[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012127551A1 - Silica film and method for producing same - Google Patents

Silica film and method for producing same Download PDF

Info

Publication number
WO2012127551A1
WO2012127551A1 PCT/JP2011/007112 JP2011007112W WO2012127551A1 WO 2012127551 A1 WO2012127551 A1 WO 2012127551A1 JP 2011007112 W JP2011007112 W JP 2011007112W WO 2012127551 A1 WO2012127551 A1 WO 2012127551A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
film
silica
silica film
mixing
Prior art date
Application number
PCT/JP2011/007112
Other languages
French (fr)
Japanese (ja)
Inventor
泰 村上
航 清水
淳介 法華
Original Assignee
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学 filed Critical 国立大学法人信州大学
Publication of WO2012127551A1 publication Critical patent/WO2012127551A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1287Process of deposition of the inorganic material with flow inducing means, e.g. ultrasonic

Definitions

  • the present invention relates to a silica film having excellent antifogging properties and a method for producing the same.
  • super-hydrophilic coating materials have been used for the purpose of imparting anti-fogging properties and improving optical properties.
  • the coating materials are frequently used because they can be expected to impart anti-staining properties and increase the efficiency of heat exchange.
  • hydrophilic material for example, a paint in which an optical semiconductor such as crystalline titanium oxide fine particles is mixed is known.
  • an optical semiconductor such as crystalline titanium oxide fine particles
  • the transparency and permeability of the coating film are likely to be impaired.
  • materials that can exhibit a certain degree of super hydrophilicity even if the content of the particles of the optical semiconductor is low.
  • hydrophilic polymers and surfactants have been known as superhydrophilic materials that do not contain optical semiconductor fine particles such as titanium oxide (see, for example, Patent Document 2).
  • Patent Document 1 requires light irradiation for the development of super hydrophilicity, it is difficult to exhibit antifogging properties in a dark place.
  • Patent Document 2 does not require light irradiation for the development of antifogging properties, but has a problem that the antifogging effect is impaired in a short time because of poor adhesion after film formation.
  • a method of coating colloidal silica with an organic polymer or an inorganic binder is also considered, but a decrease in transparency due to light absorption and scattering is inevitable.
  • the present inventors Prior to the present invention, the present inventors have developed a silica thin film containing no particles and succeeded in producing a super-hydrophilic thin film that is extremely smooth and highly light transmissive. However, a silica film having excellent antifogging performance, high hardness and high adhesion is desired.
  • the present invention has been made to meet such a demand, and an object thereof is to obtain a silica film having excellent antifogging performance, high hardness and high adhesion.
  • the present inventors when forming a hydrophobic region in the hydrophilic region of the silica membrane, moves water droplets that have contacted the hydrophobic region in contact with the hydrophilic region, where Research and development has been promoted based on the hypothesis that the wettability between the silica film and water droplets can be improved and the antifogging property can be improved. As a result, it succeeded in improving antifogging property by the structure and manufacturing method of the following silica film. Specific means are as follows.
  • the pencil hardness measured in accordance with JIS K5600-5-4 has a hardness of 3H or more, and the pore is classified as a micropore in the IUPAC classification.
  • This is a silica membrane in which hydrophobic regions having Si—CH 3 bonds are dispersed in a hydrophilic region on the surface of a porous membrane composed of pores having an average diameter of 2 nm or less.
  • One aspect of the present invention is a pore having a pencil hardness measured in accordance with JIS K5600-5-4 of 3H or more and classified as a micropore in the IUPAC classification, and an average based on a BET measurement value
  • a first solution preparation step for preparing a first solution by mixing and reacting an orthosilicate, a hydroxyketone derivative, an organic solvent and water, and a second solution for preparing a second solution by mixing the alkylalkoxysilane with the first solution.
  • a two-solution preparation step a film formation step of forming a film by supplying a second solution to the substrate, and a hydrolysis step in which the film obtained by the film formation step is brought into contact with water for hydrolysis
  • the first solution preparation step the first solution is prepared by performing a heating step of heating for 30 hours or more in the range of 35 to 60 ° C., and the molar ratio of the alkylalkoxysilane to the tetraalkylorthosilicate is 0.1 to This is a method for producing a silica film having a range of 0.5.
  • tetraalkyl orthosilicate is tetramethyl orthosilicate
  • hydroxyketone derivative is hydroxyacetone
  • organic solvent is ethanol
  • alkylalkoxysilane is methyltrimethoxysilane. It is.
  • a silica film having excellent anti-fogging performance, high hardness and high adhesion can be obtained.
  • FIG. 1 is a flowchart showing a rough flow of an example of a method for producing a silica film according to the present embodiment.
  • FIG. 2 is a flowchart illustrating an example of a manufacturing process that further embodies the flowchart illustrated in FIG. 1.
  • 2 is a graph showing a contact angle (CA) of a silica film produced on a glass substrate in Experimental Example 1.
  • FIG. 4 is a graph showing the antifogging evaluation index of the silica film shown in FIG.
  • FIG. 5 is a scanning probe photomicrograph of the surface of the silica film produced on the silicon substrate in Experimental Example 1.
  • 6 is an infrared absorption spectrum of various silica powders produced in Experimental Example 1.
  • FIG. 7 is a graph showing thermogravimetric changes of various silica powders produced in Experimental Example 1.
  • FIG. 8 is a graph showing nitrogen adsorption / desorption isotherms of various silica powders produced in Experimental Example 1.
  • FIG. 9 is a graph showing the light transmittance in a predetermined wavelength region of the glass substrate provided with the silica film produced in Experimental Example 1.
  • FIG. 10 is a graph showing the light transmittance in a predetermined wavelength region of the acrylic resin substrate with the silica film produced in Experimental Example 1.
  • FIG. 11 is a graph showing an antifogging evaluation index of a silica film produced on a glass substrate in Experimental Example 2.
  • FIG. 12 is a scanning probe photomicrograph of the surface of the silica film produced on the silicon substrate in Experimental Example 2.
  • FIG. 13 is a graph showing thermogravimetric changes of various silica powders produced in Experimental Example 2.
  • FIG. 14 is a graph showing nitrogen adsorption / desorption isotherms of various silica powders produced in Experimental Example 2.
  • FIG. 15 is a graph showing the light transmittance in a predetermined wavelength region of the glass substrate provided with the silica film produced in Experimental Example 2.
  • FIG. 16 is a graph showing the light transmittance in a predetermined wavelength region of the acrylic resin substrate with the silica film produced in Experimental Example 2.
  • the silica film according to the present embodiment is preferably a pore having a pencil hardness measured according to JIS K5600-5-4 of 3H or more and classified as a micropore in the IUPAC classification.
  • the “silica film” refers to a film or a laminate of films containing silica as a main component, regardless of the types of subcomponents other than silica, the ratio of each subcomponent, and the thickness of the film.
  • the silica membrane according to the present embodiment the larger the pore volume measured by the nitrogen adsorption / desorption method, the better. Also, the higher the pencil hardness based on JIS K5600-5-4, the better.
  • the silica film according to the present embodiment uses an anti-fogging evaluation apparatus (for example, Kyowa Interface Science Co., Ltd., model number: AFA-1), and the room temperature and the measurement room temperature are both 20 ° C., the humidifying tank temperature is 40 ° C., and the humidifying tank. Humidity 80% R.D. H.
  • light transmittance (the amount of light received by each channel CH) was measured every other second for 10 seconds, and a stable value was obtained 5 seconds later. It has an anti-fogging performance in which the value of the X-axis intercept (anti-fogging evaluation index) obtained from a linear approximation curve of the received light amount distribution is 10 or less.
  • FIG. 1 is a flowchart showing a rough flow of an example of a method for producing a silica film according to the present embodiment.
  • a tetraalkylorthosilicate, a hydroxyketone derivative, an organic solvent, and water are mixed and reacted to produce a first solution.
  • a film forming process for forming a film (step S300), a first drying process for drying the film obtained by the film forming process (step S400), and a film obtained by the first drying process are brought into contact with water for hydrolysis.
  • the first solution is prepared by heating at 35 to 60 ° C. for at least 30 hours, and the molar ratio of the alkylalkoxysilane to the tetraalkylorthosilicate in the second solution preparation step is 0.1 to The range is 0.5.
  • the first drying process (step S400) and the second drying process (step S600) are not essential processes, and may be excluded or changed to other processes.
  • FIG. 2 is a flowchart showing an example of a manufacturing process that further embodies the flowchart shown in FIG.
  • the first solution production step (step S100) for producing the first solution is a first mixing step (step S101) in which a tetraalkyl orthosilicate and an organic solvent are mixed. ), At least a hydroxyketone derivative, water and an organic solvent are mixed (step S102), a tetraalkyl orthosilicate solution prepared by the first mixing step and a solution prepared by the second mixing step are mixed.
  • the 2nd solution preparation process (step S200) for producing a 2nd solution is the 4th mixing process (step S201) which mixes a 1st solution and an alkyl alkoxysilane, and the said 4th mixing process, A second heating step (step S202) for heating the mixed solution.
  • step S100 (1.a) First mixing step (step S101)
  • the tetraalkyl orthosilicate to be mixed is a silane compound having a general formula of Si (OR) 4 (OR in the formula is an alkoxy group).
  • the alkoxy group may be any of linear, branched and cyclic functional groups, and has 1 to 20, preferably 1 to 10, and more preferably 1 to 4 carbon atoms.
  • tetraalkyl orthosilicate examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, and tetra-tert-butoxy. Examples thereof include silane and tetraphenoxysilane. Of these tetraalkylorthosilicates, tetramethylorthosilicate (tetramethoxysilane) can be preferably used. Further, only one of these tetraalkyl orthosilicates or a combination of two or more thereof may be used.
  • Examples of the organic solvent mixed with the tetraalkyl orthosilicate include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, and 3-methyl-3-methoxy-1-butanol; acetone, methyl isobutyl ketone, diisobutyl ketone Ketones such as can be used.
  • alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, and 3-methyl-3-methoxy-1-butanol
  • acetone methyl isobutyl ketone, diisobutyl ketone Ketones
  • methanol, ethanol, 1-propanol, 2-propanol, or acetone is preferable, and ethanol is more preferable, because a high-hardness silica film composed of micropores can be easily obtained at a relatively low temperature.
  • the amount of the organic solvent is preferably such that the total number of moles of each organic solvent used in Steps S101 and S102 / the number of moles of tetraalkyl orthosilicate is in the range of 2 to 30.
  • the amount is preferably in the range, more preferably in the range of 12-15.
  • the amount of the organic solvent to be mixed in Step 101 and the amount of the organic solvent to be mixed in Step S102 may be any distribution, but is preferably 50:50 by weight ratio.
  • the mixing method of the organic solvent and the tetraalkyl orthosilicate is a method of stirring the mixed solution of the organic solvent and the tetraalkyl orthosilicate in the container using a stirrer equipped with a stirring blade, the above-mentioned mixing in the container.
  • a method in which a container containing the above-mentioned mixed solution is immersed in an ultrasonic vibrator containing water and stirred. Etc. can be adopted.
  • the mixing method of the organic solvent and the tetraalkyl orthosilicate is not limited to the above-described examples, and includes any known mixing method.
  • the temperature at the time of mixing is preferably selected so that the organic solvent is less likely to volatilize.
  • the organic solvent is preferably in the range of 5 to 60 ° C., particularly preferably 40 ° C. or less.
  • the mixing time is preferably 15 to 180 minutes, particularly 30 to 90 minutes, and more preferably 45 to 75 minutes.
  • step S102 The organic solvent similar to the organic solvent used in step S101 can be used.
  • the organic solvent used in step S102 may be a different type of solvent from the organic solvent used in step S101, but is preferably the same type of organic solvent as used in step S101.
  • the water is preferably ion-exchanged water with less impurities (hydrogen ions, ions other than hydroxide ions are also included in the impurities).
  • the amount of water is preferably in the range of 2 to 10 mol, particularly 3 to 7 mol, and more preferably 4 to 6 mol with respect to 1 mol of the tetraalkylorthosilicate or hydroxyketone derivative.
  • hydroxyketone derivative mixed with water and an organic solvent hydroxyacetone, acetoin, 3-hydroxy-3-methyl-2-butanone, fructose and the like can be used, and hydroxyacetone is particularly preferable.
  • the hydroxyketone derivative should be in the range of 0.3 to 3.0 mol, particularly 0.5 to 2.0 mol, more preferably 0.8 to 1.2 mol, per mol of tetraalkylorthosilicate. preferable.
  • the mixing method of the organic solvent, water and the hydroxyketone derivative includes any known mixing method in addition to the same method as the mixing method in step S101.
  • the temperature at the time of mixing is preferably selected so that the organic solvent is less likely to volatilize.
  • the reaction process is a process of mixing the solution mixed in step S101 and the solution mixed in step S102.
  • the mixing method includes any known mixing method in addition to the same method as each mixing method in steps S101 and S102.
  • the temperature at the time of mixing is preferably selected at a temperature at which the organic solvent is less likely to volatilize, as in steps S101 and S102.
  • the mixing time is preferably 8 to 120 hours, particularly 12 to 80 hours, more preferably 24 to 60 hours.
  • the first heating step is an aging step for allowing the hydrolysis and condensation polymerization of the tetraalkyl orthosilicate to proceed slowly.
  • the temperature at the time of heating is preferably selected so as to gradually advance the hydrolysis and condensation polymerization described above.
  • the heating temperature is preferably 20 to 55 ° C., more preferably 35 to 45 ° C.
  • the heating time is preferably 30 hours or more, and more preferably 36 hours or more in the case of 40 ° C.
  • the first solution is completed through the above steps S101 to S104. Note that one or two of steps S101, S102 and S103 need not be performed.
  • step S200 Second solution preparation step (step S200) (2.a) Fourth mixing step (step S201)
  • the alkylalkoxysilane mixed with the first solution is a silane compound represented by the general formula (R 1 ) x Si (OR 2 ) 4-X (wherein R 1 is an alkyl group, and OR 2 is An alkoxy group, and X is 1, 2 or 3.
  • the alkyl group and alkoxy group may be any of linear, branched and cyclic functional groups, and the carbon number is 1 to 20, preferably 1 to 10, and more preferably 1 to 4.
  • alkylalkoxysilane examples include trialkoxysilanes such as methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane; dimethyldimethoxysilane and dimethyldimethoxysilane.
  • Dialkoxysilanes such as ethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane; monoalkoxysilanes such as trimethylmonomethoxysilane, triethylmonomethoxysilane, trimethylmonoethoxysilane, triethylmonoethoxysilane, etc.
  • methyltrimethoxysilane can be preferably used.
  • the amount of the alkylalkoxysilane is preferably in the range of 0.1 to 0.5, more preferably 0.4, per 1 mol of tetraalkylorthosilicate.
  • the mixing method of the first solution and the alkylalkoxysilane may be any mixing method as in the first mixing step.
  • the temperature at the time of mixing is preferably in the range of 5 to 60 ° C., and particularly preferably within 40 ° C. or less.
  • the mixing time is preferably 15 to 180 minutes, particularly 30 to 90 minutes, and more preferably 45 to 75 minutes.
  • the second heating step is a step for causing the reaction between the tetraalkylorthosilicate and the alkylalkoxysilane to proceed.
  • the temperature at the time of heating is preferably selected at a temperature at which the reaction proceeds.
  • the heating temperature is preferably 20 to 55 ° C, and more preferably 35 to 45 ° C.
  • the heating time is preferably in the range of 6 to 120 hours at 40 ° C.
  • step S300 As a substrate for film formation, a glass substrate, a metal substrate typified by single crystal or polycrystalline silicon, a resin substrate typified by acrylic resin, polyethylene terephthalate resin, or the like can be used regardless of the material. In the film forming step, as described later, since the film can be formed at a temperature of 100 ° C. or lower, it can be easily formed even on a resin having low heat resistance.
  • the film forming step is a step of applying a silica solution on the substrate, and any known method can be adopted.
  • various printing methods such as a transfer method, a screen printing method, and an ink jet printing method can be employed in addition to a coating method such as a spin coating method, a blade coating method, a roll coating method, a dipping method, and a spray method.
  • a spin coat method capable of forming a film having a simple and uniform film thickness can be suitably used.
  • the spin coating method it is preferable to determine the rotation speed and rotation time of the substrate according to the desired film thickness.
  • the film thickness is likely to change depending on the type of organic solvent in the silica solution, the liquid temperature, and the viscosity of the solution.
  • methanol, ethanol, 1-propanol, 2-propanol or acetone is used as the organic solvent, it is 1000 to 3000 rpm. It is preferable to rotate the substrate.
  • the temperature of the solution at that time is preferably 10 to 30 ° C.
  • the viscosity of the solution at that time is preferably 2.0 to 5.0 mPa ⁇ s.
  • the first drying step is a step of reducing the organic solvent and water in the film and fixing the formed film.
  • the drying temperature and drying time are determined according to the state of the film obtained by spin coating. It is preferable to do this. If possible, it tends to be preferable to dry at a low temperature for a long time.
  • the drying temperature is 15 to 35 ° C., preferably 20 to 28 ° C., for 12 to 48 hours, preferably 18 to 36 hours. In addition, this process can also be excluded.
  • the post-hydrolysis step is a step in which the film formed on the substrate is immersed in water (whether the entire substrate is immersed or only the film is brought into contact with water) to cause further hydrolysis of the film.
  • the water temperature may be 0 ° C. or higher, but is preferably in the range of 40 to 95 ° C., particularly 70 to 90 ° C., more preferably 75 to 85 ° C. It is because the effect of hydrolysis can be enhanced and peeling or destruction of the membrane can be effectively prevented.
  • any method such as dipping, showering or flowing water can be employed. In this embodiment, it is preferable to employ dipping that is simple and has a high hydrolysis effect.
  • the post-hydrolysis treatment time is preferably 30 to 240 minutes, particularly 60 to 180 minutes, and more preferably 90 to 150 minutes.
  • the second drying step is a step of removing water and the like contained in the film formed on the substrate and a step of improving the hardness of the film.
  • a dryer, an electric furnace, or the like can be appropriately selected depending on the drying temperature.
  • the temperature can be selected in consideration of the heat resistance of the substrate, but is preferably 400 ° C. or lower.
  • the range of 5 to 100 ° C., the range of 10 to 40 ° C., and further the range of 15 to 30 ° C. is set as an appropriate range.
  • the drying time is not particularly limited as long as it is a time sufficient to remove adsorbed water and remaining organic matter as much as possible, but, for example, 15 to 240 minutes, particularly 30 to 180 minutes, and even 60 ⁇ 150 minutes is preferred.
  • Example 1 Preparation of coating solution In a beaker (beaker A), 1.903 g of tetramethoxysilane (TMOS) manufactured by Tokyo Chemical Industry Co., Ltd. and 7.89 g of ethanol (EtOH) manufactured by Wako Pure Chemical Industries, Ltd. And stirred at 25 ° C. for about 1 hour. Stirring was performed using a stirrer (model: VARIOMAG POLY15) manufactured by KOMET Co., Ltd. The stirring speed was 550 rpm.
  • TMOS tetramethoxysilane
  • EtOH ethanol
  • MTMS methyltrimethoxysilane
  • a silicon substrate (SUMCO CO., 25 mm ⁇ 25 mm ⁇ 1 mm), a glass substrate (Corning Corp., 50 mm ⁇ 25 mm ⁇ 1 mm, 50 mm ⁇ 50 mm ⁇ 1 mm) and an acrylic resin substrate (Nitto Resin Industry) Manufactured by Co., Ltd., product number: S0, 50 mm ⁇ 25 mm ⁇ 1 mm) was prepared, and the above-mentioned various substrates were fixed to a rotating plate of a spin coater (manufactured by MIKASA, model: SPINCATOR 1H-D7).
  • MIKASA spin coater
  • the rotation speed of the spin coater is set so that the rotation speed of each substrate becomes 2000 rpm, and the rotation of the rotating plate is started, and the previously prepared solution B is supplied onto the rotating substrate for 60 seconds. Then, a film was formed on the surface of the substrate, and then the rotation of the rotating plate was stopped. Next, the substrate on which the film was formed was dried at 25 ° C. for about 24 hours. Next, the dried substrate is immersed in a beaker (beaker D) containing about 20 ° C. ion-exchanged water, the beaker D is placed in a water bath, heated to 80 ° C., and allowed to stand for 2 hours. I put it. Next, the substrate was taken out from the beaker D and dried under reduced pressure at 25 ° C. for 24 hours to obtain test pieces for various evaluations.
  • beaker D beaker
  • an antifogging evaluation device (model number: AFA-1) manufactured by Kyowa Interface Science Co., Ltd. was used. Both room temperature and measurement room temperature are 20 ° C., humidification bath temperature is 40 ° C., and humidification bath humidity is 80%. H. After spraying water vapor three times on the measurement surface at intervals of 1 second, light transmittance (the amount of light received by each channel CH) was measured every other second for 10 seconds, and a stable value was obtained 5 seconds later. The value of the X-axis intercept obtained from the linear approximation curve of the received light amount distribution was taken as the antifogging evaluation index (three-point average).
  • the antifogging evaluation index indicates that the smaller the value, the higher the antifogging performance.
  • a back Al-coated cantilever (SI-DF20) was used and observed in a tapping mode (DFM).
  • the surface roughness was evaluated by root mean square (RMS) surface roughness.
  • RMS root mean square
  • Pencil hardness measurement As a measurement sample, a silicon substrate with various silica films attached thereto was used. The hardness was measured using a pencil hardness meter (model number: No. 553-S) manufactured by Yasuda Seiki Co., Ltd. based on the pencil hardness measurement method (JIS K5600-5-4).
  • (6) Infrared absorption spectrum measurement The measurement sample of the infrared absorption spectrum was a silica powder obtained by drying Solution B under reduced pressure, hydrolyzing at 80 ° C. for 2 hours, and drying.
  • FT-IR model number: IR-Prestige 21
  • ATR ATR method
  • Specific surface area measurement The measurement sample measured the silica powder heated at 200 degreeC by using the said sample for infrared absorption spectrum measurement as pre-processing.
  • a nitrogen adsorption / desorption measuring device model number: ASAP2010
  • the BET method was used for calculating the average pore diameter.
  • the BET method is a method of calculating the pore diameter on the assumption that nitrogen molecules are multilayer adsorbed to fill the pores, and is effective in obtaining the pore diameter in silica.
  • a scanning thermogravimetric analyzer (model number: Thermoplus TG8120) manufactured by Rigaku Corporation was used. In the measurement, the temperature rising rate was 5 ° C./min. (9) Evaluation of surface hydrophilicity / hydrophobicity distribution As a measurement sample, a silicon substrate with various silica films attached thereto was used. For the measurement, a scanning probe microscope (model number: SPA400) manufactured by Seiko Instruments Inc. was used. The measurement was performed using Au-coated cantilevers (SI-AF01A) subjected to single-molecule surface treatment (SAMs) with mercaptohexadecanol. The observation was performed in the transverse vibration friction force microscope mode (LM-FFM). Other evaluation conditions were: scanning frequency: 5 kHz, amplitude: 5 nm, deflection amount: 0 nm.
  • Table 2 and FIG. 3 show the contact angle (CA) of the silica film produced on the glass substrate.
  • Table 3 and FIG. 4 show the antifogging evaluation index of the silica film.
  • Table 4 shows the surface roughness of the silica film produced on the silicon substrate.
  • the surface of the obtained silica film was an extremely smooth surface having an RMS surface roughness of 2.0 nm or less.
  • FIG. 5 is a scanning probe photomicrograph of the surface of a silica film produced on a silicon substrate.
  • FIG. 6 shows infrared absorption spectra of various silica powders.
  • the silica film (comparative sample: aT1) produced from the solution B not containing MTMS had a surface composed only of a portion with high luminance.
  • aT1 comparative sample: aT1
  • the content of MTMS increases, a low luminance region is mixed on the silica film surface.
  • the hydrophilic region is drawn with high luminance because the frictional force is increased, when the content of MTMS is increased, more hydrophilic regions (regions with low luminance) are mixed in the hydrophilic region. It is thought that it will change.
  • FIG. 6 it was found that the peak at 1278 cm ⁇ 1 and the peak at 2975 cm ⁇ 1 increase as the MTMS content increases.
  • the former is a peak of symmetric deformation vibration of Si—CH 3
  • the latter is a peak of reverse symmetric stretching vibration of CH 3 . From this and the result shown in FIG. 5, it is considered that the hydrophobic region bonded to the methyl group on the surface of the silica film increases as the MTMS content increases.
  • FIG. 7 is a graph showing thermogravimetric changes of various silica powders.
  • FIG. 8 is a graph showing nitrogen adsorption / desorption isotherms of various silica powders.
  • Table 5 is a table summarized based on the results of FIGS. 7 and 8. In the table, the weight reduction rate is the weight reduction rate relative to the original weight at 100 ° C.
  • the water content (water absorption) of various samples decreased as the MTMS content increased. From this, it is considered that when the MTMS in the solution B is increased, the water content is decreased and the hydrophobic region is increased. Further, as shown in FIG. 8, all the evaluated samples exhibit type I adsorption / desorption isotherms, and thus are considered to have only micropores (diameter ⁇ 2 nm). Furthermore, as shown in Table 5, the result that the pore volume became smaller as the content of MTMS increased was obtained. From this, it is considered that an increase in the hydrophobic region leads to a reduction in pore volume.
  • FIG. 9 shows the transmittance of a glass substrate with a silica film in a predetermined wavelength region.
  • FIG. 10 shows the transmittance of an acrylic resin substrate with a silica film in a predetermined wavelength region.
  • Table 6 shows the visible light transmittance summarized based on the results shown in FIGS. 9 and 10.
  • Table 7 shows the pencil hardness of various silica films produced on a silicon substrate.
  • any silica film produced in Experimental Example 1 was firmly peeled off from various substrates and not firmly peeled off from various substrates.
  • Table 9 and FIG. 11 show the antifogging evaluation index of the silica film produced on the glass substrate.
  • the silica films (bTM4, bTM5, and bTM6) produced under the conditions where the heating time was 36 hours (1.5 days) or longer were the silica films produced under conditions where the heating time was shorter than that. It was found that the film (bTM1, bTM2, and bTM3) has higher antifogging performance than the membranes (bTM1, bTM2, and bTM3).
  • Table 10 shows the surface roughness of the silica film produced on the silicon substrate.
  • the surface of the silica film was a smooth surface having an RMS surface roughness of 4.0 nm or less.
  • FIG. 12 is a scanning probe photomicrograph of the surface of a silica film produced on a silicon substrate.
  • Samples bTM4 and bTM5 with high antifogging performance have clearer hydrophilic regions (high luminance portions) and hydrophobic regions (low luminance portions) than sample bTM3, and this form improves antifogging performance. It is thought that it contributes to.
  • FIG. 13 is a graph showing thermogravimetric changes of various silica powders.
  • FIG. 14 is a graph showing nitrogen adsorption / desorption isotherms of various silica powders.
  • Table 11 is a table summarized based on the results of FIGS. 13 and 14. In the table, the weight reduction rate is the weight reduction rate relative to the original weight at 100 ° C.
  • the water content (water absorption amount) of various samples improved as the heating time increased from 0 to 48 hours (within 2 days). From this, it is considered that when the heating time of the solution A at 40 ° C. is lengthened, the hydrophilic region is widened. Further, as shown in FIG. 14, all the evaluated samples exhibit type I adsorption / desorption isotherms, and thus are considered to have only micropores (diameter ⁇ 2 nm). Further, as shown in Table 11, the pore volume was increased as the heating time was increased. From this, it is thought that the increase in the hydrophilic region leads to the enlargement of the pore volume.
  • FIG. 15 shows the transmittance of a glass substrate provided with a silica film in a predetermined wavelength region.
  • FIG. 16 shows the transmittance of an acrylic resin substrate with a silica film in a predetermined wavelength region.
  • Table 12 shows the visible light transmittance summarized based on the results shown in FIGS. 15 and 16.
  • Table 13 shows the pencil hardness of various silica films produced on a silicon substrate.
  • any silica film produced in Experimental Example 2 was not peeled off from various substrates or was not easily peeled off, but was firmly fixed to the various substrates.
  • the present invention can be used, for example, for film formation on a substrate that requires anti-fogging properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Silicon Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

[Problem] To obtain a silica film with excellent defogging performance, high hardness and high adhesion. [Solution] The present invention pertains to a silica film having pencil hardness of 3H or more measured in accordance with JIS K5600-5-4, and is obtained by dispersing a hydrophobic region having Si-Ch3 bonds in a hydrophilic region of a porous film surface comprising fine pores classified as micropores in the IUPAC classification and having an average diameter of not more than 2nm according to BET measurements.

Description

シリカ膜およびその製造方法Silica membrane and method for producing the same
 本発明は、防曇性に優れたシリカ膜およびその製造方法に関する。 The present invention relates to a silica film having excellent antifogging properties and a method for producing the same.
 従来から、防曇性を付与して光学特性を向上させることを目的として、超親水性のコーティング材料が用いられている。当該コーティング材料は、防曇性以外にも、防汚性の付与や熱交換の高効率化も期待できるので、多用されている。 Conventionally, super-hydrophilic coating materials have been used for the purpose of imparting anti-fogging properties and improving optical properties. In addition to anti-fogging properties, the coating materials are frequently used because they can be expected to impart anti-staining properties and increase the efficiency of heat exchange.
 親水性材料としては、例えば、結晶性の酸化チタン微粒子等の光半導体を混合した塗料が知られている。塗料中に結晶性の粒子を用いると、塗膜の透明性、透過性が損なわれやすい。このため、その解決手段の一つとして、光半導体の含有率の低減が試みられており、光半導体の粒子の含有率が低くても、ある程度の超親水性を発揮できる材料も知られている(例えば、特許文献1参照)。また、以前より、酸化チタン等の光半導体の微粒子を含まない超親水性材料として、親水性ポリマー、界面活性剤が知られている(例えば、特許文献2参照)。 As a hydrophilic material, for example, a paint in which an optical semiconductor such as crystalline titanium oxide fine particles is mixed is known. When crystalline particles are used in the paint, the transparency and permeability of the coating film are likely to be impaired. For this reason, as one of the means for solving this problem, attempts have been made to reduce the content of the optical semiconductor, and there are also known materials that can exhibit a certain degree of super hydrophilicity even if the content of the particles of the optical semiconductor is low. (For example, refer to Patent Document 1). In addition, hydrophilic polymers and surfactants have been known as superhydrophilic materials that do not contain optical semiconductor fine particles such as titanium oxide (see, for example, Patent Document 2).
特開平11-061042号公報Japanese Patent Laid-Open No. 11-061042 特開昭53-058492号公報JP-A-53-058292
 しかし、上記従来技術には、次のような問題もある。特許文献1に開示される材料は、超親水性の発現に光照射を必要とするため、暗所において防曇性を発現することは困難である。一方、特許文献2に開示される材料は、防曇性の発現に光照射を必要としないが、膜形成後の付着性に乏しいため、防曇性の効果が短期間で損なわれるという問題を有する。付着性を高めるために、コロイダルシリカを有機ポリマーや無機バインダーに複合化して被覆する方法も考えられているが、光の吸収、散乱による透明性の低下は避けられない。 However, the above prior art has the following problems. Since the material disclosed in Patent Document 1 requires light irradiation for the development of super hydrophilicity, it is difficult to exhibit antifogging properties in a dark place. On the other hand, the material disclosed in Patent Document 2 does not require light irradiation for the development of antifogging properties, but has a problem that the antifogging effect is impaired in a short time because of poor adhesion after film formation. Have. In order to enhance the adhesion, a method of coating colloidal silica with an organic polymer or an inorganic binder is also considered, but a decrease in transparency due to light absorption and scattering is inevitable.
 本発明者らは、本発明に先立ち、粒子を一切含まないシリカ薄膜の開発を行い、極めて平滑で、光透過性の高い超親水性の薄膜を作製することに成功した。しかし、さらに、防曇性能に優れ、高硬度であってかつ高付着性のシリカ膜が望まれている。 Prior to the present invention, the present inventors have developed a silica thin film containing no particles and succeeded in producing a super-hydrophilic thin film that is extremely smooth and highly light transmissive. However, a silica film having excellent antifogging performance, high hardness and high adhesion is desired.
 本発明は、かかる要望に応えるべくなされたものであって、防曇性能に優れ、高硬度かつ高付着性のシリカ膜を得ることを目的とする。 The present invention has been made to meet such a demand, and an object thereof is to obtain a silica film having excellent antifogging performance, high hardness and high adhesion.
 上記目的を達成するために、本発明者らは、シリカ膜の親水性領域の中に疎水性領域を形成すれば、疎水性領域に接触した水滴を親水性領域に接触的に移動させ、そこでシリカ膜と水滴との濡れ性を高め、防曇性を向上させることができるという仮説をたて、研究開発を進めてきた。その結果、次のシリカ膜の構成および製造方法により、防曇性を高めることに成功した。具体的な手段は、以下のとおりである。 In order to achieve the above object, the present inventors, when forming a hydrophobic region in the hydrophilic region of the silica membrane, moves water droplets that have contacted the hydrophobic region in contact with the hydrophilic region, where Research and development has been promoted based on the hypothesis that the wettability between the silica film and water droplets can be improved and the antifogging property can be improved. As a result, it succeeded in improving antifogging property by the structure and manufacturing method of the following silica film. Specific means are as follows.
 すなわち、本発明の一形態は、JIS K5600-5-4に基づき測定される鉛筆硬度が3H以上の硬度を有し、IUPACの分類においてミクロ孔に分類される細孔であってBET測定値に基づく平均直径2nm以下の細孔で構成される多孔質膜表面の親水性領域中に、Si-CH結合を有する疎水性領域を分散して成るシリカ膜である。 That is, according to one aspect of the present invention, the pencil hardness measured in accordance with JIS K5600-5-4 has a hardness of 3H or more, and the pore is classified as a micropore in the IUPAC classification. This is a silica membrane in which hydrophobic regions having Si—CH 3 bonds are dispersed in a hydrophilic region on the surface of a porous membrane composed of pores having an average diameter of 2 nm or less.
 本発明の一形態は、JIS K5600-5-4に基づき測定される鉛筆硬度が3H以上の硬度を有し、IUPACの分類においてミクロ孔に分類される細孔であってBET測定値に基づく平均直径2nm以下の細孔で構成される多孔質膜表面の親水性領域中に、Si-CH結合を有する疎水性領域を分散して成るシリカ膜を製造する方法であって、少なくとも、テトラアルキルオルソシリケート、ヒドロキシケトン誘導体、有機溶媒および水を混和して反応させて第一溶液を作製する第一溶液作製工程と、第一溶液にアルキルアルコキシシランを混合して、第二溶液を作製する第二溶液作製工程と、第二溶液を基板に供給して膜を形成する膜形成工程と、膜形成工程によって得られる膜を水に接触させて加水分解を行う後加水分解工程と、を含み、第一溶液作製工程において35~60℃の範囲にて30時間以上加熱する加熱工程を行って第一溶液を作製し、テトラアルキルオルソシリケートに対するアルキルアルコキシシランのモル比を0.1~0.5の範囲とするシリカ膜の製造方法である。 One aspect of the present invention is a pore having a pencil hardness measured in accordance with JIS K5600-5-4 of 3H or more and classified as a micropore in the IUPAC classification, and an average based on a BET measurement value A method for producing a silica film in which a hydrophobic region having a Si—CH 3 bond is dispersed in a hydrophilic region on the surface of a porous membrane composed of pores having a diameter of 2 nm or less, comprising at least a tetraalkyl A first solution preparation step for preparing a first solution by mixing and reacting an orthosilicate, a hydroxyketone derivative, an organic solvent and water, and a second solution for preparing a second solution by mixing the alkylalkoxysilane with the first solution. A two-solution preparation step, a film formation step of forming a film by supplying a second solution to the substrate, and a hydrolysis step in which the film obtained by the film formation step is brought into contact with water for hydrolysis In the first solution preparation step, the first solution is prepared by performing a heating step of heating for 30 hours or more in the range of 35 to 60 ° C., and the molar ratio of the alkylalkoxysilane to the tetraalkylorthosilicate is 0.1 to This is a method for producing a silica film having a range of 0.5.
 本発明の別の形態は、さらに、テトラアルキルオルソシリケートをテトラメチルオルソシリケートとし、ヒドロキシケトン誘導体をヒドロキシアセトンとし、有機溶媒をエタノールとし、アルキルアルコキシシランをメチルトリメトキシシランとするシリカ膜の製造方法である。 According to another aspect of the present invention, there is further provided a method for producing a silica film in which tetraalkyl orthosilicate is tetramethyl orthosilicate, hydroxyketone derivative is hydroxyacetone, organic solvent is ethanol, and alkylalkoxysilane is methyltrimethoxysilane. It is.
 本発明によれば、防曇性能に優れ、高硬度かつ高付着性のシリカ膜を得ることができる。 According to the present invention, a silica film having excellent anti-fogging performance, high hardness and high adhesion can be obtained.
図1は、本実施の形態に係るシリカ膜の製造方法の一例の大まかな流れを示すフローチャートである。FIG. 1 is a flowchart showing a rough flow of an example of a method for producing a silica film according to the present embodiment. 図2は、図1に示すフローチャートをさらに具体化した製造工程の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a manufacturing process that further embodies the flowchart illustrated in FIG. 1. 実験例1においてガラス基板上に作製したシリカ膜の接触角(C.A.)を示すグラフである。2 is a graph showing a contact angle (CA) of a silica film produced on a glass substrate in Experimental Example 1. 図4は、図3に示すシリカ膜の防曇評価指数を示すグラフである。FIG. 4 is a graph showing the antifogging evaluation index of the silica film shown in FIG. 図5は、実験例1においてシリコン基板上に作製したシリカ膜表面の走査型プローブ顕微鏡写真である。FIG. 5 is a scanning probe photomicrograph of the surface of the silica film produced on the silicon substrate in Experimental Example 1. 図6は、実験例1において作製した各種シリカ粉末の赤外吸収スペクトルである。6 is an infrared absorption spectrum of various silica powders produced in Experimental Example 1. FIG. 図7は、実験例1において作製した各種シリカ粉末の熱重量変化を示すグラフである。FIG. 7 is a graph showing thermogravimetric changes of various silica powders produced in Experimental Example 1. 図8は、実験例1において作製した各種シリカ粉末の窒素吸脱着等温線を示すグラフである。FIG. 8 is a graph showing nitrogen adsorption / desorption isotherms of various silica powders produced in Experimental Example 1. 図9は、実験例1において作製したシリカ膜を付けたガラス基板の所定波長域における光透過率を示すグラフである。FIG. 9 is a graph showing the light transmittance in a predetermined wavelength region of the glass substrate provided with the silica film produced in Experimental Example 1. 図10は、実験例1において作製したシリカ膜を付けたアクリル樹脂基板の所定波長域における光透過率を示すグラフである。FIG. 10 is a graph showing the light transmittance in a predetermined wavelength region of the acrylic resin substrate with the silica film produced in Experimental Example 1. 図11は、実験例2においてガラス基板上に作製したシリカ膜の防曇評価指数を示すグラフである。FIG. 11 is a graph showing an antifogging evaluation index of a silica film produced on a glass substrate in Experimental Example 2. 図12は、実験例2においてシリコン基板上に作製したシリカ膜表面の走査型プローブ顕微鏡写真である。FIG. 12 is a scanning probe photomicrograph of the surface of the silica film produced on the silicon substrate in Experimental Example 2. 図13は、実験例2において作製した各種シリカ粉末の熱重量変化を示すグラフである。FIG. 13 is a graph showing thermogravimetric changes of various silica powders produced in Experimental Example 2. 図14は、実験例2において作製した各種シリカ粉末の窒素吸脱着等温線を示すグラフである。FIG. 14 is a graph showing nitrogen adsorption / desorption isotherms of various silica powders produced in Experimental Example 2. 図15は、実験例2において作製したシリカ膜を付けたガラス基板の所定波長域における光透過率を示すグラフである。FIG. 15 is a graph showing the light transmittance in a predetermined wavelength region of the glass substrate provided with the silica film produced in Experimental Example 2. 図16は、実験例2において作製したシリカ膜を付けたアクリル樹脂基板の所定波長域における光透過率を示すグラフである。FIG. 16 is a graph showing the light transmittance in a predetermined wavelength region of the acrylic resin substrate with the silica film produced in Experimental Example 2.
 次に、本発明のシリカ膜およびその製造方法の好適な実施の形態について説明する。 Next, preferred embodiments of the silica film of the present invention and the production method thereof will be described.
<1.シリカ膜>
 本実施の形態に係るシリカ膜は、好適には、JIS K5600-5-4に基づき測定される鉛筆硬度が3H以上の硬度を有し、IUPACの分類においてミクロ孔に分類される細孔であってBET測定値に基づく平均直径2nm以下の細孔で構成される多孔質膜表面の親水性領域中に、Si-CH結合を有する疎水性領域を分散して成るシリカ膜である。ここで、「シリカ膜」とは、シリカを主成分とする膜若しくは膜の積層体をいい、シリカ以外の副成分の種類や各副成分の割合、膜の厚さの大小は問わない。
<1. Silica film>
The silica film according to the present embodiment is preferably a pore having a pencil hardness measured according to JIS K5600-5-4 of 3H or more and classified as a micropore in the IUPAC classification. A silica film in which a hydrophobic region having a Si—CH 3 bond is dispersed in a hydrophilic region on the surface of a porous membrane composed of pores having an average diameter of 2 nm or less based on BET measurement values. Here, the “silica film” refers to a film or a laminate of films containing silica as a main component, regardless of the types of subcomponents other than silica, the ratio of each subcomponent, and the thickness of the film.
 本実施の形態に係るシリカ膜において、窒素吸脱着法にて測定される細孔容積は大きければ大きいほど好ましい。また、JIS K5600-5-4に基づく鉛筆硬度は大きければ大きいほど好ましい。本実施の形態に係るシリカ膜は、防曇評価装置(例えば、協和界面科学株式会社製、型番: AFA-1)を用い、室温および測定室温度ともに20℃、加湿槽温度40℃、加湿槽湿度80%R.H.において、1秒間隔で測定面に3回水蒸気を噴霧した後、10秒間、1秒おきに光透過性(各チャンネルCHの受光量)を測定し、安定した数値が得られた5秒後の受光量分布の線形近似曲線から得られるX軸切片の値(防曇評価指数)が10以下を示す防曇性能を有する。 In the silica membrane according to the present embodiment, the larger the pore volume measured by the nitrogen adsorption / desorption method, the better. Also, the higher the pencil hardness based on JIS K5600-5-4, the better. The silica film according to the present embodiment uses an anti-fogging evaluation apparatus (for example, Kyowa Interface Science Co., Ltd., model number: AFA-1), and the room temperature and the measurement room temperature are both 20 ° C., the humidifying tank temperature is 40 ° C., and the humidifying tank. Humidity 80% R.D. H. After spraying water vapor three times on the measurement surface at intervals of 1 second, light transmittance (the amount of light received by each channel CH) was measured every other second for 10 seconds, and a stable value was obtained 5 seconds later. It has an anti-fogging performance in which the value of the X-axis intercept (anti-fogging evaluation index) obtained from a linear approximation curve of the received light amount distribution is 10 or less.
<2.シリカ膜の製造方法>
 図1は、本実施の形態に係るシリカ膜の製造方法の一例の大まかな流れを示すフローチャートである。
<2. Manufacturing method of silica film>
FIG. 1 is a flowchart showing a rough flow of an example of a method for producing a silica film according to the present embodiment.
 図1に示すように、本実施の形態に係るシリカ膜の製造方法は、少なくとも、テトラアルキルオルソシリケート、ヒドロキシケトン誘導体、有機溶媒および水を混和して反応させて第一溶液を作製する第一溶液作製工程(ステップS100)と、当該第一溶液に、アルキルアルコキシシランを混合して、第二溶液を作製する第二溶液作製工程(ステップS200)と、当該第二溶液を基板に供給して膜を形成する膜形成工程(ステップS300)と、膜形成工程によって得られた膜を乾燥する第一乾燥工程(ステップS400)と、第一乾燥工程によって得られた膜を水に接触させて加水分解を行う後加水分解工程(ステップS500)と、後加水分解工程によって得られた膜を乾燥する第二乾燥工程(ステップS600)と、を含み、第一溶液作製工程において、35~60℃の範囲にて少なくとも30時間以上加熱して第一溶液を作製すると共に、第二溶液作製工程におけるテトラアルキルオルソシリケートに対するアルキルアルコキシシランのモル比を0.1~0.5の範囲とするものである。ただし、第一乾燥工程(ステップS400)および第二乾燥工程(ステップS600)は,必須の工程ではなく、除外しあるいは他の工程に変更しても良い。 As shown in FIG. 1, in the method for producing a silica film according to the present embodiment, at least a tetraalkylorthosilicate, a hydroxyketone derivative, an organic solvent, and water are mixed and reacted to produce a first solution. A solution preparation step (step S100), a second solution preparation step (step S200) in which an alkylalkoxysilane is mixed with the first solution to prepare a second solution, and the second solution is supplied to the substrate. A film forming process for forming a film (step S300), a first drying process for drying the film obtained by the film forming process (step S400), and a film obtained by the first drying process are brought into contact with water for hydrolysis. A post-hydrolysis step (step S500) for performing decomposition, and a second drying step (step S600) for drying the film obtained by the post-hydrolysis step, In the solution preparation step, the first solution is prepared by heating at 35 to 60 ° C. for at least 30 hours, and the molar ratio of the alkylalkoxysilane to the tetraalkylorthosilicate in the second solution preparation step is 0.1 to The range is 0.5. However, the first drying process (step S400) and the second drying process (step S600) are not essential processes, and may be excluded or changed to other processes.
 図2は、図1に示すフローチャートをさらに具体化した製造工程の一例を示すフローチャートである。 FIG. 2 is a flowchart showing an example of a manufacturing process that further embodies the flowchart shown in FIG.
 図1のフローチャートに示すシリカ膜の製造方法において、第一溶液を作製するための第一溶液作製工程(ステップS100)は、テトラアルキルオルソシリケートと有機溶媒とを混合する第一混合工程(ステップS101)と、少なくともヒドロキシケトン誘導体、水および有機溶媒とを混合する第二混合工程(ステップS102)と、第一混合工程により作製したテトラアルキルオルソシリケート溶液と第二混合工程により作製した溶液とを混合する第三混合工程(ステップS103)と、当該第三混合工程後に、混合溶液を加熱する第一加熱工程(ステップS104)と、を含む。また、第二溶液を作製するための第二溶液作製工程(ステップS200)は、第一溶液と、アルキルアルコキシシランとを混合する第四混合工程(ステップS201)と、当該第四混合工程後に、混合溶液を加熱する第二加熱工程(ステップS202)と、を含む。 In the method for producing a silica film shown in the flowchart of FIG. 1, the first solution production step (step S100) for producing the first solution is a first mixing step (step S101) in which a tetraalkyl orthosilicate and an organic solvent are mixed. ), At least a hydroxyketone derivative, water and an organic solvent are mixed (step S102), a tetraalkyl orthosilicate solution prepared by the first mixing step and a solution prepared by the second mixing step are mixed. A third mixing step (step S103), and a first heating step (step S104) for heating the mixed solution after the third mixing step. Moreover, the 2nd solution preparation process (step S200) for producing a 2nd solution is the 4th mixing process (step S201) which mixes a 1st solution and an alkyl alkoxysilane, and the said 4th mixing process, A second heating step (step S202) for heating the mixed solution.
 次に、図1および図2に示すフローチャートに基づいて、各工程の詳細を説明する。 Next, the details of each process will be described based on the flowcharts shown in FIGS.
(1)第一溶液作製工程(ステップS100)
 (1.a)第一混合工程(ステップS101)
 混合対象のテトラアルキルオルソシリケートは、一般式がSi(OR)で表わされるシラン化合物である(式中のORは、アルコキシ基である)。アルコキシ基としては、直鎖、分岐及び環状のいずれの官能基であっても良く、炭素数は、1~20、好ましくは1~10、さらに好ましくは1~4である。テトラアルキルオルソシリケートとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラフェノキシシラン等を挙げることができる。これらのテトラアルキルオルソシリケートの内で、好適には、テトラメチルオルソシリケート(テトラメトキシシラン)を用いることができる。また、これらのテトラアルキルオルソシリケートの内の1種のみ、あるいは2種以上を組み合わせて用いても良い。
(1) First solution preparation process (step S100)
(1.a) First mixing step (step S101)
The tetraalkyl orthosilicate to be mixed is a silane compound having a general formula of Si (OR) 4 (OR in the formula is an alkoxy group). The alkoxy group may be any of linear, branched and cyclic functional groups, and has 1 to 20, preferably 1 to 10, and more preferably 1 to 4 carbon atoms. Examples of the tetraalkyl orthosilicate include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, and tetra-tert-butoxy. Examples thereof include silane and tetraphenoxysilane. Of these tetraalkylorthosilicates, tetramethylorthosilicate (tetramethoxysilane) can be preferably used. Further, only one of these tetraalkyl orthosilicates or a combination of two or more thereof may be used.
 テトラアルキルオルソシリケートと混合する有機溶媒には、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、3-メチル-3-メトキシ-1-ブタノールなどのアルコール類;アセトン、メチルイソブチルケトン、ジイソブチルケトンなどのケトン類を用いることができる。上記有機溶媒としては、上記の一種のみを、あるいは上記の2種以上を混合したものを用いても良い。この実施の形態では、比較的低温にてミクロ孔から成る高硬度のシリカ膜を得やすいメタノール、エタノール、1-プロパノール、2-プロパノールあるいはアセトンが好ましく、さらにはエタノールがより好ましい。 Examples of the organic solvent mixed with the tetraalkyl orthosilicate include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, and 3-methyl-3-methoxy-1-butanol; acetone, methyl isobutyl ketone, diisobutyl ketone Ketones such as can be used. As said organic solvent, you may use only said 1 type, or what mixed said 2 or more types. In this embodiment, methanol, ethanol, 1-propanol, 2-propanol, or acetone is preferable, and ethanol is more preferable, because a high-hardness silica film composed of micropores can be easily obtained at a relatively low temperature.
 上記有機溶媒の量は、ステップS101およびS102にて用いられる各有機溶媒の合計のモル数/テトラアルキルオルソシリケートのモル数が2~30の範囲になる量とするのが好ましく、5~20の範囲、さらには12~15の範囲になる量とするのが好ましい。ステップ101にて混合する有機溶媒の量と、ステップS102にて混合する有機溶媒の量とは、如何なる配分でも良いが、好ましくは重量比にて50:50である。 The amount of the organic solvent is preferably such that the total number of moles of each organic solvent used in Steps S101 and S102 / the number of moles of tetraalkyl orthosilicate is in the range of 2 to 30. The amount is preferably in the range, more preferably in the range of 12-15. The amount of the organic solvent to be mixed in Step 101 and the amount of the organic solvent to be mixed in Step S102 may be any distribution, but is preferably 50:50 by weight ratio.
 有機溶媒とテトラアルキルオルソシリケートとの混合方法は、攪拌羽根を取り付けた攪拌機を用いて、容器に入れた有機溶媒とテトラアルキルオルソシリケートとの混合溶液を掻き混ぜる方法、容器に入れた前述の混合溶液内に攪拌子を入れて当該容器をマグネチックスターラー上に載せて攪拌子を回転させる方法、前述の混合溶液を入れた容器を、水を入れた超音波振動機内に漬けて振動攪拌させる方法などを採用することができる。ただし、有機溶媒とテトラアルキルオルソシリケートとの混合方法は、前述の例示に限定されず、公知のいかなる混合方法をも含む。 The mixing method of the organic solvent and the tetraalkyl orthosilicate is a method of stirring the mixed solution of the organic solvent and the tetraalkyl orthosilicate in the container using a stirrer equipped with a stirring blade, the above-mentioned mixing in the container. A method in which a stirrer is placed in a solution and the container is placed on a magnetic stirrer and the stirrer is rotated. A method in which a container containing the above-mentioned mixed solution is immersed in an ultrasonic vibrator containing water and stirred. Etc. can be adopted. However, the mixing method of the organic solvent and the tetraalkyl orthosilicate is not limited to the above-described examples, and includes any known mixing method.
 混合時の温度は、有機溶媒が揮発しにくい温度を選択するのが好ましい。例えば、メタノール、エタノール、1-プロパノール、2-プロパノールあるいはアセトンを有機溶媒として選択する場合には、5~60℃の範囲、特にその範囲内でも40℃以下が好ましい。また、混合する時間は、15~180分、特に30~90分、さらには45~75分が好ましい。 The temperature at the time of mixing is preferably selected so that the organic solvent is less likely to volatilize. For example, when methanol, ethanol, 1-propanol, 2-propanol or acetone is selected as the organic solvent, it is preferably in the range of 5 to 60 ° C., particularly preferably 40 ° C. or less. The mixing time is preferably 15 to 180 minutes, particularly 30 to 90 minutes, and more preferably 45 to 75 minutes.
 (1.b)第二混合工程(ステップS102)
 有機溶媒は、ステップS101で用いられる有機溶媒と同様のものを使用することができる。ステップS102で用いられる有機溶媒は、ステップS101で用いられる有機溶媒と異なる種類の溶媒であっても良いが、ステップS101で用いられる有機溶媒と同種の有機溶媒であるのが好ましい。
(1.b) Second mixing step (step S102)
The organic solvent similar to the organic solvent used in step S101 can be used. The organic solvent used in step S102 may be a different type of solvent from the organic solvent used in step S101, but is preferably the same type of organic solvent as used in step S101.
 水は、不純物(水素イオン、水酸イオン以外のイオンなども不純物に含まれる)の少ないイオン交換水であるのが好ましい。水の量は、テトラアルキルオルソシリケートあるいはヒドロキシケトン誘導体1モルに対して2~10モル、特に3~7モル、さらには4~6モルの範囲とするのが好ましい。 The water is preferably ion-exchanged water with less impurities (hydrogen ions, ions other than hydroxide ions are also included in the impurities). The amount of water is preferably in the range of 2 to 10 mol, particularly 3 to 7 mol, and more preferably 4 to 6 mol with respect to 1 mol of the tetraalkylorthosilicate or hydroxyketone derivative.
 水および有機溶媒と一緒に混合するヒドロキシケトン誘導体としては、ヒドロキシアセトン、アセトイン、3-ヒドロキシ-3-メチル-2-ブタノン、およびフルクトースなどを使用でき、特に、ヒドロキシアセトンが好ましい。ヒドロキシケトン誘導体は、テトラアルキルオルソシリケート1モルに対して、0.3~3.0モル、特に0.5~2.0モル、さらには0.8~1.2モルの範囲とするのが好ましい。 As the hydroxyketone derivative mixed with water and an organic solvent, hydroxyacetone, acetoin, 3-hydroxy-3-methyl-2-butanone, fructose and the like can be used, and hydroxyacetone is particularly preferable. The hydroxyketone derivative should be in the range of 0.3 to 3.0 mol, particularly 0.5 to 2.0 mol, more preferably 0.8 to 1.2 mol, per mol of tetraalkylorthosilicate. preferable.
 有機溶媒、水およびヒドロキシケトン誘導体の混合方法は、ステップS101の混合方法と同様の方法の他、公知のいかなる混合方法をも含む。混合時の温度は、ステップS101で述べたように、有機溶媒が揮発しにくい温度を選択するのが好ましい。 The mixing method of the organic solvent, water and the hydroxyketone derivative includes any known mixing method in addition to the same method as the mixing method in step S101. As described in step S101, the temperature at the time of mixing is preferably selected so that the organic solvent is less likely to volatilize.
 (1.c)第三混合工程(ステップS103)
 反応工程は、ステップS101にて混合した溶液とステップS102にて混合した溶液とを混合する工程である。混合方法は、ステップS101およびS102の各混合方法と同様の方法の他、公知のいかなる混合方法をも含む。混合時の温度は、ステップS101およびS102と同様、有機溶媒が揮発しにくい温度を選択するのが好ましい。混合する時間は、8~120時間、特に12~80時間、さらには24~60時間が好ましい。
(1.c) Third mixing step (step S103)
The reaction process is a process of mixing the solution mixed in step S101 and the solution mixed in step S102. The mixing method includes any known mixing method in addition to the same method as each mixing method in steps S101 and S102. The temperature at the time of mixing is preferably selected at a temperature at which the organic solvent is less likely to volatilize, as in steps S101 and S102. The mixing time is preferably 8 to 120 hours, particularly 12 to 80 hours, more preferably 24 to 60 hours.
 (1.d)第一加熱工程(ステップS104)
 第一加熱工程は、テトラアルキルオルソシリケートの加水分解および縮合重合をゆっくりと進行させるための熟成工程である。加熱時の温度は、前述の加水分解および縮合重合を徐々に進行させる温度を選択するのが好ましい。例えば、テトラアルキルオルソシリケートとしてテトラメトキシシラン(別名: テトラメチルオルソシリケート)を用いる場合には、加熱温度としては、20~55℃、さらには、35~45℃が好ましい。また、加熱時間は、40℃の場合、30時間以上、さらには36時間以上とするのが好ましい。
(1.d) First heating step (step S104)
The first heating step is an aging step for allowing the hydrolysis and condensation polymerization of the tetraalkyl orthosilicate to proceed slowly. The temperature at the time of heating is preferably selected so as to gradually advance the hydrolysis and condensation polymerization described above. For example, when tetramethoxysilane (also known as tetramethylorthosilicate) is used as the tetraalkyl orthosilicate, the heating temperature is preferably 20 to 55 ° C., more preferably 35 to 45 ° C. In addition, the heating time is preferably 30 hours or more, and more preferably 36 hours or more in the case of 40 ° C.
 上記のステップS101~S104を経て、第一溶液が出来上がる。なお、ステップS101,S102およびステップS103の内のいずれか1つあるいは2つを行わなくても良い。 The first solution is completed through the above steps S101 to S104. Note that one or two of steps S101, S102 and S103 need not be performed.
(2)第二溶液作製工程(ステップS200)
 (2.a)第四混合工程(ステップS201)
 第一溶液と混合するアルキルアルコキシシランは、一般式が(RSi(OR4ーXで表わされるシラン化合物である(式中のRは、アルキル基であり、ORは、アルコキシ基である。Xは、1、2または3である)。アルキル基およびアルコキシ基は、直鎖、分岐及び環状のいずれの官能基であっても良く、炭素数は、1~20、好ましくは1~10、さらに好ましくは1~4である。アルキルアルコキシシランとしては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等のジアルコキシシラン類;トリメチルモノメトキシシラン、トリエチルモノメトキシシラン、トリメチルモノエトキシシラン、トリエチルモノエトキシシラン等のモノアルコキシシラン類を挙げることができ、その中でも、メチルトリメトキシシランを好適に使用できる。また、これらのアルキルアルコキシシランの内の1種のみ、あるいは2種以上を組み合わせて用いても良い。
(2) Second solution preparation step (step S200)
(2.a) Fourth mixing step (step S201)
The alkylalkoxysilane mixed with the first solution is a silane compound represented by the general formula (R 1 ) x Si (OR 2 ) 4-X (wherein R 1 is an alkyl group, and OR 2 is An alkoxy group, and X is 1, 2 or 3. The alkyl group and alkoxy group may be any of linear, branched and cyclic functional groups, and the carbon number is 1 to 20, preferably 1 to 10, and more preferably 1 to 4. Examples of the alkylalkoxysilane include trialkoxysilanes such as methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane; dimethyldimethoxysilane and dimethyldimethoxysilane. Dialkoxysilanes such as ethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane; monoalkoxysilanes such as trimethylmonomethoxysilane, triethylmonomethoxysilane, trimethylmonoethoxysilane, triethylmonoethoxysilane, etc. Of these, methyltrimethoxysilane can be preferably used. Moreover, you may use only 1 type in these alkyl alkoxysilanes, or combining 2 or more types.
 上記アルキルアルコキシシランの量は、テトラアルキルオルソシリケート1モルに対して0.1~0.5の範囲が好ましく、0.4がより好ましい。 The amount of the alkylalkoxysilane is preferably in the range of 0.1 to 0.5, more preferably 0.4, per 1 mol of tetraalkylorthosilicate.
 第一溶液とアルキルアルコキシシランとの混合方法は、第一混合工程と同様、如何なる混合方法でも良い。混合時の温度は、5~60℃の範囲、特にその範囲内でも40℃以下が好ましい。また、混合する時間は、15~180分、特に30~90分、さらには45~75分が好ましい。 The mixing method of the first solution and the alkylalkoxysilane may be any mixing method as in the first mixing step. The temperature at the time of mixing is preferably in the range of 5 to 60 ° C., and particularly preferably within 40 ° C. or less. The mixing time is preferably 15 to 180 minutes, particularly 30 to 90 minutes, and more preferably 45 to 75 minutes.
 (2.b)第二加熱工程(ステップS202)
 第二加熱工程は、テトラアルキルオルソシリケートとアルキルアルコキシシランとの反応を進行させるための工程である。加熱時の温度は、当該反応を進行させる温度を選択するのが好ましい。例えば、テトラアルキルオルソシリケートとしてテトラメトキシシラン(別名: テトラメチルオルソシリケート)を、アルキルアルコキシシランをそれぞれ用いる場合には、加熱温度としては、20~55℃、さらには、35~45℃が好ましい。また、加熱時間は、40℃の場合、6~120時間の範囲とするのが好ましい。
(2.b) Second heating step (step S202)
The second heating step is a step for causing the reaction between the tetraalkylorthosilicate and the alkylalkoxysilane to proceed. The temperature at the time of heating is preferably selected at a temperature at which the reaction proceeds. For example, when tetramethoxysilane (also known as tetramethylorthosilicate) and alkylalkoxysilane are used as the tetraalkylorthosilicate, the heating temperature is preferably 20 to 55 ° C, and more preferably 35 to 45 ° C. The heating time is preferably in the range of 6 to 120 hours at 40 ° C.
 上記のステップS201、S202を経て、コーティング用溶液である第二溶液が出来上がる。 Through the above steps S201 and S202, a second solution which is a coating solution is completed.
(3)膜形成工程(ステップS300)
 成膜用の基板としては、特にその材質を問わず、ガラス基板、単結晶若しくは多結晶シリコンに代表される金属基板、アクリル樹脂、ポリエチレンテレフタレート樹脂等に代表される樹脂基板を使用できる。膜形成工程では、後述するように、100℃以下の温度で膜を形成できるため、耐熱性の低い樹脂等にも容易に成膜できる。膜形成工程は、シリカ溶液を基板上に塗布する工程であり、公知のいずれの方法をも採用できる。例えば、スピンコート法、ブレードコート法、ロールコート法、ディッピング法、スプレー法などの塗工法の他、転写法、スクリーン印刷法、インクジェット印刷法などの各種印刷法も採用可能である。この実施の形態では、簡便かつ均一な膜厚の膜を形成できるスピンコート法を好適に使用することができる。
(3) Film formation process (step S300)
As a substrate for film formation, a glass substrate, a metal substrate typified by single crystal or polycrystalline silicon, a resin substrate typified by acrylic resin, polyethylene terephthalate resin, or the like can be used regardless of the material. In the film forming step, as described later, since the film can be formed at a temperature of 100 ° C. or lower, it can be easily formed even on a resin having low heat resistance. The film forming step is a step of applying a silica solution on the substrate, and any known method can be adopted. For example, various printing methods such as a transfer method, a screen printing method, and an ink jet printing method can be employed in addition to a coating method such as a spin coating method, a blade coating method, a roll coating method, a dipping method, and a spray method. In this embodiment, a spin coat method capable of forming a film having a simple and uniform film thickness can be suitably used.
 膜形成工程にてスピンコート法を使用する場合、基板の回転数および回転時間を、所望の膜厚に応じてそれぞれ決定するのが好ましい。例えば、膜厚60~150nmの膜を形成するためには、60秒回転させる場合には、基板を1000~5000rpmで回転するのが好ましい。また、膜厚は、シリカ溶液中の有機溶媒の種類や液温および溶液の粘度により変化しやすい。例えば、基板を60秒回転させて膜厚60~150nmの膜を形成するためには、有機溶媒にメタノール、エタノール、1-プロパノール、2-プロパノールまたはアセトンを用いた場合には、1000~3000rpmで基板を回転するのが好ましい。その際の溶液の温度は10~30℃が好ましく、その際の溶液の粘度は2.0~5.0mPa・sであることが好ましい。 When the spin coating method is used in the film forming step, it is preferable to determine the rotation speed and rotation time of the substrate according to the desired film thickness. For example, in order to form a film having a thickness of 60 to 150 nm, it is preferable to rotate the substrate at 1000 to 5000 rpm when rotating for 60 seconds. The film thickness is likely to change depending on the type of organic solvent in the silica solution, the liquid temperature, and the viscosity of the solution. For example, in order to form a film having a film thickness of 60 to 150 nm by rotating the substrate for 60 seconds, when methanol, ethanol, 1-propanol, 2-propanol or acetone is used as the organic solvent, it is 1000 to 3000 rpm. It is preferable to rotate the substrate. The temperature of the solution at that time is preferably 10 to 30 ° C., and the viscosity of the solution at that time is preferably 2.0 to 5.0 mPa · s.
(4)第一乾燥工程(ステップS400)
 第一乾燥工程は、膜中の有機溶媒および水を低減する工程、さらに形成された膜の定着工程であり、例えばスピンコートにより得られた膜の状態に応じて、乾燥温度および乾燥時間を決定するのが好ましい。なるべく、低温で長時間乾燥する方が好ましい傾向がある。標準的な乾燥温度と乾燥時間を例示すれば、15~35℃、好ましくは20~28℃にて、12~48時間、好ましくは18~36時間、乾燥する。なお、この工程は除外することもできる。
(4) First drying step (step S400)
The first drying step is a step of reducing the organic solvent and water in the film and fixing the formed film. For example, the drying temperature and drying time are determined according to the state of the film obtained by spin coating. It is preferable to do this. If possible, it tends to be preferable to dry at a low temperature for a long time. For example, the drying temperature is 15 to 35 ° C., preferably 20 to 28 ° C., for 12 to 48 hours, preferably 18 to 36 hours. In addition, this process can also be excluded.
(5)後加水分解工程(ステップS500)
 後加水分解工程は、基板に形成された膜を水に浸けて(基板ごと浸漬させるか、膜のみを水に接触させるかを問わない)、膜のさらなる加水分解を行わせる工程である。水温は、0℃以上であれば良いが、40~95℃、特に70~90℃、さらには75~85℃の範囲が好ましい。加水分解の効果を高め、かつ膜の剥離若しくは破壊を有効に防ぐことができるからである。後加水分解の処理は、ディッピング、シャワー、流水式等のいかなる方法も採用できる。この実施の形態では、簡便かつ加水分解効果の高いディッピングを採用するのが好ましい。後加水分解の処理時間としては、30~240分、特に60~180分、さらには90~150分が好ましい。
(5) Post-hydrolysis step (step S500)
The post-hydrolysis step is a step in which the film formed on the substrate is immersed in water (whether the entire substrate is immersed or only the film is brought into contact with water) to cause further hydrolysis of the film. The water temperature may be 0 ° C. or higher, but is preferably in the range of 40 to 95 ° C., particularly 70 to 90 ° C., more preferably 75 to 85 ° C. It is because the effect of hydrolysis can be enhanced and peeling or destruction of the membrane can be effectively prevented. For the post-hydrolysis treatment, any method such as dipping, showering or flowing water can be employed. In this embodiment, it is preferable to employ dipping that is simple and has a high hydrolysis effect. The post-hydrolysis treatment time is preferably 30 to 240 minutes, particularly 60 to 180 minutes, and more preferably 90 to 150 minutes.
(6)第二乾燥工程(ステップS600)
 第二乾燥工程は、基板に形成された膜の内部に含まれる水等を除去する工程および膜の硬度を向上させる工程である。乾燥する温度に応じて、乾燥機、電熱炉等を適宜選択できる。温度は、基板の耐熱性を考慮して選択可能であるが、400℃以下であることが好ましい。特に、熱可塑性の基板を用いる場合は、5~100℃の範囲、10~40℃の範囲、さらには15~30℃の範囲を適正な範囲とするが、可能な限り低温の方が好ましい。乾燥時間は、吸着水および残存する有機物をできるだけ除去するのに十分な時間であれば特に限定されるものではないが、例示するならば、15~240分、特に30~180分、さらには60~150分が好ましい。
(6) Second drying step (step S600)
The second drying step is a step of removing water and the like contained in the film formed on the substrate and a step of improving the hardness of the film. A dryer, an electric furnace, or the like can be appropriately selected depending on the drying temperature. The temperature can be selected in consideration of the heat resistance of the substrate, but is preferably 400 ° C. or lower. In particular, when a thermoplastic substrate is used, the range of 5 to 100 ° C., the range of 10 to 40 ° C., and further the range of 15 to 30 ° C. is set as an appropriate range. The drying time is not particularly limited as long as it is a time sufficient to remove adsorbed water and remaining organic matter as much as possible, but, for example, 15 to 240 minutes, particularly 30 to 180 minutes, and even 60 ~ 150 minutes is preferred.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
「実験例1」
1.コーティング用溶液の作製
 ビーカー(ビーカーAとする)に、東京化成工業株式会社製のテトラメトキシシラン(Tetramethoxysilane: TMOS)1.903gと、和光純薬工業株式会社製のエタノール(EtOH)7.89gとを入れて、25℃で約1時間攪拌した。攪拌は、攪拌子を投入し、KOMET社製の攪拌機(型式:VARIOMAG POLY15)を用いて行った。攪拌速度は、550rpmとした。一方、別のビーカー(ビーカーBとする)に、東京化成工業株式会社製のヒドロキシアセトン(Hydroxy Acetone: HA)0.926gと、水1.125gと、和光純薬工業株式会社製のエタノール(EtOH)7.89gとを入れて、ビーカーAと同一条件で攪拌した。
"Experiment 1"
1. Preparation of coating solution In a beaker (beaker A), 1.903 g of tetramethoxysilane (TMOS) manufactured by Tokyo Chemical Industry Co., Ltd. and 7.89 g of ethanol (EtOH) manufactured by Wako Pure Chemical Industries, Ltd. And stirred at 25 ° C. for about 1 hour. Stirring was performed using a stirrer (model: VARIOMAG POLY15) manufactured by KOMET Co., Ltd. The stirring speed was 550 rpm. Meanwhile, in another beaker (beaker B), 0.926 g of Hydroxy Acetone (HA) manufactured by Tokyo Chemical Industry Co., Ltd., 1.125 g of water, and ethanol (EtOH) manufactured by Wako Pure Chemical Industries, Ltd. ) 7.89 g was added and stirred under the same conditions as beaker A.
 次に、別のビーカー(ビーカーCとする)を用意し、各ビーカーA,Bの攪拌後の内容物を投入し、25℃で約48時間攪拌した。攪拌には、前述と同タイプの攪拌機を用い、攪拌時の温度および攪拌速度を、それぞれ、25℃および550rpmとした。その後、ビーカーCの内容物の攪拌を停止し、40℃にて約48時間、ビーカーCを加熱した。この一連の処理を経て、第一溶液(ここでは、「溶液A」と称する)の作製を完了した。 Next, another beaker (beaker C) was prepared, and the contents after stirring of each of the beakers A and B were added and stirred at 25 ° C. for about 48 hours. For the stirring, the same type of stirrer as described above was used, and the temperature and stirring speed during stirring were 25 ° C. and 550 rpm, respectively. Thereafter, stirring of the contents of the beaker C was stopped, and the beaker C was heated at 40 ° C. for about 48 hours. Through this series of treatments, the production of the first solution (herein referred to as “solution A”) was completed.
 次に、ビーカーC内の溶液Aに、東京化成工業株式会社製のメチルトリメトキシシラン(Methyltrimethoxysilane: MTMS)を0~1.7gの範囲内の所定量を加え、25℃で約1時間攪拌し、40℃にて約24時間加熱した。攪拌条件は、ビーカーAと同様である。この処理を経て、表1に示すようなTMOS:MTMS=1:0~1の合計8種類の第二溶液(ここでは、「溶液B」と称する)を作製し、各種溶液Bをコーティング用溶液として用いた。 Next, a predetermined amount of methyltrimethoxysilane (MTMS) manufactured by Tokyo Chemical Industry Co., Ltd. in the range of 0 to 1.7 g is added to the solution A in the beaker C, and the mixture is stirred at 25 ° C. for about 1 hour. And heated at 40 ° C. for about 24 hours. The stirring conditions are the same as for beaker A. Through this process, a total of eight types of second solutions (herein referred to as “solution B”) of TMOS: MTMS = 1: 0 to 1 as shown in Table 1 are prepared, and the various solutions B are used as coating solutions. Used as.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.薄膜の作製
 次に、シリコン基板(SUMCO社製、25mm×25mm×1mm)、ガラス基板(コーニング社製、50mm×25mm×1mm、50mm×50mm×1mmの2種類)およびアクリル樹脂基板(日東樹脂工業株式会社製、品番:S0、50mm×25mm×1mm)を用意し、スピンコータ(MIKASA社製、型式:SPINCOATER 1H-D7)の回転板に上記各種基板を固定した。次に、各種基板の回転数を2000rpmになるようにスピンコータの回転数をセットして回転板の回転を始動し、回転している基板上に、先に作製した溶液Bを、60秒間供給して基板の表面に膜を形成し、その後、回転板の回転を停止させた。次に、膜を形成した基板を、25℃で、約24時間、乾燥させた。次に、約20℃のイオン交換水を入れたビーカー(ビーカーDとする)に、乾燥後の基板を浸漬させて、ビーカーDをウォーターバス内に設置し、80℃に加熱し、2時間静置した。次に、ビーカーDから基板を取り出し、25℃にて24時間減圧乾燥し、各種評価用の試験片とした。
2. Next, a silicon substrate (SUMCO CO., 25 mm × 25 mm × 1 mm), a glass substrate (Corning Corp., 50 mm × 25 mm × 1 mm, 50 mm × 50 mm × 1 mm) and an acrylic resin substrate (Nitto Resin Industry) Manufactured by Co., Ltd., product number: S0, 50 mm × 25 mm × 1 mm) was prepared, and the above-mentioned various substrates were fixed to a rotating plate of a spin coater (manufactured by MIKASA, model: SPINCATOR 1H-D7). Next, the rotation speed of the spin coater is set so that the rotation speed of each substrate becomes 2000 rpm, and the rotation of the rotating plate is started, and the previously prepared solution B is supplied onto the rotating substrate for 60 seconds. Then, a film was formed on the surface of the substrate, and then the rotation of the rotating plate was stopped. Next, the substrate on which the film was formed was dried at 25 ° C. for about 24 hours. Next, the dried substrate is immersed in a beaker (beaker D) containing about 20 ° C. ion-exchanged water, the beaker D is placed in a water bath, heated to 80 ° C., and allowed to stand for 2 hours. I put it. Next, the substrate was taken out from the beaker D and dried under reduced pressure at 25 ° C. for 24 hours to obtain test pieces for various evaluations.
3.評価
(1)接触角測定
 測定用のサンプルには、50mm×25mm×1mmのガラス基板に各種シリカ膜を付けたものを用いた。接触角の測定装置には、協和界面科学株式会社製の接触角計(型番: MCA-J)を用いた。室温25℃、湿度60%R.H.において、70pLの水滴を滴下して0.005秒間隔にて接触角を測定した。着滴半径が安定した時点の接触角10点を平均して、各サンプルの接触角とした。
(2)防曇性評価
 測定用のサンプルには、50mm×50mm×1mmのガラス基板に各種シリカ膜を付けたものを用いた。防曇性の評価には、協和界面科学株式会社製の防曇評価装置(型番: AFA-1)を用いた。室温および測定室温度ともに20℃、加湿槽温度40℃、加湿槽湿度80%R.H.において、1秒間隔で測定面に3回水蒸気を噴霧した後、10秒間、1秒おきに光透過性(各チャンネルCHの受光量)を測定し、安定した数値が得られた5秒後の受光量分布の線形近似曲線から得られるX軸切片の値を防曇評価指数とした(3点平均)。防曇評価指数は、その値が小さいほど、高い防曇性能であることを示す。
(3)透過率測定
 測定用のサンプルには、50mm×25mm×1mmのガラス基板およびアクリル樹脂基板に各種シリカ膜を付けたものを用いた。透過率の測定には、株式会社日立製作所製の紫外可視分光光度計(型番:U-4100)を用いた。
(4)表面粗さ測定
 測定用のサンプルには、シリコン基板に各種シリカ膜を付けたものを用いた。表面粗さの測定には、セイコーインスツル株式会社製の走査型プローブ顕微鏡(型番: SPA400)を用いた。測定には、背面Alコートカンチレバー(SI-DF20)を使用し、タッピングモード(DFM)にて観察した。表面粗さの評価は、2乗平均平方根(RMS)表面粗さにて行った。
(5)鉛筆硬度測定
 測定用のサンプルには、シリコン基板に各種シリカ膜を付けたものを用いた。硬度は、鉛筆硬度測定法(JIS K5600-5-4)に基づき、株式会社安田精機製作所製の鉛筆硬度測定計(型番: No.553-S)を用いて測定した。
(6)赤外吸収スペクトル測定
 赤外吸収スペクトルの測定サンプルは、溶液Bを減圧乾燥して80℃にて2時間加水分解後に乾燥して得られたシリカ粉末とした。測定には、株式会社島津製作所製のFT-IR(型番: IR-Prestige21)を用いた。評価は、ATR法にて行った。
(7)比表面積測定
 測定サンプルは、上記赤外吸収スペクトル測定用のサンプルを前処理として200℃にて加熱したシリカ粉末を測定した。測定には、マイクロメリティクス・インスツルメント・コーポレーション製の窒素吸脱着測定装置(型番: ASAP2010)を用いた。平均細孔径の算出にはBET法を用いた。ここで、BET法について簡単に説明する。BET法は、窒素分子が多層吸着して細孔を満たしていると仮定して細孔径を算出する方法であり、シリカ中の細孔径を求めるのに有効である。BET法によって相対圧(P/P)をx座標とし、(P/P)/V(1-(P/P))をy座標とする点をx-y平面上にプロットし、各プロットした点を通る最近接線(直線)の切片と傾きを求め、当該切片と当該傾きから細孔の容積および面積を求める方法である。
(8)水吸着量評価
 測定サンプルは、溶液Bを減圧乾燥して80℃にて2時間加水分解後に乾燥し、25℃飽和水蒸気下で1日曝した粉末10mgとした。測定には、株式会社リガク製の走査型熱重量分析装置(型番: Thermoplus TG8120)を用いた。測定に際し、昇温速度は5℃/minとした。
(9)表面親疎水分布評価
 測定用のサンプルには、シリコン基板に各種シリカ膜を付けたものを用いた。測定には、セイコーインスツル株式会社製の走査型プローブ顕微鏡(型番: SPA400)を用いた。測定は、Auコートカンチレバー(SI-AF01A)をmercaptohexadecanolで単分子表面処理(SAMs)したものを使用して、行った。観察は、横振動摩擦力顕微鏡モード(LM-FFM)にて行った。その他の評価条件は、走査周波数;5kHz、振幅;5nm、たわみ量;0nmとした。
3. Evaluation (1) Contact angle measurement As a measurement sample, a glass substrate of 50 mm x 25 mm x 1 mm with various silica films attached thereto was used. A contact angle meter (model number: MCA-J) manufactured by Kyowa Interface Science Co., Ltd. was used as the contact angle measuring device. Room temperature 25 ° C., humidity 60% H. , A 70 pL water droplet was dropped and the contact angle was measured at intervals of 0.005 seconds. The contact angle of 10 points when the landing radius was stabilized was averaged to obtain the contact angle of each sample.
(2) Evaluation of anti-fogging property As a measurement sample, a glass substrate of 50 mm × 50 mm × 1 mm with various silica films attached thereto was used. For the evaluation of antifogging property, an antifogging evaluation device (model number: AFA-1) manufactured by Kyowa Interface Science Co., Ltd. was used. Both room temperature and measurement room temperature are 20 ° C., humidification bath temperature is 40 ° C., and humidification bath humidity is 80%. H. After spraying water vapor three times on the measurement surface at intervals of 1 second, light transmittance (the amount of light received by each channel CH) was measured every other second for 10 seconds, and a stable value was obtained 5 seconds later. The value of the X-axis intercept obtained from the linear approximation curve of the received light amount distribution was taken as the antifogging evaluation index (three-point average). The antifogging evaluation index indicates that the smaller the value, the higher the antifogging performance.
(3) Transmittance measurement As a measurement sample, a glass substrate of 50 mm × 25 mm × 1 mm and an acrylic resin substrate with various silica films attached thereto were used. For the measurement of the transmittance, an ultraviolet-visible spectrophotometer (model number: U-4100) manufactured by Hitachi, Ltd. was used.
(4) Surface roughness measurement As a measurement sample, a silicon substrate with various silica films attached thereto was used. For the measurement of the surface roughness, a scanning probe microscope (model number: SPA400) manufactured by Seiko Instruments Inc. was used. For the measurement, a back Al-coated cantilever (SI-DF20) was used and observed in a tapping mode (DFM). The surface roughness was evaluated by root mean square (RMS) surface roughness.
(5) Pencil hardness measurement As a measurement sample, a silicon substrate with various silica films attached thereto was used. The hardness was measured using a pencil hardness meter (model number: No. 553-S) manufactured by Yasuda Seiki Co., Ltd. based on the pencil hardness measurement method (JIS K5600-5-4).
(6) Infrared absorption spectrum measurement The measurement sample of the infrared absorption spectrum was a silica powder obtained by drying Solution B under reduced pressure, hydrolyzing at 80 ° C. for 2 hours, and drying. For the measurement, FT-IR (model number: IR-Prestige 21) manufactured by Shimadzu Corporation was used. Evaluation was performed by the ATR method.
(7) Specific surface area measurement The measurement sample measured the silica powder heated at 200 degreeC by using the said sample for infrared absorption spectrum measurement as pre-processing. For the measurement, a nitrogen adsorption / desorption measuring device (model number: ASAP2010) manufactured by Micromeritics Instruments Corporation was used. The BET method was used for calculating the average pore diameter. Here, the BET method will be briefly described. The BET method is a method of calculating the pore diameter on the assumption that nitrogen molecules are multilayer adsorbed to fill the pores, and is effective in obtaining the pore diameter in silica. Plot points on the xy plane where the relative pressure (P / P 0 ) is x-coordinate and (P / P 0 ) / V (1- (P / P 0 )) is y-coordinate by the BET method, In this method, the intercept and slope of the closest tangent line (straight line) passing through each plotted point are obtained, and the volume and area of the pores are obtained from the intercept and the slope.
(8) Water adsorption amount evaluation The measurement sample was 10 mg of powder which was dried after drying the solution B under reduced pressure at 80 ° C. for 2 hours and exposed to saturated water vapor at 25 ° C. for 1 day. For the measurement, a scanning thermogravimetric analyzer (model number: Thermoplus TG8120) manufactured by Rigaku Corporation was used. In the measurement, the temperature rising rate was 5 ° C./min.
(9) Evaluation of surface hydrophilicity / hydrophobicity distribution As a measurement sample, a silicon substrate with various silica films attached thereto was used. For the measurement, a scanning probe microscope (model number: SPA400) manufactured by Seiko Instruments Inc. was used. The measurement was performed using Au-coated cantilevers (SI-AF01A) subjected to single-molecule surface treatment (SAMs) with mercaptohexadecanol. The observation was performed in the transverse vibration friction force microscope mode (LM-FFM). Other evaluation conditions were: scanning frequency: 5 kHz, amplitude: 5 nm, deflection amount: 0 nm.
4.実験結果
<接触角および防曇性能>
 表2および図3は、ガラス基板上に作製したシリカ膜の接触角(C.A.)を示す。表3および図4は、同シリカ膜の防曇評価指数を示す。
4). Experimental results <Contact angle and anti-fogging performance>
Table 2 and FIG. 3 show the contact angle (CA) of the silica film produced on the glass substrate. Table 3 and FIG. 4 show the antifogging evaluation index of the silica film.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2および図3に示すように、MTMS/TMOS=0.25~0.6の範囲において、MTMSを含まない溶液Bから作製したシリカ膜(比較サンプル: aT1)よりも接触角が低い結果が得られた。また、表3および図4に示すように、MTMS/TMOS=0.125~0.5の範囲において、比較サンプルaT1よりも高い防曇性能が認められた。防曇評価指数による評価と接触角による評価とは、必ずしも一致していないが、MTMSを含む溶液Bにてシリカ膜を作製すると防曇性能が向上し、MTMSの割合が多くなりすぎると、防曇性能がむしろ低下するという共通の現象が認められた。現実に透明の基板が曇る現象は、均一な液滴によるものとは限らないことを考慮すると、防曇評価指数による評価を「主」とし、接触角による評価を「従」とするのが妥当であると考えられる。この観点から、MTMS/TMOS=0.125~0.5の範囲の溶液Bを用いて作製したシリカ膜は、比較サンプルaT1よりも高い防曇性能を有することがわかった。 As shown in Table 2 and FIG. 3, in the range of MTMS / TMOS = 0.25 to 0.6, the contact angle is lower than that of the silica film (comparative sample: aT1) prepared from the solution B not containing MTMS. Obtained. Further, as shown in Table 3 and FIG. 4, in the range of MTMS / TMOS = 0.125 to 0.5, higher antifogging performance than that of the comparative sample aT1 was recognized. The evaluation based on the antifogging evaluation index and the evaluation based on the contact angle do not necessarily coincide with each other. However, when a silica film is produced with the solution B containing MTMS, the antifogging performance is improved. A common phenomenon was observed in which the fogging performance rather decreased. Considering that the phenomenon that the transparent substrate actually fogs is not always due to uniform droplets, it is appropriate to set the evaluation based on the anti-fogging evaluation index as “main” and the evaluation based on the contact angle as “subordinate”. It is thought that. From this viewpoint, it was found that the silica film produced using the solution B in the range of MTMS / TMOS = 0.125 to 0.5 has higher antifogging performance than the comparative sample aT1.
<表面粗さ>
 表4は、シリコン基板上に作製したシリカ膜の表面粗さを示す。
<Surface roughness>
Table 4 shows the surface roughness of the silica film produced on the silicon substrate.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、溶液BにMTMSを含有するか否かを問わず、得られたシリカ膜の表面は、RMS表面粗さ2.0nm以下の極めて平滑な面であった。 As shown in Table 4, regardless of whether or not MTMS was contained in the solution B, the surface of the obtained silica film was an extremely smooth surface having an RMS surface roughness of 2.0 nm or less.
<親水領域および疎水領域の分布>
 図5は、シリコン基板上に作製したシリカ膜表面の走査型プローブ顕微鏡写真である。図6は、各種シリカ粉末の赤外吸収スペクトルである。
<Distribution of hydrophilic and hydrophobic regions>
FIG. 5 is a scanning probe photomicrograph of the surface of a silica film produced on a silicon substrate. FIG. 6 shows infrared absorption spectra of various silica powders.
 図5に示すように、MTMSを含まない溶液Bから作製したシリカ膜(比較サンプル: aT1)は、輝度の高い部分のみから成る表面を有していた。一方、MTMSの含有量が増すにつれて、シリカ膜表面に、輝度の低い領域が混在していた。親水性領域では、摩擦力が大きくなるため高輝度に描画されることを考慮すると、MTMSの含有量が増すと、親水性領域に、疎水性領域(輝度が低い領域)がより多く混在する形態に変化するものと考えられる。また、図6に示すように、MTMSの含有量が増すにつれ、1278cm-1のピークと、2975cm-1のピークが大きくなることがわかった。前者は、Si-CHの対称変角振動のピークであり、後者は、CHの逆対称伸縮振動のピークである。このことと図5に示す結果から、MTMSの含有率を増すにつれ、シリカ膜表面のメチル基と結合する疎水性領域が増加するものと考えられる。 As shown in FIG. 5, the silica film (comparative sample: aT1) produced from the solution B not containing MTMS had a surface composed only of a portion with high luminance. On the other hand, as the content of MTMS increases, a low luminance region is mixed on the silica film surface. In consideration of the fact that the hydrophilic region is drawn with high luminance because the frictional force is increased, when the content of MTMS is increased, more hydrophilic regions (regions with low luminance) are mixed in the hydrophilic region. It is thought that it will change. Further, as shown in FIG. 6, it was found that the peak at 1278 cm −1 and the peak at 2975 cm −1 increase as the MTMS content increases. The former is a peak of symmetric deformation vibration of Si—CH 3 , and the latter is a peak of reverse symmetric stretching vibration of CH 3 . From this and the result shown in FIG. 5, it is considered that the hydrophobic region bonded to the methyl group on the surface of the silica film increases as the MTMS content increases.
<親水性領域および細孔>
 図7は、各種シリカ粉末の熱重量変化を示すグラフである。図8は、各種シリカ粉末の窒素吸脱着等温線を示すグラフである。表5は、図7および図8の結果に基づきまとめた表である。表中、重量減少率は、100℃における元の重量に対する重量減少率である。
<Hydrophilic region and pore>
FIG. 7 is a graph showing thermogravimetric changes of various silica powders. FIG. 8 is a graph showing nitrogen adsorption / desorption isotherms of various silica powders. Table 5 is a table summarized based on the results of FIGS. 7 and 8. In the table, the weight reduction rate is the weight reduction rate relative to the original weight at 100 ° C.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図7に示すように、各種サンプルの含水量(吸水量)は、MTMSの含有量が増すにつれて低下した。このことからも、溶液B中のMTMSを増加すると、含水率が低下し、疎水領域が増すものと考えられる。また、図8に示すように、評価した全てのサンプルは、I型の吸脱着等温線を示すことから、ミクロ孔(直径<2nm)のみを有していると考えられる。さらに、表5に示すように、細孔容積は、MTMSの含有量が増すにつれ小さくなる結果が得られた。このことから、疎水性領域の増加は、細孔容積の縮小化につながるものと考えられる。 As shown in FIG. 7, the water content (water absorption) of various samples decreased as the MTMS content increased. From this, it is considered that when the MTMS in the solution B is increased, the water content is decreased and the hydrophobic region is increased. Further, as shown in FIG. 8, all the evaluated samples exhibit type I adsorption / desorption isotherms, and thus are considered to have only micropores (diameter <2 nm). Furthermore, as shown in Table 5, the result that the pore volume became smaller as the content of MTMS increased was obtained. From this, it is considered that an increase in the hydrophobic region leads to a reduction in pore volume.
<透過率>
 図9は、所定波長域におけるシリカ膜を付けたガラス基板の透過率を示す。図10は、所定波長域におけるシリカ膜を付けたアクリル樹脂基板の透過率を示す。表6は、図9および図10に示す結果に基づきまとめた可視光透過率を示す。
<Transmissivity>
FIG. 9 shows the transmittance of a glass substrate with a silica film in a predetermined wavelength region. FIG. 10 shows the transmittance of an acrylic resin substrate with a silica film in a predetermined wavelength region. Table 6 shows the visible light transmittance summarized based on the results shown in FIGS. 9 and 10.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図9、図10および表6に示すように、いずれのサンプルも、可視光透過率92%以上の光透過性の高い膜であった。 As shown in FIG. 9, FIG. 10 and Table 6, all the samples were highly light-transmitting films having a visible light transmittance of 92% or more.
<硬度>
 表7は、シリコン基板上に作製した各種シリカ膜の鉛筆硬度を示す。
<Hardness>
Table 7 shows the pencil hardness of various silica films produced on a silicon substrate.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、MTMS/TMOS=1を除き、溶液B中にMTMSを加えることにより、比較材aT1よりも高硬度のシリカ膜を得ることができた。特に、MTMS/TMOS=0.125~0.75の範囲で、3H以上という高硬度のシリカ膜が得られた。 As shown in Table 7, a silica film having a hardness higher than that of the comparative material aT1 could be obtained by adding MTMS to the solution B except for MTMS / TMOS = 1. In particular, a silica film having a high hardness of 3H or more was obtained in the range of MTMS / TMOS = 0.125 to 0.75.
 なお、実験例1にて作製したいずれのシリカ膜も、各種基板から剥がれる若しくは剥がれやすい状態ではなく、強固に各種基板に固着していた。 In addition, any silica film produced in Experimental Example 1 was firmly peeled off from various substrates and not firmly peeled off from various substrates.
「実験例2」
 実験例1における溶液A作製時において加熱時間を、表8に示すように、0~60時間(0~2.5日)の範囲で変化させ、その後、TMOS:MTMS=1:0.4のモル比になるようにMTMSを加えて(MTMS=0.68g)、溶液Bを作製した。上記以外の条件は、実験例1と同一とした。
"Experimental example 2"
As shown in Table 8, the heating time was changed in the range of 0 to 60 hours (0 to 2.5 days) when preparing the solution A in Experimental Example 1, and then TMOS: MTMS = 1: 0.4. MTMS was added so as to have a molar ratio (MTMS = 0.68 g) to prepare Solution B. Conditions other than the above were the same as in Experimental Example 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実験結果
<防曇性能>
 表9および図11は、ガラス基板上に作製したシリカ膜の防曇評価指数を示す。
Experimental results <Anti-fogging performance>
Table 9 and FIG. 11 show the antifogging evaluation index of the silica film produced on the glass substrate.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9および図11に示すように、加熱時間が36時間(1.5日)以上の条件で作製したシリカ膜(bTM4、bTM5およびbTM6)は、それよりも加熱時間の短い条件で作製したシリカ膜(bTM1、bTM2およびbTM3)に比べて、高い防曇性能を有していることがわかった。 As shown in Table 9 and FIG. 11, the silica films (bTM4, bTM5, and bTM6) produced under the conditions where the heating time was 36 hours (1.5 days) or longer were the silica films produced under conditions where the heating time was shorter than that. It was found that the film (bTM1, bTM2, and bTM3) has higher antifogging performance than the membranes (bTM1, bTM2, and bTM3).
<表面粗さ>
 表10は、シリコン基板上に作製したシリカ膜の表面粗さを示す。
<Surface roughness>
Table 10 shows the surface roughness of the silica film produced on the silicon substrate.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、溶液Aの加熱時間の多寡によってシリカ膜の表面粗さに差異はあるものの、シリカ膜の表面は、RMS表面粗さ4.0nm以下の平滑な面であった。 As shown in Table 10, although the surface roughness of the silica film was different depending on the heating time of the solution A, the surface of the silica film was a smooth surface having an RMS surface roughness of 4.0 nm or less.
<親水領域および疎水領域の分布>
 図12は、シリコン基板上に作製したシリカ膜表面の走査型プローブ顕微鏡写真である。
<Distribution of hydrophilic and hydrophobic regions>
FIG. 12 is a scanning probe photomicrograph of the surface of a silica film produced on a silicon substrate.
 図12に示すように、加熱時間が増すにつれて、輝度の高い領域が大きくなり、輝度の高い部分と輝度の低い部分との濃淡が明瞭になっていることがわかった。防曇性能の高いサンプルbTM4およびbTM5は、サンプルbTM3に比べて、親水性領域(高輝度の部分)と疎水性領域(低輝度の部分)とが明瞭であり、かかる形態が防曇性能の向上に寄与していると考えられる。 As shown in FIG. 12, it was found that as the heating time increased, the region with high luminance became larger and the shading between the high luminance portion and the low luminance portion became clear. Samples bTM4 and bTM5 with high antifogging performance have clearer hydrophilic regions (high luminance portions) and hydrophobic regions (low luminance portions) than sample bTM3, and this form improves antifogging performance. It is thought that it contributes to.
<親水性領域および細孔>
 図13は、各種シリカ粉末の熱重量変化を示すグラフである。図14は、各種シリカ粉末の窒素吸脱着等温線を示すグラフである。表11は、図13および図14の結果に基づきまとめた表である。表中、重量減少率は、100℃における元の重量に対する重量減少率である。
<Hydrophilic region and pore>
FIG. 13 is a graph showing thermogravimetric changes of various silica powders. FIG. 14 is a graph showing nitrogen adsorption / desorption isotherms of various silica powders. Table 11 is a table summarized based on the results of FIGS. 13 and 14. In the table, the weight reduction rate is the weight reduction rate relative to the original weight at 100 ° C.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 図13に示すように、各種サンプルの含水量(吸水量)は、加熱時間0~48時間(2日以内)までにおいて、加熱時間が増すにつれて向上した。このことから、溶液Aの40℃における加熱時間を長くすると、親水性領域が広くなっているものと考えられる。また、図14に示すように、評価した全てのサンプルは、I型の吸脱着等温線を示すことから、ミクロ孔(直径<2nm)のみを有していると考えられる。さらに、表11に示すように、細孔容積は、加熱時間が増すにつれて大きくなる結果が得られた。このことから、親水性領域の増加は、細孔容積の拡大化につながるものと考えられる。 As shown in FIG. 13, the water content (water absorption amount) of various samples improved as the heating time increased from 0 to 48 hours (within 2 days). From this, it is considered that when the heating time of the solution A at 40 ° C. is lengthened, the hydrophilic region is widened. Further, as shown in FIG. 14, all the evaluated samples exhibit type I adsorption / desorption isotherms, and thus are considered to have only micropores (diameter <2 nm). Further, as shown in Table 11, the pore volume was increased as the heating time was increased. From this, it is thought that the increase in the hydrophilic region leads to the enlargement of the pore volume.
<透過率>
 図15は、所定波長域におけるシリカ膜を付けたガラス基板の透過率を示す。図16は、所定波長域におけるシリカ膜を付けたアクリル樹脂基板の透過率を示す。表12は、図15および図16に示す結果に基づきまとめた可視光透過率を示す。
<Transmissivity>
FIG. 15 shows the transmittance of a glass substrate provided with a silica film in a predetermined wavelength region. FIG. 16 shows the transmittance of an acrylic resin substrate with a silica film in a predetermined wavelength region. Table 12 shows the visible light transmittance summarized based on the results shown in FIGS. 15 and 16.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図15、図16および表12に示すように、いずれのサンプルも、可視光透過率92%以上の光透過性の高い膜であった。 As shown in FIG. 15, FIG. 16 and Table 12, all the samples were films having a high light transmittance with a visible light transmittance of 92% or more.
<硬度>
 表13は、シリコン基板上に作製した各種シリカ膜の鉛筆硬度を示す。
<Hardness>
Table 13 shows the pencil hardness of various silica films produced on a silicon substrate.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13に示すように、評価した全てのシリカ膜は、H以上の高い硬度を有していることがわかった。特に、加熱時間が24時間以上のサンプルは、3Hという高い硬度を有していた。 As shown in Table 13, it was found that all of the evaluated silica films had a hardness of H or higher. In particular, the sample having a heating time of 24 hours or more had a high hardness of 3H.
 なお、実験例2にて作製したいずれのシリカ膜も、各種基板から剥がれる若しくは剥がれやすい状態ではなく、強固に各種基板に固着していた。 Note that any silica film produced in Experimental Example 2 was not peeled off from various substrates or was not easily peeled off, but was firmly fixed to the various substrates.
 本発明は、例えば、防曇性を必要とする基材への成膜に利用可能である。 The present invention can be used, for example, for film formation on a substrate that requires anti-fogging properties.

Claims (3)

  1.  JIS K5600-5-4に基づき測定される鉛筆硬度が3H以上の硬度を有し、
     IUPACの分類においてミクロ孔に分類される細孔であってBET測定値に基づく平均直径2nm以下の細孔で構成される多孔質膜表面の親水性領域中に、Si-CH結合を有する疎水性領域を分散して成ることを特徴とするシリカ膜。
    The pencil hardness measured according to JIS K5600-5-4 has a hardness of 3H or more,
    Hydrophobic having Si—CH 3 bonds in the hydrophilic region on the surface of the porous membrane composed of pores classified as micropores in the IUPAC classification and having an average diameter of 2 nm or less based on BET measurement values A silica film characterized by comprising a dispersed region.
  2.  JIS K5600-5-4に基づき測定される鉛筆硬度が3H以上の硬度を有し、IUPACの分類においてミクロ孔に分類される細孔であってBET測定値に基づく平均直径2nm以下の細孔で構成される多孔質膜表面の親水性領域中に、Si-CH結合を有する疎水性領域を分散して成るシリカ膜を製造する方法であって、
     少なくとも、テトラアルキルオルソシリケート、ヒドロキシケトン誘導体、有機溶媒および水を混和して反応させて第一溶液を作製する第一溶液作製工程と、
     上記第一溶液に、アルキルアルコキシシランを混合して、第二溶液を作製する第二溶液作製工程と、
     上記第二溶液を基板に供給して膜を形成する膜形成工程と、
     上記膜形成工程によって得られる膜を水に接触させて加水分解を行う後加水分解工程と、
    を含み、
     上記第一溶液作製工程において35~60℃の範囲にて30時間以上加熱する加熱工程を行って上記第一溶液を作製し、
     上記テトラアルキルオルソシリケートに対する上記アルキルアルコキシシランのモル比を0.1~0.5の範囲とすることを特徴とするシリカ膜の製造方法。
    A pore whose hardness measured based on JIS K5600-5-4 is 3H or more, and is classified as a micropore in the IUPAC classification and having an average diameter of 2 nm or less based on a BET measurement value. A method for producing a silica film in which a hydrophobic region having a Si—CH 3 bond is dispersed in a hydrophilic region on the surface of a porous film to be constructed,
    A first solution preparation step of preparing a first solution by mixing and reacting at least a tetraalkyl orthosilicate, a hydroxyketone derivative, an organic solvent and water;
    A second solution preparation step of mixing the alkylalkoxysilane with the first solution to prepare a second solution;
    A film forming step of forming the film by supplying the second solution to the substrate;
    A hydrolysis step in which the membrane obtained by the membrane formation step is brought into contact with water for hydrolysis, and
    Including
    In the first solution preparation step, the first solution is prepared by performing a heating step of heating at 35 to 60 ° C. for 30 hours or more,
    A method for producing a silica film, wherein the molar ratio of the alkylalkoxysilane to the tetraalkylorthosilicate is in the range of 0.1 to 0.5.
  3.  前記テトラアルキルオルソシリケートをテトラメチルオルソシリケートとし、
     前記ヒドロキシケトン誘導体をヒドロキシアセトンとし、
     前記有機溶媒をエタノールとし、
     前記アルキルアルコキシシランをメチルトリメトキシシランとすることを特徴とする請求項2に記載のシリカ膜の製造方法。
    The tetraalkyl orthosilicate is tetramethyl orthosilicate,
    The hydroxy ketone derivative is hydroxyacetone,
    The organic solvent is ethanol,
    3. The method for producing a silica film according to claim 2, wherein the alkylalkoxysilane is methyltrimethoxysilane.
PCT/JP2011/007112 2011-03-24 2011-12-20 Silica film and method for producing same WO2012127551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-065730 2011-03-24
JP2011065730A JP4958192B1 (en) 2011-03-24 2011-03-24 Silica membrane and method for producing the same

Publications (1)

Publication Number Publication Date
WO2012127551A1 true WO2012127551A1 (en) 2012-09-27

Family

ID=46506019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007112 WO2012127551A1 (en) 2011-03-24 2011-12-20 Silica film and method for producing same

Country Status (2)

Country Link
JP (1) JP4958192B1 (en)
WO (1) WO2012127551A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264620A (en) * 1999-03-16 2000-09-26 Matsushita Electric Works Ltd Production of hydrophobic aerogel
JP2003146643A (en) * 2001-11-09 2003-05-21 Oji Paper Co Ltd Silica fine particle aggregate dispersion and production method thereof
JP2003277041A (en) * 2002-03-19 2003-10-02 National Institute Of Advanced Industrial & Technology Method for producing silica thin film on substrate surface having arbitrary surface characteristics and surface shape, and composite structure
JP2006232592A (en) * 2005-02-23 2006-09-07 Oji Paper Co Ltd Method for producing silica fine particle dispersion
JP2006341023A (en) * 2005-06-10 2006-12-21 Daiman:Kk Game machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264620A (en) * 1999-03-16 2000-09-26 Matsushita Electric Works Ltd Production of hydrophobic aerogel
JP2003146643A (en) * 2001-11-09 2003-05-21 Oji Paper Co Ltd Silica fine particle aggregate dispersion and production method thereof
JP2003277041A (en) * 2002-03-19 2003-10-02 National Institute Of Advanced Industrial & Technology Method for producing silica thin film on substrate surface having arbitrary surface characteristics and surface shape, and composite structure
JP2006232592A (en) * 2005-02-23 2006-09-07 Oji Paper Co Ltd Method for producing silica fine particle dispersion
JP2006341023A (en) * 2005-06-10 2006-12-21 Daiman:Kk Game machine

Also Published As

Publication number Publication date
JP2012201529A (en) 2012-10-22
JP4958192B1 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5007416B2 (en) Method for producing porous silica membrane
JP5109108B2 (en) Method for producing silica airgel membrane
JP6612563B2 (en) Silicone porous body and method for producing the same
CN102849962B (en) Preparation method of SiO2 super-hydrophobic film and super-hydrophobic material
Liu et al. Preparation and vacuum membrane distillation performance of a silane coupling agent-modified polypropylene hollow fiber membrane
JP5880238B2 (en) LAMINATE MEMBER, MANUFACTURING METHOD THEREOF, AND LAMINATE
JP2005015310A (en) Porous silica film and laminated body having it
JP6599699B2 (en) Void structure film bonded through catalytic action and method for producing the same
JP6713319B2 (en) Substrate with water-repellent coating and method for producing the same
WO2016104762A1 (en) Porous silicone object and process for producing same
WO2012141150A1 (en) Functional article, article for transport equipment, article for construction, and composition for coating
WO2014159181A1 (en) Anti-reflection glass made from sol made by blending tri-alkoxysilane and tetra-alkoxysilane inclusive sols
JP4279063B2 (en) Porous silica film and laminate having the same
Jeevajothi et al. Non-fluorinated, room temperature curable hydrophobic coatings by sol–gel process
JP5241199B2 (en) Method for producing fibrous hollow silica fine particles and substrate with antireflection coating
Kim Preparation and barrier property of poly (vinyl alcohol)/SiO 2 hybrid coating films
Zhang et al. Preparation and characterization of polyvinyl butyral/silica hybrid antireflective coating: effect of PVB on moisture-resistance and hydrophobicity
KR101772549B1 (en) Insulation coating composition and manufacturing method thereof
JP4958192B1 (en) Silica membrane and method for producing the same
JP4942057B2 (en) Method for producing hydrophilic silica film and acrylic resin substrate with hydrophilic silica film
WO2016104765A1 (en) Coating material and method for manufacturing same
TWI291902B (en)
JP5700944B2 (en) Dispersion sol of confetti-like silica-based fine particles, coating composition containing the dispersion sol, and method for producing confetti-like silica-based fine particle dispersion sol.
Li et al. Facile fabrication and antifogging test of a calcination-free SiO2 superhydrophilic coating
JP2017100358A (en) Substrate with superhydrophilic coating film, and coating liquid and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861585

Country of ref document: EP

Kind code of ref document: A1