WO2012124225A1 - エネルギー需要予測装置及び方法 - Google Patents
エネルギー需要予測装置及び方法 Download PDFInfo
- Publication number
- WO2012124225A1 WO2012124225A1 PCT/JP2011/078684 JP2011078684W WO2012124225A1 WO 2012124225 A1 WO2012124225 A1 WO 2012124225A1 JP 2011078684 W JP2011078684 W JP 2011078684W WO 2012124225 A1 WO2012124225 A1 WO 2012124225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- energy demand
- information
- demand prediction
- human
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 10
- 238000004458 analytical method Methods 0.000 claims abstract description 49
- 238000010191 image analysis Methods 0.000 claims abstract description 18
- 230000007613 environmental effect Effects 0.000 claims description 29
- 238000012937 correction Methods 0.000 claims description 9
- 230000009469 supplementation Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 238000013277 forecasting method Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000004378 air conditioning Methods 0.000 description 7
- 230000006399 behavior Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 239000013589 supplement Substances 0.000 description 5
- 241000282412 Homo Species 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/02—Reservations, e.g. for tickets, services or events
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Definitions
- Embodiments of the present invention relate to an apparatus and a method for predicting energy demand of various facilities.
- thermometer Measurement values of physical sensors such as hygrometers, illuminance meters, and power data are used.
- Embodiment of this invention aims at providing the energy demand prediction apparatus and method which make energy demand prediction highly accurate.
- the energy demand prediction apparatus includes an image analysis unit and a prediction unit.
- the image analysis unit generates analysis data including at least one of human information and environmental information of the prediction target area based on the image data acquired by the image sensor.
- a prediction part performs energy demand prediction based on analysis data and the energy demand prediction model produced
- FIG. 1 is a block diagram illustrating an example of the configuration of the energy demand prediction apparatus according to the first embodiment.
- FIG. 2 is a block diagram illustrating an example of an energy demand prediction system including the energy demand prediction apparatus according to the first embodiment.
- FIG. 3 is a block diagram illustrating an example of an environment model generation unit and an environment analysis unit according to the second embodiment.
- FIG. 4 is a block diagram illustrating an example of a human model generation unit and a human analysis unit according to the third embodiment.
- FIG. 5 is a block diagram illustrating an example of the configuration of the energy demand prediction apparatus according to the fourth embodiment.
- image data acquired by the image sensor is analyzed, image analysis data including at least one of human information and environmental information that dynamically change in the energy demand prediction area is generated, and image analysis is performed.
- An energy demand prediction apparatus that performs energy demand prediction based on data will be described.
- information such as temperature, humidity, weather, schedule, and power usage may be further used to execute energy demand prediction.
- the energy demand prediction apparatus accurately measures data such as environmental information, power consumption, human behavior information, and the like in the energy demand prediction area by analyzing image data, and provides high-precision energy. Realize demand forecast.
- FIG. 1 is a block diagram showing an example of the configuration of the energy demand prediction apparatus according to the present embodiment.
- the energy demand prediction apparatus 1 includes an input control unit 2, a processor 3, a storage device 4, and an output control unit 5.
- the processor 3 functions as the image analysis unit 7, the prediction unit 8, and the device control unit 24 by executing the program 6 stored in the storage device 4.
- the image analysis unit 7, the prediction unit 8, and the device control unit 24 may be implemented in the energy demand prediction device 1 by hardware.
- the energy demand prediction apparatus 1 includes energy demands from an image sensor 9, an infrared sensor 10, a laser sensor 11, measuring devices 121 to 12n, a building automation system (BAS: building monitoring system) 13, and an environmental management system (EMS) 14. It is connected so that various data regarding the prediction area can be received. Further, the energy demand prediction device 1 is connected to the output device 15 and the devices 251 to 25m to be controlled.
- an image sensor 9 an infrared sensor 10
- a laser sensor 11 measuring devices 121 to 12n
- BAS building monitoring system
- EMS environmental management system
- the image sensor 9 is, for example, a camera, a photographing device, a visible camera, or the like.
- the infrared sensor 10 is, for example, an infrared camera.
- the laser sensor 11 measures laser light.
- the laser sensor 11 is, for example, a laser camera.
- the devices 121 to 12n are physical sensors such as thermometers, hygrometers, illuminance meters, power meters, and other devices, for example.
- the devices 121 to 12n acquire temperature, humidity, illuminance, power information, weather information, schedule information, and the like.
- the building automation system 13 controls, monitors, and manages air conditioning, heat sources, lighting, power reception and transformation, disaster prevention, security, etc. in the building.
- the environmental management system 14 manages the environment in the energy demand prediction area.
- the devices 251 to 25m are devices to be controlled installed in an energy demand prediction area such as an air conditioner, a lighting device, a blind drive device, a curtain drive device, and the like.
- the input control unit 2 stores image data 16, infrared image data (infrared measurement data) 17, and laser image data (laser measurement data) 18 acquired by the image sensor 9, the infrared sensor 10, and the laser sensor 11 in the storage device 4.
- the input control unit 2 stores the device data 191 to 19n acquired by the devices 121 to 12n in the storage device 4.
- the input control unit 2 inputs the BAS data 20 of the building automation system 13 and the EMS data 21 of the environmental management system 14 and stores them in the storage device 4.
- the image analysis unit 7 performs analysis processing on the image data 16, infrared image data 17, and laser image data 18 stored in the storage device 4, and generates analysis data 22 including human information 22a and environment information 22b.
- the analysis data 22 is stored in the storage device 4.
- the image analysis unit 7 executes functions as a human information generation unit 7a and an environment information generation unit 7b.
- the human information generation unit 7a extracts a feature amount from the image data 16, the infrared image data 17, and the laser image data 18, executes a recognition process based on the extracted feature amount and a set determination criterion, and the like. Information 22a is generated.
- Human information 22a includes the presence / absence of humans in the energy demand prediction area, the number of humans, human distribution / density, human activity, human clothing, human attributes (name, gender, physique, height, age, etc.), It includes human posture (standing position, sitting position, etc.), human action state (during office work, moving, talking, etc.), specific information of individual humans staying in the energy demand prediction area, and the like.
- the environment information generation unit 7b extracts feature amounts from the image data 16, the infrared image data 17, and the laser image data 18, and executes recognition processing based on the extracted feature amounts and the set determination criteria, and the like. Information 22b is generated.
- the environment information 22b includes light information such as illuminance, amount of solar radiation, blind opening / closing amount, sunlight incident state, presence / absence of office equipment, position, number, entrance / exit of office, position and number of windows, position of passage, etc. , Location and number of heat sources and power consuming equipment, weather information, etc.
- the prediction unit 8 executes energy demand prediction based on the analysis data 22, the device data 191 to 19n, the BAS data 20, the EMS data 21, and the energy demand prediction model (prediction formula) stored in the storage device 4. Then, the prediction data 23 is generated. Then, the prediction unit 8 stores the prediction data 23 in the storage device 4. As described above, by using the dynamically changing analysis data 22 for the energy demand prediction, a flexible and highly accurate prediction can be performed.
- the energy demand prediction model includes past data including past analysis data 22, past equipment data 191 to 19n, past BAS data 20, and past EMS data 21, and past energy consumption corresponding to the past data. Based on. By using the energy demand prediction model, it is possible to predict future energy (electric power) demand.
- the device control unit 24 sets the energy demand prediction area based on the prediction data 23 stored in the storage device 4, the human information 22a and environment information 22b of the analysis data 22, the device data 191 to 19n, and the control setting data 26. Control processing is performed on the related devices 251 to 25m to be controlled, and control data 27 including at least one of a control command and a control value for the devices 251 to 25m is generated. Then, the device control unit 24 stores the control data 27 in the storage device 4.
- control setting data 26 includes user information for a human individual, personal attribute data, and personal comfort status information. Further, the control setting data 26 includes control values corresponding to human action states (hot operation, cold operation, desk work, standing up, walking).
- the device control unit 24 generates control data 27 based on the prediction data 23 so that the energy demand falls below a predetermined value. Thereby, energy saving, energy creation, and energy storage can be realized.
- the device control unit 24 also includes control information including human information 22a of the analysis data 22 stored in the storage device 4, user information, attribute data, human personal comfort state information, and control values corresponding to human actions. Based on the data 26, control data 27 for the devices 251 to 25m may be generated.
- the device control unit 24 identifies an individual based on the human information 22a, and generates control data 27 for implementing a comfortable state set for the individual in the control setting data 26.
- the device control unit 24 performs control based on a human action state (hot operation, cold operation, desk work, standing up, walking) included in the human information 22a.
- Control data 27 for executing control set for this behavioral state in the setting data 26 may be generated.
- the output control unit 5 outputs the prediction data 23 and other various data stored in the storage device 4 to the output device 15.
- the output control unit 5 outputs the control data 27 stored in the storage device 4 to the devices 251 to 25m.
- the output device 15 is, for example, a display device, a sound output device, a communication device, and the like, and displays, outputs a sound, and transmits the prediction data 23 and other various data.
- the devices 251 to 25m operate based on the control data 27.
- the devices 251 to 25m are, for example, air conditioning devices, lighting devices, blind drive devices, and the like.
- FIG. 2 is a block diagram illustrating an example of an energy demand prediction system including the energy demand prediction apparatus 1 according to the present embodiment.
- the image sensors 91 and 92 are installed for the energy demand prediction areas 281 and 282, respectively.
- the image sensors 91 and 92 are installed, for example, on the ceiling of the office or outdoors, and take pictures of the office.
- the image sensors 91 and 92 may be a visible camera, an infrared camera, or the like.
- Image data 16 acquired by the image sensors 91 and 92 is stored in a memory area prepared in advance.
- the image analysis unit 7 of the image processing server 29 analyzes the captured image data 16 and generates human information 22a and environment information 22b.
- the image processing server 29 transmits the human information 22a and the environment information 22b to the building automation system 13. Note that the function of the image analysis unit 7 may be included in the image sensors 91 and 92. In this case, the image processing server 29 can be deleted.
- the building automation system 13 uses the human information 22a and the environment information 22b to generate the prediction data 23 by the prediction unit 8 and perform device control by the device control unit 24.
- the prediction unit 8 is based on the BAS data 20 such as the human information 22a, the environment information 22b, the device data 191 to 19n from other devices 121 to 12n, the device usage status and the power usage used by the building automation system 13.
- the energy demand forecast is executed.
- the building management such as the judgment of the quality of human behavior and the energy demand prediction by the prediction unit 8 may be executed by another computer instead of the building automation system 13.
- the device control unit 24 identifies an individual staying in the energy demand prediction areas 281 and 282 based on the human information 22a. In addition, the device control unit 24 identifies an individual state (hot, cold, etc.) and behavior (during desk work, standing up, walking, etc.) based on the human information 22a. Furthermore, the device control unit 24 performs device control suitable for each individual attribute, state, action, and preference based on the individual attribute and preference information set in the control setting data 26.
- Control data 27 obtained as a result of device control is transmitted to devices 251 to 25m to be controlled, such as air conditioning devices, lighting devices, blind drive devices, and the like.
- the energy demand prediction model includes human information 22a and environmental information 22b in addition to information such as power consumption, weather, temperature, and schedule (weekdays, holidays, and special days). Based on the above, the energy demand can be predicted.
- the energy demand prediction model is constructed using statistical prediction based on past data, derivation of regression equations for past data, use of physical formulas based on theory, and the like. For example, the prediction by the energy demand prediction model is performed in real time with high accuracy.
- the energy demand prediction model constructed with reference to past data performs future energy demand prediction based on the current data in the energy demand prediction areas 281 and 282.
- data acquired by the image sensor 9, the infrared sensor 10, and the laser sensor 11 are used for image analysis, but it is not always necessary to use all these data.
- any one or more of the image sensor 9, the infrared sensor 10, and the laser sensor 11 may be installed.
- Two or more sensors may be installed for any one or more of the image sensor 9, the infrared sensor 10, and the laser sensor 11.
- data acquired by other sensors such as a thermo sensor (heat source detection sensor) may be used for image analysis.
- One or more data among the acquired data may be selected and used for image analysis.
- human information 22a is generated mainly using the image sensor 9, and a demand response (for example, energy consumption from an electric power company) is generated based on the human information 22a.
- a demand response for example, energy consumption from an electric power company
- human information 22a is generated using a sensor that detects the presence of a human based on technologies such as a thermosensor, a laser sensor 11, and wireless communication, and this human information 22a is used to cope with a demand response. It may be used for processing and demand forecasting.
- energy demand is calculated based on the human information 22a and the environmental information 22b generated based on the image data 16 in addition to the device data 191 to 19n acquired by the device sensors 121 to 12n.
- a prediction is made. Thereby, prediction accuracy can be improved.
- the image sensor 9 and the image analysis unit 7 it is possible to increase effective information used for energy demand prediction without installing various other types of sensors, and to dynamically change information It can be used effectively for prediction and cost can be reduced.
- the human information 22a based on the device data 191 to 19n, the human information 22a, the environment information 22b, and the control setting data 26, device control that matches the recognized personal attributes and reflects personal preferences is performed. be able to.
- accurate and abundant analysis data 22, device data 191 to 19n, BAS data 20, and EMS data 21 can be used as past data and current data.
- information such as temperature and humidity measured using physical sensors such as the device sensors 121 to 12n, power information such as power usage amounts of the devices 251 to 25m in the energy demand prediction area, and the image sensor 9
- a highly accurate energy demand prediction model can be constructed using the human information 22a and the environment information 22b acquired based on the above.
- energy demand prediction can be performed at year, month, day, time, second intervals, or in real time, and energy demand control that maintains an optimal energy balance can be performed.
- energy demand prediction can be performed in units of various energy demand prediction areas 281 and 282 such as buildings, floors, areas, and zones.
- the power information can be measured or acquired by the building automation system 13 or a power meter. Furthermore, in this embodiment, the power usage state of each device can be estimated for each energy demand prediction area 281 and 282 based on at least one of the human information 22a and the environment information 22b.
- the device control unit 24 can select a device that is not used but is turned on, based on the image data 16 from the image sensor 9, and can turn off the power of the selected device. . Therefore, in the present embodiment, the device control unit 24 can flexibly cope with the demand response.
- the environment information 22b includes light information such as illuminance, amount of solar radiation, amount of blind opening / closing, amount of incident sunlight, presence / absence / position / number of office equipment, position / number of doorways and windows, passage position, etc. Layout information, location and number of heat-consuming and power-consuming items, weather information, etc.
- the environmental information 22b is acquired by analyzing the image data 16 of the image sensor 9 installed in the office. For example, in the case of illuminance, it is obtained by setting in advance what luminance distribution is to be obtained on the image data 16 under a certain object condition.
- the luminance corresponding to the illuminance is compiled into a database. Learning or updating related to the calculation of illuminance is performed using the illuminance and luminance stored in the database.
- the environment information generation unit 7b first recognizes the position of the blind by object recognition or manual input with respect to the image data 16. Then, the environment information generation unit 7b detects a blind change in the image data 16, and recognizes the opening / closing amount and opening / closing angle of the blind. The blind state, the opening / closing amount, and the opening / closing angle obtained from the image data 16 are compiled into a database. Learning or updating the recognition of the blind opening / closing amount and the opening / closing angle is performed using the blind state, the opening / closing amount, and the opening / closing angle of the image data 16 stored in the database.
- the presence / absence, position, persistence, and office layout information of the office equipment are obtained by performing recognition processing of an object such as office equipment on the image data 16.
- the environment information generation unit 7b uses representative object measurement devices (desks, chairs, displays, PCs, printers, partitions, whiteboards, etc.) by using object shape measurement, object arrangement relationships, or learning techniques. Recognize Although the orientation and size of the object in the image data 16 change according to the positional relationship between the image sensor 9 and the object, the environment information generation unit 7b uses various learning techniques to absorb this difference and correct the object. Recognize This eliminates the need for the user to manually input information for changing the office layout, and the environment information generating unit 7b can automatically grasp a new layout instantly.
- the image sensor 9 can be installed outdoors.
- the environment information generation unit 7b can generate the weather, the space information of the analysis target building, and the layout information of the surrounding buildings by analyzing the outdoor image data 16. Moreover, the environment information generation part 7b can generate
- the various information included in the environment information 22b may be obtainable from various dedicated sensors. However, by analyzing the image data 16 obtained by the image sensor 9 and acquiring various kinds of information, it is not necessary to provide individual dedicated sensors, so that the cost can be reduced.
- the environmental information 22b layout information, weather information, and the like can be acquired by human manual input, but by using the image sensor 9, such information can be acquired in real time, Save time and effort.
- the environment information generation unit 7b can calculate and estimate a certain measured value, a specified range of measured values, an entire room value, an entire floor value, and an entire building value as the environmental information 22b. is there.
- FIG. 3 is a block diagram illustrating an example of the environment model generation unit and the environment analysis unit according to the present embodiment.
- the components not described in FIG. 1 are mainly illustrated.
- the processor 3 implements functions as the environment model generation unit 30 and the environment analysis unit 31 by executing the program 6 which is omitted in FIG.
- the environmental model generation unit 30 generates an environmental model 32 in the energy demand prediction area by using a model automatic generation technique (for example, a model automatic generation tool) based on the environment information 22b stored in the storage device 4.
- a model automatic generation technique for example, a model automatic generation tool
- the environment model 32 represents features and characteristics of the environment.
- the environmental model generation unit 30 stores the environmental model 32 in the storage device 4.
- the environment analysis unit 31 generates environment analysis data 33 by executing restoration of a three-dimensional space, estimation of temperature and humidity, estimation of heat and wind, air conditioning simulation, and the like based on the environment model 32. Then, the environment analysis unit 31 stores the environment analysis data 33 in the storage device 4.
- the output control unit 5 outputs the environment analysis data 33 to the output device 15 which is omitted in FIG.
- an environmental model 32 is constructed based on the environmental information 22b, and based on the environmental model 32, restoration of a three-dimensional space related to the environment, estimation of temperature and humidity, estimation of heat and wind, air conditioning simulation, etc. It can be carried out.
- the environment information 22b may be used in combination with various types of information acquired by a normal sensor (for example, indoor / outdoor temperature / humidity, wind speed, CO 2 concentration, weather, etc.) and information from the building automation system 13. .
- a normal sensor for example, indoor / outdoor temperature / humidity, wind speed, CO 2 concentration, weather, etc.
- the environmental information 22b can improve the measurement accuracy by using the human information 22a.
- the environment analysis unit 31 may be able to predict the status of other floors from the status of some floors based on the environmental information 22b.
- the human information 22a includes the presence / absence or number of persons in the energy demand prediction area, the human distribution, the amount of activity, the amount of clothes, attributes (name, gender, physique, height, age, etc.), posture (standing position, Sitting position, etc.) and behavior (office work, movement, conversation, etc.).
- the human information 22a is acquired by analyzing the image data 16 of the image sensor 9 installed in the office.
- the human information generation unit 7a extracts a human motion by analyzing a change in luminance of the image data 16 in the time and space directions.
- the human information generation unit 7a identifies humans and other objects, and identifies actions and behaviors.
- the identification targets by the human information generation unit 7a are stored in a database, and a learning technique is applied to the identification by the human information generation unit 7a.
- the human information generation unit 7a can calculate and estimate a certain measured value, a specified range of measured values, an entire room value, an entire floor value, and an entire building value. .
- FIG. 4 is a block diagram illustrating an example of a human model generation unit and a human analysis unit according to the present embodiment.
- the components not described in FIG. 1 are mainly illustrated.
- the processor 3 realizes functions as the human model generation unit 34 and the human analysis unit 35 by executing the program 6 omitted in FIG.
- the human model generation unit 34 generates the human model 36 in the energy demand prediction area by the model automatic generation technology based on the human information 22a stored in the storage device 4.
- the human model 36 represents human features / characteristics. Then, the human model generation unit 34 stores the human model 36 in the storage device 4.
- the human analysis unit 35 generates human analysis data 37 by executing human behavior prediction, air conditioning / lighting simulation according to human movement, and the like based on the human model 36. Then, the human analysis unit 35 stores the human analysis data 37 in the storage device 4.
- the output control unit 5 outputs human analysis data 37 to the output device 15.
- the human model 36 in the energy demand prediction target area is constructed based on the human information 22a, and based on the human model 36, behavior prediction, air conditioning / lighting simulation corresponding to human movement, and the like are performed. Can do.
- the human information 22a may be used in combination with information from the building central monitoring system, the entrance / exit management system, and the security system.
- the human information 22a can improve the measurement accuracy by using the environment information 22a.
- the human analysis unit 35 may be able to predict the status of other floors from the status of some floors regarding the human information 22a.
- FIG. 5 is a block diagram showing an example of the configuration of the energy demand prediction apparatus according to the present embodiment. In FIG. 5, only the part not shown in FIG. 1 is mainly shown.
- the processor 3 functions as a model selection unit 38, a coefficient correction unit 39, an update unit 40, a data supplement unit 41, and a singular day determination unit 42 by executing the program 6 omitted in FIG. These will be described below.
- Model selection unit 38 The storage device 4 stores a plurality of energy demand prediction models 431 to 43k and model feature data 441 to 44k indicating the characteristics of the plurality of energy demand prediction models 431 to 43k.
- the plurality of energy demand prediction models 431 to 43k and the corresponding model feature data 441 to 44k are associated with each other.
- the model feature data 441 to 44k is used as a reference for selecting an appropriate model from the plurality of energy demand prediction models 431 to 43k.
- the model selection unit 38 Based on the data such as the current (latest) human information 22a, environmental information 22b, and device data 191 to 19n, the model selection unit 38 matches the content indicated by the current data from the model feature data 441 to 44k. Model feature data to be selected. Then, the model selection unit 38 selects an energy demand prediction model corresponding to the selected model feature data.
- the prediction unit 8 performs energy demand prediction based on the energy demand prediction model selected by the model selection unit 38.
- a plurality of energy demand prediction models are prepared in accordance with past data trends.
- an optimum energy demand prediction model in the current energy demand prediction area can be selected from a plurality of energy demand prediction models 431 to 43k. For example, even if the past data referenced in the construction of a certain energy demand prediction model and the current weather or season are the same, if the number of people in the room is different at the time of model construction and the present, the model selection unit 38 Priority is given to the number of people rather than the past weather or season, and an energy prediction model that matches the number of people is selected.
- the coefficient correction unit 39 automatically corrects the coefficients of the energy demand prediction models 431 to 43k based on the acquired data such as the human information 22a, the environment information 22b, and the device data 191 to 19n. Thereby, prediction accuracy can be improved.
- the coefficient correction unit 39 determines the energy demand based on current information such as increase / decrease in the number of people on the building floor, weather or cloud conditions, incident light from the sun, and information including time-series changes. Coefficient correction of the prediction models 431 to 43k is performed. For example, when the number of people on the floor increases rapidly, the coefficient correction unit 39 adjusts the coefficient for the number of people, constructs an energy demand prediction model that matches the current situation, and shifts between the actual energy demand and the predicted value. Minimize.
- the update unit 40 updates (sequentially updates) the energy demand prediction models 431 to 43k each time a predetermined period elapses based on data such as the current human information 22a, environment information 22b, and device data 191 to 19n. For example, the update unit 40 sequentially updates the energy demand prediction models 431 to 43k using the data acquired on the previous day, the data acquired one hour ago, and the data acquired one minute ago.
- Various model automatic generation techniques can be used to update the energy demand prediction models 431 to 43k.
- the energy demand prediction models 431 to 43k are sequentially updated by using the device data 191 to 19n such as power information and weather information as well as the human information 22a and the environment information 22b acquired by the image sensor. Therefore, prediction accuracy can be improved.
- the data replenishment unit 41 calculates replenishment data 45 effective for energy demand prediction based on the acquired human information 22a, environment information 22b, device data 191 to 19n, and the like.
- the data supplementation unit 41 stores supplementary data 45 in the storage device 4.
- various components such as the model selection unit 38, the coefficient correction unit 39, the update unit 40, and the like execute processing using the supplement data 45 calculated by the data supplement unit 41.
- the data supplementation unit 41 determines the power of each device 251 to 25m based on the power information that can be acquired, the human information 22a, the environment information 22b, and the like. Estimate usage.
- the data replenishment unit 41 determines that the personal computer placed in front of the person who is working is powered on, and estimates the power consumption from the enrollment time. For printers and copiers, the power consumption is estimated in the same way as for personal computers.
- the data supplementation unit 41 estimates the power usage of each room from the power usage of the entire floor and the occupancy status of each room.
- the data replenishing unit 41 can estimate or predict the usage status of office equipment based on the layout of each room and the distribution of the number of people, and reflect it in the energy demand prediction.
- the data supplementation unit 41 estimates or calculates the measurement items for the area where the sensor is not installed based on the data of the area where the sensor is installed.
- the number of people in an area where no image sensor is installed can be calculated by estimating the flow of people based on human information acquired from surrounding image sensors.
- the singular day determination unit 42 executes processing such as comparison with a threshold value based on the acquired data such as the human information 22a, the environment information 22b, and the device data 191 to 19n, and determines whether or not it is a singular day. Judgment or prediction of specific dates. Then, the unique day determination unit 42 stores the unique day determination data 46 indicating the determination result in the storage device 4.
- various components such as the model selection unit 38, the coefficient correction unit 39, the update unit 40, the data supplement unit 41, and the like execute processing using the specific day determination data 46.
- the singular day determination unit 42 determines or predicts the singular day based on the image data 16 acquired by the image sensor 9. Thereby, it is possible to cope with unexpected energy demand fluctuations in advance.
- the peculiar day determination unit 42 uses the increase / decrease in the number of people, the flow of people, the number of people moved, the number of people on each floor, the time series changes of these, etc. Make a judgment or prediction of the day. Thereby, it is possible to predict the energy demand trend in the entire building, the entire floor, and the entire room, and the accuracy of the energy demand prediction for the entire building can be improved.
- the energy demand prediction model can be switched in the case of a specific day.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Tourism & Hospitality (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Air Conditioning Control Device (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
実施形態に係るエネルギー需要予測装置1は、画像解析部7、予測部8を含む。画像解析部7は、画像センサ9によって取得された画像データ16に基づいて、予測対象エリアの人間情報22aと環境情報22bとのうちの少なくとも一方を含む解析データ22を生成する。予測部8は、解析データ22と、解析データ22に対応する過去データを用いて生成されたエネルギー需要予測モデルとに基づいて、エネルギー需要予測を実行し、予測データ23を生成する。
Description
本発明の実施形態は、各種設備のエネルギー需要を予測する装置及び方法に関する。
近年、地球温暖化防止及び環境負荷低減が注目されている。例えばビル、工場、プラントなどのような設備に備えられている省エネルギー、創エネルギー、蓄エネルギーのための装置の能力を活用し、無駄の少ない効率的なエネルギー管理を行うことが要求されている。
需要制御などのようなエネルギー管理を行うためには、高精度なエネルギー需要予測が必要である。
エネルギー需要予測の一例として、電力使用量、天候、気温、スケジュール(平日、休日、特異日)などの情報に基づいてエネルギー需要予測を行う方法がある
この従来のエネルギー需要予測では、例えば温度計、湿度計、照度計、電力データなどのような、物理的なセンサの計測値が用いられている。
この従来のエネルギー需要予測では、例えば温度計、湿度計、照度計、電力データなどのような、物理的なセンサの計測値が用いられている。
しかしながら、物理的なセンサの計測値のみでエネルギー需要予測を行うと、精度が不十分な場合がある。
本発明の実施形態は、エネルギー需要予測を高精度化するエネルギー需要予測装置及び方法を提供することを目的とする。
実施形態によれば、エネルギー需要予測装置は、画像解析部と予測部とを含む。画像解析部は、画像センサによって取得された画像データに基づいて、予測対象エリアの人間情報と環境情報とのうちの少なくとも一方を含む解析データを生成する。予測部は、解析データと、解析データに対応する過去データを用いて生成されたエネルギー需要予測モデルとに基づいて、エネルギー需要予測を実行し、予測データを生成する。
る。
図5は、第4の実施形態に係るエネルギー需要予測装置の構成の一例を示すブロック図である。
以下、図面を参照しながら本発明の各実施の形態について説明する。なお、以下の各図において同一又はほぼ同一の要素には同一の符号を付して説明を省略するか又は簡単に説明し、異なる部分についてのみ詳しく説明する。
(第1の実施形態)
本実施形態においては、画像センサによって取得された画像データを解析し、エネルギー需要予測エリアにおいて動的に変化する人間情報と環境情報とのうちの少なくとも一方を含む画像解析データを生成し、画像解析データに基づいてエネルギー需要予測を実行するエネルギー需要予測装置について説明する。さらに、本実施形態においては、画像解析データに加えて、例えば、温度、湿度、天候、スケジュール、電力使用量などの情報をさらに用いて、エネルギー需要予測を実行してもよい。
本実施形態においては、画像センサによって取得された画像データを解析し、エネルギー需要予測エリアにおいて動的に変化する人間情報と環境情報とのうちの少なくとも一方を含む画像解析データを生成し、画像解析データに基づいてエネルギー需要予測を実行するエネルギー需要予測装置について説明する。さらに、本実施形態においては、画像解析データに加えて、例えば、温度、湿度、天候、スケジュール、電力使用量などの情報をさらに用いて、エネルギー需要予測を実行してもよい。
本実施形態に係るエネルギー需要予測装置は、画像データを解析することにより、エネルギー需要予測エリアの例えば環境情報、電力量、人間の行動情報などのようなデータを正確に計測し、高精度のエネルギー需要予測を実現する。
図1は、本実施形態に係るエネルギー需要予測装置の構成の一例を示すブロック図である。
エネルギー需要予測装置1は、入力制御部2、プロセッサ3、記憶装置4、出力制御部5を具備する。
プロセッサ3は、記憶装置4に記憶されているプログラム6を実行することにより、画像解析部7、予測部8、機器制御部24として機能する。なお、画像解析部7、予測部8、機器制御部24はハードウェアによりエネルギー需要予測装置1に実装されるとしてもよい。
エネルギー需要予測装置1は、画像センサ9、赤外線センサ10、レーザセンサ11、計測用の機器121~12n、ビルディングオートメーションシステム(BAS:ビル監視システム)13、環境マネジメントシステム(EMS)14から、エネルギー需要予測エリアに関する各種データを受信可能に接続されている。さらに、エネルギー需要予測装置1は、出力装置15、制御対象の機器251~25mと接続されている。
画像センサ9は、例えば、カメラ、撮影装置、可視カメラなどである。
赤外線センサ10は、例えば、赤外線カメラなどである。
レーザセンサ11は、レーザ光を計測する。レーザセンサ11は、例えば、レーザカメラである。
機器121~12nは、例えば、温度計、湿度計、照度計、電力計などのような物理的なセンサ、その他の機器である。機器121~12nは、温度、湿度、照度、電力情報、天候情報、スケジュール情報などを取得する。
ビルディングオートメーションシステム13は、建築物内の空調、熱源、照明、受変電、防災、セキュリティなどを制御、監視、管理する。
環境マネジメントシステム14は、エネルギー需要予測エリアの環境を管理する。
機器251~25mは、例えば空調機器、照明機器、ブラインド駆動機器、カーテン駆動機器、などのようなエネルギー需要予測エリアに設置されている制御対象の機器である。
入力制御部2は、それぞれ画像センサ9、赤外線センサ10、レーザセンサ11によって取得された画像データ16、赤外線画像データ(赤外線計測データ)17、レーザ画像データ(レーザ計測データ)18を記憶装置4に記憶させる。
また、入力制御部2は、機器121~12nによって取得された機器データ191~19nを記憶装置4に記憶させる。
さらに、入力制御部2は、ビルディングオートメーションシステム13のBASデータ20、環境マネジメントシステム14のEMSデータ21を入力し、記憶装置4に記憶させる。
画像解析部7は、記憶装置4に記憶されている画像データ16、赤外線画像データ17、レーザ画像データ18に対する解析処理を実行し、人間情報22aと環境情報22bとを含む解析データ22を生成し、解析データ22を記憶装置4に記憶する。画像解析部7は、人間情報生成部7a、環境情報生成部7bとしての機能を実行する。
人間情報生成部7aは、画像データ16、赤外線画像データ17、レーザ画像データ18から特徴量を抽出し、抽出された特徴量と設定されている判断基準とに基づく認識処理などを実行し、人間情報22aを生成する。
人間情報22aは、エネルギー需要予測エリアにおける人間の有無、人間の人数、人間の分布・密度、人間の活動量、人間の着衣量、人間の属性(氏名、性別、体格、身長、年齢など)、人間の姿勢(立位、座位など)、人間の行動状態(事務作業中、移動中、会話中など)、エネルギー需要予測エリアに滞在している人間個人の特定情報などを含む。
環境情報生成部7bは、画像データ16、赤外線画像データ17、レーザ画像データ18から特徴量を抽出し、抽出された特徴量と設定されている判断基準とに基づく認識処理などを実行し、環境情報22bを生成する。
環境情報22bは、照度、日射量、ブラインド開閉量、太陽光の入射状態などの光情報、オフィス機器の有無、位置、個数、オフィスの出入口、窓の位置及び数、通路の位置などのレイアウト情報、熱源及び電力消費機器の位置及び数、天候情報などを含む。
予測部8は、記憶装置4に記憶されている解析データ22、機器データ191~19n、BASデータ20、EMSデータ21と、エネルギー需要予測モデル(予測式)とに基づいて、エネルギー需要予測を実行し、予測データ23を生成する。そして、予測部8は、予測データ23を記憶装置4に記憶する。このように、エネルギー需要予測に、動的に変化する解析データ22を用いることで、柔軟で高精度な予測を行うことができる。
エネルギー需要予測モデルは、過去の解析データ22、過去の機器データ191~19n、過去のBASデータ20、過去のEMSデータ21を含む過去データと、この過去データに対応する過去のエネルギー消費量とに基づいて、生成される。エネルギー需要予測モデルを用いることにより、将来のエネルギー(電力)需要予測を行うことが可能である。
機器制御部24は、記憶装置4に記憶されている予測データ23、解析データ22の人間情報22a及び環境情報22b、機器データ191~19n、そして制御設定データ26に基づいて、エネルギー需要予測エリアに関連する制御対象の機器251~25mに対する制御処理を実行し、機器251~25mに対する制御命令と制御値とのうちの少なくとも一方などを含む制御データ27を生成する。そして、機器制御部24は、制御データ27を記憶装置4に記憶する。
ここで、制御設定データ26は、人間の個人に対するユーザ情報、個人の属性データ、個人の快適状態情報を含む。また、制御設定データ26は、人間の行動状態(暑がっている動作、寒がっている動作、デスク作業中、立ち話中、歩行中)に対して、対応する制御値を含む。
例えば、機器制御部24は、予測データ23に基づいて、エネルギー需要が所定値以下に収まるような制御データ27を生成する。これにより、省エネルギー、創エネルギー、蓄エネネルギーを実現することができる。
また、機器制御部24は、記憶装置4に記憶されている解析データ22の人間情報22aと、ユーザ情報、属性データ、人間個人の快適状態情報及び人間の動作に対応する制御値を含む制御設定データ26に基づいて、機器251~25mに対する制御データ27を生成してもよい。
また、機器制御部24は、人間情報22aによって個人を識別し、制御設定データ26においてこの個人に対して設定されている快適状態を実施するための制御データ27を生成する。例えば、機器制御部24は、人間情報22aに含まれている人間の行動状態(暑がっている動作、寒がっている動作、デスク作業中、立ち話中、歩行中)に基づいて、制御設定データ26においてこの行動状態に対して設定されている制御を実施するための制御データ27を生成してもよい。
出力制御部5は、記憶装置4に記憶されている予測データ23及びその他の各種データを出力装置15に出力する。
さらに、出力制御部5は、記憶装置4に記憶されている制御データ27を機器251~25mに出力する。
出力装置15は、例えば、表示装置、音出力装置、通信装置などであり、予測データ23及びその他の各種データを表示、音出力、送信する。
機器251~25mは、制御データ27に基づいて動作する。機器251~25mは、例えば、空調機器、照明機器、ブラインド駆動機器などである。
図2は、本実施形態に係るエネルギー需要予測装置1を備えたエネルギー需要予測システムの一例を示すブロック図である。
画像センサ91,92は、エネルギー需要予測エリア281,282のそれぞれに対して設置される。画像センサ91,92は、例えばオフィスの天井又は屋外に設置され、オフィスを撮影する。画像センサ91,92は、可視カメラ、赤外線カメラなどでもよい。画像センサ91,92によって取得された画像データ16は、予め用意されているメモリ領域に記憶される。画像処理サーバ29の画像解析部7は、撮影された画像データ16を解析し、人間情報22a及び環境情報22bを生成する。画像処理サーバ29は、人間情報22a及び環境情報22bをビルディングオートメーションシステム13に送信する。なお、画像解析部7の機能は、画像センサ91,92に含まれるとしてもよい。この場合、画像処理サーバ29は削除可能である。
ビルディングオートメーションシステム13は、ビル管理に加えて、人間情報22a及び環境情報22bを用いて、予測部8による予測データ23の生成と、機器制御部24による機器制御を行う。
例えば、予測部8は、人間情報22a、環境情報22b、他の機器121~12nからの機器データ191~19n、ビルディングオートメーションシステム13によって用いられる機器使用状況、電力使用量などのBASデータ20に基づいて、エネルギー需要予測を実行する。
なお、人間の行動の良否判定などのビル管理、予測部8によるエネルギー需要予測は、ビルディングオートメーションシステム13ではなく、他のコンピュータによって実行されるとしてもよい。
機器制御部24は、人間情報22aに基づいて、エネルギー需要予測エリア281,282に滞在している個人を特定する。また、機器制御部24は、人間情報22aに基づいて、個人の状態(暑がっている、寒がっているなど)、行動(デスク作業中、立ち話中、歩行中など)を特定する。さらに、機器制御部24は、制御設定データ26において設定されている個人の属性、好み情報に基づいて、各個人の属性、状態、行動、好みに適合した機器制御を行う。
機器制御の結果得られる制御データ27は、例えば、空調機器、照明機器、ブラインド駆動機器などのような制御対象の機器251~25mに送信される。
上記のようなエネルギー需要予測装置1において、エネルギー需要予測モデルは、電力使用量、天候、気温、スケジュール(平日、休日、特異日)などの情報に加えて、さらに、人間情報22a、環境情報22bに基づいて、エネルギー需要予測可能に生成されている。
エネルギー需要予測モデルは、過去データに基づく統計的予測、過去データに対する回帰式の導出、理論に基づく物理式の利用などを使用して構築される。例えば、エネルギー需要予測モデルによる予測は、精度よく、リアルタイムで行われる。過去データを参照して構築されたエネルギー需要予測モデルは、エネルギー需要予測エリア281,282の現状データに基づいて将来のエネルギー需要予測を行う。
なお、本実施形態では、画像解析に、画像センサ9、赤外線センサ10、レーザセンサ11により取得されたデータが使用されるが、必ずしもこれら全てのデータが使用される必要はない。つまり、画像センサ9、赤外線センサ10、レーザセンサ11のうちのいずれか一つ以上のセンサを設置すればよい。また、画像センサ9、赤外線センサ10、レーザセンサ11のうちのいずれか1以上の種類について2台以上のセンサが設置されるとしてもよい。また、サーモセンサ(熱源感知センサ)などの他のセンサによって取得されたデータが画像解析に使用されるとしてもよい。取得されたデータのうち1又は複数のデータが選択されて画像解析に使用されるとしてもよい。
例を挙げてより具体的に説明すると、本実施形態においては、主に画像センサ9を用いて人間情報22aが生成され、この人間情報22aに基づいてデマンドレスポンス(例えば、電力会社からのエネルギー消費量の低下依頼)への対処処理及び需要予測が行われる。これに対して、例えば、サーモセンサ、レーザセンサ11、無線通信などの技術に基づいて人間の存在を検出するセンサを用いて、人間情報22aが生成され、この人間情報22aがデマンドレスポンスへの対処処理及び需要予測に用いられるとしてもよい。
以上説明した本実施形態においては、機器センサ121~12nによって取得された機器データ191~19nに加えて、画像データ16に基づいて生成された人間情報22a、環境情報22bに基づいて、エネルギー需要の予測が行われる。これにより、予測精度を向上させることができる。
また、画像センサ9と画像解析部7を用いることにより、他の様々な種別のセンサを設置することなく、エネルギー需要予測に用いられる有効な情報を増やすことができ、動的に変化する情報を効果的に予測に用いることができ、コストを低下させることができる。
本実施形態においては、機器データ191~19n、人間情報22a、環境情報22bと、制御設定データ26とに基づいて、認識された個人の属性に適合し、個人の好みを反映した機器制御を行うことができる。
本実施形態においては、過去データ及び現状データとして、正確でかつ豊富な数の解析データ22、機器データ191~19n、BASデータ20、EMSデータ21を用いることができる。
本実施形態においては、機器センサ121~12nなどの物理センサを用いて計測される温度及び湿度などの情報、エネルギー需要予測エリアにおける機器251~25mの電力使用量などの電力情報、さらに画像センサ9に基づいて取得される人間情報22a、環境情報22bを用いて、高精度のエネルギー需要予測モデルを構築可能である。
本実施形態においては、年、月、日、時間、秒間隔で、又はリアルタイムで、エネルギー需要予測を行うことができ、最適なエネルギーバランスを保つエネルギー需要制御を行うことができる。
本実施形態においては、エネルギー需要予測を、ビル、フロア、エリア、ゾーンなどのような各種のエネルギー需要予測エリア281,282単位で行うことができる。
本実施形態において、電力情報は、ビルディングオートメーションシステム13又は電力計によって計測又は取得することができる。さらに、本実施形態においては、人間情報22aと環境情報22bとのうちの少なくとも一方に基づいて、エネルギー需要予測エリア281,282ごとに各機器の電力使用状態を推定することができる。機器制御部24は、デマンドレスポンスに対して、画像センサ9からの画像データ16に基づいて、使用されていないが電源がオンの機器を選択し、選択された機器の電源をオフすることができる。したがって、本実施形態においては、機器制御部24によってデマンドレスポンスに対して柔軟に対応可能である。
(第2の実施形態)
本実施形態においては、上記第1の実施形態に係る環境情報22bについてより具体的に説明する。
本実施形態においては、上記第1の実施形態に係る環境情報22bについてより具体的に説明する。
上述したように、環境情報22bは、照度、日射量、ブラインド開閉量、太陽光の入射量などの光情報、オフィス機器の有無・位置・個数、出入り口及び窓の位置・数、通路の位置などのレイアウト情報、熱源及び電力を消費するものの位置・数、天候情報などを含む。環境情報22bは、オフィス内に設置されている画像センサ9の画像データ16を解析することで取得される。例えば、照度であれば、ある物体がある条件のときに画像データ16上でどのような輝度分布になるのかを事前に設定しておくことにより求められる。照度変化によって生じる画像データ16上の輝度変化、画像センサパラメータに基づいて、照度に応じた輝度がデータベース化される。照度の算出に関する学習又は更新は、このデータベース化された照度と輝度を用いて行われる。ブラインドについて、環境情報生成部7bは、まず画像データ16に対する物体認識又は手入力によってブラインドの位置を認識する。そして、環境情報生成部7bは、画像データ16におけるブラインドの変化を検出し、ブラインドの開閉量及び開閉角度を認識する。画像データ16から求められるブラインドの状態と開閉量及び開閉角度とは、データベース化される。ブラインドの開閉量及び開閉角度の認識に関する学習又は更新は、データベース化された画像データ16のブラインド状態と開閉量及び開閉角度を用いて行われる。
オフィス機器の有無や位置、固執、オフィスレイアウト情報は、画像データ16に対してオフィス機器等の物体の認識処理を行うことによって求められる。環境情報生成部7bは、物体形状の計測、物体配置の関係性、または学習技術などを用いることで、オフィスの代表的な機器(机、椅子、ディスプレイ、PC、プリンタ、パーティション、ホワイトボードなど)を認識する。画像データ16における物体の向き及び大きさは画像センサ9と物体の位置関係に応じて変化するが、環境情報生成部7bは、各種の学習技術などを用いて、この違いを吸収して正しく物体を認識する。これにより、オフィスのレイアウト変更等に、ユーザが手動で情報を入力する必要がなくなり、環境情報生成部7bは、瞬時に新しいレイアウトを自動で把握することが可能となる。画像センサ9は、屋外に設置可能である。環境情報生成部7bは、屋外の画像データ16を解析することによって、天候、解析対象ビルの空間情報、周辺建物のレイアウト情報を生成可能である。また、環境情報生成部7bは、太陽又は星の位置関係から、計測場所の経度及び緯度、計測対象ビルの向きなどの情報を生成可能である。
環境情報22bに含まれている各種の情報は、各種の専用のセンサから取得可能であってもよい。しかしながら、画像センサ9によって得られた画像データ16を解析して各種の情報を取得することにより、個々の専用のセンサを備える必要がないため、コストを低減することができる。環境情報22bのうち、レイアウト情報、天候情報などは、人間の手入力によって取得可能であるが、画像センサ9を用いることにより、リアルタイムでこれらの情報を取得することができ、ユーザの手入力の手間を省くことができる。
環境情報生成部7bは、環境情報22bとして、ある1点の計測値、指定された範囲の計測値、室内全体の値、フロア全体の値、ビル全体の値を算出、推定することが可能である。
図3は、本実施形態に係る環境モデル生成部及び環境解析部の一例を示すブロック図である。なお、この図3では、主に、上記の図1に未記載の構成要素が図示されている。
プロセッサ3は、図3では省略されているプログラム6を実行することにより、環境モデル生成部30、環境解析部31としての機能を実現する。
環境モデル生成部30は、記憶装置4に記憶されている環境情報22bに基づいて、モデル自動生成技術(例えば、モデル自動生成ツール)により、エネルギー需要予測エリアの環境モデル32を生成する。例えば、環境モデル32は、環境の特徴・特性を表す。そして、環境モデル生成部30は、環境モデル32を記憶装置4に記憶する。
環境解析部31は、環境モデル32に基づいて、3次元空間の復元、温度及び湿度の推定、熱及び風の推定、空調シミュレーションなどを実行し、環境解析データ33を生成する。そして、環境解析部31は、環境解析データ33を記憶装置4に記憶する。
出力制御部5は、図3では省略されている出力装置15に環境解析データ33を出力する。
本実施形態においては、環境情報22bに基づいて環境モデル32が構築され、環境モデル32に基づいて、環境に関する3次元空間の復元、温度及び湿度の推定、熱及び風の推定、空調シミュレーションなどを行うことができる。
環境情報22bは、通常のセンサによって取得される各種の情報(例えば、室内・室外の温湿度、風速、CO2濃度、天候など)、ビルディングオートメーションシステム13からの情報と組み合わせて用いられるとしてもよい。
さらに、環境情報22bは、人間情報22aを利用することによって、計測精度を向上させることができる。
本実施形態に係る環境解析部31においては、環境情報22bに基づいて、一部のフロアの状況から、他のフロアの状況を予測することができるとしてもよい。
(第3の実施形態)
本実施形態においては、上記第1の実施形態に係る人間情報22aについてより具体的に説明する。
本実施形態においては、上記第1の実施形態に係る人間情報22aについてより具体的に説明する。
上述したように、人間情報22aは、エネルギー需要予測エリアにおける人間の有無又は人数、人間の分布、活動量、着衣量、属性(氏名、性別、体格、身長、年齢など)、姿勢(立位、座位など)、行動(事務作業、移動、会話など)などの情報を含む。人間情報22aは、オフィス内に設置されている画像センサ9の画像データ16を解析することによって取得される。人間情報生成部7aは、画像データ16の時間・空間方向の輝度変化を解析することによって、人間の動きを抽出する。人間情報生成部7aは、人間とその他の物体の識別、行動及び挙動の識別を行う。人間情報生成部7aによる識別対象は、データベース化されており、人間情報生成部7aによる識別に対しては学習技術が適用される。
人間情報生成部7aは、人間情報22aとして、ある1点の計測値、指定した範囲の計測値、室内全体の値、フロア全体の値、ビル全体の値を算出、推定することが可能である。
図4は、本実施形態に係る人間モデル生成部及び人間解析部の一例を示すブロック図である。なお、この図4では、主に、上記の図1に未記載の構成要素が図示されている。
プロセッサ3は、図4では省略されているプログラム6を実行することにより、人間モデル生成部34、人間解析部35としての機能を実現する。
人間モデル生成部34は、記憶装置4に記憶されている人間情報22aに基づいて、モデル自動生成技術により、エネルギー需要予測エリアにおける人間モデル36を生成する。例えば、人間モデル36は、人間の特徴・特性を表す。そして、人間モデル生成部34は、人間モデル36を記憶装置4に記憶する。
人間解析部35は、人間モデル36に基づいて、人間の行動予測、人間の動きに応じた空調・照明シミュレーションなどを実行し、人間解析データ37を生成する。そして、人間解析部35は、人間解析データ37を記憶装置4に記憶する。
出力制御部5は、出力装置15に人間解析データ37を出力する。
本実施の形態においては、人間情報22aに基づいてエネルギー需要予測対象エリアにおける人間モデル36が構築され、人間モデル36に基づいて、行動予測、人の動きに対応した空調・照明シミュレーションなどを行うことができる。
人間情報22aは、ビル中央監視システム、入退室管理システム、セキュリティシステムからの情報と組み合わせて用いられるとしてもよい。
さらに、人間情報22aは、環境情報22aを利用して、計測精度を向上させることができる。
本実施形態に係る人間解析部35においては、人間情報22aに関して、一部のフロアの状況から、他のフロアの状況を予測することができるとしてもよい。
(第4の実施形態)
本実施形態においては、上記第1から第3までの実施形態の変形例について説明する。
本実施形態においては、上記第1から第3までの実施形態の変形例について説明する。
図5は、本実施形態に係るエネルギー需要予測装置の構成の一例を示すブロック図である。この図5では、主に、上記図1に記載されていない部分のみが図示されている。
プロセッサ3は、図5では省略されているプログラム6を実行することにより、モデル選択部38、係数補正部39、更新部40、データ補充部41、特異日判断部42として機能する。以下に、これらについて説明する。
[モデル選択部38]
記憶装置4は、複数のエネルギー需要予測モデル431~43kと、この複数のエネルギー需要予測モデル431~43kのそれぞれの特徴を示すモデル特徴データ441~44kとを記憶する。
記憶装置4は、複数のエネルギー需要予測モデル431~43kと、この複数のエネルギー需要予測モデル431~43kのそれぞれの特徴を示すモデル特徴データ441~44kとを記憶する。
複数のエネルギー需要予測モデル431~43kと、対応するモデル特徴データ441~44kとは、互いに関連付けられている。
モデル特徴データ441~44kは、複数のエネルギー需要予測モデル431~43kの中から適切なモデルを選択するための基準として用いられる。
モデル選択部38は、現在(最新)の人間情報22a、環境情報22b、機器データ191~19nなどのデータに基づいて、モデル特徴データ441~44kの中から、この現在のデータの示す内容と適合するモデル特徴データを選択する。そして、モデル選択部38は、選択されたモデル特徴データに対応するエネルギー需要予測モデルを選択する。
予測部8は、モデル選択部38によって選択されたエネルギー需要予測モデルに基づいて、エネルギー需要予測を行う。
本実施形態においては、過去のデータの傾向に応じて複数のエネルギー需要予測モデルが用意される。
本実施形態においては、複数のエネルギー需要予測モデル431~43kの中から、現在のエネルギー需要予測エリアにおいて最適なエネルギー需要予測モデルを選択することができる。例えば、あるエネルギー需要予測モデルの構築において参照された過去データと、現在の天候又は季節が同じであっても、モデル構築時と現在とで在室人数が異なる場合には、モデル選択部38は、過去の天候又は季節ではなく人数条件を優先し、人数条件の合ったエネルギー予測モデルを選択する。
これにより、予測精度を向上させることができる。
[係数補正部39]
係数補正部39は、取得された人間情報22a、環境情報22b、機器データ191~19nなどのデータに基づいて、エネルギー需要予測モデル431~43kの係数を自動補正する。これにより、予測精度の向上させることができる。
係数補正部39は、取得された人間情報22a、環境情報22b、機器データ191~19nなどのデータに基づいて、エネルギー需要予測モデル431~43kの係数を自動補正する。これにより、予測精度の向上させることができる。
具体的には、係数補正部39は、ビル・フロアの人数の増減、天候又は雲の状況、太陽の入射光などのような現在の情報、時系列の変化を含む情報に基づいて、エネルギー需要予測モデル431~43kの係数補正を行う。例えば、係数補正部39は、フロアの人数が急激に増えた場合には、人数に対する係数を調整し、現状に合うエネルギー需要予測モデルを構築し、実際のエネルギー需要と予測値との間のズレを最小化する。
[更新部40]
更新部40は、現在における人間情報22a、環境情報22b、機器データ191~19nなどのデータに基づいて、所定期間経過するごとにエネルギー需要予測モデル431~43kの更新(逐次更新)を行う。例えば、更新部40は、前日に取得されたデータ、1時間前に取得されたデータ、1分前に取得されたデータを用いて、逐次、エネルギー需要予測モデル431~43kを更新する。エネルギー需要予測モデル431~43kの更新には、各種のモデル自動生成技術を用いることができる。
更新部40は、現在における人間情報22a、環境情報22b、機器データ191~19nなどのデータに基づいて、所定期間経過するごとにエネルギー需要予測モデル431~43kの更新(逐次更新)を行う。例えば、更新部40は、前日に取得されたデータ、1時間前に取得されたデータ、1分前に取得されたデータを用いて、逐次、エネルギー需要予測モデル431~43kを更新する。エネルギー需要予測モデル431~43kの更新には、各種のモデル自動生成技術を用いることができる。
本実施形態においては、画像センサによって取得される人間情報22a、環境情報22bに限らず、電力情報や天候情報などの機器データ191~19nを用いて、エネルギー需要予測モデル431~43kが逐次更新されるため、予測精度を向上させることができる。
[データ補充部41]
データ補充部41は、取得された人間情報22a、環境情報22b、機器データ191~19nなどのデータに基づいて、エネルギー需要予測に有効な補充データ45を算出する。そして、データ補充部41は、補充データ45を記憶装置4に記憶する。
データ補充部41は、取得された人間情報22a、環境情報22b、機器データ191~19nなどのデータに基づいて、エネルギー需要予測に有効な補充データ45を算出する。そして、データ補充部41は、補充データ45を記憶装置4に記憶する。
例えば、モデル選択部38、係数補正部39、更新部40などのような各種の構成要素は、データ補充部41によって算出された補充データ45を用いて処理を実行する。
例えば、各機器251~25mの電力使用量が直接的に取得されない場合、データ補充部41は、取得できる電力情報と、人間情報22a、環境情報22bなどに基づいて、各機器251~25mの電力使用量を推定する。
例えば、データ補充部41は、作業をしている人物の前に置かれたパーソナルコンピュータは電源オンと判断し、その在籍時間から電力使用量を推定する。プリンタ及びコピー機についても、パーソナルコンピュータの場合と同様に電力使用量が推定される。
例えば、データ補充部41は、フロア全体の電力使用量と各部屋の在室状況から各部屋の電力使用量を推定する。
例えば、データ補充部41は、各部屋のレイアウトと人数の分布に基づいて、オフィス機器の使用状況を推定又は予測し、エネルギー需要予測に反映させることができる。
例えば、データ補充部41は、センサが設置されているエリアのデータに基づいて、センサが設置されていないエリアに対する計測項目を推定又は算出する。
例えば、画像センサが設置されていないエリアの人数は、周辺の画像センサから取得された人間情報に基づいて人の流れを推定することにより、算出することができる。
これにより、予測精度を向上させることができ、全ての値についてセンサを用いて計測する場合よりも、コストを削減することができる。
[特異日判断部42]
特異日判断部42は、取得された人間情報22a、環境情報22b、機器データ191~19nなどのデータに基づいて、例えばしきい値との比較などの処理を実行し、特異日であるか否か判断、又は特異日の予測を行う。そして、特異日判断部42は、判断結果を示す特異日判断データ46を記憶装置4に記憶する。
特異日判断部42は、取得された人間情報22a、環境情報22b、機器データ191~19nなどのデータに基づいて、例えばしきい値との比較などの処理を実行し、特異日であるか否か判断、又は特異日の予測を行う。そして、特異日判断部42は、判断結果を示す特異日判断データ46を記憶装置4に記憶する。
例えば、モデル選択部38、係数補正部39、更新部40、データ補充部41などのような各種の構成要素は、特異日判断データ46を用いて処理を実行する。
会社の創立記念日などのような通常とは異なる日(特異日)は、エネルギー需要の傾向が通常日と異なる。そのため、エネルギー需要を予測する上で注意が必要である。
例えば、平日と特異日とで異なるエネルギー需要予測モデルを用意する場合があり、特異日を把握することは重要である。特異日の設定として、手動でスケジュール入力することは可能であるが、想定してない日に特異日と同様のエネルギー需要傾向を示す場合がある。そのため、特異日判断部42は、画像センサ9によって取得された画像データ16に基づいて、特異日の判断又は予測を行う。これにより、予期しないエネルギー需要変動に事前に対応することができる。
特異日判断部42は、主として画像データ16から得られる人間情報22aに含まれている人数の増減、人の流れ、移動人数、各フロアの人数分布、これらの時系列変化などを用いて、特異日の判断又は予測を行う。これにより、ビル全体、フロア全体、部屋全体におけるエネルギー需要傾向の予測を行うことが可能であり、ビル全体としてのエネルギー需要予測の精度を向上させることができる。
また、例えば、特異日の場合において、エネルギー需要予測モデルを切り替えることもできる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Claims (11)
- 画像センサによって取得された画像データに基づいて、予測対象エリアの人間情報と環境情報とのうちの少なくとも一方を含む解析データを生成する画像解析部と、
前記解析データと、前記解析データに対応する過去データを用いて生成されたエネルギー需要予測モデルとに基づいて、エネルギー需要予測を実行し、予測データを生成する予測部と
を具備するエネルギー需要予測装置。 - 前記過去データは、機器センサによって取得された過去のデータを含み、
前記予測部は、前記解析データと、前記機器センサによって新たに取得されたデータと、前記エネルギー予測モデルとに基づいて、前記エネルギー需要予測を実行する
請求項1のエネルギー需要予測装置。 - 人間の識別結果を含む前記人間情報と、前記人間又は前記人間の属性に対して設定されている制御値を含む制御設定データとに基づいて、前記人間情報の示す前記人間に適合する制御データを生成する機器制御部と、
前記制御データを、対応する機器に出力する出力制御部と
をさらに具備する請求項1のエネルギー需要予測装置。 - 前記環境情報は、光情報、機器配置情報、天候情報のうちの少なくとも一つを含み、
前記環境情報に基づいて、前記予測対象エリアの環境の特徴を表す環境モデルを生成する環境モデル生成部をさらに具備する
請求項1のエネルギー需要予測装置。 - 前記人間情報は、人間の人数情報、分布情報、活動量情報、着衣量情報、属性情報、行動情報のうちの少なくとも一つを含み、
前記人間情報に基づいて、前記予測対象エリアに滞在する人間の特徴を表す人間モデルを生成する人間モデル生成部をさらに具備する
請求項1のエネルギー需要予測装置。 - 複数のエネルギー需要予測モデルと、前記複数のエネルギー需要予測モデルのそれぞれの特徴を示す複数のモデル特徴データとを、関連付けて記憶する記憶部と、
前記解析データに基づいて、前記解析データに適合するモデル特徴データと関連付けされているエネルギー需要予測モデルを選択する選択部と
をさらに具備し、
前記予測部は、前記解析データと、選択されたエネルギー需要予測モデルとに基づいて、前記エネルギー需要予測を実行する
請求項1のエネルギー需要予測装置。 - 前記解析データに基づいて、前記エネルギー需要予測モデルの係数を補正する係数補正部をさらに具備する請求項1のエネルギー需要予測装置。
- 前記解析データに基づいて、前記エネルギー需要予測モデルを所定期間経過するごとに逐次更新する更新部をさらに具備する請求項1のエネルギー需要予測装置。
- 前記解析データに基づいて、前記エネルギー需要予測に用いられる値を推定するデータ補充部をさらに具備する請求項1のエネルギー需要予測装置。
- 前記解析データに基づいて、特異日か否か判断し、判断結果を示す特異日判断データを生成する特異日判断部をさらに具備する請求項1のエネルギー需要予測装置。
- コンピュータによるエネルギー需要予測方法において、
画像センサによって取得された画像データに基づいて、予測対象エリアの人間情報と環境情報とのうちの少なくとも一方を含む解析データを生成し、解析データを記憶装置に記憶することと、
前記記憶装置に記憶されている前記解析データと、前記解析データに対応する過去データを用いて生成されたエネルギー需要予測モデルとに基づいて、エネルギー需要予測を実行し、予測データを生成し、前記予測データを前記記憶装置に記憶することと
を具備する、方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800030919A CN102859550A (zh) | 2011-03-15 | 2011-12-12 | 能量需求预测装置及方法 |
SG2012007027A SG183783A1 (en) | 2011-03-15 | 2011-12-12 | Energy demand prediction apparatus and method |
EP11810528.7A EP2688036A4 (en) | 2011-03-15 | 2011-12-12 | DEVICE AND METHOD FOR PREDICTING ENERGY DEMAND |
US13/361,641 US9633320B2 (en) | 2011-03-15 | 2012-01-30 | Energy demand prediction apparatus and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-057137 | 2011-03-15 | ||
JP2011057137A JP5851105B2 (ja) | 2011-03-15 | 2011-03-15 | エネルギー需要予測装置及びプログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/361,641 Continuation US9633320B2 (en) | 2011-03-15 | 2012-01-30 | Energy demand prediction apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012124225A1 true WO2012124225A1 (ja) | 2012-09-20 |
Family
ID=46830324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078684 WO2012124225A1 (ja) | 2011-03-15 | 2011-12-12 | エネルギー需要予測装置及び方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2688036A4 (ja) |
JP (1) | JP5851105B2 (ja) |
CN (1) | CN102859550A (ja) |
SG (1) | SG183783A1 (ja) |
WO (1) | WO2012124225A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017153333A (ja) * | 2016-02-26 | 2017-08-31 | 国立大学法人九州大学 | 電力需要予測装置およびこれを備えた電力需要予測システムならびに電力需要予測方法 |
JP2018055650A (ja) * | 2016-09-30 | 2018-04-05 | 大和ハウス工業株式会社 | 電力需要予測システム、電力需要予測方法及び電力需要予測プログラム |
CN113377843A (zh) * | 2021-06-21 | 2021-09-10 | 国网宁夏电力有限公司电力科学研究院 | 一种基于能源大数据的数据分析系统 |
CN117520998A (zh) * | 2024-01-05 | 2024-02-06 | 深圳市光明顶技术有限公司 | 照明灯塔设备的能耗分析方法、装置、设备及存储介质 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014180187A (ja) * | 2013-03-15 | 2014-09-25 | Toshiba Corp | 電力需要予測装置、方法及びプログラム並びに需要抑制計画策定装置 |
JP6104116B2 (ja) * | 2013-09-26 | 2017-03-29 | アズビル株式会社 | エネルギー削減量予測方法および装置 |
JP6245030B2 (ja) * | 2014-03-27 | 2017-12-13 | 富士通株式会社 | 消費電力予測方法、消費電力予測プログラム及び消費電力予測装置 |
US10208976B2 (en) | 2014-05-09 | 2019-02-19 | Mitsubishi Electric Corporation | Air-conditioning ventilation system |
EP3035281A1 (de) * | 2014-12-18 | 2016-06-22 | Horst Zacharias | Energieeffizienzanalyse einer technischen anlage aus simulation und verbrauch |
WO2016151620A1 (ja) | 2015-03-23 | 2016-09-29 | 日本電気株式会社 | シミュレートシステム、シミュレート方法およびシミュレート用プログラム |
JP6333486B2 (ja) | 2016-06-03 | 2018-05-30 | 三菱電機株式会社 | 機器制御装置及び機器制御方法 |
CN106247546B (zh) * | 2016-08-10 | 2019-09-10 | 立天节能环保(深圳)有限公司 | 一种中央空调用能精细化定额的实现方法及调节装置 |
JP6671264B2 (ja) * | 2016-08-12 | 2020-03-25 | 三菱電機ビルテクノサービス株式会社 | 所在人数予測装置、設備管理システム、所在人数予測方法及びプログラム |
US10804737B2 (en) | 2016-11-17 | 2020-10-13 | Signify Holding B.V. | Mobility pattern and connected lighting based system for smart grid resource planning and energy management |
JP7074709B2 (ja) * | 2019-03-29 | 2022-05-24 | Kddi株式会社 | 消費電力予測システム、方法およびプログラム |
JP7377053B2 (ja) | 2019-10-10 | 2023-11-09 | 株式会社日立製作所 | エネルギー管理システムおよびエネルギー管理方法 |
JP7216632B2 (ja) * | 2019-11-29 | 2023-02-01 | Kddi株式会社 | 電力管理システム |
JP7489904B2 (ja) * | 2020-11-25 | 2024-05-24 | 三菱電機株式会社 | 地域エネルギー管理システム、地域エネルギー管理装置、施設エネルギー管理装置、需要予測方法および需要予測プログラム |
WO2022163529A1 (ja) * | 2021-01-29 | 2022-08-04 | パナソニックIpマネジメント株式会社 | 照明システム、制御方法及びプログラム |
JP2022149773A (ja) * | 2021-03-25 | 2022-10-07 | ダイキン工業株式会社 | 情報処理装置及びプログラム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04131600A (ja) * | 1990-09-19 | 1992-05-06 | Hitachi Ltd | 都市エネルギーシステム |
JPH07129659A (ja) * | 1993-10-28 | 1995-05-19 | Hitachi Ltd | 環境負荷管理システム |
JP2003316922A (ja) * | 2002-04-19 | 2003-11-07 | Toshiba Corp | エネルギー情報分析方法、エネルギー情報分析装置、エネルギー情報分析システム |
JP2004280618A (ja) * | 2003-03-18 | 2004-10-07 | Hitachi Ltd | エネルギー管理システム |
JP2005158020A (ja) * | 2003-10-30 | 2005-06-16 | Hitachi Ltd | エネルギー管理方法,装置及びプログラム |
JP2008295193A (ja) * | 2007-05-24 | 2008-12-04 | Nippon Telegr & Teleph Corp <Ntt> | 電力デマンド制御装置、システム、および方法 |
JP2009240032A (ja) * | 2008-03-26 | 2009-10-15 | Panasonic Electric Works Co Ltd | デマンド制御システム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3216280B2 (ja) * | 1992-12-11 | 2001-10-09 | 松下電器産業株式会社 | 空気調和機の制御装置と画像処理装置の応用機器 |
JP2000333367A (ja) * | 1999-05-19 | 2000-11-30 | Toshiba Corp | 熱電需要予測システム |
CN1167914C (zh) * | 2002-12-05 | 2004-09-22 | 上海交通大学 | 个性化空调器 |
US9557723B2 (en) * | 2006-07-19 | 2017-01-31 | Power Analytics Corporation | Real-time predictive systems for intelligent energy monitoring and management of electrical power networks |
CN100360861C (zh) * | 2006-05-25 | 2008-01-09 | 浙江工业大学 | 基于全方位计算机视觉的中央空调节能控制装置 |
CN1931679A (zh) * | 2006-09-25 | 2007-03-21 | 广东省电子技术研究所 | 一种转盘式卡箱 |
US20080130958A1 (en) * | 2006-11-30 | 2008-06-05 | Motorola, Inc. | Method and system for vision-based parameter adjustment |
GB2448896B (en) * | 2007-05-02 | 2009-05-20 | Univ Montfort | Energy management system |
KR20090115586A (ko) * | 2008-05-02 | 2009-11-05 | 엘지전자 주식회사 | 공기조화기 및 그 동작방법 |
JP5478075B2 (ja) * | 2009-01-06 | 2014-04-23 | 三菱電機株式会社 | 空気調和装置 |
-
2011
- 2011-03-15 JP JP2011057137A patent/JP5851105B2/ja not_active Expired - Fee Related
- 2011-12-12 SG SG2012007027A patent/SG183783A1/en unknown
- 2011-12-12 CN CN2011800030919A patent/CN102859550A/zh active Pending
- 2011-12-12 WO PCT/JP2011/078684 patent/WO2012124225A1/ja active Application Filing
- 2011-12-12 EP EP11810528.7A patent/EP2688036A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04131600A (ja) * | 1990-09-19 | 1992-05-06 | Hitachi Ltd | 都市エネルギーシステム |
JPH07129659A (ja) * | 1993-10-28 | 1995-05-19 | Hitachi Ltd | 環境負荷管理システム |
JP2003316922A (ja) * | 2002-04-19 | 2003-11-07 | Toshiba Corp | エネルギー情報分析方法、エネルギー情報分析装置、エネルギー情報分析システム |
JP2004280618A (ja) * | 2003-03-18 | 2004-10-07 | Hitachi Ltd | エネルギー管理システム |
JP2005158020A (ja) * | 2003-10-30 | 2005-06-16 | Hitachi Ltd | エネルギー管理方法,装置及びプログラム |
JP2008295193A (ja) * | 2007-05-24 | 2008-12-04 | Nippon Telegr & Teleph Corp <Ntt> | 電力デマンド制御装置、システム、および方法 |
JP2009240032A (ja) * | 2008-03-26 | 2009-10-15 | Panasonic Electric Works Co Ltd | デマンド制御システム |
Non-Patent Citations (1)
Title |
---|
MASAAKI EDA: "Sho Energy-ka o Mezashita Sensor Data Mining Shuho no Kento", DAI 2 KAI FORUM ON DATA ENGINEERING AND INFORMATION MANAGEMENT -DEIM 2010- RONBUNSHU, 25 May 2010 (2010-05-25), XP055135037 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017153333A (ja) * | 2016-02-26 | 2017-08-31 | 国立大学法人九州大学 | 電力需要予測装置およびこれを備えた電力需要予測システムならびに電力需要予測方法 |
JP2018055650A (ja) * | 2016-09-30 | 2018-04-05 | 大和ハウス工業株式会社 | 電力需要予測システム、電力需要予測方法及び電力需要予測プログラム |
CN113377843A (zh) * | 2021-06-21 | 2021-09-10 | 国网宁夏电力有限公司电力科学研究院 | 一种基于能源大数据的数据分析系统 |
CN117520998A (zh) * | 2024-01-05 | 2024-02-06 | 深圳市光明顶技术有限公司 | 照明灯塔设备的能耗分析方法、装置、设备及存储介质 |
CN117520998B (zh) * | 2024-01-05 | 2024-03-26 | 深圳市光明顶技术有限公司 | 照明灯塔设备的能耗分析方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN102859550A (zh) | 2013-01-02 |
SG183783A1 (en) | 2012-10-30 |
EP2688036A4 (en) | 2015-01-07 |
JP2012194700A (ja) | 2012-10-11 |
JP5851105B2 (ja) | 2016-02-03 |
EP2688036A1 (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5851105B2 (ja) | エネルギー需要予測装置及びプログラム | |
US9633320B2 (en) | Energy demand prediction apparatus and method | |
Carreira et al. | Can HVAC really learn from users? A simulation-based study on the effectiveness of voting for comfort and energy use optimization | |
Klein et al. | Coordinating occupant behavior for building energy and comfort management using multi-agent systems | |
Anand et al. | A review of occupancy-based building energy and IEQ controls and its future post-COVID | |
Nguyen et al. | Energy intelligent buildings based on user activity: A survey | |
Pritoni et al. | Do occupancy-responsive learning thermostats save energy? A field study in university residence halls | |
US10088184B2 (en) | Environment control system | |
US10393396B2 (en) | Thermal load estimating device and air conditioning control system | |
JP6448180B2 (ja) | 空調制御システムおよび空調制御装置 | |
Yang et al. | A novel occupant-centric stratum ventilation system using computer vision: Occupant detection, thermal comfort, air quality, and energy savings | |
Marinakis et al. | Decision support for intelligent energy management in buildings using the thermal comfort model | |
JP2013236520A (ja) | 電力管理支援装置、電力管理支援方法、電力管理支援プログラム | |
KR20150095995A (ko) | 상황인식 기반의 빌딩 에너지 관리 시스템 및 그를 이용한 빌딩 에너지 관리 방법 | |
Abrol et al. | Data-enabled building energy savings (DE BES) | |
Jain et al. | Portable+ A Ubiquitous And Smart Way Towards Comfortable Energy Savings | |
Biyik et al. | Cloud-based model predictive building thermostatic controls of commercial buildings: Algorithm and implementation | |
Pazhoohesh et al. | Investigating occupancy-driven air-conditioning control based on thermal comfort level | |
Gunay | Improving energy efficiency in office buildings through adaptive control of the indoor climate | |
Jiang et al. | OCCUPIED: Long-term field experiment results from an occupant-centric control in an office building | |
Aldakheel et al. | Indoor environmental quality evaluation of smart/artificial intelligence techniques in buildings–a review | |
JP6445639B2 (ja) | 空調制御システムおよび空調制御装置 | |
Khosravi et al. | Model Predictive Control in buildings with thermal and visual comfort constraints | |
JP7377053B2 (ja) | エネルギー管理システムおよびエネルギー管理方法 | |
Kciuk et al. | Design and modeling of intelligent building office and thermal comfort based on probabilistic neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180003091.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011810528 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11810528 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |