefore, since liquid compression can be prevented, it is effective even when a scroll compressor is used as the compressor 1.
  • the amplitude of the voltage command value may be adjusted in advance so as not to exceed 50 W, or the feedback control may be performed so that the flowing current or voltage is detected to be 50 W or less.
  • the inverter control unit 10 includes a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a microcomputer (microcomputer), an electronic circuit, and the like.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • microcomputer microcomputer
  • Embodiment 2 a method for generating a high-frequency voltage will be described.
  • the upper limit of the carrier frequency that is the frequency of the carrier signal is determined by the switching speed of the switching element of the inverter. For this reason, it is difficult to output a high-frequency voltage equal to or higher than the carrier frequency that is a carrier wave.
  • the upper limit of the switching speed is about 20 kHz.
  • the frequency of the high frequency voltage is about 1/10 of the carrier frequency, the waveform output accuracy of the high frequency voltage is deteriorated, and there is a risk of adverse effects such as superposition of DC components.
  • the carrier frequency is set to 20 kHz
  • the frequency of the high frequency voltage is set to 2 kHz, which is 1/10 of the carrier frequency
  • the frequency of the high frequency voltage becomes an audible frequency region, and there is a concern about noise deterioration.
  • FIG. 8 is a diagram illustrating a configuration of the inverter control unit 10 according to the second embodiment.
  • the high-frequency voltage generation unit 11 adds the phase ⁇ p and the phase ⁇ n switched by the selection unit 23 to the reference phase ⁇ f instead of the integrator 24 (see FIG. 3).
  • 3 is the same as the inverter control unit 10 in the first embodiment shown in FIG. 3 except that the addition unit 39 having the voltage phase ⁇ is provided. For this reason, the same reference numerals are used and description thereof is omitted, and only the changes are described.
  • the rotational speed command ⁇ * is integrated by the integrator 24 to obtain the voltage phase ⁇ .
  • the selection unit 23 (phase switching unit) alternately switches between two types of voltage phases of the phase ⁇ p and the phase ⁇ n that is approximately 180 degrees different from the phase ⁇ p.
  • the adding unit 39 adds the phase ⁇ p or the phase ⁇ n selected by the selecting unit 23 to the reference phase ⁇ f to obtain the voltage phase ⁇ .
  • the operation of the inverter control unit 10 will be described. Except for the operation of S2 shown in FIG. 7, the operation is the same as that of the inverter control unit 10 in the first embodiment, and thus the description thereof is omitted.
  • the selection unit 23 alternately switches the phase ⁇ p and the phase ⁇ n at the timing of the top (peak) or bottom (valley) of the carrier signal, or at the timing of the top and bottom.
  • the adder 39 adds the phase ⁇ p or the phase ⁇ n selected by the selector 23 to the reference phase ⁇ f, and outputs the result to the voltage command generator 25 as the voltage phase ⁇ .
  • the voltage command generator 25 uses the voltage phase ⁇ and the voltage command value V * to obtain voltage command values Vu *, Vv *, and Vw * using Equations (1) to (3), and generates a PWM signal.
  • the selector 23 switches the phase ⁇ p and the phase ⁇ n at the timing of the top or bottom of the carrier signal, the top and the bottom, so that a PWM signal synchronized with the carrier signal can be output.
  • FIG. 9 is a timing chart when the selection unit 23 alternately switches between the phase ⁇ p and the phase ⁇ n at the top and bottom timings of the carrier signal.
  • UP and UN, VP and VN, and WP and WN are on / off states opposite to each other, and if one is known, the other is also known, so only UP, VP, and WP are shown here.
  • ⁇ f 0 [degrees].
  • the PWM signal changes as shown in FIG.
  • FIG. 10 is an explanatory diagram of changes in the voltage vector shown in FIG.
  • the switching element 17 surrounded by a broken line is turned on, and the switching element 17 not surrounded by a broken line is turned off.
  • the line of the motor 8 is short-circuited and is a non-energized section in which no voltage is output. In this case, the energy stored in the inductance of the motor 8 becomes a current and flows in the short circuit.
  • a current in the U-phase direction (current of + Iu) flows into the motor 8 via the U phase and flows out of the motor 8 via the V phase and the W phase.
  • V4 vector (+ Iu current) and the V3 vector ( ⁇ Iu current) are alternately output, the forward and reverse torques are instantaneously switched. Therefore, it is possible to apply a voltage that suppresses the vibration of the rotor by canceling the torque.
  • FIG. 11 is a timing chart when the selection unit 23 switches the phase ⁇ p and the phase ⁇ n alternately at the bottom timing of the carrier signal.
  • the PWM signal changes as shown in FIG.
  • the voltage vector changes in the order of V0, V4, V7, V7, V3, V0, V0, V3, V7, V7, V4, V0,. Since the V4 vector and the V3 vector appear during a two-carrier cycle, an AC voltage having a 1 ⁇ 2 carrier frequency can be applied to the winding of the motor 8.
  • FIG. 12 is an explanatory diagram of the rotor position (rotor stop position) of the IPM motor.
  • the rotor position ⁇ of the IPM motor is represented by the magnitude of the angle at which the direction of the N pole of the rotor deviates from the U-phase direction.
  • FIG. 13 is a diagram illustrating a change in current depending on the rotor position.
  • the winding inductance depends on the rotor position. Therefore, the winding impedance represented by the product of the electrical angular frequency ⁇ and the inductance value varies according to the rotor position. Therefore, even when the same voltage is applied, the current flowing through the winding of the motor 8 varies depending on the rotor position, and the amount of heating changes. As a result, depending on the rotor position, a large amount of electric power may be consumed in order to obtain a necessary heating amount.
  • FIG. 14 is a diagram illustrating an applied voltage when ⁇ f is changed over time.
  • ⁇ f is changed by 45 degrees over time, 0 degrees, 45 degrees, 90 degrees, 135 degrees,. If ⁇ f is 0 degree, the phase ⁇ of the voltage command value is 0 degrees and 180 degrees, and if ⁇ f is 45 degrees, the phase ⁇ of the voltage command value is 45 degrees and 225 degrees, and ⁇ f is 90 degrees.
  • the phase ⁇ of the voltage command value is 90 degrees and 270 degrees, and if ⁇ f is 135 degrees, the phase ⁇ of the voltage command value is 135 degrees and 315 degrees.
  • ⁇ f is set to 0 degrees, and the phase ⁇ of the voltage command value is switched between 0 degrees and 180 degrees in synchronization with the carrier signal for a predetermined time. Thereafter, ⁇ f is switched to 45 degrees, and the phase ⁇ of the voltage command value is switched between 45 degrees and 225 degrees in synchronization with the carrier signal for a predetermined time. Then, ⁇ f is switched to 90 degrees, and so on at predetermined time intervals, such as 0 degrees and 180 degrees, 45 degrees and 225 degrees, 90 degrees and 270 degrees, 135 degrees and 315 degrees,. And the phase ⁇ of the voltage command value are switched.
  • FIG. 15 is a diagram showing the current flowing in each phase of the UVW of the motor 8 when ⁇ f is 0 degrees (the U phase (V4) direction is 0 degrees), 30 degrees, and 60 degrees.
  • ⁇ f is 0 degree
  • another voltage vector one positive voltage side and two negative voltage sides or two positive voltage sides of switching elements 17a to 17f
  • the current waveform has a trapezoidal shape and has a low harmonic component.
  • ⁇ f is 30 degrees
  • two different voltage vectors are generated between V0 and V7. In this case, the current waveform is distorted, resulting in a current with many harmonic components.
  • This current waveform distortion may have adverse effects such as motor noise and motor shaft vibration.
  • ⁇ f 60 degrees
  • only one other voltage vector is generated between V0 and V7, as in the case where ⁇ f is 0 degrees.
  • the current waveform is trapezoidal, and the current has less harmonic components.
  • the reference phase ⁇ f is n times 60 degrees (n is an integer of 0 or more)
  • the reference phase ⁇ f when the reference phase ⁇ f is other than n times 60 degrees, the voltage phase ⁇ does not become a multiple of 60 degrees, so two other voltage vectors are generated between V0 and V7. If two other voltage vectors are generated between V0 and V7, the current waveform is distorted and becomes a current with many harmonic components, which may adversely affect motor noise and motor shaft vibration. Therefore, it is desirable to change the reference phase ⁇ f in increments of 60 degrees such as 0 degrees, 60 degrees,.
  • the voltage command value is switched alternately between the two phases of the phase ⁇ 1 and the phase ⁇ 2 that is approximately 180 degrees different from the phase ⁇ 1 in synchronization with the carrier signal. Of the phase.
  • a high frequency voltage synchronized with the carrier frequency can be applied to the winding of the motor 8.
  • reference phase ⁇ f is changed over time.
  • the energization phase of the high-frequency AC voltage changes with time, so that the compressor 1 can be heated uniformly regardless of the rotor position.
  • Embodiment 3 FIG. In the third embodiment, a method for preventing the motor 8 and the inverter 9 from being damaged due to a large current flowing will be described.
  • FIG. 16 is a diagram illustrating a configuration of the inverter 9 according to the third embodiment.
  • the current detection unit 20 includes the filter unit 40, and the comparison unit 41 and the PWM cutoff unit 42 (the comparison unit 41 and the PWM cutoff unit 42 are collectively referred to as a drive signal stop unit). 2 is the same as inverter 9 in the first embodiment shown in FIG. For this reason, the same reference numerals are used and description thereof is omitted, and only the changes are described.
  • the filter unit 40 reduces a current value equal to or higher than a predetermined frequency (first frequency) from the current value I detected by the current detection unit 20 and outputs the current value I_fil.
  • the comparison unit 41 compares the current value I_fil output from the filter unit 40 with a predetermined cutoff level, and determines whether or not the current value I_fil is higher than the cutoff level.
  • the PWM cut-off unit 42 cuts off the output of the PWM signal from the inverter control unit 10 to the inverter 9. As a result, output of voltage from the inverter 9 to the motor 8 is stopped, and an excessive current does not flow to the motor 8 or the inverter 9.
  • FIG. 17 is a diagram illustrating the voltage and current flowing through the motor 8 and the current value detected by the current detection unit 20.
  • the broken line that overlaps with the current value detected by the current detection unit 20 indicates the value of the current flowing through the motor 8 for reference. Since the motor voltage is positive in the section of the V4 vector, the motor current flows from negative to positive. Subsequently, in the V7 vector section, the motor voltage is zero, and the motor 8 operates so as to be short-circuited. Therefore, the time constant in which the energy stored in the inductance of the motor 8 is obtained from the resistance component and the inductance component of the motor 8 is obtained.
  • the comparison unit 41 determines that the current value I_fil is higher than the cutoff level
  • the PWM cutoff signal is output from the inverter control unit 10 to the inverter 9.
  • the part 42 is blocked. Thereby, the output of the voltage from the inverter 9 to the motor 8 is stopped, and an excessive current does not flow to the motor 8 or the inverter 9, thereby preventing the motor 8 or the inverter 9 from being damaged.
  • the comparison unit 41 receives not the current value I detected by the current detection unit 20 but the current value I_fil after the filter unit 40 reduces the high-frequency current value as noise.
  • the reason why the current value I_fil is input instead of the current value I is to prevent malfunction due to noise.
  • FIG. 18 is a diagram illustrating a relationship between the voltage command value V * and the current value I.
  • the voltage command value V * when the voltage command value V * is large, the interval between the V4 vector and the V3 vector becomes long. Therefore, a sufficient time for the current to flow through the current detection unit 20 is ensured, and even if the high frequency component of the current value I is reduced by the filter unit 40, a value sufficient for comparison with the cutoff level remains as the current value I_fil. .
  • the protection signal is turned on, and the PWM signal is cut off by the PWM cutoff unit.
  • FIG. 19 is a diagram illustrating a configuration of the inverter control unit 10 according to the third embodiment.
  • a voltage command value control unit 43 is provided in the inverter control unit 10.
  • the voltage command value control unit 43 allows the comparison unit 41 to reliably determine that the current value I_fil is higher than the cutoff level when a current having a magnitude that requires protection flows, so that the voltage command value V * ( Alternatively, the lower limit value of the voltage command value Vu *, Vv *, Vw *) is set. Then, the voltage command value control unit 43 controls the voltage command value V * (or voltage command values Vu *, Vv *, Vw *) to be equal to or higher than the lower limit value.
  • This lower limit value is set according to a design value such as a frequency and a time constant that the filter unit 40 reduces.
  • the lower limit value may be set in consideration of the blocking level of the comparison unit 41 as well.
  • FIG. 20 is a diagram illustrating the relationship between the voltage command value V * and the carrier signal.
  • the voltage command value V * becomes very large
  • the UVW phase voltage command values Vu *, Vv *, and Vw * operate near the top and bottom of the carrier signal.
  • the voltage command value control unit 43 prevents the voltage command values Vu *, Vv *, and Vw * from operating near the top and bottom of the carrier signal.
  • the upper limit value may be determined according to the microcomputer used as the inverter control unit 10. For example, the upper limit value is set so that the voltage command values Vu *, Vv *, Vw * are separated from the values at the top and bottom of the carrier signal (that is, the amplitude value Vdc / 2 of the carrier signal) by a predetermined value or more. .
  • the two switching elements (17a and 17d, 17b and 17e, and 17c and 17f) in the series connection portion of the inverter 9 operate so that when one is on, the other is off.
  • the two switching elements in the series connection portion are simultaneously turned on, and the inverter 9 may be damaged due to a short circuit. Therefore, in general, the inverter 9 often has a dead time (short-circuit prevention time) from when one switching element 17 in the series connection portion is turned off to when the other switching element is turned on.
  • FIG. 21 is a diagram illustrating the relationship between the dead time and the PWM signal.
  • FIG. 21 shows two examples of the microcomputer 1 and the microcomputer 2.
  • the carrier signal is compared with the voltage command value Vu *.
  • the basic signal becomes high and the carrier signal is lower than the voltage command value Vu *.
  • the basic signal goes low.
  • the PWM signal UP is on and UN is off.
  • the PWM signal UN is on and UN is off.
  • the PWM signal is not switched during the dead time (one count of the Td counter) after the basic signal is switched. For this reason, in the example of FIG.
  • the PWM signal UN is not turned on at the timing when the PWM signal UN is supposed to be turned on (section surrounded by a broken line in FIG. 21).
  • the carrier signal is compared with the voltage command value Vu *.
  • the PWM signal UP is turned on and the carrier signal is higher than the voltage command value Vu *.
  • the PWM signal UP is turned off.
  • the carrier signal * shifted from the carrier signal is compared with the voltage command value Vu * and the carrier signal * is higher than the voltage command value Vu *
  • the PWM signal UN is turned on, and the carrier signal * is When it is lower than the voltage command value Vu *, the PWM signal UN is turned off.
  • the dead time is set by the difference between the carrier signal and the carrier signal *.
  • the PWM signal UN is not turned on at the timing when the PWM signal UN is supposed to be turned on (section surrounded by a broken line in FIG. 21).
  • the PWM signal corresponding to the two switching elements are reduced and do not operate in the opposite relationship to each other.
  • the voltage command value control unit 43 also considers the dead time so that the voltage command values Vu *, Vv *, Vw * do not operate near the top and bottom of the carrier signal.
  • the upper limit value of the voltage command value Vu *, Vv *, Vw *) is set.
  • the voltage command values Vu *, Vv *, Vw * are separated from the values at the top and bottom of the carrier signal (that is, the amplitude value Vdc / 2 of the carrier signal) by a predetermined value or more calculated from the dead time.
  • An upper limit is set.
  • the motor 8 and the inverter 9 can be prevented from being damaged.
  • FIG. 1 shows the heat pump device 100 in which the compressor 1, the four-way valve 2, the heat exchanger 3, the expansion mechanism 4, and the heat exchanger 5 are sequentially connected by piping.
  • a heat pump device 100 having a more specific configuration will be described.
  • FIG. 22 is a circuit configuration diagram of the heat pump device 100 according to the fourth embodiment.
  • FIG. 23 is a Mollier diagram of the refrigerant state of the heat pump apparatus 100 shown in FIG.
  • the horizontal axis represents specific enthalpy and the vertical axis represents refrigerant pressure.
  • a compressor 51, a heat exchanger 52, an expansion mechanism 53, a receiver 54, an internal heat exchanger 55, an expansion mechanism 56, and a heat exchanger 57 are sequentially connected by piping, Is provided with a main refrigerant circuit 58 that circulates.
  • a four-way valve 59 is provided on the discharge side of the compressor 51 so that the refrigerant circulation direction can be switched.
  • a fan 60 is provided in the vicinity of the heat exchanger 57.
  • the compressor 51 is the compressor 1 described in the above embodiment, and includes the motor 8 driven by the inverter 9 and the compression mechanism 7.
  • the heat pump device 100 includes an injection circuit 62 that connects between the receiver 54 and the internal heat exchanger 55 to the injection pipe of the compressor 51 by piping.
  • An expansion mechanism 61 and an internal heat exchanger 55 are sequentially connected to the injection circuit 62.
  • a water circuit 63 through which water circulates is connected to the heat exchanger 52.
  • the water circuit 63 is connected to a device that uses water such as a water heater, a radiator, a radiator such as floor heating, and the like.
  • the heating operation includes not only heating used for air conditioning, but also hot water supply that heats water to make hot water.
  • the gas-phase refrigerant (point 1 in FIG. 23) that has become high-temperature and high-pressure in the compressor 51 is discharged from the compressor 51, and is heat-exchanged and liquefied in a heat exchanger 52 that is a condenser and a radiator (FIG. 23). Point 2). At this time, the water circulating in the water circuit 63 is warmed by the heat radiated from the refrigerant and used for heating and hot water supply. The liquid-phase refrigerant liquefied by the heat exchanger 52 is decompressed by the expansion mechanism 53 and becomes a gas-liquid two-phase state (point 3 in FIG. 23).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 53 is heat-exchanged with the refrigerant sucked into the compressor 51 by the receiver 54, cooled, and liquefied (point 4 in FIG. 23).
  • the liquid phase refrigerant liquefied by the receiver 54 branches and flows into the main refrigerant circuit 58 and the injection circuit 62.
  • the liquid phase refrigerant flowing through the main refrigerant circuit 58 is heat-exchanged by the internal heat exchanger 55 with the refrigerant flowing through the injection circuit 62 that has been depressurized by the expansion mechanism 61 and has become a gas-liquid two-phase state, and further cooled (FIG. 23). Point 5).
  • the liquid-phase refrigerant cooled by the internal heat exchanger 55 is decompressed by the expansion mechanism 56 and becomes a gas-liquid two-phase state (point 6 in FIG. 23).
  • the refrigerant that has been in the gas-liquid two-phase state by the expansion mechanism 56 is heated and exchanged with the outside air by the heat exchanger 57 that serves as an evaporator (point 7 in FIG. 23).
  • the refrigerant heated by the heat exchanger 57 is further heated by the receiver 54 (point 8 in FIG. 23) and sucked into the compressor 51.
  • the refrigerant flowing through the injection circuit 62 is decompressed by the expansion mechanism 61 (point 9 in FIG.
  • the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 55 flows into the compressor 51 from the injection pipe of the compressor 51 in the gas-liquid two-phase state.
  • the refrigerant sucked from the main refrigerant circuit 58 (point 8 in FIG. 23) is compressed and heated to an intermediate pressure (point 11 in FIG. 23).
  • the refrigerant that has been compressed and heated to the intermediate pressure joins the injection refrigerant (point 10 in FIG. 23), and the temperature drops (point 12 in FIG. 23).
  • the opening degree of the expansion mechanism 61 is fully closed. That is, when the injection operation is performed, the opening degree of the expansion mechanism 61 is larger than the predetermined opening degree. However, when the injection operation is not performed, the opening degree of the expansion mechanism 61 is more than the predetermined opening degree. Make it smaller. Thereby, the refrigerant does not flow into the injection pipe of the compressor 51.
  • the opening degree of the expansion mechanism 61 is controlled electronically by a control unit such as a microcomputer.
  • the cooling operation includes not only cooling used for air conditioning but also making cold water by taking heat from water, freezing and the like.
  • the gas-phase refrigerant (point 1 in FIG. 23) that has become high-temperature and high-pressure in the compressor 51 is discharged from the compressor 51, and is heat-exchanged and liquefied in a heat exchanger 57 that is a condenser and a radiator (FIG. 23).
  • Point 2 The liquid-phase refrigerant liquefied by the heat exchanger 57 is decompressed by the expansion mechanism 56 and becomes a gas-liquid two-phase state (point 3 in FIG. 23).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 56 is heat-exchanged by the internal heat exchanger 55, cooled and liquefied (point 4 in FIG. 23).
  • the refrigerant that has become a gas-liquid two-phase state by the expansion mechanism 56 and the liquid-phase refrigerant that has been liquefied by the internal heat exchanger 55 have been decompressed by the expansion mechanism 61, and have become a gas-liquid two-phase state.
  • Heat is exchanged with the refrigerant (point 9 in FIG. 23).
  • the liquid refrigerant (point 4 in FIG. 23) exchanged by the internal heat exchanger 55 flows into the main refrigerant circuit 58 and the injection circuit 62 in a branched manner.
  • the liquid-phase refrigerant flowing through the main refrigerant circuit 58 is heat-exchanged with the refrigerant sucked into the compressor 51 by the receiver 54 and further cooled (point 5 in FIG. 23).
  • the liquid-phase refrigerant cooled by the receiver 54 is decompressed by the expansion mechanism 53 and becomes a gas-liquid two-phase state (point 6 in FIG. 23).
  • the refrigerant in the gas-liquid two-phase state by the expansion mechanism 53 is heat-exchanged and heated by the heat exchanger 52 serving as an evaporator (point 7 in FIG. 23).
  • the heat exchanger 52 serving as an evaporator
  • the refrigerant heated by the heat exchanger 52 is further heated by the receiver 54 (point 8 in FIG. 23) and sucked into the compressor 51.
  • the refrigerant flowing through the injection circuit 62 is decompressed by the expansion mechanism 61 (point 9 in FIG. 23), and is heat-exchanged by the internal heat exchanger 55 (point 10 in FIG. 23).
  • the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 55 flows from the injection pipe of the compressor 51 in the gas-liquid two-phase state.
  • the compression operation in the compressor 51 is the same as in the heating operation.
  • the opening of the expansion mechanism 61 is fully closed so that the refrigerant does not flow into the injection pipe of the compressor 51, as in the heating operation.
  • the heat exchanger 52 has been described as a heat exchanger such as a plate heat exchanger that exchanges heat between the refrigerant and the water circulating in the water circuit 63.
  • the heat exchanger 52 is not limited to this and may exchange heat between the refrigerant and the air.
  • the water circuit 63 may be a circuit in which other fluid circulates instead of a circuit in which water circulates.
  • the heat pump device 100 can be used for a heat pump device using an inverter compressor such as an air conditioner, a heat pump water heater, a refrigerator, or a refrigerator.
  • an inverter compressor such as an air conditioner, a heat pump water heater, a refrigerator, or a refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 高周波の交流電圧を圧縮機に供給して圧縮機を加熱する場合に、大きな電流が流れてしまい、モータやインバータが破損することを防止することを目的とする。ヒートポンプ装置は、インバータ9へPWM信号を出力するインバータ制御部と、インバータ9に流れる電流値を検出し、検出した電流値のうち第1周波数以上の電流値を低減して出力する電流検出部20と、電流検出部20が出力した電流値が遮断レベル以上である場合、インバータ9へのPWM信号の出力を停止させる駆動信号停止部41,42とを備える。特に、インバータ制御部は、第1周波数に応じて定められた下限値以上の値となるように電圧指令値を生成し、生成した電圧指令値とキャリア信号とに基づきPWM信号を生成することで、モータへの電圧出力時間を所定時間以上にする。

Description

ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
 この発明は、ヒートポンプ装置に使用される圧縮機の加熱技術に関する。
 特許文献1には、暖房時の運転停止中に高周波の低電圧を圧縮機に供給することについての記載がある。特許文献2には、空気調和機の周囲が低温になった場合に、25kHzといった、通常運転時より高周波数である単相交流電圧を圧縮機に供給することについての記載がある。
 特許文献1および2に記載された技術は、いずれも、外気温度の低下に応じて圧縮機に高周波の交流電圧を印加することで圧縮機を加熱もしくは保温し、圧縮機内部の潤滑作用を円滑にするものである。
実開昭60-68341号公報 特開昭61-91445号公報
 大きな電流が流れた場合にモータやインバータが破損することを防止するために、インバータに流れる電流値を検出して、検出した電流値が大きい場合にインバータからモータへの電圧の印加を停止させることが考えられる。
 しかし、高周波の交流電圧を圧縮機に供給した場合、インバータに流れる電流値が大きいにも関わらず、検出された電流値が高周波数であるため、雑音として取り除かれてしまう恐れがある。その結果、インバータに流れる電流値が大きいにも関わらず、インバータからモータへの電圧の印加が停止されず、モータやインバータが破損する恐れがある。
 この発明は、高周波の交流電圧を圧縮機に供給して圧縮機を加熱する場合に、大きな電流が流れてしまい、モータやインバータが破損することを防止することを目的とする。
 この発明に係るヒートポンプ装置は、
 冷媒を圧縮する圧縮機構を有する圧縮機と、
 前記圧縮機が有する前記圧縮機構を動作させるモータと、
 前記モータに所定の電圧を印加するインバータと、
 前記インバータへ駆動信号を出力して前記インバータを制御するインバータ制御部と、
 前記インバータに流れる電流値を検出し、検出した電流値のうち予め定められた第1周波数以上の電流値を低減して出力する電流検出部と、
 前記電流検出部が出力した電流値が所定の電流値以上である場合、前記インバータ制御部から前記インバータへの駆動信号の出力を停止させる駆動信号停止部と
を備え、
 前記インバータ制御部は、
 電圧指令値を生成して出力する電圧指令生成部と、
 前記電圧指令生成部が出力した電圧指令値と所定の周波数の基準信号の値とを比較して、比較結果に基づき駆動信号を生成し、生成した駆動信号を前記インバータへ出力する駆動信号生成部と、
 前記電圧指令生成部が生成する電圧指令値が、前記第1周波数に応じて定められた下限値以上の値となるように、電圧指令値の値を制御する電圧指令値制御部と
を備えることを特徴とする。
 この発明に係るヒートポンプ装置では、第1周波数に応じて定められた下限値以上の電圧指令値を生成し、駆動信号を生成する。これにより、電流の周波数が低くなり、電流値が雑音として取り除かれなくなる。そのため、大きな電流がインバータに流れたことを確実に検出して、インバータからモータへの電圧の出力を確実に停止させることができ、モータやインバータが破損することを防止できる。
実施の形態1におけるヒートポンプ装置100の構成を示す図。 実施の形態1におけるインバータ9の構成を示す図。 実施の形態1におけるインバータ制御部10の構成を示す図。 実施の形態1におけるPWM信号生成部26の入出力波形を示す図。 実施の形態1における8通りのスイッチングパターンを示す図。 実施の形態1における加熱判定部12の構成を示す図。 実施の形態1におけるインバータ制御部10の動作を示すフローチャート。 実施の形態2におけるインバータ制御部10の構成を示す図。 選択部23がキャリア信号の頂及び底のタイミングで、位相θpと位相θnとを交互に切り替えた場合のタイミングチャート。 図9に示す電圧ベクトルの変化の説明図。 選択部23がキャリア信号の底のタイミングで、位相θpと位相θnとを交互に切り替えた場合のタイミングチャート。 IPMモータのロータ位置の説明図。 ロータ位置による電流変化を示す図。 θfを時間の経過とともに変化させた場合の印加電圧を示す図。 θfが0度(U相(V4)方向が0度)、30度、60度の時のモータ8のUVWの各相に流れる電流を表した図。 実施の形態3におけるインバータ9の構成を示す図。 モータ8に流れる電圧及び電流と、電流検出部20により検出される電流値とを示す図。 電圧指令値V*と電流値Iとの関係を示す図。 実施の形態3におけるインバータ制御部10の構成を示す図。 電圧指令値V*とキャリア信号との関係を示す図。 デッドタイムとPWM信号との関係を示す図。 実施の形態6に係るヒートポンプ装置100の回路構成図。 図22に示すヒートポンプ装置100の冷媒の状態についてのモリエル線図。
 実施の形態1.
 実施の形態1では、ヒートポンプ装置100の基本的な構成及び動作について説明する。
 図1は、実施の形態1におけるヒートポンプ装置100の構成を示す図である。
 実施の形態1におけるヒートポンプ装置100は、圧縮機1、四方弁2、熱交換器3、膨張機構4、熱交換器5が、冷媒配管6を介して順次接続された冷凍サイクルを備える。圧縮機1の内部には冷媒を圧縮する圧縮機構7と、この圧縮機構7を動作させるモータ8とが設けられている。モータ8は、U相、V相、W相の三相の巻き線を有する三相モータである。
 モータ8に電圧を与え駆動させるインバータ9は、モータ8と電気的に接続されている。インバータ9は、モータ8のU相、V相、W相の巻き線に電圧Vu、Vv、Vwをそれぞれ印加する。
 インバータ9には、高周波電圧発生部11と加熱判定部12(状態検出部)とを備えるインバータ制御部10が電気的に接続されている。インバータ制御部10は、インバータ9から送られるインバータ9の電源電圧である母線電圧Vdcと、モータ8に流れる電流Iの値とに基づいて、モータ8を加熱する必要があるか判断するとともに、モータ8を加熱する必要がある場合に、PWM(Pulse Width Modulation)信号(駆動信号)をインバータ9へ出力する。
 図2は、実施の形態1におけるインバータ9の構成を示す図である。
 インバータ9は、交流電源13と、交流電源13から供給される電圧を整流する整流器14と、整流器14で整流された電圧を平滑して直流電圧(母線電圧Vdc)を生成する平滑コンデンサ15と、平滑コンデンサ15で生成された母線電圧Vdcを検出してインバータ制御部10へ出力する母線電圧検出部16とを備える。
 また、インバータ9は、母線電圧Vdcを電源とする電圧印加部19を備える。電圧印加部19は、2つのスイッチング素子(17aと17d、17bと17e、17cと17f)の直列接続部が3個並列に接続され、各スイッチング素子17a~17fそれぞれと並列に接続された環流ダイオード18a~18fを備える回路である。電圧印加部19は、インバータ制御部10より送られるPWM信号UP、VP、WP、UN、VN、WNに応じて、それぞれに対応したスイッチング素子(UPは17a、VPは17b、WPは17c、UNは17d、VNは17e、WNは17f)を駆動する。そして、電圧印加部19は、駆動したスイッチング素子17に応じた電圧Vu、Vv、Vwを、モータ8のU相、V相、W相の巻き線それぞれに印加する。
 さらに、インバータ9は、モータ8のU相、V相、W相の巻き線に電圧Vu、Vv、Vwを印加することにより、インバータ9からモータ8へ流れる電流Iを検出してインバータ制御部10へ出力する電流検出部20を備える。
 図3は、実施の形態1におけるインバータ制御部10の構成を示す図である。
 上述したように、インバータ制御部10は、高周波電圧発生部11と加熱判定部12とを備える。加熱判定部12については後述し、ここでは高周波電圧発生部11について説明する。
 高周波電圧発生部11は、テーブルデータ21、外部入力部22、選択部23、積分器24、電圧指令生成部25、PWM信号生成部26を備える。
 選択部23は、加熱判定部12から出力された電圧指令値Vcと、テーブルデータ21に記録された電圧指令値Vtと、外部入力部22から入力された電圧指令値Vaとのうちいずれか1つを電圧指令値V*として選択して出力する。また、選択部23は、テーブルデータ21に記録された回転数指令値ωtと、外部入力部22から入力された回転数指令値ωaとのうちいずれかを回転数指令値ω*として選択して出力する。
 積分器24は、選択部23が出力した回転数指令値ω*から電圧位相θを求める。
 電圧指令生成部25は、選択部23が出力した電圧指令値V*と、積分器24が求めた電圧位相θとを入力として、電圧指令値Vu*、Vv*、Vw*を生成して出力する。
 PWM信号生成部26は、電圧指令生成部25が出力した電圧指令値Vu*、Vv*、Vw*と、母線電圧Vdcとに基づいて、PWM信号(UP、VP、WP、UN、VN,WN)を生成し、インバータ9へ出力する。
 電圧指令生成部25の電圧指令値Vu*、Vv*、Vw*の生成方法と、PWM信号生成部26のPWM信号の生成方法とについて説明する。
 図4は、実施の形態1におけるPWM信号生成部26の入出力波形を示す図である。
 例えば、電圧指令値Vu*、Vv*、Vw*を式(1)~式(3)のように位相が2π/3ずつ異なる余弦波(正弦波)と定義する。但し、V*は電圧指令値の振幅、θは電圧指令値の位相である。
 (1)Vu*=V*cosθ
 (2)Vv*=V*cos(θ-(2/3)π)
 (3)Vw*=V*cos(θ+(2/3)π)
 電圧指令生成部25は、選択部23が出力した電圧指令値V*と、積分器24が求めた電圧位相θとに基づき、式(1)~式(3)により電圧指令値Vu*、Vv*、Vw*を計算し、計算した電圧指令値Vu*、Vv*、Vw*をPWM信号生成部26へ出力する。PWM信号生成部26は、電圧指令値Vu*、Vv*、Vw*と、所定の周波数で振幅Vdc/2のキャリア信号(基準信号)とを比較し、相互の大小関係に基づきPWM信号UP、VP、WP、UN、VN、WNを生成する。
 例えば、電圧指令値Vu*がキャリア信号よりも大きい場合には、UPはスイッチング素子17aをオンにする電圧とし、UNはスイッチング素子17dをオフにする電圧とする。また、電圧指令値Vu*がキャリア信号よりも小さい場合には、逆に、UPはスイッチング素子17aをオフにする電圧とし、UNはスイッチング素子17dをオンにする電圧とする。他の信号についても同様であり、電圧指令値Vv*とキャリア信号との比較によりVP、VNが決定され、電圧指令値Vw*とキャリア信号との比較によりWP、WNが決定される。
 一般的なインバータの場合、相補PWM方式を採用しているため、UPとUN、VPとVN、WPとWNは互いに逆の関係となる。そのため、スイッチングパターンは全部で8通りとなる。
 図5は、実施の形態1における8通りのスイッチングパターンを示す図である。なお、図5では、各スイッチングパターンで発生する電圧ベクトルにV0~V7の符号を付している。また、各電圧ベクトルの電圧の方向を±U,±V,±W(電圧が発生しない場合には0)で表している。ここで、+Uとは、U相を介してモータ8へ流入し、V相及びW相を介してモータ8から流出するU相方向の電流を発生させる電圧であり、-Uとは、V相及びW相を介してモータ8へ流入し、U相を介してモータ8から流出する-U相方向の電流を発生させる電圧である。±V,±Wについても同様の解釈である。
 図5に示すスイッチングパターンを組み合わせて電圧ベクトルを出力することでインバータ9に所望の電圧を出力させることができる。このときに位相θを高速で変化させることにより、高周波の電圧を出力することが可能となる。
 なお、式(1)~式(3)以外にも二相変調や、三次高調波重畳変調、空間ベクトル変調等により電圧指令信号Vu*、Vv*、Vw*を求めても構わない。
 図6は、実施の形態1における加熱判定部12の構成を示す図である。
 加熱判定部12は、インバータ9の母線電圧検出部16が検出した母線電圧Vdcや、インバータ9の電流検出部20が検出した電流I等に基づき、高周波電圧発生部11の動作状態(ON/OFF)を制御する。
 加熱判定部12は、電流比較部27、電圧比較部28、温度検出部29、温度比較部30、第1論理積計算部31、寝込み判定部32、経過時間計測部33、時間比較部34、リセット部35、論理和計算部36、第2論理積計算部37、加熱量判断部38を備える。
 電流比較部27は、電流検出部20により検出され出力された電流Iが、Imin<I<Imaxの状態の時に正常状態と判断して1を、それ以外の場合には0を出力する。
 ここで、Imaxは電流上限値、Iminは電流下限値である。Imax以上の過大な正の電流、又は、Imin以下の過大な負の電流が流れる場合、電流比較部27は異常状態と判断して0を出力することで、加熱を停止するよう動作する。
 電圧比較部28は、母線電圧検出部16により検出した母線電圧Vdcが、Vdc_min<Vdc<Vdc_maxの状態の時に正常状態と判断して1を、それ以外の場合には0を出力する。
 ここで、Vdc_maxは母線電圧上限値、Vdc_minは母線電圧下限値である。Vdc_max以上の過大な母線電圧の場合や、Vdc_min以下の過小な母線電圧の場合には、電圧比較部28は異常状態と判断して0を出力することで、加熱を停止するよう動作する。
 温度検出部29は、電圧印加部19の温度であるインバータ温度Tinv、圧縮機1の温度Tc、外気温度Toを検出する。
 温度比較部30は、予め設定したインバータの保護温度Tp_invとインバータ温度Tinvとを比較するとともに、予め設定した圧縮機1の保護温度Tp_cと圧縮機温度Tcとを比較する。そして、温度比較部30は、Tp_inv>Tinvの状態、かつ、Tp_c>Tcの状態では正常に動作していると判断して1を、それ以外の場合には0を出力する。
 ここで、Tp_inv<Tinvとなった場合には、インバータ温度が高温になっており、また、Tp_c<Tcとなった場合には、圧縮機1内のモータ8の巻線温度が高温となっており、絶縁不良等の恐れがある。そのため、温度比較部30は、危険と判断して0を出力して加熱を停止するよう動作する。ここで、圧縮機1はモータ8の巻線に比べて熱容量が大きく、温度の上昇速度が巻線に比べて遅い点を考慮してTp_cを設定する必要がある。
 第1論理積計算部31は、以上の電流比較部27、電圧比較部28、温度比較部30の出力値の論理積を出力する。電流比較部27、電圧比較部28、温度比較部30の出力値のいずれか1つでも異常状態の0となった場合には、第1論理積計算部31が0を出力して加熱を停止するよう動作させる。
 なお、ここでは、電流I、母線電圧Vdc、温度Tinv、Tcを用いて加熱を停止する方法について述べたが、全てを用いなくてもよい。また、ここで述べた以外のパラメータを用いて加熱を停止するよう構成してもよい。
 続いて、温度検出部29により検出した圧縮機1の温度Tcと外気温度Toに基づいて、寝込み判定部32により圧縮機1内の圧縮機1内に液冷媒が滞留した状態(冷媒が寝込んだ状態)か否かを判断する。
 圧縮機1は冷凍サイクル中で最も熱容量が大きく、外気温Toの上昇に対して、圧縮機温度Tcは遅れて上昇するため、最も温度が低くなる。冷媒は冷凍サイクル中で最も温度が低い場所で滞留し、液冷媒として溜まるため温度の上昇時に圧縮機1内に冷媒が溜まる。そこで、寝込み判定部32は、To>Tcとなった場合には、冷媒が圧縮機1内に滞留していると判断して1を出力して加熱を開始し、To<Tcとなった場合に加熱を停止する。
 なお、Toが上昇傾向の時や、Tcが上昇傾向の時に加熱を開始するよう制御してもよく、TcもしくはToの検出が困難になった場合にいずれか1つを用いて制御ができるため信頼性の高い制御が実現できる。
 ここで、圧縮機温度Tc及び外気温度Toの両方が検出不可能になった場合、圧縮機1の加熱ができなくなる恐れがある。そこで、経過時間計測部33は、圧縮機1を加熱していない時間(Elapse_Time)を計測し、時間比較部34にて予め設定した制限時間Limit_Timeを超過した場合に1を出力して圧縮機1の加熱を開始する。ここで、一日の温度変化は太陽が昇る朝から昼にかけて温度が上昇し、日没から夜にかけて温度が低下するため、おおよそ12時間周期で温度の上昇低下が繰り返される。そのため、例えばLimit_Timeを12時間程度に設定しておけばよい。
 なお、Elapse_Timeは圧縮機1への加熱を行った場合にリセット部35にてElapse_Timeを0に設定する。
 論理和計算部36は、以上の寝込み判定部32と時間比較部34との出力値の論理和を出力する。寝込み判定部32と時間比較部34との出力値のいずれか一方でも加熱開始を表す1となった場合には、論理和計算部36が1を出力して圧縮機1への加熱を開始させる。
 第2論理積計算部37は、第1論理積計算部31と論理和計算部36との出力値の論理積を、加熱判定部12の出力値として出力する。出力値が1の場合には、高周波電圧発生部11を動作させ、圧縮機1の加熱動作を行う。一方、出力値が0の場合には、高周波電圧発生部11を動作させず、圧縮機1の加熱動作をしない、あるいは、高周波電圧発生部11の動作を停止させ、圧縮機1の加熱動作を止める。
 第2論理積計算部37で論理積を出力するため、第1論理積計算部31にて圧縮機1への加熱停止の信号0が出力されている場合には、論理和計算部36が加熱開始の信号1が出力されていても、加熱を停止させることができる。そのため、信頼性を確保しつつ、待機中の消費電力を最小限に抑えることが可能なヒートポンプ装置を得ることができる。
 なお、寝込み判定部32は、圧縮機温度Tcと外気温度Toとに基づいて、圧縮機1内に液冷媒が滞留した状態を検出するとした。さらに、加熱量判断部38は、圧縮機温度Tcと外気温度Toとから圧縮機1内に滞留した液冷媒の量を特定する。そして加熱量判断部38は、特定した液冷媒の量に応じて、冷媒を圧縮機1の外部へ追い出すのに必要な電圧指令値Vcを計算して出力する。これにより、必要最小限の電力で圧縮機1内に液冷媒が滞留した状態を解消することが可能となり、消費電力削減による地球温暖化への影響を低減することが可能となる。
 次に、インバータ制御部10の動作について説明する。
 図7は、実施の形態1におけるインバータ制御部10の動作を示すフローチャートである。
 (S1:加熱判断ステップ)
 加熱判定部12は、圧縮機1の運転停止中に、上述した動作により高周波電圧発生部11を動作させるかを判断する。
 高周波電圧発生部11を動作させると加熱判定部12が判断した場合、すなわち加熱判定部12の出力値が1(ON)の場合(S1でYES)、処理をS2へ進め、加熱用のPWM信号を発生させる。一方、高周波電圧発生部11を動作させないと加熱判定部12が判断した場合、すなわち加熱判定部12の出力値が0(OFF)の場合(S1でNO)、所定時間経過後に、再び高周波電圧発生部11を動作させるかを判断する。
 (S2:電圧指令値生成ステップ)
 選択部23は、電圧指令値V*と回転数指令値ω*とを選択し、積分器24は、選択部23が選択した回転数指令値ω*から電圧位相θを求める。そして、電圧指令生成部25は、選択部23が選択した電圧指令値V*と、積分器24が求めた電圧位相θとに基づき、式(1)~式(3)により電圧指令値Vu*、Vv*、Vw*を計算し、計算した電圧指令値Vu*、Vv*、Vw*をPWM信号生成部26へ出力する。
 (S3:PWM信号生成ステップ)
 PWM信号生成部26は、電圧指令生成部25が出力した電圧指令値Vu*、Vv*、Vw*をキャリア信号と比較して、PWM信号UP、VP、WP、UN、VN、WNを得て、インバータ9へ出力する。これにより、インバータ9のスイッチング素子17a~17fを駆動してモータ8に高周波電圧を印加する。
 モータ8に高周波電圧を印加することにより、モータ8の鉄損と、巻線に流れる電流にて発生する銅損とで効率よくモータ8が加熱される。モータ8が加熱されることにより、圧縮機1内に滞留する液冷媒が加熱されて気化し、圧縮機1の外部へと漏出する。
 所定の時間経過後、再びS1へ戻りさらに加熱が必要かを判定する。
 以上のように、実施の形態1に係るヒートポンプ装置100では、圧縮機1内に液冷媒が滞留した状態である場合に、高周波電圧をモータ8へ印加するため、騒音を抑えつつ、効率的にモータ8を加熱できる。これにより、圧縮機1内に滞留した冷媒を効率的に加熱することができ、滞留した冷媒を圧縮機1の外部へ漏出させることができる。
 なお、圧縮動作時の運転周波数以上の高周波電圧をモータ8に印加すれば、モータ8内のロータが周波数に追従できなくなり、回転や振動が発生することが無くなる。そこで、S2において、選択部23は、圧縮動作時の運転周波数以上となる回転数指令ω*を出力するのがよい。
 一般に、圧縮動作時の運転周波数は、高々1kHzである。そのため、1kHz以上の高周波電圧をモータ8に印加すればよい。また、14kHz以上の高周波電圧をモータ8に印加すれば、モータ8の鉄心の振動音がほぼ可聴周波数上限に近づくため、騒音の低減にも効果がある。そこで、例えば、選択部23は、20kHz程度の高周波電圧となるような回転数指令ω*を出力する。
 但し、高周波電圧の周波数はスイッチング素子17a~17fの最大定格周波数を超えるとスイッチング素子17a~17fの破壊による負荷もしくは電源短絡を起こし、発煙や発火に至る可能性がある。そのため、信頼性を確保するため高周波電圧の周波数は最大定格周波数以下にすることが望ましい。
 また、近年のヒートポンプ装置用の圧縮機のモータには高効率化のためIPM(Interior Permanent Magnet)構造のモータや、コイルエンドが小さく巻線抵抗の低い集中巻きモータが広く用いられる。集中巻きモータは、巻線抵抗が小さく銅損による発熱量が少ないため、巻線に多量の電流を流す必要がある。巻線に多量の電流を流すと、インバータ9に流れる電流も多くなり、インバータ損失が大きくなる。
 そこで、上述した高周波電圧印加による加熱を行うと、高周波数によるインダクタンス成分が大きくなり、巻線インピーダンスが高くなる。そのため、巻線に流れる電流が小さくなり銅損は減るものの、その分高周波電圧印加による鉄損が発生し効果的に加熱することができる。さらに、巻線に流れる電流が小さくなるため、インバータに流れる電流も小さくなり、インバータ9の損失も低減でき、より効率の高い加熱が可能となる。
 また、上述した高周波電圧印加による加熱を行うと、圧縮機がIPM構造のモータである場合、高周波磁束が鎖交するロータ表面も発熱部となる。そのため、冷媒接触面増加や圧縮機構への速やかな加熱が実現されるため効率の良い冷媒の加熱が可能となる。
 また、インバータ9を構成するスイッチング素子17a~17fと、これに並列に接続された環流ダイオード18a~18fには、現在一般的には珪素(Si)を材料とする半導体を用いるのが主流である。しかし、これに代えて、炭化珪素(SiC)や窒化ガリウム(GaN)、ダイヤモンドを材料とするワイドバンドギャップ半導体を用いても良い。
 このようなワイドバンドギャップ半導体によって形成されたスイッチング素子やダイオード素子は、耐電圧性が高く、許容電流密度も高い。そのため、スイッチング素子やダイオード素子の小型化が可能であり、これら小型化されたスイッチング素子やダイオード素子を用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。
 また、このようなワイドバンドギャップ半導体によって形成されたスイッチング素子やダイオード素子は、耐熱性も高い。そのため、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化が可能であるので、半導体モジュールの一層の小型化が可能になる。
 さらに、このようなワイドバンドギャップ半導体によって形成されたスイッチング素子やダイオード素子は、電力損失が低い。そのため、スイッチング素子やダイオード素子の高効率化が可能であり、延いては半導体モジュールの高効率化が可能になる。
 なお、スイッチング素子及びダイオード素子の両方がワイドバンドギャップ半導体によって形成されていることが望ましいが、いずれか一方の素子がワイドバンドギャップ半導体よって形成されていてもよく、この実施例に記載の効果を得ることができる。
 その他、高効率なスイッチング素子として知られているスーパージャンクション構造のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いることでも同様の効果を得ることが可能である。
 また、スクロール機構の圧縮機は、圧縮室の高圧リリーフが困難である。そのため、他の方式の圧縮機に比べ、液圧縮した場合に圧縮機構に過大なストレスが掛かり破損する可能性が高い。しかし、実施の形態1のヒートポンプ装置100では、圧縮機1の効率の良い加熱が可能であり、圧縮機1内の液冷媒の滞留を抑制することできる。そのため、液圧縮を防止することができるので、圧縮機1としてスクロール圧縮機を用いた場合にも効果的である。
 さらに、周波数10kHz、出力50Wを超える加熱機器の場合、法令による制約を受ける場合もある。そのため、事前に50Wを超えないよう電圧指令値の振幅の調整や、流れる電流や電圧を検出して50W以下となるようフィードバック制御を行うようにしてもよい。
 なお、インバータ制御部10は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)、マイクロコンピュータ(マイコン)、電子回路などで構成される。
 実施の形態2.
 実施の形態2では、高周波電圧の生成方法について説明する。
 一般的なインバータの場合、キャリア信号の周波数であるキャリア周波数はインバータのスイッチング素子のスイッチングスピードにより上限が決まっている。そのため、搬送波であるキャリア周波数以上の高周波電圧を出力することは困難である。なお、一般的なIGBT(Insulated Gate Bipolar Transistor)の場合、スイッチングスピードの上限は20kHz程度である。
 また、高周波電圧の周波数がキャリア周波数の1/10程度になると、高周波電圧の波形出力精度が悪化し直流成分が重畳するなど悪影響を及ぼす恐れがある。この点を考慮し、キャリア周波数を20kHzとした場合に、高周波電圧の周波数をキャリア周波数の1/10の2kHz以下とすると、高周波電圧の周波数は可聴周波数領域となり、騒音悪化が懸念される。
 図8は、実施の形態2におけるインバータ制御部10の構成を示す図である。
 実施の形態2におけるインバータ制御部10は、高周波電圧発生部11が、積分器24(図3参照)に代えて、基準位相θfに、選択部23にて切り換えられた位相θpと位相θnを加算して電圧位相θとする加算部39を備えることを除き、図3に示す実施の形態1におけるインバータ制御部10と同じである。そのため、同一の符号を付して説明は省略し、変更点のみ説明する。
 実施の形態1では、回転数指令ω*を積分器24にて積分して電圧位相θを求めていた。これに対し、実施の形態2では、選択部23(位相切替部)が、位相θpと、位相θpとほぼ180度異なる位相θnとの2種類の電圧位相を交互に切り換える。そして、加算部39が、基準位相θfに、選択部23が選択した位相θp又は位相θnを加算して電圧位相θとする。
 なお、以下の説明では、θp=0[度]、θn=180[度]として説明する。
 次に、インバータ制御部10の動作について説明する。
 なお、図7に示すS2の動作以外は、実施の形態1におけるインバータ制御部10と同じであるため、説明を省略する。
 S2では、選択部23が、キャリア信号の頂(山)又は底(谷)のタイミングで、あるいは、頂及び底のタイミングで、位相θpと位相θnとを交互に切り替える。そして、加算部39が、基準位相θfに、選択部23が選択した位相θp又は位相θnを加算して電圧位相θとして電圧指令生成部25へ出力する。電圧指令生成部25は、電圧位相θと、電圧指令値V*とを用いて式(1)~式(3)にて電圧指令値Vu*、Vv*、Vw*を得て、PWM信号生成部26へ出力する。
 選択部23が位相θpと位相θnとを、キャリア信号の頂もしくは底、頂及び底のタイミングで切り替えることで、キャリア信号に同期したPWM信号を出力することが可能となる。
 図9は、選択部23がキャリア信号の頂及び底のタイミングで、位相θpと位相θnとを交互に切り替えた場合のタイミングチャートである。なお、UPとUN、VPとVN、WPとWNはそれぞれオン/オフ状態が逆であり、一方がわかれば他方もわかるため、ここではUP、VP、WPのみを示している。また、ここでは、θf=0[度]としている。
 この場合、図9に示すようにPWM信号が変化する。そして、電圧ベクトルはV0(UP=VP=WP=0)、V4(UP=1、VP=WP=0)、V7(UP=VP=WP=1)、V3(UP=0、VP=WP=1)、V0(UP=VP=WP=0)、・・・の順で変化する。
 図10は、図9に示す電圧ベクトルの変化の説明図である。なお、図10では、破線で囲まれたスイッチング素子17がオン、破線で囲まれていないスイッチング素子17がオフの状態であることを表している。
 図10に示すように、V0ベクトル、V7ベクトル印加時はモータ8の線間が短絡状態となり、電圧が出力されない無通電区間である。この場合、モータ8のインダクタンスに蓄えられたエネルギーが電流となって短絡回路中を流れる。また、V4ベクトル印加時には、U相を介してモータ8へ流入し、V相及びW相を介してモータ8から流出するU相方向の電流(+Iuの電流)が流れ、V3ベクトル印加時には、V相及びW相を介してモータ8へ流入し、U相を介してモータ8から流出する-U相方向の電流(-Iuの電流)がモータ8の巻線に流れる。つまり、V4ベクトル印加時と、V3ベクトル印加時とでは逆方向の電流がモータ8の巻線に流れる。そして、電圧ベクトルがV0、V4、V7、V3、V0、・・・の順で変化するため、+Iuの電流と-Iuの電流とが交互にモータ8の巻線に流れることになる。特に、図9に示すように、V4ベクトルとV3ベクトルとが1キャリア周期(1/fc)の間に現れるため、キャリア周波数fcに同期した交流電圧をモータ8の巻線に印加することが可能となる。
 また、V4ベクトル(+Iuの電流)とV3ベクトル(-Iuの電流)とが交互に出力されるため、正逆のトルクが瞬時に切り替わる。そのため、トルクが相殺されることによりロータの振動を抑えた電圧の印加が可能となる。
 図11は、選択部23がキャリア信号の底のタイミングで、位相θpと位相θnとを交互に切り替えた場合のタイミングチャートである。
 この場合、図11に示すようにPWM信号が変化する。そして、電圧ベクトルはV0、V4、V7、V7、V3、V0、V0、V3、V7、V7、V4、V0、・・・の順で変化する。V4ベクトルとV3ベクトルとが2キャリア周期の間に現れるため、1/2キャリア周波数の交流電圧をモータ8の巻線に印加することが可能となる。
 図12は、IPMモータのロータ位置(ロータの停止位置)の説明図である。ここでは、IPMモータのロータ位置φは、ロータのN極の向きがU相方向からずれた角度の大きさによって表される。
 図13は、ロータ位置による電流変化を示す図である。IPMモータの場合、巻線インダクタンスはロータ位置に依存する。そのため、電気角周波数ωとインダクタンス値との積で表される巻線インピーダンスは、ロータ位置に応じて変動する。したがって、同一電圧を印加した場合においても、ロータ位置によって、モータ8の巻線に流れる電流が変動してしまい、加熱量が変化してしまう。その結果、ロータ位置によっては、必要な加熱量を得るために、多くの電力が消費される恐れがある。
 そこで、時間の経過と共に基準位相θfを変化させ、ロータに満遍なく電圧を印加する。
 図14は、θfを時間の経過とともに変化させた場合の印加電圧を示す図である。
 ここでは、θfを時間の経過とともに、0度、45度、90度、135度、・・・と45度づつ変化させている。θfが0度であれば、電圧指令値の位相θは0度、180度となり、θfが45度であれば、電圧指令値の位相θは45度、225度となり、θfが90度であれば、電圧指令値の位相θは90度、270度となり、θfが135度であれば、電圧指令値の位相θは135度、315度となる。
 つまり、初めに、θfが0度に設定され、所定の時間、電圧指令値の位相θがキャリア信号に同期して0度と180度とで切り替えられる。その後、θfが45度に切り替えられ、所定の時間、電圧指令値の位相θがキャリア信号に同期して45度と225度とで切り替えられる。その後、θfが90度に切り替えられ、・・・というように、所定の時間毎に、0度と180度、45度と225度、90度と270度、135度と315度、・・・と電圧指令値の位相θが切り替えられる。
 これにより、時間の経過とともに、高周波交流電圧の通電位相が変化するため、ロータ停止位置によるインダクタンス特性の影響を排除することができ、ロータ位置に依存せず均一な圧縮機1の加熱が可能となる。
 図15は、θfが0度(U相(V4)方向が0度)、30度、60度の時のモータ8のUVWの各相に流れる電流を表した図である。
 θfが0度の場合には、図9に示すようにV0とV7との間に他の電圧ベクトル(スイッチング素子17a~17fの正電圧側1つと負電圧側2つ、又は、正電圧側2つと負電圧側1つがオン状態となる電圧ベクトル)が1つのみ発生する。この場合、電流波形は台形状となり高調波成分の少ない電流となる。
 しかし、θfが30度の場合には、V0とV7との間に異なる2つの電圧ベクトルが発生する。この場合、電流波形が歪み、高調波成分の多い電流となる。この電流波形の歪みはモータ騒音やモータ軸振動などの悪影響を与える恐れがある。
 また、θfが60度の場合も、θfが0度の場合と同様に、V0とV7との間に他の電圧ベクトルが1つのみ発生する。この場合、電流波形は台形状となり、高調波成分が少ない電流となる。
 このように、基準位相θfが60度のn倍(nは0以上の整数)の場合には、電圧位相θが60度の倍数となるため(ここでは、θp=0[度]、θn=180[度]である)、V0とV7との間に他の電圧ベクトルが1つのみ発生する。一方、基準位相θfが60度のn倍以外の場合には、電圧位相θが60度の倍数とならないため、V0とV7との間に他の電圧ベクトルが2つ発生してしまう。V0とV7との間に他の電圧ベクトルが2つ発生してしまうと、電流波形が歪み、高調波成分の多い電流となり、モータ騒音やモータ軸振動などの悪影響を与える恐れがある。したがって、基準位相θfは、0度、60度、・・・のように60度刻みで変化させることが望ましい。
 以上のように、実施の形態2に係るヒートポンプ装置100では、位相θ1と、位相θ1とほぼ180度異なる位相θ2との二種類の位相をキャリア信号に同期させて交互に切り換えて、電圧指令値の位相とした。これにより、キャリア周波数に同期した高周波電圧をモータ8の巻線へ印加することができる。
 また、実施の形態2に係るヒートポンプ装置100では、基準位相θfを時間の経過とともに変化させた。これにより、時間の経過とともに、高周波交流電圧の通電位相が変化するため、ロータ位置に依存せず均一な圧縮機1の加熱が可能となる。
 実施の形態3.
 実施の形態3では、大きな電流が流れることにより、モータ8やインバータ9が破損することを防止する方法について説明する。
 図16は、実施の形態3におけるインバータ9の構成を示す図である。
 実施の形態3におけるインバータ9は、電流検出部20がフィルタ部40を備えることと、比較部41及びPWM遮断部42(比較部41及びPWM遮断部42を総称して駆動信号停止部と呼ぶ)を備えることとを除き、図2に示す実施の形態1におけるインバータ9と同じである。そのため、同一の符号を付して説明は省略し、変更点のみ説明する。
 フィルタ部40は、電流検出部20が検出した電流値Iのうち予め定められた周波数(第1周波数)以上の電流値を低減して電流値I_filとして出力する。比較部41は、フィルタ部40が出力した電流値I_filと予め定めた遮断レベルとを比較して、電流値I_filが遮断レベルよりも高いか否かを判定する。PWM遮断部42は、電流値I_filが遮断レベルよりも高いと判定された場合には、インバータ制御部10からインバータ9へのPWM信号の出力を遮断する。これにより、インバータ9からモータ8への電圧の出力が停止し、過大な電流がモータ8やインバータ9に流れなくなる。
 図17は、モータ8に流れる電圧及び電流と、電流検出部20により検出される電流値とを示す図である。なお、図17において、電流検出部20により検出される電流値と重ねて示す破線は、モータ8に流れる電流値を参考のため示したものである。
 V4ベクトルの区間ではモータ電圧は正となるため、モータ電流は負から正に流れる。続いてV7ベクトルの区間では、モータ電圧はゼロとなり、モータ8の線間が短絡されるよう動作するため、モータ8のインダクタンスに蓄えられたエネルギーがモータ8の抵抗成分とインダクタンス成分から求まる時定数にて減衰する。その後、V3ベクトルの区間ではモータ電圧が負となるため、正から負のモータ電流が流れ、V0ベクトルの区間では再びモータ8の線間が短絡されるよう動作するため、前述の時定数で減衰する。
 前述の時定数は概ね数msec程度であり、出力周波数を20kHzとした場合の周期50μsecに対して十分長い。そのため、V0ベクトル及びV7ベクトルの区間では、V4ベクトル及びV3ベクトルの区間で発生した電流を保持するよう動作する。
 上述した通り、V0ベクトルの区間とV7ベクトルの区間とでは、モータ電圧はゼロとなり、モータ8の線間が短絡されるよう動作する。そのため、電流検出部20には電流が流れない。したがって、V3、V4ベクトルの区間でのみ、電流検出部20に電流が流れ、電流値が検出される。なお、図5におけるV1、V2、V5、V6ベクトルの区間でも同様に、電流検出部20に電流が流れ、電流値が検出される。
 正常な状態では巻線に巻線インピーダンスが存在するため、大きな電流が流れにくい。しかし、巻線異常等によりモータ8の線間等が短絡状態になった場合、インピーダンスが低下するため、大きな電流が流れ、モータ8やインバータ9が破損する恐れがある。
 実施の形態3に係るヒートポンプ装置100では、上述したように、電流値I_filが遮断レベルよりも高いと比較部41が判定した場合、インバータ制御部10からインバータ9へのPWM信号の出力をPWM遮断部42が遮断する。これにより、インバータ9からモータ8への電圧の出力が停止し、過大な電流がモータ8やインバータ9に流れなくなり、モータ8やインバータ9が破損することが防がれる。
 しかし、上述したように、比較部41は、電流検出部20が検出した電流値Iではなく、フィルタ部40が高周波数の電流値を雑音として低減した後の電流値I_filを入力としている。電流値Iではなく電流値I_filを入力としているのは、雑音による誤動作防止のためである。
 図18は、電圧指令値V*と電流値Iとの関係を示す図である。
 図18に示すように、電圧指令値V*が大きい場合、V4ベクトル及びV3ベクトルの区間が長くなる。そのため、電流検出部20に電流が流れる時間が十分に確保され、フィルタ部40により電流値Iの高周波成分が低減されたとしても、遮断レベルとの比較に十分な値が電流値I_filとして残される。その結果、インバータ9に遮断レベルを超える電流が流れた場合、保護信号がONになり、PWM遮断部によりPWM信号の出力が遮断される。
 一方、電圧指令値V*が小さい場合、V4ベクトル及びV3ベクトルの区間が短くなる。そのため、電流検出部20に電流が流れる時間が十分に確保されず、フィルタ部40により電流値Iの高周波成分が低減されると、遮断レベルとの比較に十分な値が電流値I_filとして残らなくなってしまう。その結果、インバータ9に遮断レベルを超える電流が流れても、保護信号がONにならず、PWM遮断部によりPWM信号の出力が遮断されない。
 つまり、電圧指令値V*が小さく、V4ベクトル及びV3ベクトルの区間が短いと、保護が必要な大きさの電流が流れているにも関わらず、PWM遮断部によりPWM信号の出力が遮断されない。そのため、インバータ9からモータ8への電圧印加が継続され、モータ8やインバータ9に過大な電流が流れ続けてしまい、モータ8やインバータ9が破損する恐れがある。
 図19は、実施の形態3におけるインバータ制御部10の構成を示す図である。
 図19に示すように、インバータ制御部10に電圧指令値制御部43を設ける。電圧指令値制御部43は、保護が必要な大きさの電流が流れた場合に、比較部41で電流値I_filが遮断レベルよりも高いと確実に判定されるように、電圧指令値V*(又は電圧指令値Vu*,Vv*,Vw*)の下限値を設定する。そして、電圧指令値制御部43は、電圧指令値V*(又は電圧指令値Vu*,Vv*,Vw*)を下限値以上となるように制御する。
 この下限値は、フィルタ部40が低減させる周波数や、時定数等の設計値に応じて設定される。また、下限値は、比較部41の遮断レベルも合わせて考慮して設定されてもよい。下限値が正しく設定されることにより、様々なヒートポンプ装置においても確実な保護を行うことが可能となる。
 図20は、電圧指令値V*とキャリア信号との関係を示す図である。
 図20に示すように、電圧指令値V*が非常に大きくなった場合、UVW相の電圧指令値Vu*,Vv*,Vw*がキャリア信号の頂と底との近傍で動作するようになる。一般的にインバータ制御部10を構成するマイコンは様々な種類があり、キャリア信号の頂と底との近傍での動作が異なる。そのため、マイコンによっては、電圧指令値Vu*,Vv*,Vw*がキャリア信号の頂と底との近傍で動作した場合に、出力電圧が低下することや、想定外のPWM信号が出力されインバータ9が破損すること等がある。
 そこで、電圧指令値制御部43は、電圧指令値Vu*,Vv*,Vw*がキャリア信号の頂と底との近傍で動作しないように、電圧指令値V*(又は電圧指令値Vu*,Vv*,Vw*)の上限値を設定する。この上限値は、インバータ制御部10として用いるマイコンに応じて定めればよい。例えば、電圧指令値Vu*,Vv*,Vw*が、キャリア信号の頂と底との値(つまり、キャリア信号の振幅値Vdc/2)と所定値以上離れるように、上限値が設定される。
 図5に示す通り、インバータ9の直列接続部における2つのスイッチング素子(17aと17d、17bと17e、17cと17f)は、一方がオンの場合には他方がオフとなるように動作する。
 しかし、スイッチング動作の遅れ等により、直列接続部における2つのスイッチング素子が同時にオン状態となり、短絡することによりインバータ9が破損する場合がある。そのため、一般的に、インバータ9には、直列接続部における一方のスイッチング素子17がオフしてから、他方のスイッチング素子をオンするまでにデッドタイム(短絡防止時間)を設けていることが多い。
 図21は、デッドタイムとPWM信号との関係を示す図である。図21では、マイコン1とマイコン2との2つの例を示している。
 マイコン1の場合、キャリア信号と電圧指令値Vu*とを比較して、キャリア信号が電圧指令値Vu*よりも高い場合、基本信号がハイになり、キャリア信号が電圧指令値Vu*よりも低い場合、基本信号がローになる。そして、基本信号がハイの場合、PWM信号UPがオン、UNがオフになり、基本信号がローの場合、PWM信号UNがオン、UNがオフになる。但し、基本信号が切り替わってから、デッドタイム(Tdカウンタの1カウント)の間はPWM信号の切り替えを行わない。そのため、図21の例では、本来PWM信号UNがオンとなるはずのタイミング(図21の破線で囲んだ区間)において、PWM信号UNがオンとならない。
 マイコン2の場合、キャリア信号と電圧指令値Vu*とを比較して、キャリア信号が電圧指令値Vu*よりも高い場合、PWM信号UPがオンになり、キャリア信号が電圧指令値Vu*よりも低い場合、PWM信号UPがオフになる。また、キャリア信号を上にずらしたキャリア信号*と電圧指令値Vu*とを比較して、キャリア信号*が電圧指令値Vu*よりも高い場合、PWM信号UNがオンになり、キャリア信号*が電圧指令値Vu*よりも低い場合、PWM信号UNがオフになる。マイコン2の場合、キャリア信号とキャリア信号*とのずれにより、デッドタイムが設定されている。図21の例では、本来PWM信号UNがオンとなるはずのタイミング(図21の破線で囲んだ区間)において、PWM信号UNがオンとならない。
 このように、デッドタイムが設けられている場合、電圧指令値Vu*,Vv*,Vw*がキャリア信号の頂と底との近傍で動作すると、一方のスイッチング素子17をオンとするPWM信号が縮小され、2つのスイッチング素子に対応するPWM信号が互いに逆の関係で動作しなくなる場合がある。
 そこで、電圧指令値制御部43は、デッドタイムも考慮して、電圧指令値Vu*,Vv*,Vw*がキャリア信号の頂と底との近傍で動作しないように、電圧指令値V*(又は電圧指令値Vu*,Vv*,Vw*)の上限値を設定する。例えば、電圧指令値Vu*,Vv*,Vw*が、キャリア信号の頂と底との値(つまり、キャリア信号の振幅値Vdc/2)から、デッドタイムから算出される所定値以上離れるように、上限値が設定される。
 以上のように、実施の形態3に係るヒートポンプ装置100では、電圧指令値V*に下限値及び上限値を設定することにより、高周波電圧をモータ8へ印加する場合にも、モータ8やインバータ9が破損することを防止できる。
 なお、上記説明では、電圧指令値V*と電圧指令値Vu*,Vv*,Vw*とのどちらかを制限するとした。電圧指令値V*を制限した場合には、結果的に電圧指令値Vu*,Vv*,Vw*が制限されることになるため、どちらを制限しても同じ効果が得られる。
 実施の形態4.
 実施の形態4では、ヒートポンプ装置100の回路構成の一例について説明する。
 なお、例えば、図1では、圧縮機1と、四方弁2と、熱交換器3と、膨張機構4と、熱交換器5とが配管により順次接続されたヒートポンプ装置100について示した。実施の形態4では、より具体的な構成のヒートポンプ装置100について説明する。
 図22は、実施の形態4に係るヒートポンプ装置100の回路構成図である。
 図23は、図22に示すヒートポンプ装置100の冷媒の状態についてのモリエル線図である。図23において、横軸は比エンタルピ、縦軸は冷媒圧力を示す。
 ヒートポンプ装置100は、圧縮機51と、熱交換器52と、膨張機構53と、レシーバ54と、内部熱交換器55と、膨張機構56と、熱交換器57とが配管により順次接続され、冷媒が循環する主冷媒回路58を備える。なお、主冷媒回路58において、圧縮機51の吐出側には、四方弁59が設けられ、冷媒の循環方向が切り替え可能となっている。また、熱交換器57の近傍には、ファン60が設けられる。また、圧縮機51は、上記実施の形態で説明した圧縮機1であり、インバータ9によって駆動されるモータ8と圧縮機構7とを有する圧縮機である。
 さらに、ヒートポンプ装置100は、レシーバ54と内部熱交換器55との間から、圧縮機51のインジェクションパイプまでを配管により繋ぐインジェクション回路62を備える。インジェクション回路62には、膨張機構61、内部熱交換器55が順次接続される。
 熱交換器52には、水が循環する水回路63が接続される。なお、水回路63には、給湯器、ラジエータや床暖房等の放熱器等の水を利用する装置が接続される。
 まず、ヒートポンプ装置100の暖房運転時の動作について説明する。暖房運転時には、四方弁59は実線方向に設定される。なお、この暖房運転とは、空調で使われる暖房だけでなく、水に熱を与えて温水を作る給湯も含む。
 圧縮機51で高温高圧となった気相冷媒(図23の点1)は、圧縮機51から吐出され、凝縮器であり放熱器となる熱交換器52で熱交換されて液化する(図23の点2)。このとき、冷媒から放熱された熱により、水回路63を循環する水が温められ、暖房や給湯に利用される。
 熱交換器52で液化された液相冷媒は、膨張機構53で減圧され、気液二相状態になる(図23の点3)。膨張機構53で気液二相状態になった冷媒は、レシーバ54で圧縮機51へ吸入される冷媒と熱交換され、冷却されて液化される(図23の点4)。レシーバ54で液化された液相冷媒は、主冷媒回路58と、インジェクション回路62とに分岐して流れる。
 主冷媒回路58を流れる液相冷媒は、膨張機構61で減圧され気液二相状態となったインジェクション回路62を流れる冷媒と内部熱交換器55で熱交換されて、さらに冷却される(図23の点5)。内部熱交換器55で冷却された液相冷媒は、膨張機構56で減圧されて気液二相状態になる(図23の点6)。膨張機構56で気液二相状態になった冷媒は、蒸発器となる熱交換器57で外気と熱交換され、加熱される(図23の点7)。そして、熱交換器57で加熱された冷媒は、レシーバ54でさらに加熱され(図23の点8)、圧縮機51に吸入される。
 一方、インジェクション回路62を流れる冷媒は、上述したように、膨張機構61で減圧されて(図23の点9)、内部熱交換器55で熱交換される(図23の点10)。内部熱交換器55で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプから圧縮機51内へ流入する。
 圧縮機51では、主冷媒回路58から吸入された冷媒(図23の点8)が、中間圧まで圧縮、加熱される(図23の点11)。中間圧まで圧縮、加熱された冷媒(図23の点11)に、インジェクション冷媒(図23の点10)が合流して、温度が低下する(図23の点12)。そして、温度が低下した冷媒(図23の点12)が、さらに圧縮、加熱され高温高圧となり、吐出される(図23の点1)。
 なお、インジェクション運転を行わない場合には、膨張機構61の開度を全閉にする。つまり、インジェクション運転を行う場合には、膨張機構61の開度が所定の開度よりも大きくなっているが、インジェクション運転を行わない際には、膨張機構61の開度を所定の開度より小さくする。これにより、圧縮機51のインジェクションパイプへ冷媒が流入しない。
 ここで、膨張機構61の開度は、マイクロコンピュータ等の制御部により電子制御により制御される。
 次に、ヒートポンプ装置100の冷房運転時の動作について説明する。冷房運転時には、四方弁59は破線方向に設定される。なお、この冷房運転とは、空調で使われる冷房だけでなく、水から熱を奪って冷水を作ることや、冷凍等も含む。
 圧縮機51で高温高圧となった気相冷媒(図23の点1)は、圧縮機51から吐出され、凝縮器であり放熱器となる熱交換器57で熱交換されて液化する(図23の点2)。熱交換器57で液化された液相冷媒は、膨張機構56で減圧され、気液二相状態になる(図23の点3)。膨張機構56で気液二相状態になった冷媒は、内部熱交換器55で熱交換され、冷却され液化される(図23の点4)。内部熱交換器55では、膨張機構56で気液二相状態になった冷媒と、内部熱交換器55で液化された液相冷媒を膨張機構61で減圧させて気液二相状態になった冷媒(図23の点9)とを熱交換させている。内部熱交換器55で熱交換された液相冷媒(図23の点4)は、主冷媒回路58と、インジェクション回路62とに分岐して流れる。
 主冷媒回路58を流れる液相冷媒は、レシーバ54で圧縮機51に吸入される冷媒と熱交換されて、さらに冷却される(図23の点5)。レシーバ54で冷却された液相冷媒は、膨張機構53で減圧されて気液二相状態になる(図23の点6)。膨張機構53で気液二相状態になった冷媒は、蒸発器となる熱交換器52で熱交換され、加熱される(図23の点7)。このとき、冷媒が吸熱することにより、水回路63を循環する水が冷やされ、冷房や冷凍に利用される。
 そして、熱交換器52で加熱された冷媒は、レシーバ54でさらに加熱され(図23の点8)、圧縮機51に吸入される。
 一方、インジェクション回路62を流れる冷媒は、上述したように、膨張機構61で減圧されて(図23の点9)、内部熱交換器55で熱交換される(図23の点10)。内部熱交換器55で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま圧縮機51のインジェクションパイプから流入する。
 圧縮機51内での圧縮動作については、暖房運転時と同様である。
 なお、インジェクション運転を行わない際には、暖房運転時と同様に、膨張機構61の開度を全閉にして、圧縮機51のインジェクションパイプへ冷媒が流入しないようにする。
 また、上記説明では、熱交換器52は、冷媒と、水回路63を循環する水とを熱交換させるプレート式熱交換器のような熱交換器であるとして説明した。熱交換器52は、これに限らず、冷媒と空気を熱交換させるものであってもよい。
 また、水回路63は、水が循環する回路ではなく、他の流体が循環する回路であってもよい。
 以上のように、ヒートポンプ装置100は、空気調和機、ヒートポンプ給湯機、冷蔵庫、冷凍機等のインバータ圧縮機を用いたヒートポンプ装置に利用することができる。
 1 圧縮機、2 四方弁、3 熱交換器、4 膨張機構、5 熱交換器、6 冷媒配管、7 圧縮機構、8 モータ、9 インバータ、10 インバータ制御部、11 高周波電圧発生部、12 加熱判定部、13 交流電源、14 整流器、15 平滑コンデンサ、16 母線電圧検出部、17 スイッチング素子、18 環流ダイオード、19 電圧印加部、20 電流検出部、21 テーブルデータ、22 外部入力部、23 選択部、24 積分器、25 電圧指令生成部、26 PWM信号生成部、27 電流比較部、28 電圧比較部、29 温度検出部、30 温度比較部、31 第1論理積計算部、32 寝込み判定部、33 経過時間計測部、34 時間比較部、35 リセット部、36 論理和計算部、37 第2論理積計算部、38 加熱量判断部、39 加算部、40 フィルタ部、41 比較部、42 PWM遮断部、43 電圧指令値制御部、51 圧縮機、52,57 熱交換器、53,56,61 膨張機構、54 レシーバ、55 内部熱交換器、58 主冷媒回路、59 四方弁、60 ファン、62 インジェクション回路、63 水回路、100 ヒートポンプ装置。

Claims (13)

  1.  冷媒を圧縮する圧縮機構を有する圧縮機と、
     前記圧縮機が有する前記圧縮機構を動作させるモータと、
     前記モータに所定の電圧を印加するインバータと、
     前記インバータへ駆動信号を出力して前記インバータを制御するインバータ制御部と、
     前記インバータに流れる電流値を検出し、検出した電流値のうち予め定められた第1周波数以上の電流値を低減して出力する電流検出部と、
     前記電流検出部が出力した電流値が所定の電流値以上である場合、前記インバータ制御部から前記インバータへの駆動信号の出力を停止させる駆動信号停止部と
    を備え、
     前記インバータ制御部は、
     電圧指令値を生成して出力する電圧指令生成部と、
     前記電圧指令生成部が出力した電圧指令値と所定の周波数の基準信号の値とを比較して、比較結果に基づき駆動信号を生成し、生成した駆動信号を前記インバータへ出力する駆動信号生成部と、
     前記電圧指令生成部が生成する電圧指令値が、前記第1周波数に応じて定められた下限値以上の値となるように、電圧指令値の値を制御する電圧指令値制御部と
    を備えることを特徴とするヒートポンプ装置。
  2.  前記インバータ制御部は、さらに、
     前記基準信号に同期して、位相θpと、前記位相θpとほぼ180度異なる位相θnとを切り替えて出力する位相切替部
    を備え、
     前記電圧指令生成部は、振幅値V*を持つ周期関数に前記位相切替部が出力した位相を代入することにより、前記電圧指令値を生成し、
     前記電圧指令値制御部は、前記周期関数の振幅値V*を、前記第1周波数に応じて定められた第1の値以上とすることにより、前記電圧指令値が前記下限値以上の値となるようにする
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  3.  前記電圧指令値制御部は、前記電圧指令生成部が生成する電圧指令値が、前記基準信号の振幅値に応じて定められた上限値以下の値となるように、前記電圧指令値の値を制御する
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  4.  前記インバータ制御部は、さらに、
     前記基準信号に同期して、位相θpと、前記位相θpとほぼ180度異なる位相θnとを切り替えて出力する位相切替部
    を備え、
     前記電圧指令生成部は、振幅値V*を持つ周期関数に前記位相切替部が出力した位相を代入することにより、前記電圧指令値を生成し、
     前記電圧指令値制御部は、前記周期関数の振幅値V*を、前記基準信号の振幅値に応じて定められた第2の値以下とすることにより、前記電圧指令値が前記上限値以下の値となるようにする
    ことを特徴とする請求項3に記載のヒートポンプ装置。
  5.  前記インバータは、2つのスイッチング素子が直列に接続された直列接続部を有し、前記直列接続部における2つのスイッチング素子のうち、一方のスイッチング素子がオフとなってから所定の短絡防止時間が経過するまでは他方のスイッチング素子をオンとせず、
     前記電圧指令値制御部は、前記周期間数の振幅値V*を、前記基準信号の振幅値と、前記短絡防止時間とに応じて定められた前記第2の値以下とする
    ことを特徴とする請求項4に記載のヒートポンプ装置。
  6.  前記基準信号は、頂と底とが特定可能な信号であり、
     前記位相切替部は、前記基準信号の頂と底とのタイミングで前記位相θpと前記位相θnとを切り替える
    ことを特徴とする請求項1から5までのいずれかに記載のヒートポンプ装置。
  7.  前記位相切替部は、所定の時間毎に前記位相θpを変更するとともに、前記位相θpの変更に合わせて前記位相θnを前記位相θpとほぼ180度異なる位相に変更しつつ、前記基準信号に同期して、前記位相θpと前記位相θnとを切り替えて出力する
    ことを特徴とする請求項1から6のいずれかに記載のヒートポンプ装置。
  8.  前記インバータ制御部は、さらに、
     前記圧縮機に冷媒を圧縮させる圧縮運転の停止時に、前記圧縮機を加熱する加熱運転を実行するか否かを判定する加熱判定部
    を備え、
     前記駆動信号生成部は、前記加熱判定部が加熱運転を実行すると判定した場合に、前記各駆動信号を前記インバータへ出力することにより、前記圧縮運転時に前記インバータに発生させる交流電圧よりも周波数の高い高周波交流電圧を前記インバータに発生させる
    ことを特徴とする請求項1から7のいずれかに記載のヒートポンプ装置。
  9.  前記インバータを構成するスイッチング素子は、ワイドギャップ半導体である
    ことを特徴とする請求項1から8までのいずれかに記載のヒートポンプ装置。
  10.  前記ワイドギャップ半導体は、SiC、GaN、ダイヤモンドのいずれかである
    ことを特徴とする請求項9に記載のヒートポンプ装置。
  11.  前記インバータを構成するスイッチング素子は、スーパージャンクション構造のMOSFETである
    ことを特徴とする請求項1から8までのいずれかに記載のヒートポンプ装置。
  12.  冷媒を圧縮する圧縮機構を有する圧縮機と、第1熱交換器と、膨張機構と、第2熱交換器とが配管により順次接続された冷媒回路を備えるヒートポンプ装置と、前記冷媒回路に接続された前記第1熱交換器で冷媒と熱交換された流体を利用する流体利用装置とを備えるヒートポンプシステムであり、
     前記ヒートポンプ装置は、さらに、
     前記圧縮機が有する前記圧縮機構を動作させるモータと、
     前記モータに所定の電圧を印加するインバータと、
     前記インバータへ駆動信号を出力して前記インバータを制御するインバータ制御部と、
     前記インバータに流れる電流値を検出し、検出した電流値のうち予め定められた第1周波数以上の電流値を低減して出力する電流検出部と、
     前記電流検出部が出力した電流値が所定の電流値以上である場合、前記インバータ制御部から前記インバータへの駆動信号の出力を停止させる駆動信号停止部と
    を備え、
     前記インバータ制御部は、
     電圧指令値を生成して出力する電圧指令生成部と、
     前記電圧指令生成部が出力した電圧指令値と予め定められた第2周波数の基準信号の値とを比較して、比較結果に基づき駆動信号を生成し、生成した駆動信号を前記インバータへ出力する駆動信号生成部と、
     前記電圧指令生成部が生成する電圧指令値が、前記第1周波数に応じて定められた下限値以上の値となるように、電圧指令値の値を制御する電圧指令値制御部と
    を備えることを特徴とするヒートポンプシステム。
  13.  冷媒を圧縮する圧縮機構を有する圧縮機と、
     前記圧縮機が有する前記圧縮機構を動作させるモータと、
     前記モータに所定の電圧を印加するインバータと
    を備えるヒートポンプ装置における前記インバータの制御方法であり、
     前記インバータに流れる電流値を検出し、検出した電流値のうち予め定められた第1周波数以上の電流値を低減して出力する電流検出工程と、
     電圧指令値を生成して出力する電圧指令生成工程と、
     前記電圧指令生成工程で出力した電圧指令値と予め定められた第2周波数の基準信号の値とを比較して、比較結果に基づき駆動信号を生成し、生成した駆動信号を前記インバータへ出力する駆動信号生成工程と、
     前記電圧指令生成工程で生成する電圧指令値が、前記第1周波数に応じて定められた下限値以上の値となるように、電圧指令値の値を制御する電圧指令値制御工程と、
     前記電流検出工程で出力した電流値が所定の電流値以上である場合、前記駆動信号生成工程での前記インバータへの駆動信号の出力を停止させる駆動信号停止工程と
    を備えることを特徴とするインバータの制御方法。
PCT/JP2011/072632 2011-09-30 2011-09-30 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法 WO2013046454A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/347,704 US9829234B2 (en) 2011-09-30 2011-09-30 Heat pump device, heat pump system, and method for controlling inverter
EP11873126.4A EP2763303B1 (en) 2011-09-30 2011-09-30 Heat pump device, heat pump system, and inverter control method
PCT/JP2011/072632 WO2013046454A1 (ja) 2011-09-30 2011-09-30 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
CN201180073753.XA CN103828214B (zh) 2011-09-30 2011-09-30 热泵装置、热泵系统和逆变器的控制方法
JP2013535792A JP5638699B2 (ja) 2011-09-30 2011-09-30 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
ES11873126.4T ES2660550T3 (es) 2011-09-30 2011-09-30 Dispositivo de bomba de calor, sistema de bomba de calor y método para controlar un inversor
AU2011377665A AU2011377665B2 (en) 2011-09-30 2011-09-30 Heat pump device, heat pump system, and inverter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072632 WO2013046454A1 (ja) 2011-09-30 2011-09-30 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法

Publications (1)

Publication Number Publication Date
WO2013046454A1 true WO2013046454A1 (ja) 2013-04-04

Family

ID=47994557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072632 WO2013046454A1 (ja) 2011-09-30 2011-09-30 ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法

Country Status (7)

Country Link
US (1) US9829234B2 (ja)
EP (1) EP2763303B1 (ja)
JP (1) JP5638699B2 (ja)
CN (1) CN103828214B (ja)
AU (1) AU2011377665B2 (ja)
ES (1) ES2660550T3 (ja)
WO (1) WO2013046454A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127621A (ja) * 2013-12-27 2015-07-09 三菱電機株式会社 空気調和機及び空気調和機の制御方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086010A1 (ja) * 2010-12-21 2012-06-28 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法
JP6241453B2 (ja) * 2015-06-18 2017-12-06 株式会社デンソー モータ駆動装置
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US11387729B2 (en) 2016-04-15 2022-07-12 Emerson Climate Technologies, Inc. Buck-converter-based drive circuits for driving motors of compressors and condenser fans
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10859300B2 (en) 2016-10-05 2020-12-08 Johnson Controls Technology Company Variable speed drive for a HVACandR system
JP6754661B2 (ja) * 2016-10-11 2020-09-16 日立オートモティブシステムズ株式会社 交流電動機の制御装置および制御方法、並びに交流電動機駆動システム
US11482188B2 (en) * 2017-05-16 2022-10-25 Sony Corporation Information processing device, control circuit, and information processing method
CN107246392B (zh) * 2017-05-31 2019-03-01 青岛海尔空调器有限总公司 一种降低压缩机预热噪音的控制方法
JP6963495B2 (ja) * 2017-12-22 2021-11-10 サンデンホールディングス株式会社 電力変換装置
CN109217776B (zh) * 2018-09-27 2020-10-20 深圳市英威腾电气股份有限公司 一种电机的加热方法、装置及变频器
CN109067303B (zh) * 2018-09-27 2021-01-26 深圳市英威腾电气股份有限公司 一种电机的加热方法、装置及变频器
JP7175389B2 (ja) * 2019-05-07 2022-11-18 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機
CN114144972B (zh) * 2019-07-25 2024-02-06 三菱电机株式会社 旋转机控制装置、制冷剂压缩装置、制冷环路装置以及空调机
US11101764B2 (en) * 2019-11-14 2021-08-24 Steering Solutions Ip Holding Corporation Dynamic control of source current in electric motor drive systems
WO2021171414A1 (ja) * 2020-02-26 2021-09-02 三菱電機株式会社 電力変換装置
DE102020118991A1 (de) * 2020-07-17 2022-01-20 Viessmann Werke Gmbh & Co Kg System zum Steuern eines Elektromotors
CN112212460B (zh) * 2020-08-28 2022-03-08 海信(山东)空调有限公司 一种空调器和停机控制方法
CN112984881B (zh) * 2021-03-05 2023-03-24 四川长虹空调有限公司 制冷系统压缩机的回液判断方法及系统
CN114362179A (zh) * 2021-11-25 2022-04-15 科希曼电器有限公司 一种适用于低温农村低电压的空气源热泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068341U (ja) 1983-10-19 1985-05-15 株式会社東芝 ヒ−トポンプ式空気調和機
JPS6191445A (ja) 1984-10-12 1986-05-09 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機駆動装置
JPS61272555A (ja) * 1985-05-29 1986-12-02 株式会社東芝 空気調和機
JPH0618103A (ja) * 1992-06-30 1994-01-25 Toshiba Corp 空気調和機
JP2011102674A (ja) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp 空気調和機

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2046932B1 (ja) * 1969-06-20 1975-09-26 Eickhoff Geb
US4320331A (en) * 1979-10-01 1982-03-16 General Electric Company Transistorized current controlled pulse width modulated inverter machine drive system
US4357655A (en) * 1981-05-12 1982-11-02 The Garrett Corporation Three-phase inverter
US4689543A (en) * 1985-12-27 1987-08-25 Sundstrand Corporation Frequency and voltage control for inverter powered AC motor
US4982147A (en) * 1989-01-30 1991-01-01 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Power factor motor control system
JPH08219058A (ja) * 1995-02-09 1996-08-27 Matsushita Electric Ind Co Ltd 密閉型電動圧縮機
JPH08226714A (ja) 1995-02-23 1996-09-03 Matsushita Electric Ind Co Ltd 空気調和機
TW332851B (en) * 1996-05-21 1998-06-01 Toshiba Co Ltd A switching frequency device, the device of air conditioner and air condiction
JPH11159467A (ja) 1997-11-28 1999-06-15 Zexel:Kk 電動機予熱装置における通電制御方法及び電動機予熱装置
US6229278B1 (en) * 1999-09-29 2001-05-08 Rockwell Technologies, Llc Voltage and current limiting method and apparatus for a voltage/frequency drive
US6934139B2 (en) * 2000-05-01 2005-08-23 Fuji Electric Device Technology Co., Ltd. Intelligent power module
JP4232358B2 (ja) * 2001-06-26 2009-03-04 ダイキン工業株式会社 予熱発生機構
US7071649B2 (en) * 2001-08-17 2006-07-04 Delphi Technologies, Inc. Active temperature estimation for electric machines
JP3540311B2 (ja) * 2002-05-31 2004-07-07 松下電器産業株式会社 モータ駆動制御装置
EP1501186B1 (en) * 2003-07-18 2018-08-22 III Holdings 10, LLC Motor driving apparatus
JP4075831B2 (ja) * 2004-03-24 2008-04-16 株式会社デンソー 車両用空調装置
US7019484B2 (en) * 2004-03-30 2006-03-28 Japan Servo Co., Ltd. Stepping motor driver
CN2687588Y (zh) * 2004-04-02 2005-03-23 海信集团有限公司 变频冰箱
WO2006022387A1 (ja) * 2004-08-26 2006-03-02 Matsushita Electric Industrial Co., Ltd. 半導体装置及びそれを用いたモジュール
US7187132B2 (en) * 2004-12-27 2007-03-06 Osram Sylvania, Inc. Ballast with filament heating control circuit
US7239113B2 (en) * 2005-05-03 2007-07-03 Caterpillar Inc Method for reducing undesired currents in an electrical power generation system
US9259796B2 (en) * 2006-01-17 2016-02-16 Lincoln Global, Inc. Synergic TIG welding system
KR100739165B1 (ko) * 2006-04-13 2007-07-13 엘지전자 주식회사 리니어 압축기의 운전제어장치 및 방법
JP4438833B2 (ja) * 2007-07-04 2010-03-24 トヨタ自動車株式会社 電力変換装置の異常検出装置および異常検出方法
JP4985723B2 (ja) 2009-07-27 2012-07-25 三菱電機株式会社 空気調和機
JP4931970B2 (ja) * 2009-08-10 2012-05-16 三菱電機株式会社 空気調和機
US9496816B2 (en) 2009-12-17 2016-11-15 Mitsubishi Electric Corporation Air conditioner controlling prheating power of compressor and mechanism providing preheating power for compressor
WO2012029099A1 (ja) 2010-08-30 2012-03-08 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法
WO2012049763A1 (ja) 2010-10-15 2012-04-19 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法
WO2012086010A1 (ja) 2010-12-21 2012-06-28 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068341U (ja) 1983-10-19 1985-05-15 株式会社東芝 ヒ−トポンプ式空気調和機
JPS6191445A (ja) 1984-10-12 1986-05-09 Matsushita Electric Ind Co Ltd 空気調和機の圧縮機駆動装置
JPS61272555A (ja) * 1985-05-29 1986-12-02 株式会社東芝 空気調和機
JPH0618103A (ja) * 1992-06-30 1994-01-25 Toshiba Corp 空気調和機
JP2011102674A (ja) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp 空気調和機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127621A (ja) * 2013-12-27 2015-07-09 三菱電機株式会社 空気調和機及び空気調和機の制御方法
EP2894409A3 (en) * 2013-12-27 2015-10-21 Mitsubishi Electric Corporation Air conditioner and control method of air conditioner
RU2598867C2 (ru) * 2013-12-27 2016-09-27 Мицубиси Электрик Корпорейшн Кондиционер воздуха и способ управления кондиционером воздуха
US9696045B2 (en) 2013-12-27 2017-07-04 Mitsubishi Electric Corporation Air conditioner and control method of air conditioner

Also Published As

Publication number Publication date
EP2763303A1 (en) 2014-08-06
EP2763303B1 (en) 2018-01-24
CN103828214B (zh) 2018-01-30
JP5638699B2 (ja) 2014-12-10
AU2011377665A1 (en) 2014-05-22
CN103828214A (zh) 2014-05-28
JPWO2013046454A1 (ja) 2015-03-26
EP2763303A4 (en) 2015-10-07
US20140223926A1 (en) 2014-08-14
AU2011377665B2 (en) 2015-12-24
US9829234B2 (en) 2017-11-28
ES2660550T3 (es) 2018-03-22

Similar Documents

Publication Publication Date Title
JP5638699B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5490249B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5693714B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5490260B2 (ja) ヒートポンプ装置、ヒートポンプシステム及びインバータの制御方法
JP5460876B2 (ja) ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法
JP5693617B2 (ja) ヒートポンプ装置、ヒートポンプシステム及び三相インバータの制御方法
JP6619329B2 (ja) ヒートポンプ装置およびヒートポンプシステム
JP6444463B2 (ja) ヒートポンプ装置
JP6333395B2 (ja) ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
JP7566172B2 (ja) ヒートポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535792

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14347704

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011873126

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011377665

Country of ref document: AU

Date of ref document: 20110930

Kind code of ref document: A