以下、本発明の一実施形態について、添付図面を参照しつつ説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
本実施形態に係る流動層炉(流動床炉)は、高温の流動粒子(流動砂)によって廃棄物を加熱することにより、廃棄物から可燃性ガスを取り出す。この流動層炉の処理対象物である廃棄物には、例えば、木質系バイオマス(剪定枝や木材等)や可燃物(プラスチックやフラフ、紙等)、これらの混合物等が含まれる。
The fluidized bed furnace (fluidized bed furnace) according to the present embodiment takes out the combustible gas from the waste by heating the waste with high-temperature fluidized particles (fluidized sand). The waste that is the treatment target of the fluidized bed furnace includes, for example, woody biomass (pruned branches, wood, etc.), combustibles (plastic, fluff, paper, etc.), a mixture thereof, and the like.
前記流動層炉は、図1及び図2に示すように、内部に流動層14を構成する流動粒子12を有する炉本体20と、炉本体20内に流動化ガスを供給するガス供給部30と、流動層14の温度を検出する複数の温度センサ(温度検出部)40と、ガス供給部30を制御する制御部50と、炉本体20内に廃棄物18を供給する廃棄物供給部60と、を備える。
As shown in FIGS. 1 and 2, the fluidized bed furnace includes a furnace body 20 having fluidized particles 12 constituting a fluidized bed 14 therein, and a gas supply unit 30 that supplies fluidized gas into the furnace body 20. A plurality of temperature sensors (temperature detection units) 40 for detecting the temperature of the fluidized bed 14, a control unit 50 for controlling the gas supply unit 30, and a waste supply unit 60 for supplying the waste 18 into the furnace body 20. .
流動粒子12は、炉本体20の内部において流動層14を構成し、廃棄物18を加熱する。即ち、廃棄物18の一部の燃焼により加熱されて高温になった流動粒子12が廃棄物18と混合されることによって当該廃棄物18がガス化され、これにより、可燃性ガスが発生する。本実施形態の流動粒子12は、珪砂等である。
The fluidized particles 12 constitute a fluidized bed 14 inside the furnace body 20 and heat the waste 18. That is, the fluidized particles 12 heated to a high temperature by the combustion of a part of the waste 18 are mixed with the waste 18 to gasify the waste 18, thereby generating combustible gas. The fluidized particles 12 of this embodiment are silica sand or the like.
炉本体20は、高温の流動粒子12によって廃棄物18から可燃性ガスを取り出す。炉本体20は、流動粒子12を下方から支持する底壁21と、この底壁21から立ち上がる側壁22と、側壁22の上端に設けられた可燃性ガス排出部23と、を有する。
The furnace body 20 takes out the combustible gas from the waste 18 by the high temperature fluidized particles 12. The furnace body 20 includes a bottom wall 21 that supports the fluidized particles 12 from below, a side wall 22 that rises from the bottom wall 21, and a combustible gas discharge portion 23 that is provided at the upper end of the side wall 22.
側壁22は、上下に延びる角筒形状である。具体的に、側壁22は、前後(図2において左右)に間隔をおいて対向する前壁(供給側側壁)24及び後壁25と、これら前壁24と後壁25との端部同士をそれぞれ接続する横壁26,26と、を有する。横壁26,26同士は互いに平行である。即ち、炉本体20は、横壁26,26同士の間隔である幅方向の寸法が前後方向において均一な平面形状を有する。
The side wall 22 has a rectangular tube shape extending vertically. Specifically, the side wall 22 includes a front wall (supply side wall) 24 and a rear wall 25 that are opposed to each other at an interval in the front-rear direction (left and right in FIG. 2), and ends of the front wall 24 and the rear wall 25. There are lateral walls 26, 26 connected to each other. The lateral walls 26, 26 are parallel to each other. That is, the furnace body 20 has a planar shape in which the dimension in the width direction, which is the distance between the lateral walls 26, 26, is uniform in the front-rear direction.
この側壁22のうち、底壁21の中心位置を挟んで排出口29と反対側に位置する側壁(前壁)24には、炉本体20内へ廃棄物18を挿入するための廃棄物挿入口28が設けられる。尚、本実施形態では、図2に示すように、前後方向とは、炉本体20における前後方向(図2における左右方向)のことをいう。また、幅方向とは、炉本体20における幅方向(図2における上下方向)のことをいう。
Of these side walls 22, a side wall (front wall) 24 located on the opposite side of the discharge port 29 across the center position of the bottom wall 21 is a waste insertion port for inserting the waste 18 into the furnace body 20. 28 is provided. In the present embodiment, as shown in FIG. 2, the front-rear direction refers to the front-rear direction in the furnace body 20 (the left-right direction in FIG. 2). The width direction refers to the width direction in the furnace body 20 (up and down direction in FIG. 2).
廃棄物挿入口28は、前壁24の下部において、幅方向の中央部に設けられている。この廃棄物挿入口28は、炉本体20の底壁21が支持する流動粒子12(流動層14)の上面上に廃棄物18を横向きに押し込むことができる高さ位置に設けられている。詳しくは、廃棄物挿入口28は、流動層14の上面よりも僅かに高い位置に当該廃棄物挿入口28の下端が位置するように設けられている。
The waste insertion port 28 is provided at the center in the width direction at the lower part of the front wall 24. The waste insertion port 28 is provided at a height at which the waste 18 can be pushed sideways onto the upper surface of the fluidized particles 12 (fluidized bed 14) supported by the bottom wall 21 of the furnace body 20. Specifically, the waste insertion port 28 is provided so that the lower end of the waste insertion port 28 is located at a position slightly higher than the upper surface of the fluidized bed 14.
可燃性ガス排出部23は、炉本体20内において発生した可燃性ガスを排出する。この可燃性ガス排出部23では、炉本体20において得られた可燃性ガスを後段の例えば発電プロセスのガスエンジン等に供給するためのダクト等が接続できるよう、側壁22よりも外径が絞られている。
The combustible gas discharge unit 23 discharges the combustible gas generated in the furnace body 20. In this combustible gas discharge part 23, the outer diameter is narrower than that of the side wall 22 so that a duct or the like for supplying the combustible gas obtained in the furnace body 20 to a gas engine or the like of a subsequent power generation process can be connected. ing.
底壁21は、当該底壁21の中心位置から特定の方向に偏った位置に、廃棄物18中の不燃物を流動粒子12と共に排出するための排出口29を有する。この排出口29は、底壁21において、前記偏った位置の幅方向の中心部に開口している。底壁21の上面21aは、排出口29に向って低くなるように傾斜する。これにより、不燃物等が上面21a上を降下する。本実施形態の底壁21の上面21aは、排出口29の前側(図2における左側)の領域211と、排出口29の後側(図2における右側)の領域212と、排出口29の幅方向の両側の領域213、214とに分けられる。そして、各領域211、212、213、214は、排出口29へ向かって一定の下り勾配となる傾斜面である。即ち、底壁21の上面21aにおいて最も低い位置に排出口29が設けられている。
The bottom wall 21 has a discharge port 29 for discharging the incombustible material in the waste 18 together with the flowing particles 12 at a position deviated in a specific direction from the center position of the bottom wall 21. The discharge port 29 opens in the center portion in the width direction of the offset position on the bottom wall 21. The upper surface 21 a of the bottom wall 21 is inclined so as to become lower toward the discharge port 29. Thereby, incombustibles etc. fall on the upper surface 21a. The upper surface 21a of the bottom wall 21 of the present embodiment includes a region 211 on the front side (left side in FIG. 2) of the discharge port 29, a region 212 on the rear side (right side in FIG. 2), and the width of the discharge port 29. It is divided into regions 213 and 214 on both sides in the direction. And each area | region 211,212,213,214 is an inclined surface used as the fixed downward slope toward the discharge port 29. FIG. That is, the discharge port 29 is provided at the lowest position on the upper surface 21 a of the bottom wall 21.
ガス供給部30は、底壁21から流動粒子12に対して流動化ガスを吹き込むことにより当該流動粒子12を流動化させる。このガス供給部30は、底壁21に配設される複数のノズル31と、各ノズル31に流動化ガスを分配する複数の風箱32と、各風箱32に流動化ガスをそれぞれ供給する供給部33と、を有する。本実施形態では、底壁21において複数のノズル31が幅方向に並べられると共に、この幅方向に並ぶノズル31の列が前後方向に配列されている。即ち、複数のノズル31は、底壁21において幅方向及び前後方向に間隔をおいた格子状に配置される。各ノズル31は、底壁21を貫通するように底壁21に取り付けられている。尚、各ノズル31の配置位置は、前記格子状の配置に限定されない。
The gas supply unit 30 fluidizes the fluidized particles 12 by blowing fluidized gas into the fluidized particles 12 from the bottom wall 21. The gas supply unit 30 supplies a plurality of nozzles 31 disposed on the bottom wall 21, a plurality of wind boxes 32 that distribute the fluidized gas to the nozzles 31, and a fluidized gas to each of the wind boxes 32. And a supply unit 33. In the present embodiment, a plurality of nozzles 31 are arranged on the bottom wall 21 in the width direction, and the rows of nozzles 31 arranged in the width direction are arranged in the front-rear direction. In other words, the plurality of nozzles 31 are arranged on the bottom wall 21 in a lattice shape spaced in the width direction and the front-rear direction. Each nozzle 31 is attached to the bottom wall 21 so as to penetrate the bottom wall 21. The arrangement position of each nozzle 31 is not limited to the lattice arrangement.
各風箱32は、底壁21における幅方向の所定の位置からノズル31を介して炉本体20内に流動化ガスを吹き込む。風箱32は、底壁21の下側に配置され、幅方向に延びる箱形状を有する。この風箱32は、底壁21において幅方向に並ぶ各ノズル31に流動化ガスを分配するヘッダーとして働く。即ち、風箱32は、幅方向に並ぶ各ノズル31から吹き出される流動化ガスの流量を均一にする機能をもつ。本実施形態では、共通の流動化ガスが一つの風箱32から前後二列に並ぶ各ノズル31に対して分配される。
Each wind box 32 blows fluidizing gas into the furnace body 20 through a nozzle 31 from a predetermined position in the width direction of the bottom wall 21. The wind box 32 is disposed below the bottom wall 21 and has a box shape extending in the width direction. The wind box 32 serves as a header that distributes the fluidized gas to the nozzles 31 arranged in the width direction on the bottom wall 21. That is, the air box 32 has a function of making the flow rate of the fluidized gas blown out from the nozzles 31 arranged in the width direction uniform. In the present embodiment, a common fluidized gas is distributed from the one air box 32 to the nozzles 31 arranged in two rows in the front and rear.
これら複数の風箱32は、底壁21の下面側において前後方向に並ぶ。これにより、各風箱32に対応するノズル31毎に、そのノズル31から吹き出す流動化ガスの成分や流量を変更することが可能となる。本実施形態では、底壁21の下側において、3個の風箱32a,32b,32cが前後方向に並んでいる。詳しくは、底壁21の下側において、排出口29よりも前壁24側に2個の風箱(第1風箱32a及び第2風箱32b)が配置され、排出口29よりも後壁25側に1個の風箱(第3風箱32c)配置されている。
The plurality of wind boxes 32 are arranged in the front-rear direction on the lower surface side of the bottom wall 21. Thereby, for each nozzle 31 corresponding to each wind box 32, the component and flow rate of the fluidizing gas blown from the nozzle 31 can be changed. In the present embodiment, on the lower side of the bottom wall 21, three wind boxes 32a, 32b, 32c are arranged in the front-rear direction. Specifically, two wind boxes (a first wind box 32 a and a second wind box 32 b) are arranged on the lower side of the bottom wall 21 and closer to the front wall 24 than the discharge port 29. One wind box (third wind box 32c) is arranged on the 25th side.
供給部33は、空気(酸素)を供給するための空気供給部34と、水蒸気を供給するための水蒸気供給部35と、これら各供給部34、35と各風箱32とを接続する管路36と、を有する。この供給部33は、各供給部34,35から管路36を介して風箱32に空気及び水蒸気をそれぞれ供給する。本実施形態では、これら空気供給部34及び水蒸気供給部35から風箱32に供給される空気及び/又は水蒸気によって流動化ガスが構成される。
The supply unit 33 includes an air supply unit 34 for supplying air (oxygen), a water vapor supply unit 35 for supplying water vapor, and a pipe line connecting the supply units 34 and 35 and the wind boxes 32. 36. The supply unit 33 supplies air and water vapor from the supply units 34 and 35 to the wind box 32 via the pipeline 36. In the present embodiment, fluidized gas is constituted by the air and / or water vapor supplied from the air supply unit 34 and the water vapor supply unit 35 to the wind box 32.
各管路36には、当該管路36内を流れる流体(本実施形態では空気又は水蒸気)の流量を調整するためのバルブ37a、37b、37c、38a、38b、38cがそれぞれ設けられている。各バルブ37a、37b、37c、38a、38b、38cは、制御部50からの制御信号によって開度を変更する。これにより、各風箱32から炉本体20内に供給される流動化ガスの空気比(酸素濃度)や流量が調整される。
Each pipe 36 is provided with valves 37a, 37b, 37c, 38a, 38b, and 38c for adjusting the flow rate of the fluid (air or water vapor in this embodiment) flowing through the pipe 36. Each valve 37 a, 37 b, 37 c, 38 a, 38 b, 38 c changes the opening degree according to a control signal from the control unit 50. As a result, the air ratio (oxygen concentration) and flow rate of the fluidized gas supplied from each wind box 32 into the furnace body 20 are adjusted.
複数の温度センサ40は、流動層14の温度を検出するセンサである。これら複数の温度センサ40は、炉本体20内にそれぞれ配置される。各温度センサ40は、制御部50にそれぞれ接続され、検出した温度を温度信号に変換して制御部50に出力する。
The plurality of temperature sensors 40 are sensors that detect the temperature of the fluidized bed 14. The plurality of temperature sensors 40 are respectively disposed in the furnace body 20. Each temperature sensor 40 is connected to the control unit 50, converts the detected temperature into a temperature signal, and outputs the temperature signal to the control unit 50.
各温度センサ40は、流動層14における風箱32と上下方向に重なる各領域(以下、単に「上方領域」とも称する。)ua1、ua2、ua3に配置される。具体的に、各温度センサ40は、各上方領域ua1、ua2、ua3において上下に間隔をおいた上側位置と下側位置との温度を検出できるようにそれぞれ配置される。本実施形態では、6個の温度センサ40が配置されている。具体的には、第1風箱32aの上方領域(第1領域)ua1、第2風箱32bの上方領域(第3領域)ua3、及び第3風箱32cの上方領域(第2領域)ua2にそれぞれ2個の温度センサ40が配置される。尚、本実施形態では、炉本体20に3つの風箱32が設けられているために上方領域ua1、ua2、ua3の数が3つであるが、風箱32の個数が増えればこれに対応して上方領域ua1、ua2、ua3、…の数も増える。また、上側位置とは、上下方向において流動層14の中央よりも上側の位置である。下側位置とは、前記中央よりも下側の位置である。但し、上側位置は、流動層14の上面より上側の気温や廃棄物の温度の影響を受け難い所定深さ以上の位置である。また、下側位置は、底壁21自体の温度の影響を受け難い底壁21の上面21aよりも所定の距離以上上側の位置である。
Each temperature sensor 40 is disposed in each region (hereinafter, also simply referred to as “upper region”) ua 1 , ua 2 , ua 3 that overlaps the wind box 32 in the fluidized bed 14 in the vertical direction. Specifically, each temperature sensor 40 is arranged so as to be able to detect the temperature between the upper position and the lower position spaced apart in the vertical direction in each upper region ua 1 , ua 2 , ua 3 . In the present embodiment, six temperature sensors 40 are arranged. Specifically, the upper region (first region) ua 1 of the first wind box 32a, the upper region (third region) ua 3 of the second wind box 32b, and the upper region (second region) of the third wind box 32c. ) Two temperature sensors 40 are arranged in each of ua 2 . In the present embodiment, since the three wind boxes 32 are provided in the furnace body 20, the number of the upper regions ua 1 , ua 2 and ua 3 is three. However, if the number of the wind boxes 32 increases, Correspondingly, the number of upper regions ua 1 , ua 2 , ua 3 ,. The upper position is a position above the center of the fluidized bed 14 in the vertical direction. The lower position is a position below the center. However, the upper position is a position of a predetermined depth or more that is hardly affected by the temperature above the upper surface of the fluidized bed 14 or the temperature of the waste. Further, the lower position is a position that is more than a predetermined distance above the upper surface 21a of the bottom wall 21 that is not easily affected by the temperature of the bottom wall 21 itself.
各上方領域ua1、ua2、ua3に配置される2個の温度センサ40は、当該上方領域ua1、ua2、ua3における上側位置と下側位置との温度を検出できればよく、上下方向に重なる位置に配置されなくてもよい。即ち、上側位置の温度を検出する温度センサ40と下側位置の温度を検出する温度センサ40とが上方領域ua1、ua2、ua3内において幅方向にずれた位置にそれぞれ配置(図2参照)されてもよい。また、上側位置の温度を検出する温度センサ40と下側位置の温度を検出する温度センサ40とが上方領域ua1、ua2、ua3(詳しくは、前列のノズル31の噴出口と後列のノズル31の噴出口との間の領域(図3の斜線部参照))内において前後方向にずれた位置にそれぞれ配置されてもよい。
The two temperature sensors 40 arranged in each upper region ua 1 , ua 2 , ua 3 only need to be able to detect the temperature between the upper position and the lower position in the upper region ua 1 , ua 2 , ua 3 . It does not have to be arranged at a position overlapping in the direction. That is, the temperature sensor 40 for detecting the temperature of the upper position and the temperature sensor 40 for detecting the temperature of the lower position are respectively arranged at positions shifted in the width direction in the upper regions ua 1 , ua 2 , ua 3 (FIG. 2). Reference). Further, a temperature sensor 40 that detects the temperature of the upper position and a temperature sensor 40 that detects the temperature of the lower position include upper regions ua 1 , ua 2 , ua 3 (specifically, the outlets of the nozzles 31 in the front row and the rear rows) They may be arranged at positions shifted in the front-rear direction within a region (see the hatched portion in FIG. 3) between the nozzle 31 and the ejection port.
また、温度センサ40は、第1領域ua1と第2領域ua2とにおいて上側位置と下側位置との温度をそれぞれ検出できるように配置されていれば、他の上方領域(本実施形態では、第3領域ua3)には1個でもよい。また、温度センサ40は、各上方領域ua1、ua2、ua3に3個以上ずつ配置されてもよい。
Further, if the temperature sensor 40 is arranged so as to be able to detect the temperatures of the upper position and the lower position in the first area ua 1 and the second area ua 2 , respectively, the other upper areas (in the present embodiment, , There may be one in the third region ua 3 ). Further, three or more temperature sensors 40 may be disposed in each of the upper regions ua 1 , ua 2 , and ua 3 .
尚、少なくとも第1領域ua1内と第2領域ua2内とにおいて上側位置と下側位置との温度を検出できるように温度センサ40がそれぞれ配置されていれば、炉本体20内に配置される温度センサ40の具体的な個数や配置位置は、限定されない。
If the temperature sensors 40 are arranged so that the temperatures of the upper side position and the lower side position can be detected at least in the first area ua 1 and the second area ua 2 , they are arranged in the furnace body 20. The specific number and arrangement position of the temperature sensors 40 are not limited.
例えば、流動層14における第1領域ua1と第2領域ua2との間では、1個の温度センサ40が配置されてもよい。また、複数の温度センサ40が前後方向に所定間隔で温度を検出できる位置に(例えば、幅方向から見て前後に一列に並ぶように(図4参照))それぞれ配置されてもよい。この場合、各温度センサ40は、第1領域ua1と第2領域ua2との間に位置する各上方領域(本実施形態では第3領域ua3)内にそれぞれ配置されてもよく、また、上方領域ua1、ua2、ua3と関係なく、前後方向に所定間隔をおいて配置されてもよい。このように配置されると、流動層14における第1領域ua1と第2領域ua2との間の温度を検出することができるため、第1領域ua1と第2領域ua2との間において局所的に温度が低下する等の流動層14の局所的な温度異常の検出が可能となる。
For example, one temperature sensor 40 may be disposed between the first region ua 1 and the second region ua 2 in the fluidized bed 14. Further, the plurality of temperature sensors 40 may be respectively arranged at positions where temperatures can be detected at predetermined intervals in the front-rear direction (for example, arranged in a line in the front-rear direction when viewed from the width direction (see FIG. 4)). In this case, each temperature sensor 40 may be disposed in each upper region (the third region ua 3 in the present embodiment) located between the first region ua 1 and the second region ua 2, and Regardless of the upper regions ua 1 , ua 2 , ua 3 , they may be arranged at a predetermined interval in the front-rear direction. When arranged in this way, the temperature between the first region ua 1 and the second region ua 2 in the fluidized bed 14 can be detected, and therefore between the first region ua 1 and the second region ua 2. It becomes possible to detect a local temperature abnormality of the fluidized bed 14 such as a local temperature drop.
また、第1領域ua1と第2領域ua2との間の各上方領域ua3、…において、温度センサ40が上側位置と下側位置との温度を検出できる位置にそれぞれ配置されることが好ましい。このように各温度センサ40が配置されることにより、流動層14における第1領域ua1から第2領域ua2までの各上方領域ua3、…における流動不良が好適に検出される。詳しくは、流動化ガスが底壁21から流動層14内に供給されたときに、当該流動化ガスを供給された領域の流動粒子12が十分に流動化していれば、この流動化ガスが上方に向かって流動層14内を進み易い。しかし、当該領域uaに流動不良が生じていると、前記流動化ガスが流動層14内を上方に向かって進み難くなる。そのため、流動不良が生じている領域及びその周囲では、流動粒子12が十分に撹拌されない。これにより、当該領域における上側位置と下側位置とにおいて温度差が生じ、この温度差が検出されることによって当該領域の流動不良が検出される。
Further, in each upper region ua 3 ,... Between the first region ua 1 and the second region ua 2 , the temperature sensor 40 may be disposed at a position where the temperature between the upper position and the lower position can be detected. preferable. By arranging each temperature sensor 40 in this way, a flow failure in each upper region ua 3 ,... From the first region ua 1 to the second region ua 2 in the fluidized bed 14 is suitably detected. Specifically, when the fluidized gas is supplied from the bottom wall 21 into the fluidized bed 14, if the fluidized particles 12 in the region to which the fluidized gas is supplied are sufficiently fluidized, the fluidized gas is moved upward. It is easy to advance in the fluidized bed 14 toward However, if a flow failure occurs in the region ua, it becomes difficult for the fluidized gas to travel upward in the fluidized bed 14. For this reason, the fluidized particles 12 are not sufficiently agitated in and around the region where the flow failure occurs. As a result, a temperature difference is generated between the upper position and the lower position in the area, and a flow failure in the area is detected by detecting the temperature difference.
制御部50は、各温度センサ40によって検出された温度に基づいて、供給部33が各風箱32に供給する流動化ガスの空気比をそれぞれ調整する。具体的に、制御部50は、流動層14の温度が後側に向かって(即ち、前壁24から後壁25に向かって)高くなるように、供給部33を制御して各風箱32に供給される流動化ガスの空気比を調整する。これにより、当該流動層炉10において発生させる可燃性ガスの量や濃度等の急激な変動が抑えられる。その結果、当該流動層炉10において、廃棄物18から可燃性ガスを安定して発生させることができる。
The control unit 50 adjusts the air ratio of the fluidized gas that the supply unit 33 supplies to each wind box 32 based on the temperature detected by each temperature sensor 40. Specifically, the control unit 50 controls the supply unit 33 so that the temperature of the fluidized bed 14 increases toward the rear side (that is, from the front wall 24 toward the rear wall 25), and each wind box 32. The air ratio of the fluidizing gas supplied to is adjusted. Thereby, rapid fluctuations such as the amount and concentration of the combustible gas generated in the fluidized bed furnace 10 are suppressed. As a result, the combustible gas can be stably generated from the waste 18 in the fluidized bed furnace 10.
また、制御部50は、各温度センサ40によって検出された温度に基づいて流動層14に生じた流動異常(局所的な流動不良等)を検出し、ガス供給部30を制御して炉本体20内に供給される流動化ガスの空気比や流量を調整する。これにより、前記流動異常の解消が図られる。
Further, the control unit 50 detects a flow abnormality (such as a local flow failure) generated in the fluidized bed 14 based on the temperature detected by each temperature sensor 40 and controls the gas supply unit 30 to control the furnace body 20. Adjust the air ratio and flow rate of the fluidized gas supplied to the inside. Thereby, the flow abnormality is eliminated.
具体的に、制御部50は、以下の方法(第1の方法)によって、流動層14の前後方向における各領域の温度を制御する。本実施形態において、図1における上側の温度センサ40を左から順に第1温度センサ、第2温度センサ、第3温度センサとし、下側の温度センサを左から順に第4温度センサ、第5温度センサ、第6温度センサとしたときに、第1温度センサによって検出された温度をT1、第2温度センサによって検出された温度をT2、第3温度センサによって検出された温度をT3、第4温度センサによって検出された温度をT4、第5温度センサによって検出された温度をT5、第6温度センサによって検出された温度をT6とする。
Specifically, the control part 50 controls the temperature of each area | region in the front-back direction of the fluidized bed 14 with the following method (1st method). In the present embodiment, the upper temperature sensor 40 in FIG. 1 is the first temperature sensor, the second temperature sensor, and the third temperature sensor in order from the left, and the lower temperature sensor is the fourth temperature sensor and the fifth temperature in order from the left. When the sensor is the sixth temperature sensor, the temperature detected by the first temperature sensor is T 1 , the temperature detected by the second temperature sensor is T 2 , the temperature detected by the third temperature sensor is T 3 , The temperature detected by the fourth temperature sensor is T 4 , the temperature detected by the fifth temperature sensor is T 5 , and the temperature detected by the sixth temperature sensor is T 6 .
制御部50は、各温度センサ40からの温度信号を受信して流動層14の各領域(各温度センサ40が配置された領域)の温度を取得すると、T1とT4の平均値Ave1、T2とT5の平均値Ave2、T3とT6の平均値Ave3をそれぞれ求める。そして、制御部50は、これら各平均値Ave1、Ave2、Ave3を比較する。
When the control unit 50 receives the temperature signal from each temperature sensor 40 and acquires the temperature of each region of the fluidized bed 14 (the region where each temperature sensor 40 is disposed), the average value Ave1 of T 1 and T 4 , obtaining an average value Ave2 of T 2 and T 5, T 3 and the average value Ave3 of T 6, respectively. Then, the control unit 50 compares these average values Ave1, Ave2, and Ave3.
制御部50は、「Ave1<Ave2<Ave3」の関係が崩れると、供給部33によって各風箱32に供給される流動化ガスの流量を一時的に増加させる。ここで、本実施形態の制御部50は、「Ave1<Ave2<Ave3」の関係の監視を常時行うが、所定の時間間隔毎に「Ave1<Ave2<Ave3」の関係を監視してもよい。
When the relationship of “Ave1 <Ave2 <Ave3” is broken, the control unit 50 temporarily increases the flow rate of the fluidized gas supplied to each wind box 32 by the supply unit 33. Here, the control unit 50 of the present embodiment constantly monitors the relationship of “Ave1 <Ave2 <Ave3”, but may monitor the relationship of “Ave1 <Ave2 <Ave3” at predetermined time intervals.
具体的に、制御部50は、「Ave1>Ave2」又は「Ave2>Ave3」となって温度異常を検出すると、各風箱32に供給される流動化ガスの流量を増加させる。このとき、制御部50は、各風箱32に供給される空気と水蒸気との比(即ち、流動化ガスの空気比)を一定に保ちつつ風箱32から炉本体20内に吹き込まれる流動化ガスの流量だけを増加させる。詳しくは、制御部50は、前記温度異常を検出すると、各風箱32から流動層14内に吹き込ませる流動化ガスの流量を通常の流量(例えば、Uo/Umf=3.0)から一時的に増加させる(例えば、増加後の流量がUo/Umf=5.0)。ここで、Umfは、流動粒子12を流動化するための流動化ガスの吹き込みの最小流速である最小流動化速度であり、Uoは、流動化ガスの平均断面流速である。
Specifically, when “Ave1> Ave2” or “Ave2> Ave3” is detected and the temperature abnormality is detected, the control unit 50 increases the flow rate of the fluidized gas supplied to each wind box 32. At this time, the control unit 50 fluidizes the air supplied to each wind box 32 by being blown from the wind box 32 into the furnace body 20 while keeping the ratio of the air and water vapor (that is, the air ratio of the fluidized gas) constant. Only the gas flow rate is increased. Specifically, when the control unit 50 detects the temperature abnormality, the flow rate of the fluidizing gas blown into the fluidized bed 14 from each wind box 32 is changed from a normal flow rate (for example, U o / U mf = 3.0). Increase temporarily (for example, the flow rate after the increase is U o / U mf = 5.0). Here, U mf is the minimum fluidizing velocity is the minimum flow rate of the blowing of the fluidizing gas for fluidizing the fluidized particles 12, U o is the average cross-sectional velocity of the fluidizing gas.
そして、制御部50は、各温度センサ40によって検出した温度が「Ave1<Ave2<Ave3」の関係を満たすと、供給部33を制御して各風箱32から流動層14内に吹き込ませる流動化ガスの流量を元に戻し(前記の例では、Uo/Umf=5.0から3.0に戻し)、温度の監視を続ける。一方、制御部50は、流動化ガスの流量を増加させて一定時間経過しても、各温度センサ40によって検出された温度が「Ave1<Ave2<Ave3」の関係を満たさなければ、炉本体20内に異常が発生したと判断する。そして、制御部50は、当該流動層炉10の運転を停止する。
Then, when the temperature detected by each temperature sensor 40 satisfies the relationship of “Ave1 <Ave2 <Ave3”, the control unit 50 controls the supply unit 33 to blow into the fluidized bed 14 from each wind box 32. The gas flow rate is restored (in the above example, U o / U mf = 5.0 to 3.0), and temperature monitoring continues. On the other hand, if the temperature detected by each temperature sensor 40 does not satisfy the relationship of “Ave1 <Ave2 <Ave3” even if the flow rate of the fluidizing gas is increased and a predetermined time elapses, the controller 50 It is determined that an abnormality has occurred. Then, the control unit 50 stops the operation of the fluidized bed furnace 10.
より具体的には、例えば、流動層14に温度異常が生じていない流動層炉10の通常の運転状態においては、Ave1が600℃付近、Ave2が650℃付近、Ave3が700℃付近である。この状態から炉本体20内に供給される廃棄物18の量及び/又は成分が変動することにより、Ave1が660℃になったとする。このとき、制御部50は、温度異常(Ave1>Ave2)を検出し、各風箱32から流動層14内に吹き込ませる流動化ガスの流量を一時的に増加させる。すると、Ave1が700℃、Ave2が750℃、Ave3が800℃になり、流動層14の温度が全体的に上昇するが、流動層14の局所的な流動不良等が解消されて炉内のバランスが回復する。これにより、各温度センサ40によって検出される温度が「Ave1<Ave2<Ave3」の関係を満たすようになる。その後、制御部50が各風箱32から流動層14内に吹き込ませる流動化ガスの流量を元に戻すと、Ave1が600℃付近、Ave2が650℃付近、Ave3が700℃付近まで戻り、流動層に生じた温度異常が解消される。
More specifically, for example, in a normal operation state of the fluidized bed furnace 10 in which no temperature abnormality occurs in the fluidized bed 14, Ave1 is around 600 ° C, Ave2 is around 650 ° C, and Ave3 is around 700 ° C. It is assumed that Ave1 has reached 660 ° C. due to fluctuations in the amount and / or components of the waste 18 supplied into the furnace body 20 from this state. At this time, the control unit 50 detects a temperature abnormality (Ave1> Ave2), and temporarily increases the flow rate of the fluidized gas blown into the fluidized bed 14 from each wind box 32. Then, Ave 1 becomes 700 ° C., Ave 2 becomes 750 ° C., Ave 3 becomes 800 ° C., and the temperature of the fluidized bed 14 rises as a whole. Recovers. Thereby, the temperature detected by each temperature sensor 40 satisfies the relationship of “Ave1 <Ave2 <Ave3”. Thereafter, when the flow rate of the fluidizing gas blown into the fluidized bed 14 from each wind box 32 by the control unit 50 is restored, Ave1 returns to around 600 ° C., Ave2 returns to around 650 ° C., and Ave3 returns to around 700 ° C. The temperature abnormality that occurred in the layer is eliminated.
尚、制御部50は、各温度センサ40によって検出された温度が「Ave1<Ave2<Ave3」の関係を満たしていても、Ave1とAve3とがそれぞれ所定の範囲(min1<Ave1<max1、及び、min3<Ave3<max3)から外れた場合、各風箱32から流動層14内に吹き込ませる流動化ガスの流量を一時的に増加させてもよい。これにより、制御部50は、流動層の前後方向における温度分布(即ち、前壁24から後壁25に向かって温度が徐々に高くなる温度分布)をより好適に維持できる。
Note that, even if the temperature detected by each temperature sensor 40 satisfies the relationship of “Ave1 <Ave2 <Ave3”, the control unit 50 has a predetermined range (min 1 <Ave1 <max 1 , and, if the off-min 3 <Ave3 <max 3) , may be temporarily increasing the flow rate of the fluidizing gas for blown into the fluidized bed 14 from Kakukazebako 32. Thereby, the control part 50 can maintain more suitably the temperature distribution in the front-back direction of the fluidized bed (that is, the temperature distribution in which the temperature gradually increases from the front wall 24 toward the rear wall 25).
また、制御部50は、以下の方法(第2の方法)によって、流動層14の前後方向における各領域の温度を制御してもよい。
Further, the control unit 50 may control the temperature of each region in the front-rear direction of the fluidized bed 14 by the following method (second method).
制御部50は、上記の方法と同様に、「Ave1<Ave2<Ave3」の関係を監視する。具体的には、制御部50は、各温度センサ40からの温度信号を受信して流動層14の各領域の温度を取得し、Ave1、Ave2、Ave3をそれぞれ求める。そして、制御部50は、これら各平均値Ave1、Ave2、Ave3を比較する。尚、この方法においても、制御部50は、「Ave1<Ave2<Ave3」の関係の監視を常時行ってもよく、所定の時間間隔毎に「Ave1<Ave2<Ave3」の関係を監視してもよい。
The control unit 50 monitors the relationship of “Ave1 <Ave2 <Ave3” as in the above method. Specifically, the control unit 50 receives the temperature signal from each temperature sensor 40, acquires the temperature of each region of the fluidized bed 14, and obtains Ave1, Ave2, and Ave3, respectively. Then, the control unit 50 compares these average values Ave1, Ave2, and Ave3. Also in this method, the control unit 50 may always monitor the relationship of “Ave1 <Ave2 <Ave3”, or may monitor the relationship of “Ave1 <Ave2 <Ave3” at predetermined time intervals. Good.
制御部50は、「Ave1<Ave2<Ave3」の関係が崩れると、供給部33を制御して異常領域に対応する風箱32に供給される空気と水蒸気との比を調整する。例えば、Ave1>Ave2となって流動層14の第1領域ua1に高温異常が生じると、制御部50は、供給部33を制御して、第1風箱32から流動層14内に吹き込まれる流動化ガスの流量を一定に保ちつつ、バルブ37aを絞って第1風箱32に供給される空気の流量を減らすと共にバルブ38aを開いて第1風箱32に供給される水蒸気の流量を増加させる。これにより、第1風箱32から流動層14内に吹き込まれる流動化ガスの空気比が小さくなる。即ち、酸素濃度が低下する。そして、制御部50は、温度監視を続け、Ave1<Ave2となったら、バルブ37a、38aをそれぞれ元に戻して(即ち、バルブ37aを開くと共にバルブ38aを絞って)第1風箱32から流動層14内に吹き込まれる流動化ガスの空気比(酸素濃度)を元に戻す。一方、第1風箱32から流動層14内に吹き込まれる流動化ガスの空気比が小さくなってから所定時間が経過しても温度がAve1>Ave2の状態であれば、制御部50は、炉本体20内に異常が生じたと判断して、当該流動層炉10の運転を停止する。
When the relationship of “Ave1 <Ave2 <Ave3” is broken, the control unit 50 controls the supply unit 33 to adjust the ratio of air and water vapor supplied to the wind box 32 corresponding to the abnormal region. For example, if Ave1> Ave2 and becomes abnormally high temperature in the first region ua 1 of the fluidized layer 14 occurs, the control unit 50 controls the supply unit 33 is blown into the fluidized bed 14 from the first wind box 32 While keeping the flow rate of fluidizing gas constant, the valve 37a is throttled to reduce the flow rate of air supplied to the first wind box 32 and the valve 38a is opened to increase the flow rate of water vapor supplied to the first wind box 32. Let Thereby, the air ratio of the fluidized gas blown into the fluidized bed 14 from the first wind box 32 is reduced. That is, the oxygen concentration decreases. Then, the control unit 50 continues to monitor the temperature, and when Ave1 <Ave2, the valves 37a and 38a are returned to their original positions (that is, the valve 37a is opened and the valve 38a is throttled) to flow from the first wind box 32. The air ratio (oxygen concentration) of the fluidizing gas blown into the layer 14 is restored. On the other hand, if the temperature is in the state of Ave1> Ave2 even after a predetermined time has elapsed since the air ratio of the fluidized gas blown into the fluidized bed 14 from the first wind box 32 becomes smaller, the control unit 50 It is determined that an abnormality has occurred in the main body 20, and the operation of the fluidized bed furnace 10 is stopped.
尚、制御部50は、各温度センサ40によって検出された温度が「Ave1<Ave2<Ave3」の関係を満たしていても、Ave1とAve3とがそれぞれ所定の範囲(min1<Ave1<max1、及び、min3<Ave3<max3)から外れた場合、Ave1、Ave3を所定の範囲内に戻すために各バルブ37a、37c、38a、38cの開度を調整するように(即ち、第1風箱32aから流動層14内に吹き込まれる流動化ガスの空気比、又は第3風箱32cから流動層14内に吹き込まれる流動化ガスの空気比を調整するように)構成されてもよい。具体的に、流動層14の第1領域ua1に低温異常が生じると、制御部50は、供給部33を制御して、バルブ37aを開くと共にバルブ38aを絞ることにより、第1風箱32aから流動層14内に吹き込まれる流動化ガスの流量を一定に保ちつつ当該流動化ガスの空気比を大きくする。また、流動層14の第2領域ua2に高温異常が生じると、制御部50は、供給部33を制御して、バルブ37cを絞ると共にバルブ38cを開くことにより、第3風箱32cから流動層14内に吹き込まれる流動化ガスの流量を一定に保ちつつ当該流動化ガスの空気比を小さくする。また、流動層14の第2領域ua2に低温異常が生じると、制御部50は、供給部33を制御して、バルブ37cを開くと共にバルブ38cを絞ることにより、第3風箱32cから流動層14内に吹き込まれる流動化ガスの流量を一定に保ちつつ当該流動化ガスの空気比を大きくする。
Note that, even if the temperature detected by each temperature sensor 40 satisfies the relationship of “Ave1 <Ave2 <Ave3”, the control unit 50 has a predetermined range (min 1 <Ave1 <max 1 , And when it deviates from min 3 <Ave3 <max 3 ), the opening degree of each valve 37a, 37c, 38a, 38c is adjusted to return Ave1, Ave3 within a predetermined range (ie, the first wind The air ratio of the fluidized gas blown into the fluidized bed 14 from the box 32a or the air ratio of the fluidized gas blown into the fluidized bed 14 from the third wind box 32c may be adjusted. Specifically, when a low temperature abnormality occurs in the first region ua 1 of the fluidized bed 14, the control unit 50 controls the supply unit 33 to open the valve 37 a and throttle the valve 38 a, whereby the first wind box 32 a The air ratio of the fluidized gas is increased while keeping the flow rate of the fluidized gas blown into the fluidized bed 14 constant. Further, when a high temperature abnormality occurs in the second region ua 2 of the fluidized bed 14, the control unit 50 controls the supply unit 33 to throttle the valve 37 c and open the valve 38 c, thereby flowing from the third wind box 32 c. The air ratio of the fluidizing gas is reduced while keeping the flow rate of the fluidizing gas blown into the layer 14 constant. Further, when a low temperature abnormality occurs in the second region ua 2 of the fluidized bed 14, the control unit 50 controls the supply unit 33 to open the valve 37c and throttle the valve 38c, thereby flowing from the third wind box 32c. The air ratio of the fluidizing gas is increased while keeping the flow rate of the fluidizing gas blown into the layer 14 constant.
また、制御部50は、流動層14の流動異常(流動層14における局所的な流動不良等)が起こったときに生じる流動層14の局所的な温度異常を監視する。そして、制御部50は、前記温度異常が検出されると、供給部33を制御して各風箱32に供給される流動化ガスの空気比や流量を調整することにより、流動層14の流動異常を解消する。
Further, the control unit 50 monitors the local temperature abnormality of the fluidized bed 14 that occurs when the fluidized bed 14 has a flow abnormality (such as a local flow failure in the fluidized bed 14). Then, when the temperature abnormality is detected, the control unit 50 controls the supply unit 33 to adjust the air ratio and the flow rate of the fluidized gas supplied to each wind box 32, whereby the fluidized bed 14 flows. Eliminate abnormalities.
具体的に、流動層14において流動不良が生じている領域では、流動化ガスの流れ易さが他の領域と異なるため流動粒子12が十分に撹拌されない。これにより当該領域の上側と下側との間に温度差が生じる。そこで、制御部50は、この温度差を検出することによって流動層14における局所的な流動不良、即ち、流動層14の流動異常を検出する。制御部50は、前記流動不良(前記流動異常)を検出すると、炉本体20内に供給される流動化ガスの流量を調整することによってこれを解消する。
Specifically, in the region where the flow failure occurs in the fluidized bed 14, the flowability of the fluidized gas is different from the other regions, so the fluidized particles 12 are not sufficiently stirred. This causes a temperature difference between the upper side and the lower side of the region. Therefore, the control unit 50 detects a local flow defect in the fluidized bed 14, that is, a flow abnormality of the fluidized bed 14 by detecting this temperature difference. When detecting the flow failure (the flow abnormality), the control unit 50 eliminates this by adjusting the flow rate of the fluidizing gas supplied into the furnace body 20.
詳しくは、制御部50は、以下の方法によって、流動層14の各領域における上下方向(垂直方向)の温度を制御する。
Specifically, the control unit 50 controls the temperature in the vertical direction (vertical direction) in each region of the fluidized bed 14 by the following method.
制御部50は、各温度センサ40からの温度信号を受信して流動層14の各領域(各温度センサ40が配置された領域)の温度をそれぞれ取得する。制御部50は、流動層14の各領域における上側位置と下側位置との温度差ΔT1(=T1-T4)、ΔT2(=T2-T5)、ΔT3(=T3-T6)をそれぞれ求める。そして、制御部50は、各温度差ΔT1,ΔT2,ΔT3と予め設定されている所定の値とを比較することにより、流動層14における局所的な流動不良が生じているか否かの監視(検出)を行う。尚、この監視は、常時行われてもよく、所定の時間間隔毎に行われてもよい。
The control part 50 receives the temperature signal from each temperature sensor 40, and acquires the temperature of each area | region (area | region where each temperature sensor 40 is arrange | positioned) of the fluidized bed 14, respectively. The control unit 50 has temperature differences ΔT 1 (= T 1 −T 4 ), ΔT 2 (= T 2 −T 5 ), ΔT 3 (= T 3 ) between the upper position and the lower position in each region of the fluidized bed 14. -T 6 ) is obtained respectively. Then, the control unit 50 compares each temperature difference ΔT 1 , ΔT 2 , ΔT 3 with a predetermined value set in advance to determine whether or not a local fluid failure occurs in the fluidized bed 14. Perform monitoring (detection). Note that this monitoring may be performed all the time or may be performed at predetermined time intervals.
例えば、前記所定の値を±10℃としたときに、制御部50は、ΔT1,ΔT2,ΔT3>10℃、又はΔT1,ΔT2,ΔT3<-10℃となった場合に、該当する領域に供給される流動化ガスの流量を一時的に増加させる。具体的に、ΔT1<-10℃となった場合、制御部50は、供給部33を制御して、第1風箱32aから流動層14内に吹き込まれる流動化ガスの流量を通常の流量(例えば、Uo/Umf=3.0)から一時的に増加させる(例えば、増加後の流量がUo/Umf=5.0)。このとき、制御部50は、流動化ガスの空気比が変わらないように流量だけを増加させる。そして、制御部50は、ΔT1>-10℃且つΔT1<10℃となると、供給部33を制御して、第1風箱32aから流動層14内に吹き込まれる流動化ガスの流量を元に戻し(例えば、Uo/Umf=5.0から3.0に戻し)、温度の監視を続ける。一方、制御部50は、流量を増加させて一定時間経過してもΔT1<-10℃の状態のであれば、炉本体20内に異常が生じたと判断して、当該流動層炉10の運転を停止する。
For example, when the predetermined value is ± 10 ° C., the control unit 50 determines that ΔT 1 , ΔT 2 , ΔT 3 > 10 ° C. or ΔT 1 , ΔT 2 , ΔT 3 <−10 ° C. The flow rate of the fluidized gas supplied to the corresponding area is temporarily increased. Specifically, when ΔT 1 <−10 ° C., the control unit 50 controls the supply unit 33 so that the flow rate of the fluidized gas blown into the fluidized bed 14 from the first wind box 32a is the normal flow rate. (For example, U o / U mf = 3.0) is temporarily increased (for example, the increased flow rate is U o / U mf = 5.0). At this time, the control unit 50 increases only the flow rate so that the air ratio of the fluidized gas does not change. When ΔT 1 > −10 ° C. and ΔT 1 <10 ° C., the control unit 50 controls the supply unit 33 to obtain the flow rate of the fluidized gas blown into the fluidized bed 14 from the first air box 32a. ( E.g. , U o / U mf = 5.0 to 3.0) and continue to monitor temperature. On the other hand, the controller 50 determines that an abnormality has occurred in the furnace body 20 if ΔT 1 <−10 ° C. even after a lapse of a certain time after increasing the flow rate, and operates the fluidized bed furnace 10. To stop.
また、制御部50は、廃棄物供給部60等の制御も行う。
The control unit 50 also controls the waste supply unit 60 and the like.
廃棄物供給部60は、前壁24から流動層14上における前壁24に隣接する領域に廃棄物18を供給する。本実施形態の廃棄物供給部60は、スクリュー押し込み機である。スクリュー押し込み機は、シール性を担保しつつ連続的に廃棄物18を炉内に供給できる。また、スクリュー押し込み機は、紙やプラスチックシートのような嵩比重が小さく、飛散しやすいごみを塊で炉本体20内に供給できる。これにより、従来のように炉の上部から投入する場合に比べ、炉本体20内でこれらのごみが飛散することが抑制できる。尚、廃棄物供給部60の具体的構成は限定されない。例えば、本実施形態の廃棄物供給部60では、スクリュー押し込み機が廃棄物18を炉内に押し込むが、プッシャ等によって廃棄物18が炉内に押し込まれてもよい。
The waste supply unit 60 supplies the waste 18 from the front wall 24 to a region adjacent to the front wall 24 on the fluidized bed 14. The waste supply part 60 of this embodiment is a screw pushing machine. The screw pusher can continuously supply the waste 18 into the furnace while ensuring sealing performance. Further, the screw pushing machine has a small bulk specific gravity, such as paper or plastic sheet, and can supply litter that easily scatters into the furnace body 20 in a lump. Thereby, compared with the case where it introduce | transduces from the upper part of a furnace like the past, it can suppress that these garbage scattered in the furnace main body 20. FIG. The specific configuration of the waste supply unit 60 is not limited. For example, in the waste supply unit 60 of the present embodiment, the screw pusher pushes the waste 18 into the furnace, but the waste 18 may be pushed into the furnace by a pusher or the like.
以上のように構成される流動層炉10では、以下のようにして廃棄物18から可燃性ガスが回収される。
In the fluidized bed furnace 10 configured as described above, combustible gas is recovered from the waste 18 as follows.
流動層炉の運転開始時には、制御部50は、炉本体20内の底壁21に支持されている流動粒子12に対し、各風箱32から流動化ガスを吹き込ませる。運転開始時には、流動層14に廃棄物18が無い(若しくは有ったとしても微量の)ため、制御部50は、図示しないバーナー等によって流動層14の上部から流動媒体である流動粒子12を加熱する。このとき、制御部50は、水蒸気を吹き込むことなく空気のみを各風箱32から流動粒子12に対して供給することによって流動状態にし、この状態の流動粒子12を加熱する。そして、流動層14全体が所定の温度(例えば、600℃)になった時点で、制御部50は、廃棄物供給部60によって廃棄物18を炉本体20内に投入し始める。このとき、制御部50は、バーナー等の運転を少しずつ抑制し、所定の比率になるように水蒸気の添加量を増やしつつ空気の供給量を絞る。
At the start of operation of the fluidized bed furnace, the control unit 50 blows fluidized gas from each wind box 32 into the fluidized particles 12 supported on the bottom wall 21 in the furnace body 20. At the start of operation, since there is no waste 18 (or a small amount if any) in the fluidized bed 14, the control unit 50 heats the fluidized particles 12 as the fluidized medium from above the fluidized bed 14 with a burner (not shown) or the like. To do. At this time, the control part 50 makes a fluid state by supplying only air from each wind box 32 to the fluid particles 12 without blowing water vapor, and heats the fluid particles 12 in this state. When the entire fluidized bed 14 reaches a predetermined temperature (for example, 600 ° C.), the control unit 50 starts to throw the waste 18 into the furnace body 20 by the waste supply unit 60. At this time, the control unit 50 gradually suppresses the operation of the burner or the like, and restricts the supply amount of air while increasing the addition amount of water vapor so as to be a predetermined ratio.
各風箱32から流動粒子12に対して吹き込まれる流動化ガスの空気比は、流動層炉10の運転に適した値として予め求められ、制御部50に記憶されている。即ち、運転中の流動層炉10において、流動層14に温度異常が生じていなければ、制御部50は、各バルブ37a、37b、37c、38a、38b、38cの開度を調整することなく、所定の流量の空気及び水蒸気を各風箱32にそれぞれ供給する。
The air ratio of the fluidized gas blown into the fluidized particles 12 from each wind box 32 is obtained in advance as a value suitable for the operation of the fluidized bed furnace 10 and is stored in the control unit 50. That is, in the fluidized bed furnace 10 in operation, if there is no temperature abnormality in the fluidized bed 14, the controller 50 does not adjust the opening degree of each valve 37a, 37b, 37c, 38a, 38b, 38c, A predetermined flow rate of air and water vapor are supplied to each wind box 32.
このようにして流動粒子12が流動状態となることにより、炉本体20内に流動層14が形成される。このとき、各風箱32から流動層14内に吹き込まれる流動化ガスの流量は同じであるが、空気比はそれぞれ異なっている。具体的には、制御部50は、流動層14において前壁24から後壁25に向かって温度が高くなるように、第1風箱32aに供給される流動化ガスの空気比よりも第2風箱32bに供給される流動化ガスの空気比が大きく、且つ、第2風箱32bに供給される流動化ガスの空気比よりも第3風箱32cに供給される流動化ガスの空気比が大きくなるように、各バルブ37a、37b、37c、38a、38b、38cの開度を調整する。
In this way, the fluidized particles 12 are in a fluidized state, whereby a fluidized bed 14 is formed in the furnace body 20. At this time, the flow rate of the fluidized gas blown into the fluidized bed 14 from each wind box 32 is the same, but the air ratio is different. Specifically, the control unit 50 has a second value higher than the air ratio of the fluidized gas supplied to the first wind box 32a so that the temperature in the fluidized bed 14 increases from the front wall 24 toward the rear wall 25. The air ratio of the fluidizing gas supplied to the wind box 32b is large, and the air ratio of the fluidizing gas supplied to the third wind box 32c is larger than the air ratio of the fluidizing gas supplied to the second wind box 32b. Is adjusted so that the opening degree of each valve 37a, 37b, 37c, 38a, 38b, 38c is adjusted.
このように、制御部50は、各風箱32から流動層14内に吹き込まれる流動化ガスの流量を一定にして流動層14における各領域の流動状態を好適に維持しつつ、流動層14内の各領域における酸素濃度を変化させることにより所定の温度分布(即ち、前壁24から後壁25に向かって温度が高くなる温度分布)を形成する。
As described above, the control unit 50 maintains the fluidized state of each region in the fluidized bed 14 while keeping the flow rate of the fluidized gas blown into the fluidized bed 14 from each wind box 32 constant. A predetermined temperature distribution (that is, a temperature distribution in which the temperature increases from the front wall 24 toward the rear wall 25) is formed by changing the oxygen concentration in each of the regions.
制御部50は、Ave1が600℃付近、Ave2が650℃付近、Ave3が700℃付近になると、炉内が定常状態になったと判断し、流動層14の温度制御を開始する。尚、本実施形態において、制御部50は、Ave1とAve3との温度差が50℃以上となり、且つ、Ave1が600℃~700℃、Ave3が700℃~800℃になるように流動層14の温度制御を行う。
The control unit 50 determines that the inside of the furnace is in a steady state when Ave1 is around 600 ° C, Ave2 is around 650 ° C, and Ave3 is around 700 ° C, and temperature control of the fluidized bed 14 is started. In this embodiment, the control unit 50 controls the fluidized bed 14 so that the temperature difference between Ave 1 and Ave 3 is 50 ° C. or more, Ave 1 is 600 ° C. to 700 ° C., and Ave 3 is 700 ° C. to 800 ° C. Perform temperature control.
具体的には、スクリュー押し込み機(廃棄物供給部60)が炉本体20内に横向きに廃棄物18を押し込む。これにより、廃棄物18は、第1領域ua1上に押し込まれる(図1及び図2参照)。投入された廃棄物18は、炉本体20内に活発な流動層14が形成されているため、流動層14に取り込まれつつ拡散作用によって前壁24側から後壁25側に向かって拡散しながら移動する。尚、流動層14内での廃棄物18は、前壁24から後壁25側への一方向にのみ移動するのではなく、上下方向、左右方向、前後方向への往復移動を繰り返しつつ、廃棄物18の密度が高い領域から低い領域へ(即ち、投入側(前壁24)から後壁25へ)向けて徐々に拡散するように移動する。
Specifically, the screw pusher (waste supply unit 60) pushes the waste 18 into the furnace body 20 sideways. As a result, the waste 18 is pushed onto the first region ua 1 (see FIGS. 1 and 2). Since the active fluidized bed 14 is formed in the furnace body 20, the thrown-in waste 18 is taken into the fluidized bed 14 and diffused from the front wall 24 side to the rear wall 25 side by a diffusion action. Moving. The waste 18 in the fluidized bed 14 does not move only in one direction from the front wall 24 to the rear wall 25, but is repeatedly discarded in a reciprocating manner in the vertical direction, the horizontal direction, and the front-rear direction. The objects 18 move so as to gradually diffuse from a high density area to a low density area (that is, from the input side (front wall 24) to the rear wall 25).
このとき、流動層14の第1領域ua1の温度が低いため、廃棄物18の急激な燃焼が抑えられ、廃棄物18のうちガス化し易いものがガス化する。即ち、プラスチックや紙等のガス化し易い廃棄物18は、第1領域ua1及びその隣接領域においてガス化する。一方、木片などのガス化し難いものは、一部がガス化されるものの大部分がガス化されずに流動粒子の流動等によって後壁25側に徐々に移動し、第2領域ua2まで到達する。このように、ガス化し易い廃棄物18が、第2領域ua2に到達する前に第1領域ua1やその周辺(第2領域ua2側の領域)において穏やかな条件(低い温度)でガス化することにより、発生する可燃性ガスの変動が抑制される。
At this time, since the temperature of the first region ua 1 of the fluidized bed 14 is low, rapid combustion of the waste 18 is suppressed, and the waste 18 that is easily gasified is gasified. That is, the waste 18 that is easily gasified, such as plastic and paper, is gasified in the first region ua 1 and the adjacent region. On the other hand, a part that is difficult to gasify, such as a piece of wood, is partly gasified, but most of it is not gasified and gradually moves toward the rear wall 25 due to the flow of fluidized particles, etc., and reaches the second region ua 2 To do. Thus, easy waste 18 gasified, the gas under mild conditions (low temperatures) in the first region ua 1 and around before reaching the second region ua 2 (area of the second region ua 2 side) As a result, fluctuations in the generated combustible gas are suppressed.
そして、この移動してきた廃棄物18が、流動層14における排出口29と上下方向に重なる領域及びその周辺の高温の領域において、流動粒子12と十分に混合されることにより、前壁24側の領域において燃え残った廃棄物18のガス化が十分に行われる。
Then, the waste 18 that has moved is sufficiently mixed with the fluidized particles 12 in the region overlapping the discharge port 29 in the fluidized bed 14 in the vertical direction and in the high temperature region around it, so that the waste on the front wall 24 side. Gasification of the waste 18 remaining unburned in the area is sufficiently performed.
このように、温度分布が前壁24から後壁25側に向かって高くなっている状態の流動層14に対し、廃棄物18がスクリュー押し込み機60によって連続的に供給されることにより、可燃性ガスの間欠的且つ急激な発生が抑えられる。その結果、当該可燃性ガスの発生が安定する。
As described above, the waste 18 is continuously supplied by the screw pusher 60 to the fluidized bed 14 in a state where the temperature distribution is increased from the front wall 24 toward the rear wall 25, so that combustibility is achieved. The intermittent and rapid generation of gas can be suppressed. As a result, the generation of the combustible gas is stabilized.
流動層14において排出口29から不燃物等と共に排出される流動粒子12は、必要に応じて前記不燃物等と分離され、再度、炉本体20の中に投入される。
In the fluidized bed 14, the fluidized particles 12 discharged together with incombustibles and the like from the outlet 29 are separated from the incombustibles and the like as necessary, and are put into the furnace body 20 again.
尚、制御部50は、廃棄物18の投入量や廃棄物18に含まれるゴミの成分等によって流動層14の温度分布に異常が生じ(即ち、局所的に温度の低い領域や高い領域が生じ)、又は流動異常(即ち、流動層14における局所的な流動不良等の発生)等が生じた場合には、上記のように各温度センサ40によって検出した温度に基づいてガス供給部30を制御し、各風箱32に供給される空気の流量や水蒸気の流量を調整する。これにより、制御部50は、流動層14の温度分布の異常や流動異常を解消する。
Note that the controller 50 causes an abnormality in the temperature distribution of the fluidized bed 14 due to the input amount of the waste 18 and the components of the dust contained in the waste 18 (that is, a locally low temperature region or a high region is generated). ) Or abnormal flow (that is, the occurrence of a local flow failure in the fluidized bed 14) or the like occurs, the gas supply unit 30 is controlled based on the temperature detected by each temperature sensor 40 as described above. Then, the flow rate of air supplied to each wind box 32 and the flow rate of water vapor are adjusted. Thereby, the control part 50 eliminates the temperature distribution abnormality and the flow abnormality of the fluidized bed 14.
炉本体20内において発生した可燃性ガスは、炉本体20の可燃性ガス排出部23から当該可燃性ガス排出部23に接続されたダクト等を介して後段の例えば発電プロセスのガスエンジン等に供給される。このとき、可燃性ガスに含まれる水蒸気は、可燃性ガスの温度が下がることにより凝縮して水となり、回収される。これにより、流動層炉10の後段へは、水蒸気の除去された可燃性ガスが供給される。
The combustible gas generated in the furnace main body 20 is supplied from the combustible gas discharge part 23 of the furnace main body 20 to a gas engine of a power generation process, for example, through a duct connected to the combustible gas discharge part 23. Is done. At this time, the water vapor contained in the combustible gas is condensed and becomes water as the temperature of the combustible gas decreases, and is recovered. Thereby, the combustible gas from which the water vapor has been removed is supplied to the subsequent stage of the fluidized bed furnace 10.
このように、上記の流動層炉10では、廃棄物18が、廃棄物供給部60によって、第1領域ua1から第2領域ua2に向けて温度が高くなっている流動層14の第1領域ua1側に供給されることにより、発生させる可燃性ガスの量や濃度等の急激な変動が抑えられる。その結果、可燃性ガスが廃棄物18から安定して発生する。
Thus, in the fluidized bed furnace 10 described above, waste 18, first by the waste feed portion 60, the first region ua 1 of the second region ua 2 into the fluidized bed 14 where the temperature is higher toward By being supplied to the region ua 1 side, rapid fluctuations in the amount and concentration of the combustible gas to be generated can be suppressed. As a result, combustible gas is stably generated from the waste 18.
具体的には、廃棄物18が流動層14における温度の低い第1領域ua1側に供給されることにより、廃棄物18中の燃え易いゴミの急激な燃焼が抑えられる。また、廃棄物18のガス化による可燃性ガスの発生も少ない。この廃棄物18は、流動層14を構成する流動粒子12の流動、及び新たな廃棄物18が廃棄物供給部60によって炉本体20内に供給されること等によって、炉本体20内を排出口29側に(即ち、流動層14の第2領域ua2に向けて)移動する。そうすると、第2領域ua2が高温であるため、この第2領域ua2において、第1領域ua1側から移動してきた廃棄物18が十分にガス化されて可燃性ガスが発生する。これにより、可燃性ガスの間欠的且つ急激な発生が抑えられ、当該ガスの発生が安定する。
Specifically, when the waste 18 is supplied to the first region ua 1 in the fluidized bed 14 where the temperature is low, rapid combustion of easily burnable garbage in the waste 18 is suppressed. Further, there is little generation of combustible gas due to gasification of the waste 18. The waste 18 is discharged into the furnace body 20 by the flow of the fluidized particles 12 constituting the fluidized bed 14 and the new waste 18 being supplied into the furnace body 20 by the waste supply unit 60. 29 side (i.e., toward the second region ua 2 of the fluidized bed 14) moves. Then, since the second region ua 2 is at a high temperature, the waste 18 that has moved from the first region ua 1 side is sufficiently gasified in the second region ua 2 to generate a combustible gas. Thereby, intermittent and rapid generation | occurrence | production of combustible gas is suppressed, and generation | occurrence | production of the said gas is stabilized.
また、前壁24から後壁25(又は排出口29)に向かう方向における流動層14の各領域に供給される流動化ガスの空気比が調整されることによって、流動層14の前記各領域の温度が調整される。このため、流動異常(流動層14における局所的な流動不良等)が流動層14において生じ難くなる。即ち、流動層14の前記各領域に供給される流動化ガスの流量が十分に保たれて前記各領域の流動粒子12の流動状態が良好に維持されつつ、流動層14に供給される流動化ガスの空気比(即ち、酸素濃度)が調整されることによって前記各領域の温度が調整される。しかも、第1領域ua1、第2領域ua2、及び第3領域ua3において上下に間隔をおいた上側位置と下側位置との温度がそれぞれ検出されることにより、当該領域に流動不良が生じた場合にこの流動不良が確実に検出される。
Further, by adjusting the air ratio of the fluidized gas supplied to each region of the fluidized bed 14 in the direction from the front wall 24 to the rear wall 25 (or the discharge port 29), each region of the fluidized bed 14 is adjusted. The temperature is adjusted. For this reason, fluid abnormalities (such as local flow defects in the fluidized bed 14) are less likely to occur in the fluidized bed 14. That is, the fluidization gas supplied to the fluidized bed 14 while the flow rate of the fluidized gas supplied to each region of the fluidized bed 14 is sufficiently maintained and the fluidized state of the fluidized particles 12 in each region is maintained well. The temperature of each region is adjusted by adjusting the air ratio of gas (that is, oxygen concentration). In addition, the first region ua 1 , the second region ua 2 , and the third region ua 3 detect the temperatures of the upper position and the lower position that are spaced apart from each other, thereby causing a flow defect in the region. When this occurs, this poor flow is reliably detected.
また、炉本体20の底壁21の上面21aが排出口に向かって低くなるように傾斜しているため、流動層14において底壁21まで沈んだ廃棄物18中の不燃物及び炭化物等は、排出口29に向かって底壁21の上面21a上を降下する。これにより、前記不燃物等が炉本体20から容易に排出される。
In addition, since the upper surface 21a of the bottom wall 21 of the furnace body 20 is inclined so as to become lower toward the discharge port, incombustibles and carbides in the waste 18 that sinks to the bottom wall 21 in the fluidized bed 14, The upper surface 21 a of the bottom wall 21 is lowered toward the discharge port 29. Thereby, the said incombustible material etc. are discharged | emitted from the furnace main body 20 easily.
尚、本発明の流動層炉は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
It should be noted that the fluidized bed furnace of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the scope of the present invention.
各上方領域ua1、ua2、ua3内に配置される温度センサ40は、上側位置と下側位置との温度を検出する位置に加え、上下方向における上側位置と下側位置との中間位置の温度を検出する位置に配置されてもよい。
The temperature sensor 40 disposed in each upper region ua 1 , ua 2 , ua 3 is an intermediate position between the upper position and the lower position in the vertical direction in addition to the position for detecting the temperature between the upper position and the lower position. It may be arranged at a position for detecting the temperature.
また、上記実施形態において、各温度センサ40は、前後方向において、同じ高さ位置に間隔をおいて並ぶように配置されているが、これに限定されない。各温度センサ40は、上方領域ua1、ua2、ua3毎に異なる高さ位置に配置されてもよい。
Moreover, in the said embodiment, although each temperature sensor 40 is arrange | positioned so that it may arrange in the front-back direction at the same height position at intervals, it is not limited to this. Each temperature sensor 40, upper region ua 1, ua 2, may be located in different height positions for each ua 3.
排出口29の前後(図3において排出口29の右側及び左側)両側において風箱がそれぞれ排出口29に隣接している場合には、排出口29に最も近い風箱とはこれら両方の風箱を差す。但し、流動層14全体の温度の好適な制御の観点から、排出口29の後側(図3における右側)の風箱における上方領域の温度が制御されることが好ましい。
When the wind boxes are adjacent to the discharge port 29 on both sides before and after the discharge port 29 (on the right and left sides of the discharge port 29 in FIG. 3), the wind box closest to the discharge port 29 is both of these wind boxes. Insert. However, from the viewpoint of suitable control of the temperature of the fluidized bed 14 as a whole, it is preferable to control the temperature of the upper region in the wind box on the rear side (right side in FIG. 3) of the outlet 29.
[実施の形態の概要]
以上の実施形態をまとめると、以下の通りである。
[Outline of the embodiment]
The above embodiment is summarized as follows.
即ち、上記の実施形態に係る流動層炉では、廃棄物を加熱して当該廃棄物から可燃性ガスを取り出す流動層炉であって、前記廃棄物を加熱するための流動層を構成する流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁において当該底壁の中心位置から特定方向に偏った位置に前記廃棄物中の不燃物を前記流動粒子と共に排出するための排出口が設けられ、この排出口に向かって前記底壁の上面上を前記不燃物が降下するように当該底壁の上面が前記排出口に向かって低くなるように傾斜する炉本体と、前記炉本体の底壁から前記流動粒子に対して流動化ガスを吹き込むことにより当該流動粒子を流動化させるガス供給部と、前記流動層の温度を検出する複数の温度検出部と、前記ガス供給部を制御する制御部と、前記側壁のうち前記底壁の中心位置を挟んで前記排出口と反対側に位置する供給側側壁から前記流動層上における当該供給側側壁に隣接する領域に前記廃棄物を供給する廃棄物供給部と、を備える。そして、前記ガス供給部は、前記底壁の下側において前記供給側側壁から前記排出口に向かう方向と直交する方向に延び、且つこの直交する方向の所定の位置から前記流動粒子に対して前記流動化ガスを吹き込むための複数の風箱と、これら各風箱に前記流動化ガスをそれぞれ供給し、且つ前記各風箱に供給される前記流動化ガスの空気比をそれぞれ調整可能な供給部と、を有する。前記複数の風箱は、前記供給側側壁から前記排出口に向かう方向に配列される。前記複数の温度検出部は、前記流動層における前記供給側側壁に最も近い第1の風箱と上下方向に重なる第1領域内において上下に間隔をおいた上側位置と下側位置との温度を検出すると共に、前記流動層における前記排出口に最も近い第2の風箱又は前記排出口と上下方向に重なる第2領域内において上下に間隔をおいた上側位置と下側位置との温度を検出できる位置にそれぞれ配置される。前記制御部は、前記各温度検出部によって検出された温度に基づいて前記第1領域から前記第2領域に向けて流動層の温度が高くなるように前記供給部によって前記各風箱に供給される流動化ガスの空気比をそれぞれ調整する。
That is, in the fluidized bed furnace according to the above embodiment, the fluidized particles constituting the fluidized bed for heating the waste by heating the waste and taking out the combustible gas from the waste. A bottom wall that supports the bottom wall and a side wall that rises from the bottom wall, and discharges incombustible material in the waste together with the fluidized particles to a position that is biased in a specific direction from a center position of the bottom wall. A furnace body which is provided with a discharge port for inclining so that the upper surface of the bottom wall is lowered toward the discharge port so that the incombustible material descends on the upper surface of the bottom wall toward the discharge port A gas supply unit that fluidizes the fluidized particles by blowing fluidized gas from the bottom wall of the furnace body to the fluidized particles, a plurality of temperature detection units that detect the temperature of the fluidized bed, Control system for gas supply A waste to supply the waste to a region adjacent to the supply side wall on the fluidized bed from a supply side wall located on the opposite side of the discharge port across the central position of the bottom wall of the portion and the side wall A product supply unit. The gas supply unit extends below the bottom wall in a direction orthogonal to the direction from the supply side wall toward the discharge port, and the fluid particles are moved from a predetermined position in the orthogonal direction. A plurality of wind boxes for injecting fluidized gas, and a supply unit for supplying the fluidized gas to each of these windboxes and adjusting the air ratio of the fluidized gas supplied to each of the windboxes And having. The plurality of wind boxes are arranged in a direction from the supply side wall toward the discharge port. The plurality of temperature detection units are configured to detect temperatures of an upper position and a lower position spaced vertically in a first region overlapping with a first wind box closest to the supply side wall in the fluidized bed in a vertical direction. In addition to detecting, the temperature of the second wind box closest to the outlet in the fluidized bed or the temperature between the upper and lower positions spaced vertically in the second area overlapping the outlet in the vertical direction is detected. It is arranged at each possible position. The control unit is supplied to each wind box by the supply unit so that the temperature of the fluidized bed increases from the first region toward the second region based on the temperature detected by each temperature detection unit. Adjust the air ratio of the fluidized gas.
本発明によれば、廃棄物が、廃棄物供給部によって、前記第1領域から前記第2領域に向けて温度の高くなっている流動層の第1領域側に供給されることにより、発生させる可燃性ガスの量及び濃度等の急激な変動が抑えられる。その結果、可燃性ガスが廃棄物から安定して発生する。
According to the present invention, the waste is generated by being supplied to the first region side of the fluidized bed whose temperature is high from the first region toward the second region by the waste supply unit. Rapid fluctuations in the amount and concentration of combustible gas can be suppressed. As a result, combustible gas is stably generated from the waste.
具体的には、廃棄物が流動層における温度の低い第1領域側に供給されることにより、廃棄物中の燃え易いゴミの急激な燃焼が抑えられる。また、廃棄物のガス化による可燃性ガスの発生も少ない。この廃棄物は、流動層を構成する流動粒子の流動、又は新たな廃棄物が廃棄物供給部によって炉本体内に供給されること等によって、炉本体内を排出口側に(即ち、流動層の第2領域に向けて)移動する。そうすると、第2領域が高温であるため、この第2領域において、第1領域側から移動してきた廃棄物が十分にガス化されて可燃性ガスが発生する。これにより、可燃性ガスの間欠的且つ急激な発生が抑えられ、当該ガスの発生が安定する。
Specifically, when the waste is supplied to the first region where the temperature is low in the fluidized bed, the rapid combustion of easily burnable garbage in the waste is suppressed. In addition, there is little generation of combustible gas due to gasification of waste. This waste is caused to flow inside the furnace body toward the discharge port (that is, the fluidized bed, for example, by the flow of fluidized particles constituting the fluidized bed or when new waste is supplied into the furnace body by the waste supply unit). (Toward the second area). Then, since the second region is at a high temperature, the waste that has moved from the first region side is sufficiently gasified in this second region to generate combustible gas. Thereby, intermittent and rapid generation | occurrence | production of combustible gas is suppressed, and generation | occurrence | production of the said gas is stabilized.
また、供給側側壁から排出口に向かう方向における流動層の各領域に供給される流動化ガスの空気比が調整されることによって流動層の前記各領域の温度が調整されるため、流動層において流動不良が生じ難くなる。即ち、流動層の前記各領域に供給される流動化ガスの流量が十分に保たれて前記各領域の流動粒子の流動状態が維持されつつ、流動層に供給される流動化ガスの空気比(即ち、酸素濃度)が調整されることによって前記各領域の温度が調整される。
In addition, since the temperature of each region of the fluidized bed is adjusted by adjusting the air ratio of the fluidized gas supplied to each region of the fluidized bed in the direction from the supply side wall toward the discharge port, It becomes difficult to cause poor flow. That is, the flow rate of the fluidized gas supplied to each region of the fluidized bed is sufficiently maintained to maintain the fluidized state of the fluidized particles in each region, while the air ratio of the fluidized gas supplied to the fluidized bed ( That is, the temperature of each region is adjusted by adjusting the oxygen concentration.
しかも、第1領域と第2領域とにおいて上下に間隔をおいた上側位置と下側位置との温度がそれぞれ検出されることにより、当該領域に流動不良が生じた場合にこの流動不良が確実に検出される。詳しくは、流動化ガスが底壁から流動層内に供給されたときに、当該流動化ガスの供給された領域の流動粒子が十分に流動化していれば、この流動化ガスが上方に向かって流動層内を進み易い。しかし、流動不良が当該領域に生じていると、前記流動化ガスが流動層内を上方に向かって進み難くなる。そのため、流動不良が生じている領域では流動粒子が十分に撹拌されず、これにより前記上側と下側とにおいて温度差が生じる。この温度差が検出されることによって流動不良が検出される。
In addition, by detecting the temperatures of the upper and lower positions spaced apart in the vertical direction in the first region and the second region, respectively, if the flow failure occurs in the region, the flow failure is reliably ensured. Detected. Specifically, when the fluidized gas is supplied from the bottom wall into the fluidized bed, if the fluidized particles in the region to which the fluidized gas is supplied are sufficiently fluidized, the fluidized gas is directed upward. Easy to move through the fluidized bed. However, if a flow failure occurs in the region, it becomes difficult for the fluidized gas to travel upward in the fluidized bed. Therefore, the fluidized particles are not sufficiently agitated in the region where the flow failure occurs, thereby causing a temperature difference between the upper side and the lower side. A flow failure is detected by detecting this temperature difference.
また、流動層において底壁まで沈んだ廃棄物中の不燃物は、炉本体の底壁の上面が排出口に向かって低くなるように傾斜しているため、排出口に向かって底壁の上面上を降下する。これにより、前記不燃物が炉本体から容易に排出される。
Incombustible material in the waste that sinks to the bottom wall in the fluidized bed is inclined so that the top surface of the bottom wall of the furnace body is lowered toward the discharge port, so the top surface of the bottom wall toward the discharge port Descent up. Thereby, the said incombustible material is easily discharged | emitted from a furnace main body.
また、上記実施形態に係る流動層炉において、前記流動層における前記第1領域と前記第2領域との間では、前記複数の温度検出部は、前記供給側側壁から前記排出口に向かう方向に所定間隔で温度を検出できる位置にそれぞれ配置される。
Further, in the fluidized bed furnace according to the embodiment, between the first region and the second region in the fluidized bed, the plurality of temperature detection units are arranged in a direction from the supply side wall toward the discharge port. They are arranged at positions where the temperature can be detected at predetermined intervals.
かかる構成によれば、第1領域と第2領域との間の温度が検出できるため、局所的に温度が低下する等の温度異常が第1領域と第2領域との間において生じた場合に、これを検出することができる。これにより、当該局所的な温度異常に対応することが可能となる。
According to such a configuration, since the temperature between the first region and the second region can be detected, a temperature abnormality such as a local temperature drop occurs between the first region and the second region. This can be detected. Thereby, it becomes possible to cope with the local temperature abnormality.
この場合、前記第1領域と第2領域との間に配置される各温度検出部は、前記第1の風箱と前記第2の風箱との間に配置される各風箱と上下方向に重なる各領域の温度を検出できる位置にそれぞれ配置されることが好ましい。
In this case, each temperature detection part arrange | positioned between the said 1st area | region and a 2nd area | region is each wind box arrange | positioned between the said 1st wind box and the said 2nd wind box, and an up-down direction It is preferable that they are arranged at positions where the temperature of each of the regions overlapping each other can be detected.
かかる構成によれば、流動層における各風箱から供給された流動化ガスの通過する領域の温度がそれぞれ検出されるため、各風箱に供給される流動化ガスの空気比の調整が容易になる。
According to such a configuration, since the temperature of the region through which the fluidized gas supplied from each wind box in the fluidized bed passes is detected, it is easy to adjust the air ratio of the fluidized gas supplied to each wind box. Become.
また、前記第1領域と第2領域との間の前記風箱と上下方向に重なる各領域では、前記各温度検出部は、上下に間隔をおいた上側位置と下側位置との温度を検出できる位置にそれぞれ配置される。
Moreover, in each area | region which overlaps with the said wind box between the said 1st area | region and the 2nd area | region in the up-down direction, each said temperature detection part detects the temperature of the upper side position and the lower side position which have the space | interval up and down. It is arranged at each possible position.
かかる構成によれば、流動層における第1領域から第2領域までの各領域の流動不良が好適に検出される。
According to such a configuration, a flow failure in each region from the first region to the second region in the fluidized bed is suitably detected.