[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012128339A1 - 太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法 - Google Patents

太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法 Download PDF

Info

Publication number
WO2012128339A1
WO2012128339A1 PCT/JP2012/057436 JP2012057436W WO2012128339A1 WO 2012128339 A1 WO2012128339 A1 WO 2012128339A1 JP 2012057436 W JP2012057436 W JP 2012057436W WO 2012128339 A1 WO2012128339 A1 WO 2012128339A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
solar cell
light
cell module
main surface
Prior art date
Application number
PCT/JP2012/057436
Other languages
English (en)
French (fr)
Inventor
英臣 由井
前田 強
内田 秀樹
時由 梅田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012128339A1 publication Critical patent/WO2012128339A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module, a solar power generation device, and a method for installing a solar cell module.
  • Conventional solar power generation apparatuses generally have a form in which a plurality of solar cell panels are spread over the entire surface facing the sun.
  • a solar power generation apparatus in which a gantry is installed on the roof of a building and a plurality of solar battery panels are spread on the gantry is known.
  • a solar cell panel is made of an opaque semiconductor and cannot be stacked. Therefore, in a solar power generation device, a large-area solar cell panel is required to ensure the amount of power.
  • the device there is a restriction that the device must be installed in a limited place such as a roof, and there is a limit to the amount of power that can be obtained.
  • a solar cell module includes a light guide, a reflector disposed to face the light guide, and a solar cell element that receives light emitted from the light guide.
  • the light guide has a first main surface, a second main surface, a first end surface in contact with the first main surface and the second main surface, and allows light from the outside to be incident from the first main surface.
  • the light is propagated through the light guide and emitted from the first end face.
  • the reflector has a reflecting portion that is incident from the first main surface, passes through the light guide, reflects light incident on the reflector, and changes a traveling direction of the light.
  • the solar cell element receives light emitted from the first end surface, and the thickness of the light guide decreases as the distance from the first end surface increases.
  • the reflection unit reflects the light transmitted through the light guide, and the reflected light enters the light guide and propagates through the light guide. It may be configured to reach the first end face.
  • the reflector has a plurality of the reflection portions and a plurality of flat end portions substantially parallel to the second main surface, and the gap is between the plurality of reflection portions.
  • Each of the plurality of flat end portions may be arranged.
  • the reflecting portion has a flat surface, the flat surface reflects the light transmitted through the light guide, and the reflected light enters the light guide. And it may be arrange
  • the flat surface may extend over the entire reflector.
  • the second main surface and the flat surface may be substantially parallel to each other.
  • an interval between the second main surface and the flat surface may be reduced as the distance from the first end surface increases.
  • a phosphor that emits fluorescence upon receiving light incident on the light guide provided on one of the first main surface and the second main surface is further dispersed.
  • a phosphor layer may be provided.
  • the phosphor layer may be a phosphor film in which the phosphor is dispersed inside a transparent film.
  • the solar cell module according to an aspect of the present invention further includes a transparent member laminated on at least one of the first main surface and the second main surface, and the phosphor layer includes the light guide and the An adhesive layer in which the phosphor is dispersed inside a transparent resin that bonds the transparent member may be used.
  • the solar cell module includes a frame body that holds the light guide body and the reflector body, and an inner surface of the frame body is configured to reflect fluorescence emitted from the phosphor body. Also good.
  • the solar cell module according to an aspect of the present invention may further include a condensing member that condenses light emitted from the first end face and makes the light incident on the solar cell element.
  • the low refractive index layer may be an air layer.
  • the material of the light guide may have transparency to a wavelength of 400 nm or less.
  • a solar power generation device includes the solar cell module according to the aspect of the present invention.
  • a solar cell module installation method in which the first main surface is opposite to the direction when the daytime sun is at the highest position. Inclined so as to face in the direction of.
  • a solar cell module includes a light guide, a reflector, and a solar cell element.
  • the reflector is a reflective surface facing the light guide, and reflects light incident through a low refractive index medium that passes through the light guide and has a lower refractive index than the light guide.
  • Have The solar cell receives light emitted from the light guide.
  • the light guide has a first main surface, a second main surface, a first end surface in contact with the first main surface and the second main surface, The thickness of the light guide may be reduced as the distance from the first end surface is increased.
  • the reflection surface is flat, the reflection surface reflects the light transmitted through the light guide, and the reflected light is transmitted to the light guide. It may be arranged so as to enter, propagate through the light guide, and reach the first end face.
  • the second main surface and the reflection surface may be substantially parallel to each other.
  • a phosphor that emits fluorescence upon receiving light incident on the light guide provided on one of the first main surface and the second main surface is further dispersed. You may have the made phosphor layer.
  • a solar cell module includes a light guide and a reflective surface that reflects light incident through the light guide and a low refractive index medium that has a lower refractive index than the light guide. And a solar cell element that receives light emitted from the light guide, wherein the light guide is a first transparent layer and at least part of the light incident on the light guide.
  • the first transparent layer may have a transmittance of 90% or more for light in a wavelength region of 280 nm to 800 nm.
  • the light guide further includes a second transparent layer, and the phosphor layer is sandwiched between the first transparent layer and the second transparent layer. May be.
  • the first transparent layer and the second transparent layer may have different thicknesses.
  • the phosphor layer may be configured by dispersing the phosphor so that the concentration is increased in a part of the light guide.
  • the light guide and the reflector may be substantially parallel to each other.
  • an interval between the light guide and the reflector may be reduced as the distance from the light emitting surface of the light guide increases.
  • the light having the maximum absorption wavelength of the phosphor out of the incident light is not completely absorbed even once incident on the phosphor layer, and the phosphor layer Almost all of the light may be absorbed by being incident twice or more.
  • light having a wavelength band in which the absorbance of the phosphor is 0.5A or more among the incident light, where A is the absorbance at the maximum absorption wavelength of the phosphor. May not be absorbed even if it is once incident on the phosphor layer, but may be substantially entirely absorbed by being incident twice or more on the phosphor layer.
  • a solar cell module a solar power generation device, and a solar cell module installation method capable of suppressing a decrease in power generation efficiency.
  • the light guide 3 and the reflector 4 have a refractive index lower than the refractive index of the light guide 3 in a state where the second main surface 3b of the light guide 3 and the reflecting portion 4a of the reflector 4 face each other. It is fixed by a fixing member 7 with the low refractive index layer 5 interposed therebetween.
  • the low refractive index layer 5 is an air layer. Note that an air layer is not necessarily required between the light guide 3 and the reflector 4.
  • the low refractive index layer 5 may be a layer having a lower refractive index than that of the light guide, and is preferably a medium having a lower refractive index.
  • the first main surface 3 a of the light guide 3 is viewed from a direction orthogonal to the first side surface 3 d of the light guide 3, and the first main surface 3 a of the light guide 3 and the second main surface 3 a of the light guide 3.
  • the main surface 3b is inclined so that the dimension gradually increases from the distance from the first end surface 3c of the light guide 3 toward the first end surface 3c of the light guide 3 from the distance.
  • the first main surface 3a and the second main surface 3b of the light guide 3 are flat surfaces.
  • a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used.
  • the light guide 3 is formed of a material in which zirconia particles are dispersed in polymethyl methacrylate resin (PMMA) as an example.
  • PMMA polymethyl methacrylate resin
  • the average particle diameter of the zirconia particles is about 20 nm, which is sufficiently smaller than the wavelength of light.
  • FIG. 6 is a diagram showing the transmittance characteristics of the light guide 3.
  • the horizontal axis represents the wavelength of light
  • the vertical axis represents the transmittance of the light guide 3.
  • FIG. 6 shows the transmittance characteristics of the light guide 3 when “XY-0159” manufactured by Mitsubishi Rayon Co., Ltd. is used as the material of the light guide 3.
  • the material of the light guide 3 is transmissive to wavelengths of 400 nm or more, and the lower limit is transmissive to wavelengths of 400 nm or less so that external light can be taken in effectively.
  • a material having a transmittance of 90% or more, more preferably 93% or more with respect to light in a wavelength region of 360 nm to 800 nm is suitable.
  • “Acrylite” registered trademark manufactured by Mitsubishi Rayon Co., Ltd. that does not contain a UV absorber is high in light over a wide wavelength region. Since it has transparency, it is preferable.
  • the part of the reflector 4 facing the light guide 3 is incident from the first main surface 3 a of the light guide 3, passes through the light guide 3, and enters the reflector 4.
  • a reflecting portion 4a that reflects light and changes the traveling direction of the light is formed.
  • the reflector 4 for example, a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used.
  • a plurality of such ridges T are provided on the reflecting portion 4a of the reflector 4 in the Y direction so that the steeply inclined surface T1 and the gently inclined surface T2 are in contact with each other.
  • the shape and size of the plurality of ridges T provided in the reflecting portion 4a are all the same.
  • Each ridge T has been described as having a triangular prism shape, but as shown in FIG. 2, the cross-sectional shape of each ridge when the reflector 4 is cut along a plane along the YZ plane is an equilateral triangle or an isosceles triangle. It is not an unequal triangle.
  • the solar cell element 6 As the solar cell element 6, a known one can be used. For example, an amorphous silicon solar cell, a polycrystalline silicon solar cell, a single crystal silicon solar cell, a compound solar cell (InGaP, GaAs, InGaAs, AlGaAs, Cu ( In, Ga) Se 2 , Cu (In, Ga) (Se, S) 2 , CuInS 2 , CdTe, CdS, etc.), quantum dot solar cells (Si, InGaAs, etc.), and the like can be used.
  • a compound solar cell is used as the solar cell element 6.
  • the shape and size of the solar cell element 6 are not particularly limited as long as the shape and size fit within the first end face 3 c of the light guide 3.
  • the solar cell element 6 is bonded to the first end surface 3c of the light guide 3 using, for example, ⁇ GEL (registered trademark) manufactured by Taika Corporation.
  • FIG. 7 is a graph showing the relationship between the absorption wavelength, intensity, and absorption sensitivity in the solar cell element.
  • the horizontal axis represents the absorption wavelength
  • the vertical axis represents the intensity and the absorption sensitivity.
  • compound solar cells such as InGaP solar cell 41, GaAs solar cell 42, and InGaAs solar cell 43 are crystalline silicon (c-Si) solar cell 44 and amorphous silicon (a-Si) solar cell.
  • c-Si crystalline silicon
  • a-Si amorphous silicon
  • the reflector 4 is a plate-like member, and a plurality of ridges T extending in the X direction are provided on the reflector 4 a of the reflector 4.
  • the ridge T is a triangular prism in which a steeply inclined surface T1 that forms an angle ⁇ B1 with respect to the Y axis and a gently inclined surface T2 that forms an angle ⁇ B2 with respect to the Y axis intersect at a ridgeline T3.
  • the angle ⁇ B1 and the angle ⁇ B2 satisfy the relationship ⁇ B1> ⁇ B2.
  • a moderately inclined surface T2 is disposed on the + Y direction side across the ridge line T3, and a steeply inclined surface T1 is disposed on the ⁇ Y direction side.
  • a flat portion S is provided between two adjacent ridges T.
  • the light reflected by the gently inclined surface T2 is less likely to enter the steeply inclined surface T1 of the adjacent ridge T. That is, the light reflected by the gently inclined surface T2 is affected by the steeply inclined surface T1, so that the incident angle of the light with respect to the second main surface 3b of the light guide 3 is reduced, the waveguide condition is broken, and the light is Leakage to the outside is suppressed.
  • the light L1 incident at a shallow angle with respect to the light guide 3 does not enter the reflector 4 and enters the light guide. 3 only propagates toward the first end face 3c.
  • light L2 incident on the light guide 3 at a deep angle (light incident on the second main surface 3a at a large angle) is transmitted through the light guide 3 and has a low refractive index layer. Although it passes through 5 and enters the reflector 4, it is reflected by the reflector 4 a and its traveling direction is changed to a direction toward the first end face 3 c of the light guide 3.
  • the light L2 reflected by the reflecting portion 4a propagates inside the light guide 3 and travels toward the first end face 3c.
  • the sunlight L2 is incident on the first main surface 3a of the light guide 3 at an incident angle ⁇ 2a
  • the sunlight L2 is refracted at the refraction angle ⁇ 2b on the first main surface 3a and inside the light guide 3 Is incident on.
  • the light incident on the second main surface 3b of the light guide 3 (the interface between the light guide 3 and the low refractive index layer 5) at the incident angle ⁇ 2c is refracted at the refraction angle ⁇ 2d at the interface and reflected by the reflector 4 Is incident on.
  • a part of the light incident on the gently inclined surface T2 of the reflector 4 at the incident angle ⁇ 2e is reflected on the gently inclined surface T2 at the reflection angle ⁇ 2e, and the traveling direction is reflected on the first end surface 3c of the light guide 3. It changes in the direction to go.
  • the light incident on the second main surface 3b (interface between the light guide 3 and the low refractive index layer 5) of the light guide 3 at the incident angle ⁇ 2f is refracted at the refraction angle ⁇ 2g at the interface and guided to the light guide. 3 is incident.
  • the light totally reflected by the second main surface 3b propagates in the light guide 3 toward the first end surface 3c.
  • the light L1 is totally reflected by the first main surface 3a of the light guide 3. Therefore, the light totally reflected even once on the second main surface 3b of the light guide 3 propagates inside the light guide 3 and is guided to the first end surface 3c without leaking to the outside of the light guide 3.
  • the incident angle ⁇ 2a of the sunlight L2 on the first main surface 3a of the light guide 3 is less than 40 degrees
  • the refraction angle ⁇ 2b when the sunlight L2 enters the light guide 3 is 21. Less than degrees.
  • the reflection angle ⁇ 2h on the first main surface 3a of the light guide 3 is 35 degrees or more
  • the incident angle ⁇ 2i is equal to or greater than the critical angle ( ⁇ 2i ⁇ 34 degrees)
  • the light L2 is totally reflected by the second main surface 3b of the light guide 3.
  • the light totally reflected by the second main surface 3b propagates in the light guide 3 toward the first end surface 3c. Therefore, the light totally reflected once even on the first main surface 3a of the light guide 3 propagates through the light guide 3 and is guided to the first end surface 3c without leaking to the outside of the light guide 3.
  • the first main surface 3 a of the light guide 3 is viewed from a direction orthogonal to the first side surface 3 d of the light guide 3, and the first main surface 3 a of the light guide 3 and the light guide 3.
  • the distance from the second main surface 3b is inclined so as to gradually increase from the distance from the first end surface 3c of the light guide 3 toward the first end surface 3c of the light guide 3. Therefore, the incident angle ⁇ 1c when entering the second main surface 3b of the light guide 3 is larger than the refraction angle ⁇ 1b when entering the light guide 3. Therefore, the light incident on the light guide 3 satisfies the total reflection condition on the second main surface 3b of the light guide 3, and is easily reflected toward the first end surface 3c of the light guide 3.
  • a low refractive index layer 5 having a refractive index n0 smaller than the refractive index n1 of the light guide 3 is located between the light guide 3 and the reflector 4 (n1> n2). Therefore, the refraction angle ⁇ 2d when incident on the low refractive index layer 5 is larger than the incident angle ⁇ 2c when incident on the second main surface 3b of the light guide 3. Therefore, the light incident on the low refractive index layer 5 is reflected by the gently inclined surface T2 of the reflector 4, and the traveling direction is easily changed toward the first end surface 3c of the light guide 3.
  • the light incident on the low refractive index layer 5 is on the gently inclined surface T2 of the reflector 4. Instead of being reflected, it easily passes through the reflector 4 and leaks to the outside.
  • the light incident on the light guide 3 is totally reflected on the first main surface 3a of the light guide 3 to propagate through the light guide 3 (an angle parallel to the XY plane and the light propagation direction).
  • the angle between Therefore, the incident angle ⁇ 2i when the light totally reflected by the first main surface 3a of the light guide 3 is incident on the second main surface 3b of the light guide 3 is the light incident on the light guide 3 first. It becomes larger than the incident angle ⁇ 2c when entering the second principal surface 3b of the light guide 3. Therefore, the light totally reflected by the first main surface 3 a of the light guide 3 satisfies the total reflection condition by the second main surface 3 b of the light guide 3 and is reflected toward the first end surface 3 c of the light guide 3. It becomes easy.
  • the light that satisfies the total reflection condition on the second main surface 3b of the light guide 3 no longer enters the low refractive index layer 5 but propagates only in the light guide 3 toward the first end surface 3c. It becomes.
  • the solar power generation device 1 of the present embodiment by separating the light guide function of the light guide 3 and the reflection function of the reflector 4, the light reflected by the reflector 4a is incident again on the reflector 4a. Can be suppressed. Specifically, since the light guide 3 and the reflector 4 are provided, light from the outside can be propagated inside the light guide 3 and guided to the solar cell element 6. Further, the light transmitted through the light guide 3 can be reflected by the reflector 4 and propagated through the light guide 3 to be guided to the solar cell element 6.
  • the distance between the first main surface 3a of the light guide 3 and the second main surface 3b of the light guide 3 when viewed from the direction orthogonal to the first side surface 3d of the light guide 3 is the first It inclines so that it may become large gradually as it approaches the end surface 3c. Therefore, the incident angle ⁇ 1c when entering the second main surface 3b of the light guide 3 is larger than the refraction angle ⁇ 1b when entering the light guide 3. For this reason, the light incident on the light guide 3 satisfies the total reflection condition on the second main surface 3 b of the light guide 3 and is easily guided to the solar cell element 6.
  • the low refractive index layer 5 which has the refractive index n0 smaller than the refractive index n1 of the light guide 3 exists between the light guide 3 and the reflector 4 (n1> n2). Accordingly, the refraction angle ⁇ 2d when entering the low refractive index layer 5 is larger than the incident angle ⁇ 2c when entering the second main surface 3b of the light guide 3. For this reason, the light incident on the low refractive index layer 5 is reflected by the gently inclined surface T ⁇ b> 2 of the reflector 4 and is easily guided to the solar cell element 6.
  • the light reflected by the gently inclined surface T2 of the reflector 4 and entering the light guide 3 is propagated through the light guide 3 by being totally reflected by the first main surface 3a of the light guide 3.
  • the angle (angle formed by a plane parallel to the XY plane and the light propagation direction) becomes shallow.
  • the light totally reflected by the first main surface 3 a of the light guide 3 satisfies the total reflection condition by the second main surface 3 b of the light guide 3 and is easily guided to the solar cell element 6. Therefore, it is possible to provide a solar cell module 2 capable of suppressing a decrease in power generation efficiency and a solar power generation device 1 using the solar cell module 2.
  • the gently inclined surface T2 of the reflecting portion 4a of the reflector 4 functions as a reflecting surface, it is easy to adjust the incident angle ⁇ 2f when the light is reflected by the reflecting surface and enters the light guide 3. Become. For example, if the inclination angle ⁇ B2 of the gently inclined surface T2 is increased, the incident angle ⁇ 2f when entering the light guide 3 is increased. If the inclination angle ⁇ B2 of the gently inclined surface T2 is reduced, the incident angle ⁇ 2f when entering the light guide 3 is reduced.
  • the first main surface 3a of the light guide 3 is a flat surface, it is possible to adjust the incident angle ⁇ 1c when light enters the light guide 3 and enters the second main surface 3b. It becomes easy. For example, if the inclination angle ⁇ A of the first main surface 3a is increased, the incident angle ⁇ 1c when entering the second main surface 3b increases. If the inclination angle ⁇ A of the first main surface 3a is reduced, the incident angle ⁇ 1c when entering the second main surface 3b is reduced.
  • the material of the light guide 3 is transmissive to wavelengths of 400 nm or less, it transmits light in a wide wavelength region. Therefore, external light can be taken in effectively.
  • FIG. 8 is a perspective view showing a photovoltaic power generation apparatus 1A of the present modification corresponding to FIG.
  • FIG. 9 is a partial cross-sectional view of the reflector 4A of the present modification corresponding to FIG. 8 and 9, the same reference numerals are given to the same components as those in FIGS. 1 and 3 used in the above embodiment, and the description thereof is omitted.
  • the solar power generation device 1 ⁇ / b> A includes a solar cell module 2 ⁇ / b> A and a support frame 8.
  • the solar cell module 2A has a substantially rectangular planar shape.
  • a support frame 8 is attached so as to surround the four sides of the solar cell module 2A.
  • the support frame 8 is fixed to the solar cell module 2A using, for example, an acrylic adhesive.
  • the solar cell module 2A includes a light guide 3, a reflector 4A, a low refractive index layer 5, and a solar cell element 6, as shown in FIG.
  • the light guide 3 and the reflector 4A are arranged to face each other.
  • the low refractive index layer 5 is disposed between the light guide 3 and the reflector 4A.
  • the solar cell element 6 receives the light emitted from the light guide 3.
  • reflection part 4Aa which injects from the 1st main surface 3a of the light guide 3, and permeate
  • the light guide 3 and the reflector 4A are fixed by the support frame 8 with the low refractive index layer 5 sandwiched between the second main surface 3b of the light guide 3 and the reflecting portion 4Aa of the reflector 4A facing each other. ing.
  • the light guide 3 and the reflector 4A are in direct contact with the second main surface 3b of the light guide 3 and the reflecting portion 4Aa of the reflector 4A facing each other.
  • the second main surface 3b of the light guide 3 is in contact with the ridgeline T3 of the reflecting portion 4Aa of the reflector 4A. That is, in this modification, an air layer (low refractive index layer 5) is formed in a region surrounded by the second principal surface 3b of the light guide 3 and the inclined surface of the ridge formed on the reflecting portion 4Aa of the reflector 4A. Is present.
  • a reflective film 4R is formed on the inclined surface T of the reflective portion 4Aa of the reflector 4A.
  • a metal material having a high reflectance such as aluminum (Al) is used.
  • Al aluminum
  • the reflective film 4R is not limited to Al, but may have a reflectance of at least 90% or more, and preferably has a higher reflectance.
  • the reflective film 4R is formed on the inclined surface T of the reflective portion 4Aa of the reflector 4A, the light incident on the low refractive index layer 5 is reflected by the reflector 4A.
  • the light is reliably reflected by the gently inclined surface T2 and guided to the solar cell element 6. Therefore, a decrease in power generation efficiency can be reliably suppressed.
  • the present inventor performed a simulation of the light end face arrival rate.
  • the end face arrival rate of light reaches the first end face 3c of the light guide 3 when the ratio of the amount of sunlight irradiated to the first main face 3a of the light guide 3 is 100%. It is the ratio (%) of the amount of light.
  • the simulation conditions of Example 1 are as follows: the vertical and horizontal dimensions of the light guide 3 are 300 mm ⁇ 300 mm, the inclination angle ⁇ A of the first main surface 3a is 5 degrees, the vertical and horizontal dimensions of the reflector 4A are 300 mm ⁇ 300 mm, and the thickness of the reflector 4A.
  • the solar cell module 2A of Example 1 was irradiated with sunlight from the first main surface 3a side of the light guide 3, the end surface arrival rate was 17.3%.
  • the condensing ratio of the solar cell module 2A of Example 1 was 1.9 times.
  • the light collection ratio is a value obtained when the light collection ratio when the solar cell having a vertical and horizontal dimension of 300 mm ⁇ 300 mm is directly irradiated with sunlight is set to 1 time.
  • the output condition of the solar cell element 6 is based on air mass AM1.5 defined by JIS.
  • a plurality of ridges are formed on a flat light guide having a fine structure (one surface of the flat plate (the surface opposite to the light incident surface) instead of the light guide 3 of the first embodiment.
  • the above simulation was performed with the vertical and horizontal dimensions of the light guide 300 mm ⁇ 300 mm.
  • the end face arrival rate was 12.1%.
  • the condensing ratio of the solar cell module of the comparative example was 1.3 times.
  • FIGS. 10 and 11 The basic configuration of the solar power generation device 10 of the present embodiment is the same as that of the first embodiment, the point that the light guide 3 is provided with the phosphor layer 9, and the reflection layer that reflects the fluorescence to the light guide 3. The difference from the first embodiment is that 13R is provided.
  • FIG. 10 is a cross-sectional view showing the solar power generation device 10 of the present embodiment.
  • FIG. 11 is a perspective view showing the solar cell module 12 of the present embodiment. 10 and 11, the same reference numerals are given to the same components as those of the configuration of the solar power generation device 1 of the first embodiment, and the description thereof is omitted.
  • the solar power generation device 10 includes a solar cell module 12 and a fixing member 17.
  • the solar cell module 12 has a substantially rectangular planar shape.
  • Fixing members 17 are attached to the four corners of the solar cell module 12.
  • the fixing member 17 is fixed to the solar cell module 12 using, for example, an acrylic adhesive.
  • the light guide unit 13 includes a light guide 3, a phosphor layer 9, a protective film 11, and a reflective layer 13R (see FIG. 11).
  • the protective film 11 is provided opposite to the light guide 3 with respect to the phosphor layer 9.
  • the protective film 11 is, for example, a hard coat, and has a higher hardness than both the light guide 3 and the phosphor layer 9.
  • the protective film 11 protects the light guide 3 and the phosphor layer 9 so that the light guide 3 and the phosphor layer 9 are not worn or scratched.
  • the protective film 11 is bonded to the surface of the phosphor layer 9 opposite to the light guide 3 using, for example, ⁇ GEL (registered trademark) manufactured by Taika Corporation.
  • the reflective layer 13 ⁇ / b> R includes the first main surface 3 a of the light guide 3 constituting the light guide unit 13, the surface of the protective film 11 opposite to the phosphor layer 9, and the solar cell element 16. Is provided on a surface other than the surface to which the is attached.
  • a metal material having a high reflectance such as Al is used. Note that the reflective layer 13R is not limited to Al, and may have a reflectivity of at least 90%, and preferably has a higher reflectivity.
  • a part of the external light incident from the first main surface 3a of the light guide 3 constituting the light guide unit 13 is absorbed by the phosphor dispersed in the phosphor layer 9 and converted into fluorescence.
  • the fluorescence emitted from the phosphor propagates while totally reflecting inside the light guide unit 13 and enters the solar cell element 16.
  • the light that has passed through the light guide unit 13 and entered the low refractive index layer 5 is reflected by the gently inclined surface T2 of the reflector 4A and guided to the solar cell element 16.
  • the luminous efficiency of the solar cell element varies depending on the wavelength of light incident on the solar cell element.
  • the spectral sensitivity is high with respect to light having a wavelength of 450 nm to 600 nm.
  • a part of the external light incident from the first main surface 3a of the light guide 3 constituting the light guide unit 13 is converted into fluorescence with high spectral sensitivity in the solar cell element.
  • the peak wavelength of the emission spectrum of the phosphor is 578 nm.
  • the light of this wavelength is light having high spectral sensitivity in a solar cell element using an InGaP semiconductor. Therefore, it is efficiently converted into electric power by the solar cell element 16.
  • the reflective layer is formed on the first main surface 3a of the light guide 3 constituting the light guide unit 13, the surface opposite to the phosphor layer 9 of the protective film 11 and the surface to which the solar cell element 16 is attached. 13R is provided. Therefore, it is possible to suppress the fluorescence emitted from the phosphor from leaking to the outside. Therefore, fluorescence can be efficiently incident on the solar cell element 16, and high power generation efficiency can be obtained.
  • the present inventor performed a simulation of the light end face arrival rate.
  • the end face arrival rate of light is the light guide unit when the ratio of the amount of sunlight incident on the first main surface 3a of the light guide 3 constituting the light guide unit 13 is 100%.
  • 13 is a ratio (%) of the amount of light reaching the 13 light exit surface.
  • the simulation conditions of Example 2 are as follows: the vertical and horizontal dimensions of the light guide 3 are 300 mm ⁇ 300 mm, the inclination angle ⁇ A of the first main surface 3a is 5 degrees, the vertical and horizontal dimensions of the reflector 4A are 300 mm ⁇ 300 mm, and the thickness of the reflector 4A.
  • the solar cell module 12 of Example 2 was irradiated with sunlight from the first main surface 3a side of the light guide 3, the end face arrival rate was 29.2%.
  • the condensing ratio of the solar cell module 12 of Example 2 was 3.1 times.
  • the light collection ratio is a value obtained when the light collection ratio when the solar cell having a vertical and horizontal dimension of 300 mm ⁇ 300 mm is directly irradiated with sunlight is set to 1 time.
  • the output condition of the solar cell element 16 is based on the air mass AM1.5 defined by JIS.
  • the end face arrival rate and the high concentration collection are higher than those of the light guide body of Example 1 (end face arrival ratio 17.3%, light collection ratio 1.9 times). It was found that the light ratio can be obtained.
  • FIG. 12 is a cross-sectional view showing a photovoltaic power generation apparatus 10A of the present modification corresponding to FIG.
  • FIG. 13 is a perspective view showing a photovoltaic power generation apparatus 10A of the present modification corresponding to FIG. 12 and 13, the same reference numerals are given to the same components as those in FIGS. 10 and 11 used in the above embodiment, and the description thereof is omitted.
  • the solar power generation device 10 ⁇ / b> A includes a solar cell module 12 ⁇ / b> A, a fixing member 17, and a frame body 14.
  • the solar cell module 12A includes a light guide unit 13A, a reflector 4A, a low refractive index layer 5, and a solar cell element 16.
  • the light guide unit 13A and the reflector 4A are disposed to face each other.
  • the low refractive index layer 5 is located between the light guide unit 13A and the reflector 4A.
  • the solar cell element 16 receives light emitted from the light guide unit 13A.
  • the light guide unit 13A includes a light guide 3, a phosphor layer 9A, and a transparent member 11A.
  • the phosphor layer 9 ⁇ / b> A is provided on the first main surface 3 a of the light guide 3.
  • the phosphor layer 9A is a phosphor film formed by dispersing a phosphor in the transparent film.
  • a fluorescent material Lumogen F Red 305 (trade name) manufactured by BASF having a peak wavelength of an emission spectrum at 578 nm is used.
  • the phosphor layer 9A is bonded to the first main surface 3a of the light guide 3 using, for example, ⁇ GEL (registered trademark) manufactured by Taika Corporation.
  • the transparent member 11A is provided opposite to the light guide 3 with respect to the phosphor layer 9A.
  • the transparent member 11A is made of a highly transparent organic or inorganic material such as polyester resin or glass.
  • the transparent member 11A is made of a highly transparent material that does not contain a phosphor. If the phosphor is not intentionally dispersed for the purpose of wavelength conversion inside the transparent member 11A, some phosphor And may be made of a material that is not completely transparent.
  • the transparent member 11A is configured as a transparent film member, for example, but an inflexible plate member such as glass may be used as the transparent member 11A.
  • the transparent member 11A is bonded to the surface of the phosphor layer 9A opposite to the light guide 3 using, for example, ⁇ GEL (registered trademark) manufactured by Taika Corporation.
  • the frame body 14 is a box-shaped member that holds the light guide unit 13A and the reflector 4A.
  • the inner surface of the frame 14 functions as a reflecting surface that reflects the fluorescence emitted from the phosphor.
  • a reflective layer 14 ⁇ / b> R is formed on the inner surface of the frame body 14.
  • the reflective layer 14R for example, a metal material having a high reflectance such as Al is used. Note that the reflective layer 14R is not limited to Al, and may have a reflectivity of at least 90% or more, and preferably has a higher reflectivity.
  • a part of the external light incident from the upper surface of the transparent member 11A constituting the light guide unit 13A is absorbed by the phosphor dispersed inside the phosphor layer 9A and converted into fluorescence. Fluorescence emitted from the phosphor propagates while totally reflecting inside the light guide unit 13 ⁇ / b> A and enters the solar cell element 16.
  • the light that has passed through the light guide unit 13A and entered the low refractive index layer 5 is reflected by the gently inclined surface T2 of the reflector 4A and guided to the solar cell element 16.
  • the phosphor layer 9A is a phosphor film
  • the fluorescence emitted from the phosphor layer 9A is less likely to be absorbed by the phosphor inside the phosphor layer 9A. That is, since loss due to self-absorption is reduced, almost all of the fluorescence emitted from the phosphor layer 9A is incident on the solar cell element 16. Therefore, solar power generation device 10A with high power generation efficiency is obtained.
  • the inner surface of the frame body 14 functions as a reflecting surface, it is possible to prevent the fluorescence emitted from the phosphor from leaking to the outside by accommodating the light guide unit 13A in the frame body 14. Therefore, fluorescence can be efficiently incident on the solar cell element 16, and high power generation efficiency can be obtained.
  • the phosphor layer is fluorescent in a transparent resin that bonds the light guide 3 and a transparent member laminated on at least one of the first main surface 3a and the second main surface 3b of the light guide 3. It may be an adhesive layer in which the body is dispersed.
  • an adhesive layer adheresive layer for adhering the transparent member and the phosphor layer
  • adhering the light guide 3 and the phosphor layer can be omitted, there is no loss of light due to this adhesive layer, Furthermore, power generation efficiency is improved.
  • the thickness of the adhesive layer is thinner than when the phosphor layer is a phosphor plate or a fluorescent film, the amount of phosphor used should be reduced compared to when the phosphor is dispersed inside the phosphor plate or phosphor film. Can do. Therefore, member cost is reduced.
  • FIG. 14 is a cross-sectional view showing the solar power generation device 20 of the present embodiment.
  • FIG. 15 is a plan view showing the light collecting member 21 of the present embodiment.
  • the same reference numerals are given to the same components as the configuration of the photovoltaic power generation apparatus 10 of the second embodiment, and the description thereof is omitted.
  • the solar power generation device 20 includes a solar cell module 22 and a fixing member 27.
  • the solar cell module 22 has a substantially rectangular planar shape.
  • Fixing members 27 are attached to the four corners of the solar cell module 22.
  • the fixing member 27 is fixed to the solar cell module 22 using, for example, an acrylic adhesive.
  • the solar cell module 22 includes a light guide unit 13, a reflector 4 ⁇ / b> A, a low refractive index layer 5, a light collecting member 21, and a solar cell element 26.
  • the light guide unit 13 and the reflector 4A are arranged to face each other.
  • the low refractive index layer 5 is located between the light guide unit 13 and the reflector 4A.
  • the condensing member 21 condenses the light emitted from the light guide unit 13.
  • the solar cell element 26 receives the light collected by the light collecting member 21.
  • the condensing member 21 is, for example, an integrator optical element (homogenizer) that equalizes the intensity distribution of light emitted from the light exit surface of the light guide unit 13 and emits the light to the solar cell element 26.
  • integrator optical element homogenizer
  • the condensing member 21 includes a light incident surface 21a, a light exit surface 21b, and a reflective surface 21c.
  • the light incident surface 21 a faces the light exit surface of the light guide unit 13.
  • the light emission surface 21b emits light incident from the light incident surface 21a.
  • the reflecting surface 21c reflects the light incident from the light incident surface 21a and propagates it to the light emitting surface 21b.
  • the condensing member 21 has, for example, a quadrangular pyramid shape having the light incident surface 21a as the bottom surface, the light exit surface 21b as the top surface, and the reflecting surface 21c as the side surface.
  • the light collecting member 21 is formed, for example, by injection molding a resin such as polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • the reflection surface 21c reflects light by total reflection, but a reflection layer made of a metal film or a dielectric multilayer film may be formed on the reflection surface 21c, and light may be reflected by this reflection layer.
  • a reflective layer may be formed on the reflective surface 21c of the light collecting member 21 using a metal material having a high reflectance such as Al. Note that the reflective layer is not limited to Al, and may have a reflectivity of at least 90% or more, and preferably has a higher reflectivity.
  • the solar cell element 26 is disposed with the light receiving surface facing the light exit surface 21 b of the light collecting member 21. As the light from the light guide unit 13 that has entered the light incident surface 21 a of the light collecting member 21 is repeatedly reflected by the reflective surface 21 c of the light collecting member 21, the illuminance distribution is made uniform. Then, the light with uniform illuminance distribution is incident on the solar cell element 26. By making the illuminance distribution of light incident on the solar cell element 26 uniform, the power generation efficiency of the solar cell element 26 can be increased.
  • the light collected by the light collecting member 21 can be incident on the solar cell element 26. Therefore, the light collection ratio can be improved and the amount of power generation can be increased.
  • the light converging magnification can be improved by condensing the light emitted from the light exit surface of the light guide unit 13 by the light condensing member 21.
  • the short-circuit current density, the open-circuit voltage, and the conversion efficiency of the concentrating solar cell are in a relationship as shown in Expression (2) with respect to the concentrating ratio.
  • the light collection ratio is CR
  • the diode factor is n
  • the reverse saturation current value is J 0
  • the Boltzmann constant is k
  • the temperature is T
  • the charge is q
  • the short-circuit current density during non-light collection is J SC1
  • the light collection short-circuit current density J SC2 of time the non-focus the open circuit voltage at the time of light V OC1, the open circuit voltage at the time of condensing V OC2, non collection fill factor FF 1 during light, the fill factor at the time of condensing FF 2
  • the conversion efficiency when not condensing is ⁇ 1
  • the conversion efficiency when condensing is ⁇ 2
  • the sunlight intensity 100 mW / cm 2
  • the present inventor performed a simulation of the light end face arrival rate.
  • the end face arrival rate of light is the light guide unit when the ratio of the amount of sunlight incident on the first main surface 3a of the light guide 3 constituting the light guide unit 13 is 100%. 13 is a ratio (%) of the amount of light reaching the 13 light exit surface.
  • the simulation conditions of Example 3 were set as follows.
  • the vertical and horizontal dimensions of the light guide 3 are 300 mm ⁇ 300 mm, and the inclination angle ⁇ A of the first main surface 3a is 5 degrees.
  • the vertical and horizontal dimensions of the reflector 4A were 300 mm ⁇ 300 mm, and the thickness of the reflector 4A was 10 mm.
  • the horizontal dimension a2 of the light incident surface 21a is 300 mm
  • the vertical dimension b2 of the light incident surface 21a is 28 mm
  • the horizontal dimension a1 of the light emitting surface 21b is 100 mm
  • the vertical dimension b1 of the light emitting surface 21b is 14 mm.
  • the end face arrival rate was 29.2%.
  • the condensing ratio of the solar cell module 12 of Example 3 was 18.8 times.
  • the light collection ratio is a value obtained when the light collection ratio when the solar cell having a vertical and horizontal dimension of 300 mm ⁇ 300 mm is directly irradiated with sunlight is set to 1 time.
  • the output condition of the solar cell element 26 is based on air mass AM1.5 defined by JIS.
  • the solar power generation device 20 of the present embodiment although the light guide of Example 2 (end surface arrival rate 29.2%, condensing ratio 3.1 times) and the end surface arrival rate do not change, It was found that a higher light collection ratio than that of the light guide of Example 2 can be obtained.
  • FIG. 16 is a plan view showing a light collecting member 21A of the present modification corresponding to FIG.
  • the light collecting member 21A includes a plurality (two) of light collecting portions as shown in FIG. Note that the number of light collecting units is not limited to two and may be three or more.
  • the light condensed by the light collecting member 21A can be incident on the solar cell element 26. Therefore, the light collection ratio can be improved and the amount of power generation can be increased.
  • FIGS. 17 and 18 The basic configuration of the solar power generation device 30 of the present embodiment is the same as that of the second embodiment, and is different from the second embodiment in that the reflecting portion 34a of the reflector 34 is a flat surface.
  • FIG. 17 is a cross-sectional view showing the solar power generation device 30 of the present embodiment.
  • FIG. 18 is a diagram illustrating an installation method (a solar cell module installation method) of the solar power generation device 30 of the present embodiment.
  • the same reference numerals are given to the same components as the configuration of the photovoltaic power generation apparatus 20 of the second embodiment, and the description thereof is omitted.
  • the solar power generation device 30 includes a solar cell module 32 and a fixing member 17.
  • the solar cell module 32 has a substantially rectangular planar shape.
  • Fixing members 17 are attached to the four corners of the solar cell module 32.
  • the fixing member 17 is fixed to the solar cell module 32 using, for example, an acrylic adhesive.
  • the solar cell module 32 includes a light guide unit 13, a reflector 34, a low refractive index layer 5, and a solar cell element 16.
  • the light guide unit 13 and the reflector 34 are disposed to face each other.
  • the low refractive index layer 5 is located between the light guide unit 13 and the reflector 34.
  • the solar cell element 16 receives light emitted from the light guide unit 13.
  • the light guide unit 13 and the reflector 34 are disposed via the low refractive index layer 5 in a state where the lower surface of the protective film 11 constituting the light guide unit 13 unit and the reflecting portion 34a of the reflector 34 face each other. Has been.
  • the solar power generator 30 (solar cell module 33) is the highest in the daytime sun by providing the support column 31 at the end of the solar power generator 30 opposite to the side where the solar cell element 6 is attached. It is possible to realize a configuration in which the projector is installed while being tilted in the direction opposite to the direction when it is in the position.
  • the reflecting portion 34a is a flat surface, and this flat surface functions as a reflecting surface, so that the light incident on the low refractive index layer 5 is a flat surface of the reflector 34. Is reliably reflected and guided to the solar cell element 16. Therefore, a decrease in power generation efficiency can be reliably suppressed.
  • the low refractive index layer 5 between the light guide unit 13 and the reflector 34 is provided.
  • the solar cell module 33 of the present embodiment since the solar cell module 33 is tilted, light from the sun is incident on the reflecting portion 34a (reflective film 34R) of the reflector 34 so as to be low in refraction. Light incident on the rate layer 5 is easily reflected by the flat surface of the reflector 34. Therefore, a decrease in power generation efficiency can be reliably suppressed.
  • FIG. 19 is a cross-sectional view showing a solar power generation device 30A of the present modification corresponding to FIG.
  • the same components as those in FIG. 17 used in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the solar power generation device 30A includes a solar cell module 32A and a fixing member 37A.
  • the solar cell module 32A has a substantially rectangular planar shape.
  • 37 A of fixing members are attached to the four corners of the solar cell module 12A.
  • the fixing member 37A is fixed to the solar cell module 32A using, for example, an acrylic adhesive.
  • the solar cell module 32 ⁇ / b> A includes the light guide unit 13, the reflector 34 ⁇ / b> A, the low refractive index layer 5, and the solar cell element 16.
  • the light guide unit 13 and the reflector 34A are disposed to face each other.
  • the low refractive index layer 5 is located between the light guide unit 13 and the reflector 34A.
  • the solar cell element 16 receives light emitted from the light guide unit 13.
  • the reflecting portion 34Aa of the reflector 34A is a flat surface, and this flat surface functions as a reflecting surface that reflects the light incident on the reflector 34A and changes the traveling direction of the light. As the distance between the lower surface of the protective film 11 constituting the light guide unit 13 and the flat surface of the reflector 34A approaches the light exit surface of the light guide unit 13 from the far side of the light exit surface of the light guide unit 13. It is getting bigger gradually.
  • the reflector 34A is configured, for example, by forming a reflective film 34R on the upper surface of the substrate.
  • the solar power generation device 30A of the present modification light from the sun is shallowly incident on the reflection portion 34Aa (reflection film 34R) of the reflector 34A. For this reason, the light incident on the low refractive index layer 5 is easily reflected by the flat surface of the reflector 34A. Therefore, a decrease in power generation efficiency can be suppressed.
  • FIG. 20 is a diagram illustrating a first modification of the solar cell module installation method.
  • the solar power generation device 30 is attached to the roof of a building 31A such as a house.
  • the solar power generation device is attached to the roof of the building such that the end of the solar power generation device 30 opposite to the side on which the solar cell element 6 is attached faces the ridgeline (ridge) of the roof.
  • the structure which inclines in the direction on the opposite side to the direction when the solar power generation device 30 (solar cell module 33) exists in the highest position in the daytime sun is realizable.
  • the solar cell module 33 is inclined so that light from the sun is incident on the reflecting portion 34a (reflective film 34R) of the reflector 34 so as to have a low refractive index. Light incident on the layer 5 is easily reflected by the flat surface of the reflector 34. Therefore, a decrease in power generation efficiency can be suppressed.
  • FIG. 21A is a perspective view showing the solar cell module 40 of the present embodiment.
  • FIG. 21B is a cross-sectional view showing the solar cell module 40 of the present embodiment.
  • components common to the configurations of the solar power generation device 1 of the first embodiment, the solar power generation device 10 of the second embodiment, and the solar power generation device 30 of the fourth embodiment. are denoted by the same reference numerals, and description thereof is omitted.
  • the solar cell module 40 includes a light guide unit 43, a reflector 34, a low refractive index layer 5, and a solar cell element 16, as shown in FIG. 21A.
  • the light guide unit 43 and the reflector 34 are disposed to face each other.
  • the low refractive index layer 5 is located between the light guide unit 13 and the reflector 4A.
  • the solar cell element 16 receives light emitted from the light guide unit 43.
  • the light guide unit 43 includes transparent layers 41 a and 41 b and a phosphor layer 9. As shown in FIG. 20B, the phosphor layer 9 is sandwiched between transparent layers 41a and 41b.
  • the transparent layers 41a and 41b can be formed of the same material as the light guide 3 described in the first embodiment.
  • the transparent layers 41a and 41b are preferably formed of a material having a transmittance of 90% or more with respect to light in a wavelength region of 280 nm to 800 nm.
  • the thickness d 2 of the thickness d 1 and the transparent layer 41b of the transparent layer 41a is not particularly limited, in the present embodiment, and is substantially the same.
  • the phosphor layer 9 can be formed in the same manner as the phosphor layer 9 described in the second embodiment. Similar to the second embodiment, the phosphor layer 9 is bonded to the transparent layers 41a and 41b by using, for example, ⁇ GEL (registered trademark) manufactured by Taika Corporation.
  • the reflector 34 has the same configuration as that of the fourth embodiment.
  • the reflector 34 has a flat surface, and the flat surface functions as a reflection surface that reflects light incident on the reflector 34 and changes the traveling direction of the light.
  • the lower surface of the light guide unit 43 and the flat surface of the reflector 34 are substantially parallel to each other.
  • the flat surface is formed over substantially the entire surface of the reflector 34.
  • the present embodiment is not limited to this, and even if a part of the surface of the reflector 34 is not a flat surface. Good.
  • the light incident on the first main surface 43a of the light guide unit 43 enters the phosphor layer 9 via the transparent layer 41a. Part of the light incident on the phosphor layer 9 is absorbed by the phosphor and converted into fluorescence. The light that has not been absorbed by the phosphor passes through the phosphor layer 9 and enters the transparent layer 41b.
  • the light incident on the transparent layer 41 b reaches the lower surface of the transparent layer 41 b, that is, the second main surface 43 b of the light guide unit 43.
  • the incident angle of the incident light with respect to the second main surface 43b is greater than or equal to the critical angle
  • the incident light is reflected by the second main surface 43b and enters the phosphor layer 9 again.
  • the incident angle of the incident light with respect to the second main surface 43b of the light guide unit 43 is equal to or smaller than the critical angle
  • the incident light is transmitted through the transparent layer 41b and reflected by the reflector 34.
  • the light reflected by the reflector 34 enters the light guide unit 43 again and enters the phosphor layer 9 again.
  • the light incident on the phosphor layer 9 again is absorbed by the phosphor layer 9 and converted into fluorescence.
  • FIG. 23A The absorption spectrum of light by the phosphor in the phosphor layer 9 in the solar cell module 40 according to the present embodiment will be described.
  • the phosphor included in the phosphor layer 9 has an absorption spectrum shown in FIG. 23A.
  • the maximum absorption wavelength of the phosphor is assumed to be ⁇ ab .
  • FIG. 23B and FIG. 23C show the transmission spectrum of light when it passes through the phosphor layer 9.
  • the maximum absorption wavelength lambda ab phosphor is transmission spectrum that minimizes light of the maximum absorption wavelength lambda ab phosphor Are not all absorbed.
  • the same effect as in the second embodiment can be obtained. That is, the peak wavelength of the emission spectrum of the phosphor can be arbitrarily set, and the light propagating inside the light guide unit 43 can be converted into fluorescence with high spectral sensitivity in the solar cell element 16. Therefore, the light incident on the solar cell element 16 can be efficiently contributed to power generation, and high power generation efficiency can be obtained.
  • the phosphor layer 9 is disposed in the light guide unit 43, the light propagating in the light guide 43 is incident on the phosphor layer 9 a plurality of times. Therefore, the light propagating through the light guide unit is efficiently converted into fluorescence, and the power generation efficiency of the solar cell element 16 can be increased.
  • the phosphor layer 9 is not limited to the above-described configuration, and may have the same configuration as the fluorescent film 9A described in the first modification of the second embodiment.
  • the phosphor layer 9 is a phosphor film
  • the fluorescence emitted from the phosphor layer 9 is not easily absorbed by the phosphor inside the phosphor layer 9. That is, since loss due to self absorption is reduced, almost all of the fluorescence emitted from the phosphor layer 9 enters the solar cell element 16. Therefore, the solar cell module 40 with high power generation efficiency is obtained.
  • the phosphor layer 9 may be an adhesive layer in which a phosphor is dispersed inside a transparent resin that bonds the transparent layers 41a and 41b.
  • the adhesive layer for adhering the transparent layers 41a and 41b and the phosphor layer can be omitted, the loss of light due to the adhesive layer is eliminated, and the power generation efficiency is further improved.
  • the thickness of the adhesive layer is thinner than when the phosphor layer 9 is a phosphor plate or a phosphor film, the amount of phosphor used is reduced compared to the case where the phosphor is dispersed inside the phosphor plate or the phosphor film. be able to. Therefore, member cost is reduced.
  • the light guide unit 43 may have a configuration in which phosphors are dispersed so as to have a concentration distribution in the z-axis direction. That is, the phosphor layer 9 may not be a layer provided independently, and may have a configuration in which the phosphor is dispersed so that the concentration is increased in a part of the light guide unit 43. . That is, the transparent layers 41a and 41b and the phosphor layer 9 may have a configuration in which the transparent layers 41a and 41b and the phosphor layer 9 are continuously connected without having a boundary. Thereby, since the adhesive layer for adhering the transparent layers 41a and 41b and the phosphor layer 9 can be omitted, the loss of light due to the adhesive layer is eliminated, and the power generation efficiency is further improved. [Modification of Fifth Embodiment]
  • FIGS. 22A to 22E The basic configuration of the solar cell module 40 of this modification is the same as that of the above embodiment.
  • 22A to 22E are cross-sectional views showing a solar cell module 40 of the present modification corresponding to FIG. 21B.
  • 22A to 22E the same components as those in FIGS. 21A and 21B used in the above embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the light guide unit 45A includes the transparent layer 41a and the phosphor layer 9. It may be a configuration. In the light guide unit 45 ⁇ / b> A, the phosphor layer 9 faces the reflector 34.
  • the light guide unit 45 ⁇ / b> B may include a transparent layer 41 b and a phosphor layer 9.
  • the phosphor layer 9 is provided on the side on which external light is incident.
  • the reflector 34 has a flat surface.
  • the reflector 4 may have a plurality of ridges as in the first embodiment.
  • the solar cell module 1001 includes a light guide body 1002 that collects sunlight, and a solar cell element 1003 that generates power using sunlight collected by the light guide body 1002.
  • a solar cell module 1001 for example, the solar cell module described in the first to fourth embodiments is used.
  • the solar power generation device 1000 includes the solar cell module according to the above-described embodiment, the solar power generation device 1000 has a high power generation efficiency.
  • the technical scope in the aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the aspect of the present invention.
  • the shape of a light guide is not limited to a plate-shaped body,
  • a rod-shaped body may be sufficient and can be changed suitably.
  • the shape, size, number, arrangement, constituent material, manufacturing method, and the like of various components in the above embodiment are not limited to those illustrated in the above embodiment, and can be changed as appropriate.
  • the aspect of the present invention can be used for a solar cell module, a solar power generation device, or a method for installing a solar cell module.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 太陽電池モジュールは、導光体と、反射体と、低屈折率層と、太陽電池素子と、を備える。反射体は、導光体と対向して配置される。太陽電池素子は、導光体から射出された光を受光する。導光体は、第1主面と第2主面と前記第1主面および前記第2主面に接する第1端面とを有する。導光体は、外部からの光を第1主面から入射させ導光体の内部を伝播させて第1端面から射出させる。反射体は、第1主面から入射して導光体を透過し、反射体に入射した光を反射させて、光の進行方向を変更する反射部を有する。太陽電池素子は、前記第1端面から射出された光を受光する。導光体の厚みは、第1端面から離れるにつれ徐々に小さくなっている。

Description

太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法
 本発明は、太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法に関するものである。
 本願は、2011年3月24日に、日本に出願された特願2011-066024号に基づき優先権を主張し、その内容をここに援用する。
 従来の太陽光発電装置は、複数の太陽電池パネルを太陽に向けて一面に敷き詰めた形態のものが一般的であった。一例として、建物の屋根に架台を設置し、架台上に複数の太陽電池パネルを敷き詰めた形態の太陽光発電装置が知られている。一般に、太陽電池パネルは不透明な半導体で構成されており、積層して配置することができない。そのため、太陽光発電装置において、電力量を確保するためには大面積の太陽電池パネルが必要となる。
 ところが、屋根のような限られた場所に装置を設置しなければならないという制約があり、得られる電力量に限界があった。
 そこで、入射した太陽光を太陽電池に導くための導光部材を備えた太陽電池が提案されている(下記の特許文献1参照)。特許文献1に記載の太陽電池は、複数のV字状溝が形成された、側面形状が略直角三角形の導光部材を備え、導光部材の端面に太陽電池が取り付けられている。
特開2004-47752号公報
 しかしながら、特許文献1の技術では、導光部材のサイズを大きくした場合、入射光を導光部材の内部で伝播させて端面に集光させる過程において、入射光が複数のV字状溝の反射面で複数回反射される。これにより、入射光の反射面における反射角度が変わり、入射光が反射面において全反射条件を満たさなくなり外部へ抜けてしまう。その結果、太陽電池への入光効率が低下し、発電効率が低下してしまう。
 本発明の態様は、上記の課題を解決するためになされたものであって、発電効率の低下を抑制することが可能な太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法の提供を目的とする。
 本発明の一態様における太陽電池モジュールは、導光体と、前記導光体に対向して配置された反射体と、前記導光体から射出された光を受光する太陽電池素子と、を備える。前記導光体は、第1主面と第2主面と前記第1主面および前記第2主面に接する第1端面とを有し、外部からの光を前記第1主面から入射させ前記導光体の内部を伝播させて前記第1端面から射出させる。前記反射体は、前記第1主面から入射して前記導光体を透過し、前記反射体に入射した光を反射させて、前記光の進行方向を変更する反射部を有する。前記太陽電池素子は、前記第1端面から射出された光を受光し、前記導光体の厚みは、前記第1端面から離れるにつれ小さくなっている。
 本発明の一態様における太陽電池モジュールは、さらに、前記導光体と前記反射体との間に位置する低屈折率層を有してもよい。前記低屈折率層の屈折率は、前記導光体の屈折率よりも低い。
 本発明の一態様における太陽電池モジュールにおいて、前記反射部は、前記導光体を透過した前記光を反射させ、反射した前記光が前記導光体へ入射し、前記導光体内を伝播して前記第1端面へ到達するよう構成されていてもよい。
 本発明の一態様における太陽電池モジュールにおいて、前記反射部は、前記第2主面に対して傾斜角を有する傾斜面が設けられる。前記傾斜面は、前記反射体に入射した光を反射させて前記光の進行方向を変更するよう配置されてもよい。
 本発明の一態様における太陽電池モジュールにおいて、前記反射体は、複数の前記反射部と、前記第2主面に対して概平行な複数の平端部を有し、前記複数の反射部の間にはそれぞれ、前記複数の平端部が配置されていてもよい。
 本発明の一態様における太陽電池モジュールは、さらに前記傾斜面上に形成された反射膜を有していてもよい。
 本発明の一態様における太陽電池モジュールにおいて、前記反射部は平坦面を有し、前記平坦面が前記導光体を透過した前記光を反射させて、反射した前記光が前記導光体へ入射し、前記導光体内を伝播して前記第1端面へ到達するよう配置されていてもよい。
 本発明の一態様における太陽電池モジュールにおいて、前記平坦面は、前記反射体の全体に延在していてもよい。
 本発明の一態様における太陽電池モジュールは、前記第2主面と前記平坦面とが互いに概平行であってもよい。
 本発明の一態様における太陽電池モジュールは、前記第2主面と前記平坦面との間の間隔が、前記第1端面から離れるにつれて小さくなっていてもよい。
 本発明の一態様における太陽電池モジュールにおいて、さらに前記第1主面および第2主面の一方の上に設けられた前記導光体に入射した光を受けて蛍光を発する蛍光体が分散された蛍光体層が設けられていてもよい。
 本発明の一態様における太陽電池モジュールにおいて、前記蛍光体層は、透明フィルムの内部に前記蛍光体を分散させた蛍光フィルムであってもよい。
 本発明の一態様における太陽電池モジュールは、さらに、前記第1主面と前記第2主面の少なくとも一面上に積層される透明部材を有し、前記蛍光体層は、前記導光体と前記透明部材とを接着する透明樹脂の内部に前記蛍光体を分散させた接着層であってもよい。
 本発明の一態様における太陽電池モジュールは、さらに、前記導光体の前記第1主面、前記第2主面及び前記第1端面以外の面に設けられ、前記蛍光体から放射された蛍光を反射する反射層を備えていてもよい。
 本発明の一態様における太陽電池モジュールは、前記導光体と前記反射体とを保持する枠体を備え、前記枠体の内面が前記蛍光体から放射された蛍光を反射するよう構成されていてもよい。
 本発明の一態様における太陽電池モジュールは、さらに、前記第1端面から射出された光を集光し、前記太陽電池素子に入射させる集光部材を備えていてもよい。
 本発明の一態様における太陽電池モジュールにおいて、前記低屈折率層は、空気層であってもよい。
 本発明の一態様における太陽電池モジュールにおいて、前記導光体の材料は、400nm以下の波長に対して透過性を有していてもよい。
 本発明の他の態様における太陽光発電装置は、上記本発明の態様における太陽電池モジュールを備える。
 本発明のさらに他の態様における太陽電池モジュールの設置方法は、上記本発明の態様における太陽電池モジュールを、前記第1主面が、日中太陽が最も高い位置にあるときの方角とは反対側の方角に向くよう傾斜させて設置する。
 本発明のさらに他の態様における太陽電池モジュールは、導光体と、反射体と、太陽電池素子と、を備える。前記反射体は、前記導光体と対向する反射面であって、前記導光体を透過し前記導光体より低い屈折率を有する低屈折率媒体を介して入射した光を反射する反射面を有する。前記太陽電池は、前記導光体から射出された光を受光する。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記導光体は、第1主面と第2主面と前記第1主面および前記第2主面に接する第1端面とを有し、前記導光体の厚みは、前記第1端面から離れるにつれ小さくなっていてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記反射面は、前記第2主面に対して傾斜角を有し、前記反射面は、入射した前記光を反射させて、前記光の進行方向を変更するよう配置されていてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記反射面が平坦であり、前記反射面は、前記導光体を透過した前記光を反射させて、反射した前記光が前記導光体へ入射し、前記導光体内を伝播して前記第1端面へ到達するよう配置されていてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記第2主面と前記反射面とが互いに概平行であってもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記第2主面と前記反射面との間の間隔は、前記第1端面から離れるにつれて小さくなっていてもよい。
 本発明のさらに他の態様における太陽電池モジュールは、さらに、前記第1主面および第2主面の一方の上設けられた前記導光体に入射した光を受けて蛍光を発する蛍光体が分散された蛍光体層を有していてもよい。
 本発明のさらに他の態様における太陽電池モジュールは、導光体と、前記導光体を透過し前記導光体より低い屈折率を有する低屈折率媒体を介して入射した光を反射する反射面を有する反射体と、前記導光体から射出された光を受光する太陽電池素子と、を含み、前記導光体は、第1透明層と、前記導光体に入射した光の少なくとも一部を吸収し、発光する蛍光体を含む蛍光体層を含む。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記第1透明層は、280nm以上800nm以下の波長領域の光に対して90%以上の透過率を有していてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記導光体は、さらに第2透明層を有し、前記蛍光体層は前記第1透明層および前記第2透明層の間に挟まれていてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記第1透明層と前記第2透明層は、概略同じ厚さを有していてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記第1透明層と前記第2透明層は、異なる厚さを有していてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記蛍光体層は、前記導光体の一部において濃度が高くなるように前記蛍光体を分散させて構成されていてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記導光体と前記反射体とが互いに概平行であってもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記導光体と前記反射体との間の間隔は、前記導光体の光が射出される面から離れるにつれて小さくなっていてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記反射面は、前記導光体に対して傾斜角を有し、前記反射面は、入射した前記光を反射させて、前記光の進行方向を変更するよう配置されていてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、入射した前記光のうち前記蛍光体の最大吸収波長の光は、前記蛍光体層に一度入射しても全てが吸収されず、前記蛍光体層に二度以上入射することによって概ね全てが吸収されてもよい。
 本発明のさらに他の態様における太陽電池モジュールにおいて、前記蛍光体の最大吸収波長における吸光度をAとしたとき、入射した前記光のうち蛍光体の吸光度が0.5A以上のとなる波長帯の光は、前記蛍光体層に一度入射しても全てが吸収されず、前記蛍光体層に二度以上入射することによって概ね全てが吸収されてもよい。
 本発明の態様によれば、発電効率の低下を抑制することが可能な太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法を提供することができる。
本発明の第1の実施形態の太陽光発電装置を示す斜視図である。 本発明の第1の実施形態の太陽電池モジュールの断面図である。 本発明の第1の実施形態の反射体の部分断面図である。 本発明の第1の実施形態の太陽電池モジュールにおける光の伝播の様子を示す図である。 本発明の第1の実施形態の太陽電池モジュールにおける光の伝播の様子を示す図である。 本発明の第1の実施形態の太陽電池モジュールにおける反射面の作用を説明するための図である。 本発明の第1の実施形態の導光体の透過率特性を示す図である。 太陽電池素子における吸収波長と強度、吸収感度の関係を示す図である。 本発明の第1の実施形態の太陽光発電装置の第1の変形例を示す斜視図である。 本発明の第1の実施形態の反射体の部分断面図である。 本発明の第2の実施形態の太陽光発電装置を示す断面図である。 本発明の第2の実施形態の太陽電池モジュールの斜視図である。 本発明の第2の実施形態の太陽光発電装置の第1の変形例を示す断面図である。 本発明の第2の実施形態の太陽光発電装置の斜視図である。 本発明の第3の実施形態の太陽光発電装置を示す断面図である。 本発明の第3の実施形態の集光部材の平面図である。 本発明の第3の実施形態の集光部材の第1の変形例を示す平面図である。 本発明の第4の実施形態の太陽光発電装置を示す断面図である。 本発明の第4の実施形態の太陽電池モジュールの設置方法を示す図である。 本発明の第4の実施形態の太陽光発電装置の第1の変形例を示す断面図である。 本発明の第4の実施形態の太陽電池モジュールの設置方法の第1変形例を示す図である。 本発明の第5の実施形態の太陽電池モジュールの斜視図である。 本発明の第5の実施形態の太陽電池モジュールの断面図である。 本発明の第5の実施形態の太陽光発電装置の第1の変形例を示す断面図である。 本発明の第5の実施形態の太陽光発電装置の第1の変形例を示す断面図である。 本発明の第5の実施形態の太陽光発電装置の第1の変形例を示す断面図である。 本発明の第5の実施形態の太陽光発電装置の第1の変形例を示す断面図である。 本発明の第5の実施形態の太陽光発電装置の第1の変形例を示す断面図である。 本発明の第5の実施形態における蛍光体層での蛍光体による光の吸収について説明する図である。 本発明の第5の実施形態における蛍光体層での蛍光体による光の吸収について説明する図である。 本発明の第5の実施形態における蛍光体層での蛍光体による光の吸収について説明する図である。 太陽光発電装置の概略構成図である。
[第1の実施形態]
 本実施形態では、太陽電池モジュールを固定部材で固定した太陽光発電装置の例を挙げる。
 図1は、本発明の第1の実施形態の太陽光発電装置1を示す斜視図である。
 太陽光発電装置1は、図1に示すように、太陽電池モジュール2と、固定部材7と、から構成されている。太陽電池モジュール2は、平面形状が略矩形状となっている。太陽電池モジュール2の4隅に固定部材7が取り付けられている。固定部材7は、例えばアクリル系接着剤を用いて太陽電池モジュール2に固定される。
 太陽電池モジュール2は、図1に示すように、互いに対向して配置された導光体3と反射体4と、導光体3と反射体4との間に位置する低屈折率層5と、導光体3から射出された光を受光する太陽電池素子6と、を備えている。
 導光体3は、第1主面3aと、第2主面3bと、第1端面3cと、第1側面3dを備えている。第1主面3aは、光入射面である第1主面3aである。第2主面3bは、第1主面3aと対向する。第1端面3cは、光射出面である。第1側面は、第1主面3aと第2主面3bとをつなぐ平面である。反射体4は、導光体3の第1主面3aから入射して導光体3を透過し、反射体4に入射した光を反射させて光の進行方向を変更する反射部4aを備えている。導光体3と反射体4とは、導光体3の第2主面3bと反射体4の反射部4aとが対向した状態で、導光体3の屈折率よりも低い屈折率を有する低屈折率層5を挟んで固定部材7により固定されている。
 低屈折率層5は、空気層である。なお、導光体3と反射体4との間は必ずしも空気層である必要はない。低屈折率層5は、屈折率が導光体よりも低い層であれば良く、より屈折率が低い媒質であることが望ましい。
 導光体3は、第1主面3a及び第2主面3bを有する側面視台形の部材である。導光体3の厚みは、導光体3の第1端面3cの遠くから導光体3の第1端面3cに近づくにつれて徐々に厚くなっている。ここで、導光体3の厚みとは、導光体3の第1側面3dと直交する方向から視たときの、導光体3の第1主面3aと導光体3の第2主面3bとの間の寸法である。言い換えると、導光体3の第1主面3aは、導光体3の第1側面3dと直交する方向から視て、導光体3の第1主面3aと導光体3の第2主面3bとの間の寸法が導光体3の第1端面3cの遠くから導光体3の第1端面3cに近づくにつれて徐々に大きくなるよう傾斜している。導光体3の第1主面3a、第2主面3bは平坦面となっている。導光体3としては、例えば、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料が用いられる。
 本実施形態において、導光体3は、一例としてポリメタクリル酸メチル樹脂(PMMA)にジルコニア粒子を分散させた材料で形成されているものとする。ジルコニア粒子の平均粒径は20nm程度であり、光の波長に比べて十分に小さい。
 本実施形態において、導光体3の屈折率n1は1.8である。導光体3の屈折率(1.8)は、PMMA樹脂にジルコニア粒子を成分比1:1で分散することにより得ることができる。
 図6は、導光体3の透過率特性を示す図である。図6において、横軸は光の波長、縦軸は導光体3の透過率である。なお、図6では、導光体3の材料として三菱レイヨン社製の「XY-0159」を用いたときの導光体3の透過率特性を示している。
 外光を有効に取り込めるように、導光体3の材料は、400nm以上の波長に対して透過性を有するとともに、下限は400nm以下の波長に対しても透過性を有することが望ましい。例えば、360nm以上800nm以下の波長領域の光に対して90%以上、より好ましくは93%以上の透過率を有するものが好適である。例えば、シリコン樹脂基板や石英基板、或いは、PMMA樹脂基板においては三菱レイヨン社製の「アクリライト」(登録商標)のなかでUV吸収材を含まないものは、広い波長領域に光に対して高い透明性を有することから、好適である。
 図1に示すように、反射体4の導光体3と対向する部分には、導光体3の第1主面3aから入射して導光体3を透過し、反射体4に入射した光を反射させて光の進行方向を変更する反射部4aが形成されている。反射体4としては、例えば、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料が用いられる。
 反射部4aには、導光体3の第2主面3bに対して所定の傾斜角をなすように傾斜した傾斜面が設けられている。傾斜面は、反射体4に入射した光を反射させて、光の進行方向を変更する反射面として機能する。
 図2に示すように、反射体4の導光体3と対向する部分には、複数の三角柱状の凸条Tが連続して形成されている。凸条Tは、XY平面と平行な面に対して大きな角度で傾斜した急傾斜面T1と、XY平面と平行な面に対して小さな角度で傾斜した緩傾斜面T2と、を有する。凸条Tは、例えば、凸条Tの形状を反転させた金型を用いて樹脂(例えばPMMA)を射出成形することにより形成されている。なお、凸条Tは、元々平坦な反射体4の主面(導光体3と対向する面)を切削加工することによって形成することもできる。
 本実施形態において、反射体4の屈折率n2は1.3である。反射体4の屈折率(1.3)は、PMMA樹脂に中空PMMA粒子を所定の比率で分散させることにより得ることができる。
 反射体4の反射部4aには、このような凸条Tが、急傾斜面T1と緩傾斜面T2とが互いに接するようにY方向に複数設けられている。反射部4aに設けられた複数の凸条Tの形状及び大きさは、全て同じである。
 各凸条Tは三角柱状であると説明したが、図2に示すように、反射体4をYZ平面に沿った平面で切断したときの各凸条の断面形状は、正三角形や二等辺三角形ではなく、不等辺三角形である。
 太陽電池素子6としては、公知のものを使用することができ、例えばアモルファスシリコン太陽電池、多結晶シリコン太陽電池、単結晶シリコン太陽電池、化合物系太陽電池(InGaP、GaAs、InGaAs、AlGaAs、Cu(In,Ga)Se、Cu(In,Ga)(Se,S)、CuInS、CdTe、CdSなど)、量子ドット太陽電池(Si、InGaAsなど)等を用いることができる。本実施形態では、太陽電池素子6として化合物系太陽電池を用いる。太陽電池素子6の形状および寸法は、導光体3の第1端面3c内に収まる形状および寸法であれば特に限定されることはない。太陽電池素子6は、例えばタイカ社製のαGEL(登録商標)を用いて、導光体3の第1端面3cに接着される。
 図7は、太陽電池素子における吸収波長と強度、吸収感度の関係を示す図である。図7において、横軸は吸収波長、縦軸は強度、吸収感度である。図7に示すように、InGaP太陽電池41、GaAs太陽電池42、及びInGaAs太陽電池43等の化合物系太陽電池は、結晶シリコン(c-Si)太陽電池44およびアモルファスシリコン(a-Si)太陽電池45等のシリコン系太陽電池に比べて、光の吸収波長域は狭いものの強度、吸収感度については高いピークを有する。そのため、強度、吸収感度について高いピークが得られる特定の光の吸収波長域において化合物系太陽電池を使用することにより、シリコン系太陽電池を使用する場合に比べて、太陽光を高効率で電気に変換することが可能となる。
 図2は、本実施形態の太陽電池モジュール2の断面図である。図3は、本実施形態の反射体4の部分断面図である。なお、図2においては、便宜上、太陽電池素子6の図示を省略している。
 導光体3は、Y軸に対して角度θAをなす第1主面3aを有する断面視台形の部材である。角度θAは、太陽の日週運動等を考慮して、例えばθA<45°なる関係を満たすように設定されている。導光体3の寸法は、一例として、第2主面3bとなる矩形の縦横(図2のx軸方向およびy軸方向)の寸法が300mm×300mmであり、厚みの小さい方の厚さdA1(図2のz軸方向の寸法)が1mmであり、厚みの大きい方の厚さdA2(図2のz軸方向の寸法)が27mmであり、角度θAが5°である。なお、縦横の寸法、厚みの小さい方の厚さdA1、厚みの大きい方の厚さdA2、角度θAはこれに限定されない。
 反射体4は板状部材であり、反射体4の反射部4aにはX方向に延びる複数の凸条Tが設けられている。凸条Tは、Y軸に対して角度θB1をなす急傾斜面T1と、Y軸に対して角度θB2をなす緩傾斜面T2と、が稜線T3において交差する三角柱である。角度θB1と角度θB2はθB1>θB2なる関係を満たす。稜線T3を挟んで+Y方向側に緩傾斜面T2が配置され、-Y方向側に急傾斜面T1が配置されている。
 反射体4の反射部4aにおいて、隣り合う2つの凸条Tの間には、平坦部Sが設けられている。平坦部Sを設けることで、緩傾斜面T2で反射された光が隣の凸条Tの急傾斜面T1に入射しにくくなる。つまり、緩傾斜面T2で反射された光が急傾斜面T1の影響を受けることにより、導光体3の第2主面3bに対する光の入射角が小さくなり、導波条件が崩れ、光が外部に漏れてしまうことが抑制される。
 反射体4の寸法は、一例として、矩形の縦横(図2のx軸方向およびy軸方向)の寸法が300mm×300mmであり、反射体4の厚さdB(図2のz軸方向の寸法、反射体4の稜線T3を含む仮想平面と反射体4の下面との間の距離)が10mmであり、角度θB1が45°であり、角度θB2が15°であり、1本の凸条TのY方向の幅P1が100μmであり、2本の凸条Tの間の平坦部SのY方向の幅P2が50μmである。なお、縦横の寸法、厚さdB、角度θB1、角度θB2、凸条TのY方向の幅P1、及び平坦部SのY方向の幅P2はこれに限定されない。
 図4A及び図4Bは、太陽電池モジュール2における光の伝播の様子を示す図である。図4Aは、導光体3に対して浅い角度で入射する光の伝播の様子を示す図である。図4Bは、導光体3に対して深い角度で入射する光の伝播の様子を示す図である。なお、図4A及び図4Bにおいては、便宜上、太陽電池素子6の図示を省略している。
 図4Aに示すように、導光体3に対して浅い角度で入射する光L1(第1主面3a対して小さな角度で入射する光)は、反射体4に入射することなく、導光体3内のみを伝播して第1端面3cに向かう。
 図4Bに示すように、導光体3に対して深い角度で入射する光L2(第2主面3aに対して大きな角度で入射する光)は、導光体3を透過し低屈折率層5を通過して反射体4に入射するものの、反射部4aで反射されて進行方向が導光体3の第1端面3cに向かう方向に変更される。反射部4aで反射された光L2は、導光体3の内部を伝播して第1端面3cに向かう。
 図5は、本実施形態の太陽電池モジュール2における反射面の作用を説明するための図である。図5において、符号L1は導光体3の第1主面3aに対して相対的に大きい入射角θ1aで入射する光、符号L2は導光体3の第1主面3aに対して相対的に小さい入射角θ2aで入射する光を示している。なお、図5においては、便宜上、太陽電池素子6の図示を省略している。
 図5に示すように、導光体3の第1主面3aに対して太陽光L1が入射角θ1aで入射したとすると、太陽光L1は第1主面3aにおいて屈折角θ1bで屈折して導光体3内に入射する。その後、導光体3の第2主面3b(導光体3と低屈折率層5との間の界面)に入射角θ1cで入射した光は、この界面において反射角θ1cで全反射し、導光体3内を第1端面3cに向けて伝播する。なお、第2主面3bで全反射した光が第1主面3aに入射角θ1dで入射した場合でも、第1主面3aに対して反射角θ1dで全反射し、導光体3内を第1端面3cに向けて伝播する。
 一方、導光体3の第1主面3aに対して太陽光L2が入射角θ2aで入射したとすると、太陽光L2は第1主面3aにおいて屈折角θ2bで屈折して導光体3内に入射する。導光体3の第2主面3b(導光体3と低屈折率層5との間の界面)に入射角θ2cで入射した光は、この界面において屈折角θ2dで屈折して反射体4に入射する。反射体4の緩傾斜面T2に対して入射角θ2eで入射した光の一部は、緩傾斜面T2に対して反射角θ2eで反射し、進行方向が導光体3の第1端面3cに向かう方向に変更される。導光体3の第2主面3b(導光体3と低屈折率層5との間の界面)に入射角θ2fで入射した光は、この界面において屈折角θ2gで屈折して導光体3内に入射する。導光体3の第1主面3aに入射角θ2hで入射した光は、第1主面3aに対して反射角θ2hで全反射し、導光体3内を伝播する。導光体3の第1主面3aは、反射体4の反射部4a(緩傾斜面T2)で反射して導光体3に入射した光を反射させて、光の進行方向を変更する反射面として機能する。導光体3の第2主面3b(導光体3と低屈折率層5との間の界面)に入射角θ2iで入射した光は、第2主面3bに対して反射角θ2iで全反射し、導光体3内を第1端面3cに向けて伝播する。
 具体的には、一例として、導光体3の角度θAを5度、導光体3の屈折率n1を1.8、反射体4の緩傾斜角度θB2を15度、反射体4の屈折率n2を1.3、空気(外部の空気および導光体3と反射体4との間の空気層)の屈折率n0を1.0とする。
 この場合Snellの法則より、導光体3と低屈折率層5(導光体3と外部の空気)との界面における臨界角は34度となる。ここで、導光体3の第1主面3aへの太陽光L1の入射角θ1aが64度以上であったとすると、太陽光L1が導光体3内に入射する際の屈折角θ1bは30度以上となる。すると、導光体3の第2主面3bへの光の入射角θ1cは35度以上となり(θ1c=θ1b+θA)、入射角θ1cが臨界角以上であるため(θ1c≧34度)、光L1は導光体3の第2主面3bで全反射する。第2主面3bで全反射した光は、導光体3内を第1端面3cに向けて伝播する。なお、第2主面3bで全反射した光が第1主面3aに入射したとしても、第1主面3aへの光の入射角θ1dは40度以上となり(θ1d=θ1c+θA)、入射角θ1dが臨界角以上であるため(θ1d≧34度)、光L1は導光体3の第1主面3aで全反射する。よって、導光体3の第2主面3bにおいて一度でも全反射した光は、導光体3の外部に漏れることなく、導光体3の内部を伝播して第1端面3cに導かれる。
 一方、導光体3の第1主面3aへの太陽光L2の入射角θ2aが40度未満であったとすると、太陽光L2が導光体3内に入射する際の屈折角θ2bは、21度未満となる。すると、導光体3の第2主面3bへの光の入射角θ2cは26度未満となり(θ2c=θ2b+θA)、入射角θ2cが臨界角未満であるため(θ2c<34度)、光L2は導光体3の第2主面3bを透過する。
 導光体3の第2主面3bへの光の入射角θ2cが26度未満であったとすると、光L2が低屈折率層5内に入射する際の屈折角θ2dは52度未満となる。すると、反射体4の緩傾斜面T2への光の入射角θ2eは67度未満となる(θ2e=θ2d+θB2)。反射体4の緩傾斜面T2に入射した光の一部は、緩傾斜面T2で所定の反射角θ2eで反射し、進行方向が導光体3の第1端面3cに向かう方向に変更される。
 反射体4の緩傾斜面T2での光の反射角θ2eが49度以上であったとすると、導光体3の第2主面3bへの光の入射角θ2fは64度以上となる(θ2f=θ2e+θB2)。すると、光が導光体3内に入射する際の屈折角θ2gは30度以上となる。すると、導光体3の第1主面3aへの光の入射角θ2hは35度以上となり(θ2h=θ2g+θA)、入射角θ2hが臨界角以上であるため(θ2f≧34度)、光L2は導光体3の第1主面3aで全反射する。
 導光体3の第1主面3aでの反射角θ2hが35度以上であったとすると、導光体3の第2主面3bへの光の入射角θ2iは40度以上となる(θ2i=θ2h+θA)。すると、入射角θ2iが臨界角以上であるため(θ2i≧34度)、光L2は導光体3の第2主面3bで全反射する。第2主面3bで全反射した光は、導光体3内を第1端面3cに向けて伝播する。よって、導光体3の第1主面3aにおいて一度でも全反射した光は、導光体3の外部に漏れることなく、導光体3の内部を伝播して第1端面3cに導かれる。
 本実施形態では、導光体3の第1主面3aは、導光体3の第1側面3dと直交する方向から視て、導光体3の第1主面3aと導光体3の第2主面3bとの間の距離が導光体3の第1端面3cの遠くから導光体3の第1端面3cに近づくにつれて徐々に大きくなるよう傾斜している。そのため、導光体3内に入射する際の屈折角θ1bよりも導光体3の第2主面3bに入射する際の入射角θ1cのほうが大きくなる。したがって、導光体3内に入射した光は、導光体3の第2主面3bで全反射条件を満たし、導光体3の第1端面3cに向けて反射されやすくなる。
 また、導光体3と反射体4との間には、導光体3の屈折率n1よりも小さい屈折率n0を有する低屈折率層5が位置する(n1>n2)。そのため、導光体3の第2主面3bに入射する際の入射角θ2cよりも低屈折率層5に入射する際の屈折角θ2dのほうが大きくなる。したがって、低屈折率層5内に入射した光は、反射体4の緩傾斜面T2で反射されて、導光体3の第1端面3cに向けて進行方向が変更されやすくなる。仮に、導光体3と反射体4との間に導光体3の屈折率n1よりも大きい層が存在すると、低屈折率層5内に入射した光は反射体4の緩傾斜面T2で反射されず、反射体4を透過して外部に漏れてしまいやすくなる。
 反射体4に入射した光は、反射体4の緩傾斜面T2で反射することにより低屈折率層5内を伝播する角度(XY平面と平行な面と光の伝播方向とのなす角度)が浅くなる。そのため、反射体4の緩傾斜面T2で全反射した光が導光体3内に入射する際の屈折角θ2gは、光が最初に導光体3の第2主面3bに入射する際の入射角θ2cよりも大きくなる。したがって、導光体3内に入射した光は、導光体3の第1主面3aで全反射条件を満たし、導光体3の第1端面3cに向けて反射されやすくなる。
 導光体3内に入射した光は、導光体3の第1主面3aで全反射をすることにより導光体3内を伝播する角度(XY平面と平行な面と光の伝播方向とのなす角度)が浅くなる。そのため、導光体3の第1主面3aで全反射した光が導光体3の第2主面3bに入射する際の入射角θ2iは、最初に導光体3内に入射した光が導光体3の第2主面3bに入射する際の入射角θ2cよりも大きくなる。したがって、導光体3の第1主面3aで全反射した光は、導光体3の第2主面3bで全反射条件を満たし、導光体3の第1端面3cに向けて反射されやすくなる。導光体3の第2主面3bで全反射条件を満たした光は、もはや低屈折率層5内に入射することなく、導光体3内のみを伝播して第1端面3cに向かうこととなる。
 すなわち、本実施形態においては、反射体4の反射部4aに形成された凸条Tの緩傾斜面T2は、反射体4に入射した光を反射させて、光の進行方向を変更する反射面となる。また、導光体3の第1主面3aは、反射体4の反射面で反射して導光体3内に入射した光を反射させ、光の進行方向を第1端面3cに向かう方向に変更する反射面となる。
 本実施形態の太陽光発電装置1においては、導光体3の導光機能および反射体4の反射機能を分離することにより、反射部4aで反射された光が反射部4aへ再入射することを抑制することができる。具体的には、導光体3および反射体4を備えているので、外部からの光を導光体3の内部で伝播させて太陽電池素子6に導くことができる。さらに、導光体3を透過した光を反射体4で反射させ、導光体3の内部を伝播させて太陽電池素子6に導くことができる。また、導光体3の第1側面3dと直交する方向から視たときの導光体3の第1主面3aと導光体3の第2主面3bとの間の距離は、第1端面3cに近づくにつれて徐々に大きくなるよう傾斜している。したがって、導光体3内に入射する際の屈折角θ1bよりも、導光体3の第2主面3bに入射する際の入射角θ1cのほうが大きくなる。このため、導光体3内に入射した光は、導光体3の第2主面3bで全反射条件を満たし、太陽電池素子6に導かれやすくなる。また、導光体3と反射体4との間には導光体3の屈折率n1よりも小さい屈折率n0を有する低屈折率層5が存在している(n1>n2)。したがって、導光体3の第2主面3bに入射する際の入射角θ2cよりも低屈折率層5に入射する際の屈折角θ2dのほうが大きくなる。このため、低屈折率層5内に入射した光は、反射体4の緩傾斜面T2で反射され、太陽電池素子6に導かれやすくなる。また、反射体4の緩傾斜面T2で反射されて導光体3内に入射した光は、導光体3の第1主面3aで全反射をすることにより導光体3内を伝播する角度(XY平面と平行な面と光の伝播方向とのなす角度)が浅くなる。
 このため、導光体3の第1主面3aで全反射した光は、導光体3の第2主面3bで全反射条件を満たし、太陽電池素子6に導かれやすくなる。したがって、発電効率の低下を抑制することが可能な太陽電池モジュール2、およびこれを用いた太陽光発電装置1を提供することができる。
 また、反射体4の反射部4aの緩傾斜面T2が反射面として機能するので、光がこの反射面で反射して導光体3に入射する際の入射角θ2fを調整することが容易となる。例えば、緩傾斜面T2の傾斜角θB2を大きくすれば、導光体3に入射する際の入射角θ2fは大きくなる。緩傾斜面T2の傾斜角θB2を小さくすれば、導光体3に入射する際の入射角θ2fは小さくなる。
 また、導光体3の第1主面3aは平坦面となっているので、光が導光体3内に入射して第2主面3bに入射する際の入射角θ1cを調整することが容易となる。例えば、第1主面3aの傾斜角度θAを大きくすれば、第2主面3bに入射する際の入射角θ1cは大きくなる。第1主面3aの傾斜角度θAを小さくすれば、第2主面3bに入射する際の入射角θ1cは小さくなる。
 また、導光体3の材料は400nm以下の波長に対して透過性を有するので、広い波長領域の光を透過することとなる。よって、外光を有効に取り込むことができる。
[第1の実施形態の第1の変形例]
 以下、本実施形態の第1の変形例について、図8及び図9を用いて説明する。
 本変形例の太陽光発電装置1Aの基本構成は上記実施形態と同様であり、固定部材7に替えて支持枠8を用いている点、反射体4Aの傾斜面に反射膜4Rが形成されている点が上記実施形態と異なる。
 図8は、図1に対応した、本変形例の太陽光発電装置1Aを示す斜視図である。
 図9は、図3に対応した、本変形例の反射体4Aの部分断面図である。
 なお、図8及び図9において、上記実施形態で用いた図1及び図3と共通の構成要素には同一の符号を付し、その説明は省略する。
 太陽光発電装置1Aは、図8に示すように、太陽電池モジュール2Aと、支持枠8と、から構成されている。太陽電池モジュール2Aは、平面形状が略矩形状となっている。太陽電池モジュール2Aの4辺を取り囲むように支持枠8が取り付けられている。支持枠8は、例えばアクリル系接着剤を用いて太陽電池モジュール2Aに固定される。
 太陽電池モジュール2Aは、図8に示すように、導光体3と、反射体4Aと、低屈折率層5と、太陽電池素子6と、を備えている。導光体3と反射体4Aは、互いに対向して配置される。低屈折率層5は、導光体3と反射体4Aとの間に配置される。太陽電池素子6は、導光体3から射出された光を受光する。
 反射体4Aは、導光体3の第1主面3aから入射して導光体3を透過し、反射体4Aに入射した光を反射させて光の進行方向を変更する反射部4Aaを備えている。導光体3と反射体4Aとは、導光体3の第2主面3bと反射体4Aの反射部4Aaとが対向した状態で、低屈折率層5を挟んで支持枠8により固定されている。
 なお、導光体3と反射体4Aとは、導光体3の第2主面3bと反射体4Aの反射部4Aaとが対向した状態で、直接接触している。具体的には、導光体3の第2主面3bと反射体4Aの反射部4Aaの稜線T3とが接触している。つまり、本変形例では、導光体3の第2主面3bと反射体4Aの反射部4Aaに形成された凸条の傾斜面とに囲まれた領域に空気層(低屈折率層5)が存在している。
 反射体4Aの反射部4Aaの傾斜面Tには、図9に示すように、反射膜4Rが形成されている。反射膜4Rとしては、例えばアルミニウム(Al)などの反射率の高い金属材料が用いられる。なお、反射膜4RはAlに限らず、反射率が少なくとも90%以上のものであれば良く、より高反射率を有するものであることが望ましい。
 本変形例の太陽光発電装置1Aにおいては、反射体4Aの反射部4Aaの傾斜面Tに反射膜4Rが形成されているので、低屈折率層5内に入射した光は、反射体4Aの緩傾斜面T2で確実に反射され、太陽電池素子6に導かれる。よって、発電効率の低下を確実に抑制することができる。
 ここで、本発明者は、本変形例の太陽電池モジュール2Aの効果を実証するために、光の端面到達率のシミュレーションを行った。ここで、光の端面到達率とは、導光体3の第1主面3aに入射する太陽光の照射量の割合を100%としたときに導光体3の第1端面3cに到達する光量の割合(%)である。
 実施例1のシミュレーションの条件は、導光体3の縦横寸法を300mm×300mm、第1主面3aの傾斜角θAを5度、反射体4Aの縦横寸法を300mm×300mm、反射体4Aの厚みを10mmとした。実施例1の太陽電池モジュール2Aに対して導光体3の第1主面3a側から太陽光を照射したときの端面到達率は、17.3%であった。また、実施例1の太陽電池モジュール2Aの集光比は1.9倍であった。ここで、集光比とは、縦横寸法が300mm×300mmの太陽電池に直接に太陽光を照射したときの集光比を1倍としたときの値である。
 なお、太陽電池素子6の出力条件は、JISで規定されたエアマスAM1.5を基準としている。
 一方、比較例として、実施例1の導光体3に替えて微細構造を有する平板状の導光体(平板の一方面(光入射面と反対側の面)に複数の凸条が形成された構成)を用い、導光体の縦横寸法を300mm×300mmとして上記シミュレーションを行った。比較例の太陽電池モジュールに対して光入射面側から太陽光を照射したときの端面到達率は、12.1%であった。また、比較例の太陽電池モジュールの集光比は1.3倍であった。
 このように、本実施形態の太陽光発電装置1Aによれば、比較例の導光体よりも高い端面到達率および高い集光比を得ることができることが判った。
[第2の実施形態]
 以下、本発明の第2の実施形態について、図10及び図11を用いて説明する。
 本実施形態の太陽光発電装置10の基本構成は第1の実施形態と同様であり、導光体3に蛍光体層9が設けられている点、導光体3に蛍光を反射する反射層13Rが設けられている点が第1の実施形態と異なる。
 図10は、本実施形態の太陽光発電装置10を示す断面図である。
 図11は、本実施形態の太陽電池モジュール12を示す斜視図である。
 なお、図10及び図11において、第1の実施形態の太陽光発電装置1の構成と共通の構成要素には同一の符号を付し、その説明は省略する。
 太陽光発電装置10は、図10に示すように、太陽電池モジュール12と、固定部材17と、から構成されている。太陽電池モジュール12は、平面形状が略矩形状となっている。太陽電池モジュール12の4隅に固定部材17が取り付けられている。固定部材17は、例えばアクリル系接着剤を用いて太陽電池モジュール12に固定される。
 太陽電池モジュール12は、図10に示すように、導光体ユニット13と、反射体4Aと、低屈折率層5と、太陽電池素子16と、を備えている。導光体ユニット13と反射体4Aは、互いに対向して配置される。低屈折率層5は、導光体ユニット13と反射体4Aとの間に位置する。太陽電池素子16は、導光体ユニット13から射出された光を受光する。
 導光体ユニット13は、導光体3と、蛍光体層9と、保護フィルム11と、反射層13R(図11参照)と、を備えている。
 蛍光体層9は、導光体3の第2主面3bに設けられている。蛍光体層9は、アクリル樹脂、ポリカーボネート樹脂、ガラス等の透明性の高い有機材料もしくは無機材料からなる板状部材の内部に蛍光体を分散させることにより形成された蛍光板である。蛍光体は、導光体ユニット13に入射した光を受けて蛍光を発するものである。例えば、蛍光体としては、578nmに発光スペクトルのピーク波長を有するBASF社製の蛍光物質Lumogen F Red 305(商品名)が用いられる。蛍光体層9は、例えばタイカ社製のαGEL(登録商標)を用いて、導光体3の第2主面3bに接着されている。
 保護フィルム11は、蛍光体層9に対して導光体3とは反対に設けられている。保護フィルム11は、例えばハードコートであり、導光体3及び蛍光体層9のいずれよりも硬度が高い。保護フィルム11は、導光体3及び蛍光体層9に磨耗やキズが生じないように、導光体3及び蛍光体層9を保護する。保護フィルム11は、例えばタイカ社製のαGEL(登録商標)を用いて、蛍光体層9の導光体3とは反対側の面に接着されている。
 反射層13Rは、図11に示すように、導光体ユニット13を構成する導光体3の第1主面3a、保護フィルム11の蛍光体層9とは反対側の面及び太陽電池素子16が取り付けられる面以外の面に、設けられている。反射層13Rとしては、例えばAlなどの反射率の高い金属材料が用いられる。なお、反射層13RはAlに限らず、反射率が少なくとも90%以上のものであれば良く、より高反射率を有するものであることが望ましい。
 導光体ユニット13を構成する導光体3の第1主面3aから入射した外光の一部は、蛍光体層9の内部に分散された蛍光体に吸収され、蛍光に変換される。蛍光体から放射された蛍光は導光体ユニット13の内部を全反射しながら伝播し、太陽電池素子16に入射する。また、導光体ユニット13を透過して低屈折率層5に入射した光は、反射体4Aの緩傾斜面T2で反射され、太陽電池素子16に導かれる。
 外光には、太陽から直接導光体ユニット13に入射する光と、雲などによって散乱されて導光体ユニット13に入射する散乱光が含まれている。外光には、様々な角度で導光体ユニット13に入射する光が存在するが、これらの光はいずれも導光体ユニット13中の蛍光体によって吸収され、蛍光に変換される。入射角度によって光の利用効率がほとんど変化しないので、安定した発電が可能となる。
 太陽電池素子の発光効率は、太陽電池素子に入射する光の波長によって変化する。例えば、InGaPを用いた太陽電池素子の場合、450nm以上600nm以下の波長の光に対して分光感度が高い。本実施形態の太陽光発電装置10では、導光体ユニット13を構成する導光体3の第1主面3aから入射した外光の一部を太陽電池素子において分光感度の高い蛍光に変換している。例えば、蛍光体の発光スペクトルのピーク波長は578nmである。この波長の光は、InGaP半導体を用いた太陽電池素子において分光感度の高い光である。よって、太陽電池素子16によって効率よく電力に変換される。
 本実施形態の太陽光発電装置10においては、導光体ユニット13に蛍光体層9が設けられているため、蛍光体の発光スペクトルのピーク波長を任意に設定し、導光体ユニット13の内部を伝播する光を太陽電池素子16において分光感度の高い蛍光に変換することができる。そのため、太陽電池素子16に入射する光を効率よく発電に寄与させることができ、高い発電効率が得られる。
 また、導光体ユニット13を構成する導光体3の第1主面3a、保護フィルム11の蛍光体層9とは反対側の面及び太陽電池素子16が取り付けられる面以外の面に反射層13Rが設けられている。したがって、蛍光体から放射された蛍光が外部に漏れることを抑制することができる。よって、蛍光を効率よく太陽電池素子16に入射させることができ、高い発電効率が得られる。
 ここで、本発明者は、本実施形態の太陽電池モジュール12の効果を実証するために、光の端面到達率のシミュレーションを行った。ここで、光の端面到達率とは、導光体ユニット13を構成する導光体3の第1主面3aに入射する太陽光の照射量の割合を100%としたときに導光体ユニット13の光射出面に到達する光量の割合(%)である。
 実施例2のシミュレーションの条件は、導光体3の縦横寸法を300mm×300mm、第1主面3aの傾斜角θAを5度、反射体4Aの縦横寸法を300mm×300mm、反射体4Aの厚みを10mmとした。実施例2の太陽電池モジュール12に対して導光体3の第1主面3a側から太陽光を照射したときの端面到達率は、29.2%であった。また、実施例2の太陽電池モジュール12の集光比は3.1倍であった。ここで、集光比とは、縦横寸法が300mm×300mmの太陽電池に直接に太陽光を照射したときの集光比を1倍としたときの値である。
 なお、太陽電池素子16の出力条件は、JISで規定されたエアマスAM1.5を基準としている。
 このように、本実施形態の太陽光発電装置10によれば、実施例1の導光体(端面到達率17.3%、集光比1.9倍)よりも高い端面到達率および高い集光比を得ることができることが判った。
[第2の実施形態の第1の変形例]
 以下、本実施形態の第1の変形例について、図12及び図13を用いて説明する。
 本変形例の太陽光発電装置10Aの基本構成は上記実施形態と同様であり、蛍光体層9Aが蛍光フィルムである導光体ユニット13Aを備える点、導光体ユニット13Aと反射体4とを保持する枠体14を備える点が上記実施形態と異なる。
 図12は、図10に対応した、本変形例の太陽光発電装置10Aを示す断面図である。
 図13は、図11に対応した、本変形例の太陽光発電装置10Aを示す斜視図である。
 なお、図12及び図13において、上記実施形態で用いた図10及び図11と共通の構成要素には同一の符号を付し、その説明は省略する。
 太陽光発電装置10Aは、図12に示すように、太陽電池モジュール12Aと、固定部材17と、枠体14と、から構成されている。
 太陽電池モジュール12Aは、導光体ユニット13Aと、反射体4Aと、低屈折率層5と、太陽電池素子16と、を備えている。導光体ユニット13Aと反射体4Aは、互いに対向して配置される。低屈折率層5は、導光体ユニット13Aと反射体4Aとの間に位置する。太陽電池素子16は、導光体ユニット13Aから射出された光を受光する。
 導光体ユニット13Aは、導光体3と、蛍光体層9Aと、透明部材11Aと、を備えている。
 蛍光体層9Aは、導光体3の第1主面3aに設けられている。蛍光体層9Aは、透明フィルムの内部に蛍光体を分散させることにより形成された蛍光フィルムである。例えば、蛍光体としては、578nmに発光スペクトルのピーク波長を有するBASF社製の蛍光物質Lumogen F Red 305(商品名)が用いられる。蛍光体層9Aは、例えばタイカ社製のαGEL(登録商標)を用いて、導光体3の第1主面3aに接着されている。
 透明部材11Aは、蛍光体層9Aに対して導光体3とは反対に設けられている。透明部材11Aは、ポリエステル樹脂やガラスなどの透明性の高い有機材料もしくは無機材料からなる。透明部材11Aは、蛍光体を含まない透明性の高い材料で構成されるが、透明部材11Aの内部での波長変換を目的として意図的に蛍光体を分散したものでなければ、若干の蛍光体を含み、完全に透明ではない材料で構成されたものであってもよい。透明部材11Aは、例えば透明なフィルム部材として構成されるが、ガラスなどの非可撓性の板状部材を透明部材11Aとして用いてもよい。透明部材11Aは、例えばタイカ社製のαGEL(登録商標)を用いて、蛍光体層9Aの導光体3とは反対側の面に接着されている。
 枠体14は、導光体ユニット13Aと反射体4Aとを保持する箱状部材である。枠体14の内面が蛍光体から放射された蛍光を反射する反射面として機能する。例えば、枠体14の内面には反射層14Rが形成されている。反射層14Rとしては、例えばAlなどの反射率の高い金属材料が用いられる。なお、反射層14RはAlに限らず、反射率が少なくとも90%以上のものであれば良く、より高反射率を有するものであることが望ましい。
 導光体ユニット13Aを構成する透明部材11Aの上面から入射した外光の一部は、蛍光体層9Aの内部に分散された蛍光体に吸収され、蛍光に変換される。蛍光体から放射された蛍光は導光体ユニット13Aの内部を全反射しながら伝播し、太陽電池素子16に入射する。また、導光体ユニット13Aを透過して低屈折率層5に入射した光は、反射体4Aの緩傾斜面T2で反射され、太陽電池素子16に導かれる。
 本実施形態の太陽光発電装置10Aにおいては、蛍光体層9Aが蛍光フィルムであるので、蛍光体層9Aから放射された蛍光は蛍光体層9A内部の蛍光体によって吸収されにくくなる。つまり、自己吸収によるロスが少なくなるので、蛍光体層9Aから放射された蛍光は概ねすべて太陽電池素子16に入射する。よって、発電効率の高い太陽光発電装置10Aが得られる。
 また、枠体14の内面が反射面として機能するので、枠体14に導光体ユニット13Aを収容することで、蛍光体から放射された蛍光が外部に漏れることを抑制することができる。よって、蛍光を効率よく太陽電池素子16に入射させることができ、高い発電効率が得られる。
 なお、本実施形態では、蛍光体層が蛍光板や蛍光フィルムである例を挙げて説明したが、これらに限らない。例えば、蛍光体層は、導光体3と、導光体3の第1主面3aと第2主面3bの少なくとも一面上に積層される透明部材と、を接着する透明樹脂の内部に蛍光体を分散させた接着層であってもよい。これにより、導光体3と蛍光体層とを接着するための接着層(透明部材と蛍光体層とを接着させるための接着層)が省略できるため、この接着層による光のロスがなくなり、さらに発電効率が向上する。さらに、蛍光体層が蛍光板や蛍光フィルムである場合に比べて接着層の厚みが薄いので、蛍光板や蛍光フィルムの内部に蛍光体を分散させる場合に比べて、蛍光体の使用量を少なくすることができる。よって、部材コストが低減される。
[第3の実施形態]
 以下、本発明の第3の実施形態について、図14及び図15を用いて説明する。
 本実施形態の太陽光発電装置20の基本構成は第2の実施形態と同様であり、導光体ユニット13の光射出面にから射出された光を集光する集光部材21と、集光部材21で集光された光を受光する太陽電池素子26とを備える点が第2の実施形態と異なる。
 図14は、本実施形態の太陽光発電装置20を示す断面図である。
 図15は、本実施形態の集光部材21を示す平面図である。
 なお、図14及び図15において、第2の実施形態の太陽光発電装置10の構成と共通の構成要素には同一の符号を付し、その説明は省略する。
 太陽光発電装置20は、図14に示すように、太陽電池モジュール22と、固定部材27と、から構成されている。太陽電池モジュール22は、平面形状が略矩形状となっている。太陽電池モジュール22の4隅に固定部材27が取り付けられている。固定部材27は、例えばアクリル系接着剤を用いて太陽電池モジュール22に固定される。
 太陽電池モジュール22は、図14に示すように、導光体ユニット13と反射体4Aと、低屈折率層5と、集光部材21と、太陽電池素子26とを有する。導光体ユニット13と反射体4Aは、互いに対向して配置される。低屈折率層5は、導光体ユニット13と反射体4Aとの間に位置する。集光部材21は、導光体ユニット13から射出された光を集光する。太陽電池素子26は、集光部材21で集光された光を受光する。
 集光部材21は、例えば、導光体ユニット13の光射出面から射出された光の強度分布を均一化して太陽電池素子26に射出するインテグレータ光学素子(ホモジナイザー)である。
 集光部材21は、光入射面21aと、光射出面21bと、反射面21cと、を備えている。光入射面21aは、導光体ユニット13の光射出面と対向する。光射出面21bは、光入射面21aから入射した光を射出する。反射面21cは、光入射面21aから入射した光を反射させて光射出面21bに伝播させる。
 集光部材21は、例えば、光入射面21aを底面、光射出面21bを上面、反射面21cを側面とする四角錐台の形状を有する。集光部材21は、例えば、ポリメタクリル酸メチル(PMMA)などの樹脂を射出成形することにより形成されている。反射面21cは、全反射により光を反射するものとされるが、反射面21cに金属膜又は誘電体多層膜からなる反射層を形成し、この反射層によって光を反射するようにしてもよい。例えば、集光部材21の反射面21cに、Alなどの反射率の高い金属材料を用いて反射層を形成してもよい。なお、反射層はAlに限らず、反射率が少なくとも90%以上のものであれば良く、より高反射率を有するものであることが望ましい。
 太陽電池素子26は、受光面を集光部材21の光射出面21bと対向させて配置されている。集光部材21の光入射面21aに入射した導光体ユニット13からの光は、集光部材21の反射面21cで反射を繰り返すうちに照度分布が均一化される。そして、照度分布が均一化された光が太陽電池素子26に入射される。太陽電池素子26に入射する光の照度分布が均一化されることにより、太陽電池素子26の発電効率を高めることができる。
 太陽電池素子26としては、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などの公知の太陽電池を使用することができる。中でも、化合物半導体を用いた化合物系太陽電池は、高効率な発電が可能となることから、太陽電池素子26として好適である。
 化合物系太陽電池は、一般に高価であるが、導光体ユニット13及び集光部材21によって光を集光することができることから、太陽電池素子26の面積は小さく抑えられる。よって、部材コストの上昇は抑えられる。
 本実施形態の太陽光発電装置20においては、集光部材21により集光した光を太陽電池素子26に入射させることができる。よって、集光比を向上させ、発電量を増大させることができる。
 また、導光体ユニット13の光射出面から射出された光を集光部材21で集光することにより集光倍率を向上させることができる。
 ここで、集光部材21の光入射面21aへの集光倍率をX倍、集光部材21の反射面21cの反射率をY、反射回数をNとし、集光部材21において光入射面21aの横寸法をa2、縦寸法をb2、光射出面21bの横寸法をa1、縦寸法をb1とすると、集光倍率CRは、式(1)で求められる。
Figure JPOXMLDOC01-appb-M000001
 集光部材21の反射面21cの反射率を高くする(高反射率の集光部材を使用する)ことで、集光部材21による光の吸収は低減できるため、集光比を大きくすることができる。
 集光式太陽電池の短絡電流密度、開放電圧および変換効率は、一般に、集光比に対し、式(2)のような関係にある。ここで、集光比をCR、ダイオード因子をn、逆方向飽和電流値をJ、ボルツマン定数をk、温度をT、電荷をq、非集光時の短絡電流密度をJSC1、集光時の短絡電流密度をJSC2、非集光時の開放電圧をVOC1、集光時の開放電圧をVOC2、非集光時の曲線因子をFF、集光時の曲線因子をFF、非集光時の変換効率をη、集光時の変換効率をη、非集光時の太陽光強度(100mW/cm)をPin1とする。
Figure JPOXMLDOC01-appb-M000002
 式(2)に示すように、短絡電流密度JSCは集光比CRに比例して増加し、解放電圧VOCは集光比の対数に比例して増加する。また、曲線因子FFは直列抵抗やスペクトル変化による影響がなければVOCの増加に伴って増加する(FF>FF)ため、集光時の変換効率ηはVOCの増加およびFFの増加により増加することとなる。したがって、導光体ユニットの光射出面へ到達する光量は同じであっても、集光部材の作用により、発電量を増大させることができる。
 ここで、本発明者は、本実施形態の太陽電池モジュール22の効果を実証するために、光の端面到達率のシミュレーションを行った。ここで、光の端面到達率とは、導光体ユニット13を構成する導光体3の第1主面3aに入射する太陽光の照射量の割合を100%としたときに導光体ユニット13の光射出面に到達する光量の割合(%)である。
 実施例3のシミュレーションの条件は、以下のように設定した。導光体3の縦横寸法を300mm×300mm、第1主面3aの傾斜角θAを5度とした。反射体4Aの縦横寸法を300mm×300mm、反射体4Aの厚みを10mmとした。集光部材21において光入射面21aの横寸法a2を300mm、光入射面21aの縦寸法b2を28mm、光射出面21bの横寸法a1を100mm、光射出面21bの縦寸法b1を14mmとした。実施例3の太陽電池モジュール22に対して導光体3の第1主面3a側から太陽光を照射したときの端面到達率は、29.2%であった。また、実施例3の太陽電池モジュール12の集光比は18.8倍であった。ここで、集光比とは、縦横寸法が300mm×300mmの太陽電池に直接に太陽光を照射したときの集光比を1倍としたときの値である。
 なお、太陽電池素子26の出力条件は、JISで規定されたエアマスAM1.5を基準としている。
 このように、本実施形態の太陽光発電装置20によれば、実施例2の導光体(端面到達率29.2%、集光比3.1倍)と端面到達率は変わらないものの、実施例2の導光体よりも高い集光比を得ることができることが判った。
[第3の実施形態の第1の変形例]
 以下、本実施形態の第1の変形例について、図16を用いて説明する。
 本変形例の太陽光発電装置20の基本構成は上記実施形態と同様であり、集光部材21が複数(2つ)の集光部を備える点が上記実施形態と異なるのみである。
 図16は、図15に対応した、本変形例の集光部材21Aを示す平面図である。
 集光部材21Aは、図16に示すように、複数(2つ)の集光部を備えている。なお、集光部の設置数は2つに限らず、3以上設けられていてもよい。
 本変形例においても、集光部材21Aにより集光した光を太陽電池素子26に入射させることができる。よって、集光比を向上させ、発電量を増大させることができる。
[第4の実施形態]
 以下、本発明の第4の実施形態について、図17及び図18を用いて説明する。
 本実施形態の太陽光発電装置30の基本構成は第2の実施形態と同様であり、反射体34の反射部34aが平坦面となっている点が第2の実施形態と異なる。
 図17は、本実施形態の太陽光発電装置30を示す断面図である。
 図18は、本実施形態の太陽光発電装置30の設置方法(太陽電池モジュールの設置方法)を示す図である。
 なお、図17及び図18において、第2の実施形態の太陽光発電装置20の構成と共通の構成要素には同一の符号を付し、その説明は省略する。
 太陽光発電装置30は、図17に示すように、太陽電池モジュール32と、固定部材17と、から構成されている。太陽電池モジュール32は、平面形状が略矩形状となっている。太陽電池モジュール32の4隅に固定部材17が取り付けられている。固定部材17は、例えばアクリル系接着剤を用いて太陽電池モジュール32に固定される。
 太陽電池モジュール32は、図17に示すように、導光体ユニット13と反射体34と、低屈折率層5と、太陽電池素子16と、を備えている。導光体ユニット13と反射体34は、互いに対向して配置される。低屈折率層5は、導光体ユニット13と反射体34との間に位置する。太陽電池素子16は、導光体ユニット13から射出された光を受光する。
 導光体ユニット13と反射体34とは、導光体ユニット13ユニットを構成する保護フィルム11の下面と反射体34の反射部34aとが対向した状態で、低屈折率層5を介して配置されている。
 反射体34の反射部34aは平坦面となっており、この平坦面が反射体34に入射した光を反射させて、光の進行方向を変更する反射面として機能する。導光体ユニット13を構成する保護フィルム11の下面と反射体34の平坦面とは互いに概平行となっている。平坦面は、図17に示すように、反射体34の表面の実質全体にわたって形成されているが、本実施形態はこれに限られず、反射体34の表面の一部が平坦面でなくてもよい。反射体34は、例えば基板の上面に反射膜34Rを形成することにより構成されている。反射膜34Rとしては、例えばアルミニウム(Al)などの反射率の高い金属材料が用いられる。なお、反射膜34RはAlに限らず、反射率が少なくとも90%以上のものであれば良く、より高反射率を有するものであることが望ましい。
[太陽電池モジュールの設置方法]
 図18に示すように、太陽光発電装置30(太陽電池モジュール33)を、導光体ユニット32の上面(導光体3の第1主面3a)が、日中太陽が最も高い位置にあるときの方角とは反対側の方角に向くよう傾斜させて設置する。具体的には、北半球では、太陽電池モジュール33を構成する反射体34の反射部34a(反射膜34R)に対して太陽からの光が浅く入射するよう(反射膜34Rの表面に対する光の入射角が大きくなるよう)太陽電池モジュール33を北向きに傾けて設置する。例えば、太陽光発電装置30の太陽電池素子6が取り付けられた側とは反対側の端部に支柱31を設けることにより、太陽光発電装置30(太陽電池モジュール33)を日中太陽が最も高い位置にあるときの方角とは反対側の方角に傾斜させて設置する構成を実現することができる。
 本実施形態の太陽光発電装置30においては、反射部34aが平坦面であり、この平坦面が反射面として機能するので、低屈折率層5内に入射した光は、反射体34の平坦面で確実に反射され、太陽電池素子16に導かれる。よって、発電効率の低下を確実に抑制することができる。
 また、導光体ユニット13を構成する保護フィルム11の下面と反射体34の平坦面とが互いに概平行であるので、導光体ユニット13と反射体34との間の低屈折率層5を薄くしたり反射体34自体を薄くしたりすることにより、装置全体を薄型化(コンパクト化)することができる。
 本実施形態の太陽電池モジュール33の設置方法においては、太陽電池モジュール33を傾斜させることで反射体34の反射部34a(反射膜34R)に対して太陽からの光が浅く入射するので、低屈折率層5内に入射した光は、反射体34の平坦面で反射されやすくなる。よって、発電効率の低下を確実に抑制することができる。
[第4の実施形態の第1の変形例]
 以下、本実施形態の第1の変形例について、図19を用いて説明する。
 本変形例の太陽光発電装置30Aの基本構成は上記実施形態と同様であり、反射体34に替えて反射面が傾斜した反射体34Aを備える点が上記実施形態と異なる。
 図19は、図17に対応した、本変形例の太陽光発電装置30Aを示す断面図である。
 なお、図19において、上記実施形態で用いた図17と共通の構成要素には同一の符号を付し、その説明は省略する。
 太陽光発電装置30Aは、図19に示すように、太陽電池モジュール32Aと、固定部材37Aと、から構成されている。太陽電池モジュール32Aは、平面形状が略矩形状となっている。太陽電池モジュール12Aの4隅に固定部材37Aが取り付けられている。
 固定部材37Aは、例えばアクリル系接着剤を用いて太陽電池モジュール32Aに固定される。
 太陽電池モジュール32Aは、図19に示すように、導光体ユニット13と反射体34Aと、低屈折率層5と、太陽電池素子16と、を備えている。導光体ユニット13と反射体34Aは、互いに対向して配置される。低屈折率層5は、導光体ユニット13と反射体34Aとの間に位置する。太陽電池素子16は、導光体ユニット13から射出された光を受光する。
 反射体34Aの反射部34Aaは平坦面となっており、この平坦面が反射体34Aに入射した光を反射させて、光の進行方向を変更する反射面として機能する。導光体ユニット13を構成する保護フィルム11の下面と反射体34Aの平坦面との間の距離が導光体ユニット13の光射出面の遠くから導光体ユニット13の光射出面に近づくにつれて徐々に大きくなっている。反射体34Aは、例えば基板の上面に反射膜34Rを形成することにより構成されている。
 本変形例の太陽光発電装置30Aにおいては、反射体34Aの反射部34Aa(反射膜34R)に対して太陽からの光が浅く入射する。このため、低屈折率層5内に入射した光は、反射体34Aの平坦面で反射されやすくなる。よって、発電効率の低下を抑制することができる。
[太陽電池モジュールの設置方法]
 図20は、太陽電池モジュールの設置方法の第1変形例を示す図である。
 図20に示すように、太陽光発電装置30を、例えば家などの建築物31Aの屋根に取り付ける。具体的には、太陽光発電装置30の太陽電池素子6が取り付けられた側とは反対側の端部が屋根の稜線(尾根)を向くよう太陽光発電装置を建築物の屋根に取り付ける。
これにより、太陽光発電装置30(太陽電池モジュール33)を日中太陽が最も高い位置にあるときの方角とは反対側の方角に傾斜させて設置する構成を実現することができる。
 本変形例の太陽電池モジュールの設置方法においても、太陽電池モジュール33を傾斜させることで反射体34の反射部34a(反射膜34R)に対して太陽からの光が浅く入射するので、低屈折率層5内に入射した光は、反射体34の平坦面で反射されやすくなる。よって、発電効率の低下を抑制することができる。
[第5の実施形態]
 以下、本発明の第5の実施形態について、図21A及び図21Bを用いて説明する。
 図21Aは、本実施形態の太陽電池モジュール40を示す斜視図である。
 図21Bは、本実施形態の太陽電池モジュール40を示す断面図である。
 なお、図21A及び図21Bにおいて、第1の実施形態の太陽光発電装置1、第2実施形態の太陽光発電装置10、第4の実施形態の太陽光発電装置30の構成と共通の構成要素には同一の符号を付し、その説明は省略する。
 太陽電池モジュール40は、図21Aに示すように、導光体ユニット43と、反射体34と、低屈折率層5と、太陽電池素子16と、を備えている。導光体ユニット43と反射体34は、互いに対向して配置される。低屈折率層5は、導光体ユニット13と反射体4Aとの間に位置する。太陽電池素子16は、導光体ユニット43から射出された光を受光する。
 導光体ユニット43は、透明層41a、41bと、蛍光体層9と、を備えている。蛍光体層9は、図20Bに示すように、透明層41a、41bに挟まれている。透明層41a、41bは、第1実施形態に記載の導光体3と同じ材料で形成することができる。透明層41a、41bは、280nm以上800nm以下の波長領域の光に対して90%以上の透過率を有する材料で形成されるのが好ましい。透明層41aの厚さdおよび透明層41bの厚さdは、特に限定されないが、本実施形態においては、概略同一であるとする。蛍光体層9は、第2実施形態に記載の蛍光体層9と同様に形成することができる。蛍光体層9は、第2実施形態と同様に、例えばタイカ社製のαGEL(登録商標)を用いて、透明層41a、41bに接着されている。
 反射体34は、第4実施形態と同様の構成を有している。反射体34は、平坦面を有しており、この平坦面が反射体34に入射した光を反射させて、光の進行方向を変更する反射面として機能する。導光体ユニット43の下面と反射体34の平坦面とは互いに概平行となっている。平坦面は、図20Aに示すように、反射体34の表面の実質全体にわたって形成されているが、本実施形態はこれに限られず、反射体34の表面の一部が平坦面でなくてもよい。
 導光体ユニット43の第1主面43aに入射した光は、透明層41aを介して蛍光体層9に入射する。蛍光体層9に入射した光の一部は、蛍光体によって吸収され、蛍光に変換される。蛍光体によって吸収されなかった光は、蛍光体層9を透過し、透明層41bへ入射する。
 透明層41bへ入射した光は、透明層41bの下面、すなわち導光体ユニット43の第2主面43bに到達する。第2主面43bに対する入射光の入射角が臨界角以上であった場合、入射光は第2主面43bによって反射され、再度蛍光体層9に入射する。一方、導光体ユニット43の第2主面43bに対する入射光の入射角が臨界角以下であった場合、入射光は透明層41bを透過し、反射体34で反射される。反射体34で反射された光は、再度導光体ユニット43に入射し、再度蛍光体層9に入射する。
 上述のように再度蛍光体層9に入射した光は、蛍光体層9で吸収され、蛍光に変換される。
 本実施形態による太陽電池モジュール40における、蛍光体層9での蛍光体による光の吸収について説明する。ここで、蛍光体層9に含まれる蛍光体は、図23Aに示す吸収スペクトルを有すると仮定する。蛍光体の最大吸収波長はλabであるとする。図23B及び図23Cは、蛍光体層9を透過した際の光の透過スペクトルを表す。
 上述のように、導光体ユニット43に入射した光は、一部が蛍光体に吸収される。しかしながら、一度蛍光体層9を通過しても、全ての入射光が蛍光体層9に吸収されるわけではない。図23Bの破線で示すように、一度蛍光体層9を通過した光は、蛍光体の最大吸収波長λabが最小となるような透過スペクトルとなるが、蛍光体の最大吸収波長λabの光が全て吸収されるわけではない。
 しかしながら、導光体ユニット43内部での反射、または反射体34による反射により、光が蛍光体層9に2回以上入射することにより、図23Bの実線で示すように、蛍光体の最大吸収波長λabの光が概ね全て吸収される。
 また、蛍光体の最大吸収波長λabにおける吸光度をAとしたとき、蛍光体の吸光度が0.5A以上のとなる波長帯における蛍光体の吸収について説明する。図23Cで示すように、入射光が一度蛍光体層9を通過しても、蛍光体の吸光度が0.5A以上のとなる波長帯の光の全てが、蛍光体に吸収されるわけではない。しかしながら、導光体ユニット43内部での反射、または反射体34による反射により、光が蛍光体層9に2回以上回入射することにより、蛍光体の吸光度が0.5A以上のとなる波長帯の光が概ね全て吸収される。
 本実施形態のように、導光体43が蛍光体層9を含む構成においても、第2実施形態と同様の効果が得られる。すなわち、蛍光体の発光スペクトルのピーク波長を任意に設定し、導光体ユニット43の内部を伝播する光を太陽電池素子16において分光感度の高い蛍光に変換することができる。そのため、太陽電池素子16に入射する光を効率よく発電に寄与させることができ、高い発電効率が得られる。
 また、本実施形態では、導光体ユニット43内に蛍光体層9が配置されているため、導光体43内を伝播する光は、蛍光体層9に複数回入射する。従って、導光体ユニット内を伝播する光が効率よく蛍光に変換され、太陽電池素子16の発電効率を高めることができる。
 なお、蛍光体層9は、上述の構成に限らず、第2実施形態の第1変形例に記載の蛍光フィルム9Aと同様の構成を有していてもよい。蛍光体層9が蛍光フィルムであると、蛍光体層9から放射された蛍光は、蛍光体層9内部の蛍光体によって吸収されにくくなる。つまり、自己吸収によるロスが少なくなるので、蛍光体層9から放射された蛍光は概ねすべて太陽電池素子16に入射する。よって、発電効率の高い太陽電池モジュール40が得られる。
 また、蛍光体層9は、透明層41aと41bを接着する透明樹脂の内部に蛍光体を分散させた接着層であってもよい。これにより、透明層41a、41bと蛍光体層とを接着するための接着層が省略できるため、この接着層による光のロスがなくなり、さらに発電効率が向上する。さらに、蛍光体層9が蛍光板や蛍光フィルムである場合に比べて接着層の厚みが薄いので、蛍光板や蛍光フィルムの内部に蛍光体を分散させる場合に比べて、蛍光体の使用量を少なくすることができる。よって、部材コストが低減される。
 また、導光体ユニット43は、z軸方向に濃度分布を有するように蛍光体が分散された構成であってもよい。すなわち、蛍光体層9は独立して設けられた層でなくてもよく、導光体ユニット43内の一部において濃度が高くなるように蛍光体を分散させた構成を有していても良い。すなわち、透明層41a、41bと蛍光体層9は、境界をもたず、連続的に繋がった構成であってもよい。これにより、透明層41a、41bと蛍光体層9とを接着するための接着層が省略できるため、この接着層による光のロスがなくなり、さらに発電効率が向上する。
[第5の実施形態の変形例]
 以下、本実施形態の変形例について、図22A~図22Eを用いて説明する。
 本変形例の太陽電池モジュール40の基本構成は上記実施形態と同様である。
 図22A~図22Eは、図21Bに対応した、本変形例の太陽電池モジュール40を示す断面図である。
 なお、図22A~図22Eにおいて、上記実施形態で用いた図21A及び21Bと共通の構成要素には同一の符号を付し、その説明は省略する。
 上記実施形態では、蛍光体層9が、透明層41a、41bで挟まれる例について説明したが、図22Aに示すように、導光体ユニット45Aは、透明層41aと、蛍光体層9を有する構成であってもよい。導光体ユニット45Aにおいて、蛍光体層9は、反射体34と対向する。
 また、図22Bに示すように、導光体ユニット45Bは、透明層41bと、蛍光体層9を有する構成であってもよい。導光体ユニット45Bにおいて、蛍光体層9は、外光が入射する側に設けられる。
 上記実施形態では、透明層41a、41bが、概略同一の厚さを有する例について説明したが、図22Cに示すように、透明層41aの厚さdと透明層41bの厚さdは互いに異なっていてもよい。また、図22Cでは、透明層41aが透明層41bより薄い構成が示されているが、透明層41aが透明層41bより厚くてもよい。
 上記実施形態では、反射体34が導光体ユニット43の第2主面43bと概略平行である例について説明したが、図22Dに示すように、反射体34Aが第2主面43bと平行でなくてもよい。導光体ユニット43の第2主面43bと反射体34Aの平坦面との間の距離が導光体ユニット43の光射出面の遠くから導光体ユニット43の光射出面に近づくにつれて徐々に大きくなっている。
 上記実施形態では、反射体34が平坦面を有する例について説明したが、図22Eに示すように、実施形態1と同様に反射体4が複数の凸条を有していてもよい。
 本変形例においても、第5実施形態と同様の効果が得られる。
[太陽光発電装置]
 図21は、太陽光発電装置1000の概略構成図である。
 太陽光発電装置1000は、太陽電池モジュール1001と、インバータ(直流/交流変換器)1004と、蓄電池1005と、を備えている。太陽電池モジュール1001は、太陽光のエネルギーを電力に変換する。インバータ(直流/交流変換器)1004は、太陽電池モジュール1001から出力された直流電力を交流電力に変換する。蓄電池1005は、太陽電池モジュール1001から出力された直流電力を蓄える。
 太陽電池モジュール1001は、太陽光を集光する導光体1002と、導光体1002によって集光された太陽光によって発電を行う太陽電池素子1003と、を備えている。
 太陽電池モジュール1001としては、例えば、第1実施形態ないし第4実施形態で説明した太陽電池モジュールが用いられる。
 太陽光発電装置1000は外部の電子機器1006に対して電力を供給する。電子機器1006には、必要に応じて補助電力源1007から電力が供給される。
 太陽光発電装置1000は、上述した実施形態に係る太陽電池モジュールを備えているため、発電効率の高い太陽光発電装置となる。
 なお、本発明の態様における技術範囲は上記実施形態に限定されるものではなく、本発明の態様における趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記実施形態では、導光体として板状体を用いたが、導光体の形状は板状体に限定されることなく、例えば棒状体であっても良く、適宜変更が可能である。その他、上記実施形態における各種構成要素の形状、寸法、数、配置、構成材料、製造方法等については、上記実施形態で例示したものに限らず、適宜変更が可能である。
 本発明の態様は、太陽電池モジュール、太陽光発電装置もしくは太陽電池モジュールの設置方法に利用可能である。
1,1A,10,10A,20,30,1000…太陽光発電装置、2,2A,12,12A,22,32…太陽電池モジュール、3…導光体、3a…第1主面、3b…第2主面、3c…第1端面、4,4A,34,34A…反射体、4a,4Aa,34a,34Aa…反射部、4R,34R…反射膜、6,16,26…太陽電池素子、9…蛍光体層、13R…反射層、14…枠体、21,21A…集光部材、n1…導光体の屈折率、T2…緩傾斜面(反射面)

Claims (38)

  1.  導光体と、
     前記導光体と対向して配置された反射体と、
     前記導光体から射出された光を受光する太陽電池素子と、
     を備え、
     前記導光体は、第1主面と第2主面と前記第1主面および前記第2主面に接する第1端面とを有し、外部からの光を前記第1主面から入射させ前記導光体の内部を伝播させて前記第1端面から射出させ、
     前記反射体は、前記第1主面から入射して前記導光体を透過し、前記反射体に入射した光を反射させて、前記光の進行方向を変更する反射部を有し、
     前記太陽電池素子は、前記第1端面から射出された光を受光し、
     前記導光体の厚みは、前記第1端面から離れるにつれ小さくなっている太陽電池モジュール。
  2.  さらに、前記導光体と前記反射体との間に位置する低屈折率層を有し、前記低屈折率層の屈折率は、前記導光体の屈折率よりも低い請求項1に記載の太陽電池モジュール。
  3.  前記反射部は、前記導光体を透過した前記光を反射させ、反射した前記光が前記導光体へ入射し、前記導光体内を伝播して前記第1端面へ到達するよう構成されている請求項1に記載の太陽電池モジュール。
  4.  前記反射部は、前記第2主面に対して傾斜角を有する傾斜面を有し、
     前記傾斜面は前記反射体に入射した前記光を反射させて、前記光の進行方向を変更するよう配置されている請求項1に記載の太陽電池モジュール。
  5.  前記反射体は、複数の前記反射部と、前記第2主面に対して概平行な複数の平端部を有し、
     前記複数の反射部の間にはそれぞれ、前記複数の平端部が配置されている請求項4に記載の太陽電池モジュール。
  6.  さらに、前記傾斜面上に形成された反射膜を含む請求項4に記載の太陽電池モジュール。
  7.  前記反射部が平坦面を有し、前記平坦面は、前記導光体を透過した前記光を反射させて、反射した前記光が前記導光体へ入射し、前記導光体内を伝播して前記第1端面へ到達するよう配置されている請求項1に記載の太陽電池モジュール。
  8.  前記平坦面は、前記反射体の全体に延在している請求項7に記載の太陽電池モジュール。
  9.  前記第2主面と前記平坦面とが互いに概平行である請求項7に記載の太陽電池モジュール。
  10.  前記第2主面と前記平坦面との間の間隔は、前記第1端面から離れるにつれて小さくなっている請求項7に記載の太陽電池モジュール。
  11.  さらに、前記第1主面および第2主面の一方の上に設けられた前記導光体に入射した光を受けて蛍光を発する蛍光体が分散された蛍光体層を有する請求項1に記載の太陽電池モジュール。
  12.  前記蛍光体層は、透明フィルムの内部に前記蛍光体を分散させた蛍光フィルムを含む請求項11に記載の太陽電池モジュール。
  13.  さらに、前記第1主面と前記第2主面の少なくとも一方の上に積層される透明部材を有し、
     前記蛍光体層は、前記導光体と前記透明部材とを接着する透明樹脂の内部に前記蛍光体を分散させた接着層を含む請求項11に記載の太陽電池モジュール。
  14.  さらに、前記導光体の前記第1主面、前記第2主面及び前記第1端面以外の面に設けられ、前記蛍光体から放射された蛍光を反射する反射層を備える請求項11に記載の太陽電池モジュール。
  15.  さらに、前記導光体と前記反射体とを保持する枠体を備え、
     前記導光体と前記反射体とに面する前記枠体の内面が、前記蛍光体から放射された蛍光を反射するよう構成されている請求項11に記載の太陽電池モジュール。
  16.  さらに、前記第1端面から射出された光を集光し、前記太陽電池素子に入射させる集光部材を備えている請求項1に記載の太陽電池モジュール。
  17.  前記低屈折率層は、空気層である請求項1に記載の太陽電池モジュール。
  18.  前記導光体の材料は、400nm以下の波長に対して透過性を有する請求項1に記載の太陽電池モジュール。
  19.  請求項1に記載の太陽電池モジュールを備える太陽光発電装置。
  20.  請求項1に記載の太陽電池モジュールを、前記第1主面が、日中太陽が最も高い位置にあるときの方角とは反対側の方角に向くよう傾斜させて設置する太陽電池モジュールの設置方法。
  21.  導光体と、
     前記導光体と対向する反射面であって、前記導光体を透過し前記導光体より低い屈折率を有する低屈折率媒体を介して入射した光を反射する反射面を有する反射体と、
      前記導光体から射出された光を受光する太陽電池素子と、
    を含む太陽電池モジュール。
  22.  前記導光体は、第1主面と第2主面と前記第1主面および前記第2主面に接する第1端面とを有し、
     前記導光体の厚みは、前記第1端面から離れるにつれ小さくなっている請求項21に太陽電池モジュール。
  23.  前記反射面は、前記第2主面に対して傾斜角を有し、
     前記反射面は、入射した前記光を反射させて、前記光の進行方向を変更するよう配置されている請求項21に記載の太陽電池モジュール。
  24.  前記反射面が平坦であり、前記反射面は、前記導光体を透過した前記光を反射させて、反射した前記光が前記導光体へ入射し、前記導光体内を伝播して前記第1端面へ到達するよう配置されている請求項1に記載の太陽電池モジュール。
  25.  前記第2主面と前記反射面とが互いに概平行である請求項24に記載の太陽電池モジュール。
  26.  前記第2主面と前記反射面との間の間隔は、前記第1端面から離れるにつれて小さくなっている請求項24に記載の太陽電池モジュール。
  27.  さらに、前記第1主面および第2主面の一方の上設けられた前記導光体に入射した光を受けて蛍光を発する蛍光体が分散された蛍光体層を有する請求項22に記載の太陽電池モジュール。
  28.  導光体と、
     前記導光体を透過し前記導光体より低い屈折率を有する低屈折率媒体を介して入射した光を反射する反射面を有する反射体と、
      前記導光体から射出された光を受光する太陽電池素子と、
    を含み、
      前記導光体は、第1透明層と、前記導光体に入射した光の少なくとも一部を吸収し、発光する蛍光体を含む蛍光体層を含む太陽電池モジュール。
  29.  前記第1透明層は、280nm以上800nm以下の波長領域の光に対して90%以上の透過率を有する請求項28に記載の太陽電池モジュール。
  30.  前記導光体は、さらに第2透明層を有し、
     前記蛍光体層は前記第1透明層および前記第2透明層の間に挟まれている請求項28に記載の太陽電池モジュール。
  31.  前記第1透明層と前記第2透明層は、同じ厚さを有する請求項30に記載の太陽電池モジュール。
  32.  前記第1透明層と前記第2透明層は、異なる厚さを有する請求項30に記載の太陽電池モジュール。
  33.  前記蛍光体層は、前記導光体の一部において濃度が高くなるように前記蛍光体を分散させて構成されている請求項28に記載の太陽電池モジュール。
  34.  前記導光体と前記反射体とが互いに概平行である請求項28に記載の太陽電池モジュール。
  35.  前記導光体と前記反射体との間の間隔は、前記導光体の光が射出される面から離れるにつれて小さくなっている請求項28に記載の太陽電池モジュール。
  36.  前記反射面は、前記導光体に対して傾斜角を有し、
     前記反射面は、入射した前記光を反射させて、前記光の進行方向を変更するよう配置されている請求項28に記載の太陽電池モジュール。
  37.  入射した前記光のうち前記蛍光体の最大吸収波長の光は、前記蛍光体層に一度入射しても全てが吸収されず、前記蛍光体層に二度以上入射することによって概ね全てが吸収される請求項28に記載の太陽電池モジュール。
  38.  前記蛍光体の最大吸収波長における吸光度をAとしたとき、入射した前記光のうち蛍光体の吸光度が0.5A以上となる波長帯の光は、前記蛍光体層に一度入射しても全てが吸収されず、前記蛍光体層に二度以上入射することによって概ね全てが吸収される請求項28に記載の太陽電池モジュール。
PCT/JP2012/057436 2011-03-24 2012-03-23 太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法 WO2012128339A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-066024 2011-03-24
JP2011066024A JP2014112571A (ja) 2011-03-24 2011-03-24 太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法

Publications (1)

Publication Number Publication Date
WO2012128339A1 true WO2012128339A1 (ja) 2012-09-27

Family

ID=46879478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057436 WO2012128339A1 (ja) 2011-03-24 2012-03-23 太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法

Country Status (2)

Country Link
JP (1) JP2014112571A (ja)
WO (1) WO2012128339A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500448A (ja) * 2012-12-03 2016-01-12 トロピグラス テクノロジーズ リミテッド 分光選択性パネル

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200227579A1 (en) * 2017-09-29 2020-07-16 Sekisui Chemical Co., Ltd. Laminated structure and solar power generation system
JP2019174503A (ja) * 2018-03-27 2019-10-10 京セラ株式会社 集光機能を有する表示装置およびその製造方法、発電装置、並びに電子機器
KR102319120B1 (ko) * 2019-11-29 2021-10-29 한국광기술원 형광체를 포함하는 태양광/태양열 발전장치 및 그의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027150A (ja) * 2003-06-23 2007-02-01 Hitachi Chem Co Ltd 集光型光発電システム
JP2011009536A (ja) * 2009-06-26 2011-01-13 Toppan Printing Co Ltd 太陽電池集光シート及びモジュール付太陽電池集光シート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027150A (ja) * 2003-06-23 2007-02-01 Hitachi Chem Co Ltd 集光型光発電システム
JP2011009536A (ja) * 2009-06-26 2011-01-13 Toppan Printing Co Ltd 太陽電池集光シート及びモジュール付太陽電池集光シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500448A (ja) * 2012-12-03 2016-01-12 トロピグラス テクノロジーズ リミテッド 分光選択性パネル

Also Published As

Publication number Publication date
JP2014112571A (ja) 2014-06-19

Similar Documents

Publication Publication Date Title
JP5624064B2 (ja) 誘導放出ルミネッセンス光導波路太陽光集光器
US20100126567A1 (en) Surface plasmon energy conversion device
US20080264486A1 (en) Guided-wave photovoltaic devices
US20130240037A1 (en) Solar cell module and solar generator
US9263605B1 (en) Pulsed stimulated emission luminescent photovoltaic solar concentrator
WO2012128339A1 (ja) 太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法
US8415554B2 (en) Metamaterial integrated solar concentrator
JP5929578B2 (ja) 太陽電池モジュール及び太陽電池モジュール集合体
CN101393941A (zh) 荧光平面光波导太阳能电池光伏发电系统
WO2014030546A1 (ja) 太陽電池モジュール及び太陽光発電装置
CN106461924A (zh) 具有带改善的亮度和反射率的集成光伏单元的显示设备
WO2011158548A1 (ja) 太陽電池モジュール、および該太陽電池モジュールを備えた太陽光発電装置
JP4924724B2 (ja) 太陽電池パネル
WO2012050059A1 (ja) 太陽電池モジュールおよび太陽光発電装置
WO2012115248A1 (ja) 太陽電池モジュールおよび太陽光発電装置
JP7306359B2 (ja) 太陽光発電のための光電変換装置
JP2005340583A (ja) 光発電体の受光面構造
JP2010212280A (ja) 太陽電池の導光構造、太陽電池ユニット及び太陽電池モジュール
WO2011152132A1 (ja) 太陽電池モジュール、および当該太陽電池モジュールを備えた太陽光発電装置
JP2012156445A (ja) 太陽電池モジュールおよび太陽光発電装置
US20160172521A1 (en) Solar concentrator with microreflectors
JP2007073774A (ja) 太陽電池
RU2821594C1 (ru) Фотовольтаический 3d-элемент
US20180294374A1 (en) Photovoltaic module
WO2014010080A1 (ja) 太陽電池モジュールおよび太陽光発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP