WO2012132701A1 - 車両用駆動装置 - Google Patents
車両用駆動装置 Download PDFInfo
- Publication number
- WO2012132701A1 WO2012132701A1 PCT/JP2012/054778 JP2012054778W WO2012132701A1 WO 2012132701 A1 WO2012132701 A1 WO 2012132701A1 JP 2012054778 W JP2012054778 W JP 2012054778W WO 2012132701 A1 WO2012132701 A1 WO 2012132701A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrical machine
- rotational speed
- rotating electrical
- engagement
- rotating
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 205
- 230000007423 decrease Effects 0.000 claims abstract description 19
- 230000009467 reduction Effects 0.000 claims description 112
- 230000001360 synchronised effect Effects 0.000 claims description 73
- 230000005540 biological transmission Effects 0.000 claims description 58
- 230000008859 change Effects 0.000 claims description 44
- 230000000116 mitigating effect Effects 0.000 abstract 4
- 238000010586 diagram Methods 0.000 description 31
- 230000007246 mechanism Effects 0.000 description 26
- 238000000034 method Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 15
- 238000012545 processing Methods 0.000 description 12
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/445—Differential gearing distribution type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/387—Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2054—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18027—Drive off, accelerating from standstill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/50—Drive Train control parameters related to clutches
- B60L2240/507—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0644—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/006—Starting of engines by means of electric motors using a plurality of electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/04—Starting of engines by means of electric motors the motors being associated with current generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N15/00—Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
- F02N15/02—Gearing between starting-engines and started engines; Engagement or disengagement thereof
- F02N15/022—Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention includes an input member drivingly connected to an internal combustion engine, an output member drivingly connected to a wheel, a first rotating electrical machine, a second rotating electrical machine, and a differential gear device having at least three rotating elements, And a vehicle drive device including the control device.
- a differential gear device is configured by a planetary gear mechanism having three rotating elements, a first rotating electrical machine is drivingly connected to a sun gear, an input member is drivingly connected to a carrier, and a second rotating electrical machine is connected to a ring gear. And the structure by which the output member was drive-connected was described.
- the vehicle drive device includes a friction engagement device capable of releasing the drive connection between the carrier and the input member (internal combustion engine), and causes the vehicle to run with the torque of the second rotating electrical machine while the internal combustion engine is stopped.
- the internal combustion engine can be disconnected during execution of the electric travel mode.
- the rotational speed of the sun gear (first rotating electrical machine) and the carrier can be set independently of the vehicle speed.
- the first rotating electrical machine By actively controlling the rotational speed of the carrier, the carrier can be rotated, and the accessory can be driven by utilizing the rotation of the carrier.
- Patent Document 1 when switching from the electric travel mode to the split travel mode in which the travel is performed using the torque of the internal combustion engine, the rotational speed of the internal combustion engine is reduced to a rotational speed at which ignition can be performed by the torque of the first rotating electrical machine. Raise. Specifically, as described in paragraphs 0073 to 0076 of Patent Document 1, the rotational speed of the first rotating electrical machine is decreased to decrease the rotational speed of the carrier, and the rotational speed of the carrier is equal to the rotational speed of the internal combustion engine. In a state equal to a certain zero (a state indicated by a thick broken line in FIG. 9 of the document), the friction engagement device is switched from the release state to the direct engagement state.
- a certain zero a state indicated by a thick broken line in FIG. 9 of the document
- the rotational speed of the internal combustion engine is increased by the torque of the first rotating electrical machine, and the internal combustion engine is in a state where the rotational speed of the internal combustion engine is equal to or higher than the rotational speed at which ignition is possible (a state indicated by a thick solid line in FIG. Is started by ignition. Thereby, it is possible to shift from the electric travel mode to the split travel mode.
- the rotational speed of the first rotating electrical machine in a state where the rotational speed of the carrier and the rotational speed of the internal combustion engine are equal is determined according to the vehicle speed, as is apparent from FIG. That is, the higher the vehicle speed, the larger the absolute value of the rotation speed of the first rotating electrical machine in this state.
- the magnitude of the maximum torque that can be generated by the rotating electrical machine tends to decrease as the absolute value of the rotational speed increases. Therefore, in the configuration of Patent Document 1, depending on the vehicle speed, the torque of the first rotating electrical machine is insufficient with respect to the torque necessary to increase the rotational speed of the internal combustion engine, and the internal combustion engine cannot be started, or There is a risk that vibration will occur when the internal combustion engine is started.
- paragraphs 0067 to 0068 of Patent Document 1 compare the rotational speed difference between the carrier and the internal combustion engine without reducing the rotational speed of the first rotating electrical machine when switching from the electric travel mode to the split travel mode.
- a configuration is described in which the friction engagement device is engaged while sliding in a relatively large state and switched to a direct engagement state.
- the difference between the rotational speed of the carrier and the rotational speed (zero) of the internal combustion engine increases as the vehicle speed increases, so that the difference in rotational speed may be excessive depending on the vehicle speed.
- the temperature of the friction engagement device may increase and the time required for engagement may be excessive.
- JP 2010-76678 A paragraphs 0067 to 0068, 0073 to 0076, FIG. 9 etc.
- the vehicle drive device comprising the control device is characterized in that the input member, the output member, and the first rotating electrical machine are respectively connected to different rotating elements of the differential gear device.
- the second rotating electrical machine is connected to the rotating element of the differential gear device other than the rotating element to which the first rotating electrical machine is drive-coupled.
- a friction engagement device that is drive-coupled without any rotation element and can release the drive connection between any one of the input member, the output member, and the first rotating electrical machine and the rotation element of the differential gear device.
- a differential rotation reduction control unit that executes differential rotation reduction control that changes the rotational speed difference between two engaging members engaged with each other in the friction engagement device in a direction that decreases; and execution of the differential rotation reduction control.
- asynchronous engagement control is performed in which the friction engagement device is engaged in an asynchronous state in which a rotational speed difference between the two engagement members is equal to or greater than a differential rotation threshold, and the friction engagement device is An engagement control unit that is in an engaged state in which there is no differential rotation between the two engaging members, and a rotational speed at which the internal combustion engine can be started on condition that the directly engaged state is achieved
- the rotation speed of the first rotating electric machine is set as a target value.
- a starting control unit that changes a rotational speed of the first rotating electrical machine, and the differential rotation reducing control unit can output a starting torque required for starting the internal combustion engine.
- the rotation speed of the first rotating electrical machine is changed with the upper limit value and the lower limit value of the start torque output possible range that is the rotation speed range as limits.
- driving connection refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the two
- the rotating element is used as a concept including a state in which the driving force is connected to be transmitted through one or more transmission members.
- a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like.
- an engagement element that selectively transmits rotation and driving force for example, a friction engagement element, a meshing engagement element, or the like may be included.
- a differential gear mechanism having three rotating elements such as a planetary gear mechanism having a sun gear, a carrier, and a ring gear is used, and the differential gear mechanism alone or a plurality of differential gear mechanisms are used.
- the device obtained by combining is called a differential gear device.
- the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator functioning as both a motor and a generator as necessary.
- the asynchronous engagement control when the internal combustion engine is started, the asynchronous engagement control is executed after the differential rotation reduction control is executed. Therefore, as compared with the case where the asynchronous engagement control is executed without executing the differential rotation reduction control.
- the asynchronous engagement control can be executed in a state where the difference in rotational speed between the two engagement members of the friction engagement device is small. Therefore, it is possible to switch the friction engagement device to the direct engagement state while suppressing the occurrence of problems such as the temperature rise of the friction engagement device and the time required for engagement being excessive and the life shortening.
- the rotational speed of the first rotating electrical machine is controlled with the upper limit value and the lower limit value of the startable torque output possible range as limits, so that the internal combustion engine can be properly started within the range.
- the rotational speed difference between the two engaging members can be reduced. That is, even when the vehicle speed is high, it is possible to appropriately avoid the problem caused by the large difference in rotational speed when the friction engagement device is engaged, while ensuring a reliable start of the internal combustion engine. It has become.
- the rotation speed (that is, the vehicle speed) of the output member during traveling is a predetermined value (for example, the rotation at which the maximum torque that can be generated by the first rotating electrical machine in a state where the two engaging members are synchronized with the starting torque). Since the upper limit of the vehicle speed allowed when the internal combustion engine is stopped can be improved, it is possible to improve the energy efficiency of the vehicle.
- the differential rotation reduction control unit is preferably configured to change the rotation speed of the first rotating electrical machine using one of the upper limit value and the lower limit value as a target value.
- the difference in rotational speed between the two engaging members can be minimized as long as the internal combustion engine can be properly started. Therefore, it is possible to more reliably avoid the problem caused by the large difference in the rotational speed when the friction engagement device is engaged in a state where a reliable start of the internal combustion engine is guaranteed.
- the differential rotation reduction control unit changes the rotation speed of the first rotating electrical machine so as to be in the synchronized state, and the engagement control unit replaces the friction engagement in the synchronized state instead of the asynchronous engagement control. It is preferable that synchronous engagement control for engaging the combined device is executed to place the friction engagement device in the direct engagement state.
- the engagement control unit is configured to perform a difference in rotational speed between the two engaging members in a slip engagement state in which the two engaging members are engaged in a state having a rotational speed difference. It is preferable that the control is performed so that the direct engagement state is executed on the condition that the rotation speed difference between the two engaging members is less than the differential rotation threshold value. is there.
- the engagement control unit reduces the rotational speed difference between the two engagement members in the slip engagement state and enters the synchronization state as the asynchronous engagement control.
- the engagement control unit is configured to perform the friction engagement device based on a target change rate of a rotation speed of the internal combustion engine and an inertia moment of the internal combustion engine. It is preferable that the transmission torque capacity of the friction engagement device for setting the slip engagement state is set.
- the rotational speed of the internal combustion engine can be quickly increased according to the target change rate. Therefore, when a damper is provided between the internal combustion engine and the vehicle drive device, it is possible to quickly escape from the resonance region of the damper and to suppress generation of vibration due to resonance of the damper. .
- the first rotating electrical machine generates torque by the electric power supplied from the power storage device, and according to the rotation speed of the first rotating electrical machine and the state of the power storage device. It is preferable that the maximum torque that can be generated is different, and the start torque output possible range is variably set according to the state of the power storage device.
- the rotational speed difference between the two engagement members of the friction engagement device can be minimized according to the state of the power storage device, and the durability of the friction engagement device can be improved and the long service life can be achieved. Can be achieved.
- the second rotating electrical machine is drivingly connected to a rotating element of the differential gear device to which the output member is drivingly connected without passing through another rotating element of the differential gear device. It is.
- the internal combustion engine can be used as any of the input member, the output member, and the first rotating electrical machine as a member that can be released from the drive connection with the rotating element of the differential gear device by the friction engagement device.
- the stopped state it is possible to realize the electric travel mode in which the torque of the second rotating electrical machine is transmitted to the output member to drive the wheels. Therefore, the degree of freedom in design with respect to the arrangement of the friction engagement devices is increased, and the vehicle drive device according to the present invention can be applied in a wide range.
- the differential gear device includes the first rotation element in order of rotation speed
- the first rotating electrical machine is drive-coupled to the first rotating element without the other rotating element of the differential gear device, and has three rotating elements that are the second rotating element and the third rotating element.
- the input member is drivingly connected to the second rotating element
- the second rotating electrical machine and the output member are drivingly connected to the third rotating element
- the friction engagement device includes the input member and the second rotating member.
- a configuration provided in a power transmission path between the elements is preferable.
- the "rotation speed order” is either the order from the high speed side to the low speed side or the order from the low speed side to the high speed side, and can be either depending on the rotation state of each differential gear mechanism. In the case of, the order of the rotating elements does not change.
- the second rotating electrical machine is drivingly connected to a rotating element other than the rotating element of the differential gear device to which the output member is drivingly connected without passing through another rotating element of the differential gear device.
- the differential gear device has four rotating elements which are a first rotating element, a second rotating element, a third rotating element, and a fourth rotating element in order of rotational speed, and the input member, The output member, the first rotating electric machine, and the second rotating electric machine are drivingly connected to different rotating elements of the differential gear device without passing through the other rotating elements of the differential gear device, respectively, It is preferable that the combination device is configured to be provided in a power transmission path between the input member and the rotating element of the differential gear device in which the input member is drivingly connected without any other rotating element. is there.
- FIG. 1 is a schematic diagram showing a system configuration of a vehicle drive device according to a first embodiment of the present invention. It is explanatory drawing of the starting torque output possible range which concerns on 1st embodiment of this invention. It is a velocity diagram for demonstrating operation
- the vehicle drive device 1 is a drive for driving a vehicle (hybrid vehicle) that includes both an internal combustion engine E and rotating electrical machines MG1 and MG2 as wheel driving force sources. It is considered as a device (drive device for a hybrid vehicle).
- the vehicle drive device 1 which concerns on this embodiment is provided with the control apparatus 70 (refer FIG. 2), and this control apparatus 70 is operation
- a broken line indicates a power transmission path
- a solid arrow indicates a transmission path for various information.
- the differential gear device DG provided in the vehicle drive device 1 is constituted by a planetary gear mechanism PG having a sun gear s, a carrier ca, and a ring gear r as rotating elements.
- the first rotating electrical machine MG1 is drivingly connected to the sun gear s
- the input member I is drivingly connected to the carrier ca
- the second rotating electrical machine MG2 and the ring gear r are not connected to the other rotating elements of the planetary gear mechanism PG.
- the output member O is drivingly connected.
- the input member I is drivingly connected to the internal combustion engine E
- the output member O is drivingly connected to the wheels W.
- the vehicle drive device 1 includes a frictional engagement device CL that can release the drive connection between the input member I and the carrier ca.
- driving connection is released refers to a state of connection between two rotational elements that are drivingly connected, a state in which no driving force is transmitted between the two rotational elements (non-connected state). Means to.
- the internal combustion engine E is The energy efficiency can be improved by avoiding idling (dragging) of the first rotating electrical machine MG1, and driving of an auxiliary machine (for example, an oil pump) using the rotation of the carrier ca is possible.
- an auxiliary machine for example, an oil pump
- the vehicle drive device 1 includes an input member I that is drivingly connected to the internal combustion engine E, an output member O that is drivingly connected to the wheels W, a first rotating electrical machine MG1, a second rotating electrical machine MG2, and at least three rotations.
- a differential gear device DG having elements and a control device 70 are provided.
- the vehicle drive device 1 according to the present embodiment distributes the output torque of the internal combustion engine E to the first rotating electrical machine MG1 side and the wheels W and the second rotating electrical machine MG2 side. It is configured as a drive device for a so-called two-motor split type hybrid vehicle including the device DG.
- the differential gear device DG is constituted by a single pinion type planetary gear mechanism PG. That is, the differential gear device DG has three rotating elements in this example. Then, when these three rotating elements are designated as the first rotating element e1, the second rotating element e2, and the third rotating element e3 in the order of the rotation speed (that is, the arrangement order in the speed diagram (collinear diagram)),
- the sun gear s of the planetary gear mechanism PG constitutes the first rotating element e1
- the carrier ca of the planetary gear mechanism PG constitutes the second rotating element e2
- the ring gear r of the planetary gear mechanism PG rotates third.
- Element e3 is configured.
- the vehicle drive device 1 includes a friction engagement device CL capable of releasing the drive connection between any one of the input member I, the output member O, and the first rotating electrical machine MG1 and the rotation element of the differential gear device DG. ing.
- a rotating element connecting member that rotates integrally with the rotating element is connected to each rotating element of the differential gear device DG.
- a first rotating element connecting member 41 is connected to the sun gear s as the first rotating element e1
- a second rotation is connected to the carrier ca as the second rotating element e2.
- the element connecting member 42 is connected, and the third rotating element connecting member 43 is connected to the ring gear r as the third rotating element e3.
- each of the input member I, the output member O, the first rotating electrical machine MG1, and the second rotating electrical machine MG2 is drivingly connected to any of these rotating element connecting members, so that any of the differential gear devices DG It is drivingly connected to the rotating element.
- the input member I is drivingly connected to the internal combustion engine E.
- the input member I is a shaft member (input shaft).
- the internal combustion engine E is a prime mover that outputs power by combustion of fuel.
- a spark ignition engine such as a gasoline engine or a compression ignition engine such as a diesel engine can be used.
- the input member I is drivingly connected to an output shaft of an internal combustion engine such as a crankshaft of the internal combustion engine E.
- the input member I is drivingly connected so as to rotate integrally with the output shaft of the internal combustion engine, and the rotational speed of the input member I becomes equal to the rotational speed of the internal combustion engine E.
- the internal combustion engine E is drivingly connected to the input member I via another device such as a damper or a flywheel.
- the output member O is drivingly connected to the wheel W.
- the output member O is a gear member, and specifically, a differential input gear provided in the output differential gear device D.
- the output differential gear device D is configured by a differential gear mechanism using a plurality of bevel gears that mesh with each other, and the torque transmitted to the output member O is applied to the left and right wheels W that serve as drive wheels. Distribute.
- the first rotating electrical machine MG1 has a first stator St1 fixed to a case (not shown) and a first rotor Ro1 that is rotatably supported on the radially inner side of the first stator St1.
- the second rotating electrical machine MG2 includes a second stator St2 fixed to a case (not shown) and a second rotor Ro2 that is rotatably supported on the radially inner side of the second stator St2.
- the second rotor Ro2 is drivingly connected to rotate integrally with the second rotating electrical machine output gear 55 via a second rotor shaft to which the second rotor Ro2 is fixed.
- the first rotating electrical machine MG1 is electrically connected to the power storage device B via the first inverter 4, and the second rotating electrical machine MG2 is connected to the power storage device B via the second inverter 5. Is electrically connected.
- the power storage device B various known power storage devices such as a battery and a capacitor can be used.
- each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 has a function as a motor (electric motor) that receives power supplied from the power storage device B and generates power (torque), It is possible to function as a generator (generator) that receives supply to generate electric power and supplies the generated electric power to the power storage device B.
- the friction engagement device CL includes two engagement members, and a member that is drivingly connected to a first engagement member CLa that is one engagement member and a second engagement member CLb that is the other engagement member.
- This is a device for selectively driving and connecting the members that are drivingly connected.
- the friction engagement device CL is configured as a wet multi-plate clutch that operates by hydraulic pressure.
- the friction engagement device CL is provided so as to be able to release the drive connection between the input member I and the rotation element (second rotation element e2 in this example) of the differential gear device DG. That is, in this embodiment, the friction engagement device CL is provided in the power transmission path between the input member I and the rotation element (second rotation element e2 in this example) of the differential gear device DG.
- the first engagement member CLa is an input side engagement member that is drivingly connected so as to rotate integrally with the input member I, and the second engagement member CLb rotates integrally with the second rotation element connection member 42.
- the output side engaging member is drive-connected.
- the first rotating electrical machine MG1 is connected to the sun gear s (first rotating element e1) without passing through other rotating elements of the planetary gear mechanism PG (differential gear device DG).
- the input member I is drivingly connected to the carrier ca (second rotating element e2)
- the second rotating electrical machine MG2 and the output member O are drivingly connected to the ring gear r (third rotating element e3).
- the second rotating electrical machine MG2 is connected to the ring gear r (third rotating element e3), which is the rotating element of the differential gear device DG to which the output member O is drivingly connected, with the differential gear device DG. Drive-connected without any other rotating element.
- the first rotating electrical machine MG1 is drivingly connected to the sun gear s by drivingly connecting the first rotor shaft to which the first rotor Ro1 is fixed so as to rotate integrally with the first rotating element connecting member 41. ing. That is, in the present embodiment, the rotational speed of the sun gear s (first rotating element e1) is always equal to the rotational speed of the first rotor Ro1 (first rotating electrical machine MG1).
- the input member I is selectively connected to the carrier ca via the friction engagement device CL by being driven and connected to the first engagement member CLa of the friction engagement device CL so as to rotate integrally.
- “selectively drive-coupled” means that a state in which a driving force is transmitted between two rotational elements that are drive-coupled is selectively realized. That is, in the present embodiment, when the friction engagement device CL is in the direct engagement state, the rotation speed of the carrier ca (second rotation element e2) is equal to the rotation speed of the input member I (internal combustion engine E). Become. In the present embodiment, the rotational speed difference between the two engaging members of the frictional engagement device CL is such that the rotational speed of the input member I (internal combustion engine E) and the carrier ca (second rotating element connecting member 42). It becomes the difference with the rotation speed.
- the second rotating electrical machine MG2 and the output member O are drivingly connected to the ring gear r via the counter gear mechanism C.
- the counter gear mechanism C includes a first counter gear 53, a second counter gear 54, and a counter shaft that is coupled so as to rotate integrally.
- the third rotating element connecting member 43 has a counter drive gear 52 that meshes with the first counter gear 53.
- the second rotating electrical machine output gear 55 is arranged so as to mesh with the first counter gear 53 at a position different from the counter drive gear 52 in the circumferential direction (the circumferential direction of the first counter gear 53).
- the electric machine MG2 is drivingly connected to the ring gear r.
- the output member O is disposed so as to mesh with the second counter gear 54, so that it is drivingly connected to the ring gear r. That is, in the present embodiment, the rotational speed relationships among the ring gear r, the second rotating electrical machine MG2 and the output member O are proportional to each other, and the proportionality coefficient (that is, the rotational speed ratio) is interposed therebetween. It becomes a value according to the number of teeth of the gear to be operated.
- the vehicle drive device 1 includes a hybrid travel mode (split travel mode) in which the vehicle is driven by the output torques of both the internal combustion engine E and the rotary electric machines MG1, MG2, and the rotary electric machine MG1, An electric travel mode (EV travel mode) that travels only by the output torque of MG2 (in this example, only the second rotating electrical machine MG2) is provided.
- a hybrid travel mode split travel mode
- EV travel mode electric travel mode that travels only by the output torque of MG2 (in this example, only the second rotating electrical machine MG2) is provided.
- the friction engagement device CL is brought into the direct engagement state, and the output torque of the internal combustion engine E is applied to the sun gear s (first rotating electrical machine MG1) and the ring gear r (counter drive gear 52) by the planetary gear mechanism PG. It becomes a state to be distributed.
- the friction engagement device CL is released and the internal combustion engine E is stopped. Further, the rotational speed of the internal combustion engine output shaft (input member I) is basically zero due to the internal friction force of the internal combustion engine E, and the rotational speed of the first rotating electrical machine MG1 is basically controlled to be zero. Is done.
- the control device 70 includes a travel mode determination unit 79, a rotating electrical machine control unit 78, a differential rotation reduction control unit 71, an engagement control unit 73, and a start control unit 77. Yes.
- the control device 70 includes an arithmetic processing device such as a CPU as a core, and includes a storage device such as a RAM and a ROM. Each functional unit of the control device 70 is configured by software (program) stored in a ROM or the like, hardware such as a separately provided arithmetic circuit, or both. Each of these functional units is configured to exchange information with each other.
- the control device 70 is configured to be able to acquire information from a sensor or the like provided in each part of the vehicle in order to acquire information of each part of the vehicle on which the vehicle drive device 1 is mounted.
- the control device 70 includes an input member sensor Se1, an output member sensor Se3, an accelerator opening sensor Se11, a first rotor shaft sensor Se2, a release target rotation element sensor Se4, and a storage state. Information from the sensor Se10 can be acquired.
- the input member sensor Se1 is a sensor that detects the rotational speed of the input member I.
- the rotational speed of the input member I detected by the input member sensor Se1 is equal to the rotational speed of the internal combustion engine E in this example.
- the output member sensor Se3 is a sensor that detects the rotation speed of the output member O.
- the control device 70 derives the vehicle speed based on the rotational speed of the output member O detected by the output member sensor Se3.
- the accelerator opening sensor Se11 is a sensor that detects the accelerator opening by detecting an operation amount of an accelerator pedal (not shown).
- the first rotor shaft sensor Se2 is a sensor that detects the rotational speed of the first rotating electrical machine MG1 (first rotor shaft). In this example, the rotation of the first rotating electrical machine MG1 detected by the first rotor shaft sensor Se2. The speed is equal to the rotational speed of the first rotating element connecting member 41 (sun gear s).
- the first rotor shaft sensor Se2 can be, for example, a rotation sensor (such as a resolver) provided in the first rotating electrical machine MG1.
- the release target rotation element sensor Se4 is a sensor that detects the rotational speed of the release target rotation element en among the rotation elements of the differential gear device DG.
- the release target rotation element en is a rotation element that can be released from the driving connection with any of the input member I, the output member O, and the first rotating electrical machine MG1 by the friction engagement device CL.
- the carrier ca is the release target rotation element en
- the release target rotation element sensor Se4 detects the rotation speed of the second rotation element connecting member 42.
- the power storage state sensor Se10 is a sensor that detects the state of the power storage device B (in this example, temperature and amount of power storage).
- the storage state sensor Se10 includes a voltage sensor, a current sensor, and the like, and detects the amount of storage by detecting SOC (state of charge).
- the power storage state sensor Se10 includes a temperature sensor and detects the temperature of the power storage device B.
- the vehicle is provided with an internal combustion engine control unit 3.
- the internal combustion engine control unit 3 controls the operation of the internal combustion engine E by controlling each part of the internal combustion engine E. Specifically, the internal combustion engine control unit 3 sets a target torque and a target rotational speed as control targets for the output torque and rotational speed of the internal combustion engine E, and operates the internal combustion engine E according to the control target. Then, the operation control of the internal combustion engine E is performed.
- the target torque and the target rotation speed are set based on a command from the control device 70. Further, when the internal combustion engine control unit 3 receives a start command from the control device 70 while the internal combustion engine E is stopped, the internal combustion engine control unit 3 starts fuel injection and ignition, and changes the internal combustion engine E to the start state. Further, when the internal combustion engine control unit 3 receives a stop command from the control device 70 in the start state of the internal combustion engine E, the internal combustion engine control unit 3 stops the fuel injection and ignition and changes the internal combustion engine E to the stop state. .
- the travel mode determination unit 79 is a functional unit that determines the travel mode of the vehicle.
- the traveling mode determination unit 79 for example, the vehicle speed derived based on the detection result of the output member sensor Se3, the accelerator opening detected by the accelerator opening sensor Se11, and the storage state (storage) detected by the storage state sensor Se10.
- the travel mode to be realized by the vehicle drive device 1 is determined based on the amount, temperature, and the like.
- the driving modes that can be determined by the driving mode determination unit 79 include an electric driving mode and a hybrid driving mode.
- a travel mode is determined with reference to a mode selection map (not shown).
- the internal combustion engine start condition is a condition for starting the internal combustion engine E in a stopped state, and is satisfied when the vehicle is in a situation that requires the torque of the internal combustion engine E. For example, when the driver strongly depresses the accelerator pedal while the vehicle is stopped or in the electric travel mode, the torque required for the vehicle cannot be obtained with only the rotating electrical machines MG1 and MG2.
- the internal combustion engine start condition is established.
- the rotating electric machine control unit 78 is a functional unit that performs operation control of the first rotating electric machine MG1 and the second rotating electric machine MG2. Specifically, the rotating electrical machine control unit 78 sets a target torque and a target rotational speed as control targets for the output torque and rotational speed of the first rotating electrical machine MG1, and the first rotating electrical machine MG1 is set according to this control target.
- the first inverter 4 is controlled so as to operate.
- the rotating electrical machine control unit 78 controls the operation of the first rotating electrical machine MG1 by torque control or rotational speed control.
- the torque control is a control in which a target torque for the first rotating electrical machine MG1 is set and the output torque of the first rotating electrical machine MG1 is brought close to (follows) the target torque.
- the rotational speed control sets a target rotational speed for the first rotating electrical machine MG1, controls the output torque of the first rotating electrical machine MG1, and brings the rotational speed of the first rotating electrical machine MG1 closer to (follows) the target rotational speed.
- the control for the second rotating electrical machine MG2 is the same as that for the first rotating electrical machine MG1 except that the first inverter 4 is replaced with the second inverter 5.
- the rotating electrical machine control unit 78 sets the target torque and the target rotational speed within the range of the operable region (region surrounded by a thick solid line) as conceptually shown in FIG.
- the magnitude of the maximum torque that can be generated by the rotating electrical machines MG1 and MG2 is substantially constant when the absolute value of the rotational speed is equal to or less than a predetermined value. In the region exceeding the value, it is set so as to decrease as the absolute value of the rotational speed increases. That is, the magnitude of the maximum torque that can be generated by rotating electrical machines MG1 and MG2 varies depending on the rotational speed, and specifically has a region that decreases as the absolute value of the rotational speed increases.
- the magnitude of the maximum torque that can be generated by the rotating electrical machines MG1, MG2 is set so as to change according to the state of the power storage device B. Specifically, the maximum torque that can be generated by rotating electrical machines MG1 and MG2 changes according to the power that can be supplied from power storage device B.
- the power that can be supplied from the power storage device B is limited according to the temperature of the power storage device B and the amount of power stored.
- the operable region is adjusted according to the temperature of the power storage device B and the power storage amount.
- the magnitude of the maximum torque is set smaller as the temperature of the power storage device B moves away from the appropriate temperature to the lower side or the higher side.
- size of the maximum torque is set small as the electrical storage amount of the electrical storage apparatus B leaves
- the maximum torque is reduced by narrowing the operable region only in the region where the absolute value of the rotational speed is large in the vertical direction in the figure.
- the configuration is set.
- the minimum value and the maximum value that are allowed as the charge amount of the power storage device B are set in advance, and the charge amount of the power storage device B is continuously increased from the maximum value toward the minimum value.
- the magnitude of the maximum torque is set so as to decrease step by step.
- the maximum torque based on the temperature of power storage device B is large.
- the magnitude of the maximum torque is smaller than that in the proper temperature range. Is set.
- the maximum torque can be increased by narrowing the operable area not only in the area where the absolute value of the rotational speed is large but also in the entire rotational speed area including the area where the absolute value of the rotational speed is small. It is also possible to adopt a configuration in which the size is set small.
- the differential rotation reduction control unit 71 reduces the rotational speed difference between the two engaging members engaged with each other in the friction engagement device CL with respect to the rotational speed of the first rotating electrical machine MG1. It is a functional unit that executes differential rotation reduction control that changes the direction.
- the differential rotation reduction control unit 71 performs this differential rotation reduction control by starting the internal combustion engine E when the friction engagement device CL is in the released state, the internal combustion engine E is stopped, and the output member O is rotating. Run when. That is, the differential rotation reduction control unit 71 executes the differential rotation reduction control when the travel mode determination unit 79 determines to switch the travel mode from the electric travel mode to the hybrid travel mode while the vehicle is traveling.
- the input member I (internal combustion engine E) is drivingly connected to the first engagement member CLa of the two engagement members of the friction engagement device CL
- the second engagement member CLb is connected to the second engagement member CLb.
- the second rotating element connecting member 42 (carrier ca) is drivingly connected. Therefore, in the present embodiment, the differential rotation reduction control unit 71 performs the differential rotational speed reduction control, that is, the rotational speed difference between the input member I and the second rotary element coupling member 42, that is, between the internal combustion engine E and the carrier ca.
- the rotational speed of the first rotating electrical machine MG1 is changed in the direction in which the rotational speed difference between the two decreases.
- FIG. 4 is a velocity diagram showing the operating state of the differential gear device DG (the planetary gear mechanism PG in this example).
- the vertical axis corresponds to the rotational speed of each rotating element. That is, “0” described corresponding to the vertical axis indicates that the rotation speed is zero, the upper side is positive rotation (rotation speed is positive), and the lower side is negative rotation (rotation speed is negative). It is.
- each of the plurality of vertical lines arranged in parallel corresponds to each rotation element of the differential gear device DG.
- “Em”, “Ei”, and “Eo” surrounded by a rectangle described above each vertical line are a reaction force transmission element Em, an input rotation element Ei, The output rotation element Eo is shown.
- the rotational speed of the first rotating electrical machine MG1, the rotational speed of the second rotating electrical machine MG2, the rotational speed of the internal combustion engine E (input member I), and the rotational speed of the output member O are mutually different. Shown with different symbols.
- the rotational speeds of the first rotating electrical machine MG1, the second rotating electrical machine MG2, the internal combustion engine E, and the output member O are the rotational elements (rotating elements) of the differential gear device DG.
- Rotational speed after conversion (shift) by a transmission member excluding the engagement element that selectively transmits rotation and torque, such as the friction engagement device CL) provided in the power transmission path to the connecting member
- the first rotating electrical machine MG1 since the first rotating electrical machine MG1 is drivingly coupled so as to rotate integrally with the first rotating element coupling member 41, the first rotating electrical machine MG1 (sun gear s on the speed diagram). ) Matches the actual rotation speed of the first rotating electrical machine MG1. Further, the internal combustion engine E (input member I) rotates at the same rotational speed as that of the second rotating element connecting member 42 when the friction engagement device CL is in the direct engagement state, and therefore the internal combustion engine on the speed diagram. The rotational speed of the engine E (carrier ca) matches the actual rotational speed of the internal combustion engine E.
- the rotational speed of the second rotating electrical machine MG2 (ring gear r) on the speed diagram is The actual rotational speed of the second rotating electrical machine MG2 is multiplied by the gear ratio of the power transmission system including the second rotating electrical machine output gear 55, the first counter gear 53, and the counter drive gear 52.
- the output member O is also drivingly connected to the third rotating element connecting member 43 via the counter gear mechanism C, the rotational speed of the output member O on the speed diagram is the actual rotational speed of the output member O.
- a gear ratio of a power transmission system composed of a differential input gear (output member O), a second counter gear 54, a first counter gear 53, and a counter drive gear 52.
- T1 indicates the torque (first rotating electrical machine torque) transmitted from the first rotating electrical machine MG1 to the rotating element (the sun gear s in this example) of the differential gear device DG
- T2 indicates the second rotating electrical machine.
- the torque (second rotating electrical machine torque) transmitted from MG2 to the rotating element (ring gear r in this example) of the differential gear device DG is shown
- “To” is the output member O (wheel W) to the differential gear device DG.
- the torque (running torque, running resistance) transmitted to the rotating element (ring gear r in this example) is shown.
- the upward arrow indicates the positive torque
- the downward arrow indicates the negative direction. Represents the torque.
- the speed diagrams referred to below also show the operating state of the differential gear device DG, as in FIG.
- the solid line indicates the operation in the electric travel mode in which the friction engagement device CL is in the released state and travels only by the output torque of the rotating electrical machines MG1 and MG2 (only the second rotating electrical machine MG2 in this example).
- the second rotating electrical machine MG2 is controlled to output the second rotating electrical machine torque T2 according to the vehicle required torque (torque required from the vehicle side) determined based on the vehicle speed, the accelerator opening, and the like. Is done.
- torque for accelerating or cruising the vehicle is required, and the second rotating electrical machine MG2 is powered while rotating in the positive direction against the traveling torque To acting on the ring gear r in the negative direction.
- the case where the second rotating electrical machine torque T2 in the positive direction is output is illustrated.
- the friction engagement device CL In the electric travel mode, the friction engagement device CL is released, and the release target rotating element en of the differential gear device DG is freely rotatable.
- the release target rotating element en is the carrier ca, and the friction engagement device CL is provided in the power transmission path between the carrier ca and the internal combustion engine E. Therefore, in the electric travel mode, the carrier ca and the internal combustion engine E are disconnected from each other (disconnected state), so that the internal combustion engine E is disconnected from the carrier ca and the carrier ca can freely rotate.
- the present embodiment as indicated by a solid line in FIG.
- the rotation speed of the first rotating electrical machine MG1 is basically zero, and the carrier ca has a rotation speed of the ring gear r determined according to the vehicle speed, It rotates at a rotational speed determined based on the rotational speed of the sun gear s determined according to the rotational speed of the first rotating electrical machine MG1.
- the differential rotation reduction control is executed, and the first rotational speed difference between the internal combustion engine E and the carrier ca is reduced.
- the rotational speed of the rotating electrical machine MG1 is changed.
- the first rotating electrical machine MG1 outputs a torque in the negative direction to decrease the rotation speed so as to gradually decrease the rotation speed of the carrier ca. Note that “decrease” in the rotation speed means changing the rotation speed in a negative direction, and “increase” in the rotation speed means changing the rotation speed in a positive direction.
- the two-dot chain line in FIG. 4 represents a state in which the rotational speed of the carrier ca is equal to the rotational speed of the internal combustion engine E (zero in this example) by executing such differential rotation reduction control.
- the differential rotation reduction control can be configured to be executed by rotational speed control by the rotating electrical machine control unit 78.
- the rotational speed feedback is based on the difference between the target rotational speed of the first rotating electrical machine MG1 and the actual rotational speed of the first rotating electrical machine MG1 detected by the first rotor shaft sensor Se2. Control is executed.
- the magnitude of the maximum torque that can be generated by the rotating electrical machines MG1, MG2 has a region that decreases as the absolute value of the rotational speed increases.
- the friction engagement device CL is brought into the direct engagement state by the engagement control unit 73 (a state indicated by a solid line in FIG. 5), and then the start control unit 77.
- the rotational speed of the first rotating electrical machine MG1 is set with the rotational speed of the first rotating electrical machine MG1 (starting rotational speed Ni described later) as the target value, which is the rotational speed at which the internal combustion engine E can be started (ignition rotational speed Nf described later). Start control is performed to change the.
- the rotational speed of the first rotating electrical machine MG1 at the start of execution of the starting control depends on the start of the internal combustion engine E.
- the rotational speed must be such that the starting torque TI, which is the required torque, can be output.
- the starting torque TI is set according to the gear ratio of the differential gear device DG, the target change rate of the rotational speed of the internal combustion engine E when cranking the internal combustion engine E, and the like.
- the starting torque output possible range R that is the range of the rotational speed at which the first rotating electrical machine MG1 can output the starting torque TI is a range having an upper limit value Rmax and a lower limit value Rmin. Therefore, the differential rotation reduction control unit 71 is configured to change the rotation speed of the first rotating electrical machine MG1 with the upper limit value Rmax and the lower limit value Rmin of the starting torque output possible range R as limits. As a result, the rotational speed difference between the two engagement members of the friction engagement device CL can be reduced within a range in which the internal combustion engine E can be appropriately started.
- each of the upper limit value Rmax and the lower limit value Rmin of the starting torque output possible range R is set to a rotation speed at which the maximum value of the torque that can be output by the first rotating electrical machine MG1 is equal to the starting torque TI. ing.
- the upper limit value Rmax of the starting torque output possible range R is set to a rotational speed that is lower by a predetermined rotational speed than the rotational speed at which the maximum torque that can be output by the first rotating electrical machine MG1 is equal to the starting torque TI
- the lower limit value Rmin of the starting torque output possible range R can be set to a rotational speed that is higher by a predetermined rotational speed than the rotational speed at which the maximum torque that can be output by the first rotating electrical machine MG1 is equal to the starting torque TI.
- the differential rotation reduction control unit 71 includes a target rotation speed setting unit 72, and the differential rotation reduction control unit 71 sets the target rotation speed set by the target rotation speed setting unit 72.
- the target rotational speed setting unit 72 rotates the first rotating electrical machine MG1 for synchronizing the two engaging members (in this example, the internal combustion engine E and the carrier ca) of the friction engagement device CL. It is determined whether or not the speed (hereinafter referred to as “synchronous rotational speed Ns”) is within the starting torque output possible range R.
- the synchronized state is a state in which a difference in rotational speed between two target rotating members (here, two engaging members of the friction engagement device CL) is less than a differential rotation threshold.
- This synchronized state includes a state where the rotational speed of one or both of the rotating members is zero.
- the state where the rotational speed difference between the two target rotating members is equal to or greater than the differential rotation threshold is an asynchronous state.
- This differential rotation threshold is a predetermined threshold set in advance, and can be set to a value of, for example, 10 rpm to 100 rpm.
- the information about the starting torque output possible range R is stored in the storage device 6 as the output possible range data 6 a
- the target rotational speed setting unit 72 is the output stored in the storage device 6. The above determination is performed with reference to the possible range data 6a.
- the target rotational speed setting unit 72 sets the synchronous rotational speed Ns. It is set as the target rotation speed of the first rotating electrical machine MG1 in the differential rotation reduction control. Then, the differential rotation reduction control unit 71 changes the rotation speed of the first rotating electrical machine MG1 so that the two engaging members are in a synchronized state.
- the differential rotation reduction control unit 71 changes the rotation speed of the first rotating electrical machine MG1 using the target rotation speed (one of the upper limit value Rmax and the lower limit value Rmin) set by the target rotation speed setting unit 72 as a target value.
- the operable region (FIG. 3) of the first rotating electrical machine MG1 is variably set according to the state of the power storage device B. Accordingly, the start torque output possible range R is also set in the power storage device B. It is set variably according to the state. Therefore, when setting the target rotation speed of the first rotating electrical machine MG1, the target rotation speed setting unit 72 acquires the current state of the power storage device B (temperature and power storage amount in this example) from the power storage state sensor Se10, The starting torque output possible range R according to the state of the power storage device B is acquired.
- startable torque output possible ranges R outputable range data 6a
- target rotation speed setting unit 72 stores current power storage device B.
- the configuration is such that the information of the startable torque output possible range R corresponding to the state of the battery is selected and acquired, or the target rotational speed setting unit 72 outputs the starter torque that is the reference and the state of the power storage device B acquired from the power storage state sensor Se10.
- information on the startable torque output possible range R corresponding to the current storage state is derived and acquired based on a predetermined arithmetic expression or the like. be able to.
- the engagement control unit 73 is a functional unit that controls the operation of the friction engagement device CL.
- the engagement control unit 73 controls the operation of the friction engagement device CL by controlling the hydraulic pressure (supply pressure to the friction engagement device CL) supplied to the friction engagement device CL via the hydraulic control device 2. Do. Specifically, the engagement control unit 73 generates a hydraulic pressure command value for the friction engagement device CL, and the hydraulic pressure control device 2 supplies a hydraulic pressure corresponding to the hydraulic pressure command value to the friction engagement device CL.
- the state of engagement between the two engagement members of the friction engagement device CL includes a “released state” in which rotation and torque are not transmitted between the two engagement members, and the two engagements.
- a “slip engagement state” in which the members engage with each other with a rotational speed difference
- a “direct engagement state” in which the two engagement members engage with each other in an integrally rotating state. That is, the “slip engagement state” is an engagement state in which torque is transmitted between the two engagement members in a state where the two engagement members of the friction engagement device CL rotate relative to each other.
- the “directly engaged state” is an engaged state in which the two engaging members of the friction engagement device CL are directly connected and there is no differential rotation between the two engaging members.
- the magnitude of torque that can be transmitted between the two engagement members by the friction engagement device CL is determined according to the engagement pressure of the friction engagement device CL at that time.
- the magnitude of the torque at this time is defined as the transmission torque capacity of the friction engagement device CL.
- frictional engagement is achieved by continuously controlling the amount of oil supplied to the frictional engagement device CL and the magnitude of the supply pressure with a proportional solenoid valve in accordance with the hydraulic pressure command value for the frictional engagement device CL.
- the increase / decrease of the transmission torque capacity of the device CL can be continuously controlled.
- the engagement control unit 73 controls the operation of the friction engagement device CL by torque control or rotation speed control.
- torque control a target transmission torque capacity is set for the friction engagement device CL, and the hydraulic pressure command value is set so that the transmission torque capacity of the friction engagement device CL approaches (follows) the target transmission torque capacity. It is the control which produces
- rotational speed control sets the target differential rotational speed for the friction engagement device CL, and makes the rotational speed difference between the two engaging members approach (follow) the target differential rotational speed. This is control for generating a command value.
- the engagement control unit 73 includes a synchronous engagement control unit 74 and an asynchronous engagement control unit 75. Then, the engagement control unit 73 performs the engagement control of the friction engagement device CL by the synchronous engagement control unit 74 or the asynchronous engagement control unit 75 on condition that the differential rotation reduction control by the differential rotation reduction control unit 71 is executed. The friction engagement device CL in the released state is changed to the directly engaged state.
- the synchronous engagement control unit 74 performs synchronous engagement control for engaging the friction engagement device CL in a synchronous state in which the rotational speed difference between the two engagement members of the friction engagement device CL is less than the differential rotation threshold. Is a functional unit for executing In the present embodiment, the synchronous engagement control unit 74 is in a state where the low speed time difference rotation reduction control is executed by the differential rotation reduction control unit 71 and the rotation speed of the first rotating electrical machine MG1 has reached the synchronous rotation speed Ns that is the target value. Thus, the engagement of the frictional engagement device CL is started, and the frictional engagement device CL is brought into the direct engagement state.
- the “reach” the rotation speed of the first rotating electrical machine MG1 to the target rotation speed, which is the target value means that the rotation speed difference between the rotation speed of the first rotating electrical machine MG1 and the target rotation speed is a target arrival determination threshold value. It means a state of less than.
- the target attainment determination threshold value can be set to a value of 10 rpm to 100 rpm, for example.
- the state in which the friction engagement device CL is in the direct engagement state is indicated by a solid line.
- the synchronous engagement control unit 74 sends a hydraulic pressure command value for the friction engagement device CL to the friction engagement device CL in order to change the friction engagement device CL from the released state to the direct engagement state. Control is performed so that the transmission torque capacity increases at a predetermined rate of change (for example, a constant rate of change) from zero to a value (hereinafter, referred to as a “steady direct connection value”) that is in a steady direct connection state.
- a predetermined rate of change for example, a constant rate of change
- the change rate is set to a relatively large value
- the friction engagement device CL is set in a relatively short time. Is increased to a steady direct coupling engagement value.
- the hydraulic pressure for setting the transmission torque capacity of the friction engagement device CL to the steady direct engagement value is “steady hydraulic pressure”
- the hydraulic pressure command value for the friction engagement device CL is reduced to the steady hydraulic pressure in a relatively short time. Raise.
- the “steady direct coupling engagement state” means a state in which the direct coupling engagement state is maintained regardless of a change in torque transmitted by the friction engagement device CL.
- the steady hydraulic pressure for obtaining such a steady direct engagement state is, for example, a line pressure generated by the hydraulic control device 2.
- the asynchronous engagement control unit 75 is an asynchronous engagement control for engaging the friction engagement device CL in an asynchronous state in which the difference in rotational speed between the two engagement members of the friction engagement device CL is equal to or greater than the differential rotation threshold. Is a functional unit for executing In the present embodiment, the asynchronous engagement control unit 75 is subjected to the high speed time difference rotation reduction control by the differential rotation reduction control unit 71, and the upper limit of the start torque output possible range R in which the rotation speed of the first rotating electrical machine MG1 is the target value. In a state where one of the value Rmax and the lower limit value Rmin (lower limit value Rmin in this example) has been reached, the engagement of the friction engagement device CL is started and the friction engagement device CL is brought into the direct engagement state.
- the asynchronous engagement control unit 75 reduces the rotational speed difference between the two engagement members of the friction engagement device CL in the slip engagement state, and the rotational speed between the two engagement members.
- the control for setting the direct engagement state is executed.
- the asynchronous engagement control unit 75 sends the hydraulic command value for the friction engagement device CL to the transmission torque of the friction engagement device CL in order to change the friction engagement device CL from the released state to the slip engagement state. Control is performed so that the capacity increases from zero at a predetermined change rate (for example, a constant change rate).
- the change rate of the transmission torque capacity is set to a smaller value than in the case of the synchronous engagement control.
- the transmission torque capacity of the friction engagement device CL is increased over time than the synchronous engagement control.
- the hydraulic command to the friction engaging device CL is maintained so that the transmission torque capacity of the friction engaging device CL is maintained at the value at that time. Control the value. Thereby, the friction engagement device CL is maintained in the slip engagement state.
- the asynchronous engagement control unit 75 moves the friction engagement device CL.
- the hydraulic pressure command value for the frictional engagement device CL is controlled to change from the slip engagement state to the direct engagement state.
- the asynchronous engagement control unit 75 maintains the transmission torque capacity in the slip engagement state even after the two engagement members of the friction engagement device CL are in the synchronized state, so that the friction engagement is achieved.
- the device CL is brought into a direct coupling engagement state.
- the asynchronous engagement control unit 75 changes the hydraulic pressure command value for the frictional engagement device CL to the above-described steady hydraulic pressure at a predetermined change rate (for example, a constant change rate). Control to ascend. As a result, the transmission torque capacity of the friction engagement device CL increases to a steady direct engagement value at a predetermined change rate (for example, a constant change rate).
- the control for controlling the friction engagement device CL to be in a steady direct engagement state is performed in parallel with the start control by the start control unit 77 described later. Executed.
- the rotating electrical machine control unit 78 changes the rotational speed of the first rotating electrical machine MG1 after the change by the differential rotation reduction control until the frictional engagement device CL is in the direct engagement state by executing the asynchronous engagement control.
- Rotational speed control (rotational speed feedback control in this example) is executed so as to maintain the rotational speed (in this example, the lower limit value Rmin of the starting torque output possible range R).
- the first rotating electrical machine MG1 maintains its rotational speed at the rotational speed (lower limit value Rmin) after the change by the differential rotational speed reduction control by outputting the torque in the positive direction.
- the rotary electric machine control unit 78 starts the engagement of the friction engagement device CL, and the output torque of the first rotary electric machine MG1 transmitted to the wheels W via the ring gear r and the load torque caused by the internal combustion engine E.
- the control for correcting the output torque of the second rotating electrical machine MG2 is executed so as to cancel out.
- the start control unit 77 performs the first rotation with the rotation speed (starting rotation speed Ni) of the first rotating electrical machine MG1 as the rotation speed at which the internal combustion engine E can be started (ignition rotation speed Nf). It is a functional unit that executes start control for changing the rotation speed of the electric machine MG1.
- the start control unit 77 executes the start control on the condition that the friction engagement device CL is in the direct engagement state by the execution of the engagement control by the engagement control unit 73.
- the rotational speed of the internal combustion engine E in this example, the rotational speed of the carrier ca
- the rotational speed of the carrier ca gradually increases, and reaches the ignition rotational speed Nf after a predetermined time.
- the rate of change in the rotational speed of the internal combustion engine E at this time is such that when a damper is provided between the internal combustion engine E and the vehicle drive device 1, the resonance region of the damper can be quickly removed.
- the ignition rotation speed Nf can be set to, for example, the idle rotation speed of the internal combustion engine E.
- the rotation speed of the first rotating electrical machine MG1 is changed in the direction opposite to the change direction in the differential rotation reduction control.
- the first rotating electrical machine MG1 outputs a torque in the negative direction to reduce the rotational speed
- the first rotating electrical machine MG1 is in the positive direction torque. Is output to increase the rotation speed.
- the torque (the torque in the positive direction in this example) that the first rotating electrical machine MG1 needs to output during the starting control is basically a torque corresponding to (for example, equal to) the starting torque TI.
- the output torque of the first rotating electrical machine MG1 is controlled so that the rotational speed of the first rotating electrical machine MG1 increases at a constant rate of change.
- the start control can be configured to be executed by rotational speed control by the rotating electrical machine control unit 78, for example, can be configured to be executed by rotational speed feedback control.
- the rotating electrical machine control unit 78 executes the start control so as to cancel the output torque of the first rotating electrical machine MG1 transmitted to the wheel W via the ring gear r and the load torque caused by the internal combustion engine E. Control for correcting the output torque of the two-rotary electric machine MG2 is executed.
- the two-dot chain line in FIG. 5 executes the start control from the state after the execution of the low speed time difference rotation reduction control and the synchronous engagement control (the state indicated by the solid line in FIG. 5), and the rotation speed of the first rotating electrical machine MG1 is the start rotation.
- the state where the speed Ni is reached is shown.
- the rotational speed of the internal combustion engine E increases from zero to the ignition rotational speed Nf.
- the control device 70 performs the internal combustion engine on the condition that the rotational speed of the first rotating electrical machine MG1 has reached the starting rotational speed Ni, that is, on the condition that the rotational speed of the internal combustion engine E has reached the ignition rotational speed Nf.
- a start command for the internal combustion engine E is issued to the engine control unit 3, and the internal combustion engine E is started by the internal combustion engine control unit 3.
- the control for starting the internal combustion engine E through the execution of the low speed time difference rotation reduction control, the synchronous engagement control, and the start control is referred to as “low speed start control”.
- the two-dot chain line in FIG. 7 executes the start control from the state after the execution of the high-speed time difference rotation reduction control and the asynchronous engagement control (the state indicated by the solid line in FIG. 7) (“arrow (2)” in FIG. 7). And the state in which the rotational speed of the first rotating electrical machine MG1 has reached the starting rotational speed Ni. At this time, the rotational speed of the internal combustion engine E increases from the rotational speed at the time when the friction engagement device CL is brought into the direct engagement state by execution of the asynchronous engagement control to the ignition rotational speed Nf.
- the control device 70 performs the internal combustion engine on the condition that the rotational speed of the first rotating electrical machine MG1 has reached the starting rotational speed Ni, that is, on the condition that the rotational speed of the internal combustion engine E has reached the ignition rotational speed Nf.
- a start command for the internal combustion engine E is issued to the engine control unit 3, and the internal combustion engine E is started by the internal combustion engine control unit 3.
- the control for starting the internal combustion engine E through the execution of the high-speed time difference rotation reduction control, the asynchronous engagement control, and the start control is referred to as “high-speed start control”.
- FIG. 8 is a diagram illustrating an example of a time chart when starting the internal combustion engine E by sequentially executing the low speed time difference rotation reduction control, the synchronous engagement control, and the start control during the travel in the electric travel mode.
- FIG. 8 it is assumed that there is a request to start the internal combustion engine E at time T0 (the transition to the hybrid travel mode is determined by the travel mode determination unit 79), and the internal combustion engine E starts a self-sustained operation at time T4. is doing.
- the transmission torque capacity of the friction engagement device CL is zero, and the vehicle is running with the output torque of the second rotating electrical machine MG2 while the internal combustion engine E is stopped.
- the rotation speed of the first rotating electrical machine MG1 is set to zero and torque is not output.
- the carrier ca is rotated at a predetermined rotation speed (see the solid line in FIG. 4).
- the differential rotation reduction control unit 71 executes low-speed differential rotation reduction control.
- the rotation speed of the first rotating electrical machine MG1 is controlled so as to change using the synchronous rotation speed Ns as a target value.
- the first rotating electrical machine MG1 is controlled by rotational speed feedback control, and the rotational speed is reduced by outputting negative torque.
- the rotation speed of the first rotating electrical machine MG1 reaches the synchronous rotation speed Ns that is the target value (see the two-dot chain line in FIG. 4).
- the synchronous engagement control unit 74 When the rotational speed of the first rotating electrical machine MG1 reaches the synchronous rotational speed Ns at time T1 and the two engaging members of the friction engagement device CL are in a synchronized state, the synchronous engagement control unit 74 performs the friction engagement device. The engagement of CL is started, and the friction engagement device CL is changed from the released state to the directly connected state (see the solid line in FIG. 5).
- the synchronous engagement control unit 74 is configured such that the transmission torque capacity of the friction engagement device CL is increased from zero to a steady direct engagement value (a transmission torque capacity corresponding to a steady hydraulic pressure) at a constant change rate.
- the hydraulic pressure command value for the hydraulic pressure control device 2 is controlled. During this time, the rotation speed of the first rotating electrical machine MG1 is maintained at the synchronous rotation speed Ns.
- the start control unit 77 sets the start rotation speed Ni as the target value and sets the first The rotational speed of the rotating electrical machine MG1 is changed.
- the rotational speed of the internal combustion engine E increases as the rotational speed of the first rotating electrical machine MG1 increases.
- the rotation speed of the first rotating electrical machine MG1 is controlled by the rotation speed feedback control so that the rotation speed of the internal combustion engine E increases at a constant rate of change.
- the control device 70 issues a start command for the internal combustion engine E to the internal combustion engine control unit 3, and the internal combustion engine E is started by the internal combustion engine control unit 3.
- the output torque of the first rotating electrical machine MG1 changes in the negative direction according to the magnitude of the positive direction torque output from the internal combustion engine E, and the internal combustion engine E performs a self-sustaining operation at time T4.
- the first rotating electrical machine MG1 is controlled to output a reaction force (torque in the negative direction) against the torque of the internal combustion engine E.
- FIG. 9 is a diagram showing an example of a time chart when starting the internal combustion engine E by sequentially executing the high speed time difference rotation reduction control, the asynchronous engagement control, and the start control during travel in the electric travel mode.
- FIG. 9 it is assumed that there is a request to start the internal combustion engine E at time T10 (the shift to the hybrid travel mode is determined by the travel mode determination unit 79), and the internal combustion engine E starts a self-sustained operation at time T14. is doing.
- the transmission torque capacity of the friction engagement device CL is zero, and the vehicle is running with the output torque of the second rotating electrical machine MG2 while the internal combustion engine E is stopped.
- the rotation speed of the first rotating electrical machine MG1 is set to zero and torque is not output.
- the carrier ca is rotated at a predetermined rotation speed (see the solid line in FIG. 6).
- the differential rotation reduction control unit 71 executes high-speed time differential rotation reduction control.
- the rotation speed of the first rotating electrical machine MG1 is controlled so as to change with the lower limit value Rmin of the starting torque output possible range R as a target value.
- the first rotating electrical machine MG1 is controlled by rotational speed feedback control, and the rotational speed is reduced by outputting negative torque.
- the rotation speed of the first rotating electrical machine MG1 reaches the lower limit value Rmin of the start torque output possible range R that is the target value (see the two-dot chain line in FIG. 6).
- the asynchronous engagement control unit 75 starts the engagement of the friction engagement device CL, and the friction engagement.
- the device CL is changed from the released state to the direct engagement state (see the solid line in FIG. 7).
- the asynchronous engagement control unit 75 controls the hydraulic pressure command value for the friction engagement device CL so that the transmission torque capacity of the friction engagement device CL increases from zero at a constant rate at time T11. To do.
- the hydraulic pressure command value for the friction engagement device CL is changed to the value at that time of the transmission torque capacity of the friction engagement device CL. Control to keep. Thereby, the friction engagement device CL is maintained in the slip engagement state.
- the rotation speed of the first rotating electrical machine MG1 is maintained at the lower limit value Rmin of the startable torque output possible range R by the rotation speed feedback control until the friction engagement device CL enters the direct engagement state after the time T11. The Therefore, after the friction engagement device CL is in the slip engagement state, the first rotating electrical machine MG1 is controlled so as to output a positive torque.
- the difference in rotational speed between the carrier ca and the internal combustion engine E decreases with the passage of time since the slip engagement state is reached, and the rotational speed between the carrier ca and the internal combustion engine E coincides with the friction at time T12.
- the engagement device CL is in the direct engagement state.
- the start control unit 77 is Using the starting rotational speed Ni as a target value, the rotational speed of the first rotating electrical machine MG1 is changed.
- the rotational speed of the first rotating electrical machine MG1 is controlled by the rotation speed feedback control so that the rotation speed of the internal combustion engine E increases at a constant rate of change.
- the execution of the start control is started, and at the same time, the asynchronous engagement control unit 75 starts executing the control for changing the friction engagement device CL to the steady direct engagement state. Is done. Specifically, the asynchronous engagement control unit 75 increases the hydraulic pressure so that the transmission torque capacity of the friction engagement device CL increases at a constant change rate to a steady direct connection value (transmission torque capacity corresponding to the steady hydraulic pressure). The hydraulic pressure command value for the control device 2 is controlled.
- the control device 70 issues a start command for the internal combustion engine E to the internal combustion engine control unit 3, and the internal combustion engine E is started by the internal combustion engine control unit 3.
- the output torque of the first rotating electrical machine MG1 changes in the negative direction according to the magnitude of the positive direction torque output from the internal combustion engine E, and the internal combustion engine E performs a self-sustained operation at time T14.
- the first rotating electrical machine MG1 is controlled to output a reaction force (torque in the negative direction) against the torque of the internal combustion engine E.
- FIG. 10 is a flowchart showing the overall processing procedure of the internal combustion engine start control.
- FIG. 11 is a flowchart showing a processing procedure of low speed time difference rotation reduction control in step # 04 of FIG.
- FIG. 12 is a flowchart showing a processing procedure of the high-speed time difference rotation reduction control in step # 06 of FIG.
- FIG. 13 is a flowchart showing a processing procedure of asynchronous engagement control in step # 07 of FIG.
- FIG. 14 is a flowchart showing the procedure for starting control in step # 08 of FIG.
- Each processing procedure described below is executed by each functional unit of the control device 70.
- the arithmetic processing device included in the control device 70 operates as a computer that executes the program that configures each functional unit described above.
- a target rotational speed setting unit 72 is a synchronous rotational speed Ns that is the rotational speed of the first rotating electrical machine MG1 for synchronizing the two engaging members of the frictional engagement device CL (in this example, the internal combustion engine E and the carrier ca). It is determined whether or not the torque output is within a possible range R (step # 03).
- step # 03 When the synchronous rotational speed Ns is within the start torque output possible range R (step # 03: Yes), the low speed time difference rotational reduction control (step # 04), the synchronous engagement control (step # 05), and the start Control (step # 08) is executed in order. Details of the low speed time difference rotation reduction control and the start control will be described later.
- step # 03 when the synchronous rotational speed Ns is not within the start torque output possible range R (step # 03: No), the high-speed time difference rotational reduction control (step # 06), the asynchronous engagement control (step # 07), and the start Control (step # 08) is executed in order. Details of the high-speed time difference rotation reduction control and the asynchronous engagement control will be described later.
- the target rotational speed setting unit 72 sets the target rotational speed of the first rotating electrical machine to the synchronous rotational speed Ns (step # 10).
- the differential rotation reduction control unit 71 changes the rotation speed of the first rotating electrical machine MG1 using the target rotation speed (that is, the synchronous rotation speed Ns) set by the target rotation speed setting unit 72 as a target value (step # 11).
- step # 11 rotational speed feedback control is executed with the synchronous rotational speed Ns as a target value.
- step # 12 No
- the control of step # 11 is continued.
- the target rotational speed setting unit 72 sets the target rotational speed of the first rotating electrical machine to the lower limit value Rmin of the starting torque output possible range R (step # 20).
- the differential rotation reduction control unit 71 changes the rotation speed of the first rotating electrical machine MG1 using the target rotation speed set by the target rotation speed setting unit 72 (that is, the lower limit value Rmin of the startable torque output possible range R) as a target value (Ste # 21).
- rotational speed feedback control is executed with the lower limit value Rmin of the starting torque output possible range R as a target value.
- step # 22: No Until the rotational speed of the first rotating electrical machine MG1 reaches the target rotational speed (step # 22: No), the control of step # 21 is continued. Then, when the rotation speed of the first rotating electrical machine MG1 reaches the target rotation speed (step # 22: Yes), the process ends.
- the asynchronous engagement control unit 75 controls the hydraulic pressure command value for the friction engagement device CL so that the transmission torque capacity of the friction engagement device CL increases from zero at a predetermined change rate (a constant change rate in this example). (Step # 30). Until the rotation speed of the internal combustion engine E changes (step # 31: No), the control of step # 30 is continued, and when the rotation speed of the internal combustion engine E changes (step # 31: Yes), friction engagement is performed. The hydraulic pressure command value for the frictional engagement device CL is controlled so that the transmission torque capacity of the device CL is maintained at the value at that time (step # 32).
- step # 33 Yes
- step # 34 the hydraulic pressure command value for the friction engagement device CL is raised to the steady hydraulic pressure so that the friction engagement device CL is brought into a steady direct engagement state
- step # 08 the start control in step # 08 will be described with reference to FIG.
- the target rotational speed of the first rotating electrical machine MG1 is set to the starting rotational speed Ni that is the rotational speed of the first rotating electrical machine MG1 that sets the internal combustion engine E to the ignition rotational speed Nf (step # 40).
- the rotational speed of the first rotating electrical machine MG1 is changed using the starting rotational speed Ni as a target value (step # 41).
- step # 41 rotational speed feedback control is executed with the starting rotational speed Ni as a target value.
- the control of step # 41 is continued.
- the rotation speed of the first rotating electrical machine MG1 reaches the target rotation speed (step # 42: Yes)
- a start command for the internal combustion engine E is issued to the internal combustion engine control unit 3 (step # 43), and the process ends. To do.
- the vehicle drive device 1 according to the present embodiment is basically configured in the same manner as in the first embodiment except for the arrangement position of the friction engagement device CL.
- the structure of the vehicle drive device 1 which concerns on this embodiment is demonstrated centering on difference with said 1st embodiment. Note that points not particularly described are the same as those in the first embodiment.
- the friction engagement device CL is not between the input member I and the rotation element (second rotation element e2) of the differential gear device DG.
- the power transmission path between the output member O and the rotating element (third rotating element e3) of the differential gear device DG is provided.
- the friction engagement device CL is provided so as to be able to release the drive connection between the output member O and the rotation element (third rotation element e3) of the differential gear device DG.
- the counter engagement gear 52 is drivingly connected to the first engagement member CLa, which is one engagement member of the friction engagement device CL, so as to integrally rotate, and is the other engagement member.
- the third rotating element connecting member 43 is drivingly connected to the second engaging member CLb so as to rotate integrally. Therefore, the friction engagement device CL is also located in the power transmission path between the second rotating electrical machine MG2 and the rotation element (third rotation element e3) of the differential gear device DG, and the friction engagement device CL is released.
- the second rotary electric machine MG2 is also released from the drive connection with the rotation element (third rotation element e3) of the differential gear device DG.
- the release target rotation element en is the ring gear r
- the release target rotation element sensor Se4 is arranged so as to be able to detect the rotation speed of the ring gear r, as shown in FIG.
- the input member I is drivingly connected so as to rotate integrally with the second rotating element connecting member 42, and the rotational speed of the carrier ca is always equal to the rotational speed of the internal combustion engine E.
- FIG. 16 is a velocity diagram for explaining the operations of the high-speed time difference rotation reduction control and the asynchronous engagement control according to the present embodiment.
- the friction engagement device CL is released, and the ring gear r is separated from the output member O and the second rotating electrical machine MG2 and is free. Ready to rotate. Since the internal combustion engine E is in a stopped state, its rotational speed is zero, and the first rotating electrical machine MG1 is also controlled so that its rotational speed and output torque are zero, so that the rotational speed of the ring gear r is also zero.
- differential rotation reduction control is executed, and the rotational speed difference between the ring gear r and the output member O (more precisely, the ring gear r).
- the rotational speed of the first rotating electrical machine MG1 is changed in a direction in which the rotational speed difference between the first rotating electrical machine MG1 and the counter drive gear 52 decreases.
- the rotational speed of each member of the first rotating electrical machine MG1, the second rotating electrical machine MG2, the internal combustion engine E, and the output member O on the speed diagram is the rotational element of the differential gear device DG ( After the conversion (shift) of the rotation speed by a transmission member (excluding the engagement element that selectively transmits rotation and torque such as the friction engagement device CL) provided in the power transmission path to the rotation element connecting member) Represents the rotational speed.
- the rotational speeds of the first rotating electrical machine MG1, the second rotating electrical machine MG2, the internal combustion engine E, and the output member O are the above unless otherwise specified.
- the rotational speed after the conversion of the rotational speed by the transmission member is meant.
- the first rotating electrical machine MG1 outputs a negative torque so as to gradually increase the rotational speed of the ring gear r, thereby reducing the rotational speed of the first rotating electrical machine MG1 (see “(1)” in FIG. 16).
- Process indicated by arrow ") Note that FIG. 16 is an example in which the synchronous rotational speed Ns is not within the starting torque output possible range R and the high-speed time difference rotation reduction control is executed, so the target rotation of the first rotating electrical machine MG1 in the differential rotation reduction control is shown.
- the speed is set to the lower limit value Rmin of the starting torque output possible range R.
- the broken line in FIG. 16 indicates a state in which the rotation speed of the first rotating electrical machine MG1 has reached the lower limit value Rmin of the start torque output possible range R by executing the high-speed time difference rotation reduction control.
- the asynchronous engagement control is executed in a state where the rotation speed of the first rotating electrical machine MG1 has reached the lower limit value Rmin of the starting torque output possible range R that is the target value ("arrow (2)" in FIG. 16).
- the rotational speed of the internal combustion engine E increases as the ring gear r is raised to the rotational speed of the output member O.
- the start control by the start control unit 77 is executed on the condition that the friction engagement device CL is in the direct engagement state, and the rotation speed of the internal combustion engine E reaches the ignition rotation speed Nf. .
- the second differential rotational reduction control is performed.
- the target rotational speed of the single rotating electrical machine is set to the synchronous rotational speed Ns.
- the synchronous engagement control is executed in a state where the rotation speed of the first rotating electrical machine MG1 has reached the synchronous rotation speed Ns that is the target value by executing the low speed time difference rotation reduction control.
- the vehicle drive device 1 according to the present embodiment is basically configured in the same manner as in the first embodiment except for the arrangement position of the friction engagement device CL.
- the structure of the vehicle drive device 1 which concerns on this embodiment is demonstrated centering on difference with said 1st embodiment. Note that points not particularly described are the same as those in the first embodiment.
- the friction engagement device CL is not between the input member I and the rotation element (second rotation element e2) of the differential gear device DG.
- the power transmission path between the first rotating electrical machine MG1 and the rotating element (first rotating element e1) of the differential gear device DG is provided.
- the friction engagement device CL is provided so as to be able to release the drive connection between the first rotating electrical machine MG1 and the rotating element (first rotating element e1) of the differential gear device DG.
- the first engagement member CLa which is one engagement member of the friction engagement device CL, is drive-coupled so that the first rotor shaft 7 of the first rotating electrical machine MG1 rotates integrally, and the friction engagement.
- the first rotating element connecting member 41 is drivingly connected to the second engaging member CLb, which is the other engaging member of the combined device CL, so as to rotate integrally.
- the release target rotation element en is the sun gear s, as shown in FIG. 17, the release target rotation element sensor Se4 is arranged so as to detect the rotational speed of the sun gear s.
- the input member I is drivingly connected so as to rotate integrally with the second rotating element connecting member 42, and the rotational speed of the carrier ca is always equal to the rotational speed of the internal combustion engine E.
- FIG. 18 is a velocity diagram for explaining the operations of the high-speed time difference rotation reduction control and the asynchronous engagement control according to the present embodiment.
- the friction engagement device CL in a state where the vehicle is traveling in the electric travel mode, the friction engagement device CL is in a released state, and the sun gear s is separated from the first rotating electrical machine MG1 and can freely rotate. It becomes. Since the internal combustion engine E is in a stopped state, its rotational speed is zero, and the sun gear s rotates at a rotational speed determined based on the rotational speed of the ring gear r (determined according to the vehicle speed). At this time, the first rotating electrical machine MG1 is controlled so that the rotation speed and the output torque become zero.
- differential rotation reduction control is executed in a direction in which the rotational speed difference between the sun gear s and the first rotating electrical machine MG1 decreases.
- the rotational speed of the first rotating electrical machine MG1 is changed.
- the first rotating electrical machine MG1 outputs a torque in the negative direction to reduce the rotational speed of the first rotating electrical machine MG1 (processing indicated by “arrow (1)” in FIG. 18).
- FIG. 18 is an example in which the synchronous rotational speed Ns is not within the startable torque output possible range R and the high-speed time difference rotation reduction control is executed, and thus the target rotation of the first rotating electrical machine MG1 in the differential rotation reduction control.
- the speed is set to the lower limit value Rmin of the starting torque output possible range R.
- 18 indicates a state in which the rotation speed of the first rotating electrical machine MG1 has reached the lower limit value Rmin of the startable torque output possible range R due to the execution of the high-speed time difference rotation reduction control. Yes.
- the asynchronous engagement control is executed in a state where the rotation speed of the first rotating electrical machine MG1 has reached the lower limit value Rmin of the starting torque output possible range R that is the target value ("arrow (2)" in FIG. 18).
- the rotational speed of the internal combustion engine E increases as the sun gear s is raised to the rotational speed of the first rotating electrical machine MG1.
- the start control by the start control unit 77 is executed on the condition that the friction engagement device CL is in the direct engagement state, and the rotation speed of the internal combustion engine E reaches the ignition rotation speed Nf. .
- the second differential rotational reduction control is performed.
- the target rotational speed of the single rotating electrical machine is set to the synchronous rotational speed Ns.
- the synchronous engagement control is executed in a state where the rotation speed of the first rotating electrical machine MG1 has reached the synchronous rotation speed Ns that is the target value by executing the low speed time difference rotation reduction control.
- the first rotation element e1 performs the first rotation without passing through the other rotation elements of the differential gear device DG.
- the configuration in which the electric machine MG1 is drivingly connected, the input member I is drivingly connected to the second rotating element e2, and the second rotating electric machine MG2 and the output member O are drivingly connected to the third rotating element e3 has been described as an example.
- the embodiment of the present invention is not limited to this, and as shown in FIGS. 19 to 21, the input member I is drivingly connected to the first rotating element e1 and the second rotating element e2 is rotated to the second rotation.
- the electric machine MG2 and the output member O may be drivingly connected, and the first rotating electric machine MG1 may be drivingly connected to the third rotating element e3.
- the basic in which the vehicle travels by the output torques of both the internal combustion engine E and the rotating electrical machines MG1, MG2, the basic is in addition, the torque converter mode in which the torque amplified with respect to the output torque of the internal combustion engine E is transmitted to the output member O is set.
- FIG. 19 shows a fourth embodiment of the vehicle drive device according to the present invention.
- the friction engagement device CL includes an input member I. And a power transmission path between the rotary gear of the differential gear device DG (in this example, the first rotary element e1).
- FIG. 20 shows a fifth embodiment of the vehicle drive device according to the present invention.
- the friction engagement device CL is different from the output member O in FIG. It is provided in the power transmission path between the gear unit DG and the rotating element (in this example, the second rotating element e2).
- FIG. 21 shows a sixth embodiment of the vehicle drive device according to the present invention.
- the friction engagement device CL includes the first rotating electrical machine MG1. It is provided in the power transmission path between the rotary element of the differential gear device DG (in this example, the third rotary element e3).
- FIGS. 19 to 21 are velocity diagrams for explaining the operations of the high-speed time difference rotation reduction control and the asynchronous engagement control executed in each embodiment. Since the notation method of each speed diagram is the same as that of each embodiment described above, detailed description is omitted here, but each speed diagram is a high-speed time difference rotation reduction control (“(1) arrow” in each drawing). The state of each member when the asynchronous engagement control (the process indicated by “(2) arrow” in each drawing) is executed after executing the process shown in FIG.
- the first rotating electrical machine MG1 in the differential rotation reduction control, the first rotating electrical machine MG1 outputs a torque in the positive direction to increase the rotational speed. Therefore, the target rotation speed of the first rotating electrical machine MG1 in the high-speed time difference rotation reduction control is set to the upper limit value Rmax of the starting torque output possible range R.
- the first rotating electrical machine MG1 In the asynchronous engagement control, the first rotating electrical machine MG1 outputs a negative torque and maintains its rotational speed.
- the start control the first rotating electrical machine MG1 outputs a negative torque and rotates. Reduce. Accordingly, in the configurations shown in FIGS. 19 to 21, the starting torque output possible range R is set based on the torque in the negative direction.
- the configuration in which the differential gear device DG has three rotating elements has been described as an example.
- the embodiment of the present invention is not limited to this, and the differential gear device DG may include four or more rotating elements.
- the differential gear device DG becomes a first rotation element e1, a second rotation element e2, a third rotation element e3, and a fourth rotation element e4 in the order of the rotation speed. It can be set as the structure which has four rotation elements.
- the input member I, the output member O, the first rotating electrical machine MG1, and the second rotating electrical machine MG2 are respectively connected to different rotating elements of the differential gear device DG. Drive-coupled without any other rotating element. That is, in the example shown in FIGS. 22 and 23, unlike the above-described embodiments, the second rotating electrical machine MG2 is used as a rotating element other than the rotating element of the differential gear device DG to which the output member O is drivingly connected. The differential gear device DG is drivingly connected without any other rotating element.
- the input member I is drivingly connected to the first rotating element e1 and the output member O is connected to the second rotating element e2 without passing through another rotating element of the differential gear device DG.
- the second rotating electrical machine MG2 is drivingly connected to the third rotating element e3
- the first rotating electrical machine MG1 is drivingly connected to the fourth rotating element e4.
- the first rotating electrical machine MG1 is drivingly connected to the first rotating element e1 and the input member I is connected to the second rotating element e2 without any other rotating element of the differential gear device DG.
- the output member O is drivingly connected to the third rotating element e3, and the second rotating electrical machine MG2 is drivingly connected to the fourth rotating element e4.
- the friction engagement device CL is provided between the input member I and the rotating element of the differential gear device DG to which the input member I is drive-connected without passing through another rotating element. Is provided in the power transmission path.
- the target rotation speed of the first rotating electrical machine MG1 is set to one of the upper limit value Rmax and the lower limit value Rmin of the start torque output possible range R. Described as an example. However, the embodiment of the present invention is not limited to this, and in the high-speed time difference rotation reduction control, the target rotation speed of the first rotating electrical machine MG1 is set within the start torque output possible range R from the upper limit value Rmax or the lower limit value Rmin. It is also possible to set the rotational speed at a predetermined rotational speed inside.
- the rotational speed of the first rotating electrical machine MG1 changes to the upper limit value Rmax or the lower limit value Rmin of the starting torque output possible range R. Without being made, it can be set as the structure which performs asynchronous engagement control.
- the transmission torque capacity for maintaining the friction engagement device CL in the slip engagement state is between the two engagement members of the friction engagement device CL.
- the configuration in which the value at the time when a change in the rotational speed difference is observed is described as an example.
- the embodiment of the present invention is not limited to this, and the asynchronous engagement control unit 75 performs frictional engagement based on the target change rate of the rotational speed of the internal combustion engine E and the inertia moment of the internal combustion engine E. It is also a preferred embodiment of the present invention that the transmission torque capacity (target transmission torque capacity) of the friction engagement device CL for setting the combined device CL in the slip engagement state is set.
- the target transmission torque capacity for bringing the friction engagement device CL into the slip engagement state is set to a value corresponding to the product of the target change rate of the rotational speed of the internal combustion engine E and the inertia moment of the internal combustion engine E. Can do.
- the transmission torque capacity of the friction engagement device CL is the above-mentioned at a predetermined change rate (for example, a constant change rate).
- the hydraulic pressure command value for the frictional engagement device CL can be controlled so as to increase to the target transmission torque capacity set as described above.
- the configuration in which the starting torque output possible range R is variably set according to the state of the power storage device B has been described as an example.
- the embodiment of the present invention is not limited to this, and the starting torque output possible range R may be a fixed range regardless of the state of the power storage device B.
- the differential gear device DG is configured by a single pinion type planetary gear mechanism PG
- the embodiment of the present invention is not limited to this, and the differential gear device DG may be configured by a double pinion type planetary gear mechanism or a Ravigneaux type planetary gear mechanism.
- the configuration of the differential gear device DG is arbitrary. This mechanism can be adopted.
- the differential gear device DG having four or more rotating elements can use a configuration in which some rotating elements of two or more planetary gear mechanisms are connected to each other.
- the configuration in which the friction engagement device CL is a friction engagement device that operates by hydraulic pressure has been described as an example.
- the embodiment of the present invention is not limited to this, and an electromagnetic friction engagement device in which the engagement pressure is controlled according to the electromagnetic force can be adopted as the friction engagement device CL. is there.
- the present invention includes an input member drivingly connected to an internal combustion engine, an output member drivingly connected to a wheel, a first rotating electrical machine, a second rotating electrical machine, and a differential gear device having at least three rotating elements, It can utilize suitably for the drive device for vehicles provided with the control apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
第一回転電機の回転速度を、摩擦係合装置の2つの係合部材の間の回転速度差が小さくなる方向に変化させる差回転低減制御を実行する差回転低減制御部と、差回転低減制御の実行を条件に、非同期状態で摩擦係合装置を係合させる非同期係合制御を実行して直結係合状態とする係合制御部と、直結係合状態となったことを条件に、内燃機関を始動可能な回転速度Nfとする第一回転電機の回転速度Niを目標値として、第一回転電機の回転速度を変化させる始動制御部と、を備え、差回転低減制御部は、内燃機関の始動に必要とされる始動トルクを第一回転電機が出力可能な回転速度の範囲の上限値及び下限値Rminを限界として、第一回転電機の回転速度を変化させる。
Description
本発明は、内燃機関に駆動連結される入力部材と、車輪に駆動連結される出力部材と、第一回転電機と、第二回転電機と、少なくとも3つの回転要素を有する差動歯車装置と、制御装置と、を備えた車両用駆動装置に関する。
上記のような車両用駆動装置の従来技術として、例えば下記の特許文献1に記載された技術がある。特許文献1には、差動歯車装置が3つの回転要素を有する遊星歯車機構により構成され、サンギヤに第一回転電機が駆動連結され、キャリヤに入力部材が駆動連結され、リングギヤに第二回転電機及び出力部材が駆動連結された構成が記載されている。そして、この車両用駆動装置は、キャリヤと入力部材(内燃機関)との駆動連結を解除可能な摩擦係合装置を備え、内燃機関を停止した状態で第二回転電機のトルクにより車両を走行させる電動走行モードの実行中に、内燃機関を切り離すことが可能となっている。これにより、電動走行モードの実行中に、サンギヤ(第一回転電機)やキャリヤの回転速度を車速とは独立に設定することができ、例えば、特許文献1に記載のように、第一回転電機の回転速度を積極的に制御することでキャリヤを回転させ、当該キャリヤの回転を利用して補機を駆動することが可能となる。
特許文献1の構成では、電動走行モードから内燃機関のトルクを利用して走行するスプリット走行モードへの切替時には、第一回転電機のトルクにより、内燃機関の回転速度を点火が可能な回転速度まで上昇させる。具体的には、特許文献1の段落0073~0076に記載のように、第一回転電機の回転速度を低下させることでキャリヤの回転速度を低下させ、キャリヤの回転速度が内燃機関の回転速度である零と等しくなった状態(当該文献の図9において太破線で示される状態)で、摩擦係合装置を解放状態から直結係合状態へと切り替える。その後、第一回転電機のトルクにより内燃機関の回転速度を上昇させ、内燃機関の回転速度が点火可能な回転速度以上となった状態(上記図9において太実線で示される状態)で、内燃機関を点火により始動させる。これにより、電動走行モードからスプリット走行モードへと移行させることができる。
ところで、キャリヤの回転速度と内燃機関の回転速度とが等しくなる状態での第一回転電機の回転速度は、上記図9より明らかなように、車速に応じて定まる。すなわち、車速が高いほど、当該状態での第一回転電機の回転速度の絶対値も大きくなる。そして、回転電機が発生可能な最大トルクの大きさは、回転速度の絶対値が大きくなるに従って小さくなる傾向がある。そのため、特許文献1の構成では、車速の大きさによっては第一回転電機のトルクが内燃機関の回転速度を上昇させるために必要なトルクに対して不足し、内燃機関の始動ができず、或いは内燃機関の始動に際して振動が生じるおそれがある。
また、特許文献1の段落0067~0068には、電動走行モードからスプリット走行モードへの切替時に、第一回転電機の回転速度を低下させず、キャリヤと内燃機関との間の回転速度差が比較的大きい状態で、摩擦係合装置を滑らせながら係合させて直結係合状態へと切り替える構成が記載されている。しかしながら、上記図9より明らかなように、キャリヤの回転速度と内燃機関の回転速度(零)との差は、車速が高いほど大きくなるため、車速の大きさによっては回転速度の差が過大になり、摩擦係合装置の温度上昇や係合に要する時間が過大になるおそれがある。
そこで、車速が高い状態においても内燃機関を適切に始動することが可能な車両用駆動装置の実現が望まれる。
本発明に係る内燃機関に駆動連結される入力部材と、車輪に駆動連結される出力部材と、第一回転電機と、第二回転電機と、少なくとも3つの回転要素を有する差動歯車装置と、制御装置と、を備えた車両用駆動装置の特徴構成は、前記入力部材、前記出力部材、及び前記第一回転電機が、それぞれ前記差動歯車装置の異なる回転要素に、当該差動歯車装置の他の回転要素を介することなく駆動連結され、前記第二回転電機が、前記第一回転電機が駆動連結された回転要素以外の前記差動歯車装置の回転要素に、当該差動歯車装置の他の回転要素を介することなく駆動連結され、前記入力部材、前記出力部材、及び前記第一回転電機のいずれかと、前記差動歯車装置の回転要素との駆動連結を解除可能な摩擦係合装置を備え、前記制御装置は、前記摩擦係合装置が解放状態とされ、前記内燃機関が停止し、更に前記出力部材が回転している状態から前記内燃機関を始動する際に、前記第一回転電機の回転速度を、前記摩擦係合装置における互いに係合される2つの係合部材の間の回転速度差が小さくなる方向に変化させる差回転低減制御を実行する差回転低減制御部と、前記差回転低減制御の実行を条件に、前記2つの係合部材の間の回転速度差が差回転閾値以上である非同期状態で前記摩擦係合装置を係合させる非同期係合制御を実行し、前記摩擦係合装置を前記2つの係合部材の間に差回転がない係合状態である直結係合状態とする係合制御部と、前記直結係合状態となったことを条件に、前記内燃機関を始動可能な回転速度とする前記第一回転電機の回転速度を目標値として、前記第一回転電機の回転速度を変化させる始動制御部と、を備え、前記差回転低減制御部は、前記内燃機関の始動に必要とされる始動トルクを前記第一回転電機が出力可能な回転速度の範囲である始動トルク出力可能範囲の上限値及び下限値を限界として、前記第一回転電機の回転速度を変化させる点にある。
本願において、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合要素、例えば摩擦係合要素や噛み合い式係合要素等が含まれていてもよい。なお、「駆動力」は「トルク」と同義で用いている。
また、本願では、サンギヤ、キャリヤ、リングギヤを備えた遊星歯車機構等のような3つの回転要素を備えた差動歯車機構を用い、当該差動歯車機構単独で、若しくは複数の差動歯車機構を組み合わせて得られる装置を差動歯車装置と呼ぶ。
また、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
また、本願では、サンギヤ、キャリヤ、リングギヤを備えた遊星歯車機構等のような3つの回転要素を備えた差動歯車機構を用い、当該差動歯車機構単独で、若しくは複数の差動歯車機構を組み合わせて得られる装置を差動歯車装置と呼ぶ。
また、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
上記の特徴構成によれば、内燃機関の始動に際し、差回転低減制御の実行後に非同期係合制御が実行されるため、差回転低減制御を実行せずに非同期係合制御を実行する場合に比べて、摩擦係合装置の2つの係合部材の間の回転速度差が小さくなった状態で非同期係合制御を実行することができる。よって、摩擦係合装置の温度上昇や係合に要する時間が過大になり、寿命が短くなる等の問題の発生を抑制しつつ、摩擦係合装置を直結係合状態へと切り替えることができる。
この際、差回転低減制御では、始動トルク出力可能範囲の上限値及び下限値を限界として第一回転電機の回転速度が制御されるため、内燃機関を適切に始動することが可能な範囲内で、上記2つの係合部材の間の回転速度差を小さくすることが可能となる。すなわち、車速が高い場合であっても、内燃機関の確実な始動を保証しつつ、摩擦係合装置の係合の際の上記回転速度差が大きいことにより生じる問題を適切に回避することが可能となっている。
また、走行中の出力部材の回転速度(すなわち車速)を所定値(例えば、上記2つの係合部材が同期する状態での第一回転電機が発生可能な最大トルクが、始動トルクと一致する回転速度)以下に制限する必要がないため、内燃機関が停止した状態で許容される車速の上限の向上を図ることができ、結果、車両のエネルギ効率の向上を図ることができる。
この際、差回転低減制御では、始動トルク出力可能範囲の上限値及び下限値を限界として第一回転電機の回転速度が制御されるため、内燃機関を適切に始動することが可能な範囲内で、上記2つの係合部材の間の回転速度差を小さくすることが可能となる。すなわち、車速が高い場合であっても、内燃機関の確実な始動を保証しつつ、摩擦係合装置の係合の際の上記回転速度差が大きいことにより生じる問題を適切に回避することが可能となっている。
また、走行中の出力部材の回転速度(すなわち車速)を所定値(例えば、上記2つの係合部材が同期する状態での第一回転電機が発生可能な最大トルクが、始動トルクと一致する回転速度)以下に制限する必要がないため、内燃機関が停止した状態で許容される車速の上限の向上を図ることができ、結果、車両のエネルギ効率の向上を図ることができる。
ここで、前記2つの係合部材の間の回転速度差が前記差回転閾値未満である同期状態とするための前記第一回転電機の回転速度が前記上限値又は前記下限値を超える場合には、前記差回転低減制御部は、前記上限値及び前記下限値の一方を目標値として前記第一回転電機の回転速度を変化させる構成とすると好適である。
この構成によれば、内燃機関を適切に始動することが可能な範囲内で、上記2つの係合部材の間の回転速度差を最大限小さくすることができる。よって、内燃機関の確実な始動が保証される状態で、摩擦係合装置の係合の際の上記回転速度差が大きいことにより生じる問題をより確実に回避することができる。
また、前記2つの係合部材の間の回転速度差が前記差回転閾値未満である同期状態とするための前記第一回転電機の回転速度が前記始動トルク出力可能範囲内である場合には、前記差回転低減制御部が、前記同期状態とするように前記第一回転電機の回転速度を変化させ、前記係合制御部が、前記非同期係合制御に代えて、前記同期状態で前記摩擦係合装置を係合させる同期係合制御を実行して、前記摩擦係合装置を前記直結係合状態とする構成とすると好適である。
この構成によれば、内燃機関を適切に始動することが可能な範囲内で上記2つの係合部材を同期状態とすることができる場合には、非同期係合制御に代えて同期係合制御が実行される。よって、非同期係合制御が必要以上に多く実行されることを抑制して、摩擦係合装置の耐久性を向上させることができる。
また、前記係合制御部は、前記非同期係合制御として、前記2つの係合部材が回転速度差を有する状態で係合するスリップ係合状態で当該2つの係合部材の間の回転速度差を減少させ、当該2つの係合部材の間の回転速度差が前記差回転閾値未満である同期状態となったことを条件に、前記直結係合状態とする制御を実行する構成とすると好適である。
この構成によれば、非同期係合制御の実行時に係合ショックが発生するのを抑制することができる。
上記のように、前記係合制御部が、前記非同期係合制御として、前記スリップ係合状態で前記2つの係合部材の間の回転速度差を減少させ、前記同期状態となったことを条件に前記直結係合状態とする制御を実行する構成において、前記係合制御部は、前記内燃機関の回転速度の目標変化率と、前記内燃機関の慣性モーメントとに基づいて、前記摩擦係合装置を前記スリップ係合状態とするための当該摩擦係合装置の伝達トルク容量を設定する構成とすると好適である。
この構成によれば、非同期係合制御の実行時に、内燃機関の回転速度を目標変化率に従い速やかに上昇させることができる。よって、内燃機関と車両用駆動装置との間にダンパが設けられている場合に、当該ダンパの共振領域を素早く抜けることができ、当該ダンパの共振によって振動が発生するのを抑制することができる。
また、上記各構成の車両用駆動装置において、前記第一回転電機は、蓄電装置から供給された電力によりトルクを発生するとともに、前記第一回転電機の回転速度及び前記蓄電装置の状態に応じて発生可能な最大トルクが異なるように構成され、前記始動トルク出力可能範囲が、前記蓄電装置の状態に応じて可変に設定される構成とすると好適である。
この構成によれば、蓄電装置の状態に応じて摩擦係合装置の2つの係合部材の間の回転速度差を最小化することができ、摩擦係合装置の耐久性を向上させて長寿命化を図ることができる。
また、前記第二回転電機が、前記出力部材が駆動連結された前記差動歯車装置の回転要素に、当該差動歯車装置の他の回転要素を介することなく駆動連結されている構成とすると好適である。
この構成によれば、摩擦係合装置により差動歯車装置の回転要素との駆動連結が解除可能とされる部材を、入力部材、出力部材、及び第一回転電機のいずれとしても、内燃機関を停止した状態で第二回転電機のトルクを出力部材に伝達して車輪を駆動する電動走行モードを実現することが可能となる。よって、摩擦係合装置の配置に関して設計の自由度が高まり、本発明に係る車両用駆動装置を広範囲に適用することが可能となる。
例えば、前記摩擦係合装置を、前記入力部材と前記差動歯車装置の回転要素との駆動連結を解除可能に備える構成としては、前記差動歯車装置は、回転速度の順に第一回転要素、第二回転要素、及び第三回転要素となる3つの回転要素を有し、前記差動歯車装置の他の回転要素を介することなく、前記第一回転要素に前記第一回転電機が駆動連結され、前記第二回転要素に前記入力部材が駆動連結され、前記第三回転要素に前記第二回転電機及び前記出力部材が駆動連結され、前記摩擦係合装置は、前記入力部材と前記第二回転要素との間の動力伝達経路に設けられている構成とすると好適である。
なお、「回転速度の順」は、高速側から低速側に向かう順、又は低速側から高速側に向かう順のいずれかであり、各差動歯車機構の回転状態によりいずれともなり得るが、いずれの場合にも回転要素の順は変わらない。
一方、前記第二回転電機が、前記出力部材が駆動連結された前記差動歯車装置の回転要素以外の回転要素に、当該差動歯車装置の他の回転要素を介することなく駆動連結されている構成としては、前記差動歯車装置は、回転速度の順に第一回転要素、第二回転要素、第三回転要素、及び第四回転要素となる4つの回転要素を有し、前記入力部材、前記出力部材、前記第一回転電機、及び前記第二回転電機が、それぞれ前記差動歯車装置の異なる回転要素に、当該差動歯車装置の他の回転要素を介することなく駆動連結され、前記摩擦係合装置が、前記入力部材と、当該入力部材が他の回転要素を介することなく駆動連結された前記差動歯車装置の回転要素との間の動力伝達経路に設けられている構成とすると好適である。
この構成によっても、内燃機関を停止した状態で第二回転電機のトルクを出力部材に伝達して車輪を駆動する電動走行モードを実現することができる。
1.第一の実施形態
本発明に係る車両用駆動装置の第一の実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る車両用駆動装置1は、車輪の駆動力源として内燃機関E及び回転電機MG1,MG2の双方を備えた車両(ハイブリッド車両)を駆動するための駆動装置(ハイブリッド車両用駆動装置)とされている。そして、本実施形態に係る車両用駆動装置1は制御装置70(図2参照)を備え、この制御装置70は、図2に示すシステム構成に基づき各駆動力源及び摩擦係合装置CLの動作を制御する。なお、図2において、破線は電力の伝達経路を示し、実線矢印は各種情報の伝達経路を示している。
本発明に係る車両用駆動装置の第一の実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る車両用駆動装置1は、車輪の駆動力源として内燃機関E及び回転電機MG1,MG2の双方を備えた車両(ハイブリッド車両)を駆動するための駆動装置(ハイブリッド車両用駆動装置)とされている。そして、本実施形態に係る車両用駆動装置1は制御装置70(図2参照)を備え、この制御装置70は、図2に示すシステム構成に基づき各駆動力源及び摩擦係合装置CLの動作を制御する。なお、図2において、破線は電力の伝達経路を示し、実線矢印は各種情報の伝達経路を示している。
図1に示すように、本実施形態では、車両用駆動装置1が備える差動歯車装置DGは、サンギヤs、キャリヤca、及びリングギヤrを回転要素として有する遊星歯車機構PGにより構成されている。そして、この遊星歯車機構PGの他の回転要素を介することなく、サンギヤsに第一回転電機MG1が駆動連結され、キャリヤcaに入力部材Iが駆動連結され、リングギヤrに第二回転電機MG2及び出力部材Oが駆動連結されている。なお、入力部材Iは内燃機関Eに駆動連結され、出力部材Oは車輪Wに駆動連結されている。
そして、この車両用駆動装置1は、入力部材Iとキャリヤcaとの駆動連結を解除可能な摩擦係合装置CLを備えている。ここで、「駆動連結を解除」とは、駆動連結される2つの回転要素の間の連結の状態を、当該2つの回転要素の間で駆動力の伝達が行われない状態(非連結状態)にすることを意味する。これにより、内燃機関Eを停止した状態で第二回転電機MG2の出力トルクを出力部材Oに伝達して車輪Wを駆動する電動走行モード(EV走行モード)を実行する際に、内燃機関Eを切り離すことができ、第一回転電機MG1の空転(引き摺り)を回避することによるエネルギ効率の向上や、キャリヤcaの回転を利用した補機(例えばオイルポンプ等)の駆動等が可能となっている。以下、本実施形態に係る車両用駆動装置1の構成について詳細に説明する。
1-1.車両用駆動装置の機械的構成
まず、本実施形態に係る車両用駆動装置1の機械的構成について説明する。車両用駆動装置1は、内燃機関Eに駆動連結される入力部材Iと、車輪Wに駆動連結される出力部材Oと、第一回転電機MG1と、第二回転電機MG2と、少なくとも3つの回転要素を有する差動歯車装置DGと、制御装置70と、を備えている。そして、本実施形態に係る車両用駆動装置1は、内燃機関Eの出力トルクを、第一回転電機MG1側と、車輪W及び第二回転電機MG2側とに分配する動力分配用の差動歯車装置DGを備えた、いわゆる2モータスプリット方式のハイブリッド車両用の駆動装置として構成されている。
まず、本実施形態に係る車両用駆動装置1の機械的構成について説明する。車両用駆動装置1は、内燃機関Eに駆動連結される入力部材Iと、車輪Wに駆動連結される出力部材Oと、第一回転電機MG1と、第二回転電機MG2と、少なくとも3つの回転要素を有する差動歯車装置DGと、制御装置70と、を備えている。そして、本実施形態に係る車両用駆動装置1は、内燃機関Eの出力トルクを、第一回転電機MG1側と、車輪W及び第二回転電機MG2側とに分配する動力分配用の差動歯車装置DGを備えた、いわゆる2モータスプリット方式のハイブリッド車両用の駆動装置として構成されている。
図1に示すように、本実施形態では、差動歯車装置DGは、シングルピニオン型の遊星歯車機構PGにより構成されている。すなわち、差動歯車装置DGは本例では3つの回転要素を有している。そして、これら3つの回転要素を回転速度の順(すなわち、速度線図(共線図)における配置順)に、第一回転要素e1、第二回転要素e2、及び第三回転要素e3とすると、本実施形態では、遊星歯車機構PGのサンギヤsが第一回転要素e1を構成し、遊星歯車機構PGのキャリヤcaが第二回転要素e2を構成し、遊星歯車機構PGのリングギヤrが第三回転要素e3を構成している。
そして、以下に述べるように、入力部材I、出力部材O、及び第一回転電機MG1が、それぞれ差動歯車装置DGの異なる回転要素に、当該差動歯車装置DGの他の回転要素を介することなく駆動連結されている。また、第二回転電機MG2が、第一回転電機MG1が駆動連結された回転要素以外の差動歯車装置DGの回転要素に、当該差動歯車装置DGの他の回転要素を介することなく駆動連結されている。そして、車両用駆動装置1は、入力部材I、出力部材O、及び第一回転電機MG1のいずれかと、差動歯車装置DGの回転要素との駆動連結を解除可能な摩擦係合装置CLを備えている。
なお、差動歯車装置DGの各回転要素には、当該回転要素と一体回転する回転要素連結部材が連結されている。具体的には、図1に示すように、第一回転要素e1としてのサンギヤsには、第一回転要素連結部材41が連結され、第二回転要素e2としてのキャリヤcaには、第二回転要素連結部材42が連結され、第三回転要素e3としてのリングギヤrには、第三回転要素連結部材43が連結されている。そして、入力部材I、出力部材O、第一回転電機MG1、及び第二回転電機MG2のそれぞれは、これらの回転要素連結部材の何れかに駆動連結されることで、差動歯車装置DGの何れかの回転要素に駆動連結されている。
入力部材Iは、内燃機関Eに駆動連結される。本実施形態では、入力部材Iは軸部材(入力軸)とされている。ここで、内燃機関Eは、燃料の燃焼により動力を出力する原動機であり、例えば、ガソリンエンジン等の火花点火機関やディーゼルエンジン等の圧縮着火機関等を用いることができる。入力部材Iは、内燃機関Eのクランクシャフト等の内燃機関出力軸に駆動連結されている。本実施形態では、入力部材Iは、内燃機関出力軸と一体回転するように駆動連結されており、入力部材Iの回転速度は内燃機関Eの回転速度と等しくなる。なお、内燃機関Eが、ダンパやフライホイール等の他の装置を介して入力部材Iに駆動連結された構成としても好適である。
出力部材Oは、車輪Wに駆動連結される。本実施形態では、出力部材Oは歯車部材とされており、具体的には、出力用差動歯車装置Dに備えられる差動入力ギヤとされている。出力用差動歯車装置Dは、本例では、互いに噛み合う複数の傘歯車を用いた差動歯車機構により構成されており、出力部材Oに伝達されるトルクを駆動輪となる左右の車輪Wに分配する。
第一回転電機MG1は、図示しないケースに固定された第一ステータSt1と、この第一ステータSt1の径方向内側に回転自在に支持された第一ロータRo1と、を有している。第二回転電機MG2は、図示しないケースに固定された第二ステータSt2と、この第二ステータSt2の径方向内側に回転自在に支持された第二ロータRo2と、を有している。第二ロータRo2は、当該第二ロータRo2が固定された第二ロータ軸を介して、第二回転電機出力ギヤ55と一体回転するように駆動連結されている。
図2に示すように、第一回転電機MG1は、第一インバータ4を介して蓄電装置Bに電気的に接続されており、第二回転電機MG2は、第二インバータ5を介して蓄電装置Bに電気的に接続されている。蓄電装置Bは、バッテリやキャパシタ等の公知の各種の蓄電装置を用いることができる。そして、本実施形態では、第一回転電機MG1及び第二回転電機MG2のそれぞれは、蓄電装置Bから電力の供給を受けて動力(トルク)を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生させ、発生した電力を蓄電装置Bに供給するジェネレータ(発電機)としての機能を果たすことが可能とされている。
摩擦係合装置CLは、2つの係合部材を備え、一方の係合部材である第一係合部材CLaに駆動連結された部材と、他方の係合部材である第二係合部材CLbに駆動連結された部材とを、選択的に駆動連結する装置である。本実施形態では、摩擦係合装置CLは、油圧により動作する湿式多板クラッチとして構成されている。そして、本実施形態では、摩擦係合装置CLは、入力部材Iと差動歯車装置DGの回転要素(本例では第二回転要素e2)との駆動連結を解除可能に備えられている。すなわち、本実施形態では、摩擦係合装置CLが、入力部材Iと差動歯車装置DGの回転要素(本例では第二回転要素e2)との間の動力伝達経路に設けられている。そして、第一係合部材CLaが、入力部材Iと一体回転するように駆動連結された入力側係合部材とされ、第二係合部材CLbが、第二回転要素連結部材42と一体回転するように駆動連結された出力側係合部材とされている。
そして、図1に示すように、本実施形態では、遊星歯車機構PG(差動歯車装置DG)の他の回転要素を介することなく、サンギヤs(第一回転要素e1)に第一回転電機MG1が駆動連結され、キャリヤca(第二回転要素e2)に入力部材Iが駆動連結され、リングギヤr(第三回転要素e3)に第二回転電機MG2及び出力部材Oが駆動連結されている。すなわち、本実施形態では、第二回転電機MG2は、出力部材Oが駆動連結された差動歯車装置DGの回転要素であるリングギヤr(第三回転要素e3)に、当該差動歯車装置DGの他の回転要素を介することなく駆動連結されている。
具体的には、第一ロータRo1が固定された第一ロータ軸が第一回転要素連結部材41と一体回転するように駆動連結されることで、第一回転電機MG1がサンギヤsに駆動連結されている。すなわち、本実施形態では、サンギヤs(第一回転要素e1)の回転速度は、第一ロータRo1(第一回転電機MG1)の回転速度に常に等しくなる。
入力部材Iは、摩擦係合装置CLの第一係合部材CLaに対して、一体回転するように駆動連結されることで、摩擦係合装置CLを介して選択的にキャリヤcaに駆動連結される。ここで、「選択的に駆動連結」とは、駆動連結される2つの回転要素の間で駆動力の伝達が行われる状態が、選択的に実現されることを意味する。すなわち、本実施形態では、摩擦係合装置CLが直結係合状態にある場合には、キャリヤca(第二回転要素e2)の回転速度は、入力部材I(内燃機関E)の回転速度に等しくなる。また、本実施形態では、摩擦係合装置CLの2つの係合部材の間の回転速度差は、入力部材I(内燃機関E)の回転速度とキャリヤca(第二回転要素連結部材42)の回転速度との差となる。
第二回転電機MG2及び出力部材Oは、カウンタギヤ機構Cを介してリングギヤrに駆動連結されている。図1に示すように、カウンタギヤ機構Cは、第一カウンタギヤ53と、第二カウンタギヤ54と、これらが一体回転するように連結するカウンタ軸と、を有して構成されている。第三回転要素連結部材43は、第一カウンタギヤ53と噛み合うカウンタドライブギヤ52を有している。そして、第二回転電機出力ギヤ55がカウンタドライブギヤ52とは周方向(第一カウンタギヤ53の周方向)の異なる位置で第一カウンタギヤ53に噛み合うように配置されることで、第二回転電機MG2がリングギヤrに駆動連結されている。また、出力部材Oは、第二カウンタギヤ54に噛み合うように配置されることで、リングギヤrに駆動連結されている。すなわち、本実施形態では、リングギヤrと第二回転電機MG2と出力部材Oとの間の回転速度の関係は、互いに比例関係にあり、その比例係数(すなわち、回転速度比)は、間に介在する歯車の歯数に応じた値となる。
上記のような構成を備えることで、この車両用駆動装置1は、内燃機関Eと回転電機MG1,MG2との双方の出力トルクにより走行するハイブリッド走行モード(スプリット走行モード)と、回転電機MG1,MG2(本例では、第二回転電機MG2のみ)の出力トルクのみにより走行する電動走行モード(EV走行モード)とを実行可能に備えている。ハイブリッド走行モードでは、摩擦係合装置CLが直結係合状態とされ、遊星歯車機構PGにより内燃機関Eの出力トルクがサンギヤs(第一回転電機MG1)とリングギヤr(カウンタドライブギヤ52)とに分配される状態となる。EV走行モードにおいては、摩擦係合装置CLが解放状態とされ、内燃機関Eは停止状態とされる。また、内燃機関Eの内部の摩擦力により内燃機関出力軸(入力部材I)の回転速度は基本的に零となり、第一回転電機MG1の回転速度は、基本的に、零となるように制御される。
1-2.車両用駆動装置のシステム構成
1-2-1.システムの全体構成
本実施形態に係る車両用駆動装置1のシステム構成について説明する。図2に示すように、本実施形態に係る制御装置70は、走行モード決定部79、回転電機制御部78、差回転低減制御部71、係合制御部73、及び始動制御部77を備えている。
1-2-1.システムの全体構成
本実施形態に係る車両用駆動装置1のシステム構成について説明する。図2に示すように、本実施形態に係る制御装置70は、走行モード決定部79、回転電機制御部78、差回転低減制御部71、係合制御部73、及び始動制御部77を備えている。
そして、制御装置70は、CPU等の演算処理装置を中核として備えるとともに、RAMやROM等の記憶装置等を有して構成されている。そして、ROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置70の各機能部が構成されている。これらの各機能部は、互いに情報の受け渡しを行うことができるように構成されている。
制御装置70は、車両用駆動装置1を搭載する車両の各部の情報を取得するために、車両の各部に設けられたセンサ等からの情報を取得可能に構成されている。具体的には、図2に示すように、制御装置70は、入力部材センサSe1、出力部材センサSe3、アクセル開度センサSe11、第一ロータ軸センサSe2、解除対象回転要素センサSe4、及び蓄電状態センサSe10からの情報を取得可能に構成されている。
入力部材センサSe1は、入力部材Iの回転速度を検出するセンサである。入力部材センサSe1により検出される入力部材Iの回転速度は、本例では、内燃機関Eの回転速度に等しい。出力部材センサSe3は、出力部材Oの回転速度を検出するセンサである。制御装置70は、出力部材センサSe3により検出される出力部材Oの回転速度に基づき、車速を導出する。アクセル開度センサSe11は、アクセルペダル(図示せず)の操作量を検出することによりアクセル開度を検出するセンサである。
第一ロータ軸センサSe2は、第一回転電機MG1(第一ロータ軸)の回転速度を検出するセンサである、本例では、第一ロータ軸センサSe2により検出される第一回転電機MG1の回転速度は、第一回転要素連結部材41(サンギヤs)の回転速度に等しい。第一ロータ軸センサSe2は、例えば、第一回転電機MG1に備えられた回転センサ(レゾルバ等)とすることができる。
解除対象回転要素センサSe4は、差動歯車装置DGが有する回転要素の内の解除対象回転要素enの回転速度を検出するセンサである。ここで、解除対象回転要素enとは、摩擦係合装置CLによって、入力部材I、出力部材O、及び第一回転電機MG1のいずれかとの駆動連結が解除可能とされている回転要素である。本実施形態では、キャリヤcaが解除対象回転要素enであり、解除対象回転要素センサSe4は、第二回転要素連結部材42の回転速度を検出する。
蓄電状態センサSe10は、蓄電装置Bの状態(本例では、温度及び蓄電量)を検出するセンサである。本実施形態では、蓄電状態センサSe10は、電圧センサや電流センサ等を含み、SOC(state of charge:充電状態)を検出することにより蓄電量を検出する。また、蓄電状態センサSe10は、温度センサを含み、蓄電装置Bの温度を検出する。
図2に示すように、車両には内燃機関制御ユニット3が備えられている。内燃機関制御ユニット3は、内燃機関Eの各部を制御することにより、内燃機関Eの動作制御を行う。具体的には、内燃機関制御ユニット3は、内燃機関Eの出力トルクや回転速度の制御目標としての目標トルク及び目標回転速度を設定し、この制御目標に応じて内燃機関Eを動作させることにより、内燃機関Eの動作制御を行う。なお、目標トルクや目標回転速度は、制御装置70からの指令に基づき設定される。また、内燃機関制御ユニット3は、内燃機関Eの停止状態において、制御装置70から始動の指令を受けた場合には、燃料噴射及び点火を開始させ、内燃機関Eを始動状態へと変化させる。また、内燃機関制御ユニット3は、内燃機関Eの始動状態において、制御装置70から停止の指令を受けた場合には、燃料噴射及び点火を停止させて、内燃機関Eを停止状態へと変化させる。
1-2-2.走行モード決定部の構成
走行モード決定部79は、車両の走行モードを決定する機能部である。走行モード決定部79は、例えば、出力部材センサSe3の検出結果に基づき導出される車速と、アクセル開度センサSe11により検出されるアクセル開度と、蓄電状態センサSe10により検出される蓄電状態(蓄電量や温度等)に基づいて、車両用駆動装置1が実現すべき走行モードを決定する。本実施形態では、走行モード決定部79が決定可能な走行モードには、電動走行モードとハイブリッド走行モードとが含まれる。そして、走行モード決定部79は、基本的に、メモリ等で構成される記憶装置6に記憶して備えられた、車速、アクセル開度、及び蓄電状態と、走行モードと、の関係を規定したモード選択マップ(図示せず)を参照して、走行モードを決定する。
走行モード決定部79は、車両の走行モードを決定する機能部である。走行モード決定部79は、例えば、出力部材センサSe3の検出結果に基づき導出される車速と、アクセル開度センサSe11により検出されるアクセル開度と、蓄電状態センサSe10により検出される蓄電状態(蓄電量や温度等)に基づいて、車両用駆動装置1が実現すべき走行モードを決定する。本実施形態では、走行モード決定部79が決定可能な走行モードには、電動走行モードとハイブリッド走行モードとが含まれる。そして、走行モード決定部79は、基本的に、メモリ等で構成される記憶装置6に記憶して備えられた、車速、アクセル開度、及び蓄電状態と、走行モードと、の関係を規定したモード選択マップ(図示せず)を参照して、走行モードを決定する。
このモード選択マップによれば、電動走行モードでの走行中に内燃機関始動条件が成立した場合に、ハイブリッド走行モードへの移行が決定される。ここで、内燃機関始動条件は、停止状態の内燃機関Eを始動させるための条件であり、車両が内燃機関Eのトルクを必要とする状況となった場合に成立する。例えば、車両の停車中や電動走行モードでの走行中に運転者がアクセルペダルを強く踏み込む等して、回転電機MG1,MG2のみでは車両に要求されるトルクが得られない状態となった場合に、内燃機関始動条件が成立する。また、蓄電装置Bの蓄電量が予め定められた閾値以下にまで減少したため、内燃機関Eを始動させてそのトルクにより回転電機MG1,MG2に発電させて蓄電装置Bを充電することが必要になった場合にも、内燃機関始動条件が成立する。
1-2-3.回転電機制御部の構成
回転電機制御部78は、第一回転電機MG1や第二回転電機MG2の動作制御を行う機能部である。具体的には、回転電機制御部78は、第一回転電機MG1の出力トルク及び回転速度の制御目標としての目標トルク及び目標回転速度を設定し、この制御目標に応じて第一回転電機MG1が動作するように、第一インバータ4を制御する。本例では、回転電機制御部78は、トルク制御或いは回転速度制御により第一回転電機MG1の動作制御を行う。ここで、トルク制御は、第一回転電機MG1に対する目標トルクを設定し、第一回転電機MG1の出力トルクを当該目標トルクに近づける(追従させる)制御である。また、回転速度制御は、第一回転電機MG1に対する目標回転速度を設定し、第一回転電機MG1の出力トルクを制御して第一回転電機MG1の回転速度を当該目標回転速度に近づける(追従させる)制御である。また、第二回転電機MG2についての制御は、第一インバータ4が第二インバータ5に置き換わる点を除いて第一回転電機MG1と同様である。
回転電機制御部78は、第一回転電機MG1や第二回転電機MG2の動作制御を行う機能部である。具体的には、回転電機制御部78は、第一回転電機MG1の出力トルク及び回転速度の制御目標としての目標トルク及び目標回転速度を設定し、この制御目標に応じて第一回転電機MG1が動作するように、第一インバータ4を制御する。本例では、回転電機制御部78は、トルク制御或いは回転速度制御により第一回転電機MG1の動作制御を行う。ここで、トルク制御は、第一回転電機MG1に対する目標トルクを設定し、第一回転電機MG1の出力トルクを当該目標トルクに近づける(追従させる)制御である。また、回転速度制御は、第一回転電機MG1に対する目標回転速度を設定し、第一回転電機MG1の出力トルクを制御して第一回転電機MG1の回転速度を当該目標回転速度に近づける(追従させる)制御である。また、第二回転電機MG2についての制御は、第一インバータ4が第二インバータ5に置き換わる点を除いて第一回転電機MG1と同様である。
なお、回転電機制御部78は、図3に概念的に示すような動作可能領域(太実線で囲まれる領域)の範囲内で、目標トルク及び目標回転速度を設定する。この図3に示すように、回転電機MG1,MG2が発生可能な最大トルクの大きさ(絶対値、以下同様)は、回転速度の絶対値が所定値以下の状態ではほぼ一定とされ、当該所定値を超える領域では、回転速度の絶対値が増加するに従って低下するように設定されている。すなわち、回転電機MG1,MG2が発生可能な最大トルクの大きさは、回転速度に応じて異なり、具体的には、回転速度の絶対値が大きくなるに従って小さくなる領域を有する。
そして、本実施形態では、回転電機MG1,MG2が発生可能な最大トルクの大きさは、蓄電装置Bの状態に応じて変化するように設定されている。具体的には、蓄電装置Bから供給可能な電力に応じて回転電機MG1,MG2が発生可能な最大トルクが変化する。ここで、蓄電装置Bから供給可能な電力は、蓄電装置Bの温度や蓄電量に応じて制限される。そこで、本実施形態では、蓄電装置Bの温度や蓄電量に応じて、動作可能領域が調整される構成としている。具体的には、蓄電装置Bの温度が適正温度から低い側或いは高い側に離れるに従って、最大トルクの大きさが小さく設定される。また、蓄電装置Bの蓄電量が適正蓄電量から少なくなる側に離れるに従って、最大トルクの大きさが小さく設定される。
この際、本実施形態では、図3に一点鎖線の太線で示すように、回転速度の絶対値が大きい領域でのみ動作可能領域を図中上下方向に狭めることで、最大トルクの大きさが小さく設定される構成としている。そして、本実施形態では、蓄電装置Bの充電量として許容される最小値と最大値とが予め設定されており、蓄電装置Bの充電量が当該最大値から当該最小値に向かうに従って、連続的又は段階的に最大トルクの大きさが小さくなるように設定される。また、蓄電装置Bの適正温度の範囲である適正温度範囲が予め設定されており、蓄電装置Bの温度が当該適正温度範囲内にある場合には、蓄電装置Bの温度に基づく最大トルクの大きさの調整は行われず、蓄電装置Bの温度が適正温度範囲から低温側或いは高温側に外れている場合には、適正温度範囲内にある場合に比べて最大トルクの大きさが小さくなるように設定される。
なお、回転速度の絶対値が大きい領域に対してのみではなく、回転速度の絶対値が小さい領域を含む回転速度域の全域で動作可能領域を図中上下方向に狭めることで、最大トルクの大きさが小さく設定される構成とすることも可能である。
1-2-4.差回転低減制御部の構成
差回転低減制御部71は、第一回転電機MG1の回転速度を、摩擦係合装置CLにおける互いに係合される2つの係合部材の間の回転速度差が小さくなる方向に変化させる差回転低減制御を実行する機能部である。差回転低減制御部71は、この差回転低減制御を、摩擦係合装置CLが解放状態とされ、内燃機関Eが停止し、更に出力部材Oが回転している状態から内燃機関Eを始動する際に実行する。すなわち、差回転低減制御部71は、車両の走行中に、走行モード決定部79により電動走行モードからハイブリッド走行モードへと走行モードを切り替える決定がなされた場合に、差回転低減制御を実行する。
差回転低減制御部71は、第一回転電機MG1の回転速度を、摩擦係合装置CLにおける互いに係合される2つの係合部材の間の回転速度差が小さくなる方向に変化させる差回転低減制御を実行する機能部である。差回転低減制御部71は、この差回転低減制御を、摩擦係合装置CLが解放状態とされ、内燃機関Eが停止し、更に出力部材Oが回転している状態から内燃機関Eを始動する際に実行する。すなわち、差回転低減制御部71は、車両の走行中に、走行モード決定部79により電動走行モードからハイブリッド走行モードへと走行モードを切り替える決定がなされた場合に、差回転低減制御を実行する。
本実施形態では、摩擦係合装置CLの2つの係合部材の内の第一係合部材CLaには入力部材I(内燃機関E)が駆動連結されており、第二係合部材CLbには第二回転要素連結部材42(キャリヤca)が駆動連結されている。そのため、本実施形態では、差回転低減制御部71は、差回転低減制御において、入力部材Iと第二回転要素連結部材42との間の回転速度差、すなわち、内燃機関Eとキャリヤcaとの間の回転速度差が小さくなる方向に、第一回転電機MG1の回転速度を変化させる。
図4を参照して、本実施形態において実行される差回転低減制御について説明する。図4は、差動歯車装置DG(本例では遊星歯車機構PG)の動作状態を表す速度線図である。この速度線図において、縦軸は、各回転要素の回転速度に対応している。すなわち、縦軸に対応して記載している「0」は、回転速度が零であることを示しており、上側が正回転(回転速度が正)、下側が負回転(回転速度が負)である。また、並列配置された複数本の縦線のそれぞれが、差動歯車装置DGの各回転要素に対応している。そして、各縦線の上側に記載されている四角形で囲まれた「Em」、「Ei」、「Eo」は、それぞれ、ハイブリッド走行モードの実行時における反力伝達要素Em、入力回転要素Ei、出力回転要素Eoを示している。
また、速度線図上において、第一回転電機MG1の回転速度、第二回転電機MG2の回転速度、内燃機関E(入力部材I)の回転速度、及び出力部材Oの回転速度のそれぞれを、互いに異なる記号で示している。なお、発明の理解を容易にすべく、第一回転電機MG1、第二回転電機MG2、内燃機関E、及び出力部材Oの各部材の回転速度は、差動歯車装置DGの回転要素(回転要素連結部材)までの動力伝達経路に設けられた伝動部材(摩擦係合装置CLのような回転及びトルクを選択的に伝達する係合要素を除く)による回転速度の変換(変速)後の回転速度を表している。
具体的には、本実施形態では、第一回転電機MG1は、第一回転要素連結部材41と一体回転するように駆動連結されているため、速度線図上における第一回転電機MG1(サンギヤs)の回転速度は、第一回転電機MG1の実回転速度と一致する。また、内燃機関E(入力部材I)は、摩擦係合装置CLが直結係合状態にある場合には、第二回転要素連結部材42と同じ回転速度で回転するため、速度線図上における内燃機関E(キャリヤca)の回転速度は、内燃機関Eの実回転速度と一致する。
一方、第二回転電機MG2は、カウンタギヤ機構Cを介して第三回転要素連結部材43に駆動連結されているため、速度線図上における第二回転電機MG2(リングギヤr)の回転速度は、第二回転電機MG2の実回転速度に、第二回転電機出力ギヤ55、第一カウンタギヤ53、及びカウンタドライブギヤ52からなる動力伝達系のギヤ比を乗じたものとなっている。同様に、出力部材Oも、カウンタギヤ機構Cを介して第三回転要素連結部材43に駆動連結されているため、速度線図上における出力部材Oの回転速度は、出力部材Oの実回転速度に、差動入力ギヤ(出力部材O)、第二カウンタギヤ54、第一カウンタギヤ53、及びカウンタドライブギヤ52からなる動力伝達系のギヤ比を乗じたものとなっている。
そして、「T1」は第一回転電機MG1から差動歯車装置DGの回転要素(本例ではサンギヤs)に伝達されるトルク(第一回転電機トルク)を示し、「T2」は第二回転電機MG2から差動歯車装置DGの回転要素(本例ではリングギヤr)に伝達されるトルク(第二回転電機トルク)を示し、「To」は出力部材O(車輪W)から差動歯車装置DGの回転要素(本例ではリングギヤr)に伝達されるトルク(走行トルク、走行抵抗)を示し、これらのトルクに隣接配置された矢印は、上向き矢印が正方向のトルクを表し、下向き矢印が負方向のトルクを表している。なお、以下で参照する各速度線図においても、図4と同様に差動歯車装置DGの動作状態を示している。
図4において、実線は、摩擦係合装置CLが解放状態とされるとともに、回転電機MG1,MG2(本例では、第二回転電機MG2のみ)の出力トルクのみにより走行する電動走行モードでの動作状態を表している。この電動走行モードでは、第二回転電機MG2は、車速及びアクセル開度等に基づいて決まる車両要求トルク(車両側から要求されるトルク)に応じた第二回転電機トルクT2を出力するように制御される。図4には、車両を加速又は巡航させるためのトルクが要求されており、リングギヤrに負方向に作用する走行トルクToに抗して、第二回転電機MG2が正方向に回転しながら力行して正方向の第二回転電機トルクT2を出力している場合を例示している。
電動走行モードでは、摩擦係合装置CLが解放状態となり、差動歯車装置DGの解除対象回転要素enは自由に回転できる状態となる。本実施形態では、解除対象回転要素enはキャリヤcaであり、摩擦係合装置CLはキャリヤcaと内燃機関Eとの間の動力伝達経路に設けられている。そのため、電動走行モードでは、キャリヤcaと内燃機関Eとの間が非接続状態(非連結状態)となることでキャリヤcaから内燃機関Eが切り離され、キャリヤcaは自由に回転できる状態となる。本実施形態では、図4に実線で示すように、電動走行モードでは第一回転電機MG1の回転速度は基本的に零とされ、キャリヤcaは、車速に応じて定まるリングギヤrの回転速度と、第一回転電機MG1の回転速度に応じて定まるサンギヤsの回転速度と、に基づいて定まる回転速度で回転する。
そして、図4に実線で示される状態から内燃機関Eを始動する際には、差回転低減制御が実行され、内燃機関Eとキャリヤcaとの間の回転速度差が小さくなる方向に、第一回転電機MG1の回転速度を変化させる。本実施形態では、キャリヤcaの回転速度を次第に低下させるように、第一回転電機MG1は負方向のトルクを出力して回転速度を低下させる。なお、回転速度について「低下」とは、回転速度を負の方向に変化させることを意味し、回転速度について「上昇」とは、回転速度を正の方向に変化させることを意味する。
図4の二点鎖線は、このような差回転低減制御を実行して、キャリヤcaの回転速度が内燃機関Eの回転速度(本例では零)に等しくなった状態を表している。なお、差回転低減制御は、回転電機制御部78による回転速度制御により実行される構成とすることができる。ここで、回転速度制御では、例えば、第一回転電機MG1の目標回転速度と、第一ロータ軸センサSe2により検出される第一回転電機MG1の実回転速度との差に基づいて、回転速度フィードバック制御が実行される。
ところで、図3に示すように、回転電機MG1,MG2が発生可能な最大トルクの大きさは、回転速度の絶対値が大きくなるに従って小さくなる領域を有する。また、後述するように、差回転低減制御の実行後には、係合制御部73により摩擦係合装置CLが直結係合状態とされ(図5において実線で示す状態)、その後、始動制御部77により、内燃機関Eを始動可能な回転速度(後述する点火回転速度Nf)とする第一回転電機MG1の回転速度(後述する始動回転速度Ni)を目標値として、第一回転電機MG1の回転速度を変化させる始動制御が実行される。この始動制御の実行時には、第一回転電機MG1の出力トルクにより内燃機関Eの回転速度を変化させるため、始動制御の実行開始時における第一回転電機MG1の回転速度は、内燃機関Eの始動に必要とされるトルクである始動トルクTIを出力可能な回転速度である必要がある。なお、始動トルクTIは、差動歯車装置DGのギヤ比や、内燃機関Eをクランキングする際の内燃機関Eの回転速度の目標変化率等に応じて設定される。
図3に概念的に示すように、始動トルクTIを第一回転電機MG1が出力可能な回転速度の範囲である始動トルク出力可能範囲Rは、上限値Rmax及び下限値Rminを有する範囲となる。そこで、差回転低減制御部71は、始動トルク出力可能範囲Rの上限値Rmax及び下限値Rminを限界として、第一回転電機MG1の回転速度を変化させるように構成されている。これにより、内燃機関Eを適切に始動することが可能な範囲内で、摩擦係合装置CLの2つの係合部材の間の回転速度差を小さくすることが可能となっている。なお、本実施形態では、始動トルク出力可能範囲Rの上限値Rmax及び下限値Rminのそれぞれは、第一回転電機MG1が出力可能なトルクの最大値が始動トルクTIと等しくなる回転速度に設定されている。なお、始動トルク出力可能範囲Rの上限値Rmaxを、第一回転電機MG1が出力可能なトルクの最大値が始動トルクTIと等しくなる回転速度に対して所定回転速度だけ低い回転速度に設定し、始動トルク出力可能範囲Rの下限値Rminを、第一回転電機MG1が出力可能なトルクの最大値が始動トルクTIと等しくなる回転速度に対して所定回転速度だけ高い回転速度に設定することもできる。
具体的には、本実施形態では、差回転低減制御部71は、目標回転速度設定部72を備えており、差回転低減制御部71は、目標回転速度設定部72が設定した目標回転速度を目標値として、第一回転電機MG1の回転速度を変化させる。本実施形態では、目標回転速度設定部72は、摩擦係合装置CLの2つの係合部材(本例では、内燃機関E及びキャリヤca)を同期状態とするための第一回転電機MG1の回転速度(以下、「同期回転速度Ns」という。)が、始動トルク出力可能範囲R内にあるか否かの判定を行う。
ここで、同期状態とは、対象となる2つの回転部材(ここでは、摩擦係合装置CLの2つの係合部材)の間の回転速度差が差回転閾値未満である状態である。この同期状態には、一方又は双方の回転部材の回転速度が零である状態を含む。一方、対象となる2つの回転部材の間の回転速度差が差回転閾値以上である状態は、非同期状態である。この差回転閾値は、予め設定された所定の閾値であり、例えば10rpm以上100rpm以下の値とすることができる。なお、始動トルク出力可能範囲Rの情報は、図2に示すように、出力可能範囲データ6aとして記憶装置6に記憶されており、目標回転速度設定部72は、記憶装置6に記憶された出力可能範囲データ6aを参照して、上記の判定を行う。
そして、目標回転速度設定部72は、図4に示す状態のように、第一回転電機MG1の同期回転速度Nsが、始動トルク出力可能範囲R内である場合には、当該同期回転速度Nsを差回転低減制御における第一回転電機MG1の目標回転速度として設定する。そして、差回転低減制御部71は、2つの係合部材を同期状態とするように、第一回転電機MG1の回転速度を変化させる。このような差回転低減制御は、車速が低い領域で実行されるため、以下では、第一回転電機MG1の同期回転速度Nsが始動トルク出力可能範囲R内である場合の差回転低減制御を「低速時差回転低減制御」という。図4には、低速時差回転低減制御を実行し、第一回転電機MG1の回転速度が同期回転速度Nsに到達した状態を二点鎖線で示している。
一方、目標回転速度設定部72は、図6に示す状態のように、第一回転電機MG1の同期回転速度Nsが、始動トルク出力可能範囲Rの上限値Rmax又は下限値Rminを超える場合には、上限値Rmax又は下限値Rminの一方を差回転低減制御における目標回転速度として設定する。具体的には、上限値Rmax又は下限値Rminの内、2つの係合部材の間の回転速度差が小さくなる方の値(本例では下限値Rmin)が選択される。そして、差回転低減制御部71は、目標回転速度設定部72が設定した目標回転速度(上限値Rmax及び下限値Rminの一方)を目標値として、第一回転電機MG1の回転速度を変化させる。このような差回転低減制御は、車速が高い領域で実行されるため、以下では、第一回転電機MG1の同期回転速度Nsが始動トルク出力可能範囲R内でない場合の差回転低減制御を「高速時差回転低減制御」という。図6には、高速時差回転低減制御を実行し、第一回転電機MG1の回転速度が始動トルク出力可能範囲Rの下限値Rminに到達した状態を二点鎖線で示している。
ところで、上述したように、第一回転電機MG1の動作可能領域(図3)は、蓄電装置Bの状態に応じて可変に設定され、これに伴い、始動トルク出力可能範囲Rも蓄電装置Bの状態に応じて可変に設定される。そのため、目標回転速度設定部72は、第一回転電機MG1の目標回転速度の設定に際し、現在の蓄電装置Bの状態(本例では、温度及び蓄電量)を蓄電状態センサSe10から取得し、現在の蓄電装置Bの状態に応じた始動トルク出力可能範囲Rの情報を取得する。なお、蓄電装置Bの互いに異なる状態に対応した複数の始動トルク出力可能範囲Rの情報(出力可能範囲データ6a)が予め記憶装置6に記憶され、目標回転速度設定部72が現在の蓄電装置Bの状態に対応する始動トルク出力可能範囲Rの情報を選択して取得する構成としたり、目標回転速度設定部72が、蓄電状態センサSe10から取得した蓄電装置Bの状態と基準となる始動トルク出力可能範囲Rの情報(基準となる出力可能範囲データ6a)とから、所定の演算式等に基づき、現在の蓄電状態に対応する始動トルク出力可能範囲Rの情報を導出して取得する構成とすることができる。
1-2-5.係合制御部の構成
係合制御部73は、摩擦係合装置CLの動作を制御する機能部である。係合制御部73は、油圧制御装置2を介して摩擦係合装置CLに供給される油圧(摩擦係合装置CLへの供給圧)を制御することにより、摩擦係合装置CLの動作制御を行う。具体的には、係合制御部73は、摩擦係合装置CLに対する油圧指令値を生成し、油圧制御装置2が当該油圧指令値に相当する油圧を摩擦係合装置CLに供給する。
係合制御部73は、摩擦係合装置CLの動作を制御する機能部である。係合制御部73は、油圧制御装置2を介して摩擦係合装置CLに供給される油圧(摩擦係合装置CLへの供給圧)を制御することにより、摩擦係合装置CLの動作制御を行う。具体的には、係合制御部73は、摩擦係合装置CLに対する油圧指令値を生成し、油圧制御装置2が当該油圧指令値に相当する油圧を摩擦係合装置CLに供給する。
ここで、摩擦係合装置CLの2つの係合部材の間の係合の状態としては、当該2つの係合部材の間で回転及びトルクが伝達されない「解放状態」と、当該2つの係合部材が回転速度差を有する状態で係合する「スリップ係合状態」と、当該2つの係合部材が一体回転する状態で係合する「直結係合状態」とがある。すなわち、「スリップ係合状態」は、摩擦係合装置CLの2つの係合部材が互いに相対回転する状態で、当該2つの係合部材の間でトルクが伝達される係合状態である。また、「直結係合状態」は、摩擦係合装置CLの2つの係合部材が直結し、当該2つの係合部材の間に差回転がない係合状態である。
摩擦係合装置CLが2つの係合部材の間で伝達可能なトルクの大きさは、摩擦係合装置CLのその時点での係合圧に応じて決まる。このときのトルクの大きさを、摩擦係合装置CLの伝達トルク容量とする。本実施形態では、摩擦係合装置CLに対する油圧指令値に応じて、比例ソレノイド弁で摩擦係合装置CLへの供給油量及び供給圧の大きさを連続的に制御することにより、摩擦係合装置CLの伝達トルク容量の増減が連続的に制御可能となっている。
そして、係合制御部73は、トルク制御或いは回転速度制御により摩擦係合装置CLの動作制御を行う。ここで、トルク制御は、摩擦係合装置CLに対して目標伝達トルク容量を設定し、摩擦係合装置CLの伝達トルク容量を当該目標伝達トルク容量に近づける(追従させる)ように、油圧指令値を生成する制御である。また、回転速度制御は、摩擦係合装置CLに対して目標差回転速度を設定し、2つの係合部材の間の回転速度差を当該目標差回転速度に近づける(追従させる)ように、油圧指令値を生成する制御である。
本実施形態では、係合制御部73は、同期係合制御部74及び非同期係合制御部75を備えている。そして、係合制御部73は、差回転低減制御部71による差回転低減制御の実行を条件に、同期係合制御部74或いは非同期係合制御部75による摩擦係合装置CLの係合制御を実行し、解放状態にある摩擦係合装置CLを直結係合状態へと変化させる。
同期係合制御部74は、摩擦係合装置CLの2つの係合部材の間の回転速度差が上記差回転閾値未満である同期状態で、摩擦係合装置CLを係合させる同期係合制御を実行する機能部である。本実施形態では、同期係合制御部74は、差回転低減制御部71により低速時差回転低減制御が実行され、第一回転電機MG1の回転速度が目標値である同期回転速度Nsに到達した状態で、摩擦係合装置CLの係合を開始して摩擦係合装置CLを直結係合状態とする。なお、第一回転電機MG1の回転速度が目標値である目標回転速度に「到達」するとは、第一回転電機MG1の回転速度と目標回転速度との間の回転速度差が、目標到達判定閾値未満となった状態を意味する。ここで、目標到達判定閾値は、例えば10rpm以上100rpm以下の値とすることができる。図5には、摩擦係合装置CLが直結係合状態となった状態を実線で示している。
本実施形態では、同期係合制御部74は、摩擦係合装置CLを解放状態から直結係合状態へと変化させるべく、摩擦係合装置CLに対する油圧指令値を、当該摩擦係合装置CLの伝達トルク容量が零から定常的な直結係合状態となる値(以下、「定常直結係合値」という。)まで所定の変化率(例えば一定の変化率)で上昇するように制御する。なお、この同期係合制御では、係合の対象となる2つの係合部材が同期状態にあるため、上記の変化率は比較的大きな値とされ、比較的短時間で、摩擦係合装置CLの伝達トルク容量を定常直結係合値まで上昇させる。すなわち、摩擦係合装置CLの伝達トルク容量を定常直結係合値とするための油圧を「定常油圧」とすると、摩擦係合装置CLに対する油圧指令値を、比較的短時間で、定常油圧まで上昇させる。ここで、「定常的な直結係合状態」とは、摩擦係合装置CLが伝達するトルクの変動にかかわらず直結係合状態が維持される状態を意味する。このような定常的な直結係合状態を得るための定常油圧は、例えば、油圧制御装置2により生成されるライン圧となる。
非同期係合制御部75は、摩擦係合装置CLの2つの係合部材の間の回転速度差が上記差回転閾値以上である非同期状態で、摩擦係合装置CLを係合させる非同期係合制御を実行する機能部である。本実施形態では、非同期係合制御部75は、差回転低減制御部71により高速時差回転低減制御が実行され、第一回転電機MG1の回転速度が目標値である始動トルク出力可能範囲Rの上限値Rmax及び下限値Rminの一方(本例では下限値Rmin)に到達した状態で、摩擦係合装置CLの係合を開始して摩擦係合装置CLを直結係合状態とする。図7には、非同期係合制御により内燃機関Eの回転速度がキャリヤcaの回転速度まで持ち上げられ(図7の「(1)の矢印」で示す処理)、摩擦係合装置CLが直結係合状態となった状態を実線で示している。
本実施形態では、非同期係合制御部75は、スリップ係合状態で摩擦係合装置CLの2つの係合部材の間の回転速度差を減少させ、当該2つの係合部材の間の回転速度差が上記差回転閾値未満である同期状態となったことを条件に、直結係合状態とする制御を実行する。この際、非同期係合制御部75は、摩擦係合装置CLを解放状態からスリップ係合状態へと変化させるべく、摩擦係合装置CLに対する油圧指令値を、当該摩擦係合装置CLの伝達トルク容量が零から所定の変化率(例えば一定の変化率)で上昇するように制御する。なお、この非同期係合制御では、係合の対象となる2つの係合部材は非同期状態であるため、伝達トルク容量の変化率は、上記同期係合制御の場合に比べて、小さな値とされる。すなわち、非同期係合制御では、同期係合制御よりも時間をかけて、摩擦係合装置CLの伝達トルク容量を上昇させる。そして、2つの係合部材の間の回転速度差に変化が見られると、摩擦係合装置CLの伝達トルク容量がその時点での値に保持されるように、摩擦係合装置CLに対する油圧指令値を制御する。これにより、摩擦係合装置CLがスリップ係合状態に維持される。
そして、スリップ係合状態におけるトルクの伝達により、2つの係合部材の間の回転速度差が上記差回転閾値未満である同期状態となると、非同期係合制御部75は、摩擦係合装置CLをスリップ係合状態から直結係合状態へと変化させるべく、摩擦係合装置CLに対する油圧指令値を制御する。本実施形態では、非同期係合制御部75は、摩擦係合装置CLの2つの係合部材が同期状態となった後も、スリップ係合状態における伝達トルク容量を維持することで、摩擦係合装置CLを直結係合状態とする。
そして、摩擦係合装置CLが直結係合状態となった後、非同期係合制御部75は、摩擦係合装置CLに対する油圧指令値を上記定常油圧まで所定の変化率(例えば一定の変化率)で上昇するように制御する。これにより、摩擦係合装置CLの伝達トルク容量が、所定の変化率(例えば一定の変化率)で定常直結係合値まで上昇する。本実施形態では、摩擦係合装置CLを定常的な直結係合状態とするための制御(油圧指令値を定常油圧まで上昇させる制御)は、後述する始動制御部77による始動制御と並行して実行される。
なお、回転電機制御部78は、非同期係合制御の実行により摩擦係合装置CLが直結係合状態となるまでの間は、第一回転電機MG1の回転速度を差回転低減制御による変化後の回転速度(本例では、始動トルク出力可能範囲Rの下限値Rmin)に維持するように、回転速度制御(本例では回転速度フィードバック制御)を実行する。この際、本実施形態では、第一回転電機MG1は、正方向のトルクを出力することで、自身の回転速度を差回転低減制御による変化後の回転速度(下限値Rmin)に維持する。また、回転電機制御部78は、摩擦係合装置CLの係合を開始することでリングギヤrを介して車輪Wに伝達される第一回転電機MG1の出力トルクや内燃機関Eに起因する負荷トルクを打ち消すように、第二回転電機MG2の出力トルクを補正する制御を実行する。
1-2-6.始動制御部の構成
始動制御部77は、内燃機関Eを始動可能な回転速度(点火回転速度Nf)とする第一回転電機MG1の回転速度(始動回転速度Ni)を目標値として、第一回転電機MG1の回転速度を変化させる始動制御を実行する機能部である。始動制御部77は、係合制御部73による係合制御の実行により摩擦係合装置CLが直結係合状態となったことを条件に、始動制御を実行する。この始動制御により、内燃機関Eの回転速度(本例ではキャリヤcaの回転速度)は次第に上昇し、所定の時間の経過後に点火回転速度Nfに到達する。この際の内燃機関Eの回転速度の変化率は、内燃機関Eと車両用駆動装置1との間にダンパが設けられている場合には、当該ダンパの共振領域を素早く抜けることができるような変化率に設定される。なお、点火回転速度Nfは、例えば内燃機関Eのアイドル回転数等に設定することができる。
始動制御部77は、内燃機関Eを始動可能な回転速度(点火回転速度Nf)とする第一回転電機MG1の回転速度(始動回転速度Ni)を目標値として、第一回転電機MG1の回転速度を変化させる始動制御を実行する機能部である。始動制御部77は、係合制御部73による係合制御の実行により摩擦係合装置CLが直結係合状態となったことを条件に、始動制御を実行する。この始動制御により、内燃機関Eの回転速度(本例ではキャリヤcaの回転速度)は次第に上昇し、所定の時間の経過後に点火回転速度Nfに到達する。この際の内燃機関Eの回転速度の変化率は、内燃機関Eと車両用駆動装置1との間にダンパが設けられている場合には、当該ダンパの共振領域を素早く抜けることができるような変化率に設定される。なお、点火回転速度Nfは、例えば内燃機関Eのアイドル回転数等に設定することができる。
始動制御では、第一回転電機MG1の回転速度は、差回転低減制御における変化の方向とは反対方向に変化される。具体的には、本実施形態では、差回転低減制御では、第一回転電機MG1は負方向のトルクを出力して回転速度を低下させ、始動制御では、第一回転電機MG1は正方向のトルクを出力して回転速度を上昇させる。そして、この始動制御の際に第一回転電機MG1が出力する必要のあるトルク(本例では正方向のトルク)は、基本的に始動トルクTIに相当する(例えば等しい)トルクとなる。本実施形態では、第一回転電機MG1の回転速度が一定の変化率で上昇するように、第一回転電機MG1の出力トルクが制御される。
始動制御は、回転電機制御部78による回転速度制御により実行される構成とすることができ、例えば、回転速度フィードバック制御により実行される構成とすることができる。また、回転電機制御部78は、始動制御を実行することでリングギヤrを介して車輪Wに伝達される第一回転電機MG1の出力トルクや内燃機関Eに起因する負荷トルクを打ち消すように、第二回転電機MG2の出力トルクを補正する制御を実行する。
図5の二点鎖線は、低速時差回転低減制御及び同期係合制御の実行後の状態(図5で実線で示す状態)から始動制御を実行し、第一回転電機MG1の回転速度が始動回転速度Niに到達した状態を示している。この際、内燃機関Eの回転速度は、零から点火回転速度Nfまで上昇する。そして、制御装置70は、第一回転電機MG1の回転速度が始動回転速度Niに到達したことを条件に、すなわち、内燃機関Eの回転速度が点火回転速度Nfに到達したことを条件に、内燃機関制御ユニット3に対して内燃機関Eの始動指令を出し、内燃機関制御ユニット3により内燃機関Eが始動される。以下では、図4、図5に示すように、低速時差回転低減制御、同期係合制御、及び始動制御の実行を経て内燃機関Eを始動する制御を、「低速時始動制御」という。
図7の二点鎖線は、高速時差回転低減制御及び非同期係合制御の実行後の状態(図7で実線で示す状態)から始動制御を実行し(図7の「(2)の矢印」で示す処理)、第一回転電機MG1の回転速度が始動回転速度Niに到達した状態を示している。この際、内燃機関Eの回転速度は、非同期係合制御の実行により摩擦係合装置CLが直結係合状態となった時点の回転速度から、点火回転速度Nfまで上昇する。そして、制御装置70は、第一回転電機MG1の回転速度が始動回転速度Niに到達したことを条件に、すなわち、内燃機関Eの回転速度が点火回転速度Nfに到達したことを条件に、内燃機関制御ユニット3に対して内燃機関Eの始動指令を出し、内燃機関制御ユニット3により内燃機関Eが始動される。以下では、図6、図7に示すように、高速時差回転低減制御、非同期係合制御、及び始動制御の実行を経て内燃機関Eを始動する制御を、「高速時始動制御」という。
1-3.低速時始動制御の具体的内容
本実施形態に係る低速時始動制御の具体的内容について、図8を参照して説明する。図8は、電動走行モードでの走行中に、低速時差回転低減制御、同期係合制御、及び始動制御を順に実行して内燃機関Eを始動する際のタイムチャートの一例を示す図である。なお、図8では、時刻T0において内燃機関Eの始動要求があり(走行モード決定部79によりハイブリッド走行モードへの移行が決定され)、時刻T4において内燃機関Eが自立運転を開始する場合を想定している。
本実施形態に係る低速時始動制御の具体的内容について、図8を参照して説明する。図8は、電動走行モードでの走行中に、低速時差回転低減制御、同期係合制御、及び始動制御を順に実行して内燃機関Eを始動する際のタイムチャートの一例を示す図である。なお、図8では、時刻T0において内燃機関Eの始動要求があり(走行モード決定部79によりハイブリッド走行モードへの移行が決定され)、時刻T4において内燃機関Eが自立運転を開始する場合を想定している。
時刻T0までは、摩擦係合装置CLの伝達トルク容量は零とされており、内燃機関Eが停止した状態で第二回転電機MG2の出力トルクにより車両が走行している。第一回転電機MG1の回転速度は零とされるとともに、トルクを出力しない状態となっている。これによりキャリヤcaは所定の回転速度で回転する状態となる(図4の実線参照)。
時刻T0で内燃機関Eの始動要求があると、差回転低減制御部71は低速時差回転低減制御を実行する。この際、第一回転電機MG1の回転速度が、同期回転速度Nsを目標値として変化するように制御される。具体的には、第一回転電機MG1は、回転速度フィードバック制御により制御され、負方向のトルクを出力することで回転速度が低下する。そして、時刻T1で、第一回転電機MG1の回転速度が、目標値である同期回転速度Nsに到達する(図4の二点鎖線参照)。
時刻T1で、第一回転電機MG1の回転速度が同期回転速度Nsに到達し、摩擦係合装置CLの2つの係合部材が同期状態となると、同期係合制御部74が、摩擦係合装置CLの係合を開始し、摩擦係合装置CLを解放状態から直結係合状態へと変化させる(図5の実線参照)。本例では、同期係合制御部74は、摩擦係合装置CLの伝達トルク容量が零から一定の変化率で定常直結係合値(定常油圧に対応する伝達トルク容量)まで上昇するように、油圧制御装置2に対する油圧指令値を制御する。この間、第一回転電機MG1の回転速度は同期回転速度Nsに維持される。
そして、摩擦係合装置が直結係合状態(本例では、定常的な直結係合状態)になった後(時刻T2)、始動制御部77が、始動回転速度Niを目標値として、第一回転電機MG1の回転速度を変化させる。この状態では、摩擦係合装置CLが直結係合状態にあるため、第一回転電機MG1の回転速度の上昇に伴って内燃機関Eの回転速度も上昇する。本例では、内燃機関Eの回転速度が一定の変化率で上昇するように、第一回転電機MG1の回転速度が回転速度フィードバック制御により制御される。
時刻T3において、第一回転電機MG1の回転速度が始動回転速度Niに到達すると、内燃機関Eの回転速度が点火回転速度Nfに到達する(図5の二点鎖線参照)。この状態で、制御装置70は、内燃機関制御ユニット3に対して内燃機関Eの始動指令を出し、内燃機関制御ユニット3により内燃機関Eが始動される。
内燃機関Eの始動後は、内燃機関Eが出力する正方向のトルクの大きさに応じて第一回転電機MG1の出力トルクが負の方向に変化し、時刻T4において内燃機関Eが自立運転を開始した後は、第一回転電機MG1は内燃機関Eのトルクに対する反力(負方向のトルク)を出力するように制御される。
1-4.高速時始動制御の具体的内容
本実施形態に係る高速時始動制御の具体的内容について、図9を参照して説明する。図9は、電動走行モードでの走行中に、高速時差回転低減制御、非同期係合制御、及び始動制御を順に実行して内燃機関Eを始動する際のタイムチャートの一例を示す図である。なお、図9では、時刻T10において内燃機関Eの始動要求があり(走行モード決定部79によりハイブリッド走行モードへの移行が決定され)、時刻T14において内燃機関Eが自立運転を開始する場合を想定している。
本実施形態に係る高速時始動制御の具体的内容について、図9を参照して説明する。図9は、電動走行モードでの走行中に、高速時差回転低減制御、非同期係合制御、及び始動制御を順に実行して内燃機関Eを始動する際のタイムチャートの一例を示す図である。なお、図9では、時刻T10において内燃機関Eの始動要求があり(走行モード決定部79によりハイブリッド走行モードへの移行が決定され)、時刻T14において内燃機関Eが自立運転を開始する場合を想定している。
時刻T10までは、摩擦係合装置CLの伝達トルク容量は零とされており、内燃機関Eが停止した状態で第二回転電機MG2の出力トルクにより車両が走行している。第一回転電機MG1の回転速度は零とされるとともに、トルクを出力しない状態となっている。これによりキャリヤcaは所定の回転速度で回転する状態となる(図6の実線参照)。
時刻T10で内燃機関Eの始動要求があると、差回転低減制御部71は高速時差回転低減制御を実行する。この際、第一回転電機MG1の回転速度が、始動トルク出力可能範囲Rの下限値Rminを目標値として変化するように制御される。具体的には、第一回転電機MG1は、回転速度フィードバック制御により制御され、負方向のトルクを出力することで回転速度が低下する。そして、時刻T11で、第一回転電機MG1の回転速度が、目標値である始動トルク出力可能範囲Rの下限値Rminに到達する(図6の二点鎖線参照)。
時刻T11で、第一回転電機MG1の回転速度が始動トルク出力可能範囲Rの下限値Rminに到達すると、非同期係合制御部75が、摩擦係合装置CLの係合を開始し、摩擦係合装置CLを解放状態から直結係合状態へと変化させる(図7の実線参照)。本例では、非同期係合制御部75は、時刻T11で、摩擦係合装置CLに対する油圧指令値を、当該摩擦係合装置CLの伝達トルク容量が零から一定の変化率で上昇するように制御する。そして、入力部材センサSe1により検出される内燃機関Eの回転速度に変化が見られると、摩擦係合装置CLに対する油圧指令値を、摩擦係合装置CLの伝達トルク容量がその時点での値に保持されるように制御する。これにより、摩擦係合装置CLがスリップ係合状態に維持される。
なお、時刻T11以降摩擦係合装置CLが直結係合状態となるまでの間、第一回転電機MG1の回転速度は、回転速度フィードバック制御により、始動トルク出力可能範囲Rの下限値Rminに維持される。そのため、摩擦係合装置CLがスリップ係合状態となった後は、第一回転電機MG1は正方向のトルクを出力するように制御される。そして、スリップ係合状態となってからの時間の経過とともにキャリヤcaと内燃機関Eとの間の回転速度差が小さくなり、時刻T12においてキャリヤcaと内燃機関Eとの回転速度が一致して摩擦係合装置CLが直結係合状態となる。
そして、摩擦係合装置が直結係合状態(本例では、定常的な直結係合状態よりも係合圧の低い直結係合状態)になった後(時刻T12)、始動制御部77が、始動回転速度Niを目標値として、第一回転電機MG1の回転速度を変化させる。この状態では、摩擦係合装置CLが直結係合状態にあるため、第一回転電機MG1の回転速度の上昇に伴って内燃機関Eの回転速度も上昇する。本例では、内燃機関Eの回転速度が一定の変化率で上昇するように、第一回転電機MG1の回転速度が回転速度フィードバック制御により制御される。
なお、本例では、時刻T12において始動制御の実行を開始するのと同時に、非同期係合制御部75により、摩擦係合装置CLを定常的な直結係合状態へと変化させる制御の実行が開始される。具体的には、非同期係合制御部75は、摩擦係合装置CLの伝達トルク容量が一定の変化率で定常直結係合値(定常油圧に対応する伝達トルク容量)まで上昇するように、油圧制御装置2に対する油圧指令値を制御する。
時刻T13において、第一回転電機MG1の回転速度が始動回転速度Niに到達すると、内燃機関Eの回転速度が点火回転速度Nfに到達する(図7の二点鎖線参照)。この状態で、制御装置70は、内燃機関制御ユニット3に対して内燃機関Eの始動指令を出し、内燃機関制御ユニット3により内燃機関Eが始動される。
内燃機関Eの始動後は、内燃機関Eが出力する正方向のトルクの大きさに応じて第一回転電機MG1の出力トルクが負の方向に変化し、時刻T14において内燃機関Eが自立運転を開始した後は、第一回転電機MG1は内燃機関Eのトルクに対する反力(負方向のトルク)を出力するように制御される。
1-5.内燃機関始動制御の処理手順
次に、本実施形態に係る内燃機関始動制御の処理手順について、図10から図14のフローチャートを参照して説明する。なお、図10は、内燃機関始動制御の全体の処理手順を示すフローチャートである。図11は、図10のステップ#04における低速時差回転低減制御の処理手順を示すフローチャートである。図12は、図10のステップ#06における高速時差回転低減制御の処理手順を示すフローチャートである。図13は、図10のステップ#07における非同期係合制御の処理手順を示すフローチャートである。そして、図14は、図10のステップ#08における始動制御の処理手順を示すフローチャートである。以下に説明する各処理手順は、制御装置70の各機能部により実行される。各機能部がプログラムにより構成される場合には、制御装置70が備える演算処理装置が、上記の各機能部を構成するプログラムを実行するコンピュータとして動作する。
次に、本実施形態に係る内燃機関始動制御の処理手順について、図10から図14のフローチャートを参照して説明する。なお、図10は、内燃機関始動制御の全体の処理手順を示すフローチャートである。図11は、図10のステップ#04における低速時差回転低減制御の処理手順を示すフローチャートである。図12は、図10のステップ#06における高速時差回転低減制御の処理手順を示すフローチャートである。図13は、図10のステップ#07における非同期係合制御の処理手順を示すフローチャートである。そして、図14は、図10のステップ#08における始動制御の処理手順を示すフローチャートである。以下に説明する各処理手順は、制御装置70の各機能部により実行される。各機能部がプログラムにより構成される場合には、制御装置70が備える演算処理装置が、上記の各機能部を構成するプログラムを実行するコンピュータとして動作する。
1-5-1.内燃機関始動制御の全体手順
図10に示すように、電動走行モードで走行中に(ステップ#01:Yes)内燃機関Eの始動要求があると(ステップ#02:Yes)、目標回転速度設定部72が、摩擦係合装置CLの2つの係合部材(本例では、内燃機関E及びキャリヤca)を同期状態とするための第一回転電機MG1の回転速度である同期回転速度Nsが、始動トルク出力可能範囲R内にあるか否かの判定を行う(ステップ#03)。
図10に示すように、電動走行モードで走行中に(ステップ#01:Yes)内燃機関Eの始動要求があると(ステップ#02:Yes)、目標回転速度設定部72が、摩擦係合装置CLの2つの係合部材(本例では、内燃機関E及びキャリヤca)を同期状態とするための第一回転電機MG1の回転速度である同期回転速度Nsが、始動トルク出力可能範囲R内にあるか否かの判定を行う(ステップ#03)。
そして、同期回転速度Nsが始動トルク出力可能範囲R内にある場合には(ステップ#03:Yes)、低速時差回転低減制御(ステップ#04)、同期係合制御(ステップ#05)、及び始動制御(ステップ#08)が順に実行される。低速時差回転低減制御及び始動制御の詳細については、後に説明する。
一方、同期回転速度Nsが始動トルク出力可能範囲R内にない場合には(ステップ#03:No)、高速時差回転低減制御(ステップ#06)、非同期係合制御(ステップ#07)、及び始動制御(ステップ#08)が順に実行される。高速時差回転低減制御及び非同期係合制御の詳細については、後に説明する。
1-5-2.低速時差回転低減制御
次に、ステップ#04の低速時差回転低減制御について、図11を参照して説明する。目標回転速度設定部72は、第一回転電機の目標回転速度を、同期回転速度Nsに設定する(ステップ#10)。差回転低減制御部71は、目標回転速度設定部72が設定した目標回転速度(すなわち同期回転速度Ns)を目標値として、第一回転電機MG1の回転速度を変化させる(ステップ#11)。本例では、ステップ#11において、同期回転速度Nsを目標値とする回転速度フィードバック制御を実行する。第一回転電機MG1の回転速度が目標回転速度に到達するまでの間は(ステップ#12:No)、ステップ#11の制御を継続する。そして、第一回転電機MG1の回転速度が目標回転速度に到達すると(ステップ#12:Yes)、処理は終了する。
次に、ステップ#04の低速時差回転低減制御について、図11を参照して説明する。目標回転速度設定部72は、第一回転電機の目標回転速度を、同期回転速度Nsに設定する(ステップ#10)。差回転低減制御部71は、目標回転速度設定部72が設定した目標回転速度(すなわち同期回転速度Ns)を目標値として、第一回転電機MG1の回転速度を変化させる(ステップ#11)。本例では、ステップ#11において、同期回転速度Nsを目標値とする回転速度フィードバック制御を実行する。第一回転電機MG1の回転速度が目標回転速度に到達するまでの間は(ステップ#12:No)、ステップ#11の制御を継続する。そして、第一回転電機MG1の回転速度が目標回転速度に到達すると(ステップ#12:Yes)、処理は終了する。
1-5-3.高速時差回転低減制御
次に、ステップ#06の高速時差回転低減制御について、図12を参照して説明する。目標回転速度設定部72は、第一回転電機の目標回転速度を、始動トルク出力可能範囲Rの下限値Rminに設定する(ステップ#20)。差回転低減制御部71は、目標回転速度設定部72が設定した目標回転速度(すなわち始動トルク出力可能範囲Rの下限値Rmin)を目標値として、第一回転電機MG1の回転速度を変化させる(ステップ#21)。本例では、ステップ#21において、始動トルク出力可能範囲Rの下限値Rminを目標値とする回転速度フィードバック制御を実行する。第一回転電機MG1の回転速度が目標回転速度に到達するまでの間は(ステップ#22:No)、ステップ#21の制御を継続する。そして、第一回転電機MG1の回転速度が目標回転速度に到達すると(ステップ#22:Yes)、処理は終了する。
次に、ステップ#06の高速時差回転低減制御について、図12を参照して説明する。目標回転速度設定部72は、第一回転電機の目標回転速度を、始動トルク出力可能範囲Rの下限値Rminに設定する(ステップ#20)。差回転低減制御部71は、目標回転速度設定部72が設定した目標回転速度(すなわち始動トルク出力可能範囲Rの下限値Rmin)を目標値として、第一回転電機MG1の回転速度を変化させる(ステップ#21)。本例では、ステップ#21において、始動トルク出力可能範囲Rの下限値Rminを目標値とする回転速度フィードバック制御を実行する。第一回転電機MG1の回転速度が目標回転速度に到達するまでの間は(ステップ#22:No)、ステップ#21の制御を継続する。そして、第一回転電機MG1の回転速度が目標回転速度に到達すると(ステップ#22:Yes)、処理は終了する。
1-5-4.非同期係合制御
次に、ステップ#07の非同期係合制御について、図13を参照して説明する。非同期係合制御部75は、摩擦係合装置CLの伝達トルク容量が零から所定の変化率(本例では一定の変化率)で上昇するように、摩擦係合装置CLに対する油圧指令値を制御する(ステップ#30)。内燃機関Eの回転速度が変化するまでの間は(ステップ#31:No)、ステップ#30の制御を継続し、内燃機関Eの回転速度が変化すると(ステップ#31:Yes)、摩擦係合装置CLの伝達トルク容量がその時点での値に保持されるように、摩擦係合装置CLに対する油圧指令値が制御される(ステップ#32)。そして、スリップ係合状態となってからの時間の経過とともにキャリヤcaと内燃機関Eとの間の回転速度差が小さくなり、キャリヤcaと内燃機関Eとが一体回転する直結係合状態となった後(ステップ#33:Yes)、摩擦係合装置CLに対する油圧指令値を定常油圧まで上昇させることで摩擦係合装置CLを定常的な直結係合状態とし(ステップ#34)、処理は終了する。
次に、ステップ#07の非同期係合制御について、図13を参照して説明する。非同期係合制御部75は、摩擦係合装置CLの伝達トルク容量が零から所定の変化率(本例では一定の変化率)で上昇するように、摩擦係合装置CLに対する油圧指令値を制御する(ステップ#30)。内燃機関Eの回転速度が変化するまでの間は(ステップ#31:No)、ステップ#30の制御を継続し、内燃機関Eの回転速度が変化すると(ステップ#31:Yes)、摩擦係合装置CLの伝達トルク容量がその時点での値に保持されるように、摩擦係合装置CLに対する油圧指令値が制御される(ステップ#32)。そして、スリップ係合状態となってからの時間の経過とともにキャリヤcaと内燃機関Eとの間の回転速度差が小さくなり、キャリヤcaと内燃機関Eとが一体回転する直結係合状態となった後(ステップ#33:Yes)、摩擦係合装置CLに対する油圧指令値を定常油圧まで上昇させることで摩擦係合装置CLを定常的な直結係合状態とし(ステップ#34)、処理は終了する。
1-5-5.始動制御
次に、ステップ#08の始動制御について、図14を参照して説明する。まず、第一回転電機MG1の目標回転速度を、内燃機関Eを点火回転速度Nfとする第一回転電機MG1の回転速度である始動回転速度Niに設定する(ステップ#40)。そして、始動回転速度Niを目標値として、第一回転電機MG1の回転速度を変化させる(ステップ#41)。本例では、ステップ#41において、始動回転速度Niを目標値とする回転速度フィードバック制御を実行する。第一回転電機MG1の回転速度が目標回転速度に到達するまでの間は(ステップ#42:No)、ステップ#41の制御を継続する。そして、第一回転電機MG1の回転速度が目標回転速度に到達すると(ステップ#42:Yes)、内燃機関制御ユニット3に対して内燃機関Eの始動指令を出し(ステップ#43)、処理は終了する。
次に、ステップ#08の始動制御について、図14を参照して説明する。まず、第一回転電機MG1の目標回転速度を、内燃機関Eを点火回転速度Nfとする第一回転電機MG1の回転速度である始動回転速度Niに設定する(ステップ#40)。そして、始動回転速度Niを目標値として、第一回転電機MG1の回転速度を変化させる(ステップ#41)。本例では、ステップ#41において、始動回転速度Niを目標値とする回転速度フィードバック制御を実行する。第一回転電機MG1の回転速度が目標回転速度に到達するまでの間は(ステップ#42:No)、ステップ#41の制御を継続する。そして、第一回転電機MG1の回転速度が目標回転速度に到達すると(ステップ#42:Yes)、内燃機関制御ユニット3に対して内燃機関Eの始動指令を出し(ステップ#43)、処理は終了する。
2.第二の実施形態
次に、本発明に係る車両用駆動装置の第二の実施形態について、図15及び図16を参照して説明する。図15に示すように、本実施形態に係る車両用駆動装置1は、摩擦係合装置CLの配設位置を除いて、基本的に上記第一の実施形態と同様に構成されている。以下では、本実施形態に係る車両用駆動装置1の構成について、上記第一の実施形態との相違点を中心に説明する。なお、特に説明しない点については、上記第一の実施形態と同様とする。
次に、本発明に係る車両用駆動装置の第二の実施形態について、図15及び図16を参照して説明する。図15に示すように、本実施形態に係る車両用駆動装置1は、摩擦係合装置CLの配設位置を除いて、基本的に上記第一の実施形態と同様に構成されている。以下では、本実施形態に係る車両用駆動装置1の構成について、上記第一の実施形態との相違点を中心に説明する。なお、特に説明しない点については、上記第一の実施形態と同様とする。
図15に示すように、本実施形態に係る車両用駆動装置1は、摩擦係合装置CLが、入力部材Iと差動歯車装置DGの回転要素(第二回転要素e2)との間ではなく、出力部材Oと差動歯車装置DGの回転要素(第三回転要素e3)との間の動力伝達経路に設けられている。これにより、摩擦係合装置CLは、出力部材Oと差動歯車装置DGの回転要素(第三回転要素e3)との駆動連結を解除可能に備えられている。
具体的には、摩擦係合装置CLの一方の係合部材である第一係合部材CLaには、カウンタドライブギヤ52が一体回転するように駆動連結されており、他方の係合部材である第二係合部材CLbには、第三回転要素連結部材43が一体回転するように駆動連結されている。よって、摩擦係合装置CLは、第二回転電機MG2と差動歯車装置DGの回転要素(第三回転要素e3)との間の動力伝達経路にも位置し、摩擦係合装置CLを解放状態とすることで、出力部材Oに加えて第二回転電機MG2も、差動歯車装置DGの回転要素(第三回転要素e3)との駆動連結が解除される。
本実施形態では、解除対象回転要素enがリングギヤrとなるため、図15に示すように、解除対象回転要素センサSe4は、リングギヤrの回転速度を検出可能に配置されている。また、本実施形態では、入力部材Iは、第二回転要素連結部材42と一体回転するように駆動連結されており、キャリヤcaの回転速度は、内燃機関Eの回転速度に常に等しくなる。
図16は、本実施形態に係る高速時差回転低減制御及び非同期係合制御の動作を説明するための速度線図である。図16の実線で示すように、電動走行モードで車両が走行している状態では、摩擦係合装置CLが解放状態とされ、リングギヤrは出力部材O及び第二回転電機MG2から切り離されて自由に回転できる状態となる。そして、内燃機関Eは停止状態であるためその回転速度は零とされ、第一回転電機MG1も回転速度及び出力トルクが零となるように制御されるため、リングギヤrの回転速度も零とされる。
そして、図16に実線で示される状態から内燃機関Eを始動する際には、差回転低減制御が実行され、リングギヤrと出力部材Oとの間の回転速度差(より正確には、リングギヤrとカウンタドライブギヤ52との間の回転速度差)が小さくなる方向に、第一回転電機MG1の回転速度を変化させる。
ここで、上述したように、速度線図上における第一回転電機MG1、第二回転電機MG2、内燃機関E、及び出力部材Oの各部材の回転速度は、差動歯車装置DGの回転要素(回転要素連結部材)までの動力伝達経路に設けられた伝動部材(摩擦係合装置CLのような回転及びトルクを選択的に伝達する係合要素を除く)による回転速度の変換(変速)後の回転速度を表している。そして、以下の説明では、速度線図を参照した説明において、第一回転電機MG1、第二回転電機MG2、内燃機関E、及び出力部材Oの各部材の回転速度は、特に断らない限り、上記伝動部材による回転速度の変換後の回転速度を意味するものとする。
本実施形態では、リングギヤrの回転速度を次第に上昇させるように、第一回転電機MG1が負方向のトルクを出力し、第一回転電機MG1の回転速度を低下させる(図16の「(1)の矢印」で示す処理)。なお、図16は、同期回転速度Nsが始動トルク出力可能範囲R内になく、高速時差回転低減制御が実行される場合の例であるため、差回転低減制御における第一回転電機MG1の目標回転速度は、始動トルク出力可能範囲Rの下限値Rminに設定される。図16の破線は、高速時差回転低減制御の実行により、第一回転電機MG1の回転速度が始動トルク出力可能範囲Rの下限値Rminに到達した状態を示している。
そして、第一回転電機MG1の回転速度が目標値である始動トルク出力可能範囲Rの下限値Rminに到達した状態で、非同期係合制御が実行され(図16の「(2)の矢印」で示す処理)、リングギヤrが出力部材Oの回転速度まで持ち上げられるのに伴い内燃機関Eの回転速度も上昇する。その後、図示は省略するが、摩擦係合装置CLが直結係合状態となったことを条件に始動制御部77による始動制御が実行され、内燃機関Eの回転速度が点火回転速度Nfに到達する。
なお、図示は省略するが、同期回転速度Nsが始動トルク出力可能範囲R内にあり、低速時差回転低減制御を実行する場合については、上記第一の実施形態と同様、差回転低減制御における第一回転電機の目標回転速度を同期回転速度Nsに設定する。そして、低速時差回転低減制御の実行により第一回転電機MG1の回転速度が目標値である同期回転速度Nsに到達した状態で、同期係合制御が実行される。
3.第三の実施形態
次に、本発明に係る車両用駆動装置の第三の実施形態について、図17及び図18を参照して説明する。図17に示すように、本実施形態に係る車両用駆動装置1は、摩擦係合装置CLの配設位置を除いて、基本的に上記第一の実施形態と同様に構成されている。以下では、本実施形態に係る車両用駆動装置1の構成について、上記第一の実施形態との相違点を中心に説明する。なお、特に説明しない点については、上記第一の実施形態と同様とする。
次に、本発明に係る車両用駆動装置の第三の実施形態について、図17及び図18を参照して説明する。図17に示すように、本実施形態に係る車両用駆動装置1は、摩擦係合装置CLの配設位置を除いて、基本的に上記第一の実施形態と同様に構成されている。以下では、本実施形態に係る車両用駆動装置1の構成について、上記第一の実施形態との相違点を中心に説明する。なお、特に説明しない点については、上記第一の実施形態と同様とする。
図17に示すように、本実施形態に係る車両用駆動装置1は、摩擦係合装置CLが、入力部材Iと差動歯車装置DGの回転要素(第二回転要素e2)との間ではなく、第一回転電機MG1と差動歯車装置DGの回転要素(第一回転要素e1)との間の動力伝達経路に設けられている。これにより、摩擦係合装置CLは、第一回転電機MG1と差動歯車装置DGの回転要素(第一回転要素e1)との駆動連結を解除可能に備えられている。
具体的には、摩擦係合装置CLの一方の係合部材である第一係合部材CLaには、第一回転電機MG1の第一ロータ軸7が一体回転するように駆動連結され、摩擦係合装置CLの他方の係合部材である第二係合部材CLbには、第一回転要素連結部材41が一体回転するように駆動連結されている。本実施形態では、解除対象回転要素enがサンギヤsとなるため、図17に示すように、解除対象回転要素センサSe4は、サンギヤsの回転速度を検出可能に配置されている。また、本実施形態では、入力部材Iは、第二回転要素連結部材42と一体回転するように駆動連結されており、キャリヤcaの回転速度は、内燃機関Eの回転速度に常に等しくなる。
図18は、本実施形態に係る高速時差回転低減制御及び非同期係合制御の動作を説明するための速度線図である。図18の実線で示すように、電動走行モードで車両が走行している状態では、摩擦係合装置CLが解放状態とされ、サンギヤsは第一回転電機MG1から切り離されて自由に回転できる状態となる。そして、内燃機関Eは停止状態であるためその回転速度は零とされ、サンギヤsは、リングギヤrの回転速度(車速に応じて定まる)に基づいて定まる回転速度で回転する。この際、第一回転電機MG1は、回転速度及び出力トルクが零となるように制御される。
そして、図18に実線で示される状態から内燃機関Eを始動する際には、差回転低減制御が実行され、サンギヤsと第一回転電機MG1との間の回転速度差が小さくなる方向に、第一回転電機MG1の回転速度を変化させる。本実施形態では、第一回転電機MG1が負方向のトルクを出力し、第一回転電機MG1の回転速度を低下させる(図18の「(1)の矢印」で示す処理)。なお、図18は、同期回転速度Nsが始動トルク出力可能範囲R内になく、高速時差回転低減制御が実行される場合の例であるため、差回転低減制御における第一回転電機MG1の目標回転速度は、始動トルク出力可能範囲Rの下限値Rminに設定される。図18における第一回転電機MG1を表す破線の丸は、高速時差回転低減制御の実行により、第一回転電機MG1の回転速度が始動トルク出力可能範囲Rの下限値Rminに到達した状態を示している。
そして、第一回転電機MG1の回転速度が目標値である始動トルク出力可能範囲Rの下限値Rminに到達した状態で、非同期係合制御が実行され(図18の「(2)の矢印」で示す処理)、サンギヤsが第一回転電機MG1の回転速度まで持ち上げられるのに伴い内燃機関Eの回転速度も上昇する。その後、図示は省略するが、摩擦係合装置CLが直結係合状態となったことを条件に始動制御部77による始動制御が実行され、内燃機関Eの回転速度が点火回転速度Nfに到達する。
なお、図示は省略するが、同期回転速度Nsが始動トルク出力可能範囲R内にあり、低速時差回転低減制御を実行する場合については、上記第一の実施形態と同様、差回転低減制御における第一回転電機の目標回転速度を同期回転速度Nsに設定する。そして、低速時差回転低減制御の実行により第一回転電機MG1の回転速度が目標値である同期回転速度Nsに到達した状態で、同期係合制御が実行される。
4.第四、第五、第六の実施形態
上記第一、第二、及び第三の実施形態では、差動歯車装置DGの他の回転要素を介することなく、第一回転要素e1に第一回転電機MG1が駆動連結され、第二回転要素e2に入力部材Iが駆動連結され、第三回転要素e3に第二回転電機MG2及び出力部材Oが駆動連結された構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、図19~図21に示すように、第一回転要素e1に入力部材Iが駆動連結され、第二回転要素e2に第二回転電機MG2及び出力部材Oが駆動連結され、第三回転要素e3に第一回転電機MG1が駆動連結された構成とすることもできる。
上記第一、第二、及び第三の実施形態では、差動歯車装置DGの他の回転要素を介することなく、第一回転要素e1に第一回転電機MG1が駆動連結され、第二回転要素e2に入力部材Iが駆動連結され、第三回転要素e3に第二回転電機MG2及び出力部材Oが駆動連結された構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、図19~図21に示すように、第一回転要素e1に入力部材Iが駆動連結され、第二回転要素e2に第二回転電機MG2及び出力部材Oが駆動連結され、第三回転要素e3に第一回転電機MG1が駆動連結された構成とすることもできる。
図19~図21に示す例では、上記第一、第二、第三の実施形態と異なり、内燃機関Eと回転電機MG1,MG2との双方の出力トルクにより走行するハイブリッド走行モードでは、基本的に、内燃機関Eの出力トルクに対して増幅されたトルクが出力部材Oに伝達されるトルクコンバータモードとなる。
図19は、本発明に係る車両用駆動装置の第四の実施形態を示し、上記第一の実施形態(図1、図4、図5)と同様、摩擦係合装置CLは、入力部材Iと差動歯車装置DGの回転要素(本例では、第一回転要素e1)との間の動力伝達経路に設けられている。
図20は、本発明に係る車両用駆動装置の第五の実施形態を示し、上記第二の実施形態(図15、図16)と同様、摩擦係合装置CLは、出力部材Oと差動歯車装置DGの回転要素(本例では、第二回転要素e2)との間の動力伝達経路に設けられている。
図21は、本発明に係る車両用駆動装置の第六の実施形態を示し、上記第三の実施形態(図17、図18)と同様、摩擦係合装置CLは、第一回転電機MG1と差動歯車装置DGの回転要素(本例では、第三回転要素e3)との間の動力伝達経路に設けられている。
図19~図21は、各実施形態において実行される高速時差回転低減制御及び非同期係合制御の動作を説明するための速度線図である。各速度線図の表記方法は上述した各実施形態と同様であるためここでは詳細な説明は省略するが、各速度線図は、高速時差回転低減制御(各図面で「(1)の矢印」で示す処理)を実行した後、非同期係合制御(各図面で「(2)の矢印」で示す処理)が実行される際の各部材の状態を示している。
なお、図19~図21に示す例では、差回転低減制御では、第一回転電機MG1は正方向のトルクを出力して回転速度を上昇させる。そのため、高速時差回転低減制御における第一回転電機MG1の目標回転速度は、始動トルク出力可能範囲Rの上限値Rmaxに設定される。また、非同期係合制御では、第一回転電機MG1は負方向のトルクを出力して自身の回転速度を維持し、始動制御では、第一回転電機MG1は負方向のトルクを出力して回転速度を低下させる。よって、図19~図21に示す構成では、始動トルク出力可能範囲Rは、負方向のトルクを基準に設定される。
5.その他の実施形態
最後に、本発明に係るその他の実施形態を説明する。なお、以下の各々の実施形態で開示される特徴は、その実施形態でのみ利用できるものではなく、矛盾が生じない限り、別の実施形態にも適用可能である。
最後に、本発明に係るその他の実施形態を説明する。なお、以下の各々の実施形態で開示される特徴は、その実施形態でのみ利用できるものではなく、矛盾が生じない限り、別の実施形態にも適用可能である。
(1)上記の各実施形態では、差動歯車装置DGが3つの回転要素を有する構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、差動歯車装置DGが4つ以上の回転要素を有する構成とすることもできる。例えば、図22及び図23に示すように、差動歯車装置DGが、回転速度の順に、第一回転要素e1、第二回転要素e2、第三回転要素e3、及び第四回転要素e4となる4つの回転要素を有する構成とすることができる。
図22及び図23に示す例では、入力部材I、出力部材O、第一回転電機MG1、及び第二回転電機MG2が、それぞれ差動歯車装置DGの異なる回転要素に、当該差動歯車装置DGの他の回転要素を介することなく駆動連結されている。すなわち、図22及び図23に示す例では、上記の各実施形態とは異なり、第二回転電機MG2が、出力部材Oが駆動連結された差動歯車装置DGの回転要素以外の回転要素に、当該差動歯車装置DGの他の回転要素を介することなく駆動連結されている。
具体的には、図22に示す例では、差動歯車装置DGの他の回転要素を介することなく、第一回転要素e1に入力部材Iが駆動連結され、第二回転要素e2に出力部材Oが駆動連結され、第三回転要素e3に第二回転電機MG2が駆動連結され、第四回転要素e4に第一回転電機MG1が駆動連結されている。また、図23に示す例では、差動歯車装置DGの他の回転要素を介することなく、第一回転要素e1に第一回転電機MG1が駆動連結され、第二回転要素e2に入力部材Iが駆動連結され、第三回転要素e3に出力部材Oが駆動連結され、第四回転要素e4に第二回転電機MG2が駆動連結されている。
図22及び図23に示す例では、摩擦係合装置CLは、入力部材Iと、当該入力部材Iが他の回転要素を介することなく駆動連結された差動歯車装置DGの回転要素との間の動力伝達経路に設けられている。そして、このような構成においても、上述した各実施形態と同様、高速時差回転低減制御(各図面で「(1)の矢印」で示す処理)を実行した後、非同期係合制御(各図面で「(2)の矢印」で示す処理)を実行することで、内燃機関Eの始動制御を実行することができる。
(2)上記の各実施形態では、高速時差回転低減制御において、第一回転電機MG1の目標回転速度が、始動トルク出力可能範囲Rの上限値Rmax及び下限値Rminの一方に設定される構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、高速時差回転低減制御において、第一回転電機MG1の目標回転速度を、上限値Rmax又は下限値Rminから始動トルク出力可能範囲Rの内側に所定回転速度離れた回転速度に設定することも可能である。すなわち、第一回転電機MG1の同期回転速度Nsが始動トルク出力可能範囲R内でない場合において、第一回転電機MG1の回転速度を、始動トルク出力可能範囲Rの上限値Rmax又は下限値Rminまで変化させずに、非同期係合制御を実行する構成とすることができる。
(3)上記の各実施形態では、第一回転電機MG1の同期回転速度Nsが、始動トルク出力可能範囲R内である場合には、当該同期回転速度Nsを差回転低減制御における第一回転電機MG1の目標回転速度として設定する構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第一回転電機MG1の同期回転速度Nsが、始動トルク出力可能範囲R内である場合にも、第一回転電機MG1の回転速度を同期回転速度Nsまで変化させずに、同期係合制御に代えて非同期係合制御を実行する構成とすることも可能である。
(4)上記の各実施形態では、非同期係合制御において、摩擦係合装置CLをスリップ係合状態に維持するための伝達トルク容量が、摩擦係合装置CLの2つの係合部材の間の回転速度差に変化が見られた時点での値に保持される構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、非同期係合制御部75が、内燃機関Eの回転速度の目標変化率と、内燃機関Eの慣性モーメントとに基づいて、摩擦係合装置CLをスリップ係合状態とするための当該摩擦係合装置CLの伝達トルク容量(目標伝達トルク容量)を設定する構成とすることも、本発明の好適な実施形態の一つである。
例えば、摩擦係合装置CLをスリップ係合状態とするための目標伝達トルク容量を、内燃機関Eの回転速度の目標変化率と、内燃機関Eの慣性モーメントとの積に応じた値とすることができる。このような構成では、摩擦係合装置CLを解放状態からスリップ係合状態へと変化させる際に、摩擦係合装置CLの伝達トルク容量が所定の変化率(例えば一定の変化率)で上記のように設定した目標伝達トルク容量まで上昇するように、摩擦係合装置CLに対する油圧指令値が制御される構成とすることができる。
(5)上記の各実施形態では、始動トルク出力可能範囲Rが、蓄電装置Bの状態に応じて可変に設定される構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、始動トルク出力可能範囲Rが、蓄電装置Bの状態によらずに固定の範囲とされる構成とすることも可能である。
(6)上記第一、第二、及び第三の実施形態では、差動歯車装置DGが、シングルピニオン型の遊星歯車機構PGにより構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、差動歯車装置DGが、ダブルピニオン型の遊星歯車機構やラビニヨ型の遊星歯車機構により構成されていても良い。また、差動歯車装置DGの具体的構成を示さなかった各実施形態(上記第一、第二、及び第三の実施形態を除く実施形態)においても、差動歯車装置DGの構成としては任意の機構を採用することができる。例えば、4つ以上の回転要素を有する差動歯車装置DGは、2組以上の遊星歯車機構の一部の回転要素間を互いに連結した構成等を用いることができる。
(7)上記の各実施形態では、摩擦係合装置CLが、油圧により動作する摩擦係合装置とされた構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、摩擦係合装置CLとして、電磁力に応じて係合圧が制御される電磁式の摩擦係合装置を採用することも可能である。
(8)上記の各実施形態では、制御装置70とは別に、内燃機関制御ユニット3が備えられた構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、内燃機関制御ユニット3が制御装置70に一体化された構成とすることも可能である。また、上記の実施形態で説明した機能部の割り当ては単なる一例であり、複数の機能部を組み合わせたり、1つの機能部をさらに区分けしたりすることも可能である。
(9)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載された構成及びこれと均等な構成を備えている限り、特許請求の範囲に記載されていない構成の一部を適宜改変した構成も、当然に本発明の技術的範囲に属する。
本発明は、内燃機関に駆動連結される入力部材と、車輪に駆動連結される出力部材と、第一回転電機と、第二回転電機と、少なくとも3つの回転要素を有する差動歯車装置と、制御装置と、を備えた車両用駆動装置に好適に利用することができる。
B:蓄電装置
CL:摩擦係合装置
CLa:第一係合部材(係合部材)
CLb:第二係合部材(係合部材)
DG:差動歯車装置
E:内燃機関
I:入力部材
MG1:第一回転電機
MG2:第二回転電機
O:出力部材
R:始動トルク出力可能範囲
Rmax:上限値
Rmin:下限値
TI:始動トルク
W:車輪
e1:第一回転要素
e2:第二回転要素
e3:第三回転要素
e4:第四回転要素
1:車両用駆動装置
70:制御装置
71:差回転低減制御部
73:係合制御部
77:始動制御部
CL:摩擦係合装置
CLa:第一係合部材(係合部材)
CLb:第二係合部材(係合部材)
DG:差動歯車装置
E:内燃機関
I:入力部材
MG1:第一回転電機
MG2:第二回転電機
O:出力部材
R:始動トルク出力可能範囲
Rmax:上限値
Rmin:下限値
TI:始動トルク
W:車輪
e1:第一回転要素
e2:第二回転要素
e3:第三回転要素
e4:第四回転要素
1:車両用駆動装置
70:制御装置
71:差回転低減制御部
73:係合制御部
77:始動制御部
Claims (9)
- 内燃機関に駆動連結される入力部材と、車輪に駆動連結される出力部材と、第一回転電機と、第二回転電機と、少なくとも3つの回転要素を有する差動歯車装置と、制御装置と、を備えた車両用駆動装置であって、
前記入力部材、前記出力部材、及び前記第一回転電機が、それぞれ前記差動歯車装置の異なる回転要素に、当該差動歯車装置の他の回転要素を介することなく駆動連結され、
前記第二回転電機が、前記第一回転電機が駆動連結された回転要素以外の前記差動歯車装置の回転要素に、当該差動歯車装置の他の回転要素を介することなく駆動連結され、
前記入力部材、前記出力部材、及び前記第一回転電機のいずれかと、前記差動歯車装置の回転要素との駆動連結を解除可能な摩擦係合装置を備え、
前記制御装置は、前記摩擦係合装置が解放状態とされ、前記内燃機関が停止し、更に前記出力部材が回転している状態から前記内燃機関を始動する際に、前記第一回転電機の回転速度を、前記摩擦係合装置における互いに係合される2つの係合部材の間の回転速度差が小さくなる方向に変化させる差回転低減制御を実行する差回転低減制御部と、
前記差回転低減制御の実行を条件に、前記2つの係合部材の間の回転速度差が差回転閾値以上である非同期状態で前記摩擦係合装置を係合させる非同期係合制御を実行し、前記摩擦係合装置を前記2つの係合部材の間に差回転がない係合状態である直結係合状態とする係合制御部と、
前記直結係合状態となったことを条件に、前記内燃機関を始動可能な回転速度とする前記第一回転電機の回転速度を目標値として、前記第一回転電機の回転速度を変化させる始動制御部と、を備え、
前記差回転低減制御部は、前記内燃機関の始動に必要とされる始動トルクを前記第一回転電機が出力可能な回転速度の範囲である始動トルク出力可能範囲の上限値及び下限値を限界として、前記第一回転電機の回転速度を変化させる車両用駆動装置。 - 前記2つの係合部材の間の回転速度差が前記差回転閾値未満である同期状態とするための前記第一回転電機の回転速度が前記上限値又は前記下限値を超える場合には、
前記差回転低減制御部は、前記上限値及び前記下限値の一方を目標値として前記第一回転電機の回転速度を変化させる請求項1に記載の車両用駆動装置。 - 前記2つの係合部材の間の回転速度差が前記差回転閾値未満である同期状態とするための前記第一回転電機の回転速度が前記始動トルク出力可能範囲内である場合には、
前記差回転低減制御部が、前記同期状態とするように前記第一回転電機の回転速度を変化させ、前記係合制御部が、前記非同期係合制御に代えて、前記同期状態で前記摩擦係合装置を係合させる同期係合制御を実行して、前記摩擦係合装置を前記直結係合状態とする請求項1又は2に記載の車両用駆動装置。 - 前記係合制御部は、前記非同期係合制御として、前記2つの係合部材が回転速度差を有する状態で係合するスリップ係合状態で当該2つの係合部材の間の回転速度差を減少させ、当該2つの係合部材の間の回転速度差が前記差回転閾値未満である同期状態となったことを条件に、前記直結係合状態とする制御を実行する請求項1から3のいずれか一項に記載の車両用駆動装置。
- 前記係合制御部は、前記内燃機関の回転速度の目標変化率と、前記内燃機関の慣性モーメントとに基づいて、前記摩擦係合装置を前記スリップ係合状態とするための当該摩擦係合装置の伝達トルク容量を設定する請求項4に記載の車両用駆動装置。
- 前記第一回転電機は、蓄電装置から供給された電力によりトルクを発生するとともに、前記第一回転電機の回転速度及び前記蓄電装置の状態に応じて発生可能な最大トルクが異なるように構成され、
前記始動トルク出力可能範囲が、前記蓄電装置の状態に応じて可変に設定される請求項1から5のいずれか一項に記載の車両用駆動装置。 - 前記第二回転電機が、前記出力部材が駆動連結された前記差動歯車装置の回転要素に、当該差動歯車装置の他の回転要素を介することなく駆動連結されている請求項1から6のいずれか一項に記載の車両用駆動装置。
- 前記差動歯車装置は、回転速度の順に第一回転要素、第二回転要素、及び第三回転要素となる3つの回転要素を有し、
前記差動歯車装置の他の回転要素を介することなく、前記第一回転要素に前記第一回転電機が駆動連結され、前記第二回転要素に前記入力部材が駆動連結され、前記第三回転要素に前記第二回転電機及び前記出力部材が駆動連結され、
前記摩擦係合装置は、前記入力部材と前記第二回転要素との間の動力伝達経路に設けられている請求項1から7のいずれか一項に記載の車両用駆動装置。 - 前記差動歯車装置は、回転速度の順に第一回転要素、第二回転要素、第三回転要素、及び第四回転要素となる4つの回転要素を有し、
前記入力部材、前記出力部材、前記第一回転電機、及び前記第二回転電機が、それぞれ前記差動歯車装置の異なる回転要素に、当該差動歯車装置の他の回転要素を介することなく駆動連結され、
前記摩擦係合装置が、前記入力部材と、当該入力部材が他の回転要素を介することなく駆動連結された前記差動歯車装置の回転要素との間の動力伝達経路に設けられている請求項1から6のいずれか一項に記載の車両用駆動装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112012000337T DE112012000337T5 (de) | 2011-03-25 | 2012-02-27 | Antriebsvorrichtung für ein Fahrzeug |
CN201280006248.8A CN103328293B (zh) | 2011-03-25 | 2012-02-27 | 车辆用驱动装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-068145 | 2011-03-25 | ||
JP2011068145A JP5435304B2 (ja) | 2011-03-25 | 2011-03-25 | 車両用駆動装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012132701A1 true WO2012132701A1 (ja) | 2012-10-04 |
Family
ID=46877814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054778 WO2012132701A1 (ja) | 2011-03-25 | 2012-02-27 | 車両用駆動装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8414451B2 (ja) |
JP (1) | JP5435304B2 (ja) |
CN (1) | CN103328293B (ja) |
DE (1) | DE112012000337T5 (ja) |
WO (1) | WO2012132701A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5382467B2 (ja) * | 2011-04-20 | 2014-01-08 | アイシン・エィ・ダブリュ株式会社 | 車両用駆動装置 |
JP5836181B2 (ja) * | 2012-03-30 | 2015-12-24 | 本田技研工業株式会社 | 車両用駆動装置及び車両用駆動装置の制御方法 |
JP5880732B2 (ja) * | 2012-11-26 | 2016-03-09 | トヨタ自動車株式会社 | ハイブリッド車両の動力伝達装置及びハイブリッドシステム |
US9663094B2 (en) * | 2013-04-30 | 2017-05-30 | Toyota Jidosha Kabushiki Kaisha | Driving device for hybrid vehicle |
JP6119530B2 (ja) * | 2013-09-26 | 2017-04-26 | トヨタ自動車株式会社 | 車両の制御装置 |
US9109674B2 (en) * | 2013-10-14 | 2015-08-18 | Fca Us Llc | Enhanced electrically variable drive unit |
KR101558351B1 (ko) * | 2013-12-04 | 2015-10-07 | 현대자동차 주식회사 | 하이브리드 차량용 변속장치 |
EP3086989A4 (en) * | 2013-12-23 | 2017-10-18 | Scania CV AB | A method of supplying electrical appliances of a vehicle |
WO2015099591A1 (en) | 2013-12-23 | 2015-07-02 | Scania Cv Ab | Propulsion system for a vehicle |
WO2015099594A1 (en) | 2013-12-23 | 2015-07-02 | Scania Cv Ab | Propulsion system for a vehicle |
JP2015182662A (ja) * | 2014-03-25 | 2015-10-22 | トヨタ自動車株式会社 | エンジン停止制御装置 |
DE112016000435T5 (de) * | 2015-03-31 | 2017-10-05 | Aisin Aw Co., Ltd. | Steuerungsvorrichtung |
JP6760053B2 (ja) * | 2016-12-27 | 2020-09-23 | アイシン・エィ・ダブリュ株式会社 | 動力伝達制御装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005048805A (ja) * | 2003-07-30 | 2005-02-24 | Nissan Motor Co Ltd | ハイブリッド変速機のモード切り替え制御装置 |
JP2010076678A (ja) * | 2008-09-26 | 2010-04-08 | Aisin Aw Co Ltd | ハイブリッド駆動装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869130A (en) * | 1997-06-12 | 1999-02-09 | Mac Dermid, Incorporated | Process for improving the adhesion of polymeric materials to metal surfaces |
JP4055746B2 (ja) * | 2004-06-18 | 2008-03-05 | アイシン・エィ・ダブリュ株式会社 | 電動車両駆動制御装置及び電動車両駆動制御方法 |
JP4165480B2 (ja) * | 2004-09-08 | 2008-10-15 | トヨタ自動車株式会社 | 自動車およびその制御方法 |
US7588108B2 (en) * | 2005-03-16 | 2009-09-15 | Takayuki Miyao | Method of controlling vehicle driving system |
JP5266843B2 (ja) * | 2008-03-31 | 2013-08-21 | アイシン・エィ・ダブリュ株式会社 | クラッチの制御装置 |
JP4554702B2 (ja) * | 2008-11-19 | 2010-09-29 | トヨタ自動車株式会社 | 動力伝達装置の制御装置 |
JP5177553B2 (ja) * | 2008-12-26 | 2013-04-03 | アイシン・エィ・ダブリュ株式会社 | 制御装置 |
JP2010188786A (ja) * | 2009-02-16 | 2010-09-02 | Nissan Motor Co Ltd | ハイブリッド車両の変速制御装置および変速制御方法 |
JP5359398B2 (ja) * | 2009-03-10 | 2013-12-04 | マツダ株式会社 | ハイブリッド車両の制御装置 |
JP5278214B2 (ja) * | 2009-07-15 | 2013-09-04 | 日産自動車株式会社 | ハイブリッド車両の制御装置 |
JP5703738B2 (ja) * | 2010-12-17 | 2015-04-22 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
-
2011
- 2011-03-25 JP JP2011068145A patent/JP5435304B2/ja not_active Expired - Fee Related
-
2012
- 2012-02-27 WO PCT/JP2012/054778 patent/WO2012132701A1/ja active Application Filing
- 2012-02-27 CN CN201280006248.8A patent/CN103328293B/zh not_active Expired - Fee Related
- 2012-02-27 DE DE112012000337T patent/DE112012000337T5/de not_active Withdrawn
- 2012-03-26 US US13/430,060 patent/US8414451B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005048805A (ja) * | 2003-07-30 | 2005-02-24 | Nissan Motor Co Ltd | ハイブリッド変速機のモード切り替え制御装置 |
JP2010076678A (ja) * | 2008-09-26 | 2010-04-08 | Aisin Aw Co Ltd | ハイブリッド駆動装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112012000337T5 (de) | 2013-09-19 |
US8414451B2 (en) | 2013-04-09 |
JP2012201239A (ja) | 2012-10-22 |
US20120244992A1 (en) | 2012-09-27 |
CN103328293B (zh) | 2015-12-02 |
CN103328293A (zh) | 2013-09-25 |
JP5435304B2 (ja) | 2014-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5435304B2 (ja) | 車両用駆動装置 | |
JP5382467B2 (ja) | 車両用駆動装置 | |
JP5435305B2 (ja) | 車両用駆動装置 | |
JP5967105B2 (ja) | ハイブリッド車両の駆動制御装置 | |
JP5408506B2 (ja) | 車両用駆動装置 | |
JP2019055717A (ja) | 車両の制御装置 | |
WO2013088501A1 (ja) | ハイブリッド車両の駆動制御装置 | |
JP6024691B2 (ja) | ハイブリッド車両用駆動装置の制御装置 | |
JP5884897B2 (ja) | ハイブリッド車両の駆動制御装置 | |
JP5874812B2 (ja) | ハイブリッド車両の駆動制御装置 | |
US10710447B2 (en) | Hybrid vehicle drive system | |
JPWO2013186924A1 (ja) | ハイブリッド車両用駆動装置 | |
JP6040886B2 (ja) | 動力伝達装置 | |
JP2013169852A (ja) | 車両の制御装置 | |
JP6048154B2 (ja) | ハイブリッド車両の動力伝達装置及びハイブリッドシステム | |
JP6891748B2 (ja) | 車両の制御装置 | |
JP2012210833A (ja) | 車両用駆動装置 | |
US9663094B2 (en) | Driving device for hybrid vehicle | |
JP2012210834A (ja) | 車両用駆動装置 | |
JP6946889B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP5104368B2 (ja) | 動力出力装置および車両 | |
JP2012153250A (ja) | 車両の制御装置 | |
JP6881183B2 (ja) | 車両の動力伝達装置 | |
JP6825523B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP6911667B2 (ja) | 車両用動力伝達装置の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12764553 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120003373 Country of ref document: DE Ref document number: 112012000337 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12764553 Country of ref document: EP Kind code of ref document: A1 |