WO2012121015A1 - Antenna - Google Patents
Antenna Download PDFInfo
- Publication number
- WO2012121015A1 WO2012121015A1 PCT/JP2012/054278 JP2012054278W WO2012121015A1 WO 2012121015 A1 WO2012121015 A1 WO 2012121015A1 JP 2012054278 W JP2012054278 W JP 2012054278W WO 2012121015 A1 WO2012121015 A1 WO 2012121015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- coaxial line
- coaxial
- stage
- graph
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 26
- 230000010287 polarization Effects 0.000 description 43
- 238000005259 measurement Methods 0.000 description 36
- 239000011162 core material Substances 0.000 description 22
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/30—Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/1271—Supports; Mounting means for mounting on windscreens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
Definitions
- the present disclosure relates to an antenna, and more particularly, to an antenna that can be used for in-vehicle devices and the like, for example, a wide frequency band of the UHF band.
- the receiver sensitivity for the required channel is supposed to be about 7 to 8 dB.
- reception sensitivity of 19 dB or more is required, and it is the mainstream to use a synthesis diversity technique.
- in-vehicle devices currently receive digital terrestrial television broadcasts using two film antennas with amplifiers. But, It is difficult for ordinary people to mount film antennas on automobile windows. Furthermore, it is necessary to apply a power source to the amplifier, and it is necessary to use an expensive connector for a power source having a polarity separated into a hot side and a ground side. As described above, the film antenna has a large number of parts, is inconvenient to mount, requires assembly, and is more expensive.
- a collinear antenna configured by connecting coaxial cables in cascade is known.
- the length of each coaxial cable is 1 ⁇ 2 of the wavelength used.
- the collinear antenna is used in a base station for wireless communication such as a cellular phone network, but since it is fixed, it can sharpen directivity and gain.
- the present disclosure has been made in view of the above situation, and is used for in-vehicle devices, for example, U.
- the inner conductor at one end of an adjacent coaxial line is alternately connected to the other outer conductor, the outer conductor at one end is alternately connected to the inner conductor at the other end, and one antenna before the final stage is connected.
- One inner conductor of the coaxial line is connected to the other outer conductor of the final stage coaxial line.
- one antenna is formed with a simple structure in which coaxial lines having a length of 1 ⁇ 4 wavelength are connected in cascade.
- the antenna has a plurality of feeding points in the connection portion of adjacent coaxial lines, including the connection portion of the final coaxial line and the coaxial line immediately before.
- Phase feeding is performed from a coaxial line having a length of 1 ⁇ 4 wavelength adjacent to the feeding point.
- a small antenna can be configured with a simple structure in which coaxial lines having a length of 1 ⁇ 4 wavelength are connected in cascade.
- a wide band and a high gain can be realized by feeding a phase to a feeding point existing at a connection portion between coaxial lines of the antenna.
- FIG. 1 is a schematic diagram illustrating a configuration example of an antenna according to an embodiment of the present disclosure. It is explanatory drawing of the principle of operation of the antenna shown in FIG. It is an external view which shows the example of 1 aspect of the antenna shown in FIG. It is the schematic which shows the structural example of the multistage antenna used for verification of an antenna characteristic. It is the schematic which shows the structural example of the antenna of 1 step
- FIG. 1 illustrates a configuration example of an antenna according to an embodiment of the present disclosure.
- the antenna (cable antenna) according to the present disclosure includes only a plurality of coaxial wires (coaxial structure conductors such as coaxial cables) connected to the connector 2 connected to the communication device 9.
- the connector 2 it is desirable to select a connector with a small loss of high-frequency signals.
- the cable antenna 1 shown in FIG. 1 is an example in which four coaxial lines CL1 to CL4 are connected in a column.
- a cable antenna in which a plurality of coaxial lines are connected in cascade is referred to as a multistage antenna, and when four coaxial lines are used, it is referred to as a four-stage antenna.
- one end of the coaxial line CL1 connected to the connector 2 is connected to the other end of the coaxial line CL2 via the relay portion R1.
- one end of the coaxial line CL2 is connected to the other end of the coaxial line CL3 via the relay portion R2
- one end of the coaxial line CL3 is connected to the coaxial line C via the relay portion R3. It is connected to the other side of L4.
- the substantial length L1 of each coaxial line that is an antenna element is: It is 1/4 of the wavelength ⁇ of the used radio wave.
- the first-stage coaxial line CL1 includes a ferrite core 1 made of a high magnetic material as a high-frequency blocking member. 0 is provided. This ferrite core 10 is arranged at a position having a length of 1 ⁇ 4 of the wavelength ⁇ of the radio wave to be received from the relay portion R1 (feed point Fp2) toward the connector 2. As a result, the conductor portion from the ferrite core 10 to the connector 2 has high impedance in terms of high frequency, and is separated from the antenna portion in the high frequency band. That is, ferrite core 1 Since the coaxial line CL1 between 0 and the connector 2 is separated in high frequency from the previous antenna portion, even if a high frequency current flows through that portion, the influence on the antenna portion is reduced.
- the distance from the ferrite core 10 to the relay part R1 with respect to the coaxial line CL1 can be made substantially 1 ⁇ 4 of the wavelength ⁇ .
- the length from the ferrite core 10 of the coaxial line CL1 to the connector 2 can be arbitrarily determined.
- Each relay part is molded by a resin such as an elastomer. Inside, the protective coating 4 of each coaxial wire and the shielded wire 5 (outer conductor) of the hollow cylinder are removed, The core material 6 (derivative) and the core wire 7 (internal conductor) are exposed.
- the tip of one core wire 7 of the coaxial line CL1 is connected to the other shield wire 5 of the coaxial line CL2 by soldering or the like on the substrate 8. Further, one shielded wire 5 of the coaxial line CL1 is connected to the tip of the other core wire 7 of the coaxial line CL2 by soldering or the like on the substrate 8. Similarly, in the relay part R2, the coaxial line CL2 and the coaxial line CL3 are connected to be relayed.
- the tip part of one core wire 7 of the coaxial line CL3 is connected to the other end of the coaxial line CL4. Connect to shielded wire 5.
- One shielded wire 5 of the coaxial wire CL3 Is not connected to the tip of the other core wire 7 of the coaxial line CL4.
- FIG. 2A shows the voltage distribution of the voltage induced inside each coaxial line by a certain moment of radio wave. Shows the voltage distribution of the voltage induced by the inverted radio wave as in FIG. 2A at the same moment.
- a current distribution of 1 ⁇ 2 ⁇ is formed in the coaxial line CL1 and the coaxial line CL2 around the feeding point Fp1, and coaxial with the coaxial line CL3 around the feeding point Fp2.
- a current distribution of 1 ⁇ 2 ⁇ is generated on the line CL4.
- the first coaxial line CL1 and the next coaxial line C, which are at a distance of 1 ⁇ 2 wavelength from the feeding point Fp1 The connection part (relay part R1) of L2 becomes the feed point Fp2. That is, a half-wave dipole antenna composed of the coaxial line CL1 and the coaxial line CL2 is configured, and similarly the coaxial line CL3 and the coaxial line CL.
- a four-wavelength half-wave dipole antenna is constructed.
- the cable antenna 1 functions as an antenna in which the two half-wave dipole antennas are connected in cascade.
- the feeding point Fp2 captures a current corresponding to the voltage (+) induced in the shield line 5 of the coaxial line CL2 in a certain radio wave section 11B (FIG. 2A).
- a current corresponding to the voltage (+) of the same phase induced in the shield line 5 of the coaxial line CL1 in another radio wave section 11A whose phase is inverted is taken in.
- a current having the same phase corresponding to the voltage ( ⁇ ) induced in the shield line 5 is taken in.
- the power of the high-frequency signal to be taken in is amplified by taking in the current of the same phase due to the voltage induced at each feeding point. Then, the current captured at the feeding point Fp1 is added in the same phase as the current captured at the feeding point Fp2. Therefore, a high frequency signal is amplified in the connector 2 (see FIG. 1) according to the number of feeding points.
- FIG. 3 is an external view showing an aspect of the cable antenna 1 shown in FIG.
- the coaxial lines CL1 to CL4 are connected in cascade via the relay portions R1 to R3.
- the length L1 of each coaxial line is about 15 cm, which is a quarter of the wavelength of the 500 MHz radio wave.
- the coaxial line CL1 is not provided with the ferrite core 10 and is 1 / wavelength of the radio wave to be received.
- a connector 2 is directly connected to a coaxial line CL1 having a length of 4.
- the tip 20 on the opposite side of the relay portion R3 of the final coaxial line CL4 is molded by a resin such as an elastomer as in each relay portion.
- each coaxial line CL1 to CLn are connected in series via each of the relay portions R1 to Rn-1, and the number of stages is changed one by one.
- the length L1 of each coaxial line is 10 cm (frequency 7 (Corresponding to about 1 / 4 ⁇ of 50 MHz), the characteristic impedance of each coaxial line is 100 ⁇ .
- the characteristic impedance is an impedance between the shield wire 5 and the core wire 7.
- connection portion Rn-1 with the coaxial line CLn-1 immediately before that becomes a feeding point.
- a plurality of connecting portions (relay portions) corresponding to the number of coaxial lines from the last stage coaxial line CLn to the first stage coaxial line CL1 function as feeding points. The measurement was performed with the antenna installed in a state where it can receive strong horizontal polarization (horizontally placed horizontally) assuming actual use.
- FIG. 5 is a schematic diagram illustrating a configuration example of a one-stage antenna.
- FIG. 6 is a graph and a table showing measurement results of peak gains of vertically polarized waves and horizontally polarized waves with a single-stage antenna.
- the horizontal axis represents frequency (MHz)
- the vertical axis represents peak gain (dBd).
- the frequency band to be measured was the UHF band (470 MHz to 870 MHz).
- Vertically polarized waves are indicated by broken lines
- horizontally polarized waves are indicated by solid lines.
- 6B and 6C show values at each measurement point in the graph shown in FIG. 6A. That is, FIG. 6B shows the peak gain value in the vertical polarization, and FIG. 6C shows the peak gain value in the horizontal polarization. 6B and 6C. 6 also shows a measured value at 906 MHz that is not in the graph of FIG. 6A.
- the one-stage cable antenna is composed only of the coaxial line CL1 and does not function as an antenna at all because there is no antenna element on one side. As shown in FIGS. 6A to 6C, the peak gain at each frequency is low for both the vertical polarization and the horizontal polarization.
- FIG. 7 is a schematic diagram illustrating a configuration example of a two-stage antenna.
- FIG. 8 is a graph and table showing measurement results of peak gains of vertically polarized waves and horizontally polarized waves with a two-stage antenna.
- the horizontal axis represents frequency (MHz)
- the vertical axis represents peak gain (dBd).
- Vertically polarized waves are indicated by broken lines
- horizontally polarized waves are indicated by solid lines.
- 8B and 8C show values at each measurement point in the graph shown in FIG. 8A. That is, FIG. 8B shows the peak gain value in the vertically polarized wave, and FIG. 8C shows the peak gain value in the horizontally polarized wave.
- the two-stage cable antenna is composed of two antenna elements, a coaxial line CL1 and a coaxial line CL2, and has a configuration close to a half-wave dipole antenna.
- the peak gain value is ⁇ 10 dB or more for both the vertical polarization and the horizontal polarization, and it can be seen that the antenna gain is obtained. That is, it can be said that both vertical polarization and horizontal polarization can be received in the UHF band.
- FIG. 9 is a schematic diagram illustrating a configuration example of a three-stage antenna.
- FIG. 10 is a graph and table showing measurement results of peak gains of vertical polarization and horizontal polarization using a three-stage antenna.
- the horizontal axis represents frequency (MHz)
- the vertical axis represents peak gain (dB).
- d peak gain
- Vertically polarized waves are indicated by broken lines
- horizontally polarized waves are indicated by solid lines.
- 10B and 10C show values at each measurement point in the graph shown in FIG. 10A. That is, FIG. 10B Indicates the value of peak gain in vertical polarization, and FIG. 10C shows the value of peak gain in horizontal polarization.
- the cable antenna having a three-stage configuration has a relay part R1 and a relay part R2, and it is considered that there are a plurality of power feeding points including a feeding point Fp1 (relay part R2) by radio waves.
- FIG. 10A to FIG. 10C in the vicinity of 720 to 750 MHz, the peak gain value is ⁇ 10 dB or more for both the vertical polarization and the horizontal polarization, and it can be seen that the antenna gain is obtained.
- the antenna characteristics are not stable because a reverse-phase voltage is induced inside the coaxial line.
- FIG. 11 is a schematic diagram illustrating a configuration example of a four-stage antenna.
- FIG. 12 is a graph and a table showing measurement results of peak gains of vertically polarized waves and horizontally polarized waves using a four-stage antenna.
- the horizontal axis represents frequency (MHz)
- the vertical axis represents peak gain (d Bd).
- Vertically polarized waves are indicated by broken lines
- horizontally polarized waves are indicated by solid lines.
- 12B and 12C show values at each measurement point in the graph shown in FIG. 12A. That is, FIG. B shows the value of the peak gain in the vertical polarization, and FIG. 12C shows the value of the peak gain in the horizontal polarization.
- the cable antenna having a four-stage configuration has relay portions R1 to R3, and has a feed point Fp1 (relay portion R3) and a feed point Fp2 (relay portion R1).
- the in-phase current is taken in and the antenna gain is improved.
- the peak gain at a frequency of 500 MHz or less is improved as compared with the cable antenna having a three-stage configuration.
- FIGS. 12A to 12C it can be seen that the peak gain value is ⁇ 10 dB or more in the entire frequency band particularly in the horizontally polarized wave, and the antenna gain is obtained.
- the four-stage cable antenna can receive the horizontally polarized wave well in the UHF band.
- FIG. 13 is a schematic diagram illustrating a configuration example of a five-stage antenna.
- FIG. 14 is a graph and a table showing the measurement results of the peak gains of vertically polarized waves and horizontally polarized waves with a 5-stage antenna.
- the horizontal axis indicates the frequency (MHz)
- the vertical axis indicates the peak gain (d Bd).
- Vertically polarized waves are indicated by broken lines
- horizontally polarized waves are indicated by solid lines.
- 14B and 14C show values at each measurement point in the graph shown in FIG. 14A. That is, FIG. B shows the peak gain value in the vertical polarization, and FIG. 14C shows the peak gain value in the horizontal polarization.
- the horizontal polarization has a peak gain value of ⁇ 10 dB or more in all frequency bands to be measured, and the horizontal polarization is generally high gain in the UHF band. Is receiving well. However, for frequencies of 500 MHz or less, the peak gain value is about ⁇ 10 dB or less for both vertical polarization and horizontal polarization, Antenna gain is not set. Similar to the measurement result of the three-stage configuration, there is a portion where the antenna characteristics are not stable, and there is a possibility that a reverse-phase voltage is induced inside the coaxial line.
- FIG. 15 is a schematic diagram illustrating a configuration example of a six-stage antenna.
- FIG. 16 is a graph and table showing measurement results of peak gains of vertical polarization and horizontal polarization using an antenna having a six-stage configuration.
- the horizontal axis represents frequency (MHz)
- the vertical axis represents peak gain (d Bd).
- Vertically polarized waves are indicated by broken lines
- horizontally polarized waves are indicated by solid lines.
- 16B and 16C show values at each measurement point in the graph shown in FIG. 16A. That is, FIG. B shows the value of peak gain in vertical polarization, and FIG. 16C shows the value of peak gain in horizontal polarization.
- the six-stage antenna has a large total antenna length and exceeds the measurement size that can be handled in the measurement environment in which the experiment was performed. As shown in FIG. 16A to FIG. 16C, data with higher gain is obtained for the horizontal polarization compared to the case of the five-stage configuration. Although there are some places where the peak gain value is not stable in some frequency bands of vertical polarization and horizontal polarization, the entire frequency band to be measured can be received almost satisfactorily.
- a single linear antenna is configured with a simple structure using a plurality of coaxially-connected antenna elements connected in cascade, and the single linear antenna is obtained by performing phase feeding. Can achieve wide bandwidth and high gain.
- the components and the structure are simple, the cost is low, and the ease of mounting improves, so the convenience is improved.
- the antenna gain tends to be improved as the number of stages of the multistage antenna increases, that is, as the number of coaxial lines (antenna elements) connected in the column increases.
- the multi-stage antenna can be a two-stage configuration, but in a narrow sense, it has a configuration of three or more stages in terms of differentiation from the prior art.
- odd-numbered cable antennas are presumed that a reverse-phase voltage is induced inside the coaxial line and the antenna characteristics may not be stable. Therefore, the number of coaxial lines is desirably an even number. .
- FIG. 17 shows an example of the directivity pattern of a four-stage antenna.
- the frequency of the received radio wave is 470 MHz and 520 M, respectively. Hz, 570 MHz, 620 MHz, 670 MHz, 720 MHz, 770 MHz, 90
- the directivity characteristic in the case of 6 MHz is shown.
- Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines.
- FIG. 18 is a graph and a table showing the measurement results of the peak gains of vertical polarization and horizontal polarization when the radiation pattern is measured.
- the horizontal axis represents the frequency (M Hz), and the vertical axis represents the peak gain (dBd).
- FIG. 18B shows FIGS. The values of peak gain (dBd) and average gain (dBd) in the vertical polarization shown in 7H are shown.
- FIG. 18C shows the values of peak gain (dBd) and average gain (dBd) at the same horizontal polarization.
- FIG. 18D shows values of peak gain (dBd) and average gain (dBd) calculated from measured values of vertical polarization and horizontal polarization.
- the directivity pattern of the four-stage antenna draws a curve that is approximately close to a circle in the vertical plane and approximately 8 in the horizontal plane.
- the horizontal plane at 570 Hz and 620 Hz has directivity close to the figure 8 that is the directivity of the dipole antenna.
- the gain of the vertical polarization is high at an angle where the gain of the horizontal polarization is small. Thereby, it is possible to pick up the vertically polarized wave at an angle where the horizontally polarized wave cannot be picked up.
- the measurement is carried out in an installation situation (horizontal horizontal) that can receive strong horizontal polarization assuming actual use, but this tendency increases depending on the installation situation of the antenna. For example, if the antenna is installed such that horizontal polarization and vertical polarization can be received evenly, the directivity pattern in which horizontal polarization and vertical polarization complement each other is obtained.
- FIG. 19 shows a graph and a table showing the measurement results of the peak gain in the UHF band by a four-stage antenna using a coaxial line having a characteristic impedance of 50 ⁇ .
- FIG. 20 shows a graph and a table showing the measurement result of the peak gain in the UHF band by a four-stage antenna using a coaxial line having a characteristic impedance of 75 ⁇ .
- FIG. 21 shows that a coaxial line having a characteristic impedance of 97 ⁇ is used.
- surface which show the measurement result of the peak gain of the UHF band by a stage antenna are shown.
- Each coaxial line has a length of 15 cm (about 1 / 4 ⁇ of a frequency of 500 MHz).
- the characteristic impedance of the coaxial line is 50 ⁇ , 75 ⁇ , and 97 ⁇ . As the value increases, a high gain is obtained, and the gain value has little variation in the target frequency band and is stable. From the above, in a multistage antenna, it is better that the characteristic impedance at the desired frequency of the coaxial line connected to the feeder is higher, at least 50 ⁇ . It is desirable that there be more.
- FIG. 22 illustrates an example in which the multistage antenna according to the present disclosure is mounted on an automobile.
- the four-stage cable antenna 1 shown in FIG. 1 is used.
- Coaxial lines CL1 to CL4 extending from the connector 2 connected to the communication device 9 such as a navigation device are turned toward the left window on the dashboard, and are further turned upward on the frame at the left end of the dashboard.
- the upper part of the windshield is attached from the upper part of the frame so as to lie almost horizontally toward the rearview mirror.
- the cable antenna 1 is configured as a V-shaped antenna with the relay portion R2 as a base point.
- the cable antenna 1 does not need to be carefully attached to a window like a film antenna, and does not require components such as an amplifier built in the film antenna. That is, the cable antenna 1 is convenient because it can be easily installed in the automobile by drawing the linear antenna.
- the ferrite core 10 made of a high magnetic material is used as the high-frequency cutoff portion provided in the first-stage coaxial line CL1 of the multistage antenna.
- the present invention is not limited to this example as long as the high-frequency signal can be electrically disconnected.
- a stub structure in which a coaxial shield wire is bent at a length of about ⁇ / 4 of a desired frequency may be employed. It is also conceivable to form a balun called a super top by processing the shield wire.
- a multi-stage cable antenna is configured using a plurality of coaxial wires.
- another wire material in which two conductors (conductors) such as feeder wires are arranged substantially in parallel is used.
- SYMBOLS 1 ... Antenna, 2 ... Connector, 3A-3E ... Relay part, 4 ... Protective clothing, 5 ... Shield wire (outer conductor), 6 ... Core material (dielectric material), 7 ... Core wire (internal conductor), 8 ... Substrate, 10 ... Ferrite core, 11A to 11D, 12A to 12C ... Voltage distribution, 20 ... Tip, CL1 to CLn ... Coaxial line, Fp1, Fp2 ... Feed point, R1 to Rn-1 ... Relay
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
[Problem] To implement high antenna gain with a miniaturized simple configuration, as a UHF wide frequency band antenna, for example, which is usable in a vehicle-mounted device, etc. [Solution] An inner conductor (7) of one end of adjacent coaxial cables (CL1-CL3) connects with another outer conductor (5), an outer conductor (5) of one end connects with another end of the inner conductor (7), and one inner conductor (7) of the coaxial cable (CL3) which is second from the end stage connects with another outer conductor (5) of a coaxial cable (CL4) of the end stage. A plurality of coaxial cables (CL1-CL4) is thus positioned in a column. The length (L2) of each of the coaxial cables (CL1-Cl4) is effectively 1/4 the used wavelength λ.
Description
本開示はアンテナに関し、詳しくは、車載機器等に用いられる例えばUHF帯の幅広い
周波数帯に対応できるアンテナに関する。 The present disclosure relates to an antenna, and more particularly, to an antenna that can be used for in-vehicle devices and the like, for example, a wide frequency band of the UHF band.
周波数帯に対応できるアンテナに関する。 The present disclosure relates to an antenna, and more particularly, to an antenna that can be used for in-vehicle devices and the like, for example, a wide frequency band of the UHF band.
UHF帯のデジタル放送の受信においては、車内や屋内で利用できる、感度のいい簡易
な構成のアンテナが求められている。特に、自動車の分野においては、携帯電話機との差
異化、かつディスプレイの大型化のために、従来のいわゆるワンセグ(主に携帯機器を受
信対象とする地上デジタルテレビ放送)から、HDTV(High Definition Television)
のフルセグ(ワンセグを含む地上デジタルテレビ放送)への移行が進んでいる。 In receiving UHF band digital broadcasting, an antenna having a simple configuration with good sensitivity that can be used in a vehicle or indoors is required. In particular, in the field of automobiles, in order to differentiate from mobile phones and to increase the size of displays, HDTV (High Definition Television) has been changed from the so-called one-segment broadcasting (terrestrial digital television broadcasting mainly for portable devices). )
The transition to Full Seg (digital terrestrial television broadcasting including One Seg) is progressing.
な構成のアンテナが求められている。特に、自動車の分野においては、携帯電話機との差
異化、かつディスプレイの大型化のために、従来のいわゆるワンセグ(主に携帯機器を受
信対象とする地上デジタルテレビ放送)から、HDTV(High Definition Television)
のフルセグ(ワンセグを含む地上デジタルテレビ放送)への移行が進んでいる。 In receiving UHF band digital broadcasting, an antenna having a simple configuration with good sensitivity that can be used in a vehicle or indoors is required. In particular, in the field of automobiles, in order to differentiate from mobile phones and to increase the size of displays, HDTV (High Definition Television) has been changed from the so-called one-segment broadcasting (terrestrial digital television broadcasting mainly for portable devices). )
The transition to Full Seg (digital terrestrial television broadcasting including One Seg) is progressing.
ワンセグの場合、所要チャンネルに対する受信機の受信感度は7~8dB程度でよいと
される。一方、フルセグの場合は、19dB以上の受信感度が必要とされ、合成ダイバー
シティ技術を利用するのが主流である。このため、現在、車載機器においては、アンプ付
きの2つのフィルムアンテナを用いて地上デジタルテレビ放送を受信している。しかし、
フィルムアンテナは、一般の人では自動車の窓に綺麗に装着するのが難しい。さらに、ア
ンプに電源を印加する必要があり、ホット側とグラウンド側に分離された極性を持つ電源
用の高価なコネクタを使用する必要があった。このようにフィルムアンテナは、部品点数
が多く、取り付けが不便又は組み立てが必要であり、さらに高価であった。 In the case of one seg, the receiver sensitivity for the required channel is supposed to be about 7 to 8 dB. On the other hand, in the case of full segment, reception sensitivity of 19 dB or more is required, and it is the mainstream to use a synthesis diversity technique. For this reason, in-vehicle devices currently receive digital terrestrial television broadcasts using two film antennas with amplifiers. But,
It is difficult for ordinary people to mount film antennas on automobile windows. Furthermore, it is necessary to apply a power source to the amplifier, and it is necessary to use an expensive connector for a power source having a polarity separated into a hot side and a ground side. As described above, the film antenna has a large number of parts, is inconvenient to mount, requires assembly, and is more expensive.
される。一方、フルセグの場合は、19dB以上の受信感度が必要とされ、合成ダイバー
シティ技術を利用するのが主流である。このため、現在、車載機器においては、アンプ付
きの2つのフィルムアンテナを用いて地上デジタルテレビ放送を受信している。しかし、
フィルムアンテナは、一般の人では自動車の窓に綺麗に装着するのが難しい。さらに、ア
ンプに電源を印加する必要があり、ホット側とグラウンド側に分離された極性を持つ電源
用の高価なコネクタを使用する必要があった。このようにフィルムアンテナは、部品点数
が多く、取り付けが不便又は組み立てが必要であり、さらに高価であった。 In the case of one seg, the receiver sensitivity for the required channel is supposed to be about 7 to 8 dB. On the other hand, in the case of full segment, reception sensitivity of 19 dB or more is required, and it is the mainstream to use a synthesis diversity technique. For this reason, in-vehicle devices currently receive digital terrestrial television broadcasts using two film antennas with amplifiers. But,
It is difficult for ordinary people to mount film antennas on automobile windows. Furthermore, it is necessary to apply a power source to the amplifier, and it is necessary to use an expensive connector for a power source having a polarity separated into a hot side and a ground side. As described above, the film antenna has a large number of parts, is inconvenient to mount, requires assembly, and is more expensive.
ところで、高利得なアンテナの一例として、同軸ケーブルを縦列接続して構成した、コ
ーリニアアンテナが知られている。各々の同軸ケーブルの長さは使用波長の1/2である
。コーリニアアンテナは、携帯電話網などの無線通信の基地局等に用いられるが、固定で
あるため、指向性を鋭くしてゲインを稼ぐことができる。 By the way, as an example of a high-gain antenna, a collinear antenna configured by connecting coaxial cables in cascade is known. The length of each coaxial cable is ½ of the wavelength used. The collinear antenna is used in a base station for wireless communication such as a cellular phone network, but since it is fixed, it can sharpen directivity and gain.
ーリニアアンテナが知られている。各々の同軸ケーブルの長さは使用波長の1/2である
。コーリニアアンテナは、携帯電話網などの無線通信の基地局等に用いられるが、固定で
あるため、指向性を鋭くしてゲインを稼ぐことができる。 By the way, as an example of a high-gain antenna, a collinear antenna configured by connecting coaxial cables in cascade is known. The length of each coaxial cable is ½ of the wavelength used. The collinear antenna is used in a base station for wireless communication such as a cellular phone network, but since it is fixed, it can sharpen directivity and gain.
しかしながら、車載機器のアンテナに使用する場合、従来のコーリニアアンテナのよう
に指向性が鋭くては実用できない。また、従来のコーリニアアンテナの場合、各々の同軸
ケーブルの長さは使用波長の1/2であり、アンテナ全体が大型になっていた。 However, when it is used as an antenna for an in-vehicle device, it cannot be put into practical use if the directivity is sharp like a conventional collinear antenna. In the case of a conventional collinear antenna, the length of each coaxial cable is ½ of the wavelength used, and the entire antenna is large.
に指向性が鋭くては実用できない。また、従来のコーリニアアンテナの場合、各々の同軸
ケーブルの長さは使用波長の1/2であり、アンテナ全体が大型になっていた。 However, when it is used as an antenna for an in-vehicle device, it cannot be put into practical use if the directivity is sharp like a conventional collinear antenna. In the case of a conventional collinear antenna, the length of each coaxial cable is ½ of the wavelength used, and the entire antenna is large.
本開示は、上記の状況に鑑みてなされたものであり、車載機器等に用いられる例えばU
HF帯の幅広い周波数帯のアンテナとして、小型の簡易な構成で、高いアンテナゲインを
実現することにある。 The present disclosure has been made in view of the above situation, and is used for in-vehicle devices, for example, U.
As an antenna of a wide frequency band of the HF band, a high antenna gain is realized with a small and simple configuration.
HF帯の幅広い周波数帯のアンテナとして、小型の簡易な構成で、高いアンテナゲインを
実現することにある。 The present disclosure has been made in view of the above situation, and is used for in-vehicle devices, for example, U.
As an antenna of a wide frequency band of the HF band, a high antenna gain is realized with a small and simple configuration.
本開示の一側面のアンテナでは、隣接する同軸線の一端の内部導体が他方の外部導体に
、一端の外部導体が他端の内部導体に交互に接続し、かつ、最終段から一つ手前の同軸線
の一方の内部導体が最終段の同軸線の他方の外部導体に接続する。それにより、複数個の
同軸線が縦列に配置する。各々の同軸線の長さは実質的に使用波長の1/4である。
なお、上記同軸線は3個以上接続されていることが好適である。 In the antenna of one aspect of the present disclosure, the inner conductor at one end of an adjacent coaxial line is alternately connected to the other outer conductor, the outer conductor at one end is alternately connected to the inner conductor at the other end, and one antenna before the final stage is connected. One inner conductor of the coaxial line is connected to the other outer conductor of the final stage coaxial line. Thereby, a plurality of coaxial lines are arranged in a column. The length of each coaxial line is substantially ¼ of the wavelength used.
It is preferable that three or more coaxial wires are connected.
、一端の外部導体が他端の内部導体に交互に接続し、かつ、最終段から一つ手前の同軸線
の一方の内部導体が最終段の同軸線の他方の外部導体に接続する。それにより、複数個の
同軸線が縦列に配置する。各々の同軸線の長さは実質的に使用波長の1/4である。
なお、上記同軸線は3個以上接続されていることが好適である。 In the antenna of one aspect of the present disclosure, the inner conductor at one end of an adjacent coaxial line is alternately connected to the other outer conductor, the outer conductor at one end is alternately connected to the inner conductor at the other end, and one antenna before the final stage is connected. One inner conductor of the coaxial line is connected to the other outer conductor of the final stage coaxial line. Thereby, a plurality of coaxial lines are arranged in a column. The length of each coaxial line is substantially ¼ of the wavelength used.
It is preferable that three or more coaxial wires are connected.
本開示の一側面によれば、1/4波長の長さの同軸線を縦列接続した簡単な構造で一つ
のアンテナが形成される。そのアンテナには、最終段の同軸線とその一つ手前の同軸線の
接続部分を始めとして、隣接する同軸線の接続部分に複数の給電点が存在する。そして、
該給電点に対し隣接する1/4波長の長さの同軸線から位相給電が行われる。 According to one aspect of the present disclosure, one antenna is formed with a simple structure in which coaxial lines having a length of ¼ wavelength are connected in cascade. The antenna has a plurality of feeding points in the connection portion of adjacent coaxial lines, including the connection portion of the final coaxial line and the coaxial line immediately before. And
Phase feeding is performed from a coaxial line having a length of ¼ wavelength adjacent to the feeding point.
のアンテナが形成される。そのアンテナには、最終段の同軸線とその一つ手前の同軸線の
接続部分を始めとして、隣接する同軸線の接続部分に複数の給電点が存在する。そして、
該給電点に対し隣接する1/4波長の長さの同軸線から位相給電が行われる。 According to one aspect of the present disclosure, one antenna is formed with a simple structure in which coaxial lines having a length of ¼ wavelength are connected in cascade. The antenna has a plurality of feeding points in the connection portion of adjacent coaxial lines, including the connection portion of the final coaxial line and the coaxial line immediately before. And
Phase feeding is performed from a coaxial line having a length of ¼ wavelength adjacent to the feeding point.
本開示によれば、1/4波長の長さの同軸線を縦列接続した簡単な構造で小型なアンテ
ナを構成することができる。また、このアンテナの同軸線間の接続部分に存在する給電点
に位相給電することにより、広帯域かつ高ゲインを実現できる。 According to the present disclosure, a small antenna can be configured with a simple structure in which coaxial lines having a length of ¼ wavelength are connected in cascade. In addition, a wide band and a high gain can be realized by feeding a phase to a feeding point existing at a connection portion between coaxial lines of the antenna.
ナを構成することができる。また、このアンテナの同軸線間の接続部分に存在する給電点
に位相給電することにより、広帯域かつ高ゲインを実現できる。 According to the present disclosure, a small antenna can be configured with a simple structure in which coaxial lines having a length of ¼ wavelength are connected in cascade. In addition, a wide band and a high gain can be realized by feeding a phase to a feeding point existing at a connection portion between coaxial lines of the antenna.
以下、本開示を実施するための形態の例について、添付図面を参照しながら説明する。
なお、各図において共通の構成要素には、同一の符号を付して重複する説明を省略する。 Hereinafter, exemplary embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings.
In addition, in each figure, the same code | symbol is attached | subjected to the common component and the overlapping description is abbreviate | omitted.
なお、各図において共通の構成要素には、同一の符号を付して重複する説明を省略する。 Hereinafter, exemplary embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings.
In addition, in each figure, the same code | symbol is attached | subjected to the common component and the overlapping description is abbreviate | omitted.
[多段アンテナの構成例]
図1は、本開示の一実施の形態に係るアンテナの構成例を示したものである。
本開示に係るアンテナ(ケーブルアンテナ)は、通信機器9と接続されるコネクタ2と
接続された、複数個の同軸線(同軸ケーブル等の同軸構造導体)のみで構成される。コネ
クタ2としては、高周波信号の損失が少ないものを選択することが望ましい。図1に示す
ケーブルアンテナ1は、4個の同軸線CL1~CL4を縦列に接続した例である。以下で
は、複数の同軸線を縦列接続したケーブルアンテナを多段アンテナといい、4つの同軸線
を用いた場合は4段アンテナと言うことにする。 [Configuration example of multi-stage antenna]
FIG. 1 illustrates a configuration example of an antenna according to an embodiment of the present disclosure.
The antenna (cable antenna) according to the present disclosure includes only a plurality of coaxial wires (coaxial structure conductors such as coaxial cables) connected to theconnector 2 connected to the communication device 9. As the connector 2, it is desirable to select a connector with a small loss of high-frequency signals. The cable antenna 1 shown in FIG. 1 is an example in which four coaxial lines CL1 to CL4 are connected in a column. In the following, a cable antenna in which a plurality of coaxial lines are connected in cascade is referred to as a multistage antenna, and when four coaxial lines are used, it is referred to as a four-stage antenna.
図1は、本開示の一実施の形態に係るアンテナの構成例を示したものである。
本開示に係るアンテナ(ケーブルアンテナ)は、通信機器9と接続されるコネクタ2と
接続された、複数個の同軸線(同軸ケーブル等の同軸構造導体)のみで構成される。コネ
クタ2としては、高周波信号の損失が少ないものを選択することが望ましい。図1に示す
ケーブルアンテナ1は、4個の同軸線CL1~CL4を縦列に接続した例である。以下で
は、複数の同軸線を縦列接続したケーブルアンテナを多段アンテナといい、4つの同軸線
を用いた場合は4段アンテナと言うことにする。 [Configuration example of multi-stage antenna]
FIG. 1 illustrates a configuration example of an antenna according to an embodiment of the present disclosure.
The antenna (cable antenna) according to the present disclosure includes only a plurality of coaxial wires (coaxial structure conductors such as coaxial cables) connected to the
ケーブルアンテナ1は、コネクタ2と接続された同軸線CL1の一方が中継部R1を介
して同軸線CL2の他方と接続している。同様にして同軸線CL2の一方が中継部R2を
介して同軸線CL3の他方と接続し、同軸線CL3の一方が中継部R3を介して同軸線C
L4の他方と接続している。アンテナエレメントである各同軸線の実質的な長さL1は、
使用電波の波長λの1/4である。 In thecable antenna 1, one end of the coaxial line CL1 connected to the connector 2 is connected to the other end of the coaxial line CL2 via the relay portion R1. Similarly, one end of the coaxial line CL2 is connected to the other end of the coaxial line CL3 via the relay portion R2, and one end of the coaxial line CL3 is connected to the coaxial line C via the relay portion R3.
It is connected to the other side of L4. The substantial length L1 of each coaxial line that is an antenna element is:
It is 1/4 of the wavelength λ of the used radio wave.
して同軸線CL2の他方と接続している。同様にして同軸線CL2の一方が中継部R2を
介して同軸線CL3の他方と接続し、同軸線CL3の一方が中継部R3を介して同軸線C
L4の他方と接続している。アンテナエレメントである各同軸線の実質的な長さL1は、
使用電波の波長λの1/4である。 In the
It is connected to the other side of L4. The substantial length L1 of each coaxial line that is an antenna element is:
It is 1/4 of the wavelength λ of the used radio wave.
初段の同軸線CL1には、高周波遮断部材として高磁性材料からなるフェライトコア1
0が設けられている。このフェライトコア10を、中継部R1(給電点Fp2)からコネ
クタ2の方向に向かって、受信したい電波の波長λの1/4の長さの位置に配置する。そ
れにより、フェライトコア10からコネクタ2までの導体部分が高周波的に高いインピー
ダンスとなり、高周波帯においてアンテナ部から切り離される。つまりフェライトコア1
0からコネクタ2までの間の同軸線CL1は、その前のアンテナ部から、高周波的に分離
されるので、その部分に高周波電流が流れても、アンテナ部への影響が少なくなる。これ
により、同軸線CL1についてフェライトコア10から中継部R1までの距離を実質的に
波長λの1/4の長さとすることができる。また、同軸線CL1のフェライトコア10か
らコネクタ2までの長さを任意に決定できる。 The first-stage coaxial line CL1 includes aferrite core 1 made of a high magnetic material as a high-frequency blocking member.
0 is provided. Thisferrite core 10 is arranged at a position having a length of ¼ of the wavelength λ of the radio wave to be received from the relay portion R1 (feed point Fp2) toward the connector 2. As a result, the conductor portion from the ferrite core 10 to the connector 2 has high impedance in terms of high frequency, and is separated from the antenna portion in the high frequency band. That is, ferrite core 1
Since the coaxial line CL1 between 0 and theconnector 2 is separated in high frequency from the previous antenna portion, even if a high frequency current flows through that portion, the influence on the antenna portion is reduced. Thereby, the distance from the ferrite core 10 to the relay part R1 with respect to the coaxial line CL1 can be made substantially ¼ of the wavelength λ. Moreover, the length from the ferrite core 10 of the coaxial line CL1 to the connector 2 can be arbitrarily determined.
0が設けられている。このフェライトコア10を、中継部R1(給電点Fp2)からコネ
クタ2の方向に向かって、受信したい電波の波長λの1/4の長さの位置に配置する。そ
れにより、フェライトコア10からコネクタ2までの導体部分が高周波的に高いインピー
ダンスとなり、高周波帯においてアンテナ部から切り離される。つまりフェライトコア1
0からコネクタ2までの間の同軸線CL1は、その前のアンテナ部から、高周波的に分離
されるので、その部分に高周波電流が流れても、アンテナ部への影響が少なくなる。これ
により、同軸線CL1についてフェライトコア10から中継部R1までの距離を実質的に
波長λの1/4の長さとすることができる。また、同軸線CL1のフェライトコア10か
らコネクタ2までの長さを任意に決定できる。 The first-stage coaxial line CL1 includes a
0 is provided. This
Since the coaxial line CL1 between 0 and the
各中継部は、エラストマー等の樹脂によりモールド成形されてなる。その内部において
は、各同軸線の保護被覆4及び中空円筒のシールド線5(外部導体)を取り除いてあり、
コア材6(誘導体)と芯線7(内部導体)とが露出されている。 Each relay part is molded by a resin such as an elastomer. Inside, theprotective coating 4 of each coaxial wire and the shielded wire 5 (outer conductor) of the hollow cylinder are removed,
The core material 6 (derivative) and the core wire 7 (internal conductor) are exposed.
は、各同軸線の保護被覆4及び中空円筒のシールド線5(外部導体)を取り除いてあり、
コア材6(誘導体)と芯線7(内部導体)とが露出されている。 Each relay part is molded by a resin such as an elastomer. Inside, the
The core material 6 (derivative) and the core wire 7 (internal conductor) are exposed.
中継部R1においては、同軸線CL1の一方の芯線7の先端部分を、基板8上ではんだ
付け等によって同軸線CL2の他方のシールド線5に接続する。また、同軸線CL1の一
方のシールド線5を、基板8上ではんだ付け等によって同軸線CL2の他方の芯線7の先
端部分に接続する。同様にして、中継部R2において、同軸線CL2と同軸線CL3を中
継すべく接続する。そして、最終段の同軸線CL4から一つ手前の同軸線CL3と該最終
段の同軸線CL4を中継する中継部R3において、同軸線CL3の一方の芯線7の先端部
分を同軸線CL4の他方のシールド線5に接続する。同軸線CL3の一方のシールド線5
は同軸線CL4の他方の芯線7の先端部分と接続しない。 In the relay portion R1, the tip of onecore wire 7 of the coaxial line CL1 is connected to the other shield wire 5 of the coaxial line CL2 by soldering or the like on the substrate 8. Further, one shielded wire 5 of the coaxial line CL1 is connected to the tip of the other core wire 7 of the coaxial line CL2 by soldering or the like on the substrate 8. Similarly, in the relay part R2, the coaxial line CL2 and the coaxial line CL3 are connected to be relayed. Then, in the relay section R3 that relays the coaxial line CL3 of the last stage from the coaxial line CL4 of the last stage and the coaxial line CL4 of the final stage, the tip part of one core wire 7 of the coaxial line CL3 is connected to the other end of the coaxial line CL4. Connect to shielded wire 5. One shielded wire 5 of the coaxial wire CL3
Is not connected to the tip of theother core wire 7 of the coaxial line CL4.
付け等によって同軸線CL2の他方のシールド線5に接続する。また、同軸線CL1の一
方のシールド線5を、基板8上ではんだ付け等によって同軸線CL2の他方の芯線7の先
端部分に接続する。同様にして、中継部R2において、同軸線CL2と同軸線CL3を中
継すべく接続する。そして、最終段の同軸線CL4から一つ手前の同軸線CL3と該最終
段の同軸線CL4を中継する中継部R3において、同軸線CL3の一方の芯線7の先端部
分を同軸線CL4の他方のシールド線5に接続する。同軸線CL3の一方のシールド線5
は同軸線CL4の他方の芯線7の先端部分と接続しない。 In the relay portion R1, the tip of one
Is not connected to the tip of the
[多段アンテナの動作原理]
図2を参照して、図1に示すケーブルアンテナ1の動作原理を説明する。
図2Aはある瞬間の電波により各同軸線の内部に誘起される電圧の電圧分布を、図2B
は同じ瞬間の図2Aと反転した電波により誘起される電圧の電圧分布を示している。この
とき、ケーブルアンテナ1においては、図1に示すように、給電点Fp1を中心として同
軸線CL1と同軸線CL2に1/2λの電流分布が、また給電点Fp2を中心として同軸
線CL3と同軸線CL4に1/2λの電流分布が発生する。 [Operation principle of multi-stage antenna]
The operation principle of thecable antenna 1 shown in FIG. 1 will be described with reference to FIG.
FIG. 2A shows the voltage distribution of the voltage induced inside each coaxial line by a certain moment of radio wave.
Shows the voltage distribution of the voltage induced by the inverted radio wave as in FIG. 2A at the same moment. At this time, in thecable antenna 1, as shown in FIG. 1, a current distribution of ½λ is formed in the coaxial line CL1 and the coaxial line CL2 around the feeding point Fp1, and coaxial with the coaxial line CL3 around the feeding point Fp2. A current distribution of ½λ is generated on the line CL4.
図2を参照して、図1に示すケーブルアンテナ1の動作原理を説明する。
図2Aはある瞬間の電波により各同軸線の内部に誘起される電圧の電圧分布を、図2B
は同じ瞬間の図2Aと反転した電波により誘起される電圧の電圧分布を示している。この
とき、ケーブルアンテナ1においては、図1に示すように、給電点Fp1を中心として同
軸線CL1と同軸線CL2に1/2λの電流分布が、また給電点Fp2を中心として同軸
線CL3と同軸線CL4に1/2λの電流分布が発生する。 [Operation principle of multi-stage antenna]
The operation principle of the
FIG. 2A shows the voltage distribution of the voltage induced inside each coaxial line by a certain moment of radio wave.
Shows the voltage distribution of the voltage induced by the inverted radio wave as in FIG. 2A at the same moment. At this time, in the
ケーブルアンテナ1の場合、4つの同軸線CL1~CL4のうち最終段の同軸線CL4
とその一つ手前の同軸線CL3との接続部分(中継部R3)が給電点Fp1となる。また
、給電点Fp1から波長の1/2の距離にある、初段の同軸線CL1とその次の同軸線C
L2の接続部分(中継部R1)が給電点Fp2となる。すなわち、同軸線CL1と同軸線
CL2からなる半波長ダイポールアンテナが構成され、同様に同軸線CL3と同軸線CL
4からなる半波長ダイポールアンテナが構成される。ケーブルアンテナ1は、この2つの
半波長ダイポールアンテナが縦列接続されたアンテナとして機能する。 In the case of thecable antenna 1, the final coaxial line CL4 among the four coaxial lines CL1 to CL4.
And a connection portion (relay portion R3) with the coaxial line CL3 immediately before that is a feeding point Fp1. Further, the first coaxial line CL1 and the next coaxial line C, which are at a distance of ½ wavelength from the feeding point Fp1,
The connection part (relay part R1) of L2 becomes the feed point Fp2. That is, a half-wave dipole antenna composed of the coaxial line CL1 and the coaxial line CL2 is configured, and similarly the coaxial line CL3 and the coaxial line CL.
A four-wavelength half-wave dipole antenna is constructed. Thecable antenna 1 functions as an antenna in which the two half-wave dipole antennas are connected in cascade.
とその一つ手前の同軸線CL3との接続部分(中継部R3)が給電点Fp1となる。また
、給電点Fp1から波長の1/2の距離にある、初段の同軸線CL1とその次の同軸線C
L2の接続部分(中継部R1)が給電点Fp2となる。すなわち、同軸線CL1と同軸線
CL2からなる半波長ダイポールアンテナが構成され、同様に同軸線CL3と同軸線CL
4からなる半波長ダイポールアンテナが構成される。ケーブルアンテナ1は、この2つの
半波長ダイポールアンテナが縦列接続されたアンテナとして機能する。 In the case of the
And a connection portion (relay portion R3) with the coaxial line CL3 immediately before that is a feeding point Fp1. Further, the first coaxial line CL1 and the next coaxial line C, which are at a distance of ½ wavelength from the feeding point Fp1,
The connection part (relay part R1) of L2 becomes the feed point Fp2. That is, a half-wave dipole antenna composed of the coaxial line CL1 and the coaxial line CL2 is configured, and similarly the coaxial line CL3 and the coaxial line CL.
A four-wavelength half-wave dipole antenna is constructed. The
図2Aの電圧分布においては、区間11Aでは同軸線CL1の芯線7に、区間11Bで
は同軸線CL2のシールド線5に、区間11Cでは同軸線CL3の芯線7に、区間11D
では同軸線CL4のシールド線5に、それぞれ電圧が誘起されている。まず、図2Bの電
圧分布においては、区間12Aでは同軸線CL1のシールド線5に、区間12Bでは同軸
線CL2の芯線7に、区間12Cでは同軸線CL3のシールド線5に、区間12Dでは同
軸線CL4の芯線7に、それぞれ電圧が誘起されている。 In the voltage distribution of FIG. 2A, in thesection 11A, the core wire 7 of the coaxial line CL1, in the section 11B, the shield wire 5 of the coaxial line CL2, and in the section 11C, the core wire 7 of the coaxial line CL3, the section 11D.
Then, a voltage is induced in eachshield wire 5 of the coaxial line CL4. 2B, in the section 12A, the shield line 5 of the coaxial line CL1, in the section 12B, to the core line 7 of the coaxial line CL2, in the section 12C, to the shield line 5 of the coaxial line CL3, and in the section 12D, the coaxial line. A voltage is induced in each of the core wires 7 of CL4.
は同軸線CL2のシールド線5に、区間11Cでは同軸線CL3の芯線7に、区間11D
では同軸線CL4のシールド線5に、それぞれ電圧が誘起されている。まず、図2Bの電
圧分布においては、区間12Aでは同軸線CL1のシールド線5に、区間12Bでは同軸
線CL2の芯線7に、区間12Cでは同軸線CL3のシールド線5に、区間12Dでは同
軸線CL4の芯線7に、それぞれ電圧が誘起されている。 In the voltage distribution of FIG. 2A, in the
Then, a voltage is induced in each
一例としてシールド線5に誘起された電圧に注目すると、給電点Fp2は、ある電波の
区間11Bで同軸線CL2のシールド線5に誘起された電圧(+)に応じた電流を取り込
んでいる(図2A)。その一方で、例えば位相が反転した他の電波の区間11Aで同軸線
CL1のシールド線5に誘起された同位相の電圧(+)に応じた電流を取り込んでいる。
給電点Fp1においても同様にしてシールド線5に誘起された電圧(-)に応じた同位相
の電流を取り込んでいる。このように、各給電点において誘起された電圧による同位相の
電流を取り込むことにより、取り入れる高周波信号の電力を増幅している。そして、給電
点Fp1で取り込んだ電流は、給電点Fp2で取り込んだ電流と同位相となって加算され
る。それゆえ、コネクタ2(図1参照)には給電点の個数に応じて高周波信号が増幅され
る。 When attention is paid to the voltage induced in theshield line 5 as an example, the feeding point Fp2 captures a current corresponding to the voltage (+) induced in the shield line 5 of the coaxial line CL2 in a certain radio wave section 11B (FIG. 2A). On the other hand, for example, a current corresponding to the voltage (+) of the same phase induced in the shield line 5 of the coaxial line CL1 in another radio wave section 11A whose phase is inverted is taken in.
Similarly, at the feeding point Fp1, a current having the same phase corresponding to the voltage (−) induced in theshield line 5 is taken in. In this manner, the power of the high-frequency signal to be taken in is amplified by taking in the current of the same phase due to the voltage induced at each feeding point. Then, the current captured at the feeding point Fp1 is added in the same phase as the current captured at the feeding point Fp2. Therefore, a high frequency signal is amplified in the connector 2 (see FIG. 1) according to the number of feeding points.
区間11Bで同軸線CL2のシールド線5に誘起された電圧(+)に応じた電流を取り込
んでいる(図2A)。その一方で、例えば位相が反転した他の電波の区間11Aで同軸線
CL1のシールド線5に誘起された同位相の電圧(+)に応じた電流を取り込んでいる。
給電点Fp1においても同様にしてシールド線5に誘起された電圧(-)に応じた同位相
の電流を取り込んでいる。このように、各給電点において誘起された電圧による同位相の
電流を取り込むことにより、取り入れる高周波信号の電力を増幅している。そして、給電
点Fp1で取り込んだ電流は、給電点Fp2で取り込んだ電流と同位相となって加算され
る。それゆえ、コネクタ2(図1参照)には給電点の個数に応じて高周波信号が増幅され
る。 When attention is paid to the voltage induced in the
Similarly, at the feeding point Fp1, a current having the same phase corresponding to the voltage (−) induced in the
図3は、図1に示すケーブルアンテナ1の一態様を示す外観図である。
この例では、同軸線CL1~CL4が中継部R1~R3の各々を介して縦列に接続され
ている。各同軸線の長さL1は、500MHzの電波の波長の1/4である約15cmに
してある。同軸線CL1にはフェライトコア10を設けず、受信したい電波の波長の1/
4の長さの同軸線CL1にコネクタ2を直接接続してある。最終段の同軸線CL4の、中
継部R3と反対側の先端部20は、各中継部と同様にエラストマー等の樹脂によりモール
ド成形されてなる。 FIG. 3 is an external view showing an aspect of thecable antenna 1 shown in FIG.
In this example, the coaxial lines CL1 to CL4 are connected in cascade via the relay portions R1 to R3. The length L1 of each coaxial line is about 15 cm, which is a quarter of the wavelength of the 500 MHz radio wave. The coaxial line CL1 is not provided with theferrite core 10 and is 1 / wavelength of the radio wave to be received.
Aconnector 2 is directly connected to a coaxial line CL1 having a length of 4. The tip 20 on the opposite side of the relay portion R3 of the final coaxial line CL4 is molded by a resin such as an elastomer as in each relay portion.
この例では、同軸線CL1~CL4が中継部R1~R3の各々を介して縦列に接続され
ている。各同軸線の長さL1は、500MHzの電波の波長の1/4である約15cmに
してある。同軸線CL1にはフェライトコア10を設けず、受信したい電波の波長の1/
4の長さの同軸線CL1にコネクタ2を直接接続してある。最終段の同軸線CL4の、中
継部R3と反対側の先端部20は、各中継部と同様にエラストマー等の樹脂によりモール
ド成形されてなる。 FIG. 3 is an external view showing an aspect of the
In this example, the coaxial lines CL1 to CL4 are connected in cascade via the relay portions R1 to R3. The length L1 of each coaxial line is about 15 cm, which is a quarter of the wavelength of the 500 MHz radio wave. The coaxial line CL1 is not provided with the
A
[アンテナ特性の検証]
発明者らは、本開示に係るアンテナの特性を検証するため、図4に示す多段構成のケー
ブルアンテナの段数を変えて電波を受信する実験を実施した。検証に用いるケーブルアン
テナは、n個の同軸線CL1~CLnが中継部R1~Rn-1の各々を介して縦列に接続
されており、この段数を1段ずつ変えていく。各同軸線の長さL1は10cm(周波数7
50MHzの約1/4λに相当)、各同軸線の特性インピーダンスは100Ωである。こ
こで特性インピーダンスは、シールド線5と芯線7との間のインピーダンスである。n個
の同軸線CL1~CLnから構成されるケーブルアンテナの場合、最終段の同軸線CLn
とその一つ手前の同軸線CLn-1との接続部分(中継部Rn-1)が給電点となる。こ
の給電点をはじめとして、最終段の同軸線CLnから初段の同軸線CL1にかけて同軸線
の個数に応じた複数の接続部分(中継部)が給電点として機能する。なお、測定は、実際
の使用を想定してアンテナを水平偏波を強く受けることのできる状態に設置(横に平置き
)して実施した。 [Verification of antenna characteristics]
In order to verify the characteristics of the antenna according to the present disclosure, the inventors conducted an experiment of receiving radio waves by changing the number of stages of the multi-stage cable antenna shown in FIG. In the cable antenna used for verification, n coaxial lines CL1 to CLn are connected in series via each of the relay portions R1 to Rn-1, and the number of stages is changed one by one. The length L1 of each coaxial line is 10 cm (frequency 7
(Corresponding to about 1 / 4λ of 50 MHz), the characteristic impedance of each coaxial line is 100Ω. Here, the characteristic impedance is an impedance between theshield wire 5 and the core wire 7. In the case of a cable antenna composed of n coaxial lines CL1 to CLn, the final coaxial line CLn
And a connection portion (relay portion Rn-1) with the coaxial line CLn-1 immediately before that becomes a feeding point. Starting from this feeding point, a plurality of connecting portions (relay portions) corresponding to the number of coaxial lines from the last stage coaxial line CLn to the first stage coaxial line CL1 function as feeding points. The measurement was performed with the antenna installed in a state where it can receive strong horizontal polarization (horizontally placed horizontally) assuming actual use.
発明者らは、本開示に係るアンテナの特性を検証するため、図4に示す多段構成のケー
ブルアンテナの段数を変えて電波を受信する実験を実施した。検証に用いるケーブルアン
テナは、n個の同軸線CL1~CLnが中継部R1~Rn-1の各々を介して縦列に接続
されており、この段数を1段ずつ変えていく。各同軸線の長さL1は10cm(周波数7
50MHzの約1/4λに相当)、各同軸線の特性インピーダンスは100Ωである。こ
こで特性インピーダンスは、シールド線5と芯線7との間のインピーダンスである。n個
の同軸線CL1~CLnから構成されるケーブルアンテナの場合、最終段の同軸線CLn
とその一つ手前の同軸線CLn-1との接続部分(中継部Rn-1)が給電点となる。こ
の給電点をはじめとして、最終段の同軸線CLnから初段の同軸線CL1にかけて同軸線
の個数に応じた複数の接続部分(中継部)が給電点として機能する。なお、測定は、実際
の使用を想定してアンテナを水平偏波を強く受けることのできる状態に設置(横に平置き
)して実施した。 [Verification of antenna characteristics]
In order to verify the characteristics of the antenna according to the present disclosure, the inventors conducted an experiment of receiving radio waves by changing the number of stages of the multi-stage cable antenna shown in FIG. In the cable antenna used for verification, n coaxial lines CL1 to CLn are connected in series via each of the relay portions R1 to Rn-1, and the number of stages is changed one by one. The length L1 of each coaxial line is 10 cm (
(Corresponding to about 1 / 4λ of 50 MHz), the characteristic impedance of each coaxial line is 100Ω. Here, the characteristic impedance is an impedance between the
And a connection portion (relay portion Rn-1) with the coaxial line CLn-1 immediately before that becomes a feeding point. Starting from this feeding point, a plurality of connecting portions (relay portions) corresponding to the number of coaxial lines from the last stage coaxial line CLn to the first stage coaxial line CL1 function as feeding points. The measurement was performed with the antenna installed in a state where it can receive strong horizontal polarization (horizontally placed horizontally) assuming actual use.
(1段アンテナの特性)
図5は、1段構成のアンテナの構成例を示す概略図である。図6は、1段構成のアンテ
ナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である。図
6Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(dBd)
を示す。測定対象の周波数帯は、UHF帯(470MHz~870MHz)とした。垂直
偏波は破線で示し、水平偏波は実線で示してある。また図6B及び図6Cに、図6Aに示
したグラフ中の各測定点における値を示した。すなわち図6Bは垂直偏波でのピークゲイ
ンの値を示し、図6Cは水平偏波でのピークゲインの値を示す。なお、図6B及び図6C
には、図6Aのグラフ中にはない906MHzにおける測定値も示している。 (Characteristics of single-stage antenna)
FIG. 5 is a schematic diagram illustrating a configuration example of a one-stage antenna. FIG. 6 is a graph and a table showing measurement results of peak gains of vertically polarized waves and horizontally polarized waves with a single-stage antenna. In the graph of FIG. 6A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (dBd).
Indicates. The frequency band to be measured was the UHF band (470 MHz to 870 MHz). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 6B and 6C show values at each measurement point in the graph shown in FIG. 6A. That is, FIG. 6B shows the peak gain value in the vertical polarization, and FIG. 6C shows the peak gain value in the horizontal polarization. 6B and 6C.
6 also shows a measured value at 906 MHz that is not in the graph of FIG. 6A.
図5は、1段構成のアンテナの構成例を示す概略図である。図6は、1段構成のアンテ
ナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である。図
6Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(dBd)
を示す。測定対象の周波数帯は、UHF帯(470MHz~870MHz)とした。垂直
偏波は破線で示し、水平偏波は実線で示してある。また図6B及び図6Cに、図6Aに示
したグラフ中の各測定点における値を示した。すなわち図6Bは垂直偏波でのピークゲイ
ンの値を示し、図6Cは水平偏波でのピークゲインの値を示す。なお、図6B及び図6C
には、図6Aのグラフ中にはない906MHzにおける測定値も示している。 (Characteristics of single-stage antenna)
FIG. 5 is a schematic diagram illustrating a configuration example of a one-stage antenna. FIG. 6 is a graph and a table showing measurement results of peak gains of vertically polarized waves and horizontally polarized waves with a single-stage antenna. In the graph of FIG. 6A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (dBd).
Indicates. The frequency band to be measured was the UHF band (470 MHz to 870 MHz). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 6B and 6C show values at each measurement point in the graph shown in FIG. 6A. That is, FIG. 6B shows the peak gain value in the vertical polarization, and FIG. 6C shows the peak gain value in the horizontal polarization. 6B and 6C.
6 also shows a measured value at 906 MHz that is not in the graph of FIG. 6A.
1段構成のケーブルアンテナは、同軸線CL1のみから構成され、片側のアンテナエレ
メントが存在しないため、アンテナとしてまったく機能しない。図6A~図6Cに示すよ
うに垂直偏波及び水平偏波ともに各周波数におけるピークゲインは低い。 The one-stage cable antenna is composed only of the coaxial line CL1 and does not function as an antenna at all because there is no antenna element on one side. As shown in FIGS. 6A to 6C, the peak gain at each frequency is low for both the vertical polarization and the horizontal polarization.
メントが存在しないため、アンテナとしてまったく機能しない。図6A~図6Cに示すよ
うに垂直偏波及び水平偏波ともに各周波数におけるピークゲインは低い。 The one-stage cable antenna is composed only of the coaxial line CL1 and does not function as an antenna at all because there is no antenna element on one side. As shown in FIGS. 6A to 6C, the peak gain at each frequency is low for both the vertical polarization and the horizontal polarization.
(2段アンテナの特性)
図7は、2段構成のアンテナの構成例を示す概略図である。図8は、2段構成のアンテ
ナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である。図
8Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(dBd)
を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図8B及び図8Cに
、図8Aに示したグラフ中の各測定点における値を示した。すなわち図8Bは垂直偏波で
のピークゲインの値を示し、図8Cは水平偏波でのピークゲインの値を示す。 (Characteristics of two-stage antenna)
FIG. 7 is a schematic diagram illustrating a configuration example of a two-stage antenna. FIG. 8 is a graph and table showing measurement results of peak gains of vertically polarized waves and horizontally polarized waves with a two-stage antenna. In the graph of FIG. 8A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (dBd).
Indicates. Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 8B and 8C show values at each measurement point in the graph shown in FIG. 8A. That is, FIG. 8B shows the peak gain value in the vertically polarized wave, and FIG. 8C shows the peak gain value in the horizontally polarized wave.
図7は、2段構成のアンテナの構成例を示す概略図である。図8は、2段構成のアンテ
ナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である。図
8Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(dBd)
を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図8B及び図8Cに
、図8Aに示したグラフ中の各測定点における値を示した。すなわち図8Bは垂直偏波で
のピークゲインの値を示し、図8Cは水平偏波でのピークゲインの値を示す。 (Characteristics of two-stage antenna)
FIG. 7 is a schematic diagram illustrating a configuration example of a two-stage antenna. FIG. 8 is a graph and table showing measurement results of peak gains of vertically polarized waves and horizontally polarized waves with a two-stage antenna. In the graph of FIG. 8A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (dBd).
Indicates. Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 8B and 8C show values at each measurement point in the graph shown in FIG. 8A. That is, FIG. 8B shows the peak gain value in the vertically polarized wave, and FIG. 8C shows the peak gain value in the horizontally polarized wave.
2段構成のケーブルアンテナは、同軸線CL1と同軸線CL2の2つのアンテナエレメ
ントから構成され、半波長ダイポールアンテナに近い構成である。図8A~図8Cに示す
ように、720~750MHz付近では、垂直偏波、水平偏波ともにピークゲインの値が
-10dB以上であり、アンテナゲインが取れていることが分かる。すなわち、UHF帯
において、垂直偏波と水平偏波の両方を受信できていると言える。 The two-stage cable antenna is composed of two antenna elements, a coaxial line CL1 and a coaxial line CL2, and has a configuration close to a half-wave dipole antenna. As shown in FIGS. 8A to 8C, in the vicinity of 720 to 750 MHz, the peak gain value is −10 dB or more for both the vertical polarization and the horizontal polarization, and it can be seen that the antenna gain is obtained. That is, it can be said that both vertical polarization and horizontal polarization can be received in the UHF band.
ントから構成され、半波長ダイポールアンテナに近い構成である。図8A~図8Cに示す
ように、720~750MHz付近では、垂直偏波、水平偏波ともにピークゲインの値が
-10dB以上であり、アンテナゲインが取れていることが分かる。すなわち、UHF帯
において、垂直偏波と水平偏波の両方を受信できていると言える。 The two-stage cable antenna is composed of two antenna elements, a coaxial line CL1 and a coaxial line CL2, and has a configuration close to a half-wave dipole antenna. As shown in FIGS. 8A to 8C, in the vicinity of 720 to 750 MHz, the peak gain value is −10 dB or more for both the vertical polarization and the horizontal polarization, and it can be seen that the antenna gain is obtained. That is, it can be said that both vertical polarization and horizontal polarization can be received in the UHF band.
(3段アンテナの特性)
図9は、3段構成のアンテナの構成例を示す概略図である。図10は、3段構成のアン
テナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である。
図10Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(dB
d)を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図10B及び図
10Cに、図10Aに示したグラフ中の各測定点における値を示した。すなわち図10B
は垂直偏波でのピークゲインの値を示し、図10Cは水平偏波でのピークゲインの値を示
す。 (Characteristics of three-stage antenna)
FIG. 9 is a schematic diagram illustrating a configuration example of a three-stage antenna. FIG. 10 is a graph and table showing measurement results of peak gains of vertical polarization and horizontal polarization using a three-stage antenna.
In the graph of FIG. 10A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (dB).
d). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 10B and 10C show values at each measurement point in the graph shown in FIG. 10A. That is, FIG. 10B
Indicates the value of peak gain in vertical polarization, and FIG. 10C shows the value of peak gain in horizontal polarization.
図9は、3段構成のアンテナの構成例を示す概略図である。図10は、3段構成のアン
テナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である。
図10Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(dB
d)を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図10B及び図
10Cに、図10Aに示したグラフ中の各測定点における値を示した。すなわち図10B
は垂直偏波でのピークゲインの値を示し、図10Cは水平偏波でのピークゲインの値を示
す。 (Characteristics of three-stage antenna)
FIG. 9 is a schematic diagram illustrating a configuration example of a three-stage antenna. FIG. 10 is a graph and table showing measurement results of peak gains of vertical polarization and horizontal polarization using a three-stage antenna.
In the graph of FIG. 10A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (dB).
d). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 10B and 10C show values at each measurement point in the graph shown in FIG. 10A. That is, FIG. 10B
Indicates the value of peak gain in vertical polarization, and FIG. 10C shows the value of peak gain in horizontal polarization.
3段構成のケーブルアンテナでは、中継部R1と中継部R2を有しており、電波によっ
て給電点Fp1(中継部R2)を含む複数の給電箇所が存在していると考えられる。図1
0A~図10Cに示すように、720~750MHz付近では、垂直偏波、水平偏波とも
にピークゲインの値が-10dB以上であり、アンテナゲインが取れていることが分かる
。ただし、同軸線の内部に逆相の電圧が誘起されてアンテナ特性が安定していないと考え
られる。 The cable antenna having a three-stage configuration has a relay part R1 and a relay part R2, and it is considered that there are a plurality of power feeding points including a feeding point Fp1 (relay part R2) by radio waves. FIG.
As shown in FIG. 10A to FIG. 10C, in the vicinity of 720 to 750 MHz, the peak gain value is −10 dB or more for both the vertical polarization and the horizontal polarization, and it can be seen that the antenna gain is obtained. However, it is considered that the antenna characteristics are not stable because a reverse-phase voltage is induced inside the coaxial line.
て給電点Fp1(中継部R2)を含む複数の給電箇所が存在していると考えられる。図1
0A~図10Cに示すように、720~750MHz付近では、垂直偏波、水平偏波とも
にピークゲインの値が-10dB以上であり、アンテナゲインが取れていることが分かる
。ただし、同軸線の内部に逆相の電圧が誘起されてアンテナ特性が安定していないと考え
られる。 The cable antenna having a three-stage configuration has a relay part R1 and a relay part R2, and it is considered that there are a plurality of power feeding points including a feeding point Fp1 (relay part R2) by radio waves. FIG.
As shown in FIG. 10A to FIG. 10C, in the vicinity of 720 to 750 MHz, the peak gain value is −10 dB or more for both the vertical polarization and the horizontal polarization, and it can be seen that the antenna gain is obtained. However, it is considered that the antenna characteristics are not stable because a reverse-phase voltage is induced inside the coaxial line.
(4段アンテナの特性)
図11は、4段構成のアンテナの構成例を示す概略図である。図12は、4段構成のア
ンテナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である
。図12Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(d
Bd)を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図12B及び
図12Cに、図12Aに示したグラフ中の各測定点における値を示した。すなわち図12
Bは垂直偏波でのピークゲインの値を示し、図12Cは水平偏波でのピークゲインの値を
示す。 (Characteristics of 4-stage antenna)
FIG. 11 is a schematic diagram illustrating a configuration example of a four-stage antenna. FIG. 12 is a graph and a table showing measurement results of peak gains of vertically polarized waves and horizontally polarized waves using a four-stage antenna. In the graph of FIG. 12A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (d
Bd). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 12B and 12C show values at each measurement point in the graph shown in FIG. 12A. That is, FIG.
B shows the value of the peak gain in the vertical polarization, and FIG. 12C shows the value of the peak gain in the horizontal polarization.
図11は、4段構成のアンテナの構成例を示す概略図である。図12は、4段構成のア
ンテナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である
。図12Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(d
Bd)を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図12B及び
図12Cに、図12Aに示したグラフ中の各測定点における値を示した。すなわち図12
Bは垂直偏波でのピークゲインの値を示し、図12Cは水平偏波でのピークゲインの値を
示す。 (Characteristics of 4-stage antenna)
FIG. 11 is a schematic diagram illustrating a configuration example of a four-stage antenna. FIG. 12 is a graph and a table showing measurement results of peak gains of vertically polarized waves and horizontally polarized waves using a four-stage antenna. In the graph of FIG. 12A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (d
Bd). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 12B and 12C show values at each measurement point in the graph shown in FIG. 12A. That is, FIG.
B shows the value of the peak gain in the vertical polarization, and FIG. 12C shows the value of the peak gain in the horizontal polarization.
4段構成のケーブルアンテナでは、中継部R1~R3を有しており、給電点Fp1(中
継部R3)と給電点Fp2(中継部R1)が存在する。図7の2段構成のケーブルアンテ
ナ(半波長ダイポールアンテナ構成)に比べ同相分電流が取り込まれ、アンテナゲインが
改善されている。また、3段構成のケーブルアンテナと比べて500MHz以下の周波数
におけるピークゲインが改善されている。図12A~図12Cに示すように、特に水平偏
波では全周波数帯でピークゲインの値が-10dB以上であり、アンテナゲインが取れて
いることが分かる。すなわち、4段構成のケーブルアンテナは、UHF帯において水平偏
波を良好に受信できていると言える。 The cable antenna having a four-stage configuration has relay portions R1 to R3, and has a feed point Fp1 (relay portion R3) and a feed point Fp2 (relay portion R1). Compared with the two-stage cable antenna (half-wavelength dipole antenna configuration) shown in FIG. 7, the in-phase current is taken in and the antenna gain is improved. In addition, the peak gain at a frequency of 500 MHz or less is improved as compared with the cable antenna having a three-stage configuration. As shown in FIGS. 12A to 12C, it can be seen that the peak gain value is −10 dB or more in the entire frequency band particularly in the horizontally polarized wave, and the antenna gain is obtained. In other words, it can be said that the four-stage cable antenna can receive the horizontally polarized wave well in the UHF band.
継部R3)と給電点Fp2(中継部R1)が存在する。図7の2段構成のケーブルアンテ
ナ(半波長ダイポールアンテナ構成)に比べ同相分電流が取り込まれ、アンテナゲインが
改善されている。また、3段構成のケーブルアンテナと比べて500MHz以下の周波数
におけるピークゲインが改善されている。図12A~図12Cに示すように、特に水平偏
波では全周波数帯でピークゲインの値が-10dB以上であり、アンテナゲインが取れて
いることが分かる。すなわち、4段構成のケーブルアンテナは、UHF帯において水平偏
波を良好に受信できていると言える。 The cable antenna having a four-stage configuration has relay portions R1 to R3, and has a feed point Fp1 (relay portion R3) and a feed point Fp2 (relay portion R1). Compared with the two-stage cable antenna (half-wavelength dipole antenna configuration) shown in FIG. 7, the in-phase current is taken in and the antenna gain is improved. In addition, the peak gain at a frequency of 500 MHz or less is improved as compared with the cable antenna having a three-stage configuration. As shown in FIGS. 12A to 12C, it can be seen that the peak gain value is −10 dB or more in the entire frequency band particularly in the horizontally polarized wave, and the antenna gain is obtained. In other words, it can be said that the four-stage cable antenna can receive the horizontally polarized wave well in the UHF band.
(5段アンテナの特性)
さらに、4段構成以上のケーブルアンテナについても受信状態の測定を実施したので参
考までに説明する。
図13は、5段構成のアンテナの構成例を示す概略図である。図14は、5段構成のア
ンテナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である
。図14Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(d
Bd)を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図14B及び
図14Cに、図14Aに示したグラフ中の各測定点における値を示した。すなわち図14
Bは垂直偏波でのピークゲインの値を示し、図14Cは水平偏波でのピークゲインの値を
示す。 (Characteristics of 5-stage antenna)
Furthermore, the measurement of the reception state was also performed for a cable antenna having a four-stage configuration or more, and will be described for reference.
FIG. 13 is a schematic diagram illustrating a configuration example of a five-stage antenna. FIG. 14 is a graph and a table showing the measurement results of the peak gains of vertically polarized waves and horizontally polarized waves with a 5-stage antenna. In the graph of FIG. 14A, the horizontal axis indicates the frequency (MHz), and the vertical axis indicates the peak gain (d
Bd). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 14B and 14C show values at each measurement point in the graph shown in FIG. 14A. That is, FIG.
B shows the peak gain value in the vertical polarization, and FIG. 14C shows the peak gain value in the horizontal polarization.
さらに、4段構成以上のケーブルアンテナについても受信状態の測定を実施したので参
考までに説明する。
図13は、5段構成のアンテナの構成例を示す概略図である。図14は、5段構成のア
ンテナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である
。図14Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(d
Bd)を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図14B及び
図14Cに、図14Aに示したグラフ中の各測定点における値を示した。すなわち図14
Bは垂直偏波でのピークゲインの値を示し、図14Cは水平偏波でのピークゲインの値を
示す。 (Characteristics of 5-stage antenna)
Furthermore, the measurement of the reception state was also performed for a cable antenna having a four-stage configuration or more, and will be described for reference.
FIG. 13 is a schematic diagram illustrating a configuration example of a five-stage antenna. FIG. 14 is a graph and a table showing the measurement results of the peak gains of vertically polarized waves and horizontally polarized waves with a 5-stage antenna. In the graph of FIG. 14A, the horizontal axis indicates the frequency (MHz), and the vertical axis indicates the peak gain (d
Bd). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 14B and 14C show values at each measurement point in the graph shown in FIG. 14A. That is, FIG.
B shows the peak gain value in the vertical polarization, and FIG. 14C shows the peak gain value in the horizontal polarization.
5段構成のケーブルアンテナでは、図14A~図14Cに示すように、水平偏波は測定
対象の全周波数帯でピークゲインの値が-10dB以上であり、UHF帯において水平偏
波を概ね高ゲインで良好に受信できている。ただし、500MHz以下の周波数について
、垂直偏波及び水平偏波ともにピークゲインの値が-10dB付近又はそれ以下であり、
アンテナゲインが取れていない。3段構成の測定結果と同様、アンテナ特性が安定しない
箇所が見受けられ、同軸線の内部に逆相の電圧が誘起されている可能性がある。 In a five-stage cable antenna, as shown in FIGS. 14A to 14C, the horizontal polarization has a peak gain value of −10 dB or more in all frequency bands to be measured, and the horizontal polarization is generally high gain in the UHF band. Is receiving well. However, for frequencies of 500 MHz or less, the peak gain value is about −10 dB or less for both vertical polarization and horizontal polarization,
Antenna gain is not set. Similar to the measurement result of the three-stage configuration, there is a portion where the antenna characteristics are not stable, and there is a possibility that a reverse-phase voltage is induced inside the coaxial line.
対象の全周波数帯でピークゲインの値が-10dB以上であり、UHF帯において水平偏
波を概ね高ゲインで良好に受信できている。ただし、500MHz以下の周波数について
、垂直偏波及び水平偏波ともにピークゲインの値が-10dB付近又はそれ以下であり、
アンテナゲインが取れていない。3段構成の測定結果と同様、アンテナ特性が安定しない
箇所が見受けられ、同軸線の内部に逆相の電圧が誘起されている可能性がある。 In a five-stage cable antenna, as shown in FIGS. 14A to 14C, the horizontal polarization has a peak gain value of −10 dB or more in all frequency bands to be measured, and the horizontal polarization is generally high gain in the UHF band. Is receiving well. However, for frequencies of 500 MHz or less, the peak gain value is about −10 dB or less for both vertical polarization and horizontal polarization,
Antenna gain is not set. Similar to the measurement result of the three-stage configuration, there is a portion where the antenna characteristics are not stable, and there is a possibility that a reverse-phase voltage is induced inside the coaxial line.
(6段アンテナの特性)
図15は、6段構成のアンテナの構成例を示す概略図である。図16は、6段構成のア
ンテナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である
。図16Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(d
Bd)を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図16B及び
図16Cに、図16Aに示したグラフ中の各測定点における値を示した。すなわち図16
Bは垂直偏波でのピークゲインの値を示し、図16Cは水平偏波でのピークゲインの値を
示す。 (Characteristics of 6-stage antenna)
FIG. 15 is a schematic diagram illustrating a configuration example of a six-stage antenna. FIG. 16 is a graph and table showing measurement results of peak gains of vertical polarization and horizontal polarization using an antenna having a six-stage configuration. In the graph of FIG. 16A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (d
Bd). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 16B and 16C show values at each measurement point in the graph shown in FIG. 16A. That is, FIG.
B shows the value of peak gain in vertical polarization, and FIG. 16C shows the value of peak gain in horizontal polarization.
図15は、6段構成のアンテナの構成例を示す概略図である。図16は、6段構成のア
ンテナによる垂直偏波及び水平偏波のピークゲインの測定結果を示すグラフ及び表である
。図16Aのグラフにおいて、横軸は周波数(MHz)を示し、縦軸はピークゲイン(d
Bd)を示す。垂直偏波は破線で示し、水平偏波は実線で示してある。また図16B及び
図16Cに、図16Aに示したグラフ中の各測定点における値を示した。すなわち図16
Bは垂直偏波でのピークゲインの値を示し、図16Cは水平偏波でのピークゲインの値を
示す。 (Characteristics of 6-stage antenna)
FIG. 15 is a schematic diagram illustrating a configuration example of a six-stage antenna. FIG. 16 is a graph and table showing measurement results of peak gains of vertical polarization and horizontal polarization using an antenna having a six-stage configuration. In the graph of FIG. 16A, the horizontal axis represents frequency (MHz), and the vertical axis represents peak gain (d
Bd). Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. 16B and 16C show values at each measurement point in the graph shown in FIG. 16A. That is, FIG.
B shows the value of peak gain in vertical polarization, and FIG. 16C shows the value of peak gain in horizontal polarization.
6段構成のアンテナでは、アンテナ全長が大きく、実験を行った測定環境で対応できる
測定サイズを超えるため掲載したデータは参考データである。図16A~図16Cに示す
ように、水平偏波は5段構成の場合と比較して、さらに高ゲインのデータが得られている
。垂直偏波及び水平偏波の一部の周波数帯にピークゲインの値が安定しない箇所が見られ
るものの、測定対象の全周波数帯を概ね良好に受信できている。 The six-stage antenna has a large total antenna length and exceeds the measurement size that can be handled in the measurement environment in which the experiment was performed. As shown in FIG. 16A to FIG. 16C, data with higher gain is obtained for the horizontal polarization compared to the case of the five-stage configuration. Although there are some places where the peak gain value is not stable in some frequency bands of vertical polarization and horizontal polarization, the entire frequency band to be measured can be received almost satisfactorily.
測定サイズを超えるため掲載したデータは参考データである。図16A~図16Cに示す
ように、水平偏波は5段構成の場合と比較して、さらに高ゲインのデータが得られている
。垂直偏波及び水平偏波の一部の周波数帯にピークゲインの値が安定しない箇所が見られ
るものの、測定対象の全周波数帯を概ね良好に受信できている。 The six-stage antenna has a large total antenna length and exceeds the measurement size that can be handled in the measurement environment in which the experiment was performed. As shown in FIG. 16A to FIG. 16C, data with higher gain is obtained for the horizontal polarization compared to the case of the five-stage configuration. Although there are some places where the peak gain value is not stable in some frequency bands of vertical polarization and horizontal polarization, the entire frequency band to be measured can be received almost satisfactorily.
本実施の形態によれば、縦列接続した複数の同軸構造状のアンテナエレメントを用いた
簡単な構造で1本の線状アンテナを構成し、位相給電を行うことにより、該1本の線状ア
ンテナで広帯域かつ高ゲインを実現できる。また、構成要素及び構造が簡単であるから安
価であり、取り付け性も良いので利便性が向上する。 According to the present embodiment, a single linear antenna is configured with a simple structure using a plurality of coaxially-connected antenna elements connected in cascade, and the single linear antenna is obtained by performing phase feeding. Can achieve wide bandwidth and high gain. In addition, since the components and the structure are simple, the cost is low, and the ease of mounting improves, so the convenience is improved.
簡単な構造で1本の線状アンテナを構成し、位相給電を行うことにより、該1本の線状ア
ンテナで広帯域かつ高ゲインを実現できる。また、構成要素及び構造が簡単であるから安
価であり、取り付け性も良いので利便性が向上する。 According to the present embodiment, a single linear antenna is configured with a simple structure using a plurality of coaxially-connected antenna elements connected in cascade, and the single linear antenna is obtained by performing phase feeding. Can achieve wide bandwidth and high gain. In addition, since the components and the structure are simple, the cost is low, and the ease of mounting improves, so the convenience is improved.
なお、上記複数種類のケーブルアンテナの測定結果によれば、多段アンテナの段数が増
加するにつれ、すなわち縦列に接続する同軸線(アンテナエレメント)の個数が多くなる
につれてアンテナゲインが向上する傾向にある。また、多段アンテナは、理論上、2段の
構成も対象となり得るが、従来技術との差別化という点から狭義には3段以上の構成から
とする。また、奇数段のケーブルアンテナは、同軸線の内部に逆相の電圧が誘起されアン
テナ特性が安定しない可能性があると推測されるので、望ましくは同軸線の個数は偶数個
がよいと言えよう。 In addition, according to the measurement results of the plurality of types of cable antennas, the antenna gain tends to be improved as the number of stages of the multistage antenna increases, that is, as the number of coaxial lines (antenna elements) connected in the column increases. Theoretically, the multi-stage antenna can be a two-stage configuration, but in a narrow sense, it has a configuration of three or more stages in terms of differentiation from the prior art. In addition, odd-numbered cable antennas are presumed that a reverse-phase voltage is induced inside the coaxial line and the antenna characteristics may not be stable. Therefore, the number of coaxial lines is desirably an even number. .
加するにつれ、すなわち縦列に接続する同軸線(アンテナエレメント)の個数が多くなる
につれてアンテナゲインが向上する傾向にある。また、多段アンテナは、理論上、2段の
構成も対象となり得るが、従来技術との差別化という点から狭義には3段以上の構成から
とする。また、奇数段のケーブルアンテナは、同軸線の内部に逆相の電圧が誘起されアン
テナ特性が安定しない可能性があると推測されるので、望ましくは同軸線の個数は偶数個
がよいと言えよう。 In addition, according to the measurement results of the plurality of types of cable antennas, the antenna gain tends to be improved as the number of stages of the multistage antenna increases, that is, as the number of coaxial lines (antenna elements) connected in the column increases. Theoretically, the multi-stage antenna can be a two-stage configuration, but in a narrow sense, it has a configuration of three or more stages in terms of differentiation from the prior art. In addition, odd-numbered cable antennas are presumed that a reverse-phase voltage is induced inside the coaxial line and the antenna characteristics may not be stable. Therefore, the number of coaxial lines is desirably an even number. .
(4段アンテナの指向性パターン)
なお、図3に示す4段アンテナについて指向性パターンを測定した。測定に使用した各
同軸線の長さL1は10cm(周波数500MHzの約1/4λに相当)、各同軸線の特
性インピーダンスは97Ωである。図17に、4段構成のアンテナの指向性パターンの一
例を示す。図17A~図17Hはそれぞれ、受信電波の周波数が470MHz、520M
Hz、570MHz、620MHz、670MHz、720MHz、770MHz、90
6MHzの場合の指向性特性を示している。垂直偏波は破線で示し、水平偏波は実線で示
してある。図18は、放射パターンを測定したときの垂直偏波及び水平偏波のピークゲイ
ンの測定結果を示すグラフ及び表である。図18Aのグラフにおいて、横軸は周波数(M
Hz)を示し、縦軸はピークゲイン(dBd)を示す。また図18Bに、図17A~図1
7Hに示した垂直偏波でのピークゲイン(dBd)及び平均ゲイン(dBd)の値を示す
。また図18Cに、同水平偏波でのピークゲイン(dBd)及び平均ゲイン(dBd)の
値を示す。さらに、図18Dに、垂直偏波及び水平偏波の測定値から算出したピークゲイ
ン(dBd)及び平均ゲイン(dBd)の値を示す。 (Directivity pattern of 4-stage antenna)
In addition, the directivity pattern was measured about the 4-stage antenna shown in FIG. The length L1 of each coaxial line used for measurement is 10 cm (corresponding to about 1 / 4λ of a frequency of 500 MHz), and the characteristic impedance of each coaxial line is 97Ω. FIG. 17 shows an example of the directivity pattern of a four-stage antenna. In FIGS. 17A to 17H, the frequency of the received radio wave is 470 MHz and 520 M, respectively.
Hz, 570 MHz, 620 MHz, 670 MHz, 720 MHz, 770 MHz, 90
The directivity characteristic in the case of 6 MHz is shown. Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. FIG. 18 is a graph and a table showing the measurement results of the peak gains of vertical polarization and horizontal polarization when the radiation pattern is measured. In the graph of FIG. 18A, the horizontal axis represents the frequency (M
Hz), and the vertical axis represents the peak gain (dBd). Also, FIG. 18B shows FIGS.
The values of peak gain (dBd) and average gain (dBd) in the vertical polarization shown in 7H are shown. FIG. 18C shows the values of peak gain (dBd) and average gain (dBd) at the same horizontal polarization. Furthermore, FIG. 18D shows values of peak gain (dBd) and average gain (dBd) calculated from measured values of vertical polarization and horizontal polarization.
なお、図3に示す4段アンテナについて指向性パターンを測定した。測定に使用した各
同軸線の長さL1は10cm(周波数500MHzの約1/4λに相当)、各同軸線の特
性インピーダンスは97Ωである。図17に、4段構成のアンテナの指向性パターンの一
例を示す。図17A~図17Hはそれぞれ、受信電波の周波数が470MHz、520M
Hz、570MHz、620MHz、670MHz、720MHz、770MHz、90
6MHzの場合の指向性特性を示している。垂直偏波は破線で示し、水平偏波は実線で示
してある。図18は、放射パターンを測定したときの垂直偏波及び水平偏波のピークゲイ
ンの測定結果を示すグラフ及び表である。図18Aのグラフにおいて、横軸は周波数(M
Hz)を示し、縦軸はピークゲイン(dBd)を示す。また図18Bに、図17A~図1
7Hに示した垂直偏波でのピークゲイン(dBd)及び平均ゲイン(dBd)の値を示す
。また図18Cに、同水平偏波でのピークゲイン(dBd)及び平均ゲイン(dBd)の
値を示す。さらに、図18Dに、垂直偏波及び水平偏波の測定値から算出したピークゲイ
ン(dBd)及び平均ゲイン(dBd)の値を示す。 (Directivity pattern of 4-stage antenna)
In addition, the directivity pattern was measured about the 4-stage antenna shown in FIG. The length L1 of each coaxial line used for measurement is 10 cm (corresponding to about 1 / 4λ of a frequency of 500 MHz), and the characteristic impedance of each coaxial line is 97Ω. FIG. 17 shows an example of the directivity pattern of a four-stage antenna. In FIGS. 17A to 17H, the frequency of the received radio wave is 470 MHz and 520 M, respectively.
Hz, 570 MHz, 620 MHz, 670 MHz, 720 MHz, 770 MHz, 90
The directivity characteristic in the case of 6 MHz is shown. Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines. FIG. 18 is a graph and a table showing the measurement results of the peak gains of vertical polarization and horizontal polarization when the radiation pattern is measured. In the graph of FIG. 18A, the horizontal axis represents the frequency (M
Hz), and the vertical axis represents the peak gain (dBd). Also, FIG. 18B shows FIGS.
The values of peak gain (dBd) and average gain (dBd) in the vertical polarization shown in 7H are shown. FIG. 18C shows the values of peak gain (dBd) and average gain (dBd) at the same horizontal polarization. Furthermore, FIG. 18D shows values of peak gain (dBd) and average gain (dBd) calculated from measured values of vertical polarization and horizontal polarization.
4段アンテナの指向性パターンは、図17A~図17Hに示すように、垂直面において
はおおよそ円に近く、水平面においてはおおよそ8の字に近い曲線を描いていることが分
かる。特に、570Hz、620Hzにおける水平面は、ダイポールアンテナの指向性で
ある8の字に近い指向性になっている。また図17A~図17Hにおいて、水平偏波のゲ
インが少ない角度においては垂直偏波のゲインが高くなっている。これにより、水平偏波
を拾えない角度において垂直偏波を拾うことができる。なお、測定は、実際の使用を想定
して水平偏波を強く受けることのできる設置状況(横に平置き)で実施しているが、アン
テナの設置状況によってはこのような傾向が大きくなる。例えば、水平偏波及び垂直偏波
を均等に受信できるようなアンテナ設置状況であれば、水平偏波と垂直偏波が相互に補完
し合う指向性パターンになる。 As shown in FIGS. 17A to 17H, it can be seen that the directivity pattern of the four-stage antenna draws a curve that is approximately close to a circle in the vertical plane and approximately 8 in the horizontal plane. In particular, the horizontal plane at 570 Hz and 620 Hz has directivity close to the figure 8 that is the directivity of the dipole antenna. In FIGS. 17A to 17H, the gain of the vertical polarization is high at an angle where the gain of the horizontal polarization is small. Thereby, it is possible to pick up the vertically polarized wave at an angle where the horizontally polarized wave cannot be picked up. Note that the measurement is carried out in an installation situation (horizontal horizontal) that can receive strong horizontal polarization assuming actual use, but this tendency increases depending on the installation situation of the antenna. For example, if the antenna is installed such that horizontal polarization and vertical polarization can be received evenly, the directivity pattern in which horizontal polarization and vertical polarization complement each other is obtained.
はおおよそ円に近く、水平面においてはおおよそ8の字に近い曲線を描いていることが分
かる。特に、570Hz、620Hzにおける水平面は、ダイポールアンテナの指向性で
ある8の字に近い指向性になっている。また図17A~図17Hにおいて、水平偏波のゲ
インが少ない角度においては垂直偏波のゲインが高くなっている。これにより、水平偏波
を拾えない角度において垂直偏波を拾うことができる。なお、測定は、実際の使用を想定
して水平偏波を強く受けることのできる設置状況(横に平置き)で実施しているが、アン
テナの設置状況によってはこのような傾向が大きくなる。例えば、水平偏波及び垂直偏波
を均等に受信できるようなアンテナ設置状況であれば、水平偏波と垂直偏波が相互に補完
し合う指向性パターンになる。 As shown in FIGS. 17A to 17H, it can be seen that the directivity pattern of the four-stage antenna draws a curve that is approximately close to a circle in the vertical plane and approximately 8 in the horizontal plane. In particular, the horizontal plane at 570 Hz and 620 Hz has directivity close to the figure 8 that is the directivity of the dipole antenna. In FIGS. 17A to 17H, the gain of the vertical polarization is high at an angle where the gain of the horizontal polarization is small. Thereby, it is possible to pick up the vertically polarized wave at an angle where the horizontally polarized wave cannot be picked up. Note that the measurement is carried out in an installation situation (horizontal horizontal) that can receive strong horizontal polarization assuming actual use, but this tendency increases depending on the installation situation of the antenna. For example, if the antenna is installed such that horizontal polarization and vertical polarization can be received evenly, the directivity pattern in which horizontal polarization and vertical polarization complement each other is obtained.
[同軸線の特性インピーダンスを変化させたときの測定結果]
次に、多段アンテナを構成する同軸線の特性インピーダンスを変化させたときの測定結
果を説明する。
図19に、特性インピーダンスが50Ωの同軸線を用いた4段アンテナによるUHF帯
のピークゲインの測定結果を示すグラフ及び表を示す。また図20に、特性インピーダン
スが75Ωの同軸線を用いた4段アンテナによるUHF帯のピークゲインの測定結果を示
すグラフ及び表を示す。また図21に、特性インピーダンスが97Ωの同軸線を用いた4
段アンテナによるUHF帯のピークゲインの測定結果を示すグラフ及び表を示す。各同軸
線の長さは15cm(周波数500MHzの約1/4λ)である。 [Measurement results when changing the characteristic impedance of the coaxial cable]
Next, the measurement result when changing the characteristic impedance of the coaxial line constituting the multistage antenna will be described.
FIG. 19 shows a graph and a table showing the measurement results of the peak gain in the UHF band by a four-stage antenna using a coaxial line having a characteristic impedance of 50Ω. FIG. 20 shows a graph and a table showing the measurement result of the peak gain in the UHF band by a four-stage antenna using a coaxial line having a characteristic impedance of 75Ω. Further, FIG. 21 shows that a coaxial line having a characteristic impedance of 97Ω is used.
The graph and table | surface which show the measurement result of the peak gain of the UHF band by a stage antenna are shown. Each coaxial line has a length of 15 cm (about 1 / 4λ of a frequency of 500 MHz).
次に、多段アンテナを構成する同軸線の特性インピーダンスを変化させたときの測定結
果を説明する。
図19に、特性インピーダンスが50Ωの同軸線を用いた4段アンテナによるUHF帯
のピークゲインの測定結果を示すグラフ及び表を示す。また図20に、特性インピーダン
スが75Ωの同軸線を用いた4段アンテナによるUHF帯のピークゲインの測定結果を示
すグラフ及び表を示す。また図21に、特性インピーダンスが97Ωの同軸線を用いた4
段アンテナによるUHF帯のピークゲインの測定結果を示すグラフ及び表を示す。各同軸
線の長さは15cm(周波数500MHzの約1/4λ)である。 [Measurement results when changing the characteristic impedance of the coaxial cable]
Next, the measurement result when changing the characteristic impedance of the coaxial line constituting the multistage antenna will be described.
FIG. 19 shows a graph and a table showing the measurement results of the peak gain in the UHF band by a four-stage antenna using a coaxial line having a characteristic impedance of 50Ω. FIG. 20 shows a graph and a table showing the measurement result of the peak gain in the UHF band by a four-stage antenna using a coaxial line having a characteristic impedance of 75Ω. Further, FIG. 21 shows that a coaxial line having a characteristic impedance of 97Ω is used.
The graph and table | surface which show the measurement result of the peak gain of the UHF band by a stage antenna are shown. Each coaxial line has a length of 15 cm (about 1 / 4λ of a frequency of 500 MHz).
図19~図21に示すように、同軸線の特性インピーダンスが50Ω、75Ω、97Ω
と大きくなるにつれて高ゲインが得られ、かつ対象周波数帯においてゲイン値にばらつき
が少なく安定している。以上のことから、多段アンテナにおいて、給電部に接続されてい
る同軸線の所望周波数における特性インピーダンスが高いほうがよく、少なくとも50Ω
以上あることが望ましい。 As shown in FIGS. 19 to 21, the characteristic impedance of the coaxial line is 50Ω, 75Ω, and 97Ω.
As the value increases, a high gain is obtained, and the gain value has little variation in the target frequency band and is stable. From the above, in a multistage antenna, it is better that the characteristic impedance at the desired frequency of the coaxial line connected to the feeder is higher, at least 50Ω.
It is desirable that there be more.
と大きくなるにつれて高ゲインが得られ、かつ対象周波数帯においてゲイン値にばらつき
が少なく安定している。以上のことから、多段アンテナにおいて、給電部に接続されてい
る同軸線の所望周波数における特性インピーダンスが高いほうがよく、少なくとも50Ω
以上あることが望ましい。 As shown in FIGS. 19 to 21, the characteristic impedance of the coaxial line is 50Ω, 75Ω, and 97Ω.
As the value increases, a high gain is obtained, and the gain value has little variation in the target frequency band and is stable. From the above, in a multistage antenna, it is better that the characteristic impedance at the desired frequency of the coaxial line connected to the feeder is higher, at least 50Ω.
It is desirable that there be more.
[多段アンテナの取り付け例]
次に、多段アンテナの取り付け例を説明する。
図22は、本開示に係る多段アンテナを自動車へ搭載する例を示している。この例では
、図1に示した4段構成のケーブルアンテナ1を使用している。ナビゲーション装置等の
通信機器9と接続したコネクタ2から延びる同軸線CL1~CL4を、ダッシュボード上
を左ウィンドウに向かって這わせ、さらにダッシュボード左端にあるフレーム上を上方向
に這わせる。そして、該フレーム上部からフロントガラス上部をバックミラーへ向かって
ほぼ水平に這わせるようにして、取り付ける。これにより、ケーブルアンテナ1は中継部
R2を基点にV字アンテナが構成されたことになる。 [Example of mounting a multistage antenna]
Next, an example of mounting a multistage antenna will be described.
FIG. 22 illustrates an example in which the multistage antenna according to the present disclosure is mounted on an automobile. In this example, the four-stage cable antenna 1 shown in FIG. 1 is used. Coaxial lines CL1 to CL4 extending from the connector 2 connected to the communication device 9 such as a navigation device are turned toward the left window on the dashboard, and are further turned upward on the frame at the left end of the dashboard. Then, the upper part of the windshield is attached from the upper part of the frame so as to lie almost horizontally toward the rearview mirror. Thus, the cable antenna 1 is configured as a V-shaped antenna with the relay portion R2 as a base point.
次に、多段アンテナの取り付け例を説明する。
図22は、本開示に係る多段アンテナを自動車へ搭載する例を示している。この例では
、図1に示した4段構成のケーブルアンテナ1を使用している。ナビゲーション装置等の
通信機器9と接続したコネクタ2から延びる同軸線CL1~CL4を、ダッシュボード上
を左ウィンドウに向かって這わせ、さらにダッシュボード左端にあるフレーム上を上方向
に這わせる。そして、該フレーム上部からフロントガラス上部をバックミラーへ向かって
ほぼ水平に這わせるようにして、取り付ける。これにより、ケーブルアンテナ1は中継部
R2を基点にV字アンテナが構成されたことになる。 [Example of mounting a multistage antenna]
Next, an example of mounting a multistage antenna will be described.
FIG. 22 illustrates an example in which the multistage antenna according to the present disclosure is mounted on an automobile. In this example, the four-
このようにケーブルアンテナ1は、フィルムアンテナのように窓に慎重に貼り付ける必
要がなく、またフィルムアンテナに内蔵されていたアンプなどの部品も必要ない。すなわ
ち、ケーブルアンテナ1は、線状のアンテナを引き回して自動車内に簡単に取り付けるこ
とができるため、利便性がよい。 As described above, thecable antenna 1 does not need to be carefully attached to a window like a film antenna, and does not require components such as an amplifier built in the film antenna. That is, the cable antenna 1 is convenient because it can be easily installed in the automobile by drawing the linear antenna.
要がなく、またフィルムアンテナに内蔵されていたアンプなどの部品も必要ない。すなわ
ち、ケーブルアンテナ1は、線状のアンテナを引き回して自動車内に簡単に取り付けるこ
とができるため、利便性がよい。 As described above, the
以上、本開示は上述した各実施の形態に限定されるものではなく、特許請求の範囲に記
載された本開示の要旨を逸脱しない限りにおいて、その他種々の変形例、応用例を取り得
ることは勿論である。 As described above, the present disclosure is not limited to the above-described embodiments, and various other modifications and application examples can be taken without departing from the gist of the present disclosure described in the claims. Of course.
載された本開示の要旨を逸脱しない限りにおいて、その他種々の変形例、応用例を取り得
ることは勿論である。 As described above, the present disclosure is not limited to the above-described embodiments, and various other modifications and application examples can be taken without departing from the gist of the present disclosure described in the claims. Of course.
上述した実施の形態では、多段アンテナの初段の同軸線CL1に設ける高周波遮断部と
して高磁性材料のフェライトコア10を用いたが、高周波信号を電気的に切り離すことが
できればこの例に限られない。例えば、所望周波数の約λ/4の長さで同軸線のシールド
線が折り曲げられたスタブ構造を採用してもよい。またシールド線を加工してシュペルト
ップと呼ばれるバランを形成する等が考えられる。 In the above-described embodiment, theferrite core 10 made of a high magnetic material is used as the high-frequency cutoff portion provided in the first-stage coaxial line CL1 of the multistage antenna. However, the present invention is not limited to this example as long as the high-frequency signal can be electrically disconnected. For example, a stub structure in which a coaxial shield wire is bent at a length of about λ / 4 of a desired frequency may be employed. It is also conceivable to form a balun called a super top by processing the shield wire.
して高磁性材料のフェライトコア10を用いたが、高周波信号を電気的に切り離すことが
できればこの例に限られない。例えば、所望周波数の約λ/4の長さで同軸線のシールド
線が折り曲げられたスタブ構造を採用してもよい。またシールド線を加工してシュペルト
ップと呼ばれるバランを形成する等が考えられる。 In the above-described embodiment, the
上述した実施の形態では、複数個の同軸線を用いて多段構成のケーブルアンテナを構成
したが、例えば、フィーダー線等の2つの導線(導体)がほぼ平行に配置された他の線材
を使用しても、多段アンテナを作成することが可能である。 In the above-described embodiment, a multi-stage cable antenna is configured using a plurality of coaxial wires. However, for example, another wire material in which two conductors (conductors) such as feeder wires are arranged substantially in parallel is used. However, it is possible to create a multistage antenna.
したが、例えば、フィーダー線等の2つの導線(導体)がほぼ平行に配置された他の線材
を使用しても、多段アンテナを作成することが可能である。 In the above-described embodiment, a multi-stage cable antenna is configured using a plurality of coaxial wires. However, for example, another wire material in which two conductors (conductors) such as feeder wires are arranged substantially in parallel is used. However, it is possible to create a multistage antenna.
1…アンテナ、 2…コネクタ、 3A~3E…中継部、 4…保護被服、 5…シー
ルド線(外部導体)、 6…コア材(誘電体)、 7…芯線(内部導体)、 8…基板、
10…フェライトコア、 11A~11D,12A~12C…電圧分布、 20…先端
部、 CL1~CLn…同軸線、 Fp1,Fp2…給電点、 R1~Rn-1…中継 DESCRIPTION OFSYMBOLS 1 ... Antenna, 2 ... Connector, 3A-3E ... Relay part, 4 ... Protective clothing, 5 ... Shield wire (outer conductor), 6 ... Core material (dielectric material), 7 ... Core wire (internal conductor), 8 ... Substrate,
10 ... Ferrite core, 11A to 11D, 12A to 12C ... Voltage distribution, 20 ... Tip, CL1 to CLn ... Coaxial line, Fp1, Fp2 ... Feed point, R1 to Rn-1 ... Relay
ルド線(外部導体)、 6…コア材(誘電体)、 7…芯線(内部導体)、 8…基板、
10…フェライトコア、 11A~11D,12A~12C…電圧分布、 20…先端
部、 CL1~CLn…同軸線、 Fp1,Fp2…給電点、 R1~Rn-1…中継 DESCRIPTION OF
10 ... Ferrite core, 11A to 11D, 12A to 12C ... Voltage distribution, 20 ... Tip, CL1 to CLn ... Coaxial line, Fp1, Fp2 ... Feed point, R1 to Rn-1 ... Relay
Claims (3)
- 従属接続された複数個の同軸線を有し、
前記複数個の同軸線は、隣接する同軸線の一端の内部導体が他方の外部導体に、一端の
外部導体が他端の内部導体に交互に接続され、かつ、最終段から一つ手前の同軸線の一方
の内部導体が最終段の同軸線の他方の外部導体に接続され、各々の同軸線の長さが実質的
に使用波長の1/4である
アンテナ。 Having a plurality of coaxial lines connected in cascade;
In the plurality of coaxial lines, an inner conductor at one end of an adjacent coaxial line is alternately connected to the other outer conductor, an outer conductor at one end is alternately connected to an inner conductor at the other end, and the coaxial line one before the last stage is connected. An antenna in which one inner conductor of the wire is connected to the other outer conductor of the final coaxial line, and the length of each coaxial line is substantially ¼ of the wavelength used. - 前記同軸線が3個以上接続されている
請求項1に記載のアンテナ。 The antenna according to claim 1, wherein three or more coaxial wires are connected. - 前記同軸線が偶数個である
請求項2に記載のアンテナ。 The antenna according to claim 2, wherein the number of the coaxial lines is an even number.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011049665A JP2012186737A (en) | 2011-03-07 | 2011-03-07 | Antenna |
JP2011-049665 | 2011-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012121015A1 true WO2012121015A1 (en) | 2012-09-13 |
Family
ID=46797984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054278 WO2012121015A1 (en) | 2011-03-07 | 2012-02-22 | Antenna |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012186737A (en) |
WO (1) | WO2012121015A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103872434A (en) * | 2012-12-18 | 2014-06-18 | 北京信威通信技术股份有限公司 | Antenna for field installation and production method thereof |
EP3163677A1 (en) * | 2015-10-30 | 2017-05-03 | Thales | Umbilical antenna structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6555791B1 (en) | 2019-03-12 | 2019-08-07 | ヨメテル株式会社 | Cable antenna |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04365205A (en) * | 1991-06-12 | 1992-12-17 | Kokusai Denki Eng:Kk | Coaxial cable array antenna |
-
2011
- 2011-03-07 JP JP2011049665A patent/JP2012186737A/en not_active Withdrawn
-
2012
- 2012-02-22 WO PCT/JP2012/054278 patent/WO2012121015A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04365205A (en) * | 1991-06-12 | 1992-12-17 | Kokusai Denki Eng:Kk | Coaxial cable array antenna |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103872434A (en) * | 2012-12-18 | 2014-06-18 | 北京信威通信技术股份有限公司 | Antenna for field installation and production method thereof |
EP3163677A1 (en) * | 2015-10-30 | 2017-05-03 | Thales | Umbilical antenna structure |
US9979076B2 (en) | 2015-10-30 | 2018-05-22 | Thales | Umbilical antenna structure |
Also Published As
Publication number | Publication date |
---|---|
JP2012186737A (en) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9799945B2 (en) | Folding antenna device | |
AU2007300268B2 (en) | An antenna in a wireless system | |
EP2490295B1 (en) | Antenna | |
US20130050042A1 (en) | Cobra antenna | |
US8619000B2 (en) | Antenna device | |
JP4308786B2 (en) | Portable radio | |
WO2009130747A1 (en) | Portable radio equipment | |
WO2012121015A1 (en) | Antenna | |
JP4980327B2 (en) | Dual frequency antenna device | |
US7292199B2 (en) | Antenna apparatus | |
US9142890B2 (en) | Antenna assembly | |
JP4795898B2 (en) | Horizontally polarized omnidirectional antenna | |
US11081772B2 (en) | Antenna device and receiver | |
WO2006129400A1 (en) | Portable wireless apparatus | |
JP2007037086A5 (en) | ||
US20070091002A1 (en) | Wideband glass antenna for vehicle | |
WO2016031116A1 (en) | Antenna | |
US10930993B2 (en) | Antenna device and reception device | |
JP2867205B2 (en) | VHF and UHF common antenna | |
JP4444344B2 (en) | Portable radio | |
JP2003087030A (en) | Vehicle-mounted antenna | |
JP2007096680A (en) | Antenna device and antenna device for vehicle | |
JPH1098328A (en) | Omnidirectional antenna | |
JP2002135046A (en) | Composite antenna device | |
JP2996429B2 (en) | VHF and UHF common antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12754655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12754655 Country of ref document: EP Kind code of ref document: A1 |