[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012124800A1 - Sensor for anticoagulant assay - Google Patents

Sensor for anticoagulant assay Download PDF

Info

Publication number
WO2012124800A1
WO2012124800A1 PCT/JP2012/056807 JP2012056807W WO2012124800A1 WO 2012124800 A1 WO2012124800 A1 WO 2012124800A1 JP 2012056807 W JP2012056807 W JP 2012056807W WO 2012124800 A1 WO2012124800 A1 WO 2012124800A1
Authority
WO
WIPO (PCT)
Prior art keywords
anticoagulant
heparin
sensor
measuring
blood
Prior art date
Application number
PCT/JP2012/056807
Other languages
French (fr)
Japanese (ja)
Inventor
靖男 吉見
Original Assignee
学校法人 芝浦工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 芝浦工業大学 filed Critical 学校法人 芝浦工業大学
Priority to JP2013504782A priority Critical patent/JP5946139B2/en
Publication of WO2012124800A1 publication Critical patent/WO2012124800A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/38Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence, e.g. gluco- or galactomannans, Konjac gum, Locust bean gum or Guar gum
    • G01N2400/40Glycosaminoglycans, i.e. GAG or mucopolysaccharides, e.g. chondroitin sulfate, dermatan sulfate, hyaluronic acid, heparin, heparan sulfate, and related sulfated polysaccharides

Definitions

  • the present invention relates to an anticoagulant measurement sensor using a molecularly imprinted polymer thin film electrode.
  • ACT Activated Clottig Time
  • Non-patent Document 1 a method of capturing membrane potential change due to heparin adsorption of a membrane impregnated with a cationic surfactant (Non-patent Document 1), or fixing protamine, which is a cationic protein, on a gold surface and binding with heparin to surface plasmon (Non-Patent Document 2) has been reported.
  • the above method uses a simple electrostatic interaction between a cationic surfactant or protamine and heparin, so the selectivity is low, and it is disturbed by anionic proteins that are abundant in blood. There is a problem that it is easy, and none of them has been put into practical use.
  • a highly selective heparin sensing method a method of detecting specific binding between an antibody to heparin and heparin can be considered, but since heparin is originally a substance with high biocompatibility, obtaining an antibody itself is difficult.
  • An object of the present invention is to provide a sensor that can selectively detect an anticoagulant such as heparin in blood.
  • gate effect a phenomenon in which the solute permeation rate in a molecularly imprinted polymer (MIP) thin film changes depending on the presence of a template (gate effect). It has been found that an anticoagulant such as heparin can be selectively detected by a sensor using the. The present invention has been completed based on such findings.
  • the aspect of the present invention relates to the following.
  • a sensor for measuring an anticoagulant comprising a substrate on which a molecularly imprinted polymer is immobilized.
  • the substrate on which the molecularly imprinted polymer is immobilized is a substrate obtained by bringing a functional monomer, a crosslinkable monomer, and an anticoagulant into contact with a substrate on which an initiator is immobilized, and polymerizing the substrate (1 )
  • the sensor for measuring an anticoagulant according to (2) is
  • An anticoagulant comprising contacting a sample containing an anticoagulant with the anticoagulant measuring sensor according to any one of (1) to (7) and detecting a change in signal. Measuring method.
  • the anticoagulant measuring sensor according to (2) wherein the anticoagulant measuring sample is brought into contact with a sample containing the anticoagulant in the presence of a redox marker, and a change in current is detected as a change in signal.
  • Drug measurement method (10) The method for measuring an anticoagulant according to (9), wherein a substance present in the body is used as a redox marker.
  • (11) The method for measuring an anticoagulant according to any one of (8) to (10), wherein the sample is whole blood or a blood component (for example, plasma or serum).
  • An anticoagulation comprising: contacting a perfusion blood containing an anticoagulant with the sensor for measuring an anticoagulant according to any one of (1) to (7), and detecting a change in the signal.
  • Drug measurement method (13) The method for measuring an anticoagulant according to any one of (8) to (12), wherein the anticoagulant is heparin.
  • the molecularly imprinted polymer (MIP) thin film used in the sensor of the present invention is excellent in stability, and the gate effect of the MIP fixed to the electrode can be easily detected by the Faraday current.
  • the sensor of the present invention can be easily and inexpensively manufactured, is easy to operate, and can be downsized.
  • the sensor of the present invention is also excellent in sensitivity and stability.
  • an anticoagulant such as heparin in blood can be selectively detected. For example, by monitoring the blood heparin concentration with the sensor of the present invention and accurately determining the optimal heparin dose, it can be expected that the therapeutic results will be dramatically improved.
  • the response time is as short as about 15 seconds, and the heparin concentration can be detected in real time.
  • FIG. 1 shows the principle of molecular imprinting.
  • FIG. 2 shows a schematic diagram of the gate effect.
  • FIG. 3 shows the structure of heparin.
  • FIG. 4 shows the fabrication of a molecularly imprinted polymer fixed electrode.
  • FIG. 5 shows a conceptual diagram of a heparin sensor that monitors extracorporeal circulating blood.
  • FIG. 6 shows a cyclic voltagram of ferrocyanide at a heparin imprinted ITO electrode.
  • Heparin concentration 0unit / mL (dotted line) ⁇ 22unit / mL (solid line) ⁇ 0unit / mL (dotted line) ⁇ 22unit / mL (dashed line)
  • FIG. 7 shows the relationship between the change in anode current in the heparin imprint electrode and the heparin concentration.
  • FIG. 8 shows a cyclic voltagram in the blood system of the grafted electrodes (MIP electrode (A) and NIP electrode (B)). Heparin concentration in test solution 0.00 unit / mL (dashed line), 0.04 unit / mL (solid line)
  • FIG. 9 shows the effect of heparin on the redox current of a molecularly imprinted polymer (MIP) electrode.
  • FIG. 10 shows the effect of heparin on the redox current of a non-imprinted polymer (NIP) electrode.
  • FIG. 11 shows an apparatus for evaluating heparin concentration.
  • FIG. 11 shows an apparatus for evaluating heparin concentration.
  • FIG. 12 shows the current response (potential 0.40 V) to a step change in heparin concentration (0.00 unit / mL ⁇ 0.04 / unit / mL).
  • FIG. 13 shows a cyclic voltammogram of heparin-containing bovine whole blood using a MIP fixed electrode for heparin as a working electrode. Heparin concentration: 0 unit / mL (dotted line) in physiological saline, 0 unit / mL (dashed line) in bovine whole blood, 1.13 ⁇ unit / mL (dotted line), 2.82 unit / mL (solid line), 11.3 unit / mL (two points) (Dashed line)
  • the anticoagulant measuring sensor of the present invention is characterized by comprising a substrate on which a molecularly imprinted polymer is immobilized.
  • the molecular structure of the template is memorized by copolymerizing the functional monomer with the crosslinkable monomer, and specifically recombined with it.
  • a molecularly imprinted polymer can be synthesized (FIG. 1). This molecularly imprinted polymer has higher chemical and physical stability than biopolymers, and can be prepared at low cost and in a short time.
  • a signal such as an electric signal corresponding to the specific binding of the template.
  • this method since this method has not been established, application of molecularly imprinted polymers to biosensors has not progressed.
  • the present inventor changed the size of the voids in the molecularly imprinted polymer thin film due to a specific reaction with the template, and further changed the rate of passage of the solute in the molecularly imprinted polymer thin film significantly.
  • this phenomenon was named the gate effect.
  • the present inventor uses an electrode having a molecularly imprinted polymer membrane fixed thereto to cause an electrolysis reaction using a redox species as a membrane permeation marker (redox marker).
  • redox marker membrane permeation marker
  • the present invention provides a sensor for measuring an anticoagulant such as heparin using the principle of the gate effect.
  • the substrate on which the molecularly imprinted polymer used in the present invention is immobilized can be produced, for example, by bringing a functional monomer, a crosslinkable monomer, and an anticoagulant into contact with a substrate on which an initiator is immobilized and polymerizing. .
  • a cationic monomer is preferably used in order to produce a sensor for measuring heparin.
  • heparin contains a large number of sulfonic acid groups, so that it is possible to synthesize a molecularly imprinted polymer that specifically binds to heparin by using a cationic functional monomer.
  • cationic monomer primary to tertiary amino group-containing (meth) acrylamide, primary to tertiary amino group-containing (meth) acrylate, quaternary ammonium base-containing (meth) acrylamide, quaternary ammonium base-containing (meth) acrylate, Those having a cationic group in the molecule, such as diallyldialkylammonium halide.
  • Tertiary amino group-containing (meth) acrylamides include dimethylaminoethyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, diethylaminoethyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, dialkylaminoalkyl (meth) acrylamide, etc. Is mentioned.
  • Tertiary amino group-containing (meth) acrylates include dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, diethylaminoethyl (meth) acrylate, diethylaminopropyl (meth) acrylate, dialkylaminoalkyl (meth) acrylate, etc. Is mentioned.
  • Examples of primary and secondary amino group-containing (meth) acrylamides include primary amino group-containing (meth) acrylamides such as aminoethyl (meth) acrylamide, methylaminoethyl (meth) acrylamide, and ethylaminoethyl (meth) acrylamide.
  • Secondary amino group-containing (meth) acrylamides such as acrylamide and t-butylaminoethyl (meth) acrylamide.
  • Primary and secondary amino group-containing (meth) acrylates include primary amino group-containing (meth) acrylates such as aminoethyl (meth) acrylate, or methylaminoethyl (meth) acrylate, ethylaminoethyl (meth) acrylate And secondary amino group-containing (meth) acrylates such as t-butylaminoethyl (meth) acrylate.
  • tertiary amino group-containing (meth) acrylamide or tertiary amino group-containing (meth) acrylate is methyl chloride, benzyl chloride, sulfuric acid.
  • acrylamidopropyltrimethylammonium chloride acrylamidopropylbenzyldimethylammonium chloride, methacryloyloxyethyldimethylbenzylammonium chloride, acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloylaminoethyltrimethylammonium chloride, (meth) acryloyl Examples include aminoethyltriethylammonium chloride, (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyltriethylammonium chloride, and the like.
  • cationic monomer examples include methacryloxyethyltrimethylammonium chloride, vinylpyridine, diethylaminoethyl methacrylate, and the like. These may be used alone or in combination of two or more.
  • crosslinkable monomer used in the present invention examples include methylene bisacrylamide, 1,4-butyl diacrylate, 1,6-hexanediol dimethacrylate, polyethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol.
  • Dimethacrylate Triethylene glycol dimethacrylate, Nonaethylene glycol dimethacrylate, Divinylbenzene, Polypropylene glycol dimethacrylate, Neopentyl glycol dimethacrylate, Pentaerythritol dimethacrylate, Trimethylolpuran trimethacrylate, Pentaerythritol trimethacrylate, Pentaerythritol tetramethacrylate Dipentaerythrito Hexa methacrylate, epoxy acrylate, polyester acrylate, and urethane acrylate.
  • particularly preferable examples include methylene bisacrylamide and polyethylene glycol dimethacrylate. These may be used alone or in combination of two or more.
  • the sensor of the present invention is a sensor for measuring an anticoagulant.
  • the anticoagulant include heparin, heparin-like substances (including low molecular weight heparin), warfarin, acenocoumarol, pheninedione, and the like, but are not particularly limited thereto.
  • the heparin used in the examples of the present specification is unfractionated heparin and has a molecular weight range of 7000 to 25000 (mostly 10,000 to 20,000). However, in the present invention, only unfractionated heparin is used. Alternatively, low molecular weight heparin (molecular weight 4000 to 8000) can be measured.
  • the anticoagulant measuring sensor of the present invention may be an electrochemical sensor or a non-electrochemical sensor.
  • An electrochemical sensor can be configured by using an electrode on which a molecularly imprinted polymer is immobilized as a substrate on which the molecularly imprinted polymer is immobilized.
  • a non-electrochemical sensor a surface plasmon resonance (SPR) sensor (for example, BIACORE), a crystal oscillator microbalance (QCM) sensor, or the like can be configured.
  • SPR surface plasmon resonance
  • QCM crystal oscillator microbalance
  • a heparin sensor for electrochemically measuring heparin.
  • heparin sodium as a template methacryloxyethyltrimethylammonium chloride as a functional monomer, acrylamide as a hydrophilic monomer are dissolved in water, and methylenebisacrylamide as a crosslinkable monomer is dissolved in dimethylformamide as an organic solvent. Dissolved in. Both solutions were mixed into a metastable solution and used for the synthesis of molecularly imprinted polymer.
  • a molecular weight imprinted polymer thin film was formed by immobilizing a radical polymerization agent on the electrode in advance by covalent bonding, immersing it in the above-mentioned metastable solution, and subjecting it to light irradiation and graft polymerization (FIG. 4).
  • a sample containing an anticoagulant is brought into contact with the above-described sensor for measuring an anticoagulant, and a change in signal based on the gate effect of the molecularly imprinted polymer is detected. Can be measured.
  • a sample containing an anticoagulant whole blood or blood components (for example, plasma or serum) can be used.
  • a mediator such as redox marker
  • a mediator such as potassium faricyanide, potassium ferrocyanide, benzoquinone, hydroquinone
  • a method of measuring a redox current obtained by applying a potential can be employed.
  • glucose, lactic acid, bilirubin, cholesterol and the like can be used as mediators (redox markers and the like), and oxidoreductases (for example, glucose oxidase, lactate, etc.) Oxidase, cholesterol oxidase, bilirubin oxidase, glucose dehydrogenase, lactate dehydrogenase, etc.) may be used.
  • Oxidase, cholesterol oxidase, bilirubin oxidase, glucose dehydrogenase, lactate dehydrogenase, etc. may be used.
  • uric acid in the body or ascorbic acid itself is used as a mediator, it is possible to measure directly from perfused blood, so that minimally invasive measurement is possible without blood loss.
  • the sensor of the present invention can be attached to a device for extracorporeal circulation as shown in FIG.
  • the anticoagulant can be measured by bringing the perfusion blood containing the anticoagulant into contact with the sensor for measuring the anti
  • Example 1 (1) Initiator fixation on the electrode surface A glass plate carrying an indium tin oxide thin film (ITO) was heat-treated in a 10 wt% toluene solution of 3-aminopropyltrimethoxysilane, and amino groups were formed on the ITO surface. Was introduced. This ITO was immersed in a dimethylformamide solution of water-soluble carbodiimide (0.2 M) and 4-chloromethylbenzoic acid (0.1 M) to introduce a chloromethylbenzyl group on the ITO surface.
  • ITO indium tin oxide thin film
  • this chlorobenzyl group on the ITO surface was reacted in an ethanol solution (0.3 M) of sodium diethyldithiocarbamate to introduce a diethyldithiocarbamylbenzyl group as a radical polymerization initiator on the ITO surface.
  • the mixed solution was charged into a quartz test tube, soaked in diethyldithiocarbamyl benzyl group-introduced ITO, deoxygenated by flowing in argon for 5 minutes, and then irradiated with UV light from a germicidal lamp simultaneously for 24 hours to graft polymerize MIP. Fixed.
  • This ITO removes unreacted monomer and template by using distilled water (instead of distilled water, an organic acid such as acetic acid, an alcohol such as methanol, or a mixed solution thereof, or a distilled water and a mixed solution thereof. May be used).
  • a current-potential curve (cyclic voltammogram) was obtained by scanning the potential of the molecularly imprinted polymer fixed electrode with respect to the reference electrode at a speed of 0.2 V / s and detecting the obtained current.
  • the heparin sensing ability of the MIP fixed electrode was evaluated from the influence of heparin on the oxidation current of ferrocyanide.
  • FIG. 6 shows a cyclic voltammogram obtained from the MIP fixed electrode. After taking a voltammogram with a heparin concentration of 0 unit / mL, and taking a voltammogram at the same concentration of 22 unit / mL, both the oxidation current and the reduction current decreased significantly. When cyclic voltammetry was performed again in heparin 0 unit / mL potassium ferrocyanide, the current recovered to the value measured before the addition of heparin. These results indicate that the redox current detected by the molecularly imprinted fixed electrode can reversibly respond to both an increase and a decrease in heparin concentration.
  • FIG. 7 shows the relationship between the change in the oxidation current caused by heparin and the heparin concentration.
  • the current tends to increase with increasing heparin concentration, and it tends to decrease at higher concentrations. Therefore, in order to use this electrode as a heparin sensor, (1) a method in which blood is directly measured and 0.3 unit / mL is set to the lower detection limit, or (2) blood is diluted 100 times with physiological saline, Two methods are conceivable: dropping to a concentration range of 0.003 to 0.03 unit / mL.
  • heparin can be sensed with an electrode grafted with MIP by a method in which a radical polymerization initiator is fixed to the electrode in advance.
  • Example 2 In order to clarify whether the molecularly imprinted polymer-fixed electrode responds to heparin in the whole blood system, an experiment was conducted according to the following method according to the method of Example 1.
  • ITO indium tin oxide thin film
  • the chlorobenzyl group on the ITO surface was reacted in an ethanol solution (0.3 M) of sodium diethyldithiocarbamate to introduce a diethyldithiocarbamylbenzyl group as a radical polymerization initiator on the ITO surface.
  • Both mixed solutions were charged into quartz tubes, respectively, soaked in diethyldithiocarbamylbenzyl group-introduced ITO, and irradiated with ultraviolet light from a germicidal lamp at the same time for 24 hours for graft polymerization. Thereafter, ultrasonic cleaning was performed in distilled water.
  • ITO treated with a solution containing heparin was used as a MIP (Molecularly Imprinted Polymer) electrode
  • ITO treated with a solution containing no heparin was used as a NIP (Non-Imprinted Polymer) electrode.
  • Heparin was added to fresh bovine blood (0 unit / mL or 4 unit / mL), and diluted 100-fold with physiological saline containing 5 mM potassium ferrocyanide. Cyclic voltammetry was performed with this test solution. MIP and NIP electrodes were used for the working electrode, unmodified ITO was used for the counter electrode, and a silver wire plated with silver chloride was used for the reference electrode.
  • the value of 4 unit / mL is considered the standard blood heparin concentration in patients undergoing extracorporeal circulation treatment. Therefore, when diluting blood about 100 times with physiological saline containing redox species, it was confirmed that only the MIP electrode reacts with heparin and increases the current.
  • the template enters the specific binding site formed by imprinting during graft polymerization, the polymer matrix partially shrinks, the porosity increases, and the electron transfer between the electrode and the redox marker becomes faster. This is thought to be because of this (FIG. 9).
  • Example 3 As shown in FIG. 11, a MIP fixed electrode was attached to the electrochemical flow cell, and a constant potential of 0.4 V was applied to this electrode. An aqueous solution containing 5 mM potassium ferrocyanide and 0.1 M potassium nitrate was kept flowing, and after the current was stabilized, the flow path was switched with a valve, and the heparin concentration was changed stepwise from 0.00 unit / mL to 0.04 unit / mL. The change in current with respect to this concentration change was recorded, and the response speed was evaluated.
  • FIG. 12 shows the relationship between the elapsed time after changing the heparin concentration in steps from 0.00 unit / mL to 0.04 unit / mL and the oxidation current of coexisting 5 mM potassium ferrocyanide.
  • the time from when the concentration is switched until the current value is stabilized is about 15 seconds. This is much shorter than the time required for measuring the activated clotting time (ACT) (about 400 seconds).
  • ACT activated clotting time
  • Example 4 Cyclic voltammetry was performed using bovine whole blood containing heparin, using the molecularly imprinted polymer fixed electrode of the present invention as an electromotive force, according to the method described in Example 1 and Example 2.
  • bovine whole blood was not diluted and no new redox species was added.
  • the MIP fixed electrode produced in Example 1 was used as the molecular imprinted polymer fixed electrode.
  • the obtained cyclic voltagram is shown in FIG.
  • a higher positive current was detected in the blood than in the physiological saline.
  • This current is considered to be generated by anodizing redox species such as ascorbic acid and uric acid.
  • This current decreased with increasing whole blood heparin concentration in the range of 0 to 2.82 units / mL. This is thought to be due to the reduced accessibility of redox electrodes due to the gate effect of the MIP thin film on heparin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Ecology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The objective of the present invention is to provide a sensor which is capable of selectively detecting an anticoagulant such as heparin in the blood. The present invention provides a sensor for anticoagulant assay, which is configured of a substrate on which a molecularly imprinted polymer is immobilized.

Description

抗凝固薬測定用センサAnticoagulant measurement sensor
 本発明は、分子インプリント高分子薄膜電極を用いた抗凝固薬測定用センサに関する。 The present invention relates to an anticoagulant measurement sensor using a molecularly imprinted polymer thin film electrode.
 人工心肺など体外循環を伴う治療においては、血液は必然的に異物に接触する。そのままでは凝血し、血流回路を閉塞したり、脳梗塞を惹起したりするので抗凝固薬の投与が不可欠である。抗凝固薬には主にヘパリンが使用されている。しかし、適量と思われるヘパリンを投与したにもかかわらず、血液経路における血液凝固塊の発生のために、体外循環を一時中断するという事例は後を絶たない。このような血液凝固塊は、治療効果を低下させるだけでなく、脳梗塞などを惹起し、患者の生命を危険に陥れることがある。現在、体外循環治療中のヘパリンの適正投与量は、血液に凝血因子活性剤を添加し、凝固に要する時間(Activated Clottig Time:ACT)を測定して判断している。しかし、手術中における凝血発生の確率とACTとの相関は低い。この低い相関に頼って投与量を決定していることが、手術中に時々発生する血液凝固の主因である可能性は高い。 In the treatment involving extracorporeal circulation such as heart-lung machine, blood inevitably comes into contact with foreign substances. If it is left as it is, it will clot and block the blood flow circuit or cause cerebral infarction, so administration of an anticoagulant is indispensable. Heparin is mainly used as an anticoagulant. However, despite the administration of heparin, which seems to be an appropriate amount, there is no end to the case where the extracorporeal circulation is suspended due to the formation of blood clots in the blood pathway. Such blood clots not only reduce the therapeutic effect, but also cause cerebral infarction and may endanger the life of the patient. Currently, the appropriate dose of heparin during extracorporeal circulation treatment is determined by adding a clotting factor activator to blood and measuring the time required for clotting (Activated Clottig Time: ACT). However, the correlation between the probability of clotting during surgery and ACT is low. Relying on this low correlation to determine dosage is likely the main cause of blood clotting that occasionally occurs during surgery.
 ACTを測定するよりも、血液中ヘパリン濃度を監視する方が、ヘパリンの適正投与量を正確に判断できると考えられるものの、適切なセンサが存在しないのが現状である。血液中のヘパリン濃度を直接モニタリングするためのセンサの開発例は幾つかある。例えば、カチオン性界面活性剤を含浸させた膜のヘパリン吸着による膜電位変化を捉える方法(非特許文献1)や、カチオン性タンパク質であるプロタミンを金表面に固定し、ヘパリンとの結合を表面プラズモンにより捉える方法(非特許文献2)が報告されている。しかし、上記の方法は、カチオン性界面活性剤やプロタミンとヘパリンとの単純な静電相互作用を利用するものであるため選択性が低く、血液中に豊富に存在するアニオン性タンパク質の妨害を受けやすいという問題があり、何れも実用化には至っていない。選択性の高いヘパリンセンシング法としては、ヘパリンに対する抗体とヘパリンとの特異結合を検出する方法が考えられるが、ヘパリンは元来、生体親和性に富む物質であるため、抗体を取得すること自体が難しい。 Although it is considered that the proper dose of heparin can be accurately determined by monitoring the blood heparin concentration rather than measuring ACT, there is no appropriate sensor at present. There are several examples of the development of sensors for direct monitoring of heparin levels in blood. For example, a method of capturing membrane potential change due to heparin adsorption of a membrane impregnated with a cationic surfactant (Non-patent Document 1), or fixing protamine, which is a cationic protein, on a gold surface and binding with heparin to surface plasmon (Non-Patent Document 2) has been reported. However, the above method uses a simple electrostatic interaction between a cationic surfactant or protamine and heparin, so the selectivity is low, and it is disturbed by anionic proteins that are abundant in blood. There is a problem that it is easy, and none of them has been put into practical use. As a highly selective heparin sensing method, a method of detecting specific binding between an antibody to heparin and heparin can be considered, but since heparin is originally a substance with high biocompatibility, obtaining an antibody itself is difficult.
 本発明の課題は、血液中のヘパリンなどの抗凝固薬を選択的に検出できるセンサを提供することである。 An object of the present invention is to provide a sensor that can selectively detect an anticoagulant such as heparin in blood.
 本発明者は上記課題を解決すべく鋭意検討した結果、分子インプリント高分子(Molecularly Imprinted Polymer: MIP)薄膜における溶質透過速度が鋳型の存在によって変化する現象(ゲート効果)を見出し、このゲート効果を利用したセンサによってヘパリンなどの抗凝固薬を選択的に検出できることを見出した。本発明はかかる知見に基づいて完成されたものである。 As a result of intensive studies to solve the above problems, the present inventor has found a phenomenon (gate effect) in which the solute permeation rate in a molecularly imprinted polymer (MIP) thin film changes depending on the presence of a template (gate effect). It has been found that an anticoagulant such as heparin can be selectively detected by a sensor using the. The present invention has been completed based on such findings.
 すなわち、本発明の態様は以下に関する。
(1) 分子インプリント高分子を固定化した基板から構成される、抗凝固薬測定用センサ。
(2) 分子インプリント高分子を固定化した基板が、分子インプリント高分子を固定化した電極である、(1)に記載の抗凝固薬測定用センサ。
(3) 分子インプリント高分子を固定化した基板が、開始剤を固定化した基板に機能性モノマーと架橋性モノマーと抗凝固薬を接触させて重合させることにより得られる基板である、(1)又は(2)に記載の抗凝固薬測定用センサ。
(4) 機能性モノマーが、カチオン性モノマーである、(3)に記載の抗凝固薬測定用センサ。
(5) 機能性モノマーが、メタクリロキシエチルトリメチルアンモニウムクロライドである、(4)に記載の抗凝固薬測定用センサ。
(6) 架橋性モノマーが、メチレンビスアクリルアミドである、(3)から(5)の何れか1項に記載の抗凝固薬測定用センサ。
(7) 抗凝固薬が、ヘパリン類である、(1)から(6)の何れか1項に記載の抗凝固薬測定用センサ。
(8) (1)から(7)の何れか1項に記載の抗凝固薬測定用センサに、抗凝固薬を含有する試料を接触させ、信号の変化を検出することを含む、抗凝固薬の測定方法。
(9) (2)に記載の抗凝固薬測定用センサに、抗凝固薬を含有する試料をレドックスマーカーの存在下において接触させ、信号の変化として電流の変化を検出することを含む、抗凝固薬の測定方法。
(10) 体内に存在する物質をレドックスマーカーとして使用する、(9)に記載の抗凝固薬の測定方法。
(11) 前記試料が全血または血液成分(例えば、血漿又は血清など)である、(8)から(10)の何れか1項に記載の抗凝固薬の測定方法。
(12) (1)から(7)の何れか1項に記載の抗凝固薬測定用センサに、抗凝固薬を含有する灌流血液を接触させ、信号の変化を検出することを含む、抗凝固薬の測定方法。
(13) 抗凝固薬が、ヘパリン類である、(8)から(12)の何れか1項に記載の抗凝固薬の測定方法。
That is, the aspect of the present invention relates to the following.
(1) A sensor for measuring an anticoagulant comprising a substrate on which a molecularly imprinted polymer is immobilized.
(2) The anticoagulant measurement sensor according to (1), wherein the substrate on which the molecularly imprinted polymer is immobilized is an electrode on which the molecularly imprinted polymer is immobilized.
(3) The substrate on which the molecularly imprinted polymer is immobilized is a substrate obtained by bringing a functional monomer, a crosslinkable monomer, and an anticoagulant into contact with a substrate on which an initiator is immobilized, and polymerizing the substrate (1 ) Or the sensor for measuring an anticoagulant according to (2).
(4) The anticoagulant measurement sensor according to (3), wherein the functional monomer is a cationic monomer.
(5) The anticoagulant measurement sensor according to (4), wherein the functional monomer is methacryloxyethyltrimethylammonium chloride.
(6) The sensor for measuring an anticoagulant according to any one of (3) to (5), wherein the crosslinkable monomer is methylenebisacrylamide.
(7) The anticoagulant measurement sensor according to any one of (1) to (6), wherein the anticoagulant is heparin.
(8) An anticoagulant comprising contacting a sample containing an anticoagulant with the anticoagulant measuring sensor according to any one of (1) to (7) and detecting a change in signal. Measuring method.
(9) The anticoagulant measuring sensor according to (2), wherein the anticoagulant measuring sample is brought into contact with a sample containing the anticoagulant in the presence of a redox marker, and a change in current is detected as a change in signal. Drug measurement method.
(10) The method for measuring an anticoagulant according to (9), wherein a substance present in the body is used as a redox marker.
(11) The method for measuring an anticoagulant according to any one of (8) to (10), wherein the sample is whole blood or a blood component (for example, plasma or serum).
(12) An anticoagulation comprising: contacting a perfusion blood containing an anticoagulant with the sensor for measuring an anticoagulant according to any one of (1) to (7), and detecting a change in the signal. Drug measurement method.
(13) The method for measuring an anticoagulant according to any one of (8) to (12), wherein the anticoagulant is heparin.
 本発明のセンサで用いる分子インプリント高分子(Molecularly Imprinted Polymer: MIP)薄膜は安定性に優れ、電極に固定されたMIPのゲート効果はファラデー電流により簡単に検出することができる。本発明のセンサは簡便かつ安価に作製することができ、操作も簡便で、装置の小型化も可能である。また、本発明のセンサは感度及び安定性にも優れている。本発明のセンサによれば、血液中のヘパリンなどの抗凝固薬を選択的に検出することができる。例えば、本発明のセンサで血中ヘパリン濃度を監視し、至適ヘパリン投与量を正確に決定することで、治療成績を劇的に高めることが期待できる。さらに本発明のセンサによれば、応答時間が約15秒と短く、ヘパリン濃度をリアルタイムに検出することができる。 The molecularly imprinted polymer (MIP) thin film used in the sensor of the present invention is excellent in stability, and the gate effect of the MIP fixed to the electrode can be easily detected by the Faraday current. The sensor of the present invention can be easily and inexpensively manufactured, is easy to operate, and can be downsized. The sensor of the present invention is also excellent in sensitivity and stability. According to the sensor of the present invention, an anticoagulant such as heparin in blood can be selectively detected. For example, by monitoring the blood heparin concentration with the sensor of the present invention and accurately determining the optimal heparin dose, it can be expected that the therapeutic results will be dramatically improved. Furthermore, according to the sensor of the present invention, the response time is as short as about 15 seconds, and the heparin concentration can be detected in real time.
図1は、分子インプリントの原理を示す。FIG. 1 shows the principle of molecular imprinting. 図2は、ゲート効果の模式図を示す。FIG. 2 shows a schematic diagram of the gate effect. 図3は、ヘパリンの構造を示す。FIG. 3 shows the structure of heparin. 図4は、分子インプリント高分子固定電極の作製を示す。FIG. 4 shows the fabrication of a molecularly imprinted polymer fixed electrode. 図5は、体外循環血液を監視するヘパリンセンサの構想図を示す。FIG. 5 shows a conceptual diagram of a heparin sensor that monitors extracorporeal circulating blood. 図6は、ヘパリンインプリントITO電極におけるフェロシアン化物のサイクリックボルタグラムを示す。ヘパリン濃度:0unit/mL(一点破線)→22unit/mL(実線)→0unit/mL(点線)→22unit/mL(破線)FIG. 6 shows a cyclic voltagram of ferrocyanide at a heparin imprinted ITO electrode. Heparin concentration: 0unit / mL (dotted line) → 22unit / mL (solid line) → 0unit / mL (dotted line) → 22unit / mL (dashed line) 図7は、ヘパリンインプリント電極における陽極電流の変化と、ヘパリン濃度との関係を示す。FIG. 7 shows the relationship between the change in anode current in the heparin imprint electrode and the heparin concentration. 図8は、グラフト処理された電極(MIP電極(A)およびNIP電極(B))の血液系におけるサイクリックボルタグラムを示す。試験液中ヘパリン濃度0.00 unit/mL(破線), 0.04 unit/mL(実線)FIG. 8 shows a cyclic voltagram in the blood system of the grafted electrodes (MIP electrode (A) and NIP electrode (B)). Heparin concentration in test solution 0.00 unit / mL (dashed line), 0.04 unit / mL (solid line) 図9は、分子インプリント高分子(MIP)電極の酸化還元電流に対するヘパリンの効果を示す。FIG. 9 shows the effect of heparin on the redox current of a molecularly imprinted polymer (MIP) electrode. 図10は、非インプリント高分子(NIP)電極の酸化還元電流に対するヘパリンの効果を示す。FIG. 10 shows the effect of heparin on the redox current of a non-imprinted polymer (NIP) electrode. 図11は、ヘパリン濃度の評価装置を示す。FIG. 11 shows an apparatus for evaluating heparin concentration. 図12は、ヘパリン濃度のステップ変化(0.00 unit/mL→0.04 unit/mL)に対する電流の応答(電位0.40 V)を示す。FIG. 12 shows the current response (potential 0.40 V) to a step change in heparin concentration (0.00 unit / mL → 0.04 / unit / mL). 図13は、ヘパリンに対するMIP固定電極を作用極としたヘパリン含有牛全血のサイクリックボルタモグラムを示す。ヘパリン濃度:生理食塩水中0 unit/mL(点線)、牛全血中 0 unit/mL(破線)、1.13 unit/mL(一点破線)、 2.82 unit/mL(実線)、11.3 unit/mL(二点破線)FIG. 13 shows a cyclic voltammogram of heparin-containing bovine whole blood using a MIP fixed electrode for heparin as a working electrode. Heparin concentration: 0 unit / mL (dotted line) in physiological saline, 0 unit / mL (dashed line) in bovine whole blood, 1.13 一 unit / mL (dotted line), 2.82 unit / mL (solid line), 11.3 unit / mL (two points) (Dashed line)
 以下、本発明の実施の形態について説明する。
 本発明の抗凝固薬測定用センサは、分子インプリント高分子を固定化した基板から構成されることを特徴とする。
Embodiments of the present invention will be described below.
The anticoagulant measuring sensor of the present invention is characterized by comprising a substrate on which a molecularly imprinted polymer is immobilized.
 特定の物質(鋳型)とそれに可逆的に結合する機能性モノマーが自己組織した状態で、機能性モノマーを架橋性モノマーと共重合させることで鋳型の分子構造を記憶し、それと特異的に再結合する分子インプリント高分子を合成することができる(図1)。この分子インプリント高分子は、生体高分子に比べると化学的かつ物理的安定性に富み、低コストかつ短時間に調製できる。分子インプリント高分子をセンサ用素子として用いるには、鋳型の特異結合に応じた電気信号などのシグナルを発生させる必要がある。しかし、この方法が確立されていなかったため、分子インプリント高分子のバイオセンサへの応用は進んでいない。 In a state where a specific substance (template) and a functional monomer that reversibly binds to it are self-assembled, the molecular structure of the template is memorized by copolymerizing the functional monomer with the crosslinkable monomer, and specifically recombined with it. A molecularly imprinted polymer can be synthesized (FIG. 1). This molecularly imprinted polymer has higher chemical and physical stability than biopolymers, and can be prepared at low cost and in a short time. In order to use the molecularly imprinted polymer as a sensor element, it is necessary to generate a signal such as an electric signal corresponding to the specific binding of the template. However, since this method has not been established, application of molecularly imprinted polymers to biosensors has not progressed.
 本発明者は、鋳型と特異反応することで分子インプリント高分子の薄膜内部の空隙の大きさが変化し、さらに、分子インプリント高分子薄膜の中の溶質の通過する速度が著しく変化することを見出し(J.Chem.Eng.Jpn., 34, 1466-1469, 2001)、この現象をゲート効果と命名した。そして、本発明者は、図2に示すように分子インプリント高分子膜を固定した電極で、レドックス種を膜透過のマーカー(レドックスマーカー)として電解反応を生じさせると、レドックス種の酸化還元電流が鋳型の存在によって変化することを見出していた(Sensors & Actuators B, 73, 49-53, 2001)。本発明は、このゲート効果の原理を用いたヘパリンなどの抗凝固薬を測定するためのセンサを提供するものである。 The present inventor changed the size of the voids in the molecularly imprinted polymer thin film due to a specific reaction with the template, and further changed the rate of passage of the solute in the molecularly imprinted polymer thin film significantly. (J. Chem. Eng. Jpn., 34, 1466-1469, 2001), and this phenomenon was named the gate effect. Then, as shown in FIG. 2, the present inventor uses an electrode having a molecularly imprinted polymer membrane fixed thereto to cause an electrolysis reaction using a redox species as a membrane permeation marker (redox marker). Has been found to change with the presence of the template (Sensors & Actuators B, 73, 49-53, 2001). The present invention provides a sensor for measuring an anticoagulant such as heparin using the principle of the gate effect.
 本発明で用いる分子インプリント高分子を固定化した基板は、例えば、開始剤を固定化した基板に機能性モノマーと架橋性モノマーと抗凝固薬を接触させて重合させることによって製造することができる。 The substrate on which the molecularly imprinted polymer used in the present invention is immobilized can be produced, for example, by bringing a functional monomer, a crosslinkable monomer, and an anticoagulant into contact with a substrate on which an initiator is immobilized and polymerizing. .
 本発明で用いる機能性モノマーとしては、特にヘパリンを測定するセンサを製造するためには、カチオン性モノマーを使用することが好ましい。ヘパリンは図3に示すように、スルホン酸基を多数含むため、カチオン性の機能性モノマーを使用することにより、ヘパリンと特異結合する分子インプリント高分子を合成することが可能になる。カチオン性モノマーとしては、1~3級アミノ基含有(メタ)アクリルアミド、1~3級アミノ基含有(メタ)アクリレート、4級アンモニウム塩基含有(メタ)アクリルアミド、4級アンモニウム塩基含有(メタ)アクリレート、ジアリルジアルキルアンモニウムハライド等のように、分子内にカチオン性基を有するものである。3級アミノ基含有(メタ)アクリルアミドとしては、ジメチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、ジアルキルアミノアルキル(メタ)アクリルアミド等が挙げられる。3級アミノ基含有(メタ)アクリレートとしては、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート、ジアルキルアミノアルキル(メタ)アクリレート等が挙げられる。また、1~2級アミノ基含有(メタ)アクリルアミドとしては、アミノエチル(メタ)アクリルアミドなどの1級アミノ基含有(メタ)アクリルアミド、或は、メチルアミノエチル(メタ)アクリルアミド、エチルアミノエチル(メタ)アクリルアミド、t-ブチルアミノエチル(メタ)アクリルアミドなどの2級アミノ基含有(メタ)アクリルアミド等が挙げられる。1~2級アミノ基含有(メタ)アクリレートとしては、アミノエチル(メタ)アクリレートなどの1級アミノ基含有(メタ)アクリレート、或は、メチルアミノエチル(メタ)アクリレート、エチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレートなどの2級アミノ基含有(メタ)アクリレート等が挙げられる。4級アンモニウム塩基含有(メタ)アクリルアミドおよび4級アンモニウム塩基含有(メタ)アクリレートとしては、3級アミノ基含有(メタ)アクリルアミド又は3級アミノ基含有(メタ)アクリレートを、塩化メチル、塩化ベンジル、硫酸メチル、エピクロルヒドリンなどの4級化剤で4級化したモノ4級塩基含有モノマーが挙げられる。具体的には、アクリルアミドプロピルトリメチルアンモニウムクロリド、アクリルアミドプロピルベンジルジメチルアンモニウムクロリド、メタクリロイロキシエチルジメチルベンジルアンモニウムクロリド、アクリロイロキシエチルジメチルベンジルアンモニウムクロリド、(メタ)アクリロイルアミノエチルトリメチルアンモニウムクロリド、(メタ)アクリロイルアミノエチルトリエチルアンモニウムクロリド、(メタ)アクリロイロキシエチルトリメチルアンモニウムクロリド、(メタ)アクリロイロキシエチルトリエチルアンモニウムクロリドなどが挙げられる。上記の中でも、カチオン性モノマーの具体例としては、例えば、メタクリロキシエチルトリメチルアンモニウムクロライド、ビニルピリジン、ジエチルアミノエチルメタクリレートなどがある。これらを1種または2種以上を組み合わせて用いてもよい。 As the functional monomer used in the present invention, a cationic monomer is preferably used in order to produce a sensor for measuring heparin. As shown in FIG. 3, heparin contains a large number of sulfonic acid groups, so that it is possible to synthesize a molecularly imprinted polymer that specifically binds to heparin by using a cationic functional monomer. As the cationic monomer, primary to tertiary amino group-containing (meth) acrylamide, primary to tertiary amino group-containing (meth) acrylate, quaternary ammonium base-containing (meth) acrylamide, quaternary ammonium base-containing (meth) acrylate, Those having a cationic group in the molecule, such as diallyldialkylammonium halide. Tertiary amino group-containing (meth) acrylamides include dimethylaminoethyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, diethylaminoethyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, dialkylaminoalkyl (meth) acrylamide, etc. Is mentioned. Tertiary amino group-containing (meth) acrylates include dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, diethylaminoethyl (meth) acrylate, diethylaminopropyl (meth) acrylate, dialkylaminoalkyl (meth) acrylate, etc. Is mentioned. Examples of primary and secondary amino group-containing (meth) acrylamides include primary amino group-containing (meth) acrylamides such as aminoethyl (meth) acrylamide, methylaminoethyl (meth) acrylamide, and ethylaminoethyl (meth) acrylamide. And secondary amino group-containing (meth) acrylamides such as acrylamide and t-butylaminoethyl (meth) acrylamide. Primary and secondary amino group-containing (meth) acrylates include primary amino group-containing (meth) acrylates such as aminoethyl (meth) acrylate, or methylaminoethyl (meth) acrylate, ethylaminoethyl (meth) acrylate And secondary amino group-containing (meth) acrylates such as t-butylaminoethyl (meth) acrylate. As quaternary ammonium base-containing (meth) acrylamide and quaternary ammonium base-containing (meth) acrylate, tertiary amino group-containing (meth) acrylamide or tertiary amino group-containing (meth) acrylate is methyl chloride, benzyl chloride, sulfuric acid. And mono-quaternary base-containing monomers quaternized with a quaternizing agent such as methyl or epichlorohydrin. Specifically, acrylamidopropyltrimethylammonium chloride, acrylamidopropylbenzyldimethylammonium chloride, methacryloyloxyethyldimethylbenzylammonium chloride, acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloylaminoethyltrimethylammonium chloride, (meth) acryloyl Examples include aminoethyltriethylammonium chloride, (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyltriethylammonium chloride, and the like. Among these, specific examples of the cationic monomer include methacryloxyethyltrimethylammonium chloride, vinylpyridine, diethylaminoethyl methacrylate, and the like. These may be used alone or in combination of two or more.
 本発明で用いる架橋性モノマーとしては、例えば、メチレンビスアクリルアミド、1,4-ブチルジアクリレート、1,6-ヘキサンジオールジメタクリレート、ポリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ノナエチレングリコールジメタクリレート、ジビニルベンゼン、ポリプロピレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ペンタエリスリトールジメタクリレート、トリメチロールプルパントリメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサメタクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレートなどが挙げられる。上記の中でも特に好ましくは、例えば、メチレンビスアクリルアミド、ポリエチレングリコールジメタクリレートなどがある。これらを1種または2種以上を組み合わせて用いてもよい。 Examples of the crosslinkable monomer used in the present invention include methylene bisacrylamide, 1,4-butyl diacrylate, 1,6-hexanediol dimethacrylate, polyethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol. Dimethacrylate, Triethylene glycol dimethacrylate, Nonaethylene glycol dimethacrylate, Divinylbenzene, Polypropylene glycol dimethacrylate, Neopentyl glycol dimethacrylate, Pentaerythritol dimethacrylate, Trimethylolpuran trimethacrylate, Pentaerythritol trimethacrylate, Pentaerythritol tetramethacrylate Dipentaerythrito Hexa methacrylate, epoxy acrylate, polyester acrylate, and urethane acrylate. Among these, particularly preferable examples include methylene bisacrylamide and polyethylene glycol dimethacrylate. These may be used alone or in combination of two or more.
 本発明のセンサは、抗凝固薬を測定するセンサである。抗凝固薬としては、ヘパリン、ヘパリン類似物質(低分子量ヘパリンなどを含む)、ワルファリン、アセノクマロール、フェニンジオンなどを挙げることができるが、特にこれらに限定されるものではない。なお、本明細書の実施例で用いたヘパリンは、未分画ヘパリンで分子量範囲は7000~25000(大部分は1万~2万)のものであるが、本発明では未分画ヘパリンのみならず、低分子量ヘパリン(分子量4000~8000)を測定対象とすることもできる。 The sensor of the present invention is a sensor for measuring an anticoagulant. Examples of the anticoagulant include heparin, heparin-like substances (including low molecular weight heparin), warfarin, acenocoumarol, pheninedione, and the like, but are not particularly limited thereto. The heparin used in the examples of the present specification is unfractionated heparin and has a molecular weight range of 7000 to 25000 (mostly 10,000 to 20,000). However, in the present invention, only unfractionated heparin is used. Alternatively, low molecular weight heparin (molecular weight 4000 to 8000) can be measured.
 本発明の抗凝固薬測定用センサとしては、電気化学的センサでもよいし、非電気化学的センサでもよい。分子インプリント高分子を固定化した基板として、分子インプリント高分子を固定化した電極を使用することにより、電気化学的センサを構成することができる。また、非電気化学的センサとしては、表面プラズモン共鳴(SPR)センサ(例えばBIACORE)、水晶発振子マイクロバランス(QCM)センサなどを構成することができる。 The anticoagulant measuring sensor of the present invention may be an electrochemical sensor or a non-electrochemical sensor. An electrochemical sensor can be configured by using an electrode on which a molecularly imprinted polymer is immobilized as a substrate on which the molecularly imprinted polymer is immobilized. As the non-electrochemical sensor, a surface plasmon resonance (SPR) sensor (for example, BIACORE), a crystal oscillator microbalance (QCM) sensor, or the like can be configured.
 本発明の特に好ましい態様によれば、ヘパリンを電気化学的に測定するヘパリンセンサが提供される。以下の実施例では、鋳型であるヘパリンナトリウム、機能性モノマーであるメタクリロキシエチルトリメチルアンモニウムクロライド、親水性モノマーであるアクリルアミドを水に溶解し、架橋性モノマーであるメチレンビスアクリルアミドを有機溶媒のジメチルホルムアミドに溶解した。両液を混合し、準安定溶液にして、分子インプリント高分子の合成に用いた。電極に予め、ラジカル重合剤を共有結合によって固定し、上記の準安定溶液に浸し、光照射してグラフト重合することによって分子インプリント高分子の薄膜を形成した(図4)。 According to a particularly preferred embodiment of the present invention, a heparin sensor for electrochemically measuring heparin is provided. In the following examples, heparin sodium as a template, methacryloxyethyltrimethylammonium chloride as a functional monomer, acrylamide as a hydrophilic monomer are dissolved in water, and methylenebisacrylamide as a crosslinkable monomer is dissolved in dimethylformamide as an organic solvent. Dissolved in. Both solutions were mixed into a metastable solution and used for the synthesis of molecularly imprinted polymer. A molecular weight imprinted polymer thin film was formed by immobilizing a radical polymerization agent on the electrode in advance by covalent bonding, immersing it in the above-mentioned metastable solution, and subjecting it to light irradiation and graft polymerization (FIG. 4).
 本発明によれば、上記した抗凝固薬測定用センサに、抗凝固薬を含有する試料を接触させ、分子インプリント高分子のゲート効果に基づく信号の変化を検出することによって、抗凝固薬を測定することができる。抗凝固薬を含有する試料としては、全血または血液成分(例えば、血漿又は血清など)を使用することができる。 According to the present invention, a sample containing an anticoagulant is brought into contact with the above-described sensor for measuring an anticoagulant, and a change in signal based on the gate effect of the molecularly imprinted polymer is detected. Can be measured. As a sample containing an anticoagulant, whole blood or blood components (for example, plasma or serum) can be used.
 本発明の分子インプリント固定電極をセンサとして用いる場合は、上記電極を対極、参照電極と共に浸し、ファリシアン化カリウム、フェロシアン化カリウム、ベンゾキノン、ヒドロキノンなどのメディエーター(レドックスマーカーなど)を加えて試験液に浸し、電位を印加して、得られる酸化還元電流を測定する方法を採用することができる。また、メディエーター(レドックスマーカーなど)としては、体内に存在する、尿酸やアスコルビン酸の他、グルコース、乳酸、ビリルビンおよびコレステロール等を使用することができ、また、酸化還元酵素(例えば、グルコースオキシダーゼ、ラクテートオキシダーゼ、コレステロールオキシダーゼ、ビリルビンオキシダーゼ、グルコースデヒドロゲナーゼ、ラクテートデヒドロゲナーゼ等)を使用してもよい。体内の尿酸やアスコルビン酸自体をメディエーターに使えば、灌流血から直接測定ができるので、失血させることなく、低侵襲の測定が可能となる。本発明のセンサは、図5に示すような体外循環用の装置に装着することができる。例えば、本発明の抗凝固薬測定用センサに、抗凝固薬を含有する灌流血液を接触させ、変化を検出することによって、抗凝固薬を測定することもできる。 When using the molecularly imprinted fixed electrode of the present invention as a sensor, immerse the electrode with a counter electrode and a reference electrode, add a mediator (such as redox marker) such as potassium faricyanide, potassium ferrocyanide, benzoquinone, hydroquinone, and soak in a test solution. A method of measuring a redox current obtained by applying a potential can be employed. In addition to uric acid and ascorbic acid existing in the body, glucose, lactic acid, bilirubin, cholesterol and the like can be used as mediators (redox markers and the like), and oxidoreductases (for example, glucose oxidase, lactate, etc.) Oxidase, cholesterol oxidase, bilirubin oxidase, glucose dehydrogenase, lactate dehydrogenase, etc.) may be used. If uric acid in the body or ascorbic acid itself is used as a mediator, it is possible to measure directly from perfused blood, so that minimally invasive measurement is possible without blood loss. The sensor of the present invention can be attached to a device for extracorporeal circulation as shown in FIG. For example, the anticoagulant can be measured by bringing the perfusion blood containing the anticoagulant into contact with the sensor for measuring the anticoagulant of the present invention and detecting the change.
 以下の実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。 The present invention will be described more specifically with reference to the following examples, but the present invention is not particularly limited to the following examples.
実施例1:
(1)電極表面への開始剤固定
 インジウム・スズ酸化物薄膜(ITO)を担持したガラス板を、3-アミノプロピルトリメトキシシランの10 wt%トルエン溶液中で加熱処理し、ITO表面にアミノ基を導入した。このITOを、水溶性カルボジイミド(0.2 M)及び4-クロロメチル安息香酸(0.1 M)のジメチルホルムアミド溶液に浸し、ITO表面にクロロメチルベンジル基を導入した。さらに、このITO表面のクロロベンジル基を、ジエチルジチオカルバミン酸ナトリウムのエタノール溶液(0.3 M)中で反応させ、ITO表面にラジカル重合開始剤であるジエチルジチオカルバミルベンジル基を導入した。
Example 1:
(1) Initiator fixation on the electrode surface A glass plate carrying an indium tin oxide thin film (ITO) was heat-treated in a 10 wt% toluene solution of 3-aminopropyltrimethoxysilane, and amino groups were formed on the ITO surface. Was introduced. This ITO was immersed in a dimethylformamide solution of water-soluble carbodiimide (0.2 M) and 4-chloromethylbenzoic acid (0.1 M) to introduce a chloromethylbenzyl group on the ITO surface. Further, this chlorobenzyl group on the ITO surface was reacted in an ethanol solution (0.3 M) of sodium diethyldithiocarbamate to introduce a diethyldithiocarbamylbenzyl group as a radical polymerization initiator on the ITO surface.
(2)MIP固定電極の作製
 MIPの鋳型として80 mgのヘパリンナトリウムとカチオン性機能性モノマーとしてのメタクリロキシエチルトリメチルアンモニウムクロライド 225 mg、架橋度調整用モノマーとしてのアクリルアミド250 mgを1mLの水に溶解した。上記水溶液を、架橋性モノマーのメチレンビスアクリルアミド 250 mgをジメチルホルムアミドに3 mLに溶解した溶液と混合した。混合液を石英試験管に仕込み、ジエチルジチオカルバミルベンジル基導入ITOを浸し、5分間のアルゴン流入による脱酸素の後、殺菌灯の紫外線を同時に24時間照射してグラフト重合することにより、MIPを固定した。このITOは、未反応モノマーと鋳型の除去のために、蒸留水(蒸留水の代わりに、酢酸等の有機酸、メタノール等のアルコール、又はこれらの混合液、又は蒸留水とこれらの混合液を使用してもよい)中で超音波洗浄した。
(2) Preparation of MIP fixed electrode Dissolve 80 mg of heparin sodium as a MIP template, 225 mg of methacryloxyethyltrimethylammonium chloride as a cationic functional monomer, and 250 mg of acrylamide as a monomer for adjusting the degree of crosslinking in 1 mL of water. did. The above aqueous solution was mixed with a solution obtained by dissolving 250 mg of the crosslinkable monomer methylenebisacrylamide in 3 mL of dimethylformamide. The mixed solution was charged into a quartz test tube, soaked in diethyldithiocarbamyl benzyl group-introduced ITO, deoxygenated by flowing in argon for 5 minutes, and then irradiated with UV light from a germicidal lamp simultaneously for 24 hours to graft polymerize MIP. Fixed. This ITO removes unreacted monomer and template by using distilled water (instead of distilled water, an organic acid such as acetic acid, an alcohol such as methanol, or a mixed solution thereof, or a distilled water and a mixed solution thereof. May be used).
(3)MIP固定電極のヘパリンセンシング能の評価
 0.1Mの支持電解質(硝酸カリウム)および5mMのレドックスマーカー(フェロシアン化カリウム)を含むヘパリンナトリウム(0~33 unit/mL)水溶液に、作用極として分子インプリント高分子固定化した電極、対極として未処理のITO電極、参照極として銀/塩化銀参照電極を浸し、ポテンシオスタットに接続した。
(3) Evaluation of heparin sensing ability of MIP fixed electrode Molecular imprinting as working electrode in aqueous solution of sodium heparin (0 to 33 unit / mL) containing 0.1M supporting electrolyte (potassium nitrate) and 5mM redox marker (potassium ferrocyanide) A polymer-fixed electrode, an untreated ITO electrode as a counter electrode, and a silver / silver chloride reference electrode as a reference electrode were immersed and connected to a potentiostat.
 参照電極に対する分子インプリント高分子固定電極の電位を、0.2V/sの速度で走査し、得られた電流を検出することで、電流-電位曲線(サイクリックボルタモグラム)を得た。フェロシアン化物の酸化電流に与えるヘパリンの影響から、MIP固定電極のヘパリンセンシング能を評価した。 A current-potential curve (cyclic voltammogram) was obtained by scanning the potential of the molecularly imprinted polymer fixed electrode with respect to the reference electrode at a speed of 0.2 V / s and detecting the obtained current. The heparin sensing ability of the MIP fixed electrode was evaluated from the influence of heparin on the oxidation current of ferrocyanide.
(4)結果及び考察
 MIP固定電極より得られたサイクリックボルタモグラムを図6に示す。ヘパリン濃度0unit/mLのボルタモグラムを取ったのち、同濃度22unit/mLでボルタモグラムを取ったところ、酸化電流、還元電流とも著しく減少した。その後に再びヘパリン0unit/mLフェロシアン化カリウム中でサイクリックボルタメトリーを行ったところ、電流はヘパリン添加前の測定値に回復した。これらの結果は、分子インプリント固定電極が検出する酸化還元電流は、ヘパリン濃度の増加に対しても、減少に対しても可逆的に応答できることを示している。
(4) Results and Discussion FIG. 6 shows a cyclic voltammogram obtained from the MIP fixed electrode. After taking a voltammogram with a heparin concentration of 0 unit / mL, and taking a voltammogram at the same concentration of 22 unit / mL, both the oxidation current and the reduction current decreased significantly. When cyclic voltammetry was performed again in heparin 0 unit / mL potassium ferrocyanide, the current recovered to the value measured before the addition of heparin. These results indicate that the redox current detected by the molecularly imprinted fixed electrode can reversibly respond to both an increase and a decrease in heparin concentration.
 ヘパリンによる酸化電流の変化と、ヘパリン濃度の関係を図7に示す。0.003~0.03 unit/mLの濃度範囲では、ヘパリン濃度増加によって電流も増加する傾向にあり、それより高濃度では減少する傾向にあることを示している。したがって、本電極をヘパリンセンサとして用いるには、(1)血液を直接計測し、0.3 unit/mLを検出下限濃度とする方法、あるいは(2)血液を生理食塩水などで100倍に希釈し、0.003~0.03 unit/mLの濃度範囲に落とし込む方法の2通りが考えられる。 FIG. 7 shows the relationship between the change in the oxidation current caused by heparin and the heparin concentration. In the concentration range of 0.003 to 0.03 unit / mL, the current tends to increase with increasing heparin concentration, and it tends to decrease at higher concentrations. Therefore, in order to use this electrode as a heparin sensor, (1) a method in which blood is directly measured and 0.3 unit / mL is set to the lower detection limit, or (2) blood is diluted 100 times with physiological saline, Two methods are conceivable: dropping to a concentration range of 0.003 to 0.03 unit / mL.
 上記の結果から、ラジカル重合開始剤を予め電極に固定する方法で、MIPをグラフトした電極で、ヘパリンをセンシングできることが示された。 From the above results, it was shown that heparin can be sensed with an electrode grafted with MIP by a method in which a radical polymerization initiator is fixed to the electrode in advance.
実施例2:
 全血系において分子インプリント高分子固定電極がヘパリンに対して応答を示すか否かを明らかにするために、実施例1の方法に準じて以下の方法で実験を行った。
Example 2:
In order to clarify whether the molecularly imprinted polymer-fixed electrode responds to heparin in the whole blood system, an experiment was conducted according to the following method according to the method of Example 1.
(1)電極表面への開始剤固定
 インジウム・スズ酸化物薄膜(ITO)の表面を3-アミノプロピルトリメトキシシランの10 wt%トルエン溶液中で加熱処理し、アミノ基を導入した。ジメチルホルムアミド溶媒中で水溶性カルボジイミド(0.2 M)を用いて、ITOに導入したアミノ基とクロロメチル安息香酸(0.1 M)をペプチド結合させ、ITO表面にクロロメチルベンジル基を導入した。ITO表面のクロロベンジル基をジエチルジチオカルバミン酸ナトリウムのエタノール溶液(0.3 M)中で反応させ、ITO表面にラジカル重合開始剤であるジエチルジチオカルバミルベンジル基を導入した。
(1) Initiator fixation on the electrode surface The surface of the indium tin oxide thin film (ITO) was heat-treated in a 10 wt% toluene solution of 3-aminopropyltrimethoxysilane to introduce amino groups. The amino group introduced into ITO and chloromethylbenzoic acid (0.1 M) were peptide-bonded using water-soluble carbodiimide (0.2 M) in a dimethylformamide solvent, and a chloromethylbenzyl group was introduced onto the ITO surface. The chlorobenzyl group on the ITO surface was reacted in an ethanol solution (0.3 M) of sodium diethyldithiocarbamate to introduce a diethyldithiocarbamylbenzyl group as a radical polymerization initiator on the ITO surface.
(2)MIP固定電極の作製
 鋳型として80 mgのヘパリンナトリウムとカチオン性機能性モノマーとしてのメタクリロキシエチルトリメチルアンモニウムクロライド 225 mg、架橋度調整用モノマーとしてのアクリルアミド250 mgを1mLの水に溶解した。一方、ヘパリンナトリウムを含まないこと以外は、同じ組成を持つ水溶液も同時に調製した。上記の両水溶液を、架橋性モノマーのメチレンビスアクリルアミド 250 mgをジメチルホルムアミドに3 mLに溶解した溶液とそれぞれ混合した。両混合液をそれぞれ石英管に仕込み、ジエチルジチオカルバミルベンジル基導入ITOをそれぞれ浸し、殺菌灯の紫外線を同時に24 時間照射してグラフト重合した。その後、蒸留水中で超音波洗浄した。ヘパリンを含む溶液で処理したITOをMIP(Molecularly imprinted Polymer)電極、ヘパリンを含まない溶液で処理したITOをNIP(Non-Imprinted Polymer)電極とした。
(2) Production of MIP Fixed Electrode 80 mg of heparin sodium as a template, 225 mg of methacryloxyethyltrimethylammonium chloride as a cationic functional monomer, and 250 mg of acrylamide as a monomer for adjusting the degree of crosslinking were dissolved in 1 mL of water. On the other hand, an aqueous solution having the same composition was prepared at the same time except that it did not contain heparin sodium. Both of the above aqueous solutions were mixed with a solution of 250 mg of the crosslinkable monomer methylenebisacrylamide dissolved in 3 mL of dimethylformamide. Both mixed solutions were charged into quartz tubes, respectively, soaked in diethyldithiocarbamylbenzyl group-introduced ITO, and irradiated with ultraviolet light from a germicidal lamp at the same time for 24 hours for graft polymerization. Thereafter, ultrasonic cleaning was performed in distilled water. ITO treated with a solution containing heparin was used as a MIP (Molecularly Imprinted Polymer) electrode, and ITO treated with a solution containing no heparin was used as a NIP (Non-Imprinted Polymer) electrode.
(3)ヘパリンセンシング能の評価
 新鮮な牛血液にヘパリンを添加(0 unit/mLまたは4 unit/mL)し、フェロシアン化カリウムを5 mM含む生理食塩水で100倍希釈した。この試験液でサイクリックボルタメトリーを行った。作用極にはMIP電極およびNIP電極、対極には未修飾ITO、参照極には塩化銀をメッキした銀線を用いた。
(3) Evaluation of heparin sensing ability Heparin was added to fresh bovine blood (0 unit / mL or 4 unit / mL), and diluted 100-fold with physiological saline containing 5 mM potassium ferrocyanide. Cyclic voltammetry was performed with this test solution. MIP and NIP electrodes were used for the working electrode, unmodified ITO was used for the counter electrode, and a silver wire plated with silver chloride was used for the reference electrode.
(4)実験結果および考察
 得られたサイクリックボルタグラム(電流-電位曲線)を次ページの図8に示す。MIP電極の場合、試験液中にヘパリンが0.04 unit/mL(血液中にヘパリンが4 unit/mL)加わることにより、酸化電流は増大した。一方、NIP電極の場合は、ヘパリンに対する電流変化が見られなかった。
(4) Experimental results and discussion The obtained cyclic voltagram (current-potential curve) is shown in FIG. 8 on the next page. In the case of the MIP electrode, the oxidation current increased by adding 0.04 unit / mL heparin to the test solution (4 unit / mL heparin in the blood). On the other hand, in the case of the NIP electrode, no current change with respect to heparin was observed.
 4 unit/mLという値は体外循環治療中の患者の標準的な血中ヘパリン濃度と考えられている。したがってレドックス種を含む生理食塩水で血液を100倍程度に希釈する場合において、MIP電極のみがヘパリンと反応し、電流を増大させることを確認した。グラフト重合時にインプリントで形成された特異結合サイトに、鋳型が浸入することにより、高分子マトリックスが部分的に収縮し、開孔率が増大し、電極とレドックスマーカーの間の電子移動が速くなったためと考えられる(図9)。ただしヘパリン濃度が高い場合には、特異結合サイトのないNIP電極に対しても、単純な静電相互作用で吸着し、立体障害で酸化還元電流を下げると考えられる(図10)。NIP電極においてもヘパリン濃度が高いと電流を減少させることは確認済みである。したがって血液中の特異的なヘパリン検出には、血液試料の100倍程度の希釈が望ましいと考えられる。 The value of 4 unit / mL is considered the standard blood heparin concentration in patients undergoing extracorporeal circulation treatment. Therefore, when diluting blood about 100 times with physiological saline containing redox species, it was confirmed that only the MIP electrode reacts with heparin and increases the current. When the template enters the specific binding site formed by imprinting during graft polymerization, the polymer matrix partially shrinks, the porosity increases, and the electron transfer between the electrode and the redox marker becomes faster. This is thought to be because of this (FIG. 9). However, when the heparin concentration is high, it is considered that even a NIP electrode without a specific binding site is adsorbed by a simple electrostatic interaction, and the redox current is lowered due to steric hindrance (FIG. 10). It has been confirmed that the NIP electrode also reduces the current when the heparin concentration is high. Therefore, a dilution of about 100 times that of a blood sample is considered desirable for specific heparin detection in blood.
実施例3:
 図11に示すように、MIP固定電極を電気化学フローセルに取り付け、この電極に0.4Vの定電位を印加した。5mMのフェロシアン化カリウム及び0.1M硝酸カリウムを含む水溶液を流し続け、電流が安定した後に、バルブで流路を切り換え、ヘパリン濃度を0.00unit/mL~0.04unit/mLにステップ的に変化させた。この濃度変化に対する電流の変化を記録し、応答速度を評価した。
Example 3:
As shown in FIG. 11, a MIP fixed electrode was attached to the electrochemical flow cell, and a constant potential of 0.4 V was applied to this electrode. An aqueous solution containing 5 mM potassium ferrocyanide and 0.1 M potassium nitrate was kept flowing, and after the current was stabilized, the flow path was switched with a valve, and the heparin concentration was changed stepwise from 0.00 unit / mL to 0.04 unit / mL. The change in current with respect to this concentration change was recorded, and the response speed was evaluated.
 ヘパリン濃度を0.00unit/mL~0.04unit/mLへステップに変化させてからの経過時間と、共存する5mMのフェロシアン化カリウムの酸化電流の関係を図12に示す。濃度を切り換えてから電流値が安定するまでの時間は約15秒である。これは、活性化凝血時間(ACT)の測定に要する時間(400秒程度)に比べて非常に短い。上記の結果は、本発明のMIP固定電極を用いてヘパリン濃度をリアルタイムに検出できることを示すものである。 FIG. 12 shows the relationship between the elapsed time after changing the heparin concentration in steps from 0.00 unit / mL to 0.04 unit / mL and the oxidation current of coexisting 5 mM potassium ferrocyanide. The time from when the concentration is switched until the current value is stabilized is about 15 seconds. This is much shorter than the time required for measuring the activated clotting time (ACT) (about 400 seconds). The above results indicate that the heparin concentration can be detected in real time using the MIP fixed electrode of the present invention.
実施例4:
 ヘパリンを含むウシ全血を用いて、実施例1及び実施例2に記載の方法に準じて、本発明の分子インプリント高分子固定電極を作用電としてサイクリックボルタメトリーを行った。ここでは、ウシ全血は希釈せず、レドックス種も新たに添加しなかった。分子インプリント高分子固定電極は、実施例1で作製したMIP固定電極を使用した。
Example 4:
Cyclic voltammetry was performed using bovine whole blood containing heparin, using the molecularly imprinted polymer fixed electrode of the present invention as an electromotive force, according to the method described in Example 1 and Example 2. Here, bovine whole blood was not diluted and no new redox species was added. The MIP fixed electrode produced in Example 1 was used as the molecular imprinted polymer fixed electrode.
 得られたサイクリックボルタグラムを図13に示す。血液中では、生理食塩水に比べて高い陽電流が検出された。この電流は、アスコルビン酸や尿酸などのレドックス種が陽極酸化されることによって発生したと考えられる。この電流は、0~2.82unit/mLの範囲での全血中ヘパリン濃度の上昇によって減少した。ヘパリンに対するMIP薄膜のゲート効果によって、レドックス種の電極へのアクセシビリティーが減少したためと考えられる。体外循環手術中において血中ヘパリン濃度を監視するためには、サンプルに用いる血液の消費量を極力少なくすることが要求され、血液を消費せずに灌流血中のヘパリン濃度を直接監視することが望ましい。上記の結果は、指示薬を加えずにMIP固定電極でボルタメトリーを行うことによって、灌流血液中ヘパリン濃度を直接監視できることを示すものである。1.0 V程度の電圧印加では血液がダメージを受けることはなく、測定に使った血液は、患者の体に戻すことができる。本発明によれば、侵襲性の極めて小さい血液中ヘパリン濃度の監視が可能である。 The obtained cyclic voltagram is shown in FIG. A higher positive current was detected in the blood than in the physiological saline. This current is considered to be generated by anodizing redox species such as ascorbic acid and uric acid. This current decreased with increasing whole blood heparin concentration in the range of 0 to 2.82 units / mL. This is thought to be due to the reduced accessibility of redox electrodes due to the gate effect of the MIP thin film on heparin. In order to monitor blood heparin concentration during extracorporeal circulation surgery, it is required to minimize the consumption of blood used for the sample, and it is possible to directly monitor heparin concentration in perfused blood without consuming blood. desirable. The above results show that the heparin concentration in perfused blood can be directly monitored by performing voltammetry with a MIP fixed electrode without adding an indicator. When a voltage of about 1.0 V is applied, the blood is not damaged, and the blood used for the measurement can be returned to the patient's body. According to the present invention, it is possible to monitor a heparin concentration in blood that is extremely invasive.

Claims (13)

  1. 分子インプリント高分子を固定化した基板から構成される、抗凝固薬測定用センサ。 A sensor for measuring anticoagulant drugs composed of a substrate on which a molecularly imprinted polymer is immobilized.
  2. 分子インプリント高分子を固定化した基板が、分子インプリント高分子を固定化した電極である、請求項1に記載の抗凝固薬測定用センサ。 The sensor for measuring an anticoagulant according to claim 1, wherein the substrate on which the molecular imprinted polymer is immobilized is an electrode on which the molecularly imprinted polymer is immobilized.
  3. 分子インプリント高分子を固定化した基板が、開始剤を固定化した基板に機能性モノマーと架橋性モノマーと抗凝固薬を接触させて重合させることにより得られる基板である、請求項1又は2に記載の抗凝固薬測定用センサ。 The substrate on which the molecular imprint polymer is immobilized is a substrate obtained by bringing a functional monomer, a crosslinkable monomer, and an anticoagulant into contact with a substrate on which an initiator is immobilized, and polymerizing the substrate. A sensor for measuring an anticoagulant as described in 1.
  4. 機能性モノマーが、カチオン性モノマーである、請求項3に記載の抗凝固薬測定用センサ。 The anticoagulant measurement sensor according to claim 3, wherein the functional monomer is a cationic monomer.
  5. 機能性モノマーが、メタクリロキシエチルトリメチルアンモニウムクロライドである、請求項4に記載の抗凝固薬測定用センサ。 The sensor for measuring an anticoagulant according to claim 4, wherein the functional monomer is methacryloxyethyltrimethylammonium chloride.
  6. 架橋性モノマーが、メチレンビスアクリルアミドである、請求項3から5の何れか1項に記載の抗凝固薬測定用センサ。 The sensor for measuring an anticoagulant according to any one of claims 3 to 5, wherein the crosslinkable monomer is methylenebisacrylamide.
  7. 抗凝固薬が、ヘパリン類である、請求項1から6の何れか1項に記載の抗凝固薬測定用センサ。 The anticoagulant measurement sensor according to any one of claims 1 to 6, wherein the anticoagulant is heparin.
  8. 請求項1から7の何れか1項に記載の抗凝固薬測定用センサに、抗凝固薬を含有する試料を接触させ、信号の変化を検出することを含む、抗凝固薬の測定方法。 A method for measuring an anticoagulant, comprising: bringing a sample containing an anticoagulant into contact with the sensor for measuring an anticoagulant according to any one of claims 1 to 7 and detecting a change in a signal.
  9. 請求項2に記載の抗凝固薬測定用センサに、抗凝固薬を含有する試料をレドックスマーカーの存在下において接触させ、信号の変化として電流の変化を検出することを含む、抗凝固薬の測定方法。 An anticoagulant measurement method comprising: bringing a sample containing an anticoagulant into contact with the anticoagulant measurement sensor according to claim 2 in the presence of a redox marker, and detecting a change in current as a change in signal. Method.
  10. 体内に存在する物質をレドックスマーカーとして使用する、請求項9に記載の抗凝固薬の測定方法。 The method for measuring an anticoagulant according to claim 9, wherein a substance present in the body is used as a redox marker.
  11. 前記試料が全血または血液成分である、請求項8から10の何れか1項に記載の抗凝固薬の測定方法。 The method for measuring an anticoagulant according to any one of claims 8 to 10, wherein the sample is whole blood or a blood component.
  12. 請求項1から7の何れか1項に記載の抗凝固薬測定用センサに、抗凝固薬を含有する灌流血液を接触させ、信号の変化を検出することを含む、抗凝固薬の測定方法。 A method for measuring an anticoagulant, comprising: bringing a perfusion blood containing an anticoagulant into contact with the sensor for measuring an anticoagulant according to any one of claims 1 to 7 and detecting a change in a signal.
  13. 抗凝固薬が、ヘパリン類である、請求項8から12の何れか1項に記載の抗凝固薬の測定方法。 The method for measuring an anticoagulant according to any one of claims 8 to 12, wherein the anticoagulant is heparin.
PCT/JP2012/056807 2011-03-16 2012-03-16 Sensor for anticoagulant assay WO2012124800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013504782A JP5946139B2 (en) 2011-03-16 2012-03-16 Anticoagulant measurement sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011057478 2011-03-16
JP2011-057478 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124800A1 true WO2012124800A1 (en) 2012-09-20

Family

ID=46830859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056807 WO2012124800A1 (en) 2011-03-16 2012-03-16 Sensor for anticoagulant assay

Country Status (2)

Country Link
JP (1) JP5946139B2 (en)
WO (1) WO2012124800A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926291A (en) * 2014-05-06 2014-07-16 济南大学 Preparation method and application of molecular imprinting sensor for detecting apigenin
JP2016161505A (en) * 2015-03-04 2016-09-05 学校法人 芝浦工業大学 Sensor using molecularly imprinted polymer thin film
WO2017163715A1 (en) * 2016-03-25 2017-09-28 株式会社Provigate High-sensitivity biosensor and method for producing same
WO2018155369A1 (en) * 2017-02-21 2018-08-30 株式会社Provigate High-sensitivity biosensor
WO2022064960A1 (en) * 2020-09-23 2022-03-31 国立大学法人神戸大学 Base material for manufacturing sensor for analyzing detection object, sensor for analyzing detection object, and method for analyzing detection object
US11913899B2 (en) 2016-12-20 2024-02-27 Shibaura Institute Of Technology Sensor using particles coated with molecularly imprinted polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321515A (en) * 2002-02-26 2003-11-14 Sekisui Chem Co Ltd Bile acid-adsorbing polymer and hypocholesterolemic agent
JP2005533146A (en) * 2002-07-13 2005-11-04 クランフィールド ユニヴァーシティー Molecularly imprinted polymer material
JP2010508499A (en) * 2006-10-31 2010-03-18 エフ.ホフマン−ラ ロシュ アーゲー Method and apparatus for electrochemical measurement of factor XA inhibitors in blood samples
JP2010227601A (en) * 1998-04-30 2010-10-14 Abbott Diabetes Care Inc Analyte monitoring device and methods of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227601A (en) * 1998-04-30 2010-10-14 Abbott Diabetes Care Inc Analyte monitoring device and methods of use
JP2003321515A (en) * 2002-02-26 2003-11-14 Sekisui Chem Co Ltd Bile acid-adsorbing polymer and hypocholesterolemic agent
JP2005533146A (en) * 2002-07-13 2005-11-04 クランフィールド ユニヴァーシティー Molecularly imprinted polymer material
JP2010508499A (en) * 2006-10-31 2010-03-18 エフ.ホフマン−ラ ロシュ アーゲー Method and apparatus for electrochemical measurement of factor XA inhibitors in blood samples

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKISATO NARIMATSU: "GLUCOSE SENSOR USING GATE EFFECT OF THIN LAYER OF MOLECULARLY IMPRINTED POLYMER", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO, vol. CHS-07, no. 23-48, 2 July 2007 (2007-07-02), pages 5 - 8 *
HIROYUKI ANDO: "Bunshi Imprint Polymer Usumaku Kotei Denkyoku no Sensing Noryoku to Tokui Ketsugono no Kankei", ABSTRACTS OF 76TH ANNUAL MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, vol. 76, 22 February 2011 (2011-02-22), JAPAN, pages L207 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926291A (en) * 2014-05-06 2014-07-16 济南大学 Preparation method and application of molecular imprinting sensor for detecting apigenin
CN103926291B (en) * 2014-05-06 2016-04-20 济南大学 A kind of preparation method and application detecting the molecular engram sensor of apiolin
JP2016161505A (en) * 2015-03-04 2016-09-05 学校法人 芝浦工業大学 Sensor using molecularly imprinted polymer thin film
WO2016140337A1 (en) * 2015-03-04 2016-09-09 学校法人 芝浦工業大学 Sensor using molecularly imprinted polymer thin film
JPWO2017163715A1 (en) * 2016-03-25 2019-01-31 株式会社Provigate High-sensitivity biosensor and manufacturing method thereof
WO2017163715A1 (en) * 2016-03-25 2017-09-28 株式会社Provigate High-sensitivity biosensor and method for producing same
US10996194B2 (en) 2016-03-25 2021-05-04 Provigate Inc. High-sensitivity biosensor and method for producing the same
US11913899B2 (en) 2016-12-20 2024-02-27 Shibaura Institute Of Technology Sensor using particles coated with molecularly imprinted polymer
WO2018155369A1 (en) * 2017-02-21 2018-08-30 株式会社Provigate High-sensitivity biosensor
US11630077B2 (en) 2017-02-21 2023-04-18 Provigate Inc. High-sensitivity biosensor
WO2022064960A1 (en) * 2020-09-23 2022-03-31 国立大学法人神戸大学 Base material for manufacturing sensor for analyzing detection object, sensor for analyzing detection object, and method for analyzing detection object
JPWO2022064960A1 (en) * 2020-09-23 2022-03-31
JP7216460B2 (en) 2020-09-23 2023-02-01 国立大学法人神戸大学 Base material for producing sensor for analysis of detection target, sensor for analysis of detection target, and analysis method for detection target

Also Published As

Publication number Publication date
JP5946139B2 (en) 2016-07-05
JPWO2012124800A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5946139B2 (en) Anticoagulant measurement sensor
Sun et al. Preparation of hemoglobin (Hb) imprinted polymer by Hb catalyzed eATRP and its application in biosensor
EP2122353A1 (en) Sensor
Cetinkaya et al. A green synthesis route to develop molecularly imprinted electrochemical sensor for selective detection of vancomycin from aqueous and serum samples
WO2016140337A1 (en) Sensor using molecularly imprinted polymer thin film
CN111801425A (en) Biocompatible coatings for continuous analyte measurement
Zhao et al. Preparation of surface-imprinted polymer grafted with water-compatible external layer via RAFT precipitation polymerization for highly selective and sensitive electrochemical determination of brucine
WO2015001050A2 (en) Electrochemical aptasensors with a gelatin b matrix
WO2020099560A1 (en) Electrochemical sensor system comprising molecularly imprinted polymer for early warning of urinary tract infections
Sun et al. Fabrication of glucose biosensor for whole blood based on Au/hyperbranched polyester nanoparticles multilayers by antibiofouling and self-assembly technique
El-Sharif et al. Application of thymine-based nucleobase-modified acrylamide as a functional co-monomer in electropolymerised thin-film molecularly imprinted polymer (MIP) for selective protein (haemoglobin) binding
Dou et al. A highly sensitive quartz crystal microbalance sensor modified with antifouling microgels for saliva glucose monitoring
Tiwari et al. An enzyme-free highly glucose-specific assay using self-assembled aminobenzene boronic acid upon polyelectrolytes electrospun nanofibers-mat
JP7253230B2 (en) sweat component sensor
JP4932848B2 (en) Sensor
Dabrowski et al. Surface enhancement of a molecularly imprinted polymer film using sacrificial silica beads for increasing L-arabitol chemosensor sensitivity and detectability
Laza et al. Electrochemical determination of progesterone in calf serum samples using a molecularly imprinted polymer sensor
DK2155047T3 (en) MULTI-LAYER CUSHION AND methods of use thereof
Ishii et al. Designing Molecularly Imprinted Polymer-Modified Boron-Doped Diamond Electrodes for Highly Selective Electrochemical Drug Sensors
Özdaş et al. Neopterin-Imprinted Columns for Selective Neopterin Recognition from Serum and Urine Samples
WO2018117067A1 (en) Sensor utilizing particles having molecularly imprinted polymer on surface thereof
Yoshimi et al. Stabilized sensing of heparin in whole blood using the ‘gate effect’of heparin-imprinted polymer grafted onto an electrode
JP2016148589A (en) Gel for sensor and sensor
JP5403520B2 (en) Electrospun fiber mat composite and glucose sensor
Yao et al. Biomimetic bulk acoustic wave sensor for determination of trimethoprim in the organic phase based on a molecular imprinting polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757847

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013504782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757847

Country of ref document: EP

Kind code of ref document: A1