WO2012122744A1 - Method for extracting parameters of multi-dimensional channel - Google Patents
Method for extracting parameters of multi-dimensional channel Download PDFInfo
- Publication number
- WO2012122744A1 WO2012122744A1 PCT/CN2011/075055 CN2011075055W WO2012122744A1 WO 2012122744 A1 WO2012122744 A1 WO 2012122744A1 CN 2011075055 W CN2011075055 W CN 2011075055W WO 2012122744 A1 WO2012122744 A1 WO 2012122744A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- measurement
- channel parameter
- snapshot
- local area
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0212—Channel estimation of impulse response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0222—Estimation of channel variability, e.g. coherence bandwidth, coherence time, fading frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
- H04L25/0242—Channel estimation channel estimation algorithms using matrix methods
- H04L25/0244—Channel estimation channel estimation algorithms using matrix methods with inversion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- the present invention relates to wireless communication technologies, and in particular, to a multi-dimensional channel parameter extraction method.
- Multi-Input Multi-Output MIMO
- MIMO Multiple input multiple output
- This technology utilizes signals transmitted and received over multiple antennas to suppress channel fading, and can double the capacity and spectrum utilization of wireless communication systems without increasing bandwidth.
- the performance of MIMO technology is also subject to the space-time fading characteristics of the channel, and the wideband channel will exhibit new frequency selection characteristics. Therefore, a suitable wideband MIMO channel model is established to study broadband MIMO.
- the spatial, temporal and frequency three-dimensional fading characteristics of the channel are the premise and key to maximize the advantages of MIMO technology.
- the MIMO channel model provides a reference for transmission technology, resource management and network planning in wireless communication systems.
- channel parameter extraction is a key link in the channel modeling process.
- a high-precision, multi-dimensional joint extraction method is needed.
- the application is more widely used is the spatially alternating generalized expectation maximization method.
- the method decomposes a multi-dimensional estimation problem into multiple one-dimensional estimation problems, and can jointly estimate various parameters of the multipath signal, and is not limited to the structure of the transmitting and receiving antenna array. .
- Figure 1 is a schematic flow chart of an existing channel parameter estimation method. Referring to Figure 1, the process includes:
- Step 101 Set a measurement snapshot sequence number k , and start channel parameter extraction on the kth measurement snapshot.
- Step 102 Initialize channel parameters of all L- path signals by using a serial interference cancellation method to obtain initial values of channel parameters of all L- path signals.
- step 103 the initial value of the iteration round n is set to 1, and the first round of iteration is started.
- Step 104 Initialize the sequence number l of the multipath signal to 1, and start extracting the channel parameters of the first path signal.
- Step 105 calculates a first signal path l conditional expectation.
- Step 106 the search path of the first signal l maximizing the likelihood function of channel parameter value, to give the l-path channel parameter signal after the n-th iteration extraction result.
- the search order so that the likelihood function maximizes propagation delay of the l-path signals, Doppler shift, away from the horizontal angle, vertical angle away from the horizontal angle of arrival, angle of arrival and polarization multiplexing vertical amplitude coefficients
- other parameters remain fixed and equal to the value after the last update.
- Step 107 Determine whether the sequence number l of the multipath signal is equal to the maximum multipath number L. If yes, the nth round of iteration ends, and the channel parameter extraction result of all L- path signals after the n-th iteration is obtained; otherwise, the sequence number l is incremented by 1, and the process returns to step 105.
- Step 108 after the n-th wheel is determined iterative channel parameter extracting all L multipath signals whether the result of the result of the same n -1 iterations. If yes, the result is converged. The result is the final channel parameter extraction result of all the L- path signals of the kth measurement snapshot; otherwise, the result is not converged, n is incremented by 1, and the process returns to step 104.
- Step 109 Determine whether the sequence number k of the measurement snapshot is equal to the maximum number of snapshots K. If so, the entire channel parameter extraction process ends; otherwise, k is incremented by 1, and the process returns to step 101.
- the correlation between measurement snapshots is ignored, and the channel parameters of adjacent measurement snapshots are similar.
- the channel parameter values are initialized independently using a serial interference cancellation method.
- the serial interference cancellation method is less efficient and takes a long time in the actual execution process, so that the initialization process accounts for the execution time of the entire channel parameter extraction process. 70% or so.
- the technical problem to be solved by the present invention is how to provide a multi-dimensional channel parameter extraction scheme to improve the efficiency of channel parameter initialization in the channel parameter extraction process, and at the same time improve the efficiency of searching channel parameter values that maximize the likelihood function.
- the present invention provides a multi-dimensional channel parameter extraction method, the method comprising the steps of:
- step S2 determining, according to the calculation result of step S1, a position of the current measurement snapshot within a range of the local area in which it is located;
- step S3 The determination result is selected by using a serial interference cancellation method or a method for measuring correlation between snapshots to initialize channel parameters of the current measurement snapshot;
- the priority search algorithm is used to iteratively calculate the channel parameters of each path, and the channel parameters are updated in the iterative operation according to the principle that the likelihood function of each path channel parameter is maximized and monotonously reduced.
- the measurement device includes a mobile station, and the parameter setting of the measurement device and related information of the measurement environment include: a center carrier frequency f c of the measurement signal, a channel sampling rate f s , and a mobile station motion speed v .
- the method for calculating the number of measurement snapshots included in the range d of each local area is: The symbol ⁇ ⁇ ⁇ indicates rounding down.
- the method for determining the position of the current measurement snapshot in the range of the local area in the step S2 is: calculating ( kK 0 ) mod Q, where k is the sequence number of the current measurement snapshot, and K 0 is the initial value of the sequence number of the measurement snapshot. If the result of the above calculation is 0, the current measurement snapshot is the first measurement snapshot in the range of the local area in which it is located; if not, the current measurement snapshot is not the first in the range of the local area in which it is located. Measurement snapshots.
- the serial interference cancellation method is used to initialize the path parameters of each path; otherwise, an initialization method based on measuring the correlation between snapshots is adopted.
- ⁇ l (0) ( k ) indicates the initial value of the channel parameter of the l- th path signal in the kth measurement snapshot
- ⁇ l ( R ) ( k -1) represents the final channel parameter extraction result of the l -th path signal in the k -th measurement snapshot
- L is The maximum number of multipaths.
- the prioritized search strategy is: Wherein [theta] l (n) represents a channel parameter value of l-path signal after the n-th iteration, the U-l for the first search field, z ( ⁇ l) is the likelihood function of l-path signal, the first search field is defined as The union of the intervals with a certain multiple of the search step radius, centered on the corresponding channel parameter values of the other L -1 path signals.
- the priority search field is calculated as follows: Where ⁇ represents the search step size and ⁇ is a positive integer representing the weight of the search step size.
- updating the channel parameter according to the principle that the likelihood function of each channel parameter is monotonous or not decreases means: whether the judgment formula z ( ⁇ l ( n ) ) ⁇ z ( ⁇ l ( n -1) ) is established, and if so, channel parameters will be the l-path signal updates the value of [theta] l (n), otherwise continue supplemented focus the search channel parameter priority search area, where [theta] l (n) represents the channel parameters of l-path signal after the n-th iteration The value, z ( ⁇ l ) is the likelihood function of the l- th path signal.
- the invention utilizes a method for measuring the path parameters of the measurement snapshot based on the method for measuring the correlation between snapshots, so that for most measurement snapshots, the calculation process of the initial values of the channel parameters in the channel parameter extraction process is actually omitted, therefore,
- the efficiency of channel parameter initialization in the channel parameter extraction process is improved; the iterative operation is performed on each channel parameter by using a prioritized search strategy, which improves the efficiency of searching for channel parameter values that maximize the likelihood function.
- FIG. 1 is a schematic flowchart of an existing channel parameter extraction method
- FIG. 3 is a flowchart of a multi-dimensional channel parameter extraction method according to an embodiment of the present invention.
- FIG. 4 is a specific flowchart of performing multi-dimensional channel parameter extraction according to an embodiment of the present invention.
- image 3 A flowchart of a multi-dimensional channel parameter extraction method according to an embodiment of the present invention. Referring to FIG. 3 and referring to steps S1 to S4 of FIG. 2, the process of the method includes:
- Step 201 setting a sequence number k of the measurement snapshot
- Step 202 Initialize channel parameters of the L- path signal by using a serial interference cancellation method or an initialization method based on measuring correlation between snapshots, and obtain initial values of channel parameters of all L- path signals, where L is a positive integer.
- the concept of a local area is defined: dividing a continuous measurement route into multiple local areas. For the first measurement snapshots of each local area, the interference cancellation method used to initialize all the parameters of the L channel signal path; snapshots for other measurements, initialization method for initializing the correlation between measured based on the snapshot, i.e. The initial channel parameter extraction result of the previous measurement snapshot is directly used as the initial value of the channel parameter of all the L- path signals in the measurement snapshot. Thus, for most measurement snapshots, the calculation process of the initial values of the channel parameters in the channel parameter extraction process is actually omitted, and the efficiency of channel parameter initialization is improved.
- step 203 the initial value of the iteration round n is set to 1, and the first round of iteration is prepared.
- Step 204 Initialize the sequence number l of the multipath signal to 1, and prepare to start extracting the channel parameters of the first path signal.
- Step 205 calculates a first signal path l conditional expectation.
- Step 206 a search using a search strategy with priority so maximizing the likelihood function of the channel parameters of the multipath signals l, l to obtain the channel parameters of the multipath signals in the n-th iteration extraction result.
- the search order of the first signal path l maximizing the likelihood function of propagation delay, Doppler shift, away from the horizontal angle, vertical angle away from the horizontal angle of arrival, angle of arrival and polarization multiplexing vertical amplitude coefficients
- Such parameters when searching for a certain parameter, keep the other parameters fixed and fixed to the last updated value.
- a priority search field is defined for the parameter, and the priority search field is defined as a certain multiple of the search step (preset value) with the corresponding parameter value of the other L -1 path signal as the center.
- the search is first performed in the priority search domain to find out whether there is a parameter value that maximizes the likelihood function and monotonically decreases, and if so, updates the corresponding parameter to the parameter value; otherwise, the search in the non-first search domain is satisfied.
- the parameter value of the above condition (maximizing the likelihood function and monotonously decreasing).
- Step 207 Determine whether the sequence number l of the multipath signal is equal to the maximum multipath number L. If yes, the nth round of iteration ends, and the channel parameter extraction result of all L- path signals after the n-th iteration is obtained; otherwise, l is incremented by 1, and the process returns to step 205.
- Step 208 after the n-th wheel is determined iterative channel parameter extracting all L multipath signals whether the result of the result of the same n -1 iterations. If yes, the result is converged. The result is the final channel parameter extraction result of all the L- path signals of the kth measurement snapshot; otherwise, the result does not converge, n is incremented by 1, and the process returns to step 204.
- Step 209 Determine whether the sequence number k of the measurement snapshot is equal to the preset maximum number of snapshots K. If so, the entire channel parameter extraction process ends; otherwise, k is incremented by 1, and the process returns to step 201.
- FIG. 4 is a specific flowchart of performing multi-dimensional channel parameter extraction according to an embodiment of the present invention. Referring to Figure 4, the process includes:
- Step 301 Calculate a range of the local area and a number of measurement snapshots included in each local area according to the parameter setting of the measurement device and the related information of the measurement environment during the channel measurement process (this step is a preparation step performed before step 201).
- the measuring device is a tool for measuring channel parameters, and mainly includes a transmitting unit for transmitting data, a receiving unit (that is, a mobile station) for receiving data, a data storage unit for storing data, and a transmitting and receiving antenna.
- the center carrier frequency of the transmitted and received signals during measurement is f c
- Step 302 Set a sequence number k of the measurement snapshot. (This step corresponds to step 201)
- Step 303 Determine, according to the calculation result, a position of the current measurement snapshot in the local area where the measurement snapshot is located, that is, determine whether the kth measurement snapshot is the first measurement snapshot in the local area in which it is located. If yes, go to step 304; if no, go to step 305.
- the judgment method is as follows: the starting sequence number of the measurement snapshot is K 0 , K 0 > 0 and is an integer, and the calculation is: ( k - K 0 ) mod Q where mod represents the remainder. If the result of the above calculation is 0, the kth measurement snapshot is the first measurement snapshot in the local area in which it is located. If not equal to 0, the kth measurement snapshot is not the first in the local area in which it is located. Measure the snapshot.
- Step 304 If the kth measurement snapshot is the first measurement snapshot in the local area in which it is located, the channel interference parameter is used to initialize the channel parameters of all the L path signals included in the local area to obtain all the L path signals. The initial value of the channel parameter.
- the serial interference cancellation initialization method is used for the first measurement snapshot in each local area, which can avoid or mitigate the error accumulation caused by the initialization method based on measuring the correlation between snapshots.
- Step 305 If the kth measurement snapshot is not the first measurement snapshot in the local area, the result of the final channel parameter extraction result of the k -1th measurement snapshot is directly used as the L path in the kth measurement snapshot. The initial value of the channel parameter of the signal.
- step 306 the initial value of the iteration round n is set to 1, and the first round of iteration is started. This step corresponds to step 203.
- Step 307 Initialize the sequence number l of the multipath signal to 1, and prepare to start extracting the channel parameters of the first path signal. This step corresponds to step 204.
- Step 308 calculating the first l The condition of the path signal is expected. This step corresponds to step 205.
- Step 309 determining the first l The preferred search field for each channel parameter in the path signal.
- the first l Priority search field for each channel parameter in the path signal U l Defined as other L -1
- the corresponding channel parameter value of the path signal is the center, and the union of the intervals with a certain multiple of the search step radius is
- ⁇ l ( n ) ( k ) ⁇ A l ( n ) , ⁇ l ( n ) , ⁇ 1, l ( n ) , ⁇ 1, l ( n ) , ⁇ 2, l ( n ) , ⁇ 2, l ( n ) , f d,l ( n )
- ⁇ indicates the first n
- ⁇ represents the search step size
- ⁇ is a positive integer representing the weighting of the search step
- ' U ' to the right of the equal sign indicates the union.
- ⁇ l ( n ) ( k ) abbreviated as ⁇ l ( n ) .
- the priority search fields of propagation delay, Doppler shift, horizontal exit angle, vertical exit angle, horizontal arrival angle, and vertical arrival angle are respectively among them, Search steps for propagation delay, horizontal exit angle, vertical exit angle, horizontal arrival angle, vertical angle of arrival, and Doppler shift, respectively
- the weighting coefficients of the respective step lengths are respectively indicated, and the coefficients are flexibly adjusted according to the proportion of the search step size in the entire value range. E.g ⁇ ⁇ Generally take 1 , when the search step of the angle domain is 2 °, Generally take 2 .
- Step 310 to find the first signal path l maximizes the likelihood function of propagation delay values first search field.
- Likelihood function of path signal l Expressed as among them Which symbol Represents the Kronecker product, ( ⁇ ) H represents the conjugate transpose of the matrix, Where the symbol ( . ) * denotes a conjugate, X l ( ⁇ l , f d, l ) is a matrix of N ⁇ M dimensions, and N and M are the total number of receiving and transmitting antennas, respectively.
- Step 311 Determine whether the likelihood function is monotonous or not.
- the propagation delay value that was found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically decreases, and it is possible that it is the optimal value in the entire delay value range.
- the condition that the likelihood function monotonically decreases in this step is expressed as z ( ⁇ 1, l ( n -1) , ⁇ 1, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ l ( n ) , f d,l ( n -1) ; x l ) ⁇ z ( ⁇ 1, l ( n -1) , ⁇ 1, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ l ( n- 1) , ⁇ l ( n- 1) , f d,l ( n -1) ;
- Step 312 to find the first signal path l maximizes the likelihood function of the non-preferential propagation delay value search field.
- the search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the ⁇ l ( n ) obtained in this step is necessarily the optimal in the entire delay value range.
- Step 313 in the first search field to find the first signal path l maximizing the likelihood function of Doppler shift values.
- the process of finding the Doppler shift value that maximizes the likelihood function in the priority search domain in this step can be expressed as
- step 314 it is determined whether the likelihood function is monotonous or not.
- the Doppler shift value that was found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that it is the optimal value in the entire Doppler shift range.
- step 313 The condition that the likelihood function monotonically decreases in this step is expressed as z ( ⁇ 1, l ( n -1) , ⁇ 1, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ l ( n ) , f d,l ( n ) ; x l ) ⁇ z ( ⁇ 1, l ( n -1) , ⁇ 1, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ l ( n ) , f d,l ( n -1) ; x l ) If the condition shown in the above formula is satisfied, step 313 The obtained f d,l ( n ) is the Doppler shift value of the l- th path signal after the n-th iteration, skipping step
- Step 315 the non-first search domain to find the first signal path l maximizing the likelihood function of Doppler frequency shift values.
- the search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the f d,l ( n ) obtained in this step is necessarily the optimal in the entire Doppler shift value range.
- Step 316 in the first search field to find the first l-path signal level maximizes the likelihood function value departure angle.
- the process of finding the horizontal leaving angle value that maximizes the likelihood function in the priority search domain in this step can be expressed as
- Step 317 Determine whether the likelihood function is monotonous or not.
- the horizontal leaving angle value that is found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that the horizontal value of the entire horizontal leaving angle is the optimal value.
- step 316 is obtained.
- step 318 As the first n After the iteration l The horizontal value of the path signal leaves the angle value. Skip step 318 and directly perform step 319. If not, then step 316 ⁇ 1 ,l ( n ) It is not possible to optimize the entire horizontal departure angle range, and step 318 is performed.
- Step 318 looking for the first in the non-first search domain l
- the likelihood function of the path signal maximizes the horizontal departure angle value.
- the search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the step is obtained. ⁇ 1 ,l ( n ) It must be the best in the entire horizontal departure angle range.
- Step 319 the first search field to find the first signal path l maximizing the likelihood function value of the angle away from vertical.
- the process of finding the vertical departure angle value that maximizes the likelihood function in the priority search domain in this step can be expressed as
- step 320 it is determined whether the likelihood function is monotonous or not.
- the value of the vertical departure angle obtained by the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that it is the optimal value in the entire vertical departure angle range.
- step 319 If the condition shown in the above formula is satisfied, then step 319 is obtained.
- ⁇ 1 , l ( n ) is the vertical departure angle value of the l- th path signal after the n-th iteration, skipping step 321 and directly performing step 322; if not, step 319 obtains ⁇ 1 , l ( n ) It is impossible to optimize the entire vertical departure angle range, and step 321 is performed.
- Step 321 the non-first search domain to find the first signal path l maximizes the likelihood function of the angle away from vertical value.
- the search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the ⁇ 1, l ( n ) obtained in this step is necessarily the best in the entire vertical departure angle range.
- Step 322 in the first search field to find the first l-path signal level maximizes the likelihood function value of the angle of arrival.
- the process of finding the horizontal arrival angle value that maximizes the likelihood function in the priority search domain in this step can be expressed as
- Step 323 Determine whether the likelihood function is monotonous or not.
- the horizontal arrival angle value found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that it is the optimal value in the entire horizontal arrival angle range.
- the condition that the likelihood function monotonously decreases in this step is expressed as z ( ⁇ 1, l ( n ) , ⁇ 1, l ( n ) , ⁇ 2, l ( n ) , ⁇ 2, l ( n- 1) , ⁇ l ( n ) , f d,l ( n ) ; x l ) ⁇ z ( ⁇ 1, l ( n ) , ⁇ 1, l ( n ) , ⁇ 2, l ( n- 1) , ⁇ 2, l ( n- 1) , ⁇ l ( n ) , f d,l ( n ) ; x l If the condition shown in the above formula is satisfied,
- step 324 and directly perform step 325. If not, then step 322 ⁇ 2, l ( n ) It is not possible to optimize the entire horizontal arrival angle range, and step 324 is performed.
- Step 324 looking for the first in the non-first search domain l
- the horizontal signal of the diameter signal maximizes the angle of arrival.
- the search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the step is obtained. ⁇ 2, l ( n ) It must be the optimal in the entire horizontal angle of arrival.
- Step 325 in the first search field to find the first signal path l maximizing the likelihood function of the vertical angle of arrival values.
- the process of finding the vertical angle of arrival value that maximizes the likelihood function in the priority search domain in this step can be expressed as
- Step 326 Determine whether the likelihood function is monotonous or not.
- the vertical angle of arrival value found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that it is the optimal value in the entire vertical angle of arrival.
- the condition that the likelihood function monotonously decreases in this step is expressed as z ( ⁇ 1, l ( n ) , ⁇ 1, l ( n ) , ⁇ 2, l ( n ) , ⁇ 2, l ( n ) , ⁇ l ( n ) , f d,l ( n ) ; x l ) ⁇ z ( ⁇ 1, l ( n ) , ⁇ 1, l ( n ) , ⁇ 2, l ( n ) , ⁇ 2, l ( n- 1) , ⁇ l ( n ) , f d,l ( n ) ; x l If the condition shown in the above formula is satisfied
- step 327 As the first n After the iteration l The vertical arrival angle value of the path signal is skipped to step 327, and step 328 is directly executed. If not, then step 325 ⁇ 2 ,l ( n ) It is impossible to be optimal in the entire vertical angle of arrival range, and step 327 is performed.
- Step 327 the non-first search domain to find the first signal path l maximizing the likelihood function of the vertical angle of arrival values.
- the search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the ⁇ 2, l ( n ) obtained in this step is necessarily the optimal in the entire vertical angle of arrival.
- Step 328 calculates a first polarization multiplexing l-path signal amplitude coefficients.
- the polarization complex amplitude coefficient is calculated as Where the symbol ( ⁇ ) -1 represents the matrix inversion.
- This step directly calculates the polarization complex amplitude coefficient, so there is no need to calculate its priority search field in step 308.
- the above steps 309 ⁇ 328 correspond to step 206.
- Step 329 Determine whether the sequence number l of the multipath signal is equal to the maximum multipath number L. If yes, the nth round of iteration ends, and the channel parameter extraction result of all the L- path signals after the n-th iteration is obtained; otherwise, l is incremented by 1, and the process returns to step 308. This step corresponds to step 207.
- Step 331 Determine whether the sequence number k of the measurement snapshot is equal to the maximum number of snapshots K. If so, the entire channel parameter extraction process ends; otherwise, k is incremented by 1, and the process returns to step 302. This step corresponds to step 209.
- the above embodiments are merely illustrative of the present invention and are not intended to be limiting of the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. Equivalent technical solutions are also within the scope of the invention, and the scope of the invention is defined by the claims.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A method for extracting parameters of multi-dimensional channel is provided in the present invention, and the method includes the following steps: S1, calculating ranges of local areas and the number of measuring snapshots contained in the range of each local area according to parameter settings of a measuring device and the information related to the measurement environment in the process of the channel measurement; S2, determining the position of a current measuring snapshot in the range of the local area where it is located according to the calculated results in S1; S3, initiating each path channel parameter of the current measuring snapshot by selecting a serial interference elimination method or by a method based on the correlations of the measuring snapshots according to the determined results in S2; S4, performing iteration operation to each path channel parameter by employing a search strategy with priority, and updating the channel parameters according to the principles that the likelihood function of each path channel parameter is maximized and monotone non-decreasing in the process of the iteration. With the application of the present invention, the efficiency of a multi-dimensional channel parameter extracting process is improved, while the accuracy of the extracted result is ensured.
Description
本发明涉及无线通信技术,特别涉及一种多维信道参数提取方法。 The present invention relates to wireless communication technologies, and in particular, to a multi-dimensional channel parameter extraction method.
随着无线通信技术的发展,为了能够有效承载海量的多媒体业务,对无线通信系统传输速率以及频谱效率的要求越来越高。多输入多输出( Multi-Input
Multi-Output , MIMO
)技术正是为了提高无线通信系统的传输速率以及频谱效率而提出的新一代无线通信系统的关键技术。该技术利用在多个天线上收发信号来抑制信道衰落,能在不增加带宽的情况下成倍地提高无线通信系统的容量和频谱利用率。但由于
MIMO 技术的性能也受制于信道的空时衰落特性,而宽带信道又会呈现新的频率选择特性,因此,建立合适的宽带 MIMO 信道模型,研究宽带 MIMO
信道的空、时、频三维衰落特性是最大发挥 MIMO 技术优势的前提和关键。
With the development of wireless communication technology, in order to effectively carry a large amount of multimedia services, the requirements for the transmission rate and spectrum efficiency of the wireless communication system are getting higher and higher. Multiple input multiple output (Multi-Input
Multi-Output, MIMO
The technology is a key technology for a new generation of wireless communication systems proposed to improve the transmission rate and spectrum efficiency of wireless communication systems. This technology utilizes signals transmitted and received over multiple antennas to suppress channel fading, and can double the capacity and spectrum utilization of wireless communication systems without increasing bandwidth. But because
The performance of MIMO technology is also subject to the space-time fading characteristics of the channel, and the wideband channel will exhibit new frequency selection characteristics. Therefore, a suitable wideband MIMO channel model is established to study broadband MIMO.
The spatial, temporal and frequency three-dimensional fading characteristics of the channel are the premise and key to maximize the advantages of MIMO technology.
在建模过程中,需要在实际的地理传播环境中进行宽带无线信道的测量,获取大量的信道冲激响应,然后从中提取出表征信道特性的特征参数,包括多径信号的传播时延、离开角、到达角、多普勒频移、极化复幅度系数等,进而根据提取出的特征参数对该环境的信道传播特性进行建模或对现有模型进行校正,最后得到较为完善的宽带
MIMO 信道模型,从而为无线通信系统中的传输技术、资源管理和网络规划提供参考依据。
In the modeling process, it is necessary to measure the broadband wireless channel in the actual geographical propagation environment, obtain a large number of channel impulse responses, and then extract characteristic parameters that characterize the channel characteristics, including the propagation delay of the multipath signal, and leave. Angle, angle of arrival, Doppler shift, polarization complex amplitude coefficient, etc., and then model the channel propagation characteristics of the environment according to the extracted characteristic parameters or correct the existing model, and finally obtain a relatively complete broadband
The MIMO channel model provides a reference for transmission technology, resource management and network planning in wireless communication systems.
由此可见,信道参数提取是信道建模过程中的关键环节。为了从测量得到的信道冲激响应中提取出信道特征参数,需要一种高精度的、多维联合的提取方法。目前应用较为广泛的是空间交替广义期望最大化方法。作为最大似然估计方法的一种扩展,该方法将一个多维的估计问题分解为多个一维的估计问题,能够联合地估计出多径信号的各个参数,且不局限于收发天线阵列的结构。
It can be seen that channel parameter extraction is a key link in the channel modeling process. In order to extract the channel characteristic parameters from the measured channel impulse response, a high-precision, multi-dimensional joint extraction method is needed. At present, the application is more widely used is the spatially alternating generalized expectation maximization method. As an extension of the maximum likelihood estimation method, the method decomposes a multi-dimensional estimation problem into multiple one-dimensional estimation problems, and can jointly estimate various parameters of the multipath signal, and is not limited to the structure of the transmitting and receiving antenna array. .
图 1 为现有信道参数估计方法流程示意图。参见图 1 ,该流程包括: Figure 1 is a schematic flow chart of an existing channel parameter estimation method. Referring to Figure 1, the process includes:
步骤 101 ,设置测量快照序号 k ,开始对第 k
个测量快照进行信道参数提取。Step 101: Set a measurement snapshot sequence number k , and start channel parameter extraction on the kth measurement snapshot.
步骤 102 ,利用串行干扰消除方法对所有 L 径信号的信道参数进行初始化,得到所有
L 径信号的信道参数的初始值。Step 102: Initialize channel parameters of all L- path signals by using a serial interference cancellation method to obtain initial values of channel parameters of all L- path signals.
步骤 103 ,将迭代轮次 n 的初始值设为 1 ,开始第 1 轮迭代。In step 103, the initial value of the iteration round n is set to 1, and the first round of iteration is started.
步骤 104 ,将多径信号的序号 l 初始化为 1 ,开始对第 1
径信号的信道参数进行提取。Step 104 : Initialize the sequence number l of the multipath signal to 1, and start extracting the channel parameters of the first path signal.
步骤 105 ,计算第 l 径信号的条件期望。 Step 105 calculates a first signal path l conditional expectation.
步骤 106 ,搜索使第 l 径信号的似然函数最大化的信道参数值,得到第
n 轮迭代后第 l 径信号的信道参数提取结果。 本步骤 106 中,依次搜索使第 l
径信号的似然函数最大化的传播时延、多普勒频移、水平离开角、垂直离开角、水平到达角、垂直到达角和极化复幅度系数等参数,在搜索某一个参数时,其他参数保持固定,且等于最近一次更新后的值。 Step 106, the search path of the first signal l maximizing the likelihood function of channel parameter value, to give the l-path channel parameter signal after the n-th iteration extraction result. In this step 106, the search order so that the likelihood function maximizes propagation delay of the l-path signals, Doppler shift, away from the horizontal angle, vertical angle away from the horizontal angle of arrival, angle of arrival and polarization multiplexing vertical amplitude coefficients For other parameters, when searching for a parameter, other parameters remain fixed and equal to the value after the last update.
步骤 107 ,判断多径信号的序号 l 是否等于最大多径数 L
。若是,则第 n 轮迭代结束,得到第 n 轮迭代后所有 L 径信号的信道参数提取结果;否则将序号 l
加 1 ,并返回执行步骤 105 。Step 107: Determine whether the sequence number l of the multipath signal is equal to the maximum multipath number L. If yes, the nth round of iteration ends, and the channel parameter extraction result of all L- path signals after the n-th iteration is obtained; otherwise, the sequence number l is incremented by 1, and the process returns to step 105.
步骤 108 ,判断第 n 轮迭代后所有 L
径信号的信道参数提取结果是否与第 n -1 轮迭代后的结果相同。若是,则说明结果收敛,该结果即为第 k 个测量快照的所有
L 径信号的最终信道参数提取结果;否则说明结果不收敛,将 n 加 1 ,并返回执行步骤 104 。 Step 108, after the n-th wheel is determined iterative channel parameter extracting all L multipath signals whether the result of the result of the same n -1 iterations. If yes, the result is converged. The result is the final channel parameter extraction result of all the L- path signals of the kth measurement snapshot; otherwise, the result is not converged, n is incremented by 1, and the process returns to step 104.
步骤 109 ,判断测量快照的序号 k 是否等于最大快照数 K
。若是,则整个信道参数提取过程结束;否则将 k 加 1 ,并返回执行步骤 101 。Step 109: Determine whether the sequence number k of the measurement snapshot is equal to the maximum number of snapshots K. If so, the entire channel parameter extraction process ends; otherwise, k is incremented by 1, and the process returns to step 101.
由上述流程可见,现有的信道参数提取方法,主要存在以下两个问题: It can be seen from the above process that the existing channel parameter extraction methods mainly have the following two problems:
1
)忽略了测量快照之间的相关性,且相邻测量快照的信道参数相近。现有方法在对每一个测量快照进行信道参数提取时,都要先独立地使用一次串行干扰消除方法对信道参数值进行初始化。而串行干扰消除方法在实际执行过程中效率较低,耗时较长,使得初始化过程占到了整个信道参数提取流程执行时间的
70% 左右。 1
The correlation between measurement snapshots is ignored, and the channel parameters of adjacent measurement snapshots are similar. In the existing method, when channel parameters are extracted for each measurement snapshot, the channel parameter values are initialized independently using a serial interference cancellation method. The serial interference cancellation method is less efficient and takes a long time in the actual execution process, so that the initialization process accounts for the execution time of the entire channel parameter extraction process.
70% or so.
2
)忽略了多径信号通常以簇的形式传播,且同一簇内各径信号的信道参数相近。现有方法对于每一径信号,在搜索使其似然函数最大化的信道参数值时,对于每一个信道参数,都需要在其取值域内进行全局搜索。这样的搜索策略效率较低。 2
It is neglected that multipath signals are usually propagated in the form of clusters, and the channel parameters of the path signals in the same cluster are similar. In the existing method, for each path signal, when searching for the channel parameter value that maximizes the likelihood function, for each channel parameter, a global search is needed in the value field. Such a search strategy is less efficient.
本发明要解决的技术问题是:如何提供一种多维信道参数提取方案,以提高信道参数提取过程中信道参数初始化的效率,同时提高搜索使似然函数最大化的信道参数值的效率。
The technical problem to be solved by the present invention is how to provide a multi-dimensional channel parameter extraction scheme to improve the efficiency of channel parameter initialization in the channel parameter extraction process, and at the same time improve the efficiency of searching channel parameter values that maximize the likelihood function.
为解决上述技术问题,本发明提供了一种多维信道参数提取方法,该方法包括步骤: To solve the above technical problem, the present invention provides a multi-dimensional channel parameter extraction method, the method comprising the steps of:
S1
、根据信道测量过程中测量设备的参数设置和测量环境的相关信息计算本地区域的范围以及每个本地区域的范围内包含的测量快照数;所述本地区域是指将一条连续的测量路线划分而成的多个区域; S1
Calculating a range of the local area and a number of measurement snapshots included in the range of each local area according to the parameter setting of the measuring device in the channel measurement process and the related information of the measurement environment; the local area refers to dividing a continuous measurement route Multiple areas
S2 、根据步骤 S1 的计算结果判定当前测量快照在其所处本地区域的范围内的位置; S2, determining, according to the calculation result of step S1, a position of the current measurement snapshot within a range of the local area in which it is located;
S3 、根据步骤 S2
的判定结果选择采用串行干扰消除方法或基于测量快照间相关性的方法对当前测量快照的各径信道参数进行初始化; S3, according to step S2
The determination result is selected by using a serial interference cancellation method or a method for measuring correlation between snapshots to initialize channel parameters of the current measurement snapshot;
S4
、采用带有优先级的搜索策略对各径信道参数进行迭代运算,并在迭代运算过程中按照使各径信道参数的似然函数最大化且单调不减的原则更新信道参数。 S4
The priority search algorithm is used to iteratively calculate the channel parameters of each path, and the channel parameters are updated in the iterative operation according to the principle that the likelihood function of each path channel parameter is maximized and monotonously reduced.
其中,所述测量设备包括移动台,且所述测量设备的参数设置和测量环境的相关信息包括:测量信号的中心载频 f
c
、信道采样速率 f
s 以及移动台运动速度 v 。 其中,步骤 S1 中计算本地区域的范围
d 的方法为: d=20 λ =10c/ (π f
c ),其中
c 表示光速。 其中,所述计算每一个本地区域的范围 d 内所含测量快照数的方法为:
其中符号 └ · ┘ 表示向下取整。 其中,步骤 S2 中判断当前测量快照在其所处本地区域的范围内位置的方法为:计算
(k-K
0 )mod Q 其中, k 为当前测量快照的序号,
K
0 为测量快照的序号的初始值,若上式计算结果为 0 ,则当前测量快照为其所处本地区域的范围内的第 1 个测量快照;若不为
0 ,则当前测量快照不是其所处本地区域的范围内的第 1 个测量快照。 其中,若判定当前测量快照为其所处本地区域的范围内第 1
个测量快照,则采用串行干扰消除方法对各径信道参数进行初始化;否则采用基于测量快照间相关性的初始化方法。 其中,所述基于测量快照间相关性的初始化方法为:
θ l
(0) (k)= θ l
(R) (k-1), l=1,…,L 其中 θ l
(0)(k) 表示第 k 个测量快照中第 l 径信号的信道参数初始值,
θ l
(R) (k-1) 表示第 k -1
个测量快照中第 l 径信号的最终信道参数提取结果, L 为最大多径数。 其中,所述带有优先级的搜索策略为:
其中 θ l
(n) 表示第 n
轮迭代后第 l 径信号的信道参数值, U l 为优先搜索域,z (θ l ) 为第 l 径信号的似然函数,所述优先搜索域定义为以其他 L -1
径信号的相应信道参数值为中心,以搜索步长的一定倍数为半径的区间的并集。 其中,按下式计算所述优先搜索域:
其中 Δ 表示搜索步长, σ 为正整数,表示搜索步长的加权。
其中,按照使各径信道参数的似然函数单调不减的原则更新信道参数是指:判断式z(θ
l
(n) ) ≥z(θ
l
(n-1)) 是否成立,如果成立,则将第 l 径信号的信道参数值更新为
θ l
(n) ,否则继续在优先搜索域的补集中搜索信道参数,其中 θ
l
(n) 表示第 n 轮迭代后第 l 径信号的信道参数值,
z ( θ l ) 为第 l 径信号的似然函数。The measurement device includes a mobile station, and the parameter setting of the measurement device and related information of the measurement environment include: a center carrier frequency f c of the measurement signal, a channel sampling rate f s , and a mobile station motion speed v . The method for calculating the range d of the local area in step S1 is: d=20 λ =10c/ ( π f c ), where c represents the speed of light. The method for calculating the number of measurement snapshots included in the range d of each local area is: The symbol └ · ┘ indicates rounding down. The method for determining the position of the current measurement snapshot in the range of the local area in the step S2 is: calculating ( kK 0 ) mod Q, where k is the sequence number of the current measurement snapshot, and K 0 is the initial value of the sequence number of the measurement snapshot. If the result of the above calculation is 0, the current measurement snapshot is the first measurement snapshot in the range of the local area in which it is located; if not, the current measurement snapshot is not the first in the range of the local area in which it is located. Measurement snapshots. If it is determined that the current measurement snapshot is the first measurement snapshot in the range of the local area in which the current measurement snapshot is located, the serial interference cancellation method is used to initialize the path parameters of each path; otherwise, an initialization method based on measuring the correlation between snapshots is adopted. The initialization method based on measuring the correlation between snapshots is: θ l (0) ( k )= θ l ( R ) ( k -1), l =1,..., L where θ l (0) ( k ) indicates the initial value of the channel parameter of the l- th path signal in the kth measurement snapshot, and θ l ( R ) ( k -1) represents the final channel parameter extraction result of the l -th path signal in the k -th measurement snapshot, L is The maximum number of multipaths. Wherein the prioritized search strategy is: Wherein [theta] l (n) represents a channel parameter value of l-path signal after the n-th iteration, the U-l for the first search field, z (θ l) is the likelihood function of l-path signal, the first search field is defined as The union of the intervals with a certain multiple of the search step radius, centered on the corresponding channel parameter values of the other L -1 path signals. Wherein, the priority search field is calculated as follows: Where Δ represents the search step size and σ is a positive integer representing the weight of the search step size. Wherein, updating the channel parameter according to the principle that the likelihood function of each channel parameter is monotonous or not decreases means: whether the judgment formula z (θ l ( n ) ) ≥ z (θ l ( n -1) ) is established, and if so, channel parameters will be the l-path signal updates the value of [theta] l (n), otherwise continue supplemented focus the search channel parameter priority search area, where [theta] l (n) represents the channel parameters of l-path signal after the n-th iteration The value, z ( θ l ) is the likelihood function of the l- th path signal.
本发明利用了基于测量快照间相关性的方法对测量快照的各径信道参数进行初始化,这样方法对于大部分测量快照,实际上省略了信道参数提取过程中信道参数初始值的计算过程,因此,提高了信道参数提取过程中信道参数初始化的效率;利用带有优先级的搜索策略对各径信道参数进行迭代运算,提高了搜索使似然函数最大化的信道参数值的效率。
The invention utilizes a method for measuring the path parameters of the measurement snapshot based on the method for measuring the correlation between snapshots, so that for most measurement snapshots, the calculation process of the initial values of the channel parameters in the channel parameter extraction process is actually omitted, therefore, The efficiency of channel parameter initialization in the channel parameter extraction process is improved; the iterative operation is performed on each channel parameter by using a prioritized search strategy, which improves the efficiency of searching for channel parameter values that maximize the likelihood function.
图 1 为现有信道参数提取方法流程示意图; FIG. 1 is a schematic flowchart of an existing channel parameter extraction method;
图 2 为本发明的方法流程图; 2 is a flow chart of a method of the present invention;
图 3 为本发明实施例的多维信道参数提取方法流程图; 3 is a flowchart of a multi-dimensional channel parameter extraction method according to an embodiment of the present invention;
图 4 为本发明实施例的执行多维信道参数提取的具体流程图。 FIG. 4 is a specific flowchart of performing multi-dimensional channel parameter extraction according to an embodiment of the present invention.
下面结合附图和实施例,对本发明的具体实施方式作进一步详细说明。以下实施例用于说明本发明,但不用来限制本发明的范围。 图 3
为本发明实施例的多维信道参数提取方法流程图。参见图 3 ,并参考图 2 的步骤 S1~S4 ,该方法的流程包括:
The specific embodiments of the present invention will be further described in detail below with reference to the drawings and embodiments. The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention. image 3
A flowchart of a multi-dimensional channel parameter extraction method according to an embodiment of the present invention. Referring to FIG. 3 and referring to steps S1 to S4 of FIG. 2, the process of the method includes:
步骤 201 ,设置测量快照的序号 k ; Step 201, setting a sequence number k of the measurement snapshot;
步骤 202 ,利用采用串行干扰消除方法或基于测量快照间相关性的初始化方法对 L
径信号的信道参数进行初始化,得到所有 L 径信号的信道参数的初始值, L 为正整数。 在步骤 202
中,定义了本地区域的概念:将一条连续的测量路线划分为多个本地区域。对于每个本地区域内的第一个测量快照,使用串行干扰消除方法对所有 L
径信号的信道参数进行初始化;而对于其他测量快照,基于测量快照间相关性的初始化方法进行初始化,也就是直接将上一个测量快照的最终信道参数提取结果对应的作为该测量快照中所有
L 径信号的信道参数的初始值。这样,对于大部分测量快照,实际上省略了信道参数提取过程中信道参数初始值的计算过程,提高了信道参数初始化的效率。Step 202: Initialize channel parameters of the L- path signal by using a serial interference cancellation method or an initialization method based on measuring correlation between snapshots, and obtain initial values of channel parameters of all L- path signals, where L is a positive integer. In step 202, the concept of a local area is defined: dividing a continuous measurement route into multiple local areas. For the first measurement snapshots of each local area, the interference cancellation method used to initialize all the parameters of the L channel signal path; snapshots for other measurements, initialization method for initializing the correlation between measured based on the snapshot, i.e. The initial channel parameter extraction result of the previous measurement snapshot is directly used as the initial value of the channel parameter of all the L- path signals in the measurement snapshot. Thus, for most measurement snapshots, the calculation process of the initial values of the channel parameters in the channel parameter extraction process is actually omitted, and the efficiency of channel parameter initialization is improved.
步骤 203 ,将迭代轮次 n 的初始值设为 1 ,准备开始第 1 轮迭代。In step 203, the initial value of the iteration round n is set to 1, and the first round of iteration is prepared.
步骤 204 ,将多径信号的序号 l 初始化为 1 ,准备开始对第 1
径信号的信道参数进行提取。Step 204 : Initialize the sequence number l of the multipath signal to 1, and prepare to start extracting the channel parameters of the first path signal.
步骤 205 ,计算第 l 径信号的条件期望。Step 205 calculates a first signal path l conditional expectation.
步骤 206 ,利用带有优先级的搜索策略搜索使第 l
径信号的似然函数最大化的信道参数值,得到第 n 轮迭代后第 l 径信号的信道参数提取结果。 在步骤 206 中,依次搜索使第
l
径信号的似然函数最大化的传播时延、多普勒频移、水平离开角、垂直离开角、水平到达角、垂直到达角和极化复幅度系数等参数,在搜索某一个参数时,使其他参数保持固定,固定为最近一次更新后的值。并且在搜索每一个参数时,都对该参数定义一个优先搜索域,该优先搜索域定义为以其他
L -1
径信号的相应参数值为中心,以搜索步长(预设值)的一定倍数为半径的区间的并集。搜索先在优先搜索域中进行,寻找其中是否存在使似然函数最大化且单调不减的参数值,若存在,则将相应参数更新为该参数值;否则再在非优先搜索域中搜索满足上述条件(使似然函数最大化且单调不减)的参数值。 Step 206, a search using a search strategy with priority so maximizing the likelihood function of the channel parameters of the multipath signals l, l to obtain the channel parameters of the multipath signals in the n-th iteration extraction result. In step 206, the search order of the first signal path l maximizing the likelihood function of propagation delay, Doppler shift, away from the horizontal angle, vertical angle away from the horizontal angle of arrival, angle of arrival and polarization multiplexing vertical amplitude coefficients Such parameters, when searching for a certain parameter, keep the other parameters fixed and fixed to the last updated value. And when searching for each parameter, a priority search field is defined for the parameter, and the priority search field is defined as a certain multiple of the search step (preset value) with the corresponding parameter value of the other L -1 path signal as the center. The union of the intervals of the radius. The search is first performed in the priority search domain to find out whether there is a parameter value that maximizes the likelihood function and monotonically decreases, and if so, updates the corresponding parameter to the parameter value; otherwise, the search in the non-first search domain is satisfied. The parameter value of the above condition (maximizing the likelihood function and monotonously decreasing).
步骤 207 ,判断多径信号的序号 l 是否等于最大多径数 L
。若是,则第 n 轮迭代结束,得到第 n 轮迭代后所有 L 径信号的信道参数提取结果;否则将 l 加
1 ,并返回执行步骤 205 。Step 207: Determine whether the sequence number l of the multipath signal is equal to the maximum multipath number L. If yes, the nth round of iteration ends, and the channel parameter extraction result of all L- path signals after the n-th iteration is obtained; otherwise, l is incremented by 1, and the process returns to step 205.
步骤 208 ,判断第 n 轮迭代后所有 L
径信号的信道参数提取结果是否与第 n -1 轮迭代后的结果相同。若是,则说明结果收敛,该结果即为第 k 个测量快照的所有
L 径信号的最终信道参数提取结果;否则说明结果不收敛,将 n 加 1 ,并返回执行步骤 204 。 Step 208, after the n-th wheel is determined iterative channel parameter extracting all L multipath signals whether the result of the result of the same n -1 iterations. If yes, the result is converged. The result is the final channel parameter extraction result of all the L- path signals of the kth measurement snapshot; otherwise, the result does not converge, n is incremented by 1, and the process returns to step 204.
步骤 209 ,判断测量快照的序号 k 是否等于预设的最大快照数 K
。若是,则整个信道参数提取过程结束;否则将 k 加 1 ,并返回执行步骤 201 。 图 4
为本发明实施例的执行多维信道参数提取的具体流程图。参见图 4 ,该流程包括:Step 209: Determine whether the sequence number k of the measurement snapshot is equal to the preset maximum number of snapshots K. If so, the entire channel parameter extraction process ends; otherwise, k is incremented by 1, and the process returns to step 201. FIG. 4 is a specific flowchart of performing multi-dimensional channel parameter extraction according to an embodiment of the present invention. Referring to Figure 4, the process includes:
步骤 301
,根据信道测量过程中测量设备的参数设置和测量环境的相关信息计算本地区域的范围和每个本地区域中包含的测量快照数(该步骤是在步骤 201
之前执行的准备步骤)。所述测量设备是用于测量信道参数的工具,主要包括用于发送数据的发送单元、用于接收数据的接收单元(也就是移动台),用于存储数据的数据存储单元以及收发天线。
对于某一测量场景,设测量时收发信号的中心载频为 f
c ,则对应的载波波长为 λ
=c/(2 π f
c ),其中 c 为光速。根据经验,将本地区域的范围
d 设为 20 倍载波波长,即 d=20 λ =10c/ (π f
c
)若该场景下移动台的运动速度为 v ,信道的采样频率为 f
s
,则每一个本地区域内包含的测量快照数 Q 可以计算为
其中,符号 └ ·┘ 表示向下取整。 Step 301: Calculate a range of the local area and a number of measurement snapshots included in each local area according to the parameter setting of the measurement device and the related information of the measurement environment during the channel measurement process (this step is a preparation step performed before step 201). The measuring device is a tool for measuring channel parameters, and mainly includes a transmitting unit for transmitting data, a receiving unit (that is, a mobile station) for receiving data, a data storage unit for storing data, and a transmitting and receiving antenna. For a certain measurement scenario, the center carrier frequency of the transmitted and received signals during measurement is f c , and the corresponding carrier wavelength is λ = c / ( 2 π f c ), where c is the speed of light. According to experience, the range d of the local area is set to 20 times the carrier wavelength, that is, d=20 λ =10c/ ( π f c ). If the moving speed of the mobile station is v in this scene and the sampling frequency of the channel is f s , then The number of measurement snapshots Q contained in each local area can be calculated as Among them, the symbol └ · ┘ means rounding down.
步骤 302 ,设置测量快照的序号 k 。(该步骤对应步骤 201 )Step 302: Set a sequence number k of the measurement snapshot. (This step corresponds to step 201)
步骤 303 ,根据上述计算结果判定当前测量快照在其所处本地区域内的位置,即:判断第
k 个测量快照是否为其所处本地区域内的第 1 个测量快照。若是,则执行步骤 304 ;若否,则执行步骤 305 。
判断方法为:令测量快照的起始序号为 K
0 ,
K
0
> 0 且为整数,计算: (k-K
0)mod Q 其中 mod 表示求余。若上式计算结果为 0 ,则第 k 个测量快照是其所处本地区域内的第
1 个测量快照,若不等于 0 ,则第 k 个测量快照不是其所处本地区域内的第 1 个测量快照。Step 303: Determine, according to the calculation result, a position of the current measurement snapshot in the local area where the measurement snapshot is located, that is, determine whether the kth measurement snapshot is the first measurement snapshot in the local area in which it is located. If yes, go to step 304; if no, go to step 305. The judgment method is as follows: the starting sequence number of the measurement snapshot is K 0 , K 0 > 0 and is an integer, and the calculation is: ( k - K 0 ) mod Q where mod represents the remainder. If the result of the above calculation is 0, the kth measurement snapshot is the first measurement snapshot in the local area in which it is located. If not equal to 0, the kth measurement snapshot is not the first in the local area in which it is located. Measure the snapshot.
步骤 304 ,若第 k 个测量快照是其所处本地区域内的第 1
个测量快照,则采用串行干扰消除方法对其包含的所有 L 径信号的信道参数进行初始化,得到所有 L 径信号的信道参数的初始值。 在步骤
304 中,对每个本地区域内的第 1 个测量快照使用串行干扰消除初始化方法,能够避免或减轻基于测量快照间相关性的初始化方法带来的误差累积。Step 304: If the kth measurement snapshot is the first measurement snapshot in the local area in which it is located, the channel interference parameter is used to initialize the channel parameters of all the L path signals included in the local area to obtain all the L path signals. The initial value of the channel parameter. In step 304, the serial interference cancellation initialization method is used for the first measurement snapshot in each local area, which can avoid or mitigate the error accumulation caused by the initialization method based on measuring the correlation between snapshots.
步骤 305 ,若第 k 个测量快照不是其所处本地区域内的第 1
个测量快照,直接将第 k -1 个测量快照的最终信道参数提取结果对应的作为第 k 个测量快照中所有 L
径信号的信道参数的初始值。 令 θ l
(R)
(k)={A l
(R), τ
l
(R) ,
Ф
1,l
(R) , θ 1,l
(R) , Φ
2,l
(R) ,
θ 2,l
(R) ,f
d,l
(R)} 表示第 k 个测量快照中第 l 径信号的最终信道参数提取结果,上标 R
是 result 的缩写,表示提取结果,其中 A l , τ
l ,
Φ
1,l
, θ
1,l
,
Φ
2,l
, θ
2,l
,f
d,l 分别表示第 l
径信号的极化复幅度矩阵,传播时延,水平离开角,垂直离开角,水平到达角,垂直到达角和多普勒频移,令 θ
l
(0)(k)={A l
(0),τ
l
(0) ,Φ
1,l
(0) ,θ 1,l
(0) ,
Φ
2,l
(0) ,θ 2,l
(0)
,f
d,l
(0)} 表示第 k 个测量快照中第 l
径信号的信道参数初始值,上标 0 表示初始值,则本步骤可以表示为 θ l
(0)
(k)= θ l
(R) (k-1),
l=1,…,L 其中 L 为最大多径数。 上述步骤 303~305 对应步骤 202 。
Step 305: If the kth measurement snapshot is not the first measurement snapshot in the local area, the result of the final channel parameter extraction result of the k -1th measurement snapshot is directly used as the L path in the kth measurement snapshot. The initial value of the channel parameter of the signal. Let θ l ( R ) ( k )={A l ( R ) , τ l ( R ) ,
Ф 1, l (R), θ 1, l (R), Φ 2, l (R), θ 2, l (R), f d, l (R)} denotes the k-th measurement snapshots of l Diameter The final channel parameter extraction result of the signal, the superscript R is an abbreviation of result, indicating the extraction result, where A l , τ l , Φ 1 , l , θ 1, l ,
Φ 2, l , θ 2, l , f d,l respectively represent the polarization complex amplitude matrix of the l- path signal, propagation delay, horizontal exit angle, vertical exit angle, horizontal arrival angle, vertical angle of arrival and Doppler Frequency shift, let θ l (0) ( k )={A l (0) , τ l (0) , Φ 1, l (0) , θ 1, l (0) ,
Φ 2, l (0) , θ 2, l (0) , f d,l (0) } represents the initial value of the channel parameter of the l- th path signal in the kth measurement snapshot, and the superscript 0 represents the initial value, then The steps can be expressed as θ l (0) ( k ) = θ l ( R ) ( k -1), l =1, ..., L where L is the maximum multipath number. The above steps 303~305 correspond to step 202.
步骤 306 ,将迭代轮次 n 的初始值设为 1 ,开始第 1 轮迭代。该步骤对应步骤
203 。In step 306, the initial value of the iteration round n is set to 1, and the first round of iteration is started. This step corresponds to step 203.
步骤 307 ,将多径信号的序号 l 初始化为 1 ,准备开始对第 1
径信号的信道参数进行提取。该步骤对应步骤 204 。Step 307 : Initialize the sequence number l of the multipath signal to 1, and prepare to start extracting the channel parameters of the first path signal. This step corresponds to step 204.
步骤 308 ,计算第 l 径信号的条件期望。该步骤对应步骤 205 。 在步骤 308
中,第 l 径信号的条件期望 x
l (t) 计算为
其中 y (t) 表示第 k 个测量快照测得的信道冲激响应,且 s
l (t)=exp{j2πf
d,l
t }C2(
Φ
2,l
,θ
2,l
)A l C1
T (
Φ
1,l
,θ
1,l
)δ (t- τ
l ) 其中
表示发送天线阵列在对应角度上的响应,
表示接收天线阵列在对应角度上的响应, δ (t) 表示单位冲激函数,符号 ( · ) T 表示矩阵的转置。 Step 308, calculating the firstl The condition of the path signal is expected. This step corresponds to step 205. At step 308
B l Conditional expectation of the path signalx
l (t) is calculated as
among them y (tSaidk Measuring the channel impulse response measured by the snapshot, ands
l (t)=exp{j2Πf
d,l
t }C2(
Φ
2, l ,θ
2, l )A l C1
T (
Φ
1, l ,θ
1, l )δ (t-τ
l ) among them
Indicates the response of the transmit antenna array at the corresponding angle,
Representing the response of the receiving antenna array at a corresponding angle,δ (t) means unit impulse function, symbol ( · ) T Represents the transpose of a matrix.
步骤 309 ,确定第 l 径信号中各信道参数的优先搜索域。 该步骤 309 中,第
l 径信号中各信道参数的优先搜索域 U l 定义为以其他 L -1
径信号的相应信道参数值为中心,以搜索步长的一定倍数为半径的区间的并集,即
其中 θ l
(n)
(k)={A l
(n), τ
l
(n) ,
Φ
1,l
(n) , θ 1,l
(n) ,
Φ
2,l
(n) , θ
2,l
(n) ,f
d,l
(n)} 表示第 n 轮迭代后第 k 个测量快照中的第 l 径信号的信道参数值,
Δ 表示搜索步长,σ为正整数,表示搜索步长的加权,等号右边的' U '表示求并集。在以下各步骤中,为方便起见,在不引起混淆的情况下,将 θ l
(n) (k) 简写为 θ l
(n) 。相应的,传播时延、多普勒频移、水平离开角、垂直离开角、水平到达角、垂直到达角的优先搜索域分别为
其中,
分别表示传播时延、水平离开角、垂直离开角、水平到达角、垂直到达角和多普勒频移的搜索步长,
分别表示各步长的加权系数,该系数根据搜索步长占整个取值域的比例灵活调整。例如 σ
τ 一般取 1 ,当角度域的搜索步长为 2 °时,
一般取 2 。 Step 309, determining the firstl The preferred search field for each channel parameter in the path signal. In step 309, the firstl Priority search field for each channel parameter in the path signal U l Defined as otherL -1
The corresponding channel parameter value of the path signal is the center, and the union of the intervals with a certain multiple of the search step radius is
Where θ l
( n )
(k)={A l
( n ),τ
l
( n ) ,
Φ
1, l
( n ) , θ1, l
( n ) ,
Φ
2, l
( n ) , θ
2, l
( n ) ,f
d,l
( n )} indicates the firstn After the iterationk Number of measurement snapshotsl Channel parameter value of the path signal,
Δ represents the search step size, σ is a positive integer representing the weighting of the search step, and ' U ' to the right of the equal sign indicates the union. In the following steps, for the sake of convenience, without causing confusion, θ l
( n ) (k) abbreviated as θ l
( n ) . Correspondingly, the priority search fields of propagation delay, Doppler shift, horizontal exit angle, vertical exit angle, horizontal arrival angle, and vertical arrival angle are respectively
among them,
Search steps for propagation delay, horizontal exit angle, vertical exit angle, horizontal arrival angle, vertical angle of arrival, and Doppler shift, respectively
The weighting coefficients of the respective step lengths are respectively indicated, and the coefficients are flexibly adjusted according to the proportion of the search step size in the entire value range. E.g σ
τ Generally take 1 , when the search step of the angle domain is 2 °,
Generally take 2 .
步骤 310 ,在优先搜索域中寻找使第 l 径信号的似然函数最大化的传播时延值。 第
l 径信号的似然函数
表示为
其中
其中符号
表示克罗内克积, ( · ) H 表示矩阵的共轭转置,
其中符号 ( . )*表示共轭, X l (
τ
l ,f
d,l ) 是一个 N × M
维的矩阵,N和M分别为接收和发送天线总数。 X l (
τ
l
,f
d,l ) 中的元素为:
X
l,n,m ( τ
l
,f
d,l )=exp(-j2
πf
d,l
t
n,m ) ·δ
(t-
τ
l
)x
l (t-t
n,m ) ,其中 t
n,m 表示测量中第 m 根发送天线发送且第 n 根接收天线接收的时间。
得到似然函数的具体表达式后,本步骤中,在优先搜索域内寻找使似然函数最大化的传播时延值的过程可以表示为
Step 310, to find the first signal path l maximizes the likelihood function of propagation delay values first search field. Likelihood function of path signal l Expressed as among them Which symbol Represents the Kronecker product, ( · ) H represents the conjugate transpose of the matrix, Where the symbol ( . ) * denotes a conjugate, X l ( τ l , f d, l ) is a matrix of N × M dimensions, and N and M are the total number of receiving and transmitting antennas, respectively. The elements in X l ( τ l , f d,l ) are: X l,n,m ( τ l , f d,l )=exp(- j 2 πf d,l t n,m ) · δ ( t - τ l ) x l ( tt n,m ) , where t n,m represents the time at which the mth transmit antenna is transmitted and the nth receive antenna is received. After obtaining the specific expression of the likelihood function, in this step, the process of finding the propagation delay value that maximizes the likelihood function in the priority search domain can be expressed as
步骤 311 ,判断似然函数是否单调不减。
上一步寻找到的使似然函数最大化的传播时延值必须满足似然函数单调不减的条件,才有可能是整个时延取值域内的最优值。本步骤中似然函数单调不减的条件表示为
z (
Φ
1,
l
(n-1) , θ
1,
l
(n-1) ,
Φ
2,
l
(n-1) , θ
2,
l
(n-1) , τ
l
(n)
,f
d,l
(n-1);x
l ) ≥ z (
Φ
1,
l
(n-1) , θ
1,
l
(n-1) ,
Φ
2,
l
(n-1) , θ
2,
l
(n-1) , τ
l
(n-1) ,f
d,l
(n-1);x
l ) 若上式所示条件满足,则步骤 310 得到的 τ
l
(n) 即作为第 n 轮迭代后第 l
径信号的传播时延值,跳过步骤 312 ,直接执行步骤 313 ;若不满足,则步骤 310 得到的 τ
l
(n) 不可能是整个时延取值域内最优的,执行步骤 312 。Step 311: Determine whether the likelihood function is monotonous or not. The propagation delay value that was found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically decreases, and it is possible that it is the optimal value in the entire delay value range. The condition that the likelihood function monotonically decreases in this step is expressed as z (
Φ 1, l ( n -1) , θ 1, l ( n- 1) ,
Φ 2, l ( n- 1) , θ 2, l ( n- 1) , τ l ( n ) , f d,l ( n -1) ; x l ) ≥ z (
Φ 1, l ( n -1) , θ 1, l ( n- 1) ,
Φ 2, l ( n- 1) , θ 2, l ( n- 1) , τ l ( n- 1) , f d,l ( n -1) ; x l ) If the conditions shown in the above formula are satisfied, then The τ l ( n ) obtained in step 310 is the propagation delay value of the l- th path signal after the n-th iteration, skipping step 312 and directly performing step 313; if not, the τ l ( n ) obtained in step 310 It is not possible that the entire delay is optimal in the value range, and step 312 is performed.
步骤 312 ,在非优先搜索域中寻找使第 l 径信号的似然函数最大化的传播时延值。
本步骤中的搜索过程表示为
其中
表示
的补集 。由于似然函数必然单调不减,故若执行本步骤,则本步骤得到的τ
l
(n) 必然是整个时延取值域内最优的。 Step 312, to find the first signal path l maximizes the likelihood function of the non-preferential propagation delay value search field. The search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the τ l ( n ) obtained in this step is necessarily the optimal in the entire delay value range.
步骤 313 ,在优先搜索域中寻找使第 l 径信号的似然函数最大化的多普勒频移值。
本步骤中在优先搜索域内寻找使似然函数最大化的多普勒频移值的过程可以表示为
Step 313, in the first search field to find the first signal path l maximizing the likelihood function of Doppler shift values. The process of finding the Doppler shift value that maximizes the likelihood function in the priority search domain in this step can be expressed as
步骤 314 ,判断似然函数是否单调不减。
上一步寻找到的使似然函数最大化的多普勒频移值必须满足似然函数单调不减的条件,才有可能是整个多普勒频移取值域内的最优值。本步骤中似然函数单调不减的条件表示为
z (
Φ
1,
l
(n-1) , θ
1,
l
(n-1) ,
Φ
2,
l
(n-1) , θ
2,
l
(n-1) , τ
l
(n)
,f
d,l
(n);x
l ) ≥ z (
Φ
1,
l
(n-1) ,
θ
1,
l
(n-1) ,
Φ
2,
l
(n-1) ,
θ
2,
l
(n-1) , τ
l
(n) ,f
d,l
(n-1);x
l ) 若上式所示条件满足,则步骤 313 得到的
f
d,l
(n) 即作为第 n 轮迭代后第 l
径信号的多普勒频移值,跳过步骤 315 ,直接执行步骤 316 ;若不满足,则步骤 313 得到的 f
d,l
(n) 不可能是整个多普勒频移取值域内最优的,执行步骤 315 。In step 314, it is determined whether the likelihood function is monotonous or not. The Doppler shift value that was found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that it is the optimal value in the entire Doppler shift range. The condition that the likelihood function monotonically decreases in this step is expressed as z (
Φ 1, l ( n -1) , θ 1, l ( n- 1) ,
Φ 2, l ( n- 1) , θ 2, l ( n- 1) , τ l ( n ) , f d,l ( n ) ; x l ) ≥ z (
Φ 1, l ( n -1) , θ 1, l ( n- 1) ,
Φ 2, l ( n- 1) , θ 2, l ( n- 1) , τ l ( n ) , f d,l ( n -1) ; x l ) If the condition shown in the above formula is satisfied, step 313 The obtained f d,l ( n ) is the Doppler shift value of the l- th path signal after the n-th iteration, skipping step 315 and directly performing step 316; if not, the f d obtained in step 313 , l ( n ) It is impossible to be optimal in the entire Doppler shift value range, and step 315 is performed.
步骤 315 ,在非优先搜索域中寻找使第 l 径信号的似然函数最大化的多普勒频移值。
本步骤中的搜索过程表示为
其中
表示
的补集。由于似然函数必然单调不减,故若执行本步骤,则本步骤得到的 f
d,l
(n) 必然是整个多普勒频移取值域内最优的。 Step 315, the non-first search domain to find the first signal path l maximizing the likelihood function of Doppler frequency shift values. The search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the f d,l ( n ) obtained in this step is necessarily the optimal in the entire Doppler shift value range.
步骤 316 ,在优先搜索域中寻找使第 l 径信号的似然函数最大化的水平离开角值。
本步骤中在优先搜索域内寻找使似然函数最大化的水平离开角值的过程可以表示为
Step 316, in the first search field to find the first l-path signal level maximizes the likelihood function value departure angle. The process of finding the horizontal leaving angle value that maximizes the likelihood function in the priority search domain in this step can be expressed as
步骤 317 ,判断似然函数是否单调不减。
上一步寻找到的使似然函数最大化的水平离开角值必须满足似然函数单调不减的条件,才有可能是整个水平离开角取值域内的最优值。本步骤中似然函数单调不减的条件表示为
z (
Φ
1,
l
(n) , θ
1,
l
(n-1) ,
Φ
2,
l
(n-1) , θ
2,
l
(n-1) , τ
l
(n)
,f
d,l
(n);x
l ) ≥ z (
Φ
1,
l
(n-1) , θ
1,
l
(n-1) ,
Φ
2,
l
(n-1) , θ
2,
l
(n-1) , τ
l
(n)
,f
d,l
(n);x
l ) 若上式所示条件满足,则步骤 316 得到的 Φ
1,l
(n) 即作为第 n 轮迭代后第 l 径信号的水平离开角值,跳过步骤 318 ,直接执行步骤 319
;若不满足,则步骤 316 得到的
Φ
1,l
(n) 不可能是整个水平离开角取值域内最优的,执行步骤 318 。 Step 317: Determine whether the likelihood function is monotonous or not.
The horizontal leaving angle value that is found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that the horizontal value of the entire horizontal leaving angle is the optimal value. The condition that the likelihood function monotonously decreases in this step is expressed as
z (
Φ
1,
l
( n ) ,θ
1,
l
( n- 1) ,
Φ
2,
l
( n- 1) ,θ
2,
l
( n- 1) ,τ
l
( n )
,f
d,l
( n );x
l ) ≥z (
Φ
1,
l
( n -1) ,θ
1,
l
( n- 1) ,
Φ
2,
l
( n- 1) ,θ
2,
l
( n- 1) ,τ
l
( n )
,f
d,l
( n );x
l If the condition shown in the above formula is satisfied, then step 316 is obtained.Φ
1 ,l
( n ) As the firstn After the iterationl The horizontal value of the path signal leaves the angle value. Skip step 318 and directly perform step 319.
If not, then step 316
Φ
1 ,l
( n ) It is not possible to optimize the entire horizontal departure angle range, and step 318 is performed.
步骤 318 ,在非优先搜索域中寻找使第 l 径信号的似然函数最大化的水平离开角值。
本步骤中的搜索过程表示为
其中
表示
的补集。由于似然函数必然单调不减,故若执行本步骤,则本步骤得到的
Φ
1,l
(n)
必然是整个水平离开角取值域内最优的。 Step 318, looking for the first in the non-first search domainl The likelihood function of the path signal maximizes the horizontal departure angle value.
The search process in this step is expressed as
among them
Express
Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the step is obtained.
Φ
1 ,l
( n )
It must be the best in the entire horizontal departure angle range.
步骤 319 ,在优先搜索域中寻找使第 l 径信号的似然函数最大化的垂直离开角值。
本步骤中在优先搜索域内寻找使似然函数最大化的垂直离开角值的过程可以表示为
Step 319, the first search field to find the first signal path l maximizing the likelihood function value of the angle away from vertical. The process of finding the vertical departure angle value that maximizes the likelihood function in the priority search domain in this step can be expressed as
步骤 320 ,判断似然函数是否单调不减。
上一步寻找到的使似然函数最大化的垂直离开角值必须满足似然函数单调不减的条件,才有可能是整个垂直离开角取值域内的最优值。本步骤中似然函数单调不减的条件表示为
z (
Φ
1,
l
(n) , θ
1,
l
(n) ,
Φ
2,
l
(n-1) , θ
2,
l
(n-1) , τ
l
(n)
,f
d,l
(n);x
l ) ≥ z (
Φ
1,
l
(n) , θ
1,
l
(n-1) ,
Φ
2,
l
(n-1) , θ
2,
l
(n-1) , τ
l
(n)
,f
d,l
(n);x
l ) 若上式所示条件满足,则步骤 319 得到的 θ
1,l
(n) 即作为第 n 轮迭代后第 l 径信号的垂直离开角值,跳过步骤 321 ,直接执行步骤 322
;若不满足,则步骤 319 得到的 θ
1,l
(n)
不可能是整个垂直离开角取值域内最优的,执行步骤 321 。 In step 320, it is determined whether the likelihood function is monotonous or not. The value of the vertical departure angle obtained by the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that it is the optimal value in the entire vertical departure angle range. The condition that the likelihood function monotonically decreases in this step is expressed as z (
Φ 1, l ( n ) , θ 1, l ( n ) ,
Φ 2, l ( n- 1) , θ 2, l ( n- 1) , τ l ( n ) , f d,l ( n ) ; x l ) ≥ z (
Φ 1, l ( n ) , θ 1, l ( n- 1) ,
Φ 2, l ( n- 1) , θ 2, l ( n- 1) , τ l ( n ) , f d,l ( n ) ; x l ) If the condition shown in the above formula is satisfied, then step 319 is obtained. θ 1 , l ( n ) is the vertical departure angle value of the l- th path signal after the n-th iteration, skipping step 321 and directly performing step 322; if not, step 319 obtains θ 1 , l ( n ) It is impossible to optimize the entire vertical departure angle range, and step 321 is performed.
步骤 321 ,在非优先搜索域中寻找使第 l 径信号的似然函数最大化的垂直离开角值。
本步骤中的搜索过程表示为
其中
表示
的补集。 由于似然函数必然单调不减,故若执行本步骤,则本步骤得到的θ
1,l
(n)必然是整个垂直离开角取值域内最优的。 Step 321, the non-first search domain to find the first signal path l maximizes the likelihood function of the angle away from vertical value. The search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the θ 1, l ( n ) obtained in this step is necessarily the best in the entire vertical departure angle range.
步骤 322 ,在优先搜索域中寻找使第 l 径信号的似然函数最大化的水平到达角值。
本步骤中在优先搜索域内寻找使似然函数最大化的水平到达角值的过程可以表示为
Step 322, in the first search field to find the first l-path signal level maximizes the likelihood function value of the angle of arrival. The process of finding the horizontal arrival angle value that maximizes the likelihood function in the priority search domain in this step can be expressed as
步骤 323 ,判断似然函数是否单调不减。
上一步寻找到的使似然函数最大化的水平到达角值必须满足似然函数单调不减的条件,才有可能是整个水平到达角取值域内的最优值。本步骤中似然函数单调不减的条件表示为
z ( Φ
1,
l
(n) , θ
1,
l
(n) ,
Φ
2,
l
(n) , θ
2,
l
(n-1) , τ
l
(n)
,f
d,l
(n);x
l ) ≥ z ( Φ
1,
l
(n) , θ
1,
l
(n) ,
Φ
2,
l
(n-1) , θ
2,
l
(n-1) , τ
l
(n)
,f
d,l
(n);x
l ) 若上式所示条件满足,则步骤 322 得到的
Φ
2,l
(n) 即作为第 n 轮迭代后第 l 径信号的水平到达角值,跳过步骤 324 ,直接执行步骤 325
;若不满足,则步骤 322 得到的 Φ
2,l
(n)
不可能是整个水平到达角取值域内最优的,执行步骤 324 。 Step 323: Determine whether the likelihood function is monotonous or not.
The horizontal arrival angle value found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that it is the optimal value in the entire horizontal arrival angle range. The condition that the likelihood function monotonously decreases in this step is expressed as
z (Φ
1,
l
( n ) ,θ
1,
l
( n ) ,
Φ
2,
l
( n ) ,θ
2,
l
( n- 1) ,τ
l
( n )
,f
d,l
( n );x
l ) ≥z (Φ
1,
l
( n ) ,θ
1,
l
( n ) ,
Φ
2,
l
( n- 1) ,θ
2,
l
( n- 1) ,τ
l
( n )
,f
d,l
( n );x
l If the condition shown in the above formula is satisfied, then step 322 is obtained.
Φ
2, l
( n ) As the firstn After the iterationl The horizontal value of the path signal reaches the angle value. Skip step 324 and directly perform step 325.
If not, then step 322Φ
2, l
( n )
It is not possible to optimize the entire horizontal arrival angle range, and step 324 is performed.
步骤 324 ,在非优先搜索域中寻找使第 l 径信号的似然函数最大化的水平到达角值。
本步骤中的搜索过程表示为
其中
表示
的补集。由于似然函数必然单调不减,故若执行本步骤,则本步骤得到的
Φ
2,l
(n)
必然是整个水平到达角取值域内最优的。 Step 324, looking for the first in the non-first search domainl The horizontal signal of the diameter signal maximizes the angle of arrival.
The search process in this step is expressed as
among them
Express
Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the step is obtained.
Φ
2, l
( n )
It must be the optimal in the entire horizontal angle of arrival.
步骤 325 ,在优先搜索域中寻找使第 l 径信号的似然函数最大化的垂直到达角值。
本步骤中在优先搜索域内寻找使似然函数最大化的垂直到达角值的过程可以表示为
Step 325, in the first search field to find the first signal path l maximizing the likelihood function of the vertical angle of arrival values. The process of finding the vertical angle of arrival value that maximizes the likelihood function in the priority search domain in this step can be expressed as
步骤 326 ,判断似然函数是否单调不减。
上一步寻找到的使似然函数最大化的垂直到达角值必须满足似然函数单调不减的条件,才有可能是整个垂直到达角取值域内的最优值。本步骤中似然函数单调不减的条件表示为
z (
Φ
1,
l
(n) , θ
1,
l
(n) , Φ
2,
l
(n) , θ
2,
l
(n) , τ
l
(n)
,f
d,l
(n);x
l ) ≥ z (
Φ
1,
l
(n) , θ
1,
l
(n) ,
Φ
2,
l
(n) , θ
2,
l
(n-1) , τ
l
(n)
,f
d,l
(n);x
l ) 若上式所示条件满足,则步骤 325 得到的 θ
2,l
(n) 即作为第 n 轮迭代后第 l 径信号的垂直到达角值,跳过步骤 327 ,直接执行步骤 328
;若不满足,则步骤 325 得到的 θ
2,l
(n)
不可能是整个垂直到达角取值域内最优的,执行步骤 327 。 Step 326: Determine whether the likelihood function is monotonous or not.
The vertical angle of arrival value found in the previous step to maximize the likelihood function must satisfy the condition that the likelihood function monotonically does not decrease, and it is possible that it is the optimal value in the entire vertical angle of arrival. The condition that the likelihood function monotonously decreases in this step is expressed as
z (
Φ
1,
l
( n ) ,θ
1,
l
( n ) ,Φ
2,
l
( n ) ,θ
2,
l
( n ) ,τ
l
( n )
,f
d,l
( n );x
l ) ≥z (
Φ
1,
l
( n ) ,θ
1,
l
( n ) ,
Φ
2,
l
( n ) ,θ
2,
l
( n- 1) ,τ
l
( n )
,f
d,l
( n );x
l If the condition shown in the above formula is satisfied, then step 325 is obtained.θ
2, l
( n ) As the firstn After the iterationl The vertical arrival angle value of the path signal is skipped to step 327, and step 328 is directly executed.
If not, then step 325θ
2 ,l
( n )
It is impossible to be optimal in the entire vertical angle of arrival range, and step 327 is performed.
步骤 327 ,在非优先搜索域中寻找使第 l 径信号的似然函数最大化的垂直到达角值。
本步骤中的搜索过程表示为
其中
表示
的补集。 由于似然函数必然单调不减,故若执行本步骤,则本步骤得到的θ
2,l
(n) 必然是整个垂直到达角取值域内最优的。 Step 327, the non-first search domain to find the first signal path l maximizing the likelihood function of the vertical angle of arrival values. The search process in this step is expressed as among them Express Complementary. Since the likelihood function is inevitably monotonous, if this step is performed, the θ 2, l ( n ) obtained in this step is necessarily the optimal in the entire vertical angle of arrival.
步骤 328 ,计算第 l 径信号的极化复幅度系数。 本步骤中极化复幅度系数计算为
其中符号 ( · )-1 表示矩阵求逆。 本步骤直接计算出极化复幅度系数,因此在步骤 308
中不需要计算其优先搜索域。 上述步骤 309~328 对应步骤 206 。 Step 328 calculates a first polarization multiplexing l-path signal amplitude coefficients. In this step, the polarization complex amplitude coefficient is calculated as Where the symbol ( · ) -1 represents the matrix inversion. This step directly calculates the polarization complex amplitude coefficient, so there is no need to calculate its priority search field in step 308. The above steps 309~328 correspond to step 206.
步骤 329 ,判断多径信号的序号 l 是否等于最大多径数 L
。若是,则第 n 轮迭代结束,得到第 n 轮迭代后所有 L 径信号的信道参数提取结果;否则将 l 加
1 ,并返回执行步骤 308 。该步骤对应步骤 207 。 Step 329: Determine whether the sequence number l of the multipath signal is equal to the maximum multipath number L. If yes, the nth round of iteration ends, and the channel parameter extraction result of all the L- path signals after the n-th iteration is obtained; otherwise, l is incremented by 1, and the process returns to step 308. This step corresponds to step 207.
步骤 330 ,判断第 n 轮迭代后所有 L
径信号的信道参数提取结果是否已收敛,判断条件为 θ l
(n) = θ l
(n-1)
, l=1,…,L 若该等式满足,则结果收敛,
θ l
(n) 即为第 k 个测量快照中所有 L
径信号的最终信道参数提取结果;否则结果不收敛,将 n 加 1 ,并返回执行步骤 307 。 本步骤对应步骤 208 。 Step 330: Determine whether the channel parameter extraction result of all the L- path signals after the n-th iteration has converged, and the determination condition is θ l ( n ) = θ l ( n -1) , l =1, ..., L if the equation If satisfied, the result converges, θ l ( n ) is the final channel parameter extraction result of all L- path signals in the kth measurement snapshot; otherwise, the result does not converge, n is incremented by 1, and the process returns to step 307. This step corresponds to step 208.
步骤 331 ,判断测量快照的序号 k 是否等于最大快照数 K
。若是,则整个信道参数提取过程结束;否则将 k 加 1 ,并返回执行步骤 302 。本步骤对应步骤 209 。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。
Step 331: Determine whether the sequence number k of the measurement snapshot is equal to the maximum number of snapshots K. If so, the entire channel parameter extraction process ends; otherwise, k is incremented by 1, and the process returns to step 302. This step corresponds to step 209. The above embodiments are merely illustrative of the present invention and are not intended to be limiting of the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. Equivalent technical solutions are also within the scope of the invention, and the scope of the invention is defined by the claims.
Claims (10)
- 一种多维信道参数提取方法,其特征在于,该方法包括步骤: S1 、根据信道测量过程中测量设备的参数设置和测量环境的相关信息计算本地区域的范围以及每个本地区域的范围内包含的测量快照数;所述本地区域是指将一条连续的测量路线划分而成的多个区域; S2 、根据步骤 S1 的计算结果判定当前测量快照在其所处本地区域的范围内的位置; S3 、根据步骤 S2 的判定结果选择采用串行干扰消除方法或基于测量快照间相关性的方法对当前测量快照的各径信道参数进行初始化; S4 、采用带有优先级的搜索策略对各径信道参数进行迭代运算,并在迭代运算过程中按照使各径信道参数的似然函数最大化且单调不减的原则更新信道参数。 A multi-dimensional channel parameter extraction method, characterized in that the method comprises the steps of: S1 Calculating a range of the local area and a number of measurement snapshots included in the range of each local area according to the parameter setting of the measuring device in the channel measurement process and the related information of the measurement environment; the local area refers to dividing a continuous measurement route Multiple areas S2, determining, according to the calculation result of step S1, the position of the current measurement snapshot in the range of the local area in which it is located; S3, according to step S2 The determination result is selected by using a serial interference cancellation method or a method for measuring correlation between snapshots to initialize channel parameters of the current measurement snapshot; S4 The priority search algorithm is used to iteratively calculate the channel parameters of each path, and the channel parameters are updated in the iterative operation according to the principle that the likelihood function of each path channel parameter is maximized and monotonously reduced.
- 如权利要求 1 所述的方法,其特征在于,所述测量设备包括移动台,且所述测量设备的参数设置和测量环境的相关信息包括:测量信号的中心载频 f c 、信道采样速率 f s 以及移动台运动速度v。 The method according to claim 1, wherein the measuring device comprises a mobile station, and the parameter setting of the measuring device and the related information of the measuring environment comprise: a central carrier frequency f c of the measurement signal, a channel sampling rate f s and the moving speed of the mobile station v .
- 如权利要求 2 所述的方法,其特征在于,步骤 S1 中计算本地区域的范围 d 的方法为: d=20 λ =10c/ (π f c ),其中 c 表示光速。 The method according to claim 2, wherein the method of calculating the range d of the local region in step S1 is: d = 20 λ = 10c / ( π f c ), where c represents the speed of light.
- 如权利要求 1 所述的方法,其特征在于,步骤 S2 中判断当前测量快照在其所处本地区域的范围内位置的方法为:计算 (k-K 0 )modQ 其中, k 为当前测量快照的序号, K 0 为测量快照的序号的初始值,若上式计算结果为 0 ,则当前测量快照为其所处本地区域的范围内的第 1 个测量快照;若不为 0 ,则当前测量快照不是其所处本地区域的范围内的第 1 个测量快照。 The method according to claim 1, wherein the method for determining the position of the current measurement snapshot in the range of the local area in which it is located in step S2 is: calculating ( kK 0 ) mod Q, where k is the sequence number of the current measurement snapshot , K 0 is the initial value of the sequence number of the measurement snapshot. If the calculation result of the above formula is 0, the current measurement snapshot is the first measurement snapshot in the range of the local area in which it is located; if not, the current measurement snapshot is not The first measurement snapshot in the range of its local area.
- 如权利要求 1 或 5 所述的方法,其特征在于,若判定当前测量快照为其所处本地区域的范围内第 1 个测量快照,则采用串行干扰消除方法对各径信道参数进行初始化;否则采用基于测量快照间相关性的初始化方法。 The method according to claim 1 or 5, wherein if it is determined that the current measurement snapshot is the first in the range of the local area in which it is located For the measurement snapshot, the serial interference cancellation method is used to initialize the parameters of each channel; otherwise, an initialization method based on measuring the correlation between snapshots is adopted.
- 如权利要求 6 所述的方法,其特征在于,所述基于测量快照间相关性的初始化方法为: θ l (0) (k)= θ l (R) (k-1), l=1,…,L 其中 θ l (0) (k) 表示第 k 个测量快照中第 l 径信号的信道参数初始值, θ l (R) (k-1) 表示第 k -1 个测量快照中第 l 径信号的最终信道参数提取结果, L 为最大多径数。The method according to claim 6, wherein said initializing method based on measuring correlation between snapshots is: θ l (0) ( k ) = θ l ( R ) ( k -1), l =1, ..., L where θ l (0) ( k ) represents the initial value of the channel parameter of the l- th path signal in the kth measurement snapshot, θ l ( R ) ( k -1) represents the lth in the k -1 measurement snapshot The final channel parameter extraction result of the path signal, L is the maximum multipath number.
- 如权利要求 7 所述的方法,其特征在于,所述带有优先级的搜索策略为:
- 如权利要求 1~9 任一项所述的方法 ,其特征在于, 按照使各径信道参数的似然函数单调不减的原则更新信道参数是指 : 判断式 z ( θ l (n) ) ≥ z ( θ l (n-1) ) 是否成立,如果成立,则将第 l 径信号的信道参数值更新为 θ l (n) ,否则继续在优先搜索域的补集中搜索信道参数,其中 θ l (n) 表示第 n 轮迭代后第 l 径信号的信道参数值, z ( θ l ) 为第 l 径信号的似然函数。 The method according to any one of claims 1 to 9, wherein the updating the channel parameter according to the principle that the likelihood function of each of the path parameters is monotonous or not decreases means: judging the equation z ( θ l ( n ) ) ≥ Whether z ( θ l ( n -1) ) holds, if yes, updates the channel parameter value of the l- path signal to θ l ( n ) , otherwise continues to search for channel parameters in the complementary set of the priority search domain, where θ l (n) denotes the n-th wheel iterative channel parameter value of l-path signal, z (θ l) is the likelihood function of l-path signal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110062183.6 | 2011-03-15 | ||
CN2011100621836A CN102098705B (en) | 2011-03-15 | 2011-03-15 | Multidimensional Channel Parameter Extraction Method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012122744A1 true WO2012122744A1 (en) | 2012-09-20 |
Family
ID=44131524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/075055 WO2012122744A1 (en) | 2011-03-15 | 2011-05-31 | Method for extracting parameters of multi-dimensional channel |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102098705B (en) |
WO (1) | WO2012122744A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105049141A (en) * | 2015-05-26 | 2015-11-11 | 西安电子科技大学 | Analysis method for interference relation among signals based on multidimensional interference space model |
CN107566051A (en) * | 2017-09-01 | 2018-01-09 | 北京邮电大学 | A kind of determination method and device of MIMO OTA maximums three-dimensional test area size |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014101009A1 (en) * | 2012-12-26 | 2014-07-03 | 华为技术有限公司 | Method and device for estimating channel parameters, and method and device for evaluating channel propagation environment |
US10433198B2 (en) * | 2016-03-08 | 2019-10-01 | Rohde & Schwarz Gmbh & Co. Kg | Channel sounding testing device and method to estimate large-scale parameters for channel modelling |
EP3297236A1 (en) * | 2016-09-15 | 2018-03-21 | Mitsubishi Electric R & D Centre Europe B.V. | Efficient sparse channel estimation based on compressed sensing |
WO2018160141A1 (en) * | 2017-03-03 | 2018-09-07 | Nanyang Technological University | Apparatus and method for localisation and/or tracking |
CN108519580A (en) * | 2018-04-19 | 2018-09-11 | 广西欣歌拉科技有限公司 | The contactless positioning of multiple target and tracing system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101478770A (en) * | 2009-02-06 | 2009-07-08 | 清华大学 | Multi-antenna measurement signal sending method for solving phase noise problem on the basis of fast switching |
US20100159854A1 (en) * | 2008-12-19 | 2010-06-24 | Electronics And Telecommunications Research Institute | Method and apparatus for adaptively controlling received power of multi-antenna radio channel measurement equipment |
CN101960727A (en) * | 2008-02-25 | 2011-01-26 | 爱立信电话股份有限公司 | Receiver parametric covariance estimation for precoded MIMO transmissions |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101060510B (en) * | 2006-04-19 | 2011-05-18 | 鼎桥通信技术有限公司 | A serial interference eliminated multiple cell channel estimation method and its device |
-
2011
- 2011-03-15 CN CN2011100621836A patent/CN102098705B/en active Active
- 2011-05-31 WO PCT/CN2011/075055 patent/WO2012122744A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101960727A (en) * | 2008-02-25 | 2011-01-26 | 爱立信电话股份有限公司 | Receiver parametric covariance estimation for precoded MIMO transmissions |
US20100159854A1 (en) * | 2008-12-19 | 2010-06-24 | Electronics And Telecommunications Research Institute | Method and apparatus for adaptively controlling received power of multi-antenna radio channel measurement equipment |
CN101478770A (en) * | 2009-02-06 | 2009-07-08 | 清华大学 | Multi-antenna measurement signal sending method for solving phase noise problem on the basis of fast switching |
Non-Patent Citations (1)
Title |
---|
"Agilent Technologies. Applying measured MIMO antenna patterns to MIMO channel models for OTA analysis.", 3GPP TSG-RAN WG4 MEETING #51 R4-091949, 4 May 2009 (2009-05-04), SAN FRANCISCO, USA, pages 1 - 8 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105049141A (en) * | 2015-05-26 | 2015-11-11 | 西安电子科技大学 | Analysis method for interference relation among signals based on multidimensional interference space model |
CN107566051A (en) * | 2017-09-01 | 2018-01-09 | 北京邮电大学 | A kind of determination method and device of MIMO OTA maximums three-dimensional test area size |
CN107566051B (en) * | 2017-09-01 | 2021-12-21 | 北京邮电大学 | Method and device for determining maximum three-dimensional test area size of MIMO OTA |
Also Published As
Publication number | Publication date |
---|---|
CN102098705A (en) | 2011-06-15 |
CN102098705B (en) | 2013-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012122744A1 (en) | Method for extracting parameters of multi-dimensional channel | |
US7429951B2 (en) | System and method for enhancing the accuracy of a location estimate | |
CN101779426B (en) | Signal processor for estimating signal parameters using an approximated inverse matrix | |
RU2008136896A (en) | ADAPTIVE BEAM CONTROL METHODS FOR MAXIMIZING THE WIRELESS OF A WIRELESS COMMUNICATION LINE AND REDUCING THE DELAY OF DELAY, USING MANY NUMBER TRANSMITTING AND RECEIVING ANTENNA | |
EP0932049A2 (en) | Positioning apparatus used in a cellular communication system and capable of carrying out a positioning with a high accuracy in urban area | |
WO2015109869A1 (en) | High resolution doa estimation method and system | |
CN108833312B (en) | Time-varying sparse underwater acoustic channel estimation method based on delay-Doppler domain | |
CN108965186B (en) | Downlink time-frequency synchronization method for low-earth-orbit satellite mobile communication system | |
TW200841653A (en) | Method and system for low complexity conjugate gradient based equalization in a wireless system | |
WO2017097269A1 (en) | Interference estimation method and device | |
CN110113286A (en) | A kind of low complex degree underwater acoustic channel algorithm for estimating based on orthogonal matching pursuit | |
WO2015196725A1 (en) | Channel simulation apparatus and method, and computer storage medium | |
WO2018107664A1 (en) | Interference suppression method and device, and computer storage medium | |
CN104022979A (en) | Joint sparse channel estimation method, device and system | |
CN107770104B (en) | A method and device for channel estimation pilot optimization based on compressed sensing | |
WO2019197030A1 (en) | Channel covariance matrix conversion | |
CN110912588B (en) | Downlink time-varying channel prediction method based on improved Prony method | |
CN111666688A (en) | Corrected channel estimation algorithm combining angle mismatch with sparse Bayesian learning | |
US8213486B2 (en) | Method for simplifying the calculations for pre-whitening in a G-rake receiver | |
CN115549745B (en) | RIS phase shift design method, RIS phase shift design device, RIS phase shift design computer equipment and RIS phase shift storage medium | |
CN113253306B (en) | Method and device for simulating GNSS multipath channel | |
Van der Veen et al. | SI-JADE: an algorithm for joint angle and delay estimation using shift-invariance properties | |
CN107425926A (en) | The method and system that Site Survey starts | |
Zhang et al. | Robust CSI estimation under complex communication environment | |
CN116210177A (en) | Reference signal compensation for training neural networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11860884 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11860884 Country of ref document: EP Kind code of ref document: A1 |