[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012137672A1 - パターン形成方法およびパターン - Google Patents

パターン形成方法およびパターン Download PDF

Info

Publication number
WO2012137672A1
WO2012137672A1 PCT/JP2012/058510 JP2012058510W WO2012137672A1 WO 2012137672 A1 WO2012137672 A1 WO 2012137672A1 JP 2012058510 W JP2012058510 W JP 2012058510W WO 2012137672 A1 WO2012137672 A1 WO 2012137672A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acrylate
meth
photocurable composition
pattern
Prior art date
Application number
PCT/JP2012/058510
Other languages
English (en)
French (fr)
Inventor
児玉 邦彦
児玉 憲一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012137672A1 publication Critical patent/WO2012137672A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/08Coating a former, core or other substrate by spraying or fluidisation, e.g. spraying powder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention relates to a pattern forming method.
  • the present invention relates to a pattern forming method for forming a component of an electronic device. More specifically, semiconductor integrated circuits (particularly circuits), flat screens, micro electromechanical systems (MEMS), sensor elements, optical recording media such as high-density memory disks, optical components such as diffraction gratings and relief holograms, and nanodevices , Optical devices, optical films and polarizing elements for flat panel display fabrication, thin film transistors for liquid crystal displays, organic transistors, color filters, overcoat layers, pillar materials, rib materials for liquid crystal alignment, microlens arrays, immunoassay chips
  • the present invention relates to a pattern formation method by an imprint method, which is a fine pattern formation using light irradiation used for producing a DNA separation chip, a microreactor, a nanobio device, an optical waveguide, an optical filter, a photonic liquid crystal, and the like.
  • the nanoimprint method has been developed by developing an embossing technique that is well-known in optical disc production, and mechanically pressing a mold master (generally called a mold, stamper, or template) with a concavo-convex pattern onto a resist.
  • a mold master generally called a mold, stamper, or template
  • This is a technology that precisely deforms and transfers fine patterns.
  • the nanoimprint method includes two methods: a thermal imprint method using a thermoplastic resin as a material to be processed (for example, see Non-Patent Document 1) and an optical imprint method using a curable composition (for example, see Non-Patent Document 2). Street technology has been proposed.
  • the thermal nanoimprint method the mold is pressed on a polymer resin heated to a temperature higher than the glass transition temperature, and the mold is released after cooling to transfer the fine structure to the resin on the substrate. Since this method can be applied to various resin materials and glass materials, application to various fields is expected.
  • Patent Documents 1 and 2 disclose a nanoimprint method for forming a nanopattern at low cost using a thermoplastic resin.
  • the first technique is a case where a molded shape (pattern) itself has a function and can be applied as various nanotechnology element parts or structural members. Examples include various micro / nano optical elements, high-density recording media, optical films, and structural members in flat panel displays.
  • the second technology is to build a laminated structure by simultaneously forming a microstructure and a nanostructure at the same time, or by simple alignment between layers, and apply this to the production of ⁇ -TAS (Micro-Total Analysis System) and biochips. It is what.
  • the third technique is used for processing a substrate by a method such as etching using the formed pattern as a mask.
  • HDDs have increased in capacity by increasing the surface recording density.
  • so-called magnetic field spreading from the side surface of the magnetic head becomes a problem. Since the magnetic field spread does not become smaller than a certain value even if the head is made smaller, a phenomenon called sidelight occurs as a result.
  • side writing occurs, writing to an adjacent track occurs during recording, and already recorded data is erased. Further, due to the magnetic field spread, a phenomenon such as reading an excessive signal from an adjacent track occurs during reproduction.
  • the optical nanoimprint method has recently attracted attention as an inexpensive lithography that replaces the conventional photolithography method used in the manufacture of thin film transistors (TFTs) and electrode plates. Yes. Therefore, it has become necessary to develop a photo-curable resist that replaces the etching photoresist used in the conventional photolithography method.
  • a structural member such as an LCD
  • application of the optical nanoimprint method to the transparent protective film material described in Patent Document 4 and Patent Document 5 the spacer described in Patent Document 5, and the like has begun to be studied.
  • a spacer that defines a cell gap in a liquid crystal display is also a kind of permanent film.
  • a photocurable composition comprising a resin, a photopolymerizable monomer, and an initiator has been widely used.
  • the spacer is generally a pattern having a size of about 10 ⁇ m to 20 ⁇ m by photolithography after applying the photocurable composition after forming the color filter on the color filter substrate or after forming the protective film for the color filter. And is further heated and cured by post-baking.
  • the nanoimprint method can also be used to create an antireflection structure generally called moth eye.
  • an antireflection structure in which the refractive index of light changes in the thickness direction can be formed. Since the refractive index of such an antireflection structure continuously changes in the thickness direction, there is no refractive index interface, and theoretically it can be made non-reflective. Further, since the wavelength dependency is small and the antireflection performance against oblique light is high, the antireflection performance superior to that of the multilayer antireflection film is provided.
  • microelectromechanical systems MEMS
  • sensor elements optical components such as diffraction gratings and relief holograms
  • nanodevices optical devices
  • optical films and polarizing elements for the production of flat panel displays
  • thin film transistors for liquid crystal displays organic transistors
  • Color filter overcoat layer
  • pillar material rib material for liquid crystal alignment
  • microlens array immunoassay chip
  • DNA separation chip DNA separation chip
  • microreactor nanobiodevice
  • optical waveguide optical filter
  • photonic liquid crystal etc.
  • Nanoimprint lithography is also useful in applications. In these permanent film applications, the formed pattern will eventually remain in the product, so the durability of the film, mainly heat resistance, light resistance, solvent resistance, scratch resistance, high mechanical properties against external pressure, hardness, etc. And strength-related performance is required.
  • most of the patterns conventionally formed by the photolithography method can be formed by nanoimprinting, and attention has been paid as a technique capable of forming a fine pattern at low cost.
  • a photocurable composition is applied onto a substrate or a mold having a fine pattern, and the photocurable composition is irradiated with light while the photocurable composition is sandwiched between the substrate and the mold.
  • the mold pattern is transferred to a cured product by curing.
  • a method for applying the photocurable composition on a substrate or a mold having a fine pattern a method such as a spin coating method or a slit coating method is generally used.
  • the inkjet method has attracted attention particularly in applications for forming ultrafine patterns with high accuracy (for example, etching resists for processing semiconductor substrates) (Patent Document 9).
  • the ink jet method is effective in applications in which an ultrafine pattern is formed with high accuracy because the amount of the curable composition can be adjusted according to the density of the pattern.
  • the pattern formability is rather deteriorated if the inkjet discharge is not performed stably.
  • An object of the present invention is to solve the above-described problems, and provides a pattern forming method capable of forming an ultrafine pattern satisfactorily even when a photocurable composition is applied using an inkjet method. For the purpose. Furthermore, it aims at providing the pattern formation method which can form the pattern which satisfy
  • the suitable viscosity for ink jet ejection is about 5 to 10 mPa ⁇ s.
  • those having a low viscosity generally tend to volatilize.
  • Such volatilization is not particularly problematic in the case of ink ejection such as ink, but when the curable composition for imprinting is ejected by ink jet, the volatilization immediately after ejection becomes the pattern formability and the line edge roughness after dry etching. It turns out that it has a big influence. Under such circumstances, the present inventors have found that such a problem can be solved by discharging a photocurable composition having a viscosity of 12 to 100 mPa ⁇ s at 25 ° C. at a temperature of 28 ° C. or higher, and complete the invention. It came to. Specifically, the above problem has been solved by the following means.
  • a photocurable composition containing a polymerizable compound and a polymerization initiator is applied on a substrate or a mold having a fine pattern, and the photocurable composition is light sandwiched between the mold or the substrate.
  • a pattern forming method including irradiating The viscosity of the photocurable composition at 25 ° C. is 12 to 100 mPa ⁇ s, The photocurable composition is applied to a substrate or a mold having a fine pattern by discharging droplets, and the temperature at the time of discharging the photocurable composition is 28 ° C. or more. .
  • a polymerizable compound contained in the photocurable composition wherein the content of the polymerizable compound having a viscosity of less than 5 mPa ⁇ s at 25 ° C. is contained in the photocurable composition.
  • the pattern forming method according to any one of (1) to (5), wherein the pattern forming method is 30% by mass or less.
  • the difference between the viscosity at 25 ° C. of the curable composition and the viscosity at the time of discharging the photocurable composition is 2 to 100 mPa ⁇ s, according to any one of (1) to (6) Pattern forming method.
  • the photocurable composition contains two or more kinds of polymerizable compounds, and 25 of the polymerizable compound having the largest compounding amount and the second most polymerizable compound in the photocurable composition.
  • the pattern forming method according to any one of (1) to (7), wherein the difference in viscosity at 0 ° C. is 0.1 to 120 mPa ⁇ s.
  • the curable composition has a viscosity at 25 ° C. of 12 mPa ⁇ s to 80 mPa ⁇ s, and has a viscosity at the time of discharge of 2 mPa ⁇ s or more and less than 12 mPa ⁇ s, any of (1) to (8) 2.
  • the photocurable composition used in the present invention When used as a cured composition for imprints, it has good pattern forming properties, has few defects, and has good line edge roughness after etching when used in substrate processing applications.
  • a curable composition for imprints can be provided.
  • (meth) acrylate represents acrylate and methacrylate
  • (meth) acryl represents acryl and methacryl
  • (meth) acryloyl represents acryloyl and methacryloyl.
  • monomer and “monomer” are synonymous.
  • the monomer in the present invention is distinguished from an oligomer and a polymer and refers to a compound having a weight average molecular weight of 2,000 or less.
  • the “imprint” in the present invention preferably refers to pattern transfer with a size of 1 nm to 10 mm, and more preferably refers to pattern transfer with a size (nanoimprint) of approximately 10 nm to 100 ⁇ m.
  • the description which does not describe substitution and non-substitution includes what has a substituent with what does not have a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • a photocurable composition containing a polymerizable compound and a polymerization initiator is applied to a substrate or a mold having a fine pattern, and the photocurable composition is applied to the mold or the substrate.
  • the photocurable composition used in the present invention has a viscosity at 25 ° C. of 12 to 100 mPa ⁇ s, preferably 12 to 80 mPa ⁇ s, more preferably 15 to 50 mPa ⁇ s, and still more preferably 15 to 40 mPa ⁇ s. Particularly preferred is 15 to 30 mPa ⁇ s.
  • the viscosity at the time of discharging the photocurable composition is preferably 2 to 30 mPa ⁇ s, more preferably 3 to 25 mPa ⁇ s, still more preferably 3 to 20 mPa ⁇ s, and still more preferably 5 mPa ⁇ s.
  • the viscosity at the time of discharge refers to the viscosity of the photocurable composition at X ° C. when the temperature of the photo-curable composition at the time of discharge is adjusted (for example, heated) to be X ° C. Further, the difference between the viscosity at 25 ° C.
  • the photocurable composition contains two or more kinds of polymerizable compounds, and the polymerizable compound having the largest amount and the second most polymerizable compound in the photocurable composition are at 25 ° C.
  • the difference in viscosity is preferably 0.1 to 120 mPa ⁇ s, more preferably 1 to 100 mPa ⁇ s, still more preferably 1 to 50 mPa ⁇ s, and most preferably 1 to 20 mPa ⁇ s. preferable.
  • the photocurable composition is discharged at a temperature of 28 ° C. or higher.
  • (X ° C.) is preferably 28 ° C. to 70 ° C., more preferably 30 to 60 ° C., and particularly preferably 30 to 50 ° C.
  • the discharge stability of a hardening composition improves, pattern formation improves, and it can suppress generation
  • the photocurable composition used in the present invention contains a polymerizable compound (A) and a polymerization initiator (B).
  • the type of the polymerizable compound used in the curable composition for imprints used in the present invention is not particularly defined as long as it does not depart from the gist of the present invention. For example, it has 1 to 6 ethylenically unsaturated bond-containing groups. Polymerizable unsaturated monomer; epoxy compound, oxetane compound; vinyl ether compound; styrene derivative; propenyl ether or butenyl ether.
  • Polymerizable compound (A) The polymerizable unsaturated monomer having 1 to 6 ethylenically unsaturated bond-containing groups (1 to 6 functional polymerizable unsaturated monomer) will be described.
  • polymerizable unsaturated monomer having one ethylenically unsaturated bond-containing group examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, N-vinylpyrrolidinone, -Acryloyloxyethyl phthalate, 2-acryloyloxy 2-hydroxyethyl phthalate, 2-acryloyloxyethyl hexahydrophthalate, 2-acryloyloxypropyl phthalate, 2-ethyl-2-butylpropanediol acrylate, 2-ethylhexyl (meta ) Acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) ) Acrylate, 2-e
  • the monofunctional polymerizable compounds containing an ethylenically unsaturated bond it is preferable in the present invention to use a monofunctional (meth) acrylate compound from the viewpoint of photocurability.
  • the monofunctional (meth) acrylate compound include monofunctional (meth) acrylate compounds in the monofunctional polymerizable compound containing the ethylenically unsaturated bond.
  • a polyfunctional polymerizable unsaturated monomer having two or more ethylenically unsaturated bond-containing groups as the polymerizable compound.
  • the bifunctional polymerizable unsaturated monomer having two ethylenically unsaturated bond-containing groups that can be preferably used in the present invention include diethylene glycol monoethyl ether (meth) acrylate, dimethylol dicyclopentane di (meta ) Acrylate, di (meth) acrylated isocyanurate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, EO-modified 1,6-hexanediol di (meth) acrylate, ECH-modified 1,6-hexanediol di (meth) acrylate, allyloxypolyethylene glycol acrylate, 1,9-nonanediol
  • Examples of the polyfunctional polymerizable unsaturated monomer having three or more ethylenically unsaturated bond-containing groups include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meta) ) Acrylate, pentaerythritol triacrylate, EO modified phosphoric acid triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, PO modified trimethylol Propane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) Acrylate, dipent
  • EO-modified glycerol tri (meth) acrylate PO-modified glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri Trifunctional or higher functional (meth) acrylates such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate and pentaerythritol tetra (meth) acrylate are preferably used in the present invention.
  • polyfunctional polymerizable unsaturated monomers having two or more ethylenically unsaturated bonds it is preferable in the present invention to use a polyfunctional (meth) acrylate from the viewpoint of photocurability.
  • the polyfunctional (meth) acrylate referred to here is a generic term for the bifunctional (meth) acrylate and the trifunctional or higher functional (meth) acrylate.
  • Specific examples of the polyfunctional (meth) acrylate include those exemplified in the polyfunctional polymerizable unsaturated monomer having two ethylenically unsaturated bonds, and those having three or more ethylenically unsaturated bonds.
  • Various polyfunctional (meth) acrylates exemplified in the functional polymerizable unsaturated monomer can be exemplified.
  • Examples of the compound having an oxirane ring include polyglycidyl esters of polybasic acids, polyglycidyl ethers of polyhydric alcohols, polyglycidyl ethers of polyoxyalkylene glycol, and polyglycidyl ethers of aromatic polyols.
  • Examples include teters, hydrogenated compounds of polyglycidyl ethers of aromatic polyols, urethane polyepoxy compounds, and epoxidized polybutadienes. These compounds can be used alone or in combination of two or more thereof.
  • Examples of the compound having an oxirane ring (epoxy compound) that can be preferably used in the present invention include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, bromine Bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4-butanediol diglycidyl ether, 1 , 6-Hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol di Polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols
  • bisphenol A diglycidyl ether bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol Diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, neopentyl glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether are preferred.
  • Examples of commercially available products that can be suitably used as the glycidyl group-containing compound include UVR-6216 (manufactured by Union Carbide), glycidol, AOEX24, cyclomer A200, (manufactured by Daicel Chemical Industries, Ltd.), Epicoat 828, Epicoat 812, Epicoat 1031, Epicoat 872, Epicoat CT508 (above, manufactured by Yuka Shell Co., Ltd.), KRM-2400, KRM-2410, KRM-2408, KRM-2490, KRM-2720, KRM-2750 (above, Asahi Denka Kogyo ( Product)). These can be used alone or in combination of two or more.
  • a vinyl ether compound may be used in combination.
  • the vinyl ether compound can be appropriately selected from known ones, such as 2-ethylhexyl vinyl ether, butanediol-1,4-divinyl ether, diethylene glycol monovinyl ether, diethylene glycol monovinyl ether, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,3-propanediol divinyl ether, 1,3-butanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, neopentyl glycol divinyl ether, trimethylol Propane trivinyl ether, trimethylol ethane trivinyl ether, hexanediol divinyl ether, te
  • vinyl ether compounds are, for example, the methods described in Stephen C. Lapin, Polymers Paint, Color Journal 179 (4237), 321 (1989), that is, the reaction of a polyhydric alcohol or polyhydric phenol with acetylene, or They can be synthesized by the reaction of a polyhydric alcohol or polyhydric phenol and a halogenated alkyl vinyl ether, and these can be used singly or in combination of two or more.
  • a styrene derivative can also be employed as the polymerizable compound that can be used in the present invention.
  • the styrene derivative include styrene, p-methylstyrene, p-methoxystyrene, ⁇ -methylstyrene, p-methyl- ⁇ -methylstyrene, ⁇ -methylstyrene, p-methoxy- ⁇ -methylstyrene, and p-hydroxy. Examples include styrene.
  • a polymerizable compound having an aromatic group is preferred as the polymerizable compound used in the present invention.
  • the line edge roughness is improved when used as an etching resist for substrate processing.
  • a monofunctional (meth) acrylate compound represented by the following general formula (I) or a polyfunctional (meta) represented by the following general formula (II): ) Acrylate compounds are preferred.
  • Z represents a group containing an aromatic group
  • R 1 represents a hydrogen atom, an alkyl group or a halogen atom.
  • the viscosity at 25 ° C. is 500 mPa ⁇ s or less.
  • R 1 is preferably a hydrogen atom or an alkyl group, preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom from the viewpoint of curability.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • Z is preferably an aralkyl group which may have a substituent, an aryl group which may have a substituent, or a group in which these groups are bonded via a linking group.
  • the linking group here may include a linking group containing a hetero atom, and preferably a group consisting of —CH 2 —, —O—, —C ( ⁇ O) —, —S—, and combinations thereof. It is.
  • the aromatic group contained in Z is preferably a phenyl group or a naphthyl group.
  • the molecular weight of Z is preferably 90 to 300, more preferably 120 to 250.
  • the viscosity at 25 ° C. is preferably 2 to 500 mPa ⁇ s, more preferably 3 to 200 mPa ⁇ s, and more preferably 3 to 100 mPa ⁇ s. s is most preferred.
  • the polymerizable monomer is liquid at 25 ° C, or even if it is solid, the melting point is preferably 60 ° C or lower, more preferably the melting point is 40 ° C or lower, and it is liquid at 25 ° C. Further preferred.
  • Z is preferably a group represented by —Z 1 —Z 2 .
  • Z 1 is a single bond or a hydrocarbon group, and the hydrocarbon group may include a linking group containing a hetero atom in the chain.
  • Z 2 is an aromatic group which may have a substituent and has a molecular weight of 90 or more.
  • Z 1 is preferably a single bond or an alkylene group, and the alkylene group may contain a linking group containing a hetero atom in the chain.
  • Z 1 is more preferably an alkylene group that does not contain a linking group containing a hetero atom in the chain, and more preferably a methylene group or an ethylene group.
  • linking group containing a hetero atom examples include —O—, —C ( ⁇ O) —, —S—, and a group comprising a combination of these with an alkylene group.
  • the hydrocarbon group preferably has 1 to 3 carbon atoms.
  • Z 2 is also preferably a group in which two or more aromatic groups are linked directly or via a linking group.
  • the linking group in this case is also preferably a group consisting of —CH 2 —, —O—, —C ( ⁇ O) —, —S—, and combinations thereof.
  • Examples of the substituent that the aromatic group of the polymerizable monomer represented by the general formula (I) may have include, for example, a halogen atom (fluorine atom, chloro atom, bromine atom, iodine). Atom), linear, branched or cyclic alkyl group, alkenyl group, alkynyl group, aryl group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, cyano group, carboxyl group, hydroxyl group, alkoxy group, aryloxy Group, alkylthio group, arylthio group, heterocyclic oxy group, acyloxy group, amino group, nitro group, hydrazino group, heterocyclic group and the like. A group further substituted with these groups is also preferred.
  • the addition amount of the polymerizable monomer represented by the general formula (I) in the photocurable composition is preferably 10 to 100% by mass, more preferably 20 to 100% by mass, It is particularly preferably 80 to 80% by mass.
  • Specific examples of the compound represented by the general formula (I) having no substituent on the aromatic ring include benzyl (meth) acrylate, phenethyl (meth) acrylate, phenoxyethyl (meth) acrylate, 1- Or 2-naphthyl (meth) acrylate, 1- or 2-naphthylmethyl (meth) acrylate, 1- or 2-naphthylethyl (meth) acrylate, 1- or 2-naphthoxyethyl (meth) acrylate is preferable.
  • a compound having a substituent on the aromatic ring represented by the following general formula (II) is also preferable.
  • R 1 represents a hydrogen atom, an alkyl group or a halogen atom
  • X 1 is a single bond or a hydrocarbon group
  • the hydrocarbon group is a linking group containing a hetero atom in the chain.
  • Y 1 represents a substituent having a molecular weight of 15 or more
  • n1 represents an integer of 1 to 3.
  • Ar represents an aromatic linking group, preferably a phenylene group or a naphthylene group.
  • R 1 has the same meaning as R 1 in the formula, the preferred range is also the same.
  • X 1 has the same meaning as Z 1 described above, and the preferred range is also the same.
  • Y 1 is a substituent having a molecular weight of 15 or more, and examples thereof include an alkyl group, an alkoxy group, an aryloxy group, an aralkyl group, an acyl group, an alkoxycarbonyl group, an alkylthio group, an arylthio group, a halogen atom, and a cyano group. These substituents may have further substituents.
  • X 1 is preferably a single bond or a hydrocarbon group having 1 carbon atom.
  • n1 is 1 and X 1 is an alkylene group having 1 to 3 carbon atoms.
  • the compound represented by the general formula (II) is more preferably a compound represented by any one of (IV) and (V).
  • R 1 represents a hydrogen atom, an alkyl group or a halogen atom.
  • X 2 is a single bond or a hydrocarbon group, and the hydrocarbon group may contain a linking group containing a hetero atom in the chain.
  • Y 2 represents a substituent not having an aromatic group having a molecular weight of 15 or more, and n2 represents an integer of 1 to 3.
  • R 1 has the same meaning as R 1 in the formula, the preferred range is also the same.
  • X 2 is a hydrocarbon group, it is preferably a hydrocarbon group having 1 to 3 carbon atoms, preferably a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms, and an unsubstituted carbon number More preferably, it is an alkylene group of 1 to 3, more preferably a methylene group or an ethylene group.
  • Y 2 represents a substituent having no aromatic group having a molecular weight of 15 or more, and the upper limit of the molecular weight of Y 2 is preferably 150 or less.
  • Y 2 is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group or a cyclohexyl group, a halogen atom such as a fluoro group, a chloro group or a bromo group, a methoxy group or an ethoxy group. Preferred examples include C 1-6 alkoxy groups such as cyclohexyloxy group, and cyano group.
  • n2 is preferably an integer of 1 to 2. When n2 is 1, the substituent Y is preferably in the para position. From the viewpoint of viscosity, when n2 is 2, X 2 is preferably a single bond or a hydrocarbon group having 1 carbon atom.
  • the molecular weight of the (meth) acrylate compound represented by the general formula (IV) is preferably 175 to 250, and more preferably 185 to 245. Moreover, it is preferable that the viscosity in 25 degreeC of the (meth) acrylate compound represented by general formula (IV) is 50 mPa * s or less, and it is more preferable that it is 20 mPa * s or less.
  • the compound represented by the general formula (IV) can be preferably used as a reaction diluent.
  • the addition amount of the compound represented by the general formula (IV) in the photocurable composition is preferably 10% by mass or more from the viewpoint of the viscosity of the composition or the pattern accuracy after curing, and is 15% by mass or more. More preferably, it is particularly preferably 20% by mass or more. On the other hand, from the viewpoint of tackiness after curing and mechanical strength, the addition amount is preferably 95% by mass or less, more preferably 90% by mass or less, and particularly preferably 85% by mass or less.
  • R 1 represents a hydrogen atom, an alkyl group or a halogen atom.
  • R 1 represents a hydrogen atom, an alkyl group or a halogen atom
  • X 3 is a single bond or a hydrocarbon group
  • the hydrocarbon group contains a hetero atom in the chain.
  • Y 3 represents a substituent having an aromatic group
  • n3 represents an integer of 1 to 3
  • R 1 has the same meaning as R 1 in the formula, the preferred range is also the same.
  • Y 3 represents a substituent having an aromatic group.
  • the aromatic group is bonded to the aromatic ring of the general formula (V) through a single bond or a linking group. Is preferred.
  • Preferred examples of the linking group include an alkylene group, a linking group having a hetero atom (preferably —O—, —S—, —C ( ⁇ O) O—, or a combination thereof), and an alkylene group or — A group consisting of O— and combinations thereof is more preferred.
  • the substituent having an aromatic group is preferably a substituent having a phenyl group.
  • the molecular weight of Y 3 is preferably 230 to 350.
  • n3 is preferably 1 or 2, more preferably 1.
  • the addition amount of the compound represented by the general formula (V) in the photocurable composition used in the present invention is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass. The above is particularly preferable. On the other hand, from the viewpoint of tackiness after curing and mechanical strength, the addition amount is preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 70% by mass or less.
  • R 1 represents a hydrogen atom, an alkyl group or a halogen atom.
  • Ar 2 represents an n-valent linking group having an aromatic group, and preferably a linking group having a phenylene group.
  • X 1 and R 1 are as defined above.
  • n represents 1 to 3, and is preferably 1.
  • the compound represented by the general formula (II) is preferably a compound represented by the general formula (VI) or (VII).
  • Compound represented by general formula (VI) (In General Formula (VI), X 6 is a (n6 + 1) -valent linking group, R 1 is a hydrogen atom, an alkyl group, or a halogen atom. R 2 and R 3 are each a substituent. Each of n4 and n5 is an integer of 0 to 4. n6 is 1 or 2, X 4 and X 5 are each a hydrocarbon group, and the hydrocarbon group is in the chain (It may contain a linking group containing a hetero atom.)
  • X 6 represents a single bond or a (n6 + 1) -valent linking group, preferably an alkylene group, —O—, —S—, —C ( ⁇ O) O—, or a combination thereof. It is a linking group.
  • the alkylene group is preferably an alkylene group having 1 to 8 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms. An unsubstituted alkylene group is preferred.
  • n6 is preferably 1. When n6 is 2, a plurality of R 1 , X 5 , and R 2 may be the same or different.
  • X 4 and X 5 are each preferably an alkylene group containing no linking group, more preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms, most preferably A methylene group.
  • R 1 has the same meaning as R 1 in the formula, the preferred range is also the same.
  • R 2 and R 3 each represent a substituent, preferably an alkyl group, a halogen atom, an alkoxy group, an acyl group, an acyloxy group, an alkoxycarbonyl group, a cyano group, or a nitro group.
  • the alkyl group an alkyl group having 1 to 8 carbon atoms is preferable.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • alkoxy group an alkoxy group having 1 to 8 carbon atoms is preferable.
  • acyl group an acyl group having 1 to 8 carbon atoms is preferable.
  • acyloxy group an acyloxy group having 1 to 8 carbon atoms is preferable.
  • the alkoxycarbonyl group is preferably an alkoxycarbonyl group having 1 to 8 carbon atoms.
  • n4 and n5 are each an integer of 0 to 4, and when n4 or n5 is 2 or more, a plurality of R 2 and R 3 may be the same or different.
  • the compound represented by the general formula (VI) is preferably a compound represented by the following general formula (VIII).
  • X 6 is an alkylene group, —O—, —S—, or a linking group in which a plurality of these are combined, and R 1 is a hydrogen atom, an alkyl group, or a halogen atom, respectively.
  • R 1 has the same meaning as R 1 in the formula, the preferred range is also the same.
  • R 1 has the same meaning as R 1 in the formula, the preferred range is also the same.
  • R 1 has the same meaning as R 1 in the formula, the preferred range is also the same.
  • X 6 is an alkylene group
  • an alkylene group having 1 to 8 carbon atoms is preferable
  • an alkylene group having 1 to 3 carbon atoms is more preferable.
  • An unsubstituted alkylene group is preferred.
  • the content of the compound represented by the general formula (VI) in the photocurable composition used in the present invention is not particularly limited, but from the viewpoint of the viscosity of the photocurable composition, It is preferably 1 to 100% by mass, more preferably 5 to 70% by mass, and particularly preferably 10 to 50% by mass.
  • R 1 in the following formula has the same meaning as R 1 in the general formula (VI), and the preferred range is also the same, and particularly preferably a hydrogen atom.
  • the polymerizable monomer represented by the following general formula (VIII) (In the formula, Ar represents an arylene group which may have a substituent, X represents a single bond or an organic linking group, R 1 represents a hydrogen atom or a methyl group, and n represents 2 or 3. )
  • the arylene group includes a hydrocarbon-based arylene group such as a phenylene group and a naphthylene group; a heteroarylene group in which indole, carbazole and the like are linked groups, preferably a hydrocarbon-based arylene group, More preferred is a phenylene group from the viewpoint of viscosity and etching resistance.
  • the arylene group may have a substituent, and preferred examples of the substituent include an alkyl group, an alkoxy group, a hydroxyl group, a cyano group, an alkoxycarbonyl group, an amide group, and a sulfonamide group.
  • Examples of the organic linking group for X include an alkylene group, an arylene group, and an aralkylene group that may contain a hetero atom in the chain. Among these, an alkylene group and an oxyalkylene group are preferable, and an alkylene group is more preferable.
  • X is particularly preferably a single bond or an alkylene group.
  • R 1 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • n is 2 or 3, preferably 2.
  • the polymerizable monomer (VIII) is preferably a polymerizable monomer represented by the following general formula (Ia) or (Ib) from the viewpoint of reducing the composition viscosity.
  • X 1 and X 2 each independently represents a single bond or an alkylene group which may have a substituent having 1 to 3 carbon atoms, and R 1 represents a hydrogen atom or a methyl group.
  • X 1 is preferably a single bond or a methylene group, and more preferably a methylene group from the viewpoint of viscosity reduction.
  • the preferable range of X 2 is the same as the preferable range of X 1 .
  • R 1 is as in formula and R 1 synonymous, and preferred ranges are also the same.
  • the polymerizable monomer is a liquid at 25 ° C., it is preferable that the generation of foreign matters can be suppressed even when the addition amount is increased.
  • R 1 is as in formula and R 1 synonymous represents a hydrogen atom or a methyl group.
  • the present invention is not limited to these specific examples.
  • polymeric compound which has an aromatic group used with the photocurable composition used by this invention below is given, this invention is not limited to these.
  • the polymerizable compound having an aromatic group include benzyl (meth) acrylate which is unsubstituted or has a substituent on an aromatic ring, and phenethyl (meth) which is unsubstituted or has a substituent on an aromatic ring.
  • the polymeric compound which has at least one among a fluorine atom and a silicon atom for the purpose of improving peelability from a mold.
  • the polymerizable compound (A2) having at least one of a fluorine atom and a silicon atom has at least one fluorine atom, a silicon atom, or a group having both a fluorine atom and a silicon atom, and a polymerizable functional group. It is a compound having at least one.
  • the polymerizable functional group a methacryloyl group, an epoxy group, and a vinyl ether group are preferable.
  • the polymerizable compound having at least one of a fluorine atom and a silicon atom may be a low molecular compound or a polymer.
  • the polymerizable compound having at least one of fluorine atom and silicon atom when the polymerizable compound having at least one of fluorine atom and silicon atom is a polymer, a repeating unit having at least one of fluorine atom and silicon atom, and a polymerizable group in a side chain as a copolymerization component It may have a repeating unit having Further, the repeating unit having at least one of the fluorine atom and the silicon atom may have a polymerizable group at its side chain, particularly at the terminal. In this case, the skeleton of the repeating unit having at least one of the fluorine atom and the silicon atom is not particularly limited as long as it does not contradict the gist of the present invention.
  • the repeating unit which has a silicon atom may form the repeating unit by the silicon atom itself like a siloxane structure (for example, dimethylsiloxane structure).
  • the weight average molecular weight is preferably from 2,000 to 100,000, more preferably from 3,000 to 70,000, and particularly preferably from 5,000 to 40,000.
  • the fluorine-containing group selected from a fluoroalkyl group and a fluoroalkyl ether group is preferred as the group having a fluorine atom that the polymerizable compound having a fluorine atom has.
  • the fluoroalkyl group is preferably a fluoroalkyl group having 2 to 20 carbon atoms, and more preferably a 4 to 8 fluoroalkyl group.
  • Preferable fluoroalkyl groups include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, hexafluoroisopropyl group, nonafluorobutyl group, tridecafluorohexyl group, and heptadecafluorooctyl group.
  • the polymerizable compound having a fluorine atom is preferably a polymerizable compound having a fluorine atom having a trifluoromethyl group structure.
  • a trifluoromethyl group structure By having a trifluoromethyl group structure, the effects of the present invention are exhibited even with a small addition amount (for example, 10% by mass or less), so that compatibility with other components is improved, and line edge roughness after dry etching is improved. In addition to the improvement, the repeat pattern formability is improved.
  • the fluoroalkyl ether group preferably has a trifluoromethyl group, and preferably contains a perfluoroethyleneoxy group or a perfluoropropyleneoxy group.
  • a fluoroalkyl ether unit having a trifluoromethyl group such as-(CF (CF 3 ) CF 2 O)-and / or a trifluoromethyl ether group having a trifluoromethyl group at the terminal is preferred.
  • the number of total fluorine atoms contained in the polymerizable compound having at least one of fluorine atoms and silicon atoms is preferably 6 to 60, more preferably 9 to 40, still more preferably 12 per molecule. ⁇ 40, particularly preferably 12-20.
  • the polymerizable compound having at least one of a fluorine atom and a silicon atom has a fluorine atom having a fluorine content of 20 to 60% as defined below.
  • the fluorine content is preferably 20 to 60%, more preferably 35 to 60%.
  • the fluorine content is more preferably 20 to 50%, still more preferably 20 to 40%.
  • a preferred example of the group having a fluorine atom of the polymerizable compound having at least one of the fluorine atom and the silicon atom (A2) includes a compound having a partial structure represented by the following general formula (I).
  • n represents an integer of 1 to 8, preferably an integer of 4 to 6.
  • polymerizable compound having at least one of the fluorine atom and the silicon atom includes a compound having a partial structure represented by the following general formula (II).
  • a compound having a partial structure represented by the following general formula (II) includes a compound having a partial structure represented by the following general formula (II).
  • II the partial structure represented by general formula (I)
  • L 1 represents a single bond or an alkylene group having 1 to 8 carbon atoms
  • L 2 represents an alkylene group having 1 to 8 carbon atoms
  • m1 and m2 each represents 0 or 1
  • At least one of m1 and m2 is 1.
  • m3 represents an integer of 1 to 3
  • p represents an integer of 1 to 8, and when m3 is 2 or more, -C p F 2p + 1 may be the same or different.
  • L 1 and L 2 are each preferably an alkylene group having 1 to 4 carbon atoms.
  • the alkylene group may have a substituent within a range not departing from the gist of the present invention.
  • the m3 is preferably 1 or 2.
  • the p is preferably an integer of 4 to 6.
  • Examples of the polymerizable compound having a fluorine atom include trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl (meth) acrylate, ( Monofunctional having fluorine atoms such as perfluorohexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, etc.
  • a polymerizable compound is mentioned.
  • the polymerizable compound having a fluorine atom examples include 2,2,3,3,4,4-hexafluoropentanedi (meth) acrylate, 2,2,3,3,4,4,5,5-
  • a polyfunctional polymerizable compound having two or more polymerizable functional groups having a di (meth) acrylate having a fluoroalkylene group such as octafluorohexane di (meth) acrylate is also preferred.
  • a compound having two or more fluorine-containing groups such as a fluoroalkyl group or a fluoroalkyl ether group in one molecule can also be preferably used.
  • a compound having two or more fluoroalkyl groups or fluoroalkyl ether groups in one molecule is preferably a polymerizable compound represented by the following general formula (III).
  • R 1 represents a hydrogen atom, an alkyl group, a halogen atom or a cyano group, preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • A represents a (a1 + a2) -valent linking group, preferably a linking group having an alkylene group and / or an arylene group, and may further contain a linking group containing a hetero atom.
  • linking group having a hetero atom examples include —O—, —C ( ⁇ O) O—, —S—, and —C ( ⁇ O) —. These groups may have a substituent within a range not departing from the gist of the present invention, but preferably do not have a substituent.
  • A preferably has 2 to 50 carbon atoms, and more preferably 4 to 15 carbon atoms.
  • a1 represents an integer of 1 to 6, preferably 1 to 3, and more preferably 1 or 2.
  • a2 represents an integer of 2 to 6, preferably 2 or 3, and more preferably 2.
  • R 2 and R 3 each represent a single bond or an alkylene group having 1 to 8 carbon atoms.
  • n1 and m2 each represents 0 or 1
  • m3 represents an integer of 1 to 3.
  • each A may be the same or different.
  • each R 2 , R 3 , m1, m2, m3 may be the same or different.
  • Rf represents a fluoroalkyl group or a fluoroalkyl ether group, preferably a fluoroalkyl group having 1 to 8 carbon atoms, or a fluoroalkyl ether group having 3 to 20 carbon atoms.
  • the polymerizable compound having a fluorine atom is a polymer, a polymer containing the polymerizable compound having a fluorine atom as a repeating unit is preferable.
  • R 1 in the following formula is each a hydrogen atom, an alkyl group, a halogen atom, or a cyano group.
  • polymerizable compound having a silicon atom examples include a trialkylsilyl group, a chain siloxane structure, a cyclic siloxane structure, and a cage-like siloxane structure. From the viewpoint of compatibility with other components and mold releasability, a functional group having a trimethylsilyl group or a dimethylsiloxane structure is preferred.
  • Examples of the polymerizable compound having a silicon atom include 3-tris (trimethylsilyloxy) silylpropyl (meth) acrylate, trimethylsilylethyl (meth) acrylate, (meth) acryloxymethylbis (trimethylsiloxy) methylsilane, and (meth) acryloxymethyltris.
  • a polymerizable monomer (Ax) having a hydrogen bonding functional group and a fluorine-containing group is included as the polymerizable compound.
  • radical polymerization such as CH (R 1 ) ⁇ CHC ( ⁇ O) — (R 1 is a hydrogen atom, an alkyl group, a halogen atom, a cyano group), etc.
  • a cationic polymerizable group such as a functional group, an epoxy group, an oxetane group and a vinyl ether group, more preferably a (meth) acrylic group.
  • the number of polymerizable groups contained in the polymerizable monomer (Ax) is preferably 1 or 2, more preferably 1.
  • the fluorine-containing group that the polymerizable monomer (Ax) has is preferably a fluorine-containing group selected from a fluoroalkyl group and a fluoroalkyl ether group, and more preferably a fluoroalkyl group.
  • the fluoroalkyl group is preferably a fluoroalkyl group having 2 or more carbon atoms, more preferably a fluoroalkyl group having 4 or more carbon atoms, and the upper limit is not particularly defined, but 20 or less is preferable. 8 or less is more preferable, and 6 or less is more preferable.
  • the fluoroalkyl group having 4 to 6 carbon atoms.
  • the fluoroalkyl group also includes a fluoroalkylene group in which the fluoroalkyl group is a linking group.
  • the fluoroalkyl group is preferably a perfluoroalkyl group. Moreover, it is preferable that it is a linear fluoroalkyl group.
  • fluoroalkyl ether group those containing a perfluoroethyleneoxy group or a perfluoropropyleneoxy group are preferable. Those having a trifluoromethyl group structure at the terminal are preferred, and a fluoroalkyl ether unit having a trifluoromethyl group such as — (CF (CF 3 ) CF 2 O) — and / or a terminal of the fluoroalkyl ether group. Those having a trifluoromethyl group are preferred.
  • the fluoroalkyl ether group also includes a fluoroalkyl ether linking group in which the fluoroalkyl ether group is a linking group.
  • the fluoroalkyl ether group preferably has 4 to 20 carbon atoms, more preferably 4 to 15 carbon atoms. More preferred examples of the fluorine-containing group include compounds having a partial structure represented by the following general formulas (I-1) and (I-2), and more preferred general formulas (II-1) and (II-2). By adopting a compound having such a partial structure, the pattern forming property is excellent and the temporal stability of the composition is good.
  • X represents an alkylene group having 1 to 6 carbon atoms, which may have a substituent on the alkylene group, but preferably has no substituent.
  • the substituent on the alkylene group include an alkyl group, a fluoroalkyl group, and a substituent having a hydrogen bonding functional group described later.
  • Rf represents a fluoroalkyl group or a fluoroalkyl ether group.
  • n represents an integer of 1 to 8, preferably an integer of 4 to 6.
  • the number of fluorine-containing groups present in the polymerizable monomer (Ax) is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1. It is.
  • the number of total fluorine atoms contained in the polymerizable monomer (Ax) is preferably 3 to 60, more preferably 5 to 20, and still more preferably 9 to 20.
  • the polymerizable monomer (Ax) has a fluorine content of preferably 30 to 60%, more preferably 35 to 55%, and still more preferably 35 to 50%. By making the fluorine content within an appropriate range, mold contamination can be reduced and the line edge roughness after dry etching is improved.
  • the hydrogen bonding functional group a functional group having a hydrogen atom capable of hydrogen bonding is preferable.
  • the polymerizable monomer (Ax) having a hydrogen bondable functional group and a fluorine-containing group used in the present invention is composed of a polymerizable group and a divalent linking group (preferably composed of a carbon atom, a hydrogen atom and an oxygen atom). Group, more preferably a group consisting of —CH 2 —, —O—, —C ( ⁇ O) —, and combinations thereof), a hydrogen-bonding functional group, and a fluorine-containing group. .
  • the polymerizable monomer (Ax) is preferably a polymerizable monomer represented by the following general formula.
  • R 1 is a hydrogen atom, a halogen atom, an alkyl group or a cyano group, and Rf is a fluorine-containing group.
  • R 1 is preferably a hydrogen atom, an alkyl group or a cyano group, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
  • the halogen atom for R 1 include a fluorine atom and a chlorine atom.
  • Rf is preferably a perfluoroalkyl group, more preferably a perfluoroalkyl group having 4 to 6 carbon atoms.
  • the molecular weight of the polymerizable monomer (Ax) used in the present invention is preferably 300 to 2000, more preferably 300 to 1000, and further preferably 300 to 800. By setting the molecular weight within an appropriate range, the filling property to the mold is improved and defects can be reduced.
  • R 1 in the following formula is each a hydrogen atom, an alkyl group, a halogen atom, or a cyano group.
  • the content of (Ax) having a hydrogen-bonding functional group and a fluorine-containing group in the curable composition of the present invention is not particularly limited, but from the viewpoints of curability and composition viscosity, the total polymerizable monomer Among them, 0.01 to 100% by mass is preferable, 0.05 to 50% by mass is more preferable, 0.1 to 20% by mass is further preferable, 0.2 to 10% by mass is particularly preferable, and 0.2 to 6% is preferable. Mass% is particularly preferred.
  • the polymerizable compound preferably contains a polymerizable compound having an alicyclic hydrocarbon group and / or an aromatic group, and further includes a polymerizable compound having an alicyclic hydrocarbon group and / or an aromatic group; It preferably contains a polymerizable compound containing a silicon atom and / or fluorine. Furthermore, among all the polymerizable components contained in the photocurable composition in the present invention, a polymerizable compound having an alicyclic hydrocarbon group and / or an aromatic group and a polymerizable compound containing a silicon atom and / or fluorine.
  • the total is preferably 30 to 100% by mass of the total polymerizable compound, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the (meth) acrylate polymerizable compound containing an aromatic group (preferably a phenyl group, a naphthyl group, more preferably a naphthyl group) as the polymerizable compound is 70 to 100% by mass of the total polymerizable component. It is preferably 90 to 100% by mass, more preferably 95 to 100% by mass.
  • the following polymerizable compound (1) is 0 to 80% by mass (more preferably 20 to 70% by mass) of the total polymerizable component, and the following polymerizable compound (2) is all polymerized. This is a case where it is 20 to 100% by mass (more preferably 30 to 80% by mass) of the active ingredient.
  • a polymerizable compound having one aromatic group preferably phenyl group, naphthyl group, more preferably naphthyl group
  • (meth) acrylate group preferably phenyl group, naphthyl group, A polymerizable compound containing a (preferably phenyl group) and having two (meth) acrylate groups
  • the content of the polymerizable compound having a viscosity at 25 ° C. of less than 5 mPa ⁇ s in the photocurable composition is preferably 30% by mass or less, and preferably 20% by mass or less, based on the total polymerizable compound. More preferred is 10% by mass or less.
  • the photocurable composition used in the present invention contains a photopolymerization initiator.
  • a photopolymerization initiator used in the present invention any compound can be used as long as it is a compound that generates an active species that polymerizes the above-described polymerizable compound by light irradiation.
  • a radical polymerization initiator and a cationic polymerization initiator are preferable, and a radical polymerization initiator is more preferable.
  • a plurality of photopolymerization initiators may be used in combination.
  • the content of the photopolymerization initiator used in the present invention is, for example, 0.01 to 15% by mass, preferably 0.1 to 12% by mass, and more preferably 0% in the entire composition excluding the solvent. 2 to 7% by mass.
  • the total amount becomes the said range.
  • the content of the photopolymerization initiator is 0.01% by mass or more, the sensitivity (fast curability), resolution, line edge roughness, and coating strength tend to be improved, which is preferable.
  • the content of the photopolymerization initiator is 15% by mass or less, light transmittance, colorability, handleability and the like tend to be improved, which is preferable.
  • radical photopolymerization initiator used in the present invention for example, a commercially available initiator can be used. As these examples, for example, those described in paragraph No. 0091 of JP-A No. 2008-105414 can be preferably used. Among these, acetophenone compounds, acylphosphine oxide compounds, and oxime ester compounds are preferred from the viewpoints of curing sensitivity and absorption characteristics. Preferred examples of the acetophenone compound include hydroxyacetophenone compounds, dialkoxyacetophenone compounds, and aminoacetophenone compounds.
  • Irgacure® 2959 (1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, preferably available from BASF as a hydroxyacetophenone compound, Irgacure® 184 (1-hydroxycyclohexyl phenyl ketone), Irgacure® 500 (1-hydroxycyclohexyl phenyl ketone, benzophenone), Darocur® 1173 (2-hydroxy-2-methyl-1-phenyl) -1-propan-1-one).
  • the dialkoxyacetophenone compound is preferably Irgacure (registered trademark) 651 (2,2-dimethoxy-1,2-diphenylethane-1-one) available from BASF.
  • Irgacure (registered trademark) 369 (2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1
  • Irgacure (registered trademark) 379 (available from BASF Corporation) is preferable.
  • EG (2-dimethylamino-2- (4methylbenzyl) -1- (4-morpholin-4-ylphenyl) butan-1-one
  • Irgacure® 907 (2-methyl-1 [4- Methylthiophenyl] -2-morpholinopropan-1-one.
  • acylphosphine oxide-based compound preferably Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, Irgacure (registered trademark) 1800 (bis (2, 6-Dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, Lucirin TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) available from BASF, Lucirin TPO-L (2,4,6 -Trimethylbenzoylphenylethoxyphosphine oxide).
  • Irgacure (registered trademark) 819 bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide
  • Irgacure (registered trademark) 1800 bis (2, 6-Dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide
  • Lucirin TPO (2,4,
  • Irgacure registered trademark
  • OXE01 (1,2-octanedione, 1- [4- (phenylthio) phenyl] -2- (O-benzoyloxime)
  • Irgacure registered trademark
  • BASF oxime ester compound
  • OXE02 ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime)
  • the cationic photopolymerization initiator used in the present invention is preferably a sulfonium salt compound, an iodonium salt compound, an oxime sulfonate compound, and the like.
  • 4-methylphenyl [4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) Examples include borate (Rhode PI2074), 4-methylphenyl [4-(2-methylpropyl) phenyliodonium hexafluorophosphate (IRSFACURE250 manufactured by BASF), IRGACURE PAG103, 108, 121, 203 (Ciba). .
  • “light” includes not only light having a wavelength in the ultraviolet, near-ultraviolet, far-ultraviolet, visible, infrared, etc., and electromagnetic waves but also radiation.
  • the radiation include microwaves, electron beams, EUV, and X-rays.
  • Laser light such as a 248 nm excimer laser, a 193 nm excimer laser, and a 172 nm excimer laser can also be used.
  • the light may be monochromatic light (single wavelength light) that has passed through an optical filter, or may be light with a plurality of different wavelengths (composite light).
  • the exposure can be multiple exposure, and the entire surface can be exposed after forming a pattern for the purpose of increasing the film strength and etching resistance.
  • the photocurable composition used in the present invention includes a surfactant, an antioxidant, a solvent, and the like within a range that does not impair the effects of the present invention in accordance with various purposes in addition to the above-described polymerizable compound and photopolymerization initiator.
  • Other components such as a polymer component, a pigment, and a dye may be included.
  • the photocurable composition used in the present invention preferably contains at least one selected from a surfactant and an antioxidant.
  • the photocurable composition used in the present invention preferably contains a surfactant.
  • the content of the surfactant used in the present invention is, for example, 0.001 to 5% by mass, preferably 0.002 to 4% by mass, and more preferably 0.005 to 4% by mass in the entire composition. 3% by mass.
  • the total amount becomes the said range.
  • the surfactant is in the range of 0.001 to 5% by mass in the composition, the effect of coating uniformity is good, and mold transfer characteristics are hardly deteriorated due to excessive surfactant.
  • the surfactant is preferably a nonionic surfactant, and preferably contains at least one of a fluorine-based surfactant, a Si-based surfactant, and a fluorine / Si-based surfactant. It is more preferable to include both a Si-based surfactant or a fluorine / Si-based surfactant, and most preferable to include a fluorine / Si-based surfactant.
  • the fluorine-based surfactant and the Si-based surfactant are preferably nonionic surfactants.
  • the “fluorine / Si-based surfactant” refers to one having both the requirements of both a fluorine-based surfactant and a Si-based surfactant.
  • a silicon wafer for manufacturing a semiconductor element By using such a surfactant, a silicon wafer for manufacturing a semiconductor element, a glass square substrate for manufacturing a liquid crystal element, a chromium film, a molybdenum film, a molybdenum alloy film, a tantalum film, a tantalum alloy film, a silicon nitride film, Striation that occurs when the curable composition for imprinting of the present invention is applied to a substrate on which various films such as an amorphous silicone film, an indium oxide (ITO) film doped with tin oxide, and a tin oxide film are formed.
  • ITO indium oxide
  • the curable composition for imprints of the present invention can significantly improve the coating uniformity by adding the surfactant, and the coating using a spin coater or slit scan coater does not depend on the substrate size. Good applicability is obtained.
  • nonionic fluorosurfactants examples include trade names Fluorard FC-430 and FC-431 (manufactured by Sumitomo 3M Co., Ltd.), trade names Surflon S-382 (Asahi Glass ( EFTOP EF-122A, 122B, 122C, EF-121, EF-126, EF-127, MF-100 (manufactured by Tochem Products), trade names PF-636, PF-6320, PF -656, PF-6520 (all OMNOVA Solutions, Inc.), trade names FT250, FT251, DFX18 (all manufactured by Neos), trade names Unidyne DS-401, DS-403, DS-451 ( All are made by Daikin Industries, Ltd.) and trade names Megafuk 171, 172, 173, 178K, 178A, F780F (all Dainippon Ink Chemical Industry Co., Ltd.).
  • nonionic Si-based surfactants examples include trade name SI-10 series (manufactured by Takemoto Yushi Co., Ltd.), MegaFac Paintad 31 (manufactured by Dainippon Ink & Chemicals, Inc.), KP -341 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • fluorine / Si surfactant examples include trade names X-70-090, X-70-091, X-70-092, X-70-093 (all Shin-Etsu Chemical Co., Ltd. )), And trade names Megafuk R-08 and XRB-4 (both manufactured by Dainippon Ink & Chemicals, Inc.).
  • the photocurable composition used in the present invention preferably contains a known antioxidant.
  • the content of the antioxidant used in the present invention is, for example, 0.01 to 10% by mass, preferably 0.2 to 5% by mass, based on the polymerizable compound. When two or more kinds of antioxidants are used, the total amount is within the above range.
  • the antioxidant suppresses fading caused by heat or light irradiation and fading caused by various oxidizing gases such as ozone, active oxygen, NO x , SO x (X is an integer).
  • by adding an antioxidant there is an advantage that coloring of a cured film can be prevented and a reduction in film thickness due to decomposition can be reduced.
  • antioxidants include hydrazides, hindered amine antioxidants, nitrogen-containing heterocyclic mercapto compounds, thioether antioxidants, hindered phenol antioxidants, ascorbic acids, zinc sulfate, thiocyanates, Examples include thiourea derivatives, sugars, nitrites, sulfites, thiosulfates, hydroxylamine derivatives, and the like.
  • hindered phenol antioxidants and thioether antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness.
  • antioxidants Commercially available products of the antioxidants include trade names Irganox 1010, 1035, 1076, 1222 (above, manufactured by Ciba Geigy Co., Ltd.), trade names Antigene P, 3C, FR, Sumilyzer S, and Sumilyzer GA80 (Sumitomo Chemical Co., Ltd.).
  • the photocurable composition used in the present invention preferably contains a polymerization inhibitor.
  • a polymerization inhibitor By including a polymerization inhibitor, it tends to be possible to suppress changes in viscosity, generation of foreign matter, and deterioration of pattern formation over time.
  • the content of the polymerization inhibitor is 0.001 to 1% by mass, more preferably 0.005 to 0.5% by mass, and still more preferably 0.008 to 0.05% by mass with respect to the total polymerizable compound. %, A change in viscosity over time can be suppressed while maintaining high curing sensitivity.
  • the polymerization inhibitor may be contained in advance in the polymerizable compound to be used, or may be further added to the composition.
  • Preferred polymerization inhibitors that can be used in the present invention include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6).
  • phenothiazine Particularly effective in the absence of oxygen, phenothiazine, 4-methoxynaphthol, 2,2,6,6-tetramethylpiperidine-1-oxyl free radical, 2,2,6,6-tetramethylpiperidine, 4- Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical is preferred.
  • a solvent can be used for the photocurable composition used in the present invention according to various needs.
  • a preferable solvent is a solvent having a boiling point of 80 to 200 ° C. at normal pressure. Any solvent can be used as long as it can dissolve the composition, but a solvent having any one or more of an ester structure, a ketone structure, a hydroxyl group, and an ether structure is preferable.
  • preferred solvents are propylene glycol monomethyl ether acetate, cyclohexanone, 2-heptanone, gamma butyrolactone, propylene glycol monomethyl ether, ethyl lactate alone or a mixed solvent, and a solvent containing propylene glycol monomethyl ether acetate.
  • the content of the solvent in the photocurable composition used in the present invention is optimally adjusted depending on the viscosity of the component excluding the solvent and the target film thickness. From the viewpoint of pattern formation, the content of the solvent is 30%. It is preferably at most 10% by mass, more preferably 10% by mass, further preferably 5% by mass, and most preferably contains substantially no solvent.
  • a polyfunctional oligomer having a molecular weight higher than that of the other polyfunctional polymerizable compound is blended within the range of achieving the object of the present invention.
  • the polyfunctional oligomer having photoradical polymerizability include various acrylate oligomers such as polyester acrylate, urethane acrylate, polyether acrylate, and epoxy acrylate.
  • the addition amount of the oligomer component is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, still more preferably 0 to 10% by mass, and most preferably 0 to 5% by mass with respect to the component excluding the solvent of the composition. %.
  • the photocurable composition used in the present invention may further contain a polymer component from the viewpoint of improving dry etching resistance, imprintability, curability and the like.
  • the polymer component is preferably a polymer having a polymerizable functional group in the side chain.
  • the weight average molecular weight of the polymer component is preferably from 2,000 to 100,000, more preferably from 5,000 to 50,000, from the viewpoint of compatibility with the polymerizable compound.
  • the addition amount of the polymer component is preferably 0 to 30% by mass, more preferably 0 to 20% by mass, further preferably 0 to 10% by mass, and most preferably 2% by mass or less, relative to the component excluding the solvent of the composition. It is.
  • the components excluding the solvent in the photocurable composition used in the present invention if the content of the compound having a molecular weight of 2000 or more is 30% by mass or less, the pattern formability is improved.
  • the resin component is not included except for surfactants and trace amounts of additives.
  • the photocurable composition used in the present invention may include a release agent, a silane coupling agent, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, an adhesion promoter, and thermal polymerization. Initiators, colorants, elastomer particles, photoacid multipliers, photobase generators, basic compounds, flow regulators, antifoaming agents, dispersants and the like may be added.
  • the polymerizable compound preferably accounts for 90% by mass or more of the whole.
  • the photocurable composition used in the present invention can be prepared by mixing the above-described components. Mixing and dissolution of the curable composition is usually performed in the range of 0 ° C to 100 ° C. In addition, it is preferable that the components are mixed and then filtered, for example, with a filter having a pore size of 0.003 ⁇ m to 5.0 ⁇ m. Filtration may be performed in multiple stages or repeated many times. Moreover, the filtered liquid can be refiltered.
  • the material of the filter used for filtration may be polyethylene resin, polypropylene resin, fluorine resin, nylon resin or the like, but is not particularly limited.
  • a photocurable composition is applied onto a substrate or a mold having a fine pattern to form a pattern forming layer.
  • the step of applying the photocurable composition on a base material or a mold having a fine pattern includes the step of applying the photocurable composition to a temperature higher than 25 ° C. (X ° C.) of the photocurable composition.
  • This is a step of discharging droplets.
  • the method for ejecting droplets include a micro-dispensing method capable of ejecting droplets in the order of ⁇ L to nL, an ink-jet method capable of ejecting small droplets in the order of pL, and the like.
  • the ink jet device used in the present invention is not particularly limited, and commercially available ink jet devices can be used (for example, DMP-3000, DMP-2831 manufactured by Fujifilm Dimatics).
  • Examples of the ink jet apparatus that can be used in the present invention include an ink supply system and a temperature sensor.
  • the ink supply system includes, for example, an original tank containing the photocurable composition used in the present invention, a supply pipe, an ink supply tank immediately before the inkjet head, a filter, and a piezo-type inkjet head. Piezo-type ink jet heads can be driven so that ejection can be performed at 0.1 to 100 pl, preferably 0.5 to 20 pl.
  • Droplets placed by ejection may be placed at intervals, or may be placed so that the droplets are coupled to each other, but from the viewpoint of making the thickness of the remaining film uniform and thin. It is preferable to be installed.
  • the total amount of droplets varies depending on the pattern to be formed, and is adjusted so that the pattern and the remaining film have an appropriate thickness. Further, it is preferable to make the interval between the droplets non-uniform according to the density of the pattern.
  • the photocurable composition to be discharged is set to (X ° C.), it is preferable to control the temperature in any or all of the ink supply tank to the inkjet head portion.
  • the temperature control method is not particularly limited, but for example, it is preferable to provide a plurality of temperature sensors at each piping site and perform heating control according to the ink flow rate and the environmental temperature.
  • the temperature sensor can be provided in the vicinity of the ink supply tank and the nozzle of the inkjet head.
  • the head unit to be heated is thermally shielded or insulated so that the apparatus main body is not affected by the temperature from the outside air. In order to shorten the printer start-up time required for heating or to reduce the loss of thermal energy, it is preferable to insulate from other parts and reduce the heat capacity of the entire heating unit.
  • the base material can be selected depending on various applications, for example, quartz, glass, optical film, ceramic material, vapor deposition film, magnetic film, reflection film, metal such as Ni, Cu, Cr, and Fe.
  • a conductive substrate a semiconductor production substrate such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon.
  • the shape of the substrate is not particularly limited, and may be a plate shape or a roll shape.
  • a light transmissive or non-light transmissive material can be selected as the base material depending on the combination with the mold.
  • a mold having a pattern to be transferred is used as the mold that can be used in the present invention.
  • the pattern on the mold can be formed according to the desired processing accuracy by, for example, photolithography, electron beam drawing, or the like, but the mold pattern forming method is not particularly limited in the present invention.
  • the light-transmitting mold material used in the present invention is not particularly limited as long as it has predetermined strength and durability. Specifically, a light transparent resin such as glass, quartz, PMMA, and polycarbonate resin, a transparent metal vapor-deposited film, a flexible film such as polydimethylsiloxane, a photocured film, and a metal film are exemplified.
  • the non-light-transmitting mold material used when a light-transmitting substrate is used is not particularly limited as long as it has a predetermined strength.
  • Specific examples include ceramic materials, vapor deposition films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon.
  • the shape of the mold is not particularly limited, and may be either a plate mold or a roll mold. The roll mold is applied particularly when continuous transfer productivity is required.
  • the mold used in the pattern forming method of the present invention may be a mold that has been subjected to a release treatment in order to improve the peelability between the curable composition and the mold surface.
  • examples of such molds include those that have been treated with a silicon-based or fluorine-based silane coupling agent, such as OPTOOL DSX manufactured by Daikin Industries, Ltd., Novec EGC-1720 manufactured by Sumitomo 3M Co., Ltd. Commercially available release agents can also be suitably used.
  • the photocurable composition is irradiated with light while being sandwiched between a substrate and a mold having a fine pattern.
  • the reversal pattern of a mold is transcribe
  • the pressure when sandwiching with a mold having a substrate and a fine pattern is preferably 10 atm or less.
  • the mold and the substrate are hardly deformed and the pattern accuracy tends to be improved.
  • the mold pressure it is preferable to select a region in which the uniformity of mold transfer can be ensured within a range in which the residual film of the curable composition on the mold convex portion is reduced.
  • the irradiation amount of light irradiation in the step of irradiating light should be sufficiently larger than the irradiation amount necessary for curing.
  • the irradiation amount necessary for curing is appropriately determined by examining the consumption of unsaturated bonds of the curable composition and the tackiness of the cured film.
  • the substrate temperature at the time of light irradiation is usually room temperature, but the light irradiation may be performed while heating in order to increase the reactivity.
  • the preferable degree of vacuum at the time of light irradiation is in the range of 10 ⁇ 1 Pa to normal pressure.
  • the light used for curing the photocurable composition used in the present invention is not particularly limited.
  • light or radiation having a wavelength in the region of high energy ionizing radiation near ultraviolet, far ultraviolet, visible, infrared, or the like.
  • an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most conveniently and economically used.
  • an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron
  • radiation such as ⁇ rays, X rays, ⁇ rays, neutron rays, proton rays emitted from radioisotopes or nuclear reactors can also be used.
  • the ultraviolet ray source examples include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, and a solar lamp.
  • the radiation includes, for example, microwaves and EUV.
  • laser light used in semiconductor microfabrication such as LED, semiconductor laser light, or 248 nm KrF excimer laser light or 193 nm ArF excimer laser can be suitably used in the present invention. These lights may be monochromatic lights, or may be lights having different wavelengths (mixed lights).
  • the exposure illuminance is preferably in the range of 1 mW / cm 2 to 50 mW / cm 2 .
  • the exposure dose is preferably in the range of 5 mJ / cm 2 to 1000 mJ / cm 2 . If it is less than 5 mJ / cm 2 , the exposure margin becomes narrow, photocuring becomes insufficient, and problems such as adhesion of unreacted substances to the mold tend to occur.
  • the permanent film may be deteriorated due to decomposition of the composition.
  • an inert gas such as nitrogen or argon may be flowed to control the oxygen concentration to less than 100 mg / L.
  • the pattern forming method of the present invention may include a step of further curing by applying heat to the cured pattern as necessary after curing the pattern forming layer by light irradiation.
  • the heat for heat-curing the photocurable composition used in the present invention after light irradiation is preferably 150 to 280 ° C, more preferably 200 to 250 ° C.
  • the time for applying heat is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • a polymerizable compound and a polymerization initiator shown in the following table are mixed, and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical (manufactured by Tokyo Chemical Industry Co., Ltd.) is polymerizable as a polymerization inhibitor.
  • 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical manufactured by Tokyo Chemical Industry Co., Ltd.
  • the adjusted composition was filtered with a 0.1 ⁇ m tetrafluoroethylene filter to obtain a curable composition.
  • the curable composition was heated to the temperature at the time of discharge (X ° C.), and the viscosity was measured.
  • Viscosity measurement method Viscosity was measured using a rotational viscometer (RE-80L, manufactured by Toki Sangyo Co., Ltd.), with a viscosity at 25 ° C of 25 ⁇ 0.1 ° C and a viscosity at X ° C of X ° ⁇ 0.1 ° C. did.
  • the rotational speed at the time of measurement is 100 rpm when 0.5 mPa ⁇ s or more and less than 5 mPa ⁇ s, 50 rpm when 5 mPa ⁇ s or more and less than 10 mPa ⁇ s, and 20 rpm when 10 mPa ⁇ s or more and less than 30 mPa ⁇ s.
  • the viscosity was measured at 10 rpm, in the case of 60 mPa ⁇ s or more and less than 120 mPa ⁇ s, 5 rpm, and at 120 mPa ⁇ s or more, 1 rpm or 0.5 rpm.
  • the unit of viscosity in the following table is mPa ⁇ s.
  • the compounding quantity of the compound is shown by weight ratio.
  • Photopolymerization initiator P1 IRGACURE 379EG (manufactured by BASF)
  • P2 DAROCURE1173 (manufactured by BASF)
  • compositions of the photocurable compositions A1 to A12, B1, and B2 are shown below.
  • the mold has a rectangular line / space pattern (1/1) with a line width of 25 nm and a groove depth of 40 nm, and the surface of the pattern is treated with OPTOOL DSX (manufactured by Daikin Industries). The thing which is 2.5 nm was used.
  • the photocurable composition is controlled by controlling the discharge timing so as to form a square array at 100 ⁇ m intervals with a droplet volume of 1 pl per nozzle on a silicon wafer.
  • the object was discharged. Under the present circumstances, it heated in the apparatus so that the temperature of the cured composition discharged might be set to X degreeC of the following table
  • Pattern evaluation> The pattern shape and pattern defect of the obtained pattern were observed with a scanning electron microscope and evaluated as follows.
  • shape evaluation A: A rectangular pattern faithful to the mold was obtained.
  • Pattern defects such as pattern peeling, cracking and crushing were observed.
  • c Pattern defects were observed in a region of 5% or more with respect to the total pattern area.
  • LER Line edge roughness after dry etching
  • the difference in viscosity indicates the difference (unit: mPa ⁇ s) between the viscosity at 25 ° C. of the photocurable composition and the temperature at the time of ejection.
  • the viscosity at 25 ° C. of the photocurable composition is 12 to 100 mPa ⁇ s and the discharge temperature is 28 ° C. or more, the pattern formability and the line edge roughness after dry etching are improved. It was found that an excellent pattern can be formed. Since the method of the present invention can be carried out regardless of the type of composition of the photocurable composition, there is also an advantage that the application range is wide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 インクジェット法を用いて光硬化組成物の適用を行っても超微細パターンが良好に形成できるパターン形成方法を提供する。重合性化合物および重合開始剤を含有する光硬化性組成物を基材上または微細パターンを有するモールド上に適用し、該光硬化性組成物をモールドまたは基材で挟んだ状態で光照射することを含むパターン形成方法であって、光硬化性組成物の25℃における粘度が12~100mPa・sであり、光硬化性組成物は、液滴を吐出により、基材上または微細パターンを有するモールド上に適用し、前記光硬化性組成物の吐出時の温度が28℃以上である、パターン形成方法。

Description

パターン形成方法およびパターン
 本発明は、パターン形成方法に関する。特に、電子デバイスの構成要素を形成するためのパターン形成方法に関する。より詳しくは、半導体集積回路(特に回路)、フラットスクリーン、マイクロ電気機械システム(MEMS)、センサー素子、光ディスク、高密度メモリーディスク等の磁気記録媒体、回折格子やレリーフホログラム等の光学部品、ナノデバイス、光学デバイス、フラットパネルディスプレイ製作のための光学フィルムや偏光素子、液晶ディスプレイの薄膜トランジタ、有機トランジスタ、カラーフィルタ、オーバーコート層、柱材、液晶配向用のリブ材、マイクロレンズアレイ、免疫分析チップ、DNA分離チップ、マイクロリアクター、ナノバイオデバイス、光導波路、光学フィルター、フォトニック液晶、等の作製に用いられる光照射を利用した微細パターン形成であるインプリント法によるパターン形成方法に関するものである。
 ナノインプリント法は、光ディスク製作ではよく知られているエンボス技術を発展させ、凹凸のパターンを形成した金型原器(一般的にモールド、スタンパ、テンプレートと呼ばれる)を、レジストにプレスして力学的に変形させて微細パターンを精密に転写する技術である。モールドを一度作製すれば、ナノ構造等の微細構造が簡単に繰り返して成型できるため経済的であるとともに、有害な廃棄・排出物が少ないナノ加工技術であるため、近年、さまざまな分野への応用が期待されている。
 ナノインプリント法には、被加工材料として熱可塑性樹脂を用いる熱インプリント法(例えば、非特許文献1参照)と、硬化性組成物を用いる光インプリント法(例えば、非特許文献2参照)の2通りの技術が提案されている。熱ナノインプリント法の場合、ガラス転移温度以上に加熱した高分子樹脂にモールドをプレスし、冷却後にモールドを離型することで微細構造を基板上の樹脂に転写するものである。この方法は多様な樹脂材料やガラス材料にも応用可能であるため、様々な方面への応用が期待されている。例えば、特許文献1および2には、熱可塑性樹脂を用いて、ナノパターンを安価に形成するナノインプリントの方法が開示されている。
 一方、透明モールドや透明基材を通して光を照射し、光ナノインプリント用硬化性組成物を光硬化させる光ナノインプリント法では、モールドのプレス時に転写される材料を加熱する必要がなく室温でのインプリントが可能になる。最近では、この両者の長所を組み合わせたナノキャスティング法や3次元積層構造を作製するリバーサルインプリント法などの新しい展開も報告されている。
 このようなナノインプリント法においては、以下のような応用技術が提案されている。
 第一の技術としては、成型した形状(パターン)そのものが機能を持ち、様々なナノテクノロジーの要素部品、あるいは構造部材として応用できる場合である。例としては、各種のマイクロ・ナノ光学要素や高密度の記録媒体、光学フィルム、フラットパネルディスプレイにおける構造部材などが挙げられる。第二の技術は、マイクロ構造とナノ構造との同時一体成型や、簡単な層間位置合わせにより積層構造を構築し、これをμ-TAS(Micro-Total Analysis System)やバイオチップの作製に応用しようとするものである。第3の技術としては、形成されたパターンをマスクとし、エッチング等の方法により基板を加工する用途に利用されるものである。かかる技術では高精度な位置合わせと高集積化とにより、従来のリソグラフィ技術に代わって高密度半導体集積回路の作製や、液晶ディスプレイのトランジスタへの作製、パターンドメディアと呼ばれる次世代ハードディスクの磁性体加工等に応用できる。前記の技術を始め、これらの応用に関するナノインプリント法の実用化への取り組みが近年活発化している。
 ナノインプリント法の適用例として、まず、高密度半導体集積回路作製への応用例を説明する。近年、半導体集積回路は微細化、集積化が進んでおり、その微細加工を実現するためのパターン転写技術としてフォトリソグラフィ装置の高精度化が進められてきた。しかし、さらなる微細化要求に対して、微細パターン解像性、装置コスト、スループットの3つを満たすのが困難となってきている。これに対し、微細なパターン形成を低コストで行うための技術としてナノインプリントリソグラフィ(光ナノインプリント法)が提案された。例えば、下記特許文献1および特許文献3にはシリコンウエハをスタンパとして用い、25nm以下の微細構造を転写により形成するナノインプリント技術が開示されている。本用途においては数十nmレベルのパターン形成性と基板加工時にマスクとして機能するための高いエッチング耐性とが要求される。
 ナノインプリント法の次世代ハードディスクドライブ(HDD)作製への応用例を説明する。HDDは面記録密度を高めることで大容量化を達成してきている。しかしながら記録密度を高める際には、磁気ヘッド側面からの、いわゆる磁界広がりが問題となる。磁界広がりはヘッドを小さくしてもある値以下には小さくならないため、結果としてサイドライトと呼ばれる現象が発生してしまう。サイドライトが発生すると、記録時に隣接トラックへの書き込みが生じ、既に記録したデータを消してしまう。また、磁界広がりによって、再生時には隣接トラックからの余分な信号を読みこんでしまうなどの現象が発生する。このような問題に対し、トラック間を非磁性材料で充填し、物理的、磁気的に分離することで解決するディスクリートトラックメディアやビットパターンドメディアといった技術が提案されている。これらメディア作製において磁性体あるいは非磁性体パターンを形成する方法としてナノインプリントの応用が提案されている。本用途においても数十nmレベルのパターン形成性と基板加工時にマスクとして機能するための高いエッチング耐性とが要求される。
 次に、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)などのフラットディスプレイへのナノインプリント法の応用例について説明する。
 LCD基板やPDP基板の大型化や高精細化の動向に伴い、薄膜トランジスタ(TFT)や電極板の製造時に使用する従来のフォトリソグラフィ法に代わる安価なリソグラフィとして光ナノインプリントリ法が、近年注目されている。そのため、従来のフォトリソグラフィ法で用いられるエッチングフォトレジストに代わる光硬化性レジストの開発が必要になってきている。
 さらにLCDなどの構造部材としては、特許文献4および特許文献5に記載される透明保護膜材料や、特許文献5に記載されるスペーサなどに対する光ナノインプリント法の応用も検討され始めている。このような構造部材用のレジストは、前記エッチングレジストとは異なり、最終的にディスプレイ内に残るため、“永久レジスト”、あるいは“永久膜”と称されることがある。
 また、液晶ディスプレイにおけるセルギャップを規定するスペーサも永久膜の一種であり、従来のフォトリソグラフィにおいては、樹脂、光重合性モノマーおよび開始剤からなる光硬化性組成物が一般的に広く用いられてきた(例えば、特許文献6参照)。スペーサは、一般には、カラーフィルタ基板上に、カラーフィルタ形成後、もしくは、前記カラーフィルタ用保護膜形成後、光硬化性組成物を適用し、フォオトリソグラフィにより10μm~20μm程度の大きさのパターンを形成し、さらにポストベイクにより加熱硬化して形成される。
 また、一般にモスアイと呼ばれる反射防止構造体の作成にもナノインプリント法を用いることができる。透明性成形品の表面に、透明性素材から成る無数の微細凹凸を光の波長以下のピッチで形成することによって、光の屈折率が厚み方向に変化するようにした反射防止構造が形成できる。このような反射防止構造体は屈折率が厚み方向に連続的に変化するため、屈折率界面が存在せず、理論的には無反射とすることができる。また、波長依存性が小さく、斜め光に対する反射防止能も高いため、多層反射防止膜よりも優れた反射防止性能を備えたものとなる。
 さらに、マイクロ電気機械システム(MEMS)、センサ素子、回折格子やレリーフホログラム等の光学部品、ナノデバイス、光学デバイス、フラットパネルディスプレイ製作のための光学フィルムや偏光素子、液晶ディスプレイの薄膜トランジタ、有機トランジスタ、カラーフィルタ、オーバーコート層、柱材、液晶配向用のリブ材、マイクロレンズアレイ、免疫分析チップ、DNA分離チップ、マイクロリアクター、ナノバイオデバイス、光導波路、光学フィルター、フォトニック液晶などの永久膜形成用途においてもナノインプリントリソグラフィは有用である。
 これら永久膜用途においては、形成されたパターンが最終的に製品に残るため、耐熱性、耐光性、耐溶剤性、耐擦傷性、外部圧力に対する高い機械的特性、硬度など主に膜の耐久性や強度に関する性能が要求される。
 このように従来フォトリソグラフィ法で形成されていたパターンのほとんどがナノインプリントで形成可能であり、安価に微細パターンが形成できる技術として注目されている。
 ナノインプリントを産業に利用する上では、良好なパターンが繰り返し形成されることが要求される。
 光インプリント法においては、基材または微細パターンを有するモールド上に光硬化性組成物を適用し、光硬化性組成物を基材とモールドではさんだ状態で光照射して光硬化性組成物を硬化させることでモールドのパターンを硬化物に転写する。ここで基材または微細パターンを有するモールド上に光硬化性組成物を適用する方法としてはスピンコート法やスリットコート法などの方法が一般に用いられている。
 近年、特に超微細パターンを高精度に形成する用途(例えば、半導体基板加工用エッチングレジスト用途)においてはインクジェット法が注目されている(特許文献9)。インクジェット法はパターンの粗密に応じて硬化組成物の量を調整できるため、超微細パターンを高精度に形成する用途においては有効である。一方でインクジェト吐出が安定に行われないとパターン形成性がむしろ悪化してしまうという問題があった。さらにこれらパターン形成性と基板加工用途におけるドライエッチング耐性やドライエッチング後のラインエッジラフネスなど製品に要求される性能を同時に満たすことは困難であった。
米国特許第5,772,905号公報 米国特許第5,956,216号公報 米国特許第5,259,926号公報 特開2005-197699号公報 特開2005-301289号公報 特開2004-240241号公報 特開2006-310565号公報 特開2008-95037号公報 特表2008-502157号公報
S.Chou et al.:Appl.Phys.Lett.Vol.67,3114(1995) M.Colbun et al,:Proc.SPIE,Vol. 3676,379 (1999)
 本発明の目的は、上記課題を解決することを目的とするものであって、インクジェット法を用いて光硬化組成物の適用を行っても超微細パターンが良好に形成できるパターン形成方法を提供することを目的とする。さらにこれらパターン形成性とドライエッチング後のラインエッジラフネスを同時に満たすパターンを形成可能なパターン形成方法を提供することを目的とする。
 インクジェットの吐出の適性粘度は、5~10mPa・s程度であることが知られている。一方、一般的に粘度の低いものは揮発しやすい。このような揮発は、インク等のインクジェットによる吐出では特に問題にならないが、インプリント用硬化性組成物をインクジェットにより吐出する場合、吐出直後の揮発がパターン形成性やドライエッチング後のラインエッジラフネスに大きな影響を与えることがわかった。かかる状況のもと、25℃における粘度が12~100mPa・sの光硬化性組成物を28℃以上の温度で、吐出することにより、かかる問題点を解決しうることを見出し、発明を完成するに至った。
 具体的には以下の手段により上記課題は解決された。
(1)重合性化合物および重合開始剤を含有する光硬化性組成物を基材上または微細パターンを有するモールド上に適用し、該光硬化性組成物をモールドまたは基材で挟んだ状態で光照射することを含むパターン形成方法であって、
光硬化性組成物の25℃における粘度が12~100mPa・sであり、
光硬化性組成物は、液滴を吐出により、基材上または微細パターンを有するモールド上に適用し、かつ、前記光硬化性組成物の吐出時の温度が28℃以上である、パターン形成方法。
(2)前記光硬化性組成物の吐出をインクジェット法により行う、(1)に記載のパターン形成方法。
(3)前記光硬化性組成物の吐出時の温度が70℃以下である、(1)または(2)に記載のパターン形成方法。
(4)前記光硬化性組成物の吐出時の粘度が2mPa・s~30mPa・sである、(1)~(3)のいずれか1項に記載のパターン形成方法。
(5)前記光硬化性組成物の吐出時の粘度が5mPa・s以上12mPa・s未満である、(1)~(3)のいずれか1項に記載のパターン形成方法。
(6)光硬化性組成物中に含まれる重合性化合物であって、25℃における粘度が5mPa・s未満の重合性化合物の含有量が、光硬化性組成物中に含まれる全重合性化合物の30質量%以下である、(1)~(5)のいずれか1項に記載のパターン形成方法。
(7)硬化性組成物の25℃における粘度と、光硬化性組成物の吐出時の粘度の差が、2~100mPa・sである、(1)~(6)のいずれか1項に記載のパターン形成方法。
(8)光硬化性組成物は、2種類以上の重合性化合物を含み、かつ、該光硬化性組成物中の配合量が一番多い重合性化合物と二番目に多い重合性化合物の、25℃における粘度の差が、0.1~120mPa・sである、(1)~(7)のいずれか1項に記載のパターン形成方法。
(9)硬化性組成物は、25℃における粘度が12mPa・s~80mPa・sであり、吐出時の粘度が2mPa・s以上12mPa・s未満である、(1)~(8)のいずれか1項に記載のパターン形成方法。
(10)前記光硬化性組成物が脂環炭化水素基および/または芳香族基を有する重合性化合物を含有する、(1)~(9)のいずれか1項に記載のパターン形成方法。
(11)(1)~(10)のいずれか1項に記載のパターン形成方法を含む、電子デバイスの製造方法。
(12)(1)~(10)のいずれか1項に記載のパターン形成方法を実行する手段を有するパターン形成装置。
(13)光硬化性組成物の温度コントロール部を有する、(12)に記載のパターン形成装置。
 本発明で用いる光硬化性組成物をインプリント用硬化組成物として用いると、良好なパターン形成性を有し、欠陥が少なく、かつ基板加工用途に用いた際にエッチング後のラインエッジラフネスが良好であるインプリント用硬化性組成物を提供することができる。
 以下において、本発明の内容について詳細に説明する。尚、本願明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 なお、本明細書中において、“(メタ)アクリレート”はアクリレートおよびメタクリレートを表し、“(メタ)アクリル”はアクリルおよびメタクリルを表し、“(メタ)アクリロイル”はアクリロイルおよびメタクリロイルを表す。また、本明細書中において、“単量体”と“モノマー”とは同義である。本発明における単量体は、オリゴマーおよびポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。
 なお、本発明でいう“インプリント”は、好ましくは、1nm~10mmのサイズのパターン転写をいい、より好ましくは、およそ10nm~100μmのサイズ(ナノインプリント)のパターン転写をいう。 尚、本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本発明のパターン形成方法は、重合性化合物および重合開始剤を含有する光硬化性組成物を基材上または微細パターンを有するモールド上に適用し、該光硬化性組成物をモールドまたは基材で挟んだ状態で光照射することを含むパターン形成方法であって、光硬化性組成物の25℃における粘度が12~100mPa・sであり、光硬化性組成物は、液滴を吐出により、基材上または微細パターンを有するモールド上に適用し、前記光硬化性組成物の吐出時の温度が28℃以上であることを特徴とする。
 本発明で用いる光硬化組成物は25℃における粘度が12~100mPa・sであり、12~80mPa・sであることが好ましく、より好ましくは15~50mPa・s、さらに好ましくは15~40mPa・s、特に好ましくは15~30mPa・sである。
 また、光硬化性組成物の吐出時の粘度は、2~30mPa・sであることが好ましく、より好ましくは3~25mPa・s、さらに好ましくは、3~20mPa・s、よりさらに好ましくは5mPa・s~15mPa・s未満、特に好ましくは5~12mPa・s未満である。このような範囲とすることにより、光硬化性組成物を基材上または微細パターンを有するモールド上に安定して適用することができ、連続パターン形成性が向上する。ここで、吐出時の粘度とは、吐出時の光硬化性組成物の温度がX℃となるように調整(例えば、加熱)されるとき、X℃における光硬化性組成物の粘度をいう。
 また、硬化性組成物の25℃における粘度と、光硬化性組成物の吐出時の粘度の差が、2~100mPa・sであることが好ましく、3~80mPa・sであることがより好ましく、3~50mPa・sであることが更に好ましく、5~20mPa・sであることが最も好ましい。このような範囲とすることにより、本発明の効果がより効果的に発揮される傾向にある。
 さらに、光硬化性組成物は、2種類以上の重合性化合物を含み、かつ、該光硬化性組成物中の配合量が一番多い重合性化合物と二番目に多い重合性化合物の25℃における粘度の差が、0.1~120mPa・sであることが好ましく、1~100mPa・sであることがより好ましく1~50mPa・sでることが更に好ましく、1~20mPa・sであることが最も好ましい。
 光硬化性組成物は28℃以上の温度で吐出される。(X℃)としては28℃~70℃が好ましく、30~60℃がさらに好ましく、30~50℃が特に好ましい。このような範囲とすることにより、硬化組成物の吐出安定性が向上し、パターン形成性が向上するとともに装置内でのパーティクル、気泡の発生を抑制できる。
 本発明で用いる光硬化性組成物は、重合性化合物(A)および重合開始剤(B)を含有する。
 本発明に用いるインプリント用硬化性組成物に用いられる重合性化合物の種類は本発明の趣旨を逸脱しない限り特に定めるものではないが、例えば、エチレン性不飽和結合含有基を1~6個有する重合性不飽和単量体;エポキシ化合物、オキセタン化合物;ビニルエーテル化合物;スチレン誘導体;プロペニルエーテルまたはブテニルエーテル等を挙げることができる。
重合性化合物(A)
 前記エチレン性不飽和結合含有基を1~6個有する重合性不飽和単量体(1~6官能の重合性不飽和単量体)について説明する。
 まず、エチレン性不飽和結合含有基を1つ有する重合性不飽和単量体としては具体的に、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、N-ビニルピロリジノン、2-アクリロイロキシエチルフタレート、2-アクリロイロキシ2-ヒドロキシエチルフタレート、2-アクリロイロキシエチルヘキサヒドロフタレート、2-アクリロイロキシプロピルフタレート、2-エチル-2-ブチルプロパンジオールアクリレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アクリル酸ダイマー、ベンジル(メタ)アクリレート、1-または2-ナフチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、セチル(メタ)アクリレート、エチレンオキシド変性(以下「EO」という。)クレゾール(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、エピクロロヒドリン(以下「ECH」という)変性フェノキシアクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、トリドデシル(メタ)アクリレート、p-イソプロペニルフェノール、N-ビニルピロリドン、N-ビニルカプロラクタムが例示される。
 前記エチレン性不飽和結合を含有する単官能の重合性化合物の中でも、本発明では単官能(メタ)アクリレート化合物を用いることが、光硬化性の観点から好ましい。単官能(メタ)アクリレート化合物としては、前記エチレン性不飽和結合を含有する単官能の重合性化合物で例示した中における、単官能(メタ)アクリレート化合物類を例示することができる。
 本発明では、重合性化合物として、エチレン性不飽和結合含有基を2つ以上有する多官能重合性不飽和単量体を用いることも好ましい。
 本発明で好ましく用いることのできるエチレン性不飽和結合含有基を2つ有する2官能重合性不飽和単量体の例としては、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ジ(メタ)アクリル化イソシアヌレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、EO変性1,6-ヘキサンジオールジ(メタ)アクリレート、ECH変性1,6-ヘキサンジオールジ(メタ)アクリレート、アリロキシポリエチレングリコールアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、ECH変性ヘキサヒドロフタル酸ジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジアクリレート、プロピレンオキシド(以後「PO」という。)変性ネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコール、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリエステル(ジ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、EO変性トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ジビニルエチレン尿素、ジビニルプロピレン尿素、o-,m-,p-キシリレンジ(メタ)アクリレート、1,3-アダマンタンジアクリレートノルボルナンジメタノールジアクリレートが例示される。
 これらの中で特に、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、o-,m-,p-ベンゼンジ(メタ)アクリレート、o-,m-,p-キシリレンジ(メタ)アクリレート、等の2官能(メタ)アクリレートが本発明に好適に用いられる。
 エチレン性不飽和結合含有基を3つ以上有する多官能重合性不飽和単量体の例としては、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 これらの中で特に、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3官能以上の官能(メタ)アクリレートが本発明に好適に用いられる。
 前記エチレン性不飽和結合を2つ以上有する多官能の重合性不飽和単量体の中でも、本発明では多官能(メタ)アクリレートを用いることが、光硬化性の観点から好ましい。なお、ここでいう多官能(メタ)アクリレートとは、前記2官能(メタ)アクリレートおよび前記3官能以上の官能(メタ)アクリレートを総称するもののことである。多官能(メタ)アクリレートの具体例としては、前記エチレン性不飽和結合を2つ有する多官能重合性不飽和単量体で例示した中、および、前記エチレン性不飽和結合を3つ以上有する多官能重合性不飽和単量体で例示した中における、各種多官能(メタ)アクリレートを例示することができる。
 前記オキシラン環を有する化合物(エポキシ化合物)としては、例えば、多塩基酸のポリグリシジルエステル類、多価アルコールのポリグリシジルエーテル類、ポリオキシアルキレングリコールのポリグリシジルエーテル類、芳香族ポリオールのポリグリシジルエテーテル類、芳香族ポリオールのポリグリシジルエーテル類の水素添加化合物類、ウレタンポリエポキシ化合物およびエポキシ化ポリブタジエン類等を挙げることができる。これらの化合物は、その一種を単独で使用することもできるし、また、その二種以上を混合して使用することもできる。
 本発明に好ましく使用することのできる前記オキシラン環を有する化合物(エポキシ化合物)としては、例えばビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;脂肪族高級アルコールのモノグリシジルエーテル類;フェノール、クレゾール、ブチルフェノールまたはこれらにアルキレンオキサイドを付加して得られるポリエーテルアルコールのモノグリシジルエーテル類;高級脂肪酸のグリシジルエステル類などを例示することができる。
 これらの中で特に、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルが好ましい。
 グリシジル基含有化合物として好適に使用できる市販品としては、UVR-6216(ユニオンカーバイド社製)、グリシドール、AOEX24、サイクロマーA200、(以上、ダイセル化学工業(株)製)、エピコート828、エピコート812、エピコート1031、エピコート872、エピコートCT508(以上、油化シェル(株)製)、KRM-2400、KRM-2410、KRM-2408、KRM-2490、KRM-2720、KRM-2750(以上、旭電化工業(株)製)などを挙げることができる。これらは、1種単独で、または2種以上組み合わせて用いることができる。
 また、これらのオキシラン環を有する化合物はその製法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213~、平成4年、Ed.by Alfred Hasfner,The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes,John & Wiley and Sons,An Interscience Publication,New York,1985、吉村、接着、29巻12号、32、1985、吉村、接着、30巻5号、42、1986、吉村、接着、30巻7号、42、1986、特開平11-100378号公報、特許第2906245号公報、特許第2926262号公報などの文献を参考にして合成できる。
 本発明で用いることができる重合性化合物として、ビニルエーテル化合物を併用してもよい。ビニルエーテル化合物は公知のものを適宜選択することができ、例えば、2-エチルヘキシルビニルエーテル、ブタンジオール-1,4-ジビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,3-プロパンジオールジビニルエーテル、1,3-ブタンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、エチレングリコールジエチレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、エチレングリコールジプロピレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、トリメチロールプロパントリエチレンビニルエーテル、トリメチロールプロパンジエチレンビニルエーテル、ペンタエリスリトールジエチレンビニルエーテル、ペンタエリスリトールトリエチレンビニルエーテル、ペンタエリスリトールテトラエチレンビニルエーテル、1,1,1-トリス〔4-(2-ビニロキシエトキシ)フェニル〕エタン、ビスフェノールAジビニロキシエチルエーテル等が挙げられる。
 これらのビニルエーテル化合物は、例えば、Stephen.C.Lapin,Polymers Paint Colour Journal.179(4237)、321(1989)に記載されている方法、即ち多価アルコールもしくは多価フェノールとアセチレンとの反応、または多価アルコールもしくは多価フェノールとハロゲン化アルキルビニルエーテルとの反応により合成することができ、これらは1種単独あるいは2種以上を組み合わせて用いることができる。
 また、本発明で用いることができる重合性化合物としては、スチレン誘導体も採用できる。スチレン誘導体としては、例えば、スチレン、p-メチルスチレン、p-メトキシスチレン、β-メチルスチレン、p-メチル-β-メチルスチレン、α-メチルスチレン、p-メトキシ-β-メチルスチレン、p-ヒドロキシスチレン、等を挙げることができる。
 本発明で用いられる重合性化合物として芳香族基を有する重合性化合物が好ましい。芳香族基を有する重合性化合物を用いることで、基板加工用エッチングレジストとして用いた際にラインエッジラフネスが良好となる。
 本発明で用いられる芳香族基を有する重合性単量体として、下記一般式(I)で表される単官能(メタ)アクリレート化合物または後述の一般式(II)で表される多官能(メタ)アクリレート化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
(一般式中、Zは芳香族基を含有する基を表し、R1は水素原子、アルキル基またはハロゲン原子を表す。但し、重合性単量体(Ax)が25℃において液体であるとき、25℃における粘度が500mPa・s以下である。)
 R1は、好ましくは、水素原子またはアルキル基であり、水素原子またはメチル基が好ましく、硬化性の観点から、水素原子がさらに好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、フッ素原子が好ましい。
 Zは、好ましくは置換基を有していても良いアラルキル基、置換基を有していても良いアリール基、または、これらの基が連結基を介して結合した基である。ここでいう連結基は、ヘテロ原子を含む連結基を含んでいてもよく、好ましくは、-CH2-、-O-、-C(=O)-、-S-およびこれらの組み合わせからなる基である。Zに含まれる芳香族基としてはフェニル基、ナフチル基が好ましい。Zの分子量としては90~300であることが好ましく、より好ましくは120~250である。
 一般式(I)で表される重合性単量体が25℃において液体であるときの25℃における粘度としては2~500mPa・sが好ましく、3~200mPa・sがより好ましく、3~100mPa・sが最も好ましい。重合性単量体は25℃において液体であるか、固体であっても融点が60℃以下であることが好ましく、融点か40℃以下であることがより好ましく、25℃において液体であることが更に好ましい。
 Zは-Z1-Z2で表される基であることが好ましい。ここで、Z1は、単結合または炭化水素基であり、該炭化水素基は、その鎖中にヘテロ原子を含む連結基を含んでいてもよい。Z2は、置換基を有していてもよい芳香族基であり、分子量90以上である。
 Z1は、好ましくは、単結合またはアルキレン基であり、該アルキレン基は、その鎖中にヘテロ原子を含む連結基を含んでいてもよい。Z1は、より好ましくは、その鎖中にヘテロ原子を含む連結基を含まないアルキレン基であり、さらに好ましくはメチレン基、エチレン基である。ヘテロ原子を含む連結基としては-O-、-C(=O)-、-S-およびこれらとアルキレン基の組み合わせからなる基などが挙げられる。また、炭化水素基の炭素数は1~3であることが好ましい。
 Z2は、2つ以上の芳香族基が、直接にまたは連結基を介して連結した基であることも好ましい。この場合の連結基も、好ましくは、-CH2-、-O-、-C(=O)-、-S-およびこれらの組み合わせからなる基である。
 一般式(I)で表される重合性単量体の芳香族基が有していても良い置換基としては、置換基の例としては例えばハロゲン原子(フッ素原子、クロロ原子、臭素原子、ヨウ素原子)、直鎖、分岐または環状のアルキル基、アルケニル基、アルキニル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、シアノ基、カルボキシル基、水酸基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロ環オキシ基、アシルオキシ基、アミノ基、ニトロ基、ヒドラジノ基、ヘテロ環基などが挙げられる。また、これらの基によってさらに置換されている基も好ましい。
 一般式(I)で表される重合性単量体の光硬化性組成物中における添加量は、10~100質量%であることが好ましく、20~100質量%であることがより好ましく、30~80質量%であることが特に好ましい。
 一般式(I)で表される化合物のうち芳香環上に置換基を有さない化合物の具体例としては、ベンジル(メタ)アクリレート、フェネチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、1-または2-ナフチル(メタ)アクリレート、1-または2-ナフチルメチル(メタ)アクリレート、1-または2-ナフチルエチル(メタ)アクリレート、1-または2-ナフトキシエチル(メタ)アクリレートが好ましい。
 一般式(I)で表される化合物としては、下記一般式(II)で表される芳香環上に置換基を有する化合物も好ましい。
Figure JPOXMLDOC01-appb-C000002
(一般式(II)中、R1は水素原子、アルキル基またはハロゲン原子を表し、X1は単結合または炭化水素基であり、該炭化水素基は、その鎖中にヘテロ原子を含む連結基を含んでいてもよい。Y1は分子量15以上の置換基を表し、n1は1~3の整数を表す。Arは、芳香族連結基を表し、フェニレン基またはナフチレン基が好ましい。)
 R1は、上記一般式のR1と同義であり、好ましい範囲も同義である。
 X1は、上記Z1と同義であり、好ましい範囲も同義である。
 Y1は、分子量15以上の置換基であり、アルキル基、アルコキシ基、アリールオキシ基、アラルキル基、アシル基、アルコキシカルボニル基、アルキルチオ基、アリールチオ基、ハロゲン原子、シアノ基などが挙げられる。これら置換基は更なる置換基を有していても良い。
 n1が2のときは、X1は単結合または炭素数1の炭化水素基であることが好ましい。
 特に、好ましい様態としてはn1が1で、X1は炭素数1~3のアルキレン基である。
 一般式(II)で表される化合物は、さらに好ましくは、(IV)(V)のいずれかで表される化合物である。
一般式(IV)で表される化合物
Figure JPOXMLDOC01-appb-C000003
 一般式(IV)中、R1は水素原子、アルキル基またはハロゲン原子を表す。X2は単結合、または、炭化水素基であり、該炭化水素基は、その鎖中にヘテロ原子を含む連結基を含んでいてもよい。Y2は分子量15以上の芳香族基を有さない置換基を表し、n2は1~3の整数を表す。
 R1は、上記一般式のR1と同義であり、好ましい範囲も同義である。
 X2は、炭化水素基である場合、炭素数1~3の炭化水素基であることが好ましく、置換または無置換の炭素数1~3のアルキレン基であることが好ましく、無置換の炭素数1~3のアルキレン基であることがより好ましく、メチレン基、エチレン基であることがさらに好ましい。このような炭化水素基を採用することにより、より低粘度で低揮発性を有する光硬化性組成物とすることが可能になる。
 Y2は分子量15以上の芳香族基を有さない置換基を表し、Y2の分子量の上限は150以下であることが好ましい。Y2としては、メチル基、エチル基、イソプロピル基、tert-ブチル基、シクロヘキシル基などの炭素数1~6のアルキル基、フロロ基、クロロ基、ブロモ基などのハロゲン原子、メトキシ基、エトキシ基、シクロヘキシルオキシ基などの炭素数1~6のアルコキシ基、シアノ基が好ましい例として挙げられる。
 n2は、1~2の整数であることが好ましい。n2が1の場合、置換基Yはパラ位にあるのが好ましい。また、粘度の観点から、n2が2のときは、X2は単結合もしくは炭素数1の炭化水素基が好ましい。
 低粘度と低揮発性の両立という観点から、一般式(IV)で表される(メタ)アクリレート化合物の分子量は175~250であることが好ましく、185~245であることがより好ましい。
 また、一般式(IV)で表される(メタ)アクリレート化合物の25℃における粘度が50mPa・s以下であることが好ましく、20mPa・s以下であることがより好ましい。
 一般式(IV)で表される化合物は、反応希釈剤としても好ましく用いることができる。
 一般式(IV)で表される化合物の光硬化性組成物中における添加量は、組成物の粘度や硬化後のパターン精度の観点から10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。一方、硬化後のタッキネスや力学強度の観点からは、添加量は95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることが特に好ましい。
 以下に、一般式(IV)で表される化合物を例示するが、本発明がこれらに限定されるものではないことは言うまでも無い。R1は水素原子、アルキル基またはハロゲン原子を表す。
Figure JPOXMLDOC01-appb-C000004
一般式(V)で表される化合物
Figure JPOXMLDOC01-appb-C000005
(一般式(V)中、R1は水素原子、アルキル基またはハロゲン原子を表し、X3は単結合、または、炭化水素基であり、該炭化水素基は、その鎖中にヘテロ原子を含む連結基を含んでいてもよい。Y3は芳香族基を有する置換基を表し、n3は1~3の整数を表す。)
 R1は、上記一般式のR1と同義であり、好ましい範囲も同義である。
 Y3は、芳香族基を有する置換基を表し、芳香族基を有する置換基としては芳香族基が単結合、あるいは連結基を介して一般式(V)の芳香環に結合している様態が好ましい。連結基としては、アルキレン基、ヘテロ原子を有する連結基(好ましくは-O-、-S-、-C(=O)O-、)あるいはこれらの組み合わせが好ましい例として挙げられ、アルキレン基または-O-ならびにこれらの組み合わせからなる基がより好ましい。芳香族基を有する置換基としてはフェニル基を有する置換基であることが好ましい。フェニル基が単結合または上記連結基を介して結合している様態が好ましく、フェニル基、ベンジル基、フェノキシ基、ベンジルオキシ基、フェニルチオ基が特に好ましい。Y3の分子量は好ましくは、230~350である。
 n3は、好ましくは、1または2であり、より好ましくは1である。
 一般式(V)で表される化合物の、本発明で用いる光硬化性組成物中における添加量は、10質量%以上であることが好ましく、20質量以上であることがより好ましく、30質量%以上であることが特に好ましい。一方、硬化後のタッキネスや力学強度の観点からは、添加量は90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが特に好ましい。
 以下に、一般式(V)で表される化合物を例示するが、本発明がこれらに限定されるものではないことは言うまでも無い。R1は水素原子、アルキル基またはハロゲン原子を表す。
Figure JPOXMLDOC01-appb-C000006
一般式(II)で表される多官能(メタ)アクリレート化合物
Figure JPOXMLDOC01-appb-C000007
 式中Ar2は芳香族基を有するn価の連結基を表し、好ましくはフェニレン基を有する連結基である。X1、R1は前述と同義である。nは1~3を表し、好ましくは1である。
 一般式(II)で表される化合物は一般式(VI)または(VII)で表される化合物であることが好ましい。
一般式(VI)で表される化合物
Figure JPOXMLDOC01-appb-C000008
(一般式(VI)中、X6は(n6+1)価の連結基であり、R1は、それぞれ、水素原子、アルキル基、ハロゲン原子である。R2およびR3は、それぞれ、置換基であり、n4およびn5は、それぞれ、0~4の整数である。n6は1または2であり、X4およびX5は、それぞれ、炭化水素基であり、該炭化水素基は、その鎖中にヘテロ原子を含む連結基を含んでいてもよい。)
 X6は、単結合または(n6+1)価の連結基を表し、好ましくは、アルキレン基、-O-、-S-、-C(=O)O-、およびこれらのうちの複数が組み合わさった連結基である。アルキレン基は、炭素数1~8のアルキレン基が好ましく、より好ましくは炭素数1~3のアルキレン基である。また、無置換のアルキレン基が好ましい。
 n6は、好ましくは1である。n6が2のとき、複数存在する、R1、X5、R2は、それぞれ、同一であってもよいし、異なっていても良い。
 X4およびX5は、それぞれ、連結基を含まないアルキレン基が好ましく、より好ましくは炭素数1~5のアルキレン基であり、より好ましくは炭素数1~3のアルキレン基であり、最も好ましくはメチレン基である。
 R1は、上記一般式のR1と同義であり、好ましい範囲も同義である。
 R2およびR3は、それぞれ、置換基を表し、好ましくは、アルキル基、ハロゲン原子、アルコキシ基、アシル基、アシルオキシ基、アルコキシカルボニル基、シアノ基、ニトロ基である。アルキル基としては、炭素数1~8のアルキル基が好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、フッ素原子が好ましい。アルコキシ基としては、炭素数1~8のアルコキシ基が好ましい。アシル基としては、炭素数1~8のアシル基が好ましい。アシルオキシ基としては、炭素数1~8のアシルオキシ基が好ましい。アルコキシカルボニル基としては、炭素数1~8のアルコキシカルボニル基が好ましい。
 n4およびn5は、それぞれ、0~4の整数であり、n4またはn5が2以上のとき、複数存在するR2およびR3は、それぞれ、同一でも異なっていても良い。
 一般式(VI)で表される化合物は、下記一般式(VIII)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
(X6は、アルキレン基、-O-、-S-および、これらのうちの複数が組み合わさった連結基であり、R1は、それぞれ、水素原子、アルキル基、ハロゲン原子である。)
 R1は、上記一般式のR1と同義であり、好ましい範囲も同義である。
 X6がアルキレン基である場合、炭素数1~8のアルキレン基が好ましく、より好ましくは炭素数1~3のアルキレン基である。また、無置換のアルキレン基が好ましい。
 X6としては、-CH2-、-CH2CH2-、-O-、-S-が好ましい。
 本発明に用いられる光硬化性組成物中における一般式(VI)で表される化合物の含有量は、特に制限はないが、光硬化性組成物粘度の観点から、全重合性単量体中、1~100質量%が好ましく、5~70質量%がさらに好ましく、10~50質量%が特に好ましい。
 以下に、一般式(VI)で表される化合物を例示するが、本発明がこれらに限定されるものではないことは言うまでも無い。下記式中におけるR1はそれぞれ、一般式(VI)におけるR1と同義であり、好ましい範囲も同義であり、特に好ましくは水素原子である。
Figure JPOXMLDOC01-appb-C000010
下記一般式(VIII)で表される重合性単量体
Figure JPOXMLDOC01-appb-C000011
(式中、Arは置換基を有していてもよいアリーレン基を表し、Xは単結合または有機連結基を表し、R1は水素原子またはメチル基を表し、nは2または3を表す。)
 一般式中、前記アリーレン基としてはフェニレン基、ナフチレン基などの炭化水素系アリーレン基;インドール、カルバゾールなどが連結基となったヘテロアリーレン基などが挙げられ、好ましくは炭化水素系アリーレン基であり、さらに好ましくは粘度、エッチング耐性の観点からフェニレン基である。前記アリーレン基は置換基を有していてもよく、好ましい置換基としては、アルキル基、アルコキシ基、水酸基、シアノ基、アルコキシカルボニル基、アミド基、スルホンアミド基が挙げられる。
 前記Xの有機連結基としては、鎖中にヘテロ原子を含んでいてもよいアルキレン基、アリーレン基、アラルキレン基が挙げられる。その中でも、アルキレン基、オキシアルキレン基が好ましく、アルキレン基がより好ましい。前記Xとしては、単結合またはアルキレン基であることが特に好ましい。
 前記R1は水素原子またはメチル基であり、好ましくは水素原子である。
 nは2または3であり、好ましくは2である。
 前記重合性単量体(VIII)が下記一般式(I-a)または(I-b)で表される重合性単量体であることが、組成物粘度を低下させる観点から好ましい。
Figure JPOXMLDOC01-appb-C000012
(式中、X1、X2は、それぞれ独立に単結合または炭素数1~3の置換基を有していてもよいアルキレン基を表し、R1は水素原子またはメチル基を表す。)
 前記一般式(I-a)中、前記X1は、単結合またはメチレン基であることが好ましく、メチレン基であることが粘度低減の観点からより好ましい。
 前記X2の好ましい範囲は、前記X1の好ましい範囲と同様である。
 前記R1は一般式におけるとR1と同義であり、好ましい範囲も同様である。
 前記重合性単量体は25℃において液体であると、添加量を増やした際にも異物の発生が抑制でき好ましい。
 一般式(VIII)で表される重合性単量体の具体例を示す。R1は一般式におけるとR1と同義であり、水素原子またはメチル基を表す。なお、本発明はこれらの具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
 以下に、本発明で用いる光硬化性組成物で用いられる芳香族基を有する重合性化合物のさらに好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。
 前記芳香族基を有する重合性化合物としては、無置換または芳香環上に置換基を有しているベンジル(メタ)アクリレート、無置換または芳香環上に置換基を有しているフェネチル(メタ)アクリレート、無置換または芳香環上に置換基を有しているフェノキシエチル(メタ)アクリレート、無置換または芳香環上に置換基を有している1-または2-ナフチル(メタ)アクリレート、無置換または芳香環上に置換基を有している1-または2-ナフチルメチル(メタ)アクリレート、無置換または芳香環上に置換基を有している1-または2-ナフチルエチル(メタ)アクリレート、1-または2-ナフトキシエチル(メタ)アクリレート、レゾルシノールジ(メタ)アクリレート、m-キシリレンジ(メタ)アクリレート、ナフタレンジ(メタ)アクリレート、エトキシ化ビスフェノールAジアクリレートが好ましく、無置換または芳香環上に置換基を有しているベンジルアクリレート、1または2-ナフチルメチルアクリレート、m-キシリレンジアクリレート、がより好ましい。
 また、モールドとの剥離性を向上させる目的で、フッ素原子とシリコン原子のうち少なくとも一方を有する重合性化合物を含有することが好ましい。
 本発明における(A2)フッ素原子とシリコン原子のうち少なくとも一方を有する重合性化合物は、フッ素原子、シリコン原子、または、フッ素原子とシリコン原子の両方を有する基を少なくとも1つと、重合性官能基を少なくとも1つ有する化合物である。重合性官能基としてはメタアクリロイル基、エポキシ基、ビニルエーテル基が好ましい。
 前記(A2)フッ素原子とシリコン原子のうち少なくとも一方を有する重合性化合物は、低分子化合物でもポリマーでもよい。
 前記(A2)フッ素原子とシリコン原子のうち少なくとも一方を有する重合性化合物がポリマーである場合、前記フッ素原子とシリコン原子のうち少なくとも一方を有する繰り返し単位と、共重合成分として側鎖に重合性基を有する繰り返し単位を有していてもよい。また、前記フッ素原子とシリコン原子のうち少なくとも一方を有する繰り返し単位が、その側鎖、特に、末端に重合性基を有していてもよい。この場合、前記フッ素原子とシリコン原子のうち少なくとも一方を有する繰り返し単位の骨格については、本発明の趣旨に反しない限りにおいて特に制限はないが、例えばエチレン性不飽和結合含基由来の骨格を有していることが好ましく、(メタ)アクリレート骨格を有している態様がより好ましい。また、シリコン原子を有する繰り返し単位は、シロキサン構造(例えばジメチルシロキサン構造)などのように、シリコン原子自体が繰り返し単位を形成していてもよい。重量平均分子量は2000~100000が好ましく3000~70000であることがより好ましく、5000~40000であることが特に好ましい。
 本発明のインプリント用硬化性組成物中における(A2)の含有量は、特に制限はないが、硬化性向上の観点や、組成物の低粘度化の観点から、全重合性化合物中、0.1~20質量%が好ましく、0.2~15質量%がより好ましく、0.5~10質量%がさらに好ましく、0.5~5質量%が特に好ましい。
フッ素原子を有する重合性化合物
 フッ素原子を有する重合性化合物が有するフッ素原子を有する基としては、フロロアルキル基およびフロロアルキルエーテル基から選ばれる含フッ素基が好ましい。
 前記フロロアルキル基としては、炭素数が2~20のフロロアルキル基が好ましく、4~8のフロロアルキル基より好ましい。好ましいフロロアルキル基としては、トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基、ヘキサフロロイソプロピル基、ノナフロロブチル基、トリデカフロロヘキシル基、ヘプタデカフロロオクチル基が挙げられる。
 本発明では、(A2)フッ素原子を有する重合性化合物が、トリフロロメチル基構造を有するフッ素原子を有する重合性化合物であることが好ましい。トリフロロメチル基構造を有することで、少ない添加量(例えば、10質量%以下)でも本発明の効果が発現するため、他の成分との相溶性が向上し、ドライエッチング後のラインエッジラフネスが向上する上、繰り返しパターン形成性が向上する。
 前記フロロアルキルエーテル基としては、前記フロロアルキル基の場合と同様に、トリフロロメチル基を有しているものが好ましく、パーフロロエチレンオキシ基、パーフロロプロピレンオキシ基を含有するものが好ましい。-(CF(CF3)CF2O)-などのトリフロロメチル基を有するフロロアルキルエーテルユニットおよび/またはフロロアルキルエーテル基の末端にトリフロロメチル基を有するものが好ましい。
 前記(A2)フッ素原子とシリコン原子のうち少なくとも一方を有する重合性化合物が有する全フッ素原子の数は、1分子当たり、6~60個が好ましく、より好ましくは9~40個、さらに好ましくは12~40個、特に好ましくは12~20個である。
 前記(A2)フッ素原子とシリコン原子のうち少なくとも一方を有する重合性化合物は、下記に定義するフッ素含有率が20~60%のフッ素原子を有する。(A2)フッ素原子とシリコン原子のうち少なくとも一方を有する重合性化合物が重合性化合物である場合、フッ素含有率が20~60%であることが好ましく、さらに好ましくは35~60%である。(A2)が重合性基を有するポリマーの場合、フッ素含有率がより好ましくは20~50%であり、さらに好ましくは20~40%である。フッ素含有率を適性範囲とすることで他成分との相溶性に優れ、モールド汚れを低減でき且つ、ドライエッチング後のラインエッジラフネスが向上する上、繰り返しパターン形成性が向上する。本明細書中において、前記フッ素含有率は下記式で表される。
Figure JPOXMLDOC01-appb-C000014
 前記(A2)フッ素原子とシリコン原子のうち少なくとも一方を有する重合性化合物のフッ素原子を有する基の好ましい一例として、下記一般式(I)で表される部分構造を有する化合物が挙げられる。このような部分構造を有する化合物を採用することにより、繰り返しパターン転写を行ってもパターン形成性に優れ、かつ、組成物の経時安定性が良好となる。
一般式(I)
Figure JPOXMLDOC01-appb-C000015
 一般式(I)中、nは1~8の整数を表し、好ましくは4~6の整数である。
 前記(A2)フッ素原子とシリコン原子のうち少なくとも一方を有する重合性化合物の好ましい他の一例として、下記一般式(II)で表される部分構造を有する化合物が挙げられる。もちろん、一般式(I)で表される部分構造と、一般式(II)で表される部分構造の両方を有していてもよい。
一般式(II)
Figure JPOXMLDOC01-appb-C000016
 一般式(II)中、L1は単結合または炭素数1~8のアルキレン基を表し、L2は炭素数1~8のアルキレン基を表し、m1およびm2はそれぞれ、0または1を表し、m1およびm2の少なくとも一方は1である。m3は1~3の整数を表し、pは1~8の整数を表し、m3が2以上のとき、それぞれの、-Cp2p+1は同一であってもよいし異なっていてもよい。
 前記L1およびL2は、それぞれ、炭素数1~4のアルキレン基であることが好ましい。また、前記アルキレン基は、本発明の趣旨を逸脱しない範囲内において置換基を有していてもよい。前記m3は、好ましくは1または2である。前記pは4~6の整数が好ましい。
 以下に、本発明で用いる光硬化性組成物で用いられる前記フッ素原子を有する重合性化合物の具体例を挙げるが、本発明はこれらに限定されるものではない。
 前記フッ素原子を有する重合性化合物としては、トリフルオロエチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、(パーフルオロブチル)エチル(メタ)アクリレート、パーフルオロブチル-ヒドロキシプロピル(メタ)アクリレート、(パーフルオロヘキシル)エチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート等のフッ素原子を有する単官能重合性化合物が挙げられる。また、前記フッ素原子を有する重合性化合物としては、2,2,3,3,4,4-ヘキサフロロペンタンジ(メタ)アクリレート、2,2,3,3,4,4,5,5-オクタフロロヘキサンジ(メタ)アクリレートなどのフロロアルキレン基を有するジ(メタ)アクリレートを有する2以上の重合性官能基を有する多官能重合性化合物も好ましい例として挙げられる。
 また、含フッ素基、例えばフロロアルキル基、フロロアルキルエーテル基を1分子中に2つ以上有する化合物も好ましく用いることができる。
 フロロアルキル基、フロロアルキルエーテル基を1分子中に2つ以上有する化合物として好ましくは下記一般式(III)で表される重合性化合物である。
Figure JPOXMLDOC01-appb-C000017
(一般式(III)中、R1は水素原子、アルキル基、ハロゲン原子またはシアノ基を表し、水素原子またはアルキル基が好ましく、水素原子またはメチル基がより好ましく、水素原子であることがさらに好ましい。
 Aは(a1+a2)価の連結基を表し、好ましくはアルキレン基および/またはアリーレン基を有する連結基であり、さらにヘテロ原子を含む連結基を含有していても良い。ヘテロ原子を有する連結基としては-O-、-C(=O)O-、-S-、-C(=O)-が挙げられる。これらの基は本発明の趣旨を逸脱しない範囲内において置換基を有していても良いが、有していない方が好ましい。Aは、炭素数2~50であることが好ましく、炭素数4~15であることがより好ましい。
 a1は1~6の整数を表し、好ましくは1~3、さらに好ましくは1または2である。
 a2は2~6の整数を表し、好ましくは2または3、さらに好ましくは2である。
 R2およびR3はそれぞれ単結合または炭素数1~8のアルキレン基を表す。m1およびm2はそれぞれ、0または1を表し、m3は1~3の整数を表す。)
 a1が2以上のとき、それぞれのAは同一であってもよいし、異なっていても良い。
a2が2以上のとき、それぞれのR2、R3、m1、m2、m3は同一であっても良いし、異なっていても良い。
 Rfはフロロアルキル基、フロロアルキルエーテル基を表し、好ましくは炭素数1~8のフロロアルキル基、炭素数3~20のフロロアルキルエーテル基である。
 フッ素原子を有する重合性化合物がポリマーの場合、前記フッ素原子を有する重合性化合物を繰り返し単位として含有するポリマーが好ましい。
 以下に、本発明で用いる光硬化性組成物で用いられるフッ素原子を有する重合性化合物の具体例を挙げるが、本発明はこれらに限定されるものではない。下記式中におけるR1はそれぞれ、水素原子、アルキル基、ハロゲン原子およびシアノ基のいずれかである。
Figure JPOXMLDOC01-appb-C000018
(2)シリコン原子を有する重合性化合物
 前記シリコン原子を有する重合性化合物が有するシリコン原子を有する官能基としては、トリアルキルシリル基、鎖状シロキサン構造、環状シロキサン構造、籠状シロキサン構造などが挙げられ、他の成分との相溶性、モールド剥離性の観点から、トリメチルシリル基またはジメチルシロキサン構造を有する官能基が好ましい。
 シリコン原子を有する重合性化合物としては3-トリス(トリメチルシリルオキシ)シリルプロピル(メタ)アクリレート、トリメチルシリルエチル(メタ)アクリレート、(メタ)アクリロキシメチルビス(トリメチルシロキシ)メチルシラン、(メタ)アクリロキシメチルトリス(トリメチルシロキシ)シラン、3-(メタ)アクリロキシプロピルビス(トリメチルシロキシ)メチルシラン、(メタ)アクリロイル基を末端あるいは側鎖に有するポリシロキサン(例えば信越化学工業社製X-22-164シリーズ、X-22-174DX、X-22-2426,X-22-2475)などが挙げられる。
 本発明では、また、重合性化合物として、水素結合性官能基と含フッ素基を有する重合性単量体(Ax)を含むことも好ましい。
 重合性単量体(Ax)が有する重合性官能基としては、CH(R1)=CHC(=O)-(R1は、水素原子、アルキル基、ハロゲン原子、シアノ基)などのラジカル重合性基、エポキシ基、オキセタン基、ビニルエーテル基などのカチオン重合性基が好ましく、より好ましくは(メタ)アクリル基である。重合性単量体(Ax)中に含まれる重合性基の数としては1または2個が好ましく、より好ましくは1個である。
 重合性単量体(Ax)が有する含フッ素基としては、フロロアルキル基およびフロロアルキルエーテル基から選ばれる含フッ素基が好ましく、フロロアルキル基がより好ましい。
 フロロアルキル基としては、炭素数が2以上のフロロアルキル基であることが好ましく、4以上のフロロアルキル基であることがより好ましく、上限値としては特に定めるものではないが、20以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。最も好ましくは炭素数4~6のフロロアルキル基である。フロロアルキル基としては、フロロアルキル基が連結基となったフロロアルキレン基も含まれる。フロロアルキル基は、パーフロロアルキル基であることが好ましい。また、直鎖のフロロアルキル基であることが好ましい。
 フロロアルキルエーテル基としては、パーフロロエチレンオキシ基、パーフロロプロピレンオキシ基を含有するものが好ましい。末端にトリフロロメチル基構造を有しているものが好ましく、-(CF(CF3)CF2O)-などのトリフロロメチル基を有するフロロアルキルエーテルユニットおよび/またはフロロアルキルエーテル基の末端にトリフロロメチル基を有するものが好ましい。
 フロロアルキルエーテル基としては、フロロアルキルエーテル基が連結基となったフロロアルキルエーテル連結基も含まれる。
 フロロアルキルエーテル基としては炭素数4~20が好ましく、より好ましくは4~15である。
 含フッ素基として、より好ましくは下記一般式(I-1)(I-2)、より好ましくは一般式(II-1)(II-2)で表される部分構造を有する化合物が挙げられる。このような部分構造を有する化合物を採用することにより、パターン形成性に優れ、かつ、組成物の経時安定性が良好となる。
Figure JPOXMLDOC01-appb-C000019
 式中、Xは炭素数1~6のアルキレン基を表し、アルキレン基上に置換基を有していてもよいが置換基を有していない方が好ましい。アルキレン基上の置換基として好ましくは、アルキル基、フロロアルキル基、後述する水素結合性官能基を有する置換基が挙げられる。Rfはフロロアルキル基またはフロロアルキルエーテル基を表す。
 nは1~8の整数を表し、好ましくは4~6の整数である。
 重合性単量体(Ax)中に存在する含フッ素基の数は他の成分との相溶性の観点から1~3個が好ましく、より好ましくは1または2個であり、さらに好ましくは1個である。重合性単量体(Ax)が有する全フッ素原子の数は3~60個が好ましく、より好ましくは5~20個、さらに好ましくは9~20個である。
 重合性単量体(Ax)は、フッ素含有率が、30~60%が好ましく、より好ましくは35~55%であり、さらに好ましくは35~50%である。フッ素含有率を適性範囲とすることでモールド汚れを低減でき且つ、ドライエッチング後のラインエッジラフネスが向上する。
 水素結合性官能基としては、水素結合可能な水素原子を有する官能基が好ましい。水素結合可能な水素原子を有する官能基としてはO-H結合、またはN-H結合を有する官能基が好ましく、-OH、-C(=O)OH、-SO3H、-NH-、-NH2、-NHC(O)-、-NHC(O)O-、-NHC(O)NH-、-SO2NH-、-SO2NHC(=O)-、-SO2NHSO2-で表される部分構造を有していることがより好ましく、-OH、-NHC(O)O-が更に好ましく、-OHが最も好ましい。
 本発明で用いる水素結合性官能基と含フッ素基を有する重合性単量体(Ax)としては、重合性基と、2価連結基(好ましくは、炭素原子、水素原子および酸素原子のみから構成される基、より好ましくは-CH2-、-O-、-C(=O)-、およびこれらの組み合わせからなる基)と、水素結合性官能基と、含フッ素基のみからなることが好ましい。
 重合性単量体(Ax)としては下記一般式で表される重合性単量体が好ましい。
Figure JPOXMLDOC01-appb-C000020
(上記式中、R1は、それぞれ、水素原子、ハロゲン原子、アルキル基またはシアノ基であり、Rfは含フッ素基である。)
 R1はそれぞれ、水素原子、アルキル基またはシアノ基が好ましく、水素原子または炭素数1~4のアルキル基がより好ましく、水素原子またはメチル基が特に好ましく、水素原子が最も好ましい。
 R1のハロゲン原子としては、フッ素原子、塩素原子等が挙げられる。
 Rfは、パーフロロアルキル基であることが好ましく、炭素数4~6のパーフロロアルキル基であることがより好ましい。
 本発明で用いる重合性単量体(Ax)の分子量は、好ましくは300~2000であり、より好ましくは300~1000であり、さらに好ましくは300~800である。分子量を適切な範囲とすることで、モールドへの充填性が向上し、欠陥が低減できる。
 以下に、本発明の硬化性組成物で用いられる重合性単量体(Ax)の具体例を挙げるが、本発明はこれらに限定されるものではない。下記式中におけるR1はそれぞれ、水素原子、アルキル基、ハロゲン原子およびシアノ基のいずれかである。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 本発明の硬化性組成物中における水素結合性官能基と含フッ素基を有する(Ax)の含有量は、特に制限はないが、硬化性、組成物粘度の観点から、全重合性単量体中、0.01~100質量%が好ましく、0.05~50質量%がより好ましく、0.1~20質量%がさらに好ましく、0.2~10質量%が特に好ましく、0.2~6質量%が特に好ましい。
 重合性化合物としては、脂環炭化水素基および/または芳香族基を有する重合性化合物を含有していることが好ましく、さらに、脂環炭化水素基および/または芳香族基を有する重合性化合物とシリコン原子および/またはフッ素を含有する重合性化合物とを含むことが好ましい。さらに、本発明における光硬化性組成物に含まれる全重合性成分のうち、脂環炭化水素基および/または芳香族基を有する重合性化合物とシリコン原子および/またはフッ素を含有する重合性化合物の合計が、全重合性化合物の、30~100質量%であることが好ましく、より好ましくは70~100質量%、さらに好ましくは90~100質量%である。
 さらに好ましい様態として重合性化合物として芳香族基(好ましくはフェニル基、ナフチル基、さらに好ましくはナフチル基)を含有する(メタ)アクリレート重合性化合物が、全重合性成分の70~100質量%であることが好ましく、90~100質量%であることがより好ましく、95~100質量%であることが特に好ましい。
 特に好ましい様態としては、下記重合性化合物(1)が、全重合性成分の0~80質量%であり(より好ましくは、20~70質量%)、下記重合性化合物(2)が、全重合性成分の20~100質量%であり(より好ましくは、30~80質量%)である場合である。
(1)芳香族基(好ましくはフェニル基、ナフチル基、さらに好ましくはナフチル基)と(メタ)アクリレート基を1つ有する重合性化合物
(2)芳香族基(好ましくはフェニル基、ナフチル基、さらに好ましくはフェニル基)を含有し、(メタ)アクリレート基を2つ有する重合性化合物
 さらに、光硬化性組成物において25℃における粘度が5mPa・s未満の重合性化合物の含有量が全重合性化合物に対して30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下が更に好ましい。上記範囲に設定することでインクジェット吐出時の安定性が向上し、インプリント転写において欠陥が低減できる。
重合開始剤(B)
 本発明で用いる光硬化性組成物には、光重合開始剤が含まれる。本発明に用いられる光重合開始剤は、光照射により上述の重合性化合物を重合する活性種を発生する化合物であればいずれのものでも用いることができる。光重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤が好ましく、ラジカル重合開始剤がより好ましい。また、本発明において、光重合開始剤は複数種を併用してもよい。
 本発明に用いられる光重合開始剤の含有量は、溶剤を除く全組成物中、例えば、0.01~15質量%であり、好ましくは0.1~12質量%であり、さらに好ましくは0.2~7質量%である。2種類以上の光重合開始剤を用いる場合は、その合計量が前記範囲となる。
 光重合開始剤の含有量が0.01質量%以上であると、感度(速硬化性)、解像性、ラインエッジラフネス性、塗膜強度が向上する傾向にあり好ましい。一方、光重合開始剤の含有量を15質量%以下とすると、光透過性、着色性、取り扱い性などが向上する傾向にあり、好ましい。
 本発明で使用されるラジカル光重合開始剤としては、例えば、市販されている開始剤を用いることができる。これらの例としては、例えば、特開平2008-105414号公報の段落番号0091に記載のものを好ましく採用することができる。この中でもアセトフェノン系化合物、アシルホスフィンオキサイド系化合物、オキシムエステル系化合物が硬化感度、吸収特性の観点から好ましい。
 アセトフェノン系化合物として好ましくはヒドロキシアセトフェノン系化合物、ジアルコキシアセトフェノン系化合物、アミノアセトフェノン系化合物が挙げられる。ヒドロキシアセトフェノン系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)2959(1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、Irgacure(登録商標)184(1-ヒドロキシシクロヘキシルフェニルケトン)、Irgacure(登録商標)500(1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン)、Darocur(登録商標)1173(2-ヒドロキシ-2-メチル-1-フェニル-1-プロパン-1-オン)が挙げられる。
 ジアルコキシアセトフェノン系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)651(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)が挙げられる。
 アミノアセトフェノン系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)369(2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1)、Irgacure(登録商標)379(EG)(2-ジメチルアミノー2ー(4メチルベンジル)-1-(4-モルフォリン-4-イルフェニル)ブタン-1-オン、Irgacure(登録商標)907(2-メチル-1[4-メチルチオフェニル]-2-モルフォリノプロパン-1-オンが挙げられる。
 アシルフォスフィンオキサイド系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、Irgacure(登録商標)1800(ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、BASF社から入手可能なLucirinTPO(2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド)、Lucirin TPO-L(2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキサイド)が挙げられる。
 オキシムエステル系化合物として好ましくはBASF社から入手可能なIrgacure(登録商標)OXE01(1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、Irgacure(登録商標)OXE02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)が挙げられる。
 本発明で使用されるカチオン光重合開始剤としては、スルホニウム塩化合物、ヨードニウム塩化合物、オキシムスルホネート化合物などが好ましく、4-メチルフェニル[4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート(ローデア製  PI2074)、4-メチルフェニル[4 -(2-メチルプロピル)フェニルヨードニウムヘキサフルオロフォスフェート(BASF社製IRGACURE250)、IRGACURE PAG103、108、121、203(Ciba社製)などが挙げられる。
 なお、本発明において「光」には、紫外、近紫外、遠紫外、可視、赤外等の領域の波長の光や、電磁波だけでなく、放射線も含まれる。前記放射線には、例えばマイクロ波、電子線、EUV、X線が含まれる。また248nmエキシマレーザー、193nmエキシマレーザー、172nmエキシマレーザーなどのレーザー光も用いることができる。これらの光は、光学フィルターを通したモノクロ光(単一波長光)を用いてもよいし、複数の波長の異なる光(複合光)でもよい。露光は、多重露光も可能であり、膜強度、エッチング耐性を高めるなどの目的でパターン形成した後、全面露光することも可能である。
(その他成分)
 本発明で用いる光硬化性組成物は、上述の重合性化合物および光重合開始剤の他に種々の目的に応じて、本発明の効果を損なわない範囲で、界面活性剤、酸化防止剤、溶剤、ポリマー成分、顔料、染料等その他の成分を含んでいてもよい。本発明で用いる光硬化性組成物としては、界面活性剤、並びに、酸化防止剤から選ばれる少なくとも一種を含有することが好ましい。
-界面活性剤-
 本発明で用いる光硬化性組成物には、界面活性剤を含有することが好ましい。本発明に用いられる界面活性剤の含有量は、全組成物中、例えば、0.001~5質量%であり、好ましくは0.002~4質量%であり、さらに好ましくは、0.005~3質量%である。二種類以上の界面活性剤を用いる場合は、その合計量が前記範囲となる。界面活性剤が組成物中0.001~5質量%の範囲にあると、塗布の均一性の効果が良好であり、界面活性剤の過多によるモールド転写特性の悪化を招きにくい。
 前記界面活性剤としては、非イオン性界面活性剤が好ましく、フッ素系界面活性剤、Si系界面活性剤およびフッ素・Si系界面活性剤の少なくとも一種を含むことが好ましく、フッ素系界面活性剤とSi系界面活性剤との両方または、フッ素・Si系界面活性剤を含むことがより好ましく、フッ素・Si系界面活性剤を含むことが最も好ましい。尚、前記フッ素系界面活性剤およびSi系界面活性剤としては、非イオン性の界面活性剤が好ましい。
 ここで、“フッ素・Si系界面活性剤”とは、フッ素系界面活性剤およびSi系界面活性剤の両方の要件を併せ持つものをいう。
 このような界面活性剤を用いることによって、半導体素子製造用のシリコンウエハや、液晶素子製造用のガラス角基板、クロム膜、モリブデン膜、モリブデン合金膜、タンタル膜、タンタル合金膜、窒化珪素膜、アモルファスシリコーン膜、酸化錫をドープした酸化インジウム(ITO)膜や酸化錫膜などの、各種の膜が形成される基板上に本発明のインプリント用硬化性組成物を塗布したときに起こるストリエーションや、鱗状の模様(レジスト膜の乾燥むら)などの塗布不良の問題を解決するが可能となる。また、モールド凹部のキャビティ内への本発明で用いる光硬化性組成物の流動性の向上、モールドとレジストとの間の剥離性の向上、レジストと基板間との密着性の向上、組成物の粘度を下げる等が可能になる。特に、本発明のインプリント用硬化性組成物は、前記界面活性剤を添加することにより、塗布均一性を大幅に改良でき、スピンコーターやスリットスキャンコーターを用いた塗布において、基板サイズに依らず良好な塗布適性が得られる。
 本発明で用いることのできる、非イオン性のフッ素系界面活性剤の例としては、商品名 フロラード FC-430、FC-431(住友スリーエム(株)製)、商品名サーフロン S-382(旭硝子(株)製)、EFTOP EF-122A、122B、122C、EF-121、EF-126、EF-127、MF-100((株)トーケムプロダクツ製)、商品名 PF-636、PF-6320、PF-656、PF-6520(いずれもOMNOVA Solutions, Inc.)、商品名フタージェントFT250、FT251、DFX18 (いずれも(株)ネオス製)、商品名ユニダインDS-401、DS-403、DS-451 (いずれもダイキン工業(株)製)、商品名メガフアック171、172、173、178K、178A、F780F(いずれも大日本インキ化学工業(株)製)が挙げられる。
 また、非イオン性の前記Si系界面活性剤の例としては、商品名SI-10シリーズ(竹本油脂(株)製)、メガファックペインタッド31(大日本インキ化学工業(株)製)、KP-341(信越化学工業(株)製)が挙げられる。
 また、前記フッ素・Si系界面活性剤の例としては、商品名 X-70-090、X-70-091、X-70-092、X-70-093、(いずれも、信越化学工業(株)製)、商品名メガフアックR-08、XRB-4(いずれも、大日本インキ化学工業(株)製)が挙げられる。
-酸化防止剤-
 さらに、本発明で用いる光硬化性組成物には、公知の酸化防止剤を含有することが好ましい。本発明に用いられる酸化防止剤の含有量は、重合性化合物に対し、例えば、0.01~10質量%であり、好ましくは0.2~5質量%である。二種類以上の酸化防止剤を用いる場合は、その合計量が前記範囲となる。
 前記酸化防止剤は、熱や光照射による退色およびオゾン、活性酸素、NOx、SOx(Xは整数)などの各種の酸化性ガスによる退色を抑制するものである。特に本発明では、酸化防止剤を添加することにより、硬化膜の着色を防止や、分解による膜厚減少を低減できるという利点がある。このような酸化防止剤としては、ヒドラジド類、ヒンダードアミン系酸化防止剤、含窒素複素環メルカプト系化合物、チオエーテル系酸化防止剤、ヒンダードフェノール系酸化防止剤、アスコルビン酸類、硫酸亜鉛、チオシアン酸塩類、チオ尿素誘導体、糖類、亜硝酸塩、亜硫酸塩、チオ硫酸塩、ヒドロキシルアミン誘導体などを挙げることができる。この中でも、特にヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤が硬化膜の着色、膜厚減少の観点で好ましい。
 前記酸化防止剤の市販品としては、商品名Irganox1010、1035、1076、1222(以上、チバガイギー(株)製)、商品名 Antigene P、3C、FR、スミライザーS、スミライザーGA80(住友化学工業(株)製)、商品名アデカスタブAO70、AO80、AO503((株)ADEKA製)等が挙げられる。これらは単独で用いてもよいし、混合して用いてもよい。
-重合禁止剤-
 さらに、本発明で用いる光硬化性組成物には、重合禁止剤を含有することが好ましい。重合禁止剤を含めることにより、経時での粘度変化、異物発生およびパターン形成性劣化を抑制できる傾向にある。重合禁止剤の含有量としては、全重合性化合物に対し、0.001~1質量%であり、より好ましくは0.005~0.5質量%、さらに好ましくは0.008~0.05質量%である、重合禁止剤を適切な量配合することで高い硬化感度を維持しつつ経時による粘度変化が抑制できる。重合禁止剤は用いる重合性化合物にあらかじめ含まれていても良いし、組成物にさらに追加してもよい。
 本発明に用いうる好ましい重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩、フェノチアジン、フェノキサジン、4-メトキシナフトール、2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、ニトロベンゼン、ジメチルアニリン等が挙げられる。特に酸素が共存しなくても効果が高いフェノチアジン、4-メトキシナフトール、2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカルが好ましい。
-溶剤-
 本発明で用いる光硬化性組成物には、種々の必要に応じて、溶剤を用いることができる。好ましい溶剤としては常圧における沸点が80~200℃の溶剤である。溶剤の種類としては組成物を溶解可能な溶剤であればいずれも用いることができるが、好ましくはエステル構造、ケトン構造、水酸基、エーテル構造のいずれか1つ以上を有する溶剤である。具体的に、好ましい溶剤としてはプロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、2-ヘプタノン、ガンマブチロラクトン、プロピレングリコールモノメチルエーテル、乳酸エチルから選ばれる単独あるいは混合溶剤であり、プロピレングリコールモノメチルエーテルアセテートを含有する溶剤が好ましい。
 本発明で用いる光硬化性組成物中における前記溶剤の含有量は、溶剤を除く成分の粘度、目的とする膜厚によって最適に調整されるが、パターン形成性の観点からは全組成物中30質量%以下が好ましく、10質量%がより好ましく、5質量%が更に好ましく、実質的に溶剤を含有していないことが最も好ましい。
-ポリマー成分-
 本発明で用いる光硬化性組成物では、架橋密度をさらに高める目的で、前記多官能の他の重合性化合物よりもさらに分子量の大きい多官能オリゴマーを、本発明の目的を達成する範囲で配合することもできる。光ラジカル重合性を有する多官能オリゴマーとしてはポリエステルアクリレート、ウレタンアクリレート、ポリエーテルアクリレート、エポキシアクリレート等の各種アクリレートオリゴマーが挙げられる。オリゴマー成分の添加量としては組成物の溶剤を除く成分に対し、0~30質量%が好ましく、より好ましくは0~20質量%、さらに好ましくは0~10質量%、最も好ましくは0~5質量%である。
 本発明で用いる光硬化性組成物はドライエッチング耐性、インプリント適性、硬化性等の改良を観点からも、さらにポリマー成分を含有していてもよい。前記ポリマー成分としては側鎖に重合性官能基を有するポリマーが好ましい。前記ポリマー成分の重量平均分子量としては、重合性化合物との相溶性の観点から、2000~100000が好ましく、5000~50000がさらに好ましい。ポリマー成分の添加量としては組成物の溶剤を除く成分に対し、0~30質量%が好ましく、より好ましくは0~20質量%、さらに好ましくは0~10質量%、最も好ましくは2質量%以下である。本発明で用いる光硬化性組成物において溶剤を除く成分中、分子量2000以上の化合物の含有量が30質量%以下であると、パターン形成性が向上することからは、該成分は、少ない方が好ましく、界面活性剤や微量の添加剤を除き、樹脂成分を含まないことが好ましい。
 本発明で用いる光硬化性組成物には前記成分の他に必要に応じて離型剤、シランカップリング剤、紫外線吸収剤、光安定剤、老化防止剤、可塑剤、密着促進剤、熱重合開始剤、着色剤、エラストマー粒子、光酸増殖剤、光塩基発生剤、塩基性化合物、流動調整剤、消泡剤、分散剤等を添加してもよい。
 本発明における硬化性組成物は、重合性化合物が全体の90質量%以上を占めることが好ましい。
 本発明で用いる光硬化性組成物は、上述の各成分を混合して調整することができる。硬化性組成物の混合・溶解は、通常、0℃~100℃の範囲で行われる。また、前記各成分を混合した後、例えば、孔径0.003μm~5.0μmのフィルターで濾過することが好ましい。濾過は、多段階で行ってもよいし、多数回繰り返してもよい。また、濾過した液を再濾過することもできる。濾過に使用するフィルターの材質は、ポリエチレン樹脂、ポリプロピレン樹脂、フッソ樹脂、ナイロン樹脂などのものが使用できるが特に限定されるものではない。
 パターン形成方法においては、まず、光硬化性組成物を基材または微細パターンを有するモールド上に適用してパターン形成層を形成する。ここで前記光硬化性組成物を基材上または微細パターンを有するモールド上に適用する工程は、前記光硬化性組成物を25℃より高い温度(X℃)で、前記光硬化性組成物の液滴を吐出する工程である。液滴を吐出する方法としてμL~nLオーダーの液滴を吐出できるマイクロディスペンス法、更に微小なpLオーダーの液滴を吐出できるインクジェット法等が挙げられ、インクジェット法が好ましい。
インクジェット装置
 本発明に用いられるインクジェット装置としては、特に制限はなく、市販のインクジェット装置が使用できる(例えばフジフイルムダイマティックス社製DMP-3000、DMP-2831など)。本発明で用いることのできるインクジェット装置としては、例えば、インク供給系、温度センサーを含む。インク供給系は、例えば、本発明に用いられる上記光硬化性組成物を含む元タンク、供給配管、インクジェットヘッド直前のインク供給タンク、フィルター、ピエゾ型のインクジェットヘッドからなる。ピエゾ型のインクジェットヘッドは、0.1~100pl、好ましくは、0.5~20plで吐出できるよう駆動することができる。吐出によって設置される液滴は間隔をおいて設置されていてもよいし、液滴が相互に結合するように設置してもよいが、残膜の厚さを均一に且つ薄くする観点から間隔をおいて設置されることが好ましい。液滴の総量は形成されるパターンによって異なり、パターンおよび残膜が適正な厚みになるように調整される。また、パターンの粗密に合わせて液滴の間隔を不均一にすることが好ましい。
 吐出される光硬化性組成物は(X℃)に設定されることから、インク供給タンクからインクジェットヘッド部分までのいずれかまたは全てにおいて、温度コントロールされることが好ましい。温度コントロールの方法としては、特に制約はないが、例えば、温度センサーを各配管部位に複数設け、インク流量、環境温度に応じた加熱制御をすることが好ましい。温度センサーは、インク供給タンクおよびインクジェットヘッドのノズル付近に設けることができる。また、加熱するヘッドユニットは、装置本体を外気からの温度の影響を受けないよう、熱的に遮断若しくは断熱されていることが好ましい。加熱に要するプリンタ立上げ時間を短縮するため、あるいは熱エネルギーのロスを低減するために、他部位との断熱を行うとともに、加熱ユニット全体の熱容量を小さくすることが好ましい。
 基材(基板または支持体)は、種々の用途によって選択可能であり、例えば、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni,Cu,Cr,Feなどの金属基板、紙、SOG(Spin On Glass)、ポリエステルフイルム、ポリカーボネートフィルム、ポリイミドフィルム等のポリマー基板、TFTアレイ基板、PDPの電極板、ガラスや透明プラスチック基板、ITOや金属などの導電性基材、絶縁性基材、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの半導体作製基板など特に制約されない。また、基材の形状も特に限定されるものではなく、板状でもよいし、ロール状でもよい。また、後述のように前記基材としては、モールドとの組み合わせ等に応じて、光透過性、または、非光透過性のものを選択することができる。
 本発明で用いることのできるモールドは、転写されるべきパターンを有するモールドが使われる。前記モールド上のパターンは、例えば、フォトリソグラフィや電子線描画法等によって、所望する加工精度に応じてパターンが形成できるが、本発明では、モールドパターン形成方法は特に制限されない。
 本発明において用いられる光透過性モールド材は、特に限定されないが、所定の強度、耐久性を有するものであればよい。具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂などの光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサンなどの柔軟膜、光硬化膜、金属膜等が例示される。
 本発明において光透過性の基材を用いた場合に使われる非光透過型モールド材としては、特に限定されないが、所定の強度を有するものであればよい。具体的には、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、SiC、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの基板などが例示され、特に制約されない。また、モールドの形状も特に制約されるものではなく、板状モールド、ロール状モールドのどちらでもよい。ロール状モールドは、特に転写の連続生産性が必要な場合に適用される。
 本発明のパターン形成方法で用いられるモールドは、硬化性組成物とモールド表面との剥離性を向上させるために離型処理を行ったものを用いてもよい。このようなモールドとしては、シリコン系やフッソ系などのシランカップリング剤による処理を行ったもの、例えば、ダイキン工業(株)製のオプツールDSXや、住友スリーエム(株)製のNovec EGC-1720等、市販の離型剤も好適に用いることができる。
 次に、光硬化性組成物を基材と微細パターンを有するモールドではさんだ状態で光照射する。これにより光硬化組成物にモールドの反転パターンが転写され、基材とモールドを剥離することで基材上にパターンが形成される。基材と微細パターンを有するモールドではさむ際の圧力は10気圧以下が好ましい。これによりモールドや基板が変形しにくくパターン精度が向上する傾向にある。モールド圧力は、モールド凸部の硬化性組成物の残膜が少なくなる範囲で、モールド転写の均一性が確保できる領域を選択することが好ましい。
 光を照射する工程における光照射の照射量は、硬化に必要な照射量よりも十分大きければよい。硬化に必要な照射量は、硬化性組成物の不飽和結合の消費量や硬化膜のタッキネスを調べて適宜決定される。
 また、本発明に適用される光インプリントリソグラフィにおいては、光照射の際の基板温度は、通常、室温で行われるが、反応性を高めるために加熱をしながら光照射してもよい。光照射の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドと硬化性組成物との密着性向上に効果があるため、真空状態で光照射してもよい。また、本発明のパターン形成方法中、光照射時における好ましい真空度は、10-1Paから常圧の範囲である。
 本発明で用いる光硬化性組成物を硬化させるために用いられる光は特に限定されず、例えば、高エネルギー電離放射線、近紫外、遠紫外、可視、赤外等の領域の波長の光または放射線が挙げられる。高エネルギー電離放射線源としては、例えば、コッククロフト型加速器、ハンデグラーフ型加速器、リニヤーアクセレーター、ベータトロン、サイクロトロン等の加速器によって加速された電子線が工業的に最も便利且つ経済的に使用されるが、その他に放射性同位元素や原子炉等から放射されるγ線、X線、α線、中性子線、陽子線等の放射線も使用できる。紫外線源としては、例えば、紫外線螢光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯、太陽灯等が挙げられる。放射線には、例えばマイクロ波、EUVが含まれる。また、LED、半導体レーザー光、あるいは248nmのKrFエキシマレーザー光や193nmArFエキシマレーザーなどの半導体の微細加工で用いられているレーザー光も本発明に好適に用いることができる。これらの光は、モノクロ光を用いてもよいし、複数の波長の異なる光(ミックス光)でもよい。
 露光に際しては、露光照度を1mW/cm2~50mW/cm2の範囲にすることが望ましい。1mW/cm2以上とすることにより、露光時間を短縮することができるため生産性が向上し、50mW/cm2以下とすることにより、副反応が生じることによる永久膜の特性の劣化を抑止できる傾向にあり好ましい。露光量は5mJ/cm2~1000mJ/cm2の範囲にすることが望ましい。5mJ/cm2未満では、露光マージンが狭くなり、光硬化が不十分となりモールドへの未反応物の付着などの問題が発生しやすくなる。一方、1000mJ/cm2を超えると組成物の分解による永久膜の劣化の恐れが生じる。
 さらに、露光に際しては、酸素によるラジカル重合の阻害を防ぐため、チッソやアルゴンなどの不活性ガスを流して、酸素濃度を100mg/L未満に制御してもよい。
 本発明のパターン形成方法においては、光照射によりパターン形成層を硬化させた後、必要に応じて硬化させたパターンに熱を加えてさらに硬化させる工程を含んでいてもよい。光照射後に本発明で用いる光硬化性組成物を加熱硬化させる熱としては、150~280℃が好ましく、200~250℃がより好ましい。また、熱を付与する時間としては、5~60分間が好ましく、15~45分間がさらに好ましい。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
(硬化性組成物の調製)
 下記表に示す重合性化合物、重合開始剤を混合し、さらに重合禁止剤として4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル(東京化成社製)を重合性化合物に対して200ppm(0.02質量%)となるように加えて調整した。調整した組成物を、0.1μmのテトラフロロエチレン製フィルターでろ過し、硬化性組成物を得た。さらに、硬化性組成物を吐出時の温度(X℃)まで加熱し、粘度を測定した。
(粘度測定方法)
 粘度の測定は、回転粘度計(東機産業(株)社製RE-80L)を用い、25℃における粘度は25±0.1℃、X℃における粘度はX℃±0.1℃で測定した。
測定時の回転速度は、0.5mPa・s以上5mPa・s未満の場合は100rpmとし、5mPa・s以上10mPa・s未満の場合は50rpmとし、10mPa・s以上は30mPa・s未満の場合は20rpmとし、30mPa・s以上60mPa・s未満の場合は10rpmとし、60mPa・s以上120mPa・s未満の場合は5rpmとし、120mPa・s以上は1rpmもしくは0.5rpmとしてそれぞれ粘度の測定を行った。
 下記表の粘度の単位は、mPa・sである。化合物の配合量は、重量比で示している。
Figure JPOXMLDOC01-appb-T000023
光重合開始剤
P1:IRGACURE379EG(BASF社製)
P2:DAROCURE1173(BASF社製)
 光硬化性組成物A1~A12、B1、B2の組成を下記に示す。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
(評価)
 得られた各実施例および比較例の硬化性組成物について以下の評価を行った。結果を下記表に示す。
<パターン形成方法>
 モールドとして、線幅25nm、溝深さが40nmの矩形ライン/スペースパターン(1/1)を有し、パターン表面がオプツールDSX(ダイキン工業社製)で処理された石英モールドで、ラインエッジラフネスは2.5nmである物を用いた。
 富士フイルムダイマティックス社製、インクジェットプリンターDMP-2831を用いて、シリコンウェハ上にノズルあたり1plの液滴量で、100μm間隔の正方配列となるように、吐出タイミングを制御して光硬化性組成物を吐出した。この際、吐出される硬化組成物の温度が下記表に記載のX℃となるように装置内で加熱した。4インチウェハー10枚全面に連続吐出し、1枚目と10枚目のウェハーに0.1気圧の減圧下前記モールドをのせ、モールド側から水銀ランプを用い300mJ/cm2の条件で露光し、露光後、モールドを離し、パターンを得た。
<パターン評価>
 得られたパターンのパターン形状およびパターン欠陥を走査型電子顕微鏡で観察し、以下のように評価した。
(形状評価)
A:モールドに忠実な矩形パターンが得られた。
B:パターントップが丸みを帯びていたが、パターン高さは忠実であった。
C:パターントップが丸みを帯び、かつ、パターン高さが低かった。
(欠陥評価)
パターンの剥がれ、かけ、つぶれなどのパターン欠陥を観察した。
a:パターン欠陥が全くみられなかった。
b:一部の領域パターンに欠陥が見られたが、全パターン面積に対し、5%未満であった。
c:全パターン面積に対し、5%以上の領域でパターン欠陥が見られた。
<ドライエッチング後のラインエッジラフネス(LER)>
 パターン形成性評価で得られた10枚目のパターン付基板を、日立ハイテクノロジー(株)製ドライエッチャーを用いてAr/CF4/O2のガスでプラズマドライエッチングを行い、欠陥のないラインパターン部分の長手方向のエッジが5μmの範囲についてエッジのあるべき基準線からの距離を測長SEMにより50ポイント測定し、標準偏差を求め、3σを算出した。値が小さいほどラインエッジラフネスが良好であることを示す。
Figure JPOXMLDOC01-appb-T000026
 上記表において、粘度の差とは、光硬化性組成物の25℃における粘度と吐出時の温度における粘度の差(単位:mPa・s)を示している。
 上記表から明らかなとおり、光硬化性組成物の25℃における粘度が12~100mPa・sであり、吐出時の温度が28℃以上である場合、パターン形成性およびドライエッチング後のラインエッジラフネスに優れたパターンが形成できることがわかった。本発明の方法では、光硬化性組成物の組成の種類にかかわらず実行可能であるため、適用範囲が広いという利点もある。

Claims (13)

  1. 重合性化合物および重合開始剤を含有する光硬化性組成物を基材上または微細パターンを有するモールド上に適用し、該光硬化性組成物をモールドまたは基材で挟んだ状態で光照射することを含むパターン形成方法であって、
    光硬化性組成物の25℃における粘度が12~100mPa・sであり、
    光硬化性組成物は、液滴を吐出により、基材上または微細パターンを有するモールド上に適用し、かつ、前記光硬化性組成物の吐出時の温度が28℃以上である、パターン形成方法。
  2. 前記光硬化性組成物の吐出をインクジェット法により行う、請求項1に記載のパターン形成方法。
  3. 前記光硬化性組成物の吐出時の温度が70℃以下である、請求項1または2に記載のパターン形成方法。
  4. 前記光硬化性組成物の吐出時の粘度が2mPa・s~30mPa・sである、請求項1~3のいずれか1項に記載のパターン形成方法。
  5. 前記光硬化性組成物の吐出時の粘度が5mPa・s以上12mPa・s未満である、請求項1~3のいずれか1項に記載のパターン形成方法。
  6. 光硬化性組成物中に含まれる重合性化合物であって、25℃における粘度が5mPa・s未満の重合性化合物の含有量が、光硬化性組成物中に含まれる全重合性化合物の30質量%以下である、請求項1~5のいずれか1項に記載のパターン形成方法。
  7. 硬化性組成物の25℃における粘度と、光硬化性組成物の吐出時の粘度の差が、2~100mPa・sである、請求項1~6のいずれか1項に記載のパターン形成方法。
  8. 光硬化性組成物は、2種類以上の重合性化合物を含み、かつ、該光硬化性組成物中の配合量が一番多い重合性化合物と二番目に多い重合性化合物の、25℃における粘度の差が、0.1~120mPa・sである、請求項1~7のいずれか1項に記載のパターン形成方法。
  9. 硬化性組成物は、25℃における粘度が12mPa・s~80mPa・sであり、吐出時の粘度が2mPa・s以上12mPa・s未満である、請求項1~8のいずれか1項に記載のパターン形成方法。
  10. 前記光硬化性組成物が脂環炭化水素基および/または芳香族基を有する重合性化合物を含有する、請求項1~9のいずれか1項に記載のパターン形成方法。
  11. 請求項1~10のいずれか1項に記載のパターン形成方法を含む、電子デバイスの製造方法。
  12. 請求項1~10のいずれか1項に記載のパターン形成方法を実行する手段を有するパターン形成装置。
  13. 光硬化性組成物の温度コントロール部を有する、請求項12に記載のパターン形成装置。
PCT/JP2012/058510 2011-04-01 2012-03-30 パターン形成方法およびパターン WO2012137672A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-081482 2011-04-01
JP2011081482A JP2012216700A (ja) 2011-04-01 2011-04-01 パターン形成方法およびパターン

Publications (1)

Publication Number Publication Date
WO2012137672A1 true WO2012137672A1 (ja) 2012-10-11

Family

ID=46969073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058510 WO2012137672A1 (ja) 2011-04-01 2012-03-30 パターン形成方法およびパターン

Country Status (2)

Country Link
JP (1) JP2012216700A (ja)
WO (1) WO2012137672A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042096A (ja) * 2011-08-19 2013-02-28 Dainippon Printing Co Ltd 光インプリント用感光性樹脂組成物、硬化物、レジスト基板及び半導体装置の製造方法
WO2017018489A1 (ja) * 2015-07-30 2017-02-02 旭硝子株式会社 含フッ素化合物、硬化性組成物および硬化物
JP2020517492A (ja) * 2017-04-27 2020-06-18 マクダーミッド グラフィックス ソリューションズ エルエルシー フレキソ刷版の改善された作製方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661935B (zh) * 2014-06-13 2019-06-11 日商富士軟片股份有限公司 暫時接著用積層體、暫時接著用積層體的製造方法以及帶有元件晶圓的積層體
KR102271174B1 (ko) * 2017-03-29 2021-06-29 미쓰이 가가쿠 가부시키가이샤 광경화성 조성물, 인공손톱, 조형 데이터의 생성 방법, 인공손톱의 제조 방법 및 인공손톱의 제조 시스템
US11448958B2 (en) * 2017-09-21 2022-09-20 Canon Kabushiki Kaisha System and method for controlling the placement of fluid resist droplets
JP2024090185A (ja) * 2022-12-22 2024-07-04 デクセリアルズ株式会社 インプリント用光硬化性アクリルレジン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236040A (ja) * 2004-02-19 2005-09-02 Sekisui Chem Co Ltd 導電性微粒子の配置方法
JP2007211098A (ja) * 2006-02-08 2007-08-23 Toshiba Corp 感光性組成物、それを用いた複合部材および電子部品
JP2007227715A (ja) * 2006-02-24 2007-09-06 Stanley Electric Co Ltd パターニング基板の製造方法
JP2009208239A (ja) * 2008-02-29 2009-09-17 Fujifilm Corp パターン形成方法
JP2010037541A (ja) * 2008-07-10 2010-02-18 Fujifilm Corp インプリント用硬化性組成物、パターン形成方法およびパターン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236040A (ja) * 2004-02-19 2005-09-02 Sekisui Chem Co Ltd 導電性微粒子の配置方法
JP2007211098A (ja) * 2006-02-08 2007-08-23 Toshiba Corp 感光性組成物、それを用いた複合部材および電子部品
JP2007227715A (ja) * 2006-02-24 2007-09-06 Stanley Electric Co Ltd パターニング基板の製造方法
JP2009208239A (ja) * 2008-02-29 2009-09-17 Fujifilm Corp パターン形成方法
JP2010037541A (ja) * 2008-07-10 2010-02-18 Fujifilm Corp インプリント用硬化性組成物、パターン形成方法およびパターン

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042096A (ja) * 2011-08-19 2013-02-28 Dainippon Printing Co Ltd 光インプリント用感光性樹脂組成物、硬化物、レジスト基板及び半導体装置の製造方法
WO2017018489A1 (ja) * 2015-07-30 2017-02-02 旭硝子株式会社 含フッ素化合物、硬化性組成物および硬化物
CN107849173A (zh) * 2015-07-30 2018-03-27 旭硝子株式会社 含氟化合物、固化性组合物以及固化物
US10457756B2 (en) 2015-07-30 2019-10-29 AGC Inc. Fluorinated compound, curable composition and cured product
JP2020517492A (ja) * 2017-04-27 2020-06-18 マクダーミッド グラフィックス ソリューションズ エルエルシー フレキソ刷版の改善された作製方法

Also Published As

Publication number Publication date
JP2012216700A (ja) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5243887B2 (ja) ナノインプリント用硬化性組成物およびパターン形成方法
JP5829177B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5671302B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5611519B2 (ja) ナノインプリント用組成物、パターンおよびその形成方法
JP5710553B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5665329B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5671377B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5498729B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5511415B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5564383B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5753749B2 (ja) インプリント用硬化性組成物の製造方法
JP2010018666A (ja) ナノインプリント用組成物、パターンおよびパターン形成方法
JP5712003B2 (ja) インプリント用硬化性組成物およびインプリント用重合性単量体の製造方法
WO2012137672A1 (ja) パターン形成方法およびパターン
JP5968933B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP5268384B2 (ja) ナノインプリント用硬化性組成物およびパターン形成方法
JP5448589B2 (ja) パターン形成方法
JP5695527B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP2010106062A (ja) ナノインプリント用組成物、パターンおよびその形成方法
JP2013179159A (ja) インプリント用硬化性組成物、パターン形成方法及びパターン
JP5227694B2 (ja) ナノインプリント用組成物
JP5695482B2 (ja) インプリント用硬化性組成物、パターン形成方法およびパターン
JP2011021113A (ja) インプリント用硬化性組成物、硬化物およびパターン形成方法
JP2010157542A (ja) ナノインプリント用硬化性組成物およびパターン形成方法
JP2009208239A (ja) パターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768529

Country of ref document: EP

Kind code of ref document: A1