WO2013042747A1 - 酸化物焼結体およびその製造方法並びに酸化物透明導電膜 - Google Patents
酸化物焼結体およびその製造方法並びに酸化物透明導電膜 Download PDFInfo
- Publication number
- WO2013042747A1 WO2013042747A1 PCT/JP2012/074111 JP2012074111W WO2013042747A1 WO 2013042747 A1 WO2013042747 A1 WO 2013042747A1 JP 2012074111 W JP2012074111 W JP 2012074111W WO 2013042747 A1 WO2013042747 A1 WO 2013042747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide
- transparent conductive
- conductive film
- sintered body
- film
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6585—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Definitions
- the present invention relates to an oxide transparent conductive film used for a display element such as a touch panel, electronic paper, a solar cell, and an optical device such as a light emitting diode (LED) or an organic electroluminescence (EL), and the oxide transparent conductive film.
- the present invention relates to an oxide sintered body for obtaining a film and a method for producing the same.
- the oxide transparent conductive film has high conductivity and high transmittance particularly in the visible light region, display elements such as touch panels and electronic paper, solar cells, and transparent electrodes in optical devices such as LEDs and organic EL, etc. It is widely used as a material. In addition, it is also used for heat ray reflective films, antistatic films, and antifogging transparent heating elements for automobile windows.
- indium oxide (In 2 O 3 + ⁇ ) oxide film As the oxide transparent conductive film, indium oxide (In 2 O 3 + ⁇ ) oxide film, zinc oxide (ZnO + ⁇ ) oxide film, and tin oxide (SnO 2 + ⁇ ) oxide film are widely used.
- indium oxide-based oxide films are most often used.
- indium oxide films containing tin oxide as a dopant are called ITO (Indium Tin Oxide) films, and particularly low resistance films. It is mainly used because it can be easily obtained.
- a sputtering method is used as a main means for manufacturing these transparent oxide conductive films.
- Sputtering is an effective technique when film formation of low vapor pressure materials and precise film thickness control are required, and its operation is very simple, so it is widely used industrially. ing.
- a substrate on which a transparent conductive film is formed is used as an anode
- a sputtering target is used as a cathode
- glow discharge is generated between them
- argon plasma is generated.
- a film is formed by causing argon cations in the plasma to collide with the sputtering target of the cathode and depositing particles of the target component which are blown off by this on the substrate.
- Sputtering methods are classified into a direct current sputtering method using direct current discharge and a high frequency sputtering method using high frequency discharge.
- the high-frequency sputtering method has an advantage that stable deposition can be performed not only on a conductive target but also on a high-resistance target or a target in which a conductive material and a high-resistance material are mixed, but the deposition rate is low and the apparatus cost is low. Has disadvantages such as high price.
- the direct current sputtering method is generally used industrially because it is inexpensive and has a simple film formation operation and is excellent in high-speed film formation. It is necessary to use sex targets.
- the high-resistance substance is charged by irradiation with argon ions, and arcing occurs during film formation.
- a conductive target that does not include is required.
- the DC magnetron sputtering method has an advantage that the deposition rate is high by placing a magnet on the back side of the target and confining ⁇ electrons in the vicinity of the target by applying a magnetic field.
- an oxide transparent conductive film such as ITO is formed by DC magnetron sputtering, a sufficiently low resistance film cannot be obtained unless the temperature of the substrate is raised. This is because the higher the substrate temperature at the time of film formation, the better the crystallinity of the film and the doping of the additive components, and the lower the resistance value of the resulting film.
- Japanese Patent Laid-Open No. 2005-290458 discloses a technique relating to a cerium-containing indium oxide-based sputtering target material (In—Ce—O) and a transparent conductive film obtained using this sputtering target. It is disclosed. This transparent conductive film is assumed to be used in an amorphous state. However, when the substrate temperature is set to 200 ° C. or higher, or the substrate is heated at a temperature of 200 ° C. to 250 ° C., the film may be crystallized. It is shown.
- JP 2004-43851 A discloses that an oxide transparent conductive film having high conductivity and high transmittance in the visible light region is formed by heating the substrate at a temperature of 200 ° C. or higher to form a crystallinity.
- An indium oxide film (In—W—O) containing tungsten is disclosed.
- JP-A-9-209134 and JP-A-9-161542 a transparent conductive film having a higher resistance than that of ITO is obtained by a direct current sputtering method. Therefore, a low-resistance metal element such as titanium, iridium, and cobalt is added to ITO.
- a resistive sputtering target is disclosed. When these sputtering targets are used, a transparent conductive film is obtained even when the substrate temperature is set to room temperature by direct current magnetron sputtering.
- the present invention provides an oxide transparent conductive film having sufficient crystallinity, which has high conductivity and high transmittance in the visible light region, and such characteristics. It is an object of the present invention to provide an oxide sintered body capable of depositing an oxide transparent conductive film comprising a film by a direct current sputtering method using a transparent resin substrate.
- the oxide sintered body of the present invention is an oxide sintered body containing indium oxide as a main component and containing tin oxide and cobalt oxide, and an atomic ratio of Sn to In: Sn / In is 0.019 to 0 .102, and the atomic ratio of each component to the sum of In, Sn, and Co: In / (In + Sn + Co) is 0.771 to 0.967, Sn / (In + Sn + Co) is 0.016 to 0.091, Co / (In + Sn + Co) is 0.015 to 0.15, and its relative density is 98% or more. Furthermore, in the oxide sintered body of the present invention, the specific resistance is preferably 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
- an oxide transparent conductive film having the following characteristics can be obtained even by film formation at a low substrate temperature of 150 ° C. or lower.
- Such an oxide sintered body uses indium oxide powder, tin oxide powder, and cobalt oxide powder having an average particle size of 0.05 ⁇ m or more and less than 1.0 ⁇ m as raw material powder. , Water and a water-soluble binder were blended, and the resulting slurry was pulverized, stirred for 10 hours or more, dried and granulated, and the resulting granulated powder was packed into a mold and pressure-molded to obtain The molded body can be obtained by sintering at 1450 ° C. to 1600 ° C. for 12 hours to 25 hours in an oxygen atmosphere.
- the oxide transparent conductive film of the present invention is a transparent conductive film containing indium oxide as a main component and containing tin oxide and cobalt oxide, and the atomic ratio of Sn to In: Sn / In is 0.019 to 0 .102, and the atomic ratio of each component to the sum of In, Sn, and Co: In / (In + Sn + Co) is 0.771 to 0.967, Sn / (In + Sn + Co) is 0.016 to 0.091, Co / (In + Sn + Co) is 0.015 to 0.15, and the specific resistance is 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
- the oxide transparent conductive film of the present invention when the film thickness is 15 nm to 40 nm, it is preferable that the average transmittance of a single film at a wavelength of 400 nm to 800 nm is 98% or more. Moreover, even if it is a case where it exposes to the environment of temperature 95 degreeC and humidity 95% for 1000 hours, it is preferable that the resistance change rate will be 1.2 or less.
- the specific resistance is 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
- a highly crystalline transparent oxide conductive film having a low resistance and a high transmittance such that the average transmittance of a single film at a visible wavelength of 400 nm to 800 nm is 98% or more can be obtained. That is, even when a transparent resin substrate is used as a substrate during film formation, a crystalline oxide transparent conductive film having low resistance and high transmittance can be formed.
- the oxide sintered body of the present invention has a high relative density and low resistance, even when used as a sputtering target in the formation of an oxide transparent conductive film by a direct current sputtering method, arcing during film formation is performed. , And the generation of nodules and particles due to this can be prevented.
- oxide sintered body (2) manufacturing method of oxide sintered body, (3) film formation of transparent conductive film, and (4) transparent conductive film.
- Oxide sintered body As a result of intensive studies on indium oxide-based oxide sintered bodies, the inventors have added a cobalt oxide in addition to indium oxide and tin oxide, and these The composition ratio of each metal component of indium (In), tin (Sn), and cobalt (Co) constituting the oxide is regulated within a predetermined range, and an oxide sintered body is manufactured under predetermined manufacturing conditions. By doing so, it becomes possible to increase the density of the obtained oxide sintered body and to make the sintered body texture dense, and b) to use the oxide sintered body of the present invention as a sputtering target.
- the present invention has obtained the knowledge that it has low resistance and high transmittance and has excellent stability with little resistance change even in a high temperature and high humidity environment (temperature 95 ° C., humidity 95%, 1000 h). Has been completed.
- the content of tin oxide is regulated so as to be within a range of 0.019 to 0.102 in terms of Sn / In atomic ratio of Sn. If the tin oxide content is less than 0.019 Sn / In, the relative density of the sintered body will not be 98% or more, and the specific resistance of the sintered body will be 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less. It will not become. Further, in the transparent conductive film formed using such a sintered body having a small content of tin oxide, the average transmittance of the film does not become 98% or more, and the specific resistance of the film is also 5 ⁇ 10 ⁇ 3.
- the resistance change rate in a high temperature and high humidity environment exceeds 1.2.
- the content of tin oxide exceeds 0.102 in Sn / In, the oxide transparent conductive film after film formation does not crystallize at a substrate temperature of 150 ° C. or lower, and the average transmission of the obtained film The rate will not be over 98%.
- the tin oxide content is preferably in the range of 0.040 to 0.102 in terms of Sn / In.
- the content of indium oxide, tin oxide, and cobalt oxide is 0.771 to the atomic ratio of each metal component to the total of In, Sn, and Co: In / (In + Sn + Co)
- the regulation is 0.967, Sn / (In + Sn + Co) is 0.016 to 0.091, and Co / (In + Sn + Co) is 0.015 to 0.15.
- the density of the oxide sintered body is increased, the sintered body structure is densified, the crystallinity is improved, and the crystal orientation is in a certain direction. Can be controlled. Due to the action of this cobalt oxide, it is possible to stably obtain the characteristics of low resistance and high transmittance in the oxide transparent conductive film by regulating the content of tin oxide, and in particular, resistance in a high temperature and high humidity environment. Excellent stability with a change rate of 1.2 or less is brought about.
- the cobalt oxide content needs to be 0.015 to 0.15 in terms of the atomic ratio of Co to the total of In, Sn and Co: Co / (In + Sn + Co).
- the content of cobalt oxide is Co / (In + Sn + Co) and less than 0.015, the density of the oxide sintered body is not sufficiently high, and the specific resistance of the sintered body is also high. In this case, although the obtained transparent conductive film has crystallinity, the specific resistance tends to be high, and the stability is not sufficient.
- the cobalt oxide content is preferably in the range of 0.05 to 0.15 in terms of Co / (In + Sn + Co).
- the content of indium oxide is 0.771 to 0.967 in In / (In + Sn + Co), and the content of tin oxide is 0.016 to 0.091 in Sn / (In + Sn + Co). Is preferred.
- the oxide sintered body of the present invention has a relative density from the viewpoint of effectively preventing the arcing generated during sputtering and the causes affecting the film properties such as the generation of nodules and particles resulting therefrom. Needs to be 98% or more, more preferably 99% or more.
- the specific ratio (volume resistivity) of the oxide sintered body is set to 5 ⁇ 10 5 by regulating the composition ratio of the oxide sintered body as described above and setting the relative density to 98% or more. ⁇ 3 ⁇ ⁇ cm or less, preferably 1.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less. That is, when an oxide sintered body having a lower relative density and a higher specific resistance than the range defined in the present invention is used, the rate of change in resistance under a high temperature environment deteriorates, and the stability of the film deteriorates. The transmittance of the film is lowered and the specific resistance of the film is also increased.
- (2-1) Raw material powder As a raw material of the oxide sintered body according to the present invention, indium oxide powder, tin oxide powder and cobalt oxide powder can be used. It is necessary to be 0.05 ⁇ m or more and less than 1.0 ⁇ m. Preferably, the average particle size of these powders is in the range of 0.1 ⁇ m or more and less than 0.8 ⁇ m.
- the average particle size is less than 0.05 ⁇ m, the powder aggregates and it becomes difficult to mix uniformly.
- the thickness is 1.0 ⁇ m or more, the resulting oxide sintered body cannot have a relative density of 98% or more. For this reason, arcing generated during sputtering occurs, and the characteristics of the film deteriorate due to generation of nodules and particles resulting from the arcing.
- the mixing ratio of these powders may be determined according to the composition ratio of the target oxide sintered body, that is, the atomic ratio of each metal component. Specifically, the atomic ratio of Sn to In: Sn / In is set to 0.019 to 0.102, and the atomic ratio of each component to the total of In, Sn, and Co: In / (In + Sn + Co) is Preparation may be made so that 0.771 to 0.967, Sn / (In + Sn + Co) is 0.016 to 0.091, and Co / (In + Sn + Co) is 0.015 to 0.15.
- a water-soluble binder is added to these raw material powders in an amount of 0.5 to 1.5% by mass, and is further placed in a resin pot together with water. Grind and mix.
- the water-soluble binder is not limited as long as it is a known binder that disappears or vaporizes by heating, and for example, polyvinyl alcohol (PVA), polyvinyl butyral, methyl cellulose, and the like can be used.
- a ball mill and a bead mill can be used for this process.
- a ball mill in terms of cost
- a bead mill from the viewpoint of work efficiency because the ball mill takes much time to grind.
- the balls and beads for example, those made of hard zirconia (ZrO 2 ) are preferably used.
- the grindability changes depending on the ball diameter or bead diameter, it is preferable to use a ball having a diameter of about ⁇ 2 mm to ⁇ 6 mm and a bead of about ⁇ 0.2 mm to ⁇ 0.7 mm.
- the wet pulverization and mixing conditions are preferably 50 to 70 rpm and a pulverization / mixing time of 15 to 28 hours.
- the number of rotations is preferably 1300 rpm to 1700 rpm, and the pulverization / mixing time is preferably 3 hours to 6 hours.
- the time for pulverization and mixing is insufficient, the sintered body density finally obtained decreases.
- zirconia is mixed as an impurity, and the density of the sintered body similarly decreases.
- a slurry containing raw material powder having an average particle size of 0.5 ⁇ m or less is obtained.
- the average particle diameter is preferably in the range of 0.1 ⁇ m to 0.5 ⁇ m.
- the viscosity of the slurry is preferably 30 mPa ⁇ s to 600 mPa ⁇ s.
- the slurry containing the raw material powder obtained in the above step is spray dried to obtain granulated powder.
- a spherical granulated powder by using a spray dryer.
- the drying temperature during spray drying is preferably in the range of 120 ° C to 200 ° C. Further, it is preferable to appropriately adjust the drying speed according to the amount of exhaust air so that spherical granulated powder can be obtained according to the apparatus.
- a spray dryer it is preferable to use a spray dryer using a disk having excellent mass productivity.
- the particle size of the granulated powder is desirably 40 ⁇ m to 100 ⁇ m in terms of average particle size.
- the granulated powder obtained through the spray drying step is filled in a rubber mold and is subjected to a pressure of 250 MPa to 350 MPa, more preferably 280 MPa to 320 MPa, using a cold isostatic press (CIP). Molding is performed at a pressure of. At this time, CIP may be performed after preforming by uniaxial pressing.
- CIP cold isostatic press
- the maximum pressure holding time during molding is preferably 1 to 10 minutes.
- the gas generated by decomposing the water-soluble binder is discharged out of the furnace together with oxygen, thus promoting binder removal.
- a high-strength and high-density sintered body can be obtained.
- the oxygen concentration can be up to 100% by volume (pure oxygen atmosphere), but about 30% by volume is sufficient from the viewpoint of cost.
- the heating temperature during binder removal is preferably 200 ° C. to 800 ° C., and the heating time is preferably 30 hours or more.
- the heating temperature is less than 200 ° C.
- the binder remains without volatilization, leading to a decrease in the density of the sintered body.
- the temperature exceeds 800 ° C.
- shrinkage of the molded body starts during the binder removal step, so that the binder remains inside the sintered body, causing a problem of density reduction.
- the heating time is less than 30 hours, the binder may not be sufficiently decomposed.
- the rate of temperature rise is preferably 0.1 ° C./min to 1.5 ° C./min, and 0.3 ° C./min to 1.0 ° C./min. More preferably, minutes.
- the compact is sintered by firing at a temperature of 1450 ° C. to 1600 ° C. for 10 hours to 25 hours under atmospheric pressure.
- the firing temperature is preferably 1450 ° C. to 1600 ° C., more preferably 1470 ° C. to 1570 ° C.
- the liquid phase sintering can proceed sufficiently to increase the density of the sintered body, and further, the indium oxide can be prevented from melting and sintered in a desired shape.
- the body can be easily manufactured.
- the holding time at the above baking temperature is preferably 10 hours to 25 hours, and more preferably 15 hours to 20 hours. Within this range, a high-quality indium oxide-based oxide sintered body can be obtained while realizing a reduction in sintering time (reduction in power consumption) and high productivity.
- the rate of temperature rise is preferably 0.1 ° C./min to 1.5 ° C./min, preferably 0.3 ° C./min. More preferably, it is set to ⁇ 1.0 ° C./min. Further, after holding at the firing temperature for a predetermined time, it is preferable to cool to near room temperature at a cooling rate in the range of 0.2 ° C./min to 1.2 ° C./min.
- the sputtering method for film formation using the oxide sintered body of the present invention as a sputtering target is not limited at all, and any known means can be used. However, from the viewpoint of mass productivity, it is preferable to adopt a means using a direct current sputtering method, particularly a direct current magnetron sputtering apparatus. Since the relative density of the sputtering target of the present invention is as high as 98% or more, the occurrence of arcing and nodules is suppressed even when the direct current sputtering method is used.
- a film having high crystallinity can be obtained even when the substrate temperature during sputtering is 150 ° C. or lower.
- a film is formed on a resin substrate such as a transparent plastic substrate, a high transmittance can be obtained.
- the conditions for forming the oxide sintered body of the present invention as a sputtering target are not particularly limited except for the substrate temperature, and can be formed under normal conditions.
- a target-substrate distance 35 mm to 120 mm
- ultimate vacuum 1 ⁇ 10 ⁇ 3 Pa or less
- introduced gas 0% to 10% O 2 gas.
- the substrate temperature may be lower than 150 ° C. by not heating from room temperature, or the substrate may be cooled and held at a predetermined temperature lower than 150 ° C. as necessary.
- the transparent conductive film of the present invention is a transparent conductive film containing indium oxide as a main component and containing tin oxide and cobalt oxide, and an atomic ratio of Sn to In: Sn / In is 0.019 to 0.102, and the atomic ratio of each component to the sum of In, Sn, and Co: In / (In + Sn + Co) is 0.771 to 0.967, and Sn / (In + Sn + Co) is 0 .016 to 0.091, Co / (In + Sn + Co) is 0.015 to 0.15, and the specific resistance is 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
- the specific resistance of the transparent conductive film is preferably 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
- the composition of the transparent conductive film may depend on the film formation conditions, it can usually be the same as the composition of the oxide sintered body used as the film formation material by appropriate setting. That is, by determining the composition of the oxide sintered body based on the composition of the transparent conductive film, a transparent conductive film having a desired composition can be obtained by film formation.
- the transparent conductive film of the present invention when the film thickness is 15 nm to 40 nm and the transmittance is measured with a spectrophotometer or spectroscopic ellipsometry using visible light of 400 nm to 800 nm, the average transmittance is a single film. Is 98% or more.
- the substrate is formed without heating, it becomes a crystalline transparent conductive film having high crystallinity.
- the transparent conductive film of the present invention is mainly oriented in the (222) plane and has a very high crystallinity.
- the resistance change rate is within 1.2, preferably 1.0 or less. Such characteristics are particularly effective when a product to which the transparent conductive film is applied is used outdoors in a high temperature environment, or when an in-vehicle electronic device is applied.
- Example 1 As raw material powders, indium oxide (In 2 O 3 ) powder (purity 99.9%, average particle size of about 0.9 ⁇ m), tin oxide (SnO 2 ) powder (purity 99.9%, average particle size of about 0.9 ⁇ m) ), And cobalt oxide (CoO) powder (purity 99.9%, average particle size of about 0.8 ⁇ m).
- indium oxide (In 2 O 3 ) powder purity 99.9%, average particle size of about 0.9 ⁇ m
- tin oxide (SnO 2 ) powder purity 99.9%, average particle size of about 0.9 ⁇ m
- CoO cobalt oxide
- this compact was placed in a sintering furnace (manufactured by Marusho Denki Co., Ltd.), and oxygen was circulated at a rate of 100 L / min per 1 m 3 of the furnace volume, thereby maintaining the oxygen concentration at 30% or more.
- the state was heated to 700 ° C., and the binder removal treatment was performed for 34 hours. Thereafter, firing was performed for 20 hours by setting the atmosphere in the furnace to an air atmosphere and a maximum temperature of 1550 ° C. to obtain a sintered body.
- the above sintered body was ground to produce an indium oxide sputtering target having a diameter of 4 inches (101.6 mm) and a thickness of 5 mm.
- an ICP emission spectrometer ICPS8100, manufactured by Shimadzu Corporation
- the composition range and sintering temperature of the raw material powder of Example 1 are shown in Table 1.
- the relative density and specific resistance of the sintered body were measured for the obtained indium oxide-based sputtering target.
- the specific resistance of the oxide sintered body was measured using a four-point probe resistivity meter Loresta EP (Dia Instruments, MCP-T360 type). As a result, the specific resistance of the sputtering target of Example 1 was 4.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
- the obtained sputtering target was metal-bonded to an oxygen-free copper backing plate, set in a magnetron sputtering apparatus (made by Tokki Co., Ltd.) using a DC power source, sputtered under the following conditions, and a transparent conductive film having a film thickness of 25 nm. A membrane was obtained.
- a glass substrate was used, and the film was formed without heating the substrate.
- Crystallinity of transparent conductive film The crystallinity of the obtained transparent conductive oxide film was confirmed using a multipurpose X-ray diffractometer (Spectres, Inc., X'Pert-PRO MPD). When a diffraction peak on the (222) plane was observed, a crystalline film was obtained, and when no diffraction peak was observed, it was determined that the film was not crystallized. As a result, it was confirmed that the transparent conductive film of Example 1 had high crystallinity.
- Transmissivity of transparent conductive film With respect to the obtained transparent conductive oxide film, the transmittance of light having a wavelength of 400 nm to 800 nm was measured using a spectrophotometer (manufactured by JASCO Corporation, UbestV-570iRM / DS). A transmittance peak was observed at a wavelength of 500 nm to 600 nm. The average transmittance at wavelengths of 400 nm to 800 nm was 98.2%.
- the specific resistance of the transparent conductive film was calculated from the product of the surface resistance and the film thickness measured with a four-probe resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type).
- the film thickness of the transparent conductive film was determined by measuring the level difference between the non-deposited portion and the deposited portion using a contact-type surface roughness meter (manufactured by Tencor).
- Example 1 was 3.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and the resistance change rate was 1.20.
- Table 2 shows the measurement results of the relative density and specific resistance of the sputtering target of Example 1, the crystallinity, transmittance, specific resistance, and resistance change rate of the transparent conductive film.
- Examples 2 to 8 A sputtering target was obtained in the same manner as in Example 1 except that the composition ratio of each component was changed to the values described in Table 1. About these sputtering targets, when the composition analysis was conducted by ICP emission spectroscopy, it was confirmed that all were the same as the composition ratio of the raw material powder as in Example 1. Moreover, when the composition analysis was conducted on the transparent conductive film formed using these sputtering targets using an ICP emission spectrophotometer, it was found that all of them were the same as the composition ratio of the sputtering target as in Example 1. confirmed.
- Table 2 shows the measurement results of the relative density and specific resistance of the sputtering targets of Examples 2 to 8, crystallinity, transmittance, specific resistance, and resistance change rate of the transparent conductive film.
- Comparative Examples 1 and 2 A sputtering target was obtained in the same manner as in Example 1 except that the composition ratio of each component was changed to the values described in Table 1.
- Sn / In and Sn / (In + Sn + Co) are below the range of the present invention, and In / (In + Sn + Co) is above the range of the present invention.
- Comparative Example 2 is an example in which Sn / In and Sn / (In + Sn + Co) are below the range of the present invention.
- Table 2 shows the measurement results of the relative density and specific resistance of the sputtering targets of Comparative Examples 1 and 2 and the crystallinity, transmittance, specific resistance, and resistance change rate of the transparent conductive film.
- Comparative Examples 3 to 5 An oxide sintered body was obtained in the same manner as in Example 1 except that the composition ratio of each component was changed to the values described in Table 1. Comparative Example 3 is an example in which Sn / In and Sn / (In + Sn + Co) both exceed the scope of the present invention. Comparative Example 4 is an example in which Sn / In exceeds the range of the present invention and In / (In + Sn + Co) falls below the range of the present invention. Comparative Example 5 is an example in which only Sn / In exceeds the scope of the present invention.
- Table 2 shows the measurement results of the relative density and specific resistance of the sputtering targets of Comparative Examples 3 to 5, crystallinity, transmittance, specific resistance, and resistance change rate of the transparent conductive film.
- Example 6 An oxide sintered body was obtained in the same manner as in Example 4 except that the firing temperature was 1400 ° C. All of these sputtering targets and transparent conductive films were also confirmed to have the same composition ratio as the raw material powder. Table 2 shows the measurement results of the relative density and specific resistance of the sputtering target of Comparative Example 6, the crystallinity, transmittance, specific resistance, and resistance change rate of the transparent conductive film.
- Comparative Examples 7 and 8 An oxide sintered body was obtained in the same manner as in Example 1 except that the composition ratio of each component was changed to the values described in Table 1.
- Comparative Example 7 In / (In + Sn + Co) exceeds the range of the present invention, and Co / (In + Sn + Co) falls below the range of the present invention.
- Comparative Example 8 In / (In + Sn + Co) falls below the range of the present invention, and Co / (In + Sn + Co) exceeds the range of the present invention.
- Table 2 shows the measurement results of the relative density and specific resistance of the sputtering targets of Comparative Examples 7 and 8, crystallinity, transmittance, specific resistance, and resistance change rate of the transparent conductive film.
- Comparative Examples 9 to 14 oxide sintered bodies were obtained in the same manner as in Examples 1 to 6, respectively, except that at least one raw material powder having an average particle size of 1.0 ⁇ m or more was used. All of these sputtering targets and transparent conductive films were also confirmed to have the same composition ratio as the raw material powder.
- Table 2 shows the measurement results of the relative density and specific resistance of the sputtering targets of Comparative Examples 9 to 14, crystallinity, transmittance, specific resistance, and resistance change rate of the transparent conductive film.
- the sputtering target of Comparative Examples 1 and 2 with a small Sn content does not have a relative density of 98% or more, and the specific resistance exceeds 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
- the transparent conductive film obtained by using the film had insufficient transmittance, specific resistance, and resistance change rate.
- Comparative Examples 3 to 5 having a high Sn content it was understood that the transparent conductive film had poor crystallinity and the effect of promoting crystallization by adding cobalt oxide was reduced.
- Comparative Examples 1, 2, 6, 7, and 9 to 14 in which the relative density of the sputtering target is less than 98% are compared with those in Examples 1 to 9 during arcing and Many nodules were observed, confirming deterioration of film properties and reduction of production efficiency.
- the oxide sintered body of the present invention requires high transmittance such as a transparent conductive film for solar cells, a transparent conductive film for touch panels, a transparent conductive film for liquid crystal display devices such as a flat panel display, and an organic EL transparent conductive film.
- a transparent conductive film for solar cells a transparent conductive film for solar cells
- a transparent conductive film for touch panels a transparent conductive film for liquid crystal display devices
- an organic EL transparent conductive film organic EL transparent conductive film.
- it is suitable as a sputtering target for obtaining a transparent conductive film in a film touch panel application for which a transparent plastic film substrate is required by a direct current sputtering method.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Thermal Sciences (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
- Non-Insulated Conductors (AREA)
Abstract
【課題】150℃以下の低い基板温度の成膜によっても、比抵抗が5×10-3Ω・cm以下、可視波長(400nm~800nm)において98%以上の高い透過率を有する結晶性の透明導電膜を提供する。 【解決手段】Sn/Inが0.019~0.102であり、かつ、In/(In+Sn+Co)が0.771~0.967、Sn/(In+Sn+Co)が0.016~0.091、Co/(In+Sn+Co)が0.015~0.15であり、相対密度が98%以上、比抵抗が5×10-3Ω・cm以下である酸化物焼結体をスパッタリングターゲットとして成膜して透明導電膜を得る。
Description
本発明は、タッチパネル、電子ペーパーなどの表示素子、太陽電池、および、発光ダイオード(LED)、有機エレクトロルミネッセンス(EL)などの光デバイスに用いられる酸化物透明導電膜、および、この酸化物透明導電膜を得るための酸化物焼結体およびその製造方法に関する。
酸化物透明導電膜は、高い導電性と、特に可視光領域における高い透過率を有するため、タッチパネル、電子ペーパーなどの表示素子、太陽電池、および、LED、有機ELなどの光デバイスにおける透明電極などの材料として広く利用されている。その他、自動車窓の熱線反射膜、帯電防止膜、防曇用透明発熱体などにも利用されている。
酸化物透明導電膜としては、主として、酸化インジウム系(In2O3+α)の酸化物膜、酸化亜鉛系(ZnO+α)の酸化物膜、酸化錫系(SnO2+α)の酸化物膜が広く知られている。これらのうち、酸化インジウム系の酸化物膜が最も多く使用されているが、その中でも酸化錫をドーパントとして含む酸化インジウム膜は、ITO(Indium Tin Oxide)膜と称され、特に低抵抗の膜が容易に得られることから、主に使用されている。
これらの酸化物透明導電膜を製造する主な手段として、スパッタリング法が用いられている。スパッタリング法は、蒸気圧の低い材料の成膜や精密な膜厚制御が必要とされる際に有効な手法であって、操作が非常に簡便であることから、工業的にも広範に利用されている。
スパッタリング法では、一般に、約10Pa以下のガス圧のもとで、透明導電膜を成膜する基板を陽極とし、スパッタリングターゲットを陰極として、これらの間にグロー放電を起こしてアルゴンプラズマを発生させ、プラズマ中のアルゴン陽イオンを陰極のスパッタリングターゲットに衝突させ、これによって弾き飛ばされるターゲット成分の粒子を基板上に堆積させることにより、膜を形成している。
スパッタリング法は、直流放電を利用する直流スパッタリング法と、高周波放電を利用する高周波スパッタリング法とに分類される。高周波スパッタリング法は、導電性ターゲットだけでなく、高抵抗ターゲットや、導電性材料と高抵抗材料が混合されたターゲットでも安定して成膜できるという利点を有するが、成膜速度が遅い、装置コストが高価などのデメリットを有している。一方、直流スパッタリング法は、装置価格が安価で、成膜操作も簡易であり、高速成膜に優れていることから、工業的には一般的に利用されている方法であるが、良質の導電性ターゲットを用いる必要がある。すなわち、導電性ターゲット内に微小の高抵抗物質が含まれていると、アルゴンイオンの照射で高抵抗物質が帯電して、成膜時にアーキングが発生してしまうため、このような高抵抗物質を含まない導電性ターゲットが必要とされる。
直流スパッタリング法のうち、直流マグネトロンスパッタリング法は、ターゲットの裏側に磁石を置き、磁界をかけてターゲット近傍にγ電子を閉じ込めることにより、成膜速度が早いという利点を有している。ITOなどの酸化物透明導電膜を、直流マグネトロンスパッタリング法で形成する場合、基板の温度を上げないと十分に低い抵抗の膜を得ることができない。これは、成膜時の基板温度が高いほど、膜の結晶性と添加成分のドーピングが改善され、得られる膜の抵抗値が低下するためである。
さらに、近年、酸化物透明導電膜の用途の多様化に伴い、低抵抗化の要求に加えて、可視光領域における高い透過率や膜の十分な結晶化などが要求されるようになってきている。 たとえば、ITOにより、このような要求を満たした透明導電膜を得ようとする場合、ITOの結晶化温度が高いため、基板温度を200℃程度まで上げる必要がある。しかしながら、透明導電膜の膜厚を15nm~40nm程度とした場合、可視波長(400nm~800nm)における平均透過率は、膜単体で95%程度であり、基板込みでは88%前後に留まっているのが現状である。
ITO以外の材料として、特開2005-290458号公報には、セリウムを含有した酸化インジウム系のスパッタリングターゲット材(In-Ce-O)と、このスパッタリングターゲットを用いて得られる透明導電膜に関する技術が開示されている。この透明導電膜は、非晶質で用いられることを前提としているが、基板温度を200℃以上としたり、200℃~250℃の温度で加熱したりすることにより、膜が結晶化することが示されている。
また、特開2004-43851号公報には、高い導電性と可視光領域での高い透過率を備える酸化物透明導電膜として、基板温度を200℃以上に加熱して成膜することにより結晶性としたタングステンを含有した酸化インジウム膜(In-W-O)が開示されている。
すなわち、これらのIn-Ce-OやIn-W-Oを用いた透明導電膜でも、高い透過率や膜の十分な結晶化を図るためには、200℃以上の温度での成膜や熱処理が必要とされている。
一方、近年のモバイル機器の発達により、デバイスの軽量化および低コスト化、安全性への要求が高まるにつれて、透明導電膜用の基板として、軽量かつ安価であり、割れないプラスチック板やプラスチックフィルムのような透明樹脂基板が多く用いられるようになってきている。これらの透明樹脂基板を用いる場合、基板を150℃以上に加熱することが難しく、結晶化した透明導電膜を形成することが困難となる。また、ガラス基板と比較した場合、透明樹脂基板は透過率が低いため、その上に透明導電膜を形成した場合に、全体として十分な透過率を得ることができないという問題もある。
特開平9-209134号公報および特開平9-161542号公報には、ITOよりも高抵抗の透明導電膜を直流スパッタリング法により得るため、ITOにチタン、イリジウム、コバルトなどの金属元素を添加した低抵抗のスパッタリングターゲットが開示されている。これらのスパッタリングターゲットを用いた場合、直流マグネトロンスパッタリング法により、基板温度を室温として成膜した場合であっても、透明導電膜が得られるとされている。
しかしながら、これらのスパッタリングターゲットは、いずれも十分な相対密度および比抵抗を備えたものとはなっていない。また、得られる膜もその目的から本来的に高抵抗の傾向があり、これらの文献には、高い導電性と可視光領域での高い透過率を兼ね備えた酸化物透明導電膜およびそのような特性の膜を得るための条件は示されていない。
本発明は、上述のような問題に鑑み、高い導電性と可視光領域での高い透過率を兼ね備えた、十分な結晶性を備える酸化物透明導電膜を提供すること、および、このような特性を備えた酸化物透明導電膜を、透明樹脂基板を用いて、直流スパッタリング法により成膜することを可能とする酸化物焼結体を提供することを目的としている。
本発明の酸化物焼結体は、酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する酸化物焼結体であって、Inに対するSnの原子比:Sn/Inが0.019~0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771~0.967、Sn/(In+Sn+Co)が0.016~0.091、Co/(In+Sn+Co)が0.015~0.15であり、その相対密度が98%以上であることを特徴とする。さらに、本発明の酸化物焼結体においては、その比抵抗が5×10-3Ω・cm以下であることが好ましい。
本発明の酸化物焼結体を、スパッタリングターゲットとして用いることで、150℃以下の低い基板温度での成膜によっても、次のような特性の酸化物透明導電膜を得ることが可能となる。
なお、このような酸化物焼結体は、平均粒径がいずれも0.05μm以上1.0μm未満である酸化インジウム粉、酸化スズ粉、酸化コバルト粉を原料粉末として用いて、この原料粉末に、水と水溶性バインダを配合し、得られたスラリーを粉砕し、10時間以上撹拌した後、乾燥、造粒を行い、得られた造粒粉を型に詰め、加圧成形し、得られた成形体を、酸素雰囲気中、1450℃~1600℃で12時間~25時間焼結することにより得ることができる。
一方、本発明の酸化物透明導電膜は、酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する透明導電膜であって、Inに対するSnの原子比:Sn/Inが0.019~0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771~0.967、Sn/(In+Sn+Co)が0.016~0.091、Co/(In+Sn+Co)が0.015~0.15であり、比抵抗が5×10-3Ω・cm以下であることを特徴とする。
本発明の酸化物透明導電膜においては、さらに、膜厚を15nm~40nmとした場合、波長400nm~800nmにおける膜単体の平均透過率が98%以上となることが好ましい。また、温度が95℃、湿度が95%の環境に、1000時間さらした場合であっても、その抵抗変化率は1.2以内となることが好ましい。
本発明の酸化物焼結体をスパッタリングターゲットとして用いて、直流スパッタリング法により、150℃以下の低い基板温度で成膜した場合であっても、比抵抗が5×10-3Ω・cm以下という低抵抗であり、かつ、可視波長400nm~800nmにおける膜単体の平均透過率が98%以上という高い透過率を備えた、結晶性の高い酸化物透明導電膜を得ることができる。すなわち、成膜時の基板として、透明樹脂基板を用いた場合でも、低抵抗かつ高い透過率を備えた結晶性の酸化物透明導電膜の成膜が可能となる。
また、本発明の酸化物焼結体は、相対密度が高く、低抵抗であるため、直流スパッタリング法による酸化物透明導電膜の成膜において、スパッタリングターゲットとして用いた場合でも、成膜時におけるアーキング、およびこれに起因するノジュールやパーティクルの発生を防止することができる。
以下、本発明について、(1)酸化物焼結体、(2)酸化物焼結体の製造方法、(3)透明導電膜の成膜、(4)透明導電膜に分けて詳述する。
(1)酸化物焼結体
本発明者らは、酸化インジウム系酸化物焼結体について鋭意研究を重ねた結果、a)酸化インジウム、酸化スズに加えて、酸化コバルトを添加し、かつ、これらの酸化物を構成する、インジウム(In)、スズ(Sn)、コバルト(Co)の各金属成分の組成比率を所定の範囲内に規制するとともに、所定の製造条件で酸化物焼結体を作製することにより、得られる酸化物焼結体の密度を上昇させ、その焼結体組織の緻密化を図ることが可能となること、b)本発明の酸化物焼結体をスパッタリングターゲットとして用いることにより、直流スパッタリング法でも、成膜時にアーキングを発生させることなく、かつ、150℃以下という低い基板温度でも、結晶性で、その比抵抗が5×10-3Ω・cm以下という低抵抗であり、かつ、可視波長400nm~800nmにおける膜単体の平均透過率が98%以上という高い透過率を備える酸化物透明導電膜を得ることができること、c)さらに、本発明の酸化物透明導電膜は、低抵抗かつ高い透過率を備えるとともに、高温高湿環境下(温度95℃、湿度95%、1000h)においても、抵抗変化が少ない優れた安定性を有すること、という知見を得て、本発明を完成するに至ったものである。
本発明者らは、酸化インジウム系酸化物焼結体について鋭意研究を重ねた結果、a)酸化インジウム、酸化スズに加えて、酸化コバルトを添加し、かつ、これらの酸化物を構成する、インジウム(In)、スズ(Sn)、コバルト(Co)の各金属成分の組成比率を所定の範囲内に規制するとともに、所定の製造条件で酸化物焼結体を作製することにより、得られる酸化物焼結体の密度を上昇させ、その焼結体組織の緻密化を図ることが可能となること、b)本発明の酸化物焼結体をスパッタリングターゲットとして用いることにより、直流スパッタリング法でも、成膜時にアーキングを発生させることなく、かつ、150℃以下という低い基板温度でも、結晶性で、その比抵抗が5×10-3Ω・cm以下という低抵抗であり、かつ、可視波長400nm~800nmにおける膜単体の平均透過率が98%以上という高い透過率を備える酸化物透明導電膜を得ることができること、c)さらに、本発明の酸化物透明導電膜は、低抵抗かつ高い透過率を備えるとともに、高温高湿環境下(温度95℃、湿度95%、1000h)においても、抵抗変化が少ない優れた安定性を有すること、という知見を得て、本発明を完成するに至ったものである。
まず、本発明の酸化物焼結体では、酸化スズの含有量を、Inに対するSnの原子比:Sn/Inで0.019~0.102の範囲内となるように規制している。酸化スズの含有量がSn/Inで0.019未満では、焼結体の相対密度が98%以上とならなくなってしまい、かつ、焼結体の比抵抗も5×10-3Ω・cm以下にならなくなってしまう。また、このような酸化スズの含有量が少ない焼結体を用いて成膜した透明導電膜では、膜の平均透過率が98%以上とならないばかりか、膜の比抵抗も5×10-3Ω・cmとならず、かつ、高温高湿環境下における抵抗変化率が1.2を超えてしまう。一方、酸化スズの含有量がSn/Inで0.102を超えると、成膜後の酸化物透明導電膜が150℃以下の基板温度では結晶化せず、かつ、得られた膜の平均透過率が98%以上とならなくなってしまう。酸化スズの含有量は、Sn/Inで0.040~0.102の範囲内であることが好ましい。
ただし、このような特性は、酸化インジウムに対する酸化スズの添加のみでは十分に得られるものではなく、さらに酸化コバルトを含有させることにより得られるものである。すなわち、本発明の酸化物焼結体では、酸化インジウム、酸化スズおよび酸化コバルトの含有量を、In、SnおよびCoの合計に対する各金属成分の原子比:In/(In+Sn+Co)で0.771~0.967、Sn/(In+Sn+Co)で0.016~0.091、Co/(In+Sn+Co)で0.015~0.15となるように、それぞれ規制している。
このように、所定量の酸化コバルトを含有させることにより、酸化物焼結体の密度が上昇し、焼結体組織の緻密化が図られるとともに、結晶性を向上させ、結晶配向性を一定方向に制御することができる。この酸化コバルトの作用により、酸化スズの含有量を規制したことによる、酸化物透明導電膜における、低抵抗かつ高い透過率という特性が安定して得られるとともに、特に、高温高湿環境下における抵抗変化率が1.2以下という優れた安定性がもたらされる。
酸化コバルトの含有量は、Coの、In、SnおよびCoの合計に対する原子比:Co/(In+Sn+Co)で、0.015~0.15とすることが必要である。酸化コバルトの含有量がCo/(In+Sn+Co)で0.015未満の場合には、酸化物焼結体の密度が十分に高くならず、焼結体の比抵抗も高いものとなる。この場合、得られる透明導電膜は、結晶性を有するものの、比抵抗は高くなる傾向にあり、かつ、その安定性が十分なものではなくなる。一方、酸化コバルトの含有量がCo/(In+Sn+Co)で0.15を超える場合には、高密度で低抵抗の酸化物焼結体が得られるものの、透明導電膜の結晶化温度が上昇するため、低い基板温度では、結晶化しにくくなるとともに、成膜後の膜の抵抗変化が不安定なものとなってしまう。なお、酸化コバルトの含有量は、Co/(In+Sn+Co)で0.05~0.15の範囲であることが好ましい。また、酸化インジウムの含有量は、In/(In+Sn+Co)で0.771~0.967の範囲、酸化スズの含有量は、Sn/(In+Sn+Co)で0.016~0.091の範囲であることが好ましい。
また、本発明の酸化物焼結体は、スパッタリング中に発生するアーキング、およびこれに起因するノジュールやパーティクルの発生など、膜の特性に影響を与える原因を有効に防止する観点から、その相対密度を98%以上とする必要があり、99%以上とすることがより好ましい。
本発明では、酸化物焼結体の組成比率を上述のように規制するとともに、その相対密度を98%以上とすることにより、酸化物焼結体の比抵抗(体積抵抗率)を5×10-3Ω・cm以下、好ましくは1.0×10-3Ω・cm以下となるようにしている。すなわち、本発明に規定する範囲よりも、低い相対密度、高い比抵抗の酸化物焼結体を用いた場合、高温環境下における抵抗変化率が悪化し、膜の安定性が劣るとともに、さらには膜の透過率が低くなり、かつ、膜の比抵抗も高いものとなる。
(2)酸化物焼結体の製造方法
上述のような特性を備える、本発明の酸化物焼結体の製造する際には、酸化インジウム(In2O3)粉、酸化スズ(SnO2)粉、酸化コバルト(CoO)粉とからなる原料粉末に、水と水溶性バインダを配合し、得られたスラリーを粉砕し、10時間以上攪拌した後、乾燥、造粒を行う。その後、得られた造粒粉を型に詰め、加圧成形し得られた成形体を、酸素含有雰囲気中、1450℃~1600℃で12時間~25時間焼結することが必要である。以下、各工程について詳述に説明する。
上述のような特性を備える、本発明の酸化物焼結体の製造する際には、酸化インジウム(In2O3)粉、酸化スズ(SnO2)粉、酸化コバルト(CoO)粉とからなる原料粉末に、水と水溶性バインダを配合し、得られたスラリーを粉砕し、10時間以上攪拌した後、乾燥、造粒を行う。その後、得られた造粒粉を型に詰め、加圧成形し得られた成形体を、酸素含有雰囲気中、1450℃~1600℃で12時間~25時間焼結することが必要である。以下、各工程について詳述に説明する。
(2-1)原料粉末
本発明に係る酸化物焼結体の原料としては、酸化インジウム粉、酸化スズ粉および酸化コバルト粉を使用することができ、これらの粉末の平均粒径は、いずれも0.05μm以上1.0μm未満であることが必要である。好ましくは、これらの粉末の平均粒径は、0.1μm以上0.8μm未満の範囲内である。
本発明に係る酸化物焼結体の原料としては、酸化インジウム粉、酸化スズ粉および酸化コバルト粉を使用することができ、これらの粉末の平均粒径は、いずれも0.05μm以上1.0μm未満であることが必要である。好ましくは、これらの粉末の平均粒径は、0.1μm以上0.8μm未満の範囲内である。
平均粒径が0.05μm未満の場合には、粉末が凝集して、均一に混合することが困難となる。一方、1.0μm以上になると、得られる酸化物焼結体において、相対密度を98%以上とすることができなくなる。このため、スパッタリング中に発生するアーキングが発生し、これに起因するノジュールやパーティクルの発生などに起因して、膜の特性が悪化してしまう。
なお、これらの粉末の混合比は、目的とする酸化物焼結体の組成比率、すなわち各金属成分の原子比に応じたものとすればよい。具体的には、Inに対するSnの原子比:Sn/Inが0.019~0.102となるようにし、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771~0.967、Sn/(In+Sn+Co)が0.016~0.091、Co/(In+Sn+Co)が0.015~0.15となるように調合すればよい。
(2-2)湿式粉砕工程
次に、これらの原料粉末に対して、水溶性バインダを0.5質量%~1.5質量%となるように加え、さらに水とともに樹脂製ポットに入れ、湿式粉砕および混合を行う。水溶性バインダとしては、加熱により消失または気化する公知のバインダであれば限定されず、たとえば、ポリビニルアルコール(PVA)、ポリビニルブチラール、メチルセルロースなどを使用することが可能である。
次に、これらの原料粉末に対して、水溶性バインダを0.5質量%~1.5質量%となるように加え、さらに水とともに樹脂製ポットに入れ、湿式粉砕および混合を行う。水溶性バインダとしては、加熱により消失または気化する公知のバインダであれば限定されず、たとえば、ポリビニルアルコール(PVA)、ポリビニルブチラール、メチルセルロースなどを使用することが可能である。
また、この工程には、ボールミル、ビーズミルなど公知の手段を用いることができる。コストの面ではボールミルを採用することが好ましいが、ボールミルでは粉砕時間が非常に掛かるため、作業効率の面からは、ビーズミルを使用することが好ましい。ボールやビーズとしては、たとえば、硬質のジルコニア(ZrO2)製のものを用いることが好ましい。また、ボール径またはビーズ径によっても粉砕性が変わることから、ボールの場合にはφ2mm~φ6mm程度、ビーズの場合にはφ0.2mm~φ0.7mm程度のものを用いることが好ましい。ボール径またはビーズ径が上記範囲を外れる場合には、所定の粉砕能力が得ることが出来ず、量産性や品質が低下する可能性がある。
湿式粉砕および混合の条件は、ボールミルの場合には回転数を50rpm~70rpmとして、粉砕・混合時間を15時間~28時間とすることが好ましい。また、ビーズミルの場合には回転数を1300rpm~1700rpmとして、粉砕・混合時間を3時間~6時間とすることが好ましい。粉砕および混合の時間が不足すると、最終的に得られる焼結体密度が低下する。逆に長すぎても、ジルコニアが不純物として混入して、同様に焼結体密度が低下する。
以上の処理により、平均粒径が0.5μm以下の原料粉末を含むスラリーが得られる。平均粒径が0.5μmを超える場合には、密度低下という問題が生ずる。この平均粒径は、0.1μm~0.5μmの範囲にあるようにすることが好ましい。また、生産性の観点から、スラリーの粘度は30mPa・s~600mPa・sとすることが好ましい。
(2-3)噴霧乾燥工程
前記工程により得られた原料粉末を含むスラリーについて、噴霧乾燥を行い、造粒粉を得る。特に、スプレードライヤを用いることにより、球状の造粒粉を得ることが好ましい。なお、噴霧乾燥時の乾燥温度は、120℃~200℃の範囲とすることが好ましい。また、装置に応じて、球状の造粒粉が得られるように排風量などにより乾燥速度を適宜調整することが好ましい。噴霧乾燥には、量産性に優れたディスクを用いたスプレードライヤを用いることが好ましく、ディスク回転数:8000rpm~15000rpm、スラリー濃度40%以上とすることで、球状の成形性に優れる造粒粉が得られる。乾燥温度を低くすることで、バインダが硬くならず、成形時に近接する粒同士が変形および密着することで、高強度の成形体が得られる。造粒粉の粒径は、平均粒径で40μm~100μmとすることが望ましい。
前記工程により得られた原料粉末を含むスラリーについて、噴霧乾燥を行い、造粒粉を得る。特に、スプレードライヤを用いることにより、球状の造粒粉を得ることが好ましい。なお、噴霧乾燥時の乾燥温度は、120℃~200℃の範囲とすることが好ましい。また、装置に応じて、球状の造粒粉が得られるように排風量などにより乾燥速度を適宜調整することが好ましい。噴霧乾燥には、量産性に優れたディスクを用いたスプレードライヤを用いることが好ましく、ディスク回転数:8000rpm~15000rpm、スラリー濃度40%以上とすることで、球状の成形性に優れる造粒粉が得られる。乾燥温度を低くすることで、バインダが硬くならず、成形時に近接する粒同士が変形および密着することで、高強度の成形体が得られる。造粒粉の粒径は、平均粒径で40μm~100μmとすることが望ましい。
(2-4)成形工程
噴霧乾燥工程を経て得られた造粒粉を、ゴム型に充填し、冷間静水圧プレス(CIP)を用いて、250MPa~350MPaの圧力、より好ましくは280MPa~320MPaの圧力で、成形を行う。この際、一軸プレスによる予備成形を実施した後に、CIPを行ってもよい。成形圧力が250MPa未満の場合には、造粒粉同士の間に空孔ができ、酸化物焼結体の相対密度を98%以上とすることができない。一方、350MPaを越えても、それ以上の効果を得ることができず、また、装置の耐久性の観点からも量産に適しているとはいえない。なお、成形時における最高圧力の保持時間は、1分~10分とすることが好ましい。
噴霧乾燥工程を経て得られた造粒粉を、ゴム型に充填し、冷間静水圧プレス(CIP)を用いて、250MPa~350MPaの圧力、より好ましくは280MPa~320MPaの圧力で、成形を行う。この際、一軸プレスによる予備成形を実施した後に、CIPを行ってもよい。成形圧力が250MPa未満の場合には、造粒粉同士の間に空孔ができ、酸化物焼結体の相対密度を98%以上とすることができない。一方、350MPaを越えても、それ以上の効果を得ることができず、また、装置の耐久性の観点からも量産に適しているとはいえない。なお、成形時における最高圧力の保持時間は、1分~10分とすることが好ましい。
(2-5)脱バインダ工程
次に、得られた成形体を焼結炉内に設置し、炉内の酸素濃度を30体積%以上に維持した状態で、加熱(脱バインダ)を行う。この際、炉内の酸素の流通量は、成形体の大きさや形状に応じて適宜選択されるべきものであるが、90L/分~110L/分程度の割合で炉内に酸素を流通させることが好ましい。
次に、得られた成形体を焼結炉内に設置し、炉内の酸素濃度を30体積%以上に維持した状態で、加熱(脱バインダ)を行う。この際、炉内の酸素の流通量は、成形体の大きさや形状に応じて適宜選択されるべきものであるが、90L/分~110L/分程度の割合で炉内に酸素を流通させることが好ましい。
このように炉内に酸素を流通させて酸素濃度を30体積%以上に維持することにより、水溶性バインダが分解されて発生したガスが、酸素と共に炉外へ排出されるため、脱バインダを促進することができるばかりでなく、成形体表面が還元されることを抑制することができるため、高強度、高密度の焼結体を得ることができる。一方、酸素の流通量が十分でない場合、または、炉内の酸素濃度が不足する場合には、上記の効果を得ることができない。なお、酸素濃度は100体積%(純酸素雰囲気)まで採用することができるが、コストの観点から30体積%程度とすれば十分である。
脱バインダ時における加熱温度は200℃~800℃とし、加熱時間は30時間以上とすることが好ましい。加熱温度が200℃未満ではバインダが揮発せずに残ってしまい、焼結体密度の低下につながる。一方、800℃を超えると、脱バインダ工程中に成形体の収縮が始まるため、バインダが焼結体内部に残り、密度低下という問題が生じる。また、加熱時間が30時間未満では、バインダが十分に分解されない可能性がある。なお、加熱時における成形体の割れを防止する観点から、昇温速度は0.1℃/分~1.5℃/分とすることが好ましく、0.3℃/分~1.0℃/分とすることがより好ましい。
(2-6)焼成工程
脱バインダ工程後、常圧の大気雰囲気下、1450℃~1600℃の温度で、10時間~25時間の焼成を行い、成形体を焼結させる。なお、焼成工程は、脱バインダ工程と連続して同じ加熱炉で行うことが好ましい。
脱バインダ工程後、常圧の大気雰囲気下、1450℃~1600℃の温度で、10時間~25時間の焼成を行い、成形体を焼結させる。なお、焼成工程は、脱バインダ工程と連続して同じ加熱炉で行うことが好ましい。
焼成温度は1450℃~1600℃とすることが好ましく、1470℃~1570℃とすることがより好ましい。このような温度範囲で焼成を行うことにより、液相焼結が充分に進行して焼結体密度を高くすることができ、さらには酸化インジウムの溶融を防止して、所望の形状の焼結体の作製が行いやすくなる。
また、上記の焼成温度での保持時間は、10時間~25時間とすることが好ましく、15時間~20時間とすることがより好ましい。この範囲内であれば、焼結時間の短縮(電力の使用量減)と高い生産性を実現しつつ、高品質な酸化インジウム系酸化物焼結体を得ることができる。
なお、成形体の割れを防止しつつ、粒成長を均一に行わせる観点から、昇温速度は0.1℃/分~1.5℃/分とすることが好ましく、0.3℃/分~1.0℃/分とすることがより好ましい。さらに、上記焼成温度で所定時間保持した後は、0.2℃/分~1.2℃/分の範囲の冷却速度で室温付近まで冷却することが好ましい。
(3)透明導電膜の成膜
本発明の酸化物焼結体をスパッタリングターゲットに用いて成膜を行う際のスパッタリング法については、何ら制限されることなく、公知のいずれの手段をも用いることができるが、量産性の観点から、直流スパッタリング法、特に、直流マグネトロンスパッタリング装置を用いた手段を採ることが好ましい。本発明のスパッタリングターゲットは、相対密度が98%以上と高いため、直流スパッタリング法を用いても、アーキングやノジュールの発生は抑制される。
本発明の酸化物焼結体をスパッタリングターゲットに用いて成膜を行う際のスパッタリング法については、何ら制限されることなく、公知のいずれの手段をも用いることができるが、量産性の観点から、直流スパッタリング法、特に、直流マグネトロンスパッタリング装置を用いた手段を採ることが好ましい。本発明のスパッタリングターゲットは、相対密度が98%以上と高いため、直流スパッタリング法を用いても、アーキングやノジュールの発生は抑制される。
また、本発明の酸化物焼結体をスパッタリングターゲットとして成膜を行った場合、スパッタリング時の基板温度を150℃以下とした場合であっても、高い結晶性を有する膜を得ることができるため、特に、透明プラスチック基板などの樹脂基板に成膜する場合に、高い透過率を得ることができる。
本発明の酸化物焼結体をスパッタリングターゲットに用いて成膜する際の条件については、基板温度を除き、特に限定されることはなく、通常の条件において成膜することができる。たとえば、直流マグネトロンスパッタリング装置により、スパッタリングを行う場合には、ターゲット-基板間距離:35mm~120mm、到達真空度:1×10-3Pa以下、導入ガス:0%~10%のO2ガスを含むArガス、ガス圧:0.1Pa~10.0Pa、投入電力:直流0.55W/cm2~5.50W/cm2とする。なお、基板温度は室温から加熱を行わないことにより、150℃未満の温度としてもよく、必要に応じて、基板を冷却して、150℃未満の所定温度に保持するようにしてもよい。
(4)透明導電膜
このようにして得られる本発明の透明導電膜は、酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する透明導電膜であって、Inに対するSnの原子比:Sn/Inが0.019~0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771~0.967、Sn/(In+Sn+Co)が0.016~0.091、Co/(In+Sn+Co)が0.015~0.15であり、比抵抗が5×10-3Ω・cm以下である。なお、透明導電膜の比抵抗は、1×10-3Ω・cm以下であることが好ましい。
このようにして得られる本発明の透明導電膜は、酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する透明導電膜であって、Inに対するSnの原子比:Sn/Inが0.019~0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771~0.967、Sn/(In+Sn+Co)が0.016~0.091、Co/(In+Sn+Co)が0.015~0.15であり、比抵抗が5×10-3Ω・cm以下である。なお、透明導電膜の比抵抗は、1×10-3Ω・cm以下であることが好ましい。
透明導電膜の組成は、成膜条件に依存する場合もあるが、通常は適切な設定により、成膜材料として用いられる酸化物焼結体の組成と同様とすることができる。すなわち、透明導電膜の組成に基づいて、酸化物焼結体の組成を決定することにより、成膜によって、所望の組成の透明導電膜が得られることとなる。
本発明の透明導電膜では、その膜厚が15nm~40nmの場合に、400nm~800nmの可視光を用いて、分光光度計や分光エリプソメトリにより透過率を測定した場合、平均透過率が膜単体で98%以上となる。
また、基板を無加熱で成膜した場合であっても、高い結晶性を有する結晶質の透明導電膜となる。これについては、X線回折を用いた測定において、(222)面の回折ピークが強く測定されるか否かにより、確認することができる。この面の回折ピークが強く測定される場合、本発明の透明導電膜は、(222)面に主配向しており、結晶性が非常に高い膜となっているといえる。
さらには、この透明導電膜は、温度95℃、湿度95%の環境下に1000時間さらした場合であっても、その抵抗変化率が1.2以内、好ましくは1.0以下となる。このような特性は、この透明導電膜が適用された製品を高温環境下の屋外で使用する場合や、車載用の電子機器など適用する場合に、特に有効なものである。
(実施例1)
原料粉末として、酸化インジウム(In2O3)粉末(純度99.9%、平均粒径約0.9μm)、酸化スズ(SnO2)粉末(純度99.9%、平均粒径約0.9μm)、および酸化コバルト(CoO)粉末(純度99.9%、平均粒径約0.8μm)の3種類の原料粉末を用意した。
原料粉末として、酸化インジウム(In2O3)粉末(純度99.9%、平均粒径約0.9μm)、酸化スズ(SnO2)粉末(純度99.9%、平均粒径約0.9μm)、および酸化コバルト(CoO)粉末(純度99.9%、平均粒径約0.8μm)の3種類の原料粉末を用意した。
これらの原料粉末を、それぞれの含有量が以下の原子比となるように調整した上で、樹脂製ポットに入れた。
Sn/In=0.019
In/(In+Sn+Co)=0.967
Sn/(In+Sn+Co)=0.018
Co/(In+Sn+Co)=0.015
さらに、水溶性バインダとしてポリビニルアルコールを、前記原料粉末の総量に対して1.4質量%となるように秤量し、純水とともに樹脂製ポットに入れ、ボールミル(5mmφのZrO2ボールを使用)により24時間粉砕および混合を行い、スラリーを得た。その後、スプレードライヤ(大川原化工機株式会社製、ODL-20型)により、噴霧乾燥を行うことにより、平均粒径が50μmの造粒粉を得た。得られた造粒粉をφ150mm寸法の型へ充填し、冷間静水圧プレスで最高圧力を294MPa(3ton/cm2)として成形体を得た。
In/(In+Sn+Co)=0.967
Sn/(In+Sn+Co)=0.018
Co/(In+Sn+Co)=0.015
さらに、水溶性バインダとしてポリビニルアルコールを、前記原料粉末の総量に対して1.4質量%となるように秤量し、純水とともに樹脂製ポットに入れ、ボールミル(5mmφのZrO2ボールを使用)により24時間粉砕および混合を行い、スラリーを得た。その後、スプレードライヤ(大川原化工機株式会社製、ODL-20型)により、噴霧乾燥を行うことにより、平均粒径が50μmの造粒粉を得た。得られた造粒粉をφ150mm寸法の型へ充填し、冷間静水圧プレスで最高圧力を294MPa(3ton/cm2)として成形体を得た。
さらに、この成形体を焼結炉(丸祥電器株式会社製)内に設置し、炉内容積1m3当たり100L/分の割合で酸素を流通させることにより、酸素濃度を30%以上に維持した状態で700℃まで加熱し、脱バインダ処理を34時間行った。その後、炉内雰囲気を大気雰囲気として、最高温度を1550℃として20時間の焼成を行い、焼結体を得た。
上記焼結体を研削加工し、直径4インチ(101.6mm)、厚み5mmサイズの酸化インジウム系スパッタリングターゲットを作製した。なお、得られたスパッタリングターゲットをICP発光分光測定装置(株式会社島津製作所製、ICPS8100)で組成分析を行ったところ、原料粉末の組成比と同一であることが確認された。実施例1の原料粉末の組成範囲および焼結温度について、表1に示す。
得られた酸化インジウム系スパッタリングターゲットについて、相対密度および焼結体の比抵抗について測定をした。
[相対密度]
スパッタリングターゲットを一定の大きさに切り出した試料について、アルキメデス法により密度の測定を行った。次に、各原料の密度を酸化インジウム:7.14g/cm3、酸化スズ:6.95g/cm3、酸化コバルト:6.1g/cm3として加重平均密度(理論密度)を算出し、この加重平均密度を100%として、相対密度を算出した。この結果、実施例1のスパッタリングターゲットの相対密度は、98.8%であった。
スパッタリングターゲットを一定の大きさに切り出した試料について、アルキメデス法により密度の測定を行った。次に、各原料の密度を酸化インジウム:7.14g/cm3、酸化スズ:6.95g/cm3、酸化コバルト:6.1g/cm3として加重平均密度(理論密度)を算出し、この加重平均密度を100%として、相対密度を算出した。この結果、実施例1のスパッタリングターゲットの相対密度は、98.8%であった。
[焼結体の比抵抗]
酸化物焼結体の比抵抗は、四探針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP-T360型)を用いて測定した。この結果、実施例1のスパッタリングターゲットの比抵抗は、4.0×10-3Ω・cmであった。
酸化物焼結体の比抵抗は、四探針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP-T360型)を用いて測定した。この結果、実施例1のスパッタリングターゲットの比抵抗は、4.0×10-3Ω・cmであった。
得られたスパッタリングターゲットを無酸素銅製のバッキングプレートにメタルボンディングして、直流電源を用いたマグネトロンスパッタリング装置(株式会社トッキ製)にセットし、下記の条件でスパッタリングを行い、膜厚25nmの透明導電膜を得た。基板についてはガラス基板を使用し、基板加熱は行わずに成膜した。
(スパッタリング条件)
基板間距離:60mm
到達真空度:6×10-4Pa
基板温度 :室温(加熱なし)
得られた透明導電膜の組成をICP発光分光測定装置により確認したところ、スパッタリングターゲットの組成比と同一であった。この透明導電膜について、結晶性、透過率、比抵抗および抵抗変化を測定した。
基板間距離:60mm
到達真空度:6×10-4Pa
基板温度 :室温(加熱なし)
得られた透明導電膜の組成をICP発光分光測定装置により確認したところ、スパッタリングターゲットの組成比と同一であった。この透明導電膜について、結晶性、透過率、比抵抗および抵抗変化を測定した。
[透明導電膜の結晶性]
多目的X線回折装置(スペクトリス株式会社製、X’Pert-PRO MPD)を用いて、得られた透明導電酸化物膜の結晶性の確認を行った。(222)面の回折ピークが観測された場合は結晶性の膜が得られているものとし、回折ピークが観察されなかった場合は膜が結晶化していないと判定した。この結果、実施例1の透明導電膜は、高い結晶性を有していることが確認された。
多目的X線回折装置(スペクトリス株式会社製、X’Pert-PRO MPD)を用いて、得られた透明導電酸化物膜の結晶性の確認を行った。(222)面の回折ピークが観測された場合は結晶性の膜が得られているものとし、回折ピークが観察されなかった場合は膜が結晶化していないと判定した。この結果、実施例1の透明導電膜は、高い結晶性を有していることが確認された。
[透明導電膜の透過率]
得られた透明導電酸化物膜について、分光光度計(日本分光株式会社製、UbestV-570iRM/DS)を用いて、波長400nm~800nmの光の透過率を測定した。波長500nm~600nmに透過率のピークが観察された。波長400nm~800nmの透過率の平均値は98.2%であった。
得られた透明導電酸化物膜について、分光光度計(日本分光株式会社製、UbestV-570iRM/DS)を用いて、波長400nm~800nmの光の透過率を測定した。波長500nm~600nmに透過率のピークが観察された。波長400nm~800nmの透過率の平均値は98.2%であった。
[透明導電膜の比抵抗、抵抗変化率]
透明導電膜の比抵抗は、四探針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP-T360型)で測定した表面抵抗と膜厚の積から算出した。透明導電膜の膜厚は接触式表面粗さ計(テンコール社製)を用いて未成膜部分と成膜部分の段差測定から求めた。
透明導電膜の比抵抗は、四探針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP-T360型)で測定した表面抵抗と膜厚の積から算出した。透明導電膜の膜厚は接触式表面粗さ計(テンコール社製)を用いて未成膜部分と成膜部分の段差測定から求めた。
さらに、透明導電膜を温度が95℃、湿度が95%の環境に、1000時間さらす試験を行い、試験前の表面抵抗R0に対する試験後の表面抵抗Rから、R/R0として抵抗変化率を求めた。この結果、実施例1の比抵抗は3.0×10-3Ω・cm、抵抗変化率は1.20であった。
実施例1のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
(実施例2~8)
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして、スパッタリングターゲットを得た。これらのスパッタリングターゲットについて、ICP発光分光法で組成分析を行ったところ、実施例1と同様に、いずれも原料粉末の組成比と同一であることが確認された。また、これらのスパッタリングターゲットを用いて成膜した透明導電膜についてもICP発光分光測定装置で組成分析を行ったところ、実施例1と同様に、いずれもスパッタリングターゲットの組成比と同一であることが確認された。
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして、スパッタリングターゲットを得た。これらのスパッタリングターゲットについて、ICP発光分光法で組成分析を行ったところ、実施例1と同様に、いずれも原料粉末の組成比と同一であることが確認された。また、これらのスパッタリングターゲットを用いて成膜した透明導電膜についてもICP発光分光測定装置で組成分析を行ったところ、実施例1と同様に、いずれもスパッタリングターゲットの組成比と同一であることが確認された。
実施例2~8のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
(比較例1、2)
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして、スパッタリングターゲットを得た。比較例1は、Sn/InとSn/(In+Sn+Co)が本発明の範囲を下回り、In/(In+Sn+Co)が本発明の範囲を上回る例である。比較例2は、Sn/InとSn/(In+Sn+Co)が本発明の範囲を下回る例である。
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして、スパッタリングターゲットを得た。比較例1は、Sn/InとSn/(In+Sn+Co)が本発明の範囲を下回り、In/(In+Sn+Co)が本発明の範囲を上回る例である。比較例2は、Sn/InとSn/(In+Sn+Co)が本発明の範囲を下回る例である。
これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例1および2のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
(比較例3~5)
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして酸化物焼結体を得た。比較例3は、Sn/InとSn/(In+Sn+Co)がともに本発明の範囲を上回る例である。比較例4は、Sn/Inが本発明の範囲を上回り、In/(In+Sn+Co)が本発明の範囲を下回る例である。比較例5は、Sn/Inのみが本発明の範囲を上回る例である。
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして酸化物焼結体を得た。比較例3は、Sn/InとSn/(In+Sn+Co)がともに本発明の範囲を上回る例である。比較例4は、Sn/Inが本発明の範囲を上回り、In/(In+Sn+Co)が本発明の範囲を下回る例である。比較例5は、Sn/Inのみが本発明の範囲を上回る例である。
これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例3~5のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
(比較例6)
焼成温度を1400℃にした以外は、実施例4と同様にして酸化物焼結体を得た。これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例6のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
焼成温度を1400℃にした以外は、実施例4と同様にして酸化物焼結体を得た。これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例6のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
(比較例7、8)
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして酸化物焼結体を得た。比較例7は、In/(In+Sn+Co)が本発明の範囲を上回り、Co/(In+Sn+Co)が本発明の範囲を下回る例である。比較例8は、In/(In+Sn+Co)が本発明の範囲を下回り、Co/(In+Sn+Co)が本発明の範囲を上回る例である。
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして酸化物焼結体を得た。比較例7は、In/(In+Sn+Co)が本発明の範囲を上回り、Co/(In+Sn+Co)が本発明の範囲を下回る例である。比較例8は、In/(In+Sn+Co)が本発明の範囲を下回り、Co/(In+Sn+Co)が本発明の範囲を上回る例である。
これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例7および8のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
(比較例9~14)
比較例9~14では、平均粒径が1.0μm以上の原料粉末を1種以上用いたこと以外は、それぞれ実施例1~6と同様にして、酸化物焼結体を得た。これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例9~14のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
比較例9~14では、平均粒径が1.0μm以上の原料粉末を1種以上用いたこと以外は、それぞれ実施例1~6と同様にして、酸化物焼結体を得た。これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例9~14のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
(評価)
実施例1~8のスパッタリングターゲットは、いずれも98%以上の相対密度が得られていた。また、実施例1~8のスパッタリングターゲットを用いて得られた透明導電膜は、その比抵抗が5×10-3Ω・cm以下となり、タッチパネル等に好適な導電性を示していた。また、透過率についても、それぞれ98%以上と高い値を示した。なお、実施例1~8のスパッタリングターゲットを用いて成膜する際に、アーキングやノジュールの発生は、ほとんどみられなかった。
実施例1~8のスパッタリングターゲットは、いずれも98%以上の相対密度が得られていた。また、実施例1~8のスパッタリングターゲットを用いて得られた透明導電膜は、その比抵抗が5×10-3Ω・cm以下となり、タッチパネル等に好適な導電性を示していた。また、透過率についても、それぞれ98%以上と高い値を示した。なお、実施例1~8のスパッタリングターゲットを用いて成膜する際に、アーキングやノジュールの発生は、ほとんどみられなかった。
これに対して、Snの含有量が少ない比較例1および2のスパッタリングターゲットは、その相対密度が98%以上とならず、比抵抗も5×10-3Ω・cmを超えており、これらを用いて得られた透明導電膜は、透過率、比抵抗および抵抗変化率のいずれも不十分なものであった。
一方、Snの含有量が多い比較例3~5では、透明導電膜は結晶性が悪く、酸化コバルトの添加による結晶化促進の効果が薄れることが理解された。
焼結温度が本発明の範囲から外れていた比較例6では、スパッタリングターゲットの相対密度が98%以上とならず、比抵抗も5×10-3Ω・cmを超えており、これらを用いて得られた透明導電膜は、比抵抗および抵抗変化率のいずれも不十分なものであった。
比較例7および8のように酸化コバルトの含有量が、本発明の範囲外の場合には、抵抗変化率が大きくなった。特に、酸化コバルトの含有量が多い比較例8では、結晶性の悪化も確認された。
平均粒径が1μm以上の原料粉末を1種以上用いた比較例9~14では、スパッタリングターゲットの相対密度が98%以上とならず、スパッタリングターゲットおよび透明導電膜のいずれも比抵抗が5×10-3Ω・cmを上回ってしまった。
また、これらの比較例のうち、スパッタリングターゲットの相対密が98%未満である比較例1、2、6、7および9~14については、実施例1~9と比べて、成膜時にアーキングやノジュールの発生が多く見られ、膜特性の悪化や生産効率の低下が確認された。
本発明の酸化物焼結体は、太陽電池用透明導電膜、タッチパネル用透明導電膜、フラットパネルディスプレイなどの液晶表示装置用透明導電膜、有機EL透明導電膜などの高い透過率を必要とする用途に加え、近年、透明プラスチックフィルム基板が必要とされているフィルムタッチパネル用途での透明導電膜を、直流スパッタリング法により得るためのスパッタリングターゲットとして好適である。
Claims (7)
- 酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する酸化物焼結体であって、Inに対するSnの原子比:Sn/Inが0.019~0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771~0.967、Sn/(In+Sn+Co)が0.016~0.091、Co/(In+Sn+Co)が0.015~0.15であり、相対密度が98%以上である、酸化物焼結体。
- 比抵抗が5×10-3Ω・cm以下である、請求項1に記載の酸化物焼結体。
- 直流スパッタリング法におけるスパッタリングターゲットとして用いた場合に、基板温度150℃以下で成膜を行った場合でも、アーキングを発生させることなく、酸化物透明導電膜の成膜を可能とする、請求項1に記載の酸化物焼結体。
- 平均粒径がいずれも0.05μm以上1.0μm未満である酸化インジウム粉、酸化スズ粉、酸化コバルト粉を原料粉末として用い、この原料粉末に、水と水溶性バインダを配合し、得られたスラリーを粉砕し、10時間以上撹拌した後、乾燥、造粒を行い、得られた造粒粉を型に詰め、加圧成形し、得られた成形体を、酸素雰囲気中、1450℃~1600℃で12時間~25時間焼結する工程を備える、請求項1に記載の酸化物焼結体の製造方法。
- 酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する透明導電膜であって、Inに対するSnの原子比:Sn/Inが0.019~0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771~0.967、Sn/(In+Sn+Co)が0.016~0.091、Co/(In+Sn+Co)が0.015~0.15であり、比抵抗が5×10-3Ω・cm以下である、酸化物透明導電膜。
- 膜厚15nm~40nmで、波長400nm~800nmにおける膜単体の平均透過率が98%以上である、請求項3に記載の酸化物透明導電膜。
- 温度が95℃、湿度が95%の環境に、1000時間さらした前後における抵抗変化率が1.2以内である、請求項3また4に記載の酸化物透明導電膜。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-208191 | 2011-09-22 | ||
JP2011208191A JP2013067538A (ja) | 2011-09-22 | 2011-09-22 | 酸化物焼結体および酸化物透明導電膜 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013042747A1 true WO2013042747A1 (ja) | 2013-03-28 |
Family
ID=47914507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/074111 WO2013042747A1 (ja) | 2011-09-22 | 2012-09-20 | 酸化物焼結体およびその製造方法並びに酸化物透明導電膜 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013067538A (ja) |
TW (1) | TW201326082A (ja) |
WO (1) | WO2013042747A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6380259B2 (ja) * | 2015-06-26 | 2018-08-29 | 住友金属鉱山株式会社 | 酸化物透明導電膜積層体、光電変換素子、および光電変換素子の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09161542A (ja) * | 1995-12-07 | 1997-06-20 | Idemitsu Kosan Co Ltd | 透明導電積層体およびこれを用いたタッチパネル |
JPH10269843A (ja) * | 1998-04-13 | 1998-10-09 | Tosoh Corp | 導電性金属酸化物焼結体及びその用途 |
JPH11322413A (ja) * | 1998-02-16 | 1999-11-24 | Japan Energy Corp | 光透過膜、高抵抗透明導電膜、光透過膜形成用スパッタリングタ―ゲット及び高抵抗透明導電膜の製造方法 |
-
2011
- 2011-09-22 JP JP2011208191A patent/JP2013067538A/ja not_active Withdrawn
-
2012
- 2012-09-20 WO PCT/JP2012/074111 patent/WO2013042747A1/ja active Application Filing
- 2012-09-21 TW TW101134648A patent/TW201326082A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09161542A (ja) * | 1995-12-07 | 1997-06-20 | Idemitsu Kosan Co Ltd | 透明導電積層体およびこれを用いたタッチパネル |
JPH11322413A (ja) * | 1998-02-16 | 1999-11-24 | Japan Energy Corp | 光透過膜、高抵抗透明導電膜、光透過膜形成用スパッタリングタ―ゲット及び高抵抗透明導電膜の製造方法 |
JPH10269843A (ja) * | 1998-04-13 | 1998-10-09 | Tosoh Corp | 導電性金属酸化物焼結体及びその用途 |
Non-Patent Citations (2)
Title |
---|
EDITED BY JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE: "The 166th Committee on Photonic and Electronic Oxide", TOMEI DODENMAKU NO GIJUTSU, 1ST EDITION, OHMSHA, LTD., 30 March 1999 (1999-03-30), pages 196 - 201 * |
JOLANTA STANKIEWICZ: "Magnetic behavior of sputtered Co-doped indium-tin oxide films", PHYSICAL REVIEW B, vol. 75, no. 23, 2007, pages 235308-1 - 235308-6, XP003030958 * |
Also Published As
Publication number | Publication date |
---|---|
TW201326082A (zh) | 2013-07-01 |
JP2013067538A (ja) | 2013-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5349587B2 (ja) | 酸化インジウム焼結体、酸化インジウム透明導電膜及び該透明導電膜の製造方法 | |
JP4885274B2 (ja) | アモルファス複合酸化膜、結晶質複合酸化膜、アモルファス複合酸化膜の製造方法および結晶質複合酸化膜の製造方法 | |
JP6291593B2 (ja) | Itoスパッタリングターゲット及びその製造方法並びにito透明導電膜の製造方法 | |
KR101243403B1 (ko) | 투명 도전막 제조용의 산화물 소결체 | |
WO2013042423A1 (ja) | Zn-Si-O系酸化物焼結体とその製造方法および透明導電膜 | |
CN103717779A (zh) | Zn-Sn-O系氧化物烧结体及其制造方法 | |
JP5987105B2 (ja) | Itoスパッタリングターゲット及びその製造方法 | |
US11377725B2 (en) | Oxide sintered body and transparent conductive oxide film | |
JP2012054335A (ja) | 酸化物焼結体及び酸化物半導体薄膜 | |
TWI387574B (zh) | Oxide sintered body for the manufacture of transparent conductive films | |
JP2011074479A (ja) | 透明導電性酸化亜鉛系薄膜製造用のイオンプレーティング用ターゲット、および透明導電性酸化亜鉛系薄膜 | |
JP6267297B1 (ja) | 焼結体、スパッタリングターゲット及びその製造方法 | |
JP5907086B2 (ja) | 酸化インジウム系の酸化物焼結体およびその製造方法 | |
WO2013042747A1 (ja) | 酸化物焼結体およびその製造方法並びに酸化物透明導電膜 | |
JP6155919B2 (ja) | 複合酸化物焼結体及び酸化物透明導電膜 | |
JP2003239063A (ja) | 透明導電性薄膜とその製造方法及びその製造に用いるスパッタリングターゲット | |
TWI418529B (zh) | Oxide sintered body and oxide semiconductor thin film | |
WO2014021374A1 (ja) | 酸化物焼結体およびそれを加工したタブレット | |
JP2007131891A (ja) | SnO2系スパッタリングターゲットおよびその製造方法 | |
TW201522689A (zh) | 濺鍍靶及其製造方法 | |
EP3441376A1 (en) | Oxide sintered body and transparent conductive oxide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12833594 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12833594 Country of ref document: EP Kind code of ref document: A1 |