[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012120694A1 - ウエハレベルパッケージの製造方法、及びウエハレベルパッケージ - Google Patents

ウエハレベルパッケージの製造方法、及びウエハレベルパッケージ Download PDF

Info

Publication number
WO2012120694A1
WO2012120694A1 PCT/JP2011/056251 JP2011056251W WO2012120694A1 WO 2012120694 A1 WO2012120694 A1 WO 2012120694A1 JP 2011056251 W JP2011056251 W JP 2011056251W WO 2012120694 A1 WO2012120694 A1 WO 2012120694A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
groove
level package
manufacturing
wafer level
Prior art date
Application number
PCT/JP2011/056251
Other languages
English (en)
French (fr)
Inventor
彰彦 佐野
孝明 宮地
知範 積
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2012120694A1 publication Critical patent/WO2012120694A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Definitions

  • the present invention relates to a wafer level package manufacturing method and a wafer level package, and more particularly to a wafer level package manufacturing method and a wafer level package capable of reducing dicing.
  • a mold package has been mainly used as a packaging method for semiconductor devices, but in recent years, a wafer level package capable of reducing the package cost and reducing the size of the package has expanded the market share.
  • a wafer level package is completed by dicing into individual devices by dicing.
  • dicing is performed after the first wafer and the second wafer are bonded. At that time, warpage occurs due to a difference in thermal expansion coefficient between the first wafer and the second wafer or a stress unique to the wafer, so that dicing in the presence of warpage deteriorates the wafer yield and product yield. A problem occurs.
  • FIGS. 8A to 8E after the semiconductor wafer 101 and the cap wafer 103 are bonded, A half cut 104 is performed along the scribe line from the semiconductor wafer 101 or cap wafer 103 side, and the chips in the horizontal direction are partially divided.
  • the half-cut 104 is inserted in the middle of the cap wafer 103 shown in FIG. 8A to the interface between the cap wafer 103 and the bonding layer 102 shown in FIG. 8B, as shown in FIG.
  • a plurality of surface acoustic wave device patterns 202 are formed on the surface of the piezoelectric substrate 201.
  • the step of removing the protective body 204 at the portion irradiated with the laser beam 205 to form the protective body removing portion 207 and the back surface side of the piezoelectric substrate 201 are ground by the grinder 208 to thin the piezoelectric substrate 201. It comprises a process and a process of separating each device in the modified region 206.
  • the surface acoustic wave device pattern 202 is surrounded and spaced from the outer periphery when separated into individual pieces.
  • the side wall 211 is provided, the excitation space 203 is covered, and a top plate 212 is provided that is spaced from the outer periphery to the entire periphery when separated into individual pieces, and is connected to the surface acoustic wave device pattern 202 and externally provided.
  • a connection electrode 213 for extracting an electric signal is provided on the first substrate, and the entire first surface side of the piezoelectric substrate 201 is covered with a protective body 204 made of an epoxy resin. Further, in the process of separating each device in the modified region 206, the pickup sheet 220 is attached to the piezoelectric substrate 201, and the pickup sheet 220 is stretched to be separated in the modified region 206. .
  • the laser beam 205 is condensed and the modified region 206 is provided in the piezoelectric substrate 201 to be separated into pieces.
  • the protective body removing portion 207 can be formed by condensing the laser beam 205 on the epoxy resin constituting the protective body 204 serving as a cap. Further, the device can be separated at the same time during the grinding process for thinning the piezoelectric substrate 201.
  • the device chip 301 is hermetically sealed with a sealing frame 302 made of resin.
  • the cap wafer 320 is bonded to the device wafer 310 on which the sealing frame 302 is formed, and then the sealing frame 302. 302 is divided into individual pieces by dicing.
  • the device chip 301 is isolated by the sealing frame 302, even when the sealing frames 302 and 302 are diced, the occurrence of cracks due to the dicing processing is prevented from affecting the device chip 301.
  • the wafer yield and the product yield are improved.
  • a scribe line that separates a plurality of semiconductor devices formed on a semiconductor substrate 401 individually.
  • a trench 402 for use and a through-hole trench 403 for forming a through-hole wiring in the semiconductor device are formed by etching using an etching mask 404.
  • the width of the scribe line groove 402 is made smaller than the width of the through hole groove 403.
  • the through hole groove 403 is penetrated by cutting the semiconductor substrate 401 to a thickness that reaches the bottom surface of the through hole groove 403 from the back surface to form a thinned semiconductor substrate 405.
  • the back metal wiring board 406 and the metal wiring 407 are formed.
  • a sheet 408 having adhesiveness and stretchability is attached to the back surface of the thinned semiconductor substrate 405, and along the scribe line groove 402 as shown in FIG. 11 (e). Then, the thinned semiconductor substrate 405 and the backside metal wiring board 406 are cleaved at the scribe line 411 using the break device 410, and the sheet 408 is stretched and separated for each semiconductor device as shown in FIG. To do.
  • This provides a method of manufacturing a semiconductor device that increases the number of devices that can be obtained.
  • Japanese Patent Publication Japanese Unexamined Patent Application Publication No. 2009-177034 (released on August 6, 2009)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-213144 (published on September 24, 2010)” US Patent Application Publication No. 2009/0194861 (published Aug. 6, 2009) Japanese Patent Publication “Japanese Laid-Open Patent Publication No. 2002-198327 (released on July 12, 2002)”
  • Patent Document 2 the semiconductor device manufacturing method disclosed in Patent Document 2 is not a wafer level package. For this reason, when applied to a wafer level package in which two substrates are bonded together, both the upper and lower substrates must be modified, which increases the number of steps. Further, since the process is finally a cracking of the substrate, there is a problem that it causes a sealing failure due to a crack, a chip or the like.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a wafer level package manufacturing method and a wafer level package capable of improving the wafer yield and the product yield.
  • a method for manufacturing a wafer level package of the present invention includes a first wafer on which a plurality of device chips are mounted or formed in a plane, and a second wafer that faces the first wafer.
  • a first groove for separating into at least one of the first wafer and the second wafer is formed.
  • the method includes a first groove forming step and a bonding step for bonding the first wafer and the second wafer in this order.
  • the wafer level package according to the present invention includes a first wafer on which a plurality of device chips are mounted or formed in a plane and a second wafer facing the first wafer, and then bonded to each device.
  • the singulated wafer level package at least one of the first wafer and the second wafer is provided with a first groove formed for singulation for each device. Yes.
  • the first groove for separating into at least one of the first wafer and the second wafer is formed in the first groove forming step. To do. Next, the first wafer and the second wafer are bonded by a bonding process.
  • the first groove for separating the individual wafer level packages is formed with the first wafer. It is formed in advance before bonding with the second wafer.
  • the first groove for separating into at least one of the first wafer and the second wafer is formed before bonding, warping is reduced by the buffering action of the first groove. It can be joined in the state.
  • the method for manufacturing a wafer level package according to the present invention includes a first groove forming step for forming a first groove for separating at least one of the first wafer and the second wafer, This is a method including a bonding step for bonding the first wafer and the second wafer in this order.
  • At least one of the first wafer and the second wafer is provided with a first groove formed for individual device separation.
  • FIGS. 4A to 4E are cross-sectional views showing an embodiment of a method for manufacturing a wafer level package according to the present invention and showing a manufacturing process of the wafer level package.
  • FIGS. It is a perspective view which shows the structure of the said wafer level package separated into pieces. It is sectional drawing which shows the structure of the said wafer level package.
  • (A)-(e) is sectional drawing which shows the manufacturing process of the modification of the manufacturing method of the said wafer level package.
  • (A)-(e) is sectional drawing which shows the manufacturing process of the other modification of the manufacturing method of the said wafer level package.
  • A)-(e) is sectional drawing which shows the manufacturing process of the other modification of the manufacturing method of the said wafer level package.
  • (A) It is a top view which shows the relationship between the device chip and scribe line by the manufacturing method of the wafer level package of this Embodiment, (b) is the device chip and die thin line by the manufacturing method of the conventional wafer level package It is a top view which shows a relationship.
  • (A)-(e) is sectional drawing which shows the manufacturing method of the conventional wafer level package.
  • (A)-(f) is sectional drawing which shows the manufacturing method of the conventional semiconductor device.
  • (A) is a top view which shows the manufacturing method of the other conventional wafer level package,
  • (b) is the sectional drawing.
  • (A)-(f) is sectional drawing which shows the manufacturing method of the other conventional semiconductor device. It is sectional drawing which shows the structure of the wafer level package which bonded together two other conventional semiconductor devices shown in the said FIG.
  • FIGS. 1 to 7 An embodiment of the present invention will be described with reference to FIGS. 1 to 7 as follows.
  • FIG. 2 is a perspective view showing a configuration of a wafer level package separated into pieces
  • FIG. 2 is a cross-sectional view showing a configuration of the wafer level package before being separated into pieces.
  • the wafer level package 10 of the present embodiment is formed by joining a base portion 2 on which a device chip 1 described later is mounted or formed and a cap portion 3 covering the base portion 2.
  • a through hole 5 is formed in the cap portion 3
  • the device chip 1 has a wiring formed in the through hole 5 and a wiring pattern 6 provided on the surface of the cap portion 3. It is electrically connected to an external device provided outside (not shown). Therefore, the wafer level package 10 according to the present embodiment performs signal transfer using a through silicon via (TSV).
  • TSV through silicon via
  • TSV through silicon via
  • the device chip 1 is composed of, for example, a switch contact portion.
  • the present invention is not necessarily limited to this, and any other device or chip such as an electronic circuit may be used.
  • the wafer level package 10 includes a device wafer 20 as a first wafer on which a plurality of device chips 1 are mounted or formed in a plane, and a second wafer facing the device wafer 20. After the cap wafer 30 is bonded to each other, each device is separated into individual pieces. That is, the wafer level package 10 according to the present embodiment performs all the processes up to rewiring, electrode formation, resin sealing, and singulation in the wafer process, and the size of the device chip 1 that finally cut the wafer remains as it is. It is the size of the package. Therefore, it can be said that the wafer level package is ideal from the viewpoint of miniaturization and weight reduction. As described above, the wafer level package 10 of the present embodiment is adopted in an electronic device such as a mobile phone. Any micro electro mechanical system (MEMS) structure may be used.
  • MEMS micro electro mechanical system
  • the device wafer 20 is formed by stacking silicon (Si) wafers, and an insulating film 21 is formed on each layer of wafers. A plurality of device chips 1 are mounted on the insulating film 21 formed on the surface of the upper wafer.
  • the cap wafer 30 is also made of silicon (Si), and an insulating film 31 is formed on the surface thereof.
  • the device chip 1 is electrically connected to an external device through the through hole 5, the wiring pattern 6 and the bump 7 formed in the cap wafer 30 as described above.
  • a switch movable portion 22 is provided on the lower wafer of the device wafer 20.
  • a frame-like bonding / sealing portion 4 is formed, whereby each device chip 1 is sealed by the bonding / sealing portion 4, the upper and lower device wafers 20, and the cap wafer 30.
  • the device wafer 20 and the cap wafer 30 can be bonded by a silicon (Si) -silicon (Si) bond or a silicon (Si) -silicon dioxide (SiO 2 ) bond.
  • the joining sealing part 4 as a joining material which consists of a metal, glass frit, or resin, or the other joining material which is not shown which consists of a metal, glass frit, or resin may be sufficient.
  • the device chip 1 is hermetically sealed between the device chip 1 and the bonding sealing portion 4, the device chip 1 is filled with a substance such as an inert gas or other resin even in a complete vacuum. It may be.
  • the device wafer 20 is provided with a first groove 23 formed to be separated for each device.
  • the other cap wafer 30 different from the device wafer 20 in which the first groove 23 is formed is provided with a band-shaped through-opening 32 that is formed by other than dicing after bonding. That is, the band-shaped through opening 32 is formed up to the lower surface of the cap wafer 30. For this reason, the band-shaped through opening 32 is a band-shaped through opening having no bottom in the cap wafer 30.
  • the present invention is not necessarily limited to this, and a second groove (not shown) that is a band-like opening having a bottom in the cap wafer 30 may be used.
  • the wafer level package 10 can be singulated by scribing or the like, as will be described later, even if the second groove is a bottomed belt-like opening, not necessarily the belt-like through-opening.
  • the first groove 23 is provided in the device wafer 20, and the band-shaped through opening 32 is provided in the cap wafer 30.
  • the present invention is not limited to this, and for example, the first groove 23 may be provided in the cap wafer 30 and the band-shaped through opening 32 may be provided in the device wafer 20.
  • FIGS. 1A to 1E are cross-sectional views showing manufacturing steps of the wafer level package 10.
  • the first groove 23 is formed on the surface of the device wafer 20 in the first groove forming step.
  • the first groove 23 is a bottomed band-shaped opening and is formed by, for example, dry etching or laser. In the case of dry etching, a dry etching mask is used.
  • the width of the first groove 23 is narrower than the disk width of a disk cutter in a dicing method that is generally used in the past to separate the first groove 23.
  • the device wafer 20 on which the first groove 23 is formed and the cap wafer 30 are bonded.
  • bonding is performed so that the first groove 23 of the device wafer 20 faces the cap wafer 30.
  • a bonding material made of metal, glass frit, or resin can be used, and bonding is performed by silicon (Si) -silicon (Si) bonding or silicon (Si) -silicon dioxide (SiO 2 ) bonding. Is also possible.
  • the back surface of the cap wafer 30 (the upper surface in FIG. 1B) is thinned by a grinder or etching not shown.
  • the through hole 5 is formed in the cap wafer 30 by, for example, dry etching.
  • the band-shaped through opening 32 is also formed by dry etching together as the second groove forming step.
  • the band-shaped through opening 32 is a band-shaped opening that penetrates the cap wafer 30 and is arranged so as to be collinear with the first groove 23 formed in the device wafer 20. Since the band-shaped through opening 32 is formed together with the through hole 5, it can be efficiently formed.
  • the formation of the band-shaped through opening 32 is performed by dry etching, for example.
  • the present invention is not limited to this, and a laser can also be used. That is, any method other than the dicing method may be used. The reason is that the cutting allowance can be made narrower than the dicing method.
  • metal through-wiring is formed in the through hole 5 of the cap wafer 30, and the wiring pattern 6 (not shown) is formed.
  • the first groove 23 is exposed, whereby the wafer level package 10 is singulated.
  • the wafer level package 10 is singulated. There are various methods for dividing the wafer level package 10 into individual pieces.
  • the device wafer 20 can be cut along the scribe line 24.
  • the wafer level package 10 can be cut along the first groove 23 by marking a line or the like with a sharp tool (not shown) as a mark and bending the mark. That is, the thickness of the wafer level package 10 is, for example, 150 ⁇ m for the cap wafer 30, 200 ⁇ m for the device wafer 20, and 60 ⁇ m between the cap wafer 30 and the device wafer 20.
  • a band-shaped through opening 32 is formed in the cap wafer 30, and the first groove 23 is formed halfway through the thickness of the device wafer 20. Therefore, in the thickness direction of the wafer level package 10, 60 ⁇ m between the cap wafer 30 and the device wafer 20 and a part of the device wafer 20 are connected. Therefore, with this thickness, the wafer level package 10 can be easily cut by a scribe method.
  • the wafer level package 10 can be separated into pieces by stretching the sheet.
  • the method of exposing the first groove 23 and dividing the wafer level package 10 into pieces is not necessarily limited to this.
  • the device wafer 20 bonded with the first groove 23 as a boundary in the device wafer 20 in which the first groove 23 is formed, and
  • the first groove 23 can be exposed at the cut surface 25 by extending the cap wafer 30 to both sides.
  • the back surface side of the first groove 23 in the device wafer 20 in which the first groove 23 is formed is ground, polished, or The first groove 23 can be exposed by forming a thinned device wafer 20a that has been thinned by etching.
  • the half groove 26 is used to expose the first groove 23.
  • the half die 26 refers to cutting from the back surface side of the first groove 23 to the first groove 23 in the device wafer 20 in which the groove is formed by a disk cutter used for dicing.
  • the device wafer 20 on which the plurality of device chips 1 are mounted or formed in the surface and the cap wafer 30 facing the device wafer 20 are bonded to each other. After that, it is separated into pieces for each device. Then, the first groove forming step for forming the first groove 23 to be separated into at least one of the device wafer 20 and the cap wafer 30 and the bonding step for bonding the device wafer 20 and the cap wafer 30 are performed. Includes in order.
  • the wafer level package 10 includes a device wafer 20 on which a plurality of device chips 1 are mounted or formed in a plane and a cap wafer 30 facing the device wafer 20, and then bonded to the device wafer 20. Each piece is separated. At least one of the device wafer 20 and the cap wafer 30 is provided with a first groove 23 that is formed to be separated into individual devices.
  • the first groove 23 for separating into at least one of the device wafer 20 and the cap wafer 30 is formed in the first groove forming step. .
  • the device wafer 20 and the cap wafer 30 are bonded by a bonding process.
  • the first groove 23 for separating the individual wafer level package 10 is formed with the device wafer 20. It is formed in advance before bonding the cap wafer 30 together.
  • the dimensional accuracy deteriorates due to the influence of warpage, and the wafer yield and the product yield deteriorate. To do.
  • the cause of this warpage is due to the difference in thermal expansion coefficient or the stress that the wafer has.
  • the stress possessed by the wafer is, for example, the stress possessed by the films formed by forming a bonding metal, an insulating film, a wiring metal, or the like on the wafer.
  • the wafer thickness and the wafer having an SOI structure (a structure having an insulating film in the middle of silicon (Si)) used for the device wafer 20 are also caused by warpage.
  • the first groove 23 for separating the device wafer 20 and the cap wafer 30 is formed in at least one of the device wafer 20 and the cap wafer 30 before bonding, the first groove 23 warps due to the buffering action. It is possible to join in a state where it is reduced.
  • the first groove 23 it is possible to form the first groove 23 to be separated into both the device wafer 20 and the cap wafer 30 before bonding.
  • the first groove 23 By forming the first groove 23 in at least the device wafer 20, even if the device wafer 20 and the cap wafer 30 are separated into individual pieces by extending to both sides after bonding, cracks and chips on the device surface are not generated. Can be prevented.
  • the depth of the first groove 23 shallow, it is possible to prevent breakage during bonding.
  • the first groove 23 is formed in one of the device wafer 20 and the cap wafer 30 and in the bonding step.
  • the band-shaped through-opening 32 or the second groove for separating the device wafer 20 into the other cap wafer 30 or the device wafer 20 different from either the device wafer 20 or the cap wafer 30 in which the first groove 23 is formed is formed.
  • a second groove forming step for forming other than dicing is included.
  • the first groove 23 is formed in one of the device wafer 20 and the cap wafer 30, and the device wafer 20 and the cap in which the first groove 23 is formed.
  • the other cap wafer 30 or device wafer 20 that is different from any one of the wafers 30 is provided with a band-shaped through-opening 32 or a second groove to be separated into pieces formed after bonding other than dicing. Is preferred.
  • the second groove is a bottomed belt-like opening, and the belt-like through opening 32 is a bottomless one.
  • the wafer level package 10 can be separated into pieces by scribing or the like even if the second groove is a bottomed belt-like opening, not necessarily the belt-like through opening 32.
  • a method of forming the band-like through opening 32 or the second groove other than dicing there is a method of drilling by etching or laser, for example.
  • the device wafer 20 and the device wafer 20 that are different from either the device wafer 20 or the cap wafer 30 in which the first groove 23 is formed are separated into pieces.
  • the band-shaped through opening 32 or the second groove is formed by other than dicing.
  • the first groove 23 and the band-shaped through opening 32 or the second groove exist on the same line, and thereby the bonded device wafer 20 and cap wafer.
  • the dimension of the connecting portion at 30 is small.
  • the bonded device wafer 20 and cap wafer 30 are stretched to both sides, for example, with the first groove 23 and the band-shaped through opening 32 or the second groove as a boundary, etc.
  • the wafer level package 10 can be easily separated into individual pieces. For this reason, a dicing process can be made unnecessary.
  • the number of device chips 1 can be increased. That is, as shown in FIG. 7B, conventionally, since the width of the dicing line by dicing is large, the number of device chips 1 per device wafer 20 is inevitably reduced. Specifically, in the case of the conventional dicing method shown in FIG. 7B, a dicing width of 50 to 100 ⁇ m is necessary, and a chip interval of 100 to 200 ⁇ m is necessary in consideration of dicing accuracy.
  • the device chip 1 can be cut into individual pieces by cutting with a scribe line 24 narrower than the width of the dicing line. it can.
  • the width of the groove is 5 to 30 ⁇ m, and even if the accuracy of the scribe line 24 is taken into consideration, it can be realized at an interval of 20 to 50 ⁇ m.
  • the wafer level package 10 is formed on either the device wafer 20 or the cap wafer 30 formed in the first groove forming step.
  • a first groove exposing step for exposing the first groove 23 from the back surface of the first groove 23 is included.
  • the first groove 23 is exposed and the wafer level package 10 can be singulated.
  • the first groove 23 is opposed to the back surface of the first groove 23 in either the device wafer 20 or the cap wafer 30. By scribing along the position, the first groove 23 can be exposed. As a result, the first groove 23 can be exposed by a scribing method without going through a dicing process, and the wafer level package 10 can be singulated.
  • the back surface of the first groove 23 in one of the device wafer 20 and the cap wafer 30 in which the first groove 23 is formed in the first groove exposing step, the back surface of the first groove 23 in one of the device wafer 20 and the cap wafer 30 in which the first groove 23 is formed.
  • the first groove 23 can be exposed by scraping the side by grinding, polishing, or etching to form a thin wafer.
  • the first groove 23 exists up to a thickness in the middle of either the device wafer 20 or the cap wafer 30.
  • channel 23 is exposed by scraping the back surface side of the 1st groove
  • the first groove 23 can be exposed and the wafer level package 10 can be separated into pieces by a method in which the wafer is thinned by grinding, polishing, or etching without going through a dicing process.
  • first groove exposing step from the back side of first groove 23 in either one of device wafer 20 and cap wafer 30 in which first groove 23 is formed. It is possible to expose the first groove 23 by performing the half die 26 up to the first groove 23.
  • each device chip 1 mounted on the surface of the device wafer 20 is already partitioned by the first groove 23 and the cut surface of the band-shaped through opening 32 or the second groove. For this reason, even if the half dice 26 is diced from the rear surface side of the first groove 23 with a large disc width, the dicing cost does not affect the singulation of the device chip 1. Therefore, the number of device chips 1 is not reduced.
  • the first groove 23 in either the device wafer 20 or the cap wafer 30 in which the first groove 23 is formed is bounded.
  • the first groove 23 can be exposed by extending the bonded device wafer 20 and cap wafer 30 to both sides.
  • the first groove 23 and the band-shaped through opening 32 or the second groove exist on the same line, and thereby the bonded device wafer 20 and cap wafer 30.
  • the dimension of the connecting portion in the case is small.
  • the bonded device wafer 20 and cap wafer 30 are stretched, that is, peeled off on both sides, with the first groove 23 and the band-shaped through-opening 32 or the second groove as a boundary.
  • the wafer level package 10 can be easily separated into individual pieces.
  • the first groove 23 is exposed by a method of extending the bonded device wafer 20 and cap wafer 30 to both sides with the first groove 23 as a boundary, and the wafer level package 10 is separated into individual pieces.
  • the method for manufacturing the wafer level package 10 of the present embodiment it is possible to use a bonding material made of metal, glass frit, or resin in the bonding process.
  • the device wafer 20 and the cap wafer 30 can be reliably bonded and sealed using the bonding material.
  • the device wafer 20 and the cap are bonded by silicon (Si) -silicon (Si) bonding or silicon (Si) -silicon dioxide (SiO 2 ) bonding in the bonding process.
  • the wafer 30 can be bonded.
  • the device wafer 20 and the cap wafer 30 are bonded and sealed without using a bonding material. Therefore, the cost can be reduced by not using the bonding material.
  • the first groove is formed on one of the first wafer and the second wafer.
  • a second groove forming step of forming the band-shaped through opening or the second groove other than dicing it is preferable to include a second groove forming step of forming the band-shaped through opening or the second groove other than dicing.
  • the first groove is formed in one of the first wafer and the second wafer, and the first wafer and the first wafer in which the first groove is formed
  • the other second wafer or the first wafer which is different from any one of the two wafers, is provided with a band-shaped through-opening or a second groove for separating into pieces formed after bonding other than dicing.
  • the second groove is a bottomed belt-like opening, and the belt-like through opening is a bottomless one.
  • the wafer level package can be separated into pieces by scribing or the like even if the second groove is a bottomed belt-like opening, not necessarily the belt-like through-opening.
  • a method for forming the band-shaped through-opening or the second groove other than dicing for example, there is a method of drilling by etching or laser.
  • the second wafer or the first wafer which is different from one of the first wafer and the second wafer in which the first groove is formed, is separated into pieces.
  • a belt-like through-opening or a second groove is formed by other than dicing.
  • the first groove and the band-shaped through-opening or the second groove exist on the same line, and thereby the bonded first wafer and the second wafer.
  • the dimension of the connecting portion of the wafer 2 is small.
  • the first wafer and the second wafer are stretched to both sides with the first groove and the belt-like through opening or the second groove as a boundary, for example.
  • the wafer level package can be easily separated. For this reason, a dicing process can be made unnecessary.
  • the first wafer formed in either the first wafer or the second wafer formed in the first groove forming step after the second groove forming step, the first wafer formed in either the first wafer or the second wafer formed in the first groove forming step.
  • a first groove exposing step for exposing the first groove from the back surface of the one groove is included.
  • the first groove can be exposed and the wafer level package can be separated.
  • the back surface of the first groove in either one of the first wafer and the second wafer extends along a position facing the first groove.
  • the scribing means cutting the wafer level package along the first groove by cutting a line or the like with a sharp tool as a mark and bending the mark.
  • the back surface side of the first groove in either one of the first wafer and the second wafer on which the first groove is formed is ground.
  • the first groove can be exposed by scraping, polishing, or etching to form a thin wafer.
  • the first groove exists up to a thickness in the middle of one of the first wafer and the second wafer.
  • channel is exposed by scraping off the back surface side of the 1st groove
  • the first groove can be exposed by a method of thinning the wafer by grinding, polishing, or etching, and the wafer level package can be singulated.
  • the first groove is formed from the back surface side of the first groove in either one of the first wafer and the second wafer.
  • the first groove can be exposed by half-dicing up to one groove.
  • the half die is a disc cutter used for dicing, which cuts from the back side of the first groove to the first groove in either one of the first wafer and the second wafer in which the groove is formed.
  • the first groove is exposed by a method of half-dicing up to the first groove, and the wafer level package can be separated.
  • each device chip mounted on the surface of the first wafer is already partitioned at the cut surface of the first groove and the band-like through opening or the second groove. For this reason, even if half dicing is performed from the back surface side of the first groove by dicing with a large disk width, the dicing cost does not affect the device chip separation. Therefore, the number of device chips is not reduced.
  • the bonding is performed using the first groove in either one of the first wafer and the second wafer on which the first groove is formed as a boundary.
  • the first groove can be exposed by stretching the first and second wafers formed on both sides.
  • the first groove and the band-shaped through-opening or the second groove exist on the same line, and thereby the bonded first wafer and second wafer.
  • the dimension of the connecting portion of the wafer is small.
  • the bonded first wafer and second wafer are stretched, that is, peeled off from both sides of the first wafer and the second wafer with the first groove and the band-shaped through-opening or the second groove as a boundary.
  • the wafer level package can be easily separated into individual pieces.
  • the first groove is exposed by extending the bonded first wafer and second wafer to both sides with the first groove as a boundary, and the wafer level package is separated into pieces. can do.
  • the present invention relates to a wafer level package, MEMS (Micro Electro Electrode) applied to a semiconductor package mounted on an electronic product represented by a mobile phone, a mobile computer, a personal digital assistant (PDA), a digital still camera (DSC) and the like. It can be applied to a manufacturing method of a wafer level package such as a mechanical system) device and a wafer level package.
  • MEMS Micro Electro Electrode
  • PDA personal digital assistant
  • DSC digital still camera

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dicing (AREA)

Abstract

 ウエハレベルパッケージの製造方法は、面内に複数のデバイスチップが搭載又は形成されたデバイスウエハ(20)と該デバイスウエハ(20)に対向するキャップウエハ(30)とが互いに接合された後、デバイス毎に個片化される。デバイスウエハ(20)とキャップウエハ(30)との少なくとも一方に個片化するための第1溝(23)を形成する第1溝形成工程と、デバイスウエハ(20)とキャップウエハ(30)とを接合する接合工程とをこの順に含んでいる。これにより、ウエハ歩留まり及び製品歩留まりを向上し得るウエハレベルパッケージの製造方法、及びウエハレベルパッケージを提供することができる。

Description

ウエハレベルパッケージの製造方法、及びウエハレベルパッケージ
 本発明は、面内に複数のデバイスチップが搭載又は形成された第1のウエハと該第1のウエハに対向する第2のウエハとが互いに接合された後、デバイス毎に個片化されるウエハレベルパッケージの製造方法、及びウエハレベルパッケージに関するものであり、特に、ダイシングレス化を図り得るウエハレベルパッケージの製造方法、及びウエハレベルパッケージに関する。
 半導体デバイスのパッケージ方法として、従来はモールドパッケージが主流であったが、近年はパッケージコストの削減、並びにパッケージ寸法の小型化が可能なウエハレベルパッケージがシェアを広げている。
 このようなウエハレベルパッケージでは、面内に複数のデバイスチップが搭載又は形成された第1のウエハと該第1のウエハに対向する第2のウエハとが互いに接合された後、一般的にはダイシングによりデバイス毎に個片化されてウエハレベルパッケージが完成するものとなっている。
 ここで、ウエハレベルパッケージの製造においては、第1のウエハと第2のウエハとを接合した後にダイシングする。その際、第1のウエハと第2のウエハとの熱膨張係数差又はウエハ独自の有する応力によって反りが発生するので、反りが存在する状態でダイシングすると、ウエハ歩留まりや製品歩留まりが悪化する等の問題が発生する。
 そこで、この問題を解決すべく、特許文献1に開示された半導体パッケージの製造方法では、図8(a)~(e)に示すように、半導体ウエハ101とキャップウエハ103とを接合した後、半導体ウエハ101又はキャップウエハ103側からスクライブラインに沿ってハーフカット104し、横方向のチップ同士を部分的に分割する。ハーフカット104の入れ方は、例えば、図8(a)に示すキャップウエハ103の途中まで、図8(b)に示すキャップウエハ103と接合層102との界面まで、図8(c)に示す接合層102の途中まで、図8(d)に示す接合層102と半導体ウエハ101との界面まで、及び図8(e)に示す半導体ウエハ101の途中までの様式がある。これにより、カットされた基板の個片が孤島状に存在するようになるので、いずれの場合も接合基板の反り量が大幅に低減し、ウエハ歩留まりや製品歩留まりが向上するとしている。
 また、例えば、特許文献2に開示された半導体装置の製造方法では、図9(a)~(f)に示すように、圧電基板201の表面に弾性表面波デバイスパターン202を複数個形成する工程と、励振空間203を設けて保護体204で覆う工程と、レーザ光205を圧電基板201の内部及び保護体204に集光させて照射することにより圧電基板201の内部に改質領域206を形成すると共にレーザ光205を照射した部分の保護体204を除去して保護体除去部207を形成する工程と、圧電基板201の裏面側をグラインダー208にて研削することにより圧電基板201を薄板化する工程と、改質領域206で各デバイスに分離する工程とを備えたものからなっている。尚、励振空間203を設けて保護体204で覆う工程においては、詳細には、弾性表面波デバイスパターン202を囲み、かつ個片に分離した際の外周から全周に渡って間隔を設けて形成した側壁211を設け、励振空間203を覆い、同じく個片に分離した際の外周から全周に渡って間隔を設けて形成した天板212を設け、かつ弾性表面波デバイスパターン202に接続され外部に電気信号を取り出すための接続電極213を設け、圧電基板201の第1面側全体をエポキシ系樹脂からなる保護体204にて覆っている。また、改質領域206で各デバイスに分離する工程では、圧電基板201にピックアップシート220を貼り、ピックアップシート220を延伸することにより、改質領域206にて分離させることができるものとなっている。
 すなわち、特許文献2に開示された半導体装置の製造方法では、レーザ光205を集光させて圧電基板201内に改質領域206を設けて個片化する。そして、同時にキャップである保護体204を構成するエポキシ樹脂にもレーザ光205を集光することによって、保護体除去部207を形成することができる。また、圧電基板201を薄くするためのグラインド工程時に、同時にデバイス分離できるものとなっている。
 この結果、従来の弾性表面波デバイスでは、小型化してもダイシングによる切り代で十分に量産性をあげることができなかったことを回避でき、ウエハ歩留まりや製品歩留まりが向上するようになっている。
 さらに、例えば、特許文献3に開示されたウエハレベルパッケージ300の製造方法では、図10(a)(b)に示すように、デバイスチップ301の周りを樹脂からなる封止枠302にて気密封止されたデバイスを作製するためのものであり、各デバイスに個片化する場合には、封止枠302が形成されたデバイスウエハ310にキャップウエハ320を接合してから、封止枠302・302間をダイシング加工にて個片化するようになっている。
 これにより、デバイスチップ301は封止枠302で隔離されているので、封止枠302・302間をダイシング加工した場合においても、ダイシング加工に伴うクラック発生がデバイスチップ301に影響するのを回避し、ウエハ歩留まりや製品歩留まりを向上させるものとなっている。
 さらに、例えば、特許文献4に開示された半導体装置の製造方法では、図11(a)(b)に示すように、半導体基板401上に形成される複数個の半導体装置を個々に隔てるスクライブライン用溝402と、半導体装置にスルーホール配線を施すためのスルーホール用溝403とをエッチングマスク404を用いてエッチングすることにより形成する。このとき、スクライブライン用溝402の幅をスルーホール用溝403の幅より狭くしておく。次いで、図11(c)に示すように、半導体基板401を裏面からスルーホール用溝403の底面に達する厚さまで削って薄層化半導体基板405とすることにより、スルーホール用溝403を貫通させた後、裏面金属配線板406及び金属配線407を形成する。次いで、図11(d)に示すように、薄層化半導体基板405の裏面に粘着性及び延伸性を有するシート408を貼付け、図11(e)に示すように、スクライブライン用溝402に沿って薄層化半導体基板405と裏面金属配線板406とをブレイク装置410を用いてスクライブライン411にて劈開し、図11(f)に示すように、シート408を延伸して半導体装置毎に分離する。
 これにより、デバイスの取れ数を増加させる半導体装置の製造方法を提供するものとなっている。
日本国公開特許公報「特開2009-177034号公報(2009年8月6日公開)」 日本国公開特許公報「特開2010-213144号公報(2010年9月24日公開)」 米国特許出願公開第2009/0194861号明細書(2009年8月6日公開) 日本国公開特許公報「特開2002-198327号公報(2002年7月12日公開)」
 しかしながら、上記従来のウエハレベルパッケージの製造方法、及びウエハレベルパッケージでは、以下の問題点を有している。
 まず、特許文献1に開示された半導体パッケージの製造方法では、半導体ウエハ101とキャップウエハ103とを接合した後、細くて深い溝を、一方向のみから2枚の基板に渡って形成するのは、処理時間が長くなるので生産性が悪いことや接合部付近の異種材料や空間の影響によって加工し難い等の課題がある。また、ダイシングでは、ダイシング代が必要となり、デバイスの取り数が減少するという問題点を有している。
 また、特許文献2に開示された半導体装置の製造方法は、ウエハレベルパッケージではない。このため、2枚の基板を貼り合わせるウエハレベルパッケージに適用する場合には、上下の基板とも改質しなければならず、工数が増えるという問題点を有している。さらに、最終的には基板を割る工程となっているので、クラック、欠け等により封止不良の原因となるという問題点を有している。
 さらに、特許文献3に開示されたウエハレベルパッケージ300の製造方法では、ダイシングにて個片化するため、ダイシング代が必要となる。したがって、その点で、ウエハ歩留まりや製品歩留まりの向上が十分でないという問題点を有している。
 また、特許文献4に開示された半導体装置の製造方法をウエハレベルパッケージの製造方法に適用する場合には、図12に示すように、図11(c)に示す薄層化半導体基板405・405をそれぞれ貼り合わせることになる。しかし、その場合、接合時の荷重により溝が深い場合にはブレイクが起き易くなるという問題点を有している。また、貼りあわせた後に、表面の薄層化半導体基板405と裏面の薄層化半導体基板405との2回のブレイクが必要となり、工数が増加する。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、ウエハ歩留まり及び製品歩留まりを向上し得るウエハレベルパッケージの製造方法、及びウエハレベルパッケージを提供することにある。
 本発明のウエハレベルパッケージの製造方法は、上記課題を解決するために、面内に複数のデバイスチップが搭載又は形成された第1のウエハと該第1のウエハに対向する第2のウエハとが互いに接合された後、デバイス毎に個片化されるウエハレベルパッケージの製造方法において、上記第1のウエハと第2のウエハとの少なくとも一方に個片化するための第1溝を形成する第1溝形成工程と、上記第1のウエハと第2のウエハとを接合する接合工程とをこの順に含んでいることを特徴としている。
 本発明のウエハレベルパッケージは、面内に複数のデバイスチップが搭載又は形成された第1のウエハと該第1のウエハに対向する第2のウエハとが互いに接合された後、デバイス毎に個片化されたウエハレベルパッケージにおいて、上記第1のウエハと第2のウエハとの少なくとも一方には、デバイス毎に個片化するために形成された第1溝が設けられていることを特徴としている。
 上記の発明によれば、ウエハレベルパッケージを製造する場合には、第1溝形成工程にて、第1のウエハと第2のウエハとの少なくとも一方に個片化するための第1溝を形成する。次いで、接合工程により、第1のウエハと第2のウエハとを接合する。
 この結果、第1のウエハと第2のウエハとを貼り合わせることにより封止されるウエハレベルパッケージを作製する工程において、個々のウエハレベルパッケージを切り離すための第1溝が、第1のウエハと第2のウエハとを貼り合わせる前に予め形成されている。
 すなわち、第1溝が存在しない状態で第1のウエハと第2のウエハとを接合したものをダイシングする場合には、反りの影響を受けて、寸法精度が悪くなり、ウエハ歩留まり及び製品歩留まりが悪化する。
 この点、本発明では、接合前に第1のウエハと第2のウエハとの少なくとも一方に個片化するための第1溝が形成されているので、第1溝の緩衝作用により反りを軽減した状態で接合することができる。
 したがって、ウエハ歩留まり及び製品歩留まりを向上し得るウエハレベルパッケージの製造方法、及びウエハレベルパッケージを提供することができる。
 本発明のウエハレベルパッケージの製造方法は、以上のように、第1のウエハと第2のウエハとの少なくとも一方に個片化するための第1溝を形成する第1溝形成工程と、上記第1のウエハと第2のウエハとを接合する接合工程とをこの順に含んでいる方法である。
 本発明のウエハレベルパッケージは、第1のウエハと第2のウエハとの少なくとも一方には、デバイス毎に個片化するために形成された第1溝が設けられているものである。
 それゆえ、ウエハ歩留まり及び製品歩留まりを向上し得るウエハレベルパッケージの製造方法、及びウエハレベルパッケージを提供するという効果を奏する。
(a)~(e)は、本発明におけるウエハレベルパッケージの製造方法の実施の一形態を示すものであって、ウエハレベルパッケージの製造工程を示す断面図である。 個片化された上記ウエハレベルパッケージの構成を示す斜視図である。 上記ウエハレベルパッケージの構成を示す断面図である。 (a)~(e)は、上記ウエハレベルパッケージの製造方法の変形例の製造工程を示す断面図である。 (a)~(e)は、上記ウエハレベルパッケージの製造方法の他の変形例の製造工程を示す断面図である。 (a)~(e)は、上記ウエハレベルパッケージの製造方法の他の変形例の製造工程を示す断面図である。 (a)本実施の形態のウエハレベルパッケージの製造方法によるデバイスチップとスクライブラインとの関係を示す平面図であり、(b)は従来のウエハレベルパッケージの製造方法によるデバイスチップとダイシンブラインとの関係を示す平面図である。 (a)~(e)は、従来のウエハレベルパッケージの製造方法を示す断面図である。 (a)~(f)は、従来の半導体装置の製造方法を示す断面図である。 (a)は、従来の他のウエハレベルパッケージの製造方法を示す平面図であり、(b)はその断面図である。 (a)~(f)は、従来の他の半導体装置の製造方法を示す断面図である。 上記図11に示す従来の他の半導体装置を2枚貼り合わせたウエハレベルパッケージの構成を示す断面図である。
 本発明の一実施形態について図1~図7に基づいて説明すれば、以下のとおりである。
 本実施の形態のウエハレベルパッケージの構成について、図2及び図3に基づいて説明する。図2は個片化されたウエハレベルパッケージの構成を示す斜視図であり、図2は個片化される前のウエハレベルパッケージの構成を示す断面図である。
 本実施の形態のウエハレベルパッケージ10は、図2に示すように、後述するデバイスチップ1を搭載又は形成した基部2と、その上を覆うキャップ部3とを接合したものからなっている。上記ウエハレベルパッケージ10は、例えば、キャップ部3にスルーホール5が形成されており、デバイスチップ1が、スルーホール5に形成された配線、及びキャップ部3の表面に設けられた配線パターン6を介して図示しない外部に設けられた外部機器に電気的に接続されるようになっている。したがって、本実施の形態のウエハレベルパッケージ10は、シリコン貫通電極(TSV:Through-Silicon via)により、信号の受け渡しを行うものとなっている。尚、本実施の形態では、このように、シリコン貫通電極(TSV:Through-Silicon via)を採用していることが好ましいが、本発明においては必ずしもこれに限らない。
 また、本実施の形態のウエハレベルパッケージ10では、デバイスチップ1は、例えば、スイッチ接点部からなっている。しかし、本発明においては必ずしもこれに限らず、他のデバイス又は電子回路等のチップであればよい。
 上記ウエハレベルパッケージ10は、図3に示すように、面内に複数のデバイスチップ1が搭載又は形成された第1のウエハとしてのデバイスウエハ20と該デバイスウエハ20に対向する第2のウエハとしてのキャップウエハ30とが互いに接合された後、デバイス毎に個片化されるものからなっている。すなわち、本実施の形態のウエハレベルパッケージ10は、ウエハプロセスにて再配線や電極形成、樹脂封止及び個片化までを全て行い、最終的にウエハを切断したデバイスチップ1の大きさがそのままパッケージの大きさとなるものである。このため、ウエハレベルパッケージは、小型化及び軽量化の観点からも理想的であるといえ、このように、本実施の形態のウエハレベルパッケージ10は、例えば、携帯電話等の電子機器に採用されるマイクロエレクトロメカニカルシステム(MEMS)構造であればよい。
 上記デバイスウエハ20はシリコン(Si)からなるウエハが積層されたものからなっており、各層のウエハには絶縁膜21が形成されている。そして、上側のウエハの表面に形成された絶縁膜21の上には、複数のデバイスチップ1が搭載されている。また、キャップウエハ30もシリコン(Si)からなっており、その表面には絶縁膜31が形成されている。そして、上記デバイスチップ1は、前述したように、キャップウエハ30に形成されたスルーホール5、配線パターン6及びバンプ7を介して外部機器に電気的に接続されるようになっている。また、デバイスウエハ20における下層のウエハには、スイッチ可動部22が設けられている。
 上記デバイスチップ1の周りには枠状の接合封止部4が形成されており、これによって、各デバイスチップ1は接合封止部4及び上下のデバイスウエハ20及びキャップウエハ30によって、封止されている。また、デバイスウエハ20とキャップウエハ30とは、シリコン(Si)-シリコン(Si)接合又はシリコン(Si)-二酸化シリコン(SiO2 )接合にて接合することが可能である。また、金属、ガラスフリット又は樹脂からなる接合材としての接合封止部4、又は金属、ガラスフリット又は樹脂からなる図示しない他の接合材であってもよい。
 上記デバイスチップ1と接合封止部4との間は、デバイスチップ1が気密封止されるものであれば、完全な真空であっても、不活性気体又は他の樹脂等の物質に満たされたものであってもよい。
 ここで、本実施の形態のウエハレベルパッケージ10には、例えば、デバイスウエハ20には、デバイス毎に個片化するために形成された第1溝23が設けられている。また、第1溝23が形成されたデバイスウエハ20とは異なる他方のキャップウエハ30には、接合後にダイシング以外で形成された個片化するための帯状貫通開口32が設けられている。すなわち、帯状貫通開口32は、キャップウエハ30の下面まで形成されている。このため、帯状貫通開口32は、キャップウエハ30において底のない帯状貫通開口となっている。尚、本発明においては、必ずしもこれに限らず、キャップウエハ30において底が存在する帯状開口である図示しない第2溝であってもよい。これにより、必ずしも帯状貫通開口でなくても、有底帯状開口である第2溝とすることによっても、後述するように、スクライブ等によってウエハレベルパッケージ10を個片化することが可能である。
 また、本実施の形態では、第1溝23はデバイスウエハ20に設けられると共に、帯状貫通開口32はキャップウエハ30に設けられている。しかしながら、本発明においては、必ずしもこれに限らず、例えば、第1溝23がキャップウエハ30に設けられると共に、帯状貫通開口32がデバイスウエハ20に設けられたものであってもよい。
 次に、上記構成のウエハレベルパッケージ10の製造方法について、図1(a)~(e)に基づいて、以下に説明する。図1(a)~(e)は、ウエハレベルパッケージ10の製造工程を示す断面図である。
 本実施の形態では、図1(a)に示すように、最初に、第1溝形成工程において、デバイスウエハ20の表面に第1溝23を形成しておく。この第1溝23は、有底の帯状開口であり、例えば、ドライエッチング又はレーザにより形成する。ドライエッチングの場合には、ドライエッチングマスクが使用される。この第1溝23の幅は、個片化するために従来一般的に使用されているダイシング法におけるディスクカッターのディスク幅よりも狭いものとなっている。
 そして、接合工程において、第1溝23が形成されたデバイスウエハ20とキャップウエハ30とを接合する。この接合においては、デバイスウエハ20の第1溝23がキャップウエハ30に対向するように接合する。接合方法は、金属、ガラスフリット又は樹脂からなる接合材を使用することができると共に、シリコン(Si)-シリコン(Si)接合又はシリコン(Si)-二酸化シリコン(SiO2 )接合にて接合することも可能である。
 次に、図1(b)に示すように、キャップウエハ30の裏面(図1(b)においては上面)を図示しないグラインダー又はエッチングにて薄ウエハ化する。
 次に、図1(c)に示すように、キャップウエハ30に例えばドライエッチングにてスルーホール5を形成する。このとき、本実施の形態では、第2溝形成工程として帯状貫通開口32も一緒にドライエッチングにて形成する。この帯状貫通開口32は、キャップウエハ30を貫通する帯状開口であり、デバイスウエハ20に形成された第1溝23と同一直線上となるように配されている。この帯状貫通開口32は、スルーホール5と一緒に形成されるので、効率よく形成することができる。尚、帯状貫通開口32の形成は、例えばドライエッチングにて行っているが、必ずしもこれに限らず、レーザを使用することも可能である。すなわち、ダイシング法以外の方法であればよい。その理由は、ダイシング法よりも切り代を狭くできるからである。
 次いで、図1(d)に示すように、キャップウエハ30のスルーホール5に、金属貫通配線を形成し、図示しない前記配線パターン6を形成する。
 次いで、図1(e)に示すように、第1溝露出工程において、第1溝23を露出させ、これによって、ウエハレベルパッケージ10を個片化する。このウエハレベルパッケージ10を個片化する方法は、各種存在する。
 例えば、図1(e)に示すように、デバイスウエハ20における第1溝23の裏面から該第1溝23の対向位置に沿ってスクライブすることにより、スクライブライン24にて、切断することができる。スクライブに際しては、目印として図示しない尖った器具で線等を刻み付け、折曲等することによって第1溝23に沿ってウエハレベルパッケージ10を切断することができる。すなわち、ウエハレベルパッケージ10の厚さは、例えば、キャップウエハ30が例えば150μm、デバイスウエハ20が200μm、キャップウエハ30とデバイスウエハ20との間が60μmである。そして、キャップウエハ30には帯状貫通開口32が形成されており、かつデバイスウエハ20の厚さの途中まで第1溝23が形成されている。したがって、ウエハレベルパッケージ10の厚さ方向において、連結されているのは、キャップウエハ30とデバイスウエハ20との間の60μmと、デバイスウエハ20の一部である。したがって、この厚さであればスクライブ法により、容易にウエハレベルパッケージ10を切断することができる。
 この場合、デバイスウエハ20の裏面には、図示しないシートが貼られているので、このシートを延伸することにより、ウエハレベルパッケージ10を個片化させることができる。
 尚、第1溝露出工程において、第1溝23を露出させ、ウエハレベルパッケージ10を個片化する方法は、必ずしもこれに限らない。
 例えば、図4(a)~(e)に示すように、第1溝露出工程において、第1溝23が形成されたデバイスウエハ20における第1溝23を境界として該接合されたデバイスウエハ20及びキャップウエハ30を両側へ延伸させることにより、切断面25にて第1溝23を露出させることが可能である。
 また、例えば、図5(a)~(e)に示すように、第1溝露出工程において、第1溝23が形成されたデバイスウエハ20における第1溝23の裏面側を研削、研磨、又はエッチングにて削り取って薄ウエハ化した薄化デバイスウエハ20aとすることにより、第1溝23を露出させることができる。
 さらに、例えば、図6(a)~(e)に示すように、第1溝露出工程において、第1溝23が形成されたデバイスウエハ20における第1溝23の裏面側から第1溝23までをハーフダイス26することにより、第1溝23を露出させることができる。尚、ハーフダイス26とは、ダイシングに用いるディスクカッターにて、溝が形成されたデバイスウエハ20における第1溝23の裏面側から第1溝23までを切断することをいう。
 このように、本実施の形態のウエハレベルパッケージ10の製造方法は、面内に複数のデバイスチップ1が搭載又は形成されたデバイスウエハ20と該デバイスウエハ20に対向するキャップウエハ30とが互いに接合された後、デバイス毎に個片化される。そして、デバイスウエハ20とキャップウエハ30との少なくとも一方に個片化するための第1溝23を形成する第1溝形成工程と、デバイスウエハ20とキャップウエハ30とを接合する接合工程とをこの順に含んでいる。
 また、本実施の形態のウエハレベルパッケージ10は、面内に複数のデバイスチップ1が搭載又は形成されたデバイスウエハ20と該デバイスウエハ20に対向するキャップウエハ30とが互いに接合された後、デバイス毎に個片化されている。そして、デバイスウエハ20とキャップウエハ30との少なくとも一方には、デバイス毎に個片化するために形成された第1溝23が設けられている。
 上記構成によれば、ウエハレベルパッケージ10を製造する場合には、第1溝形成工程にて、デバイスウエハ20とキャップウエハ30との少なくとも一方に個片化するための第1溝23を形成する。次いで、接合工程により、デバイスウエハ20とキャップウエハ30とを接合する。
 この結果、デバイスウエハ20とキャップウエハ30とを貼り合わせることにより封止されるウエハレベルパッケージ10を作製する工程において、個々のウエハレベルパッケージ10を切り離すための第1溝23が、デバイスウエハ20とキャップウエハ30とを貼り合わせる前に予め形成されている。
 すなわち、第1溝23が存在しない状態でデバイスウエハ20とキャップウエハ30とを接合したものをダイシングする場合には、反りの影響を受けて、寸法精度が悪くなり、ウエハ歩留まり及び製品歩留まりが悪化する。この反りが発生する要因は、熱膨張係数差又はウエハが有する応力による。ウエハが有する応力とは、具体的には、例えば、接合用のメタルや絶縁膜、配線のメタル等をウエハ上に形成していることによって生じるそれらの膜が持つ応力のことである。また、ウエハの厚みや、デバイスウエハ20に用いられているSOI構造(シリコン(Si)の中間に絶縁膜を持つ構造)のウエハも反りに起因する要素となる。接合用のメタルや絶縁膜、配線のメタル等をウエハに形成する際、それらの膜にそれぞれ内部応力が保持されており、それらの膜毎に保持される内部応力も異なっている。そのため、層間での応力差により、反りが発生する。
 この点、本実施の形態では、接合前にデバイスウエハ20とキャップウエハ30との少なくとも一方に個片化するための第1溝23が形成されているので、第1溝23の緩衝作用により反りを軽減した状態で接合することができる。
 尚、本実施の形態において、例えば、接合前にデバイスウエハ20とキャップウエハ30との両方に個片化するための第1溝23を形成しておくことが可能である。この場合、
少なくともデバイスウエハ20に第1溝23を形成しておくことによって、接合後にデバイスウエハ20及びキャップウエハ30を両側に延伸すること等により個片化しても、デバイス面へのクラックや欠けの発生を防止することができる。また、第1溝23の深さを浅くしておくことによって、接合時のブレイクも防止できる。
 したがって、ウエハ歩留まり及び製品歩留まりを向上し得るウエハレベルパッケージ10の製造方法、及びウエハレベルパッケージ10を提供することができる。
 また、本実施の形態のウエハレベルパッケージ10の製造方法では、第1溝形成工程では、第1溝23はデバイスウエハ20とキャップウエハ30とのいずれか一方に形成されていると共に、接合工程の後、第1溝23を形成したデバイスウエハ20とキャップウエハ30とのいずれか一方とは異なる他方のキャップウエハ30又はデバイスウエハ20にも個片化するための帯状貫通開口32又は第2溝をダイシング以外で形成する第2溝形成工程を含んでいる。
 さらに、本実施の形態のウエハレベルパッケージ10は、第1溝23はデバイスウエハ20とキャップウエハ30とのいずれか一方に形成されていると共に、第1溝23が形成されたデバイスウエハ20とキャップウエハ30とのいずれか一方とは異なる他方のキャップウエハ30又はデバイスウエハ20には、接合後にダイシング以外で形成された個片化するための帯状貫通開口32又は第2溝が設けられていることが好ましい。尚、第2溝は有底帯状開口であり、帯状貫通開口32は、無底のものをいう。また、必ずしも帯状貫通開口32でなくても、有底帯状開口である第2溝とすることによっても、スクライブ等によってウエハレベルパッケージ10を個片化することは可能である。さらに、ダイシング以外での帯状貫通開口32又は第2溝の形成方法としては、例えば、エッチング又はレーザにて穿孔する方法がある。
 これにより、第2溝形成工程にて、第1溝23を形成したデバイスウエハ20とキャップウエハ30とのいずれか一方とは異なる他方のキャップウエハ30又はデバイスウエハ20にも個片化するための帯状貫通開口32又は第2溝をダイシング以外で形成する。
 この結果、接合されたデバイスウエハ20及びキャップウエハ30においては、第1溝23及び帯状貫通開口32又は第2溝が同一線上に存在しており、これによって、接合されたデバイスウエハ20及びキャップウエハ30における連結部分の寸法は小さいものとなっている。これにより、接合されたデバイスウエハ20及びキャップウエハ30を、例えば、第1溝23及び帯状貫通開口32又は第2溝を境界として該デバイスウエハ20及びキャップウエハ30を両側に延伸すること等により、容易に、ウエハレベルパッケージ10を個片化することができる。このため、ダイシングプロセスを不要とすることができる。
 この結果、ダイシングプロセスに伴うダイシング代が不要となるので、デバイスチップ1の取り数を増加することができる。すなわち、図7(b)に示すように、従来では、ダイシングによるダイシングラインの幅が大きかったので、必然的に、デバイスウエハ20の一枚当たりのデバイスチップ1の取れ数が少なくなっていた。具体的には、図7(b)に示す従来のダイシング方式の場合、ダイシング幅が50~100μm必要であり、さらにダイシング精度を考慮して100~200μmのチップ間隔が必要であった。
 この点、本実施の形態では図7(a)に示すように、ダイシングラインの幅よりも狭いスクライブライン24にて切断して個片化できるので、デバイスチップ1の取り数を増加することができる。具体的には、図7(a)に示すダイシングレスの場合、溝の幅は5~30μmであり、スクライブライン24の精度を考慮しても20~50μmの間隔で実現可能である。
 また、ダイシング時のダイシング近傍域へのひび割れ、つまりチッピングによる封止不良を削減することができる。
 したがって、ウエハ歩留まり及び製品歩留まりを向上し得るウエハレベルパッケージ10の製造方法、及びウエハレベルパッケージ10を提供することができる。
 また、本実施の形態のウエハレベルパッケージ10の製造方法では、第2溝形成工程の後、第1溝形成工程にて形成されたデバイスウエハ20とキャップウエハ30とのいずれか一方に形成された第1溝23の裏面から、該第1溝23を露出するための第1溝露出工程を含んでいる。
 これにより、第1溝露出工程にて、第1溝23を露出して、ウエハレベルパッケージ10を個片化することができる。
 また、本実施の形態のウエハレベルパッケージ10の製造方法では、第1溝露出工程では、デバイスウエハ20とキャップウエハ30とのいずれか一方における第1溝23の裏面から該第1溝23の対向位置に沿ってスクライブすることにより、第1溝23を露出させることが可能である。これにより、ダイシングプロセスを経ることなく、スクライブの方法にて第1溝23を露出させ、ウエハレベルパッケージ10を個片化することができる。
 また、本実施の形態のウエハレベルパッケージ10の製造方法では、第1溝露出工程では、第1溝23が形成されたデバイスウエハ20とキャップウエハ30とのいずれか一方における第1溝23の裏面側を研削、研磨、又はエッチングにて削り取って薄ウエハ化することにより、第1溝23を露出させることが可能である。
 すなわち、第1溝23はデバイスウエハ20とキャップウエハ30とのいずれか一方における途中の厚さまで存在している。このため、デバイスウエハ20又はキャップウエハ30における第1溝23の裏面側を研削、研磨、又はエッチングにて削り取って薄ウエハ化することにより、第1溝23が露出する。これにより、ダイシングプロセスを経ることなく、研削、研磨、又はエッチングにて削り取って薄ウエハ化する方法にて第1溝23を露出させ、ウエハレベルパッケージ10を個片化することができる。
 本実施の形態のウエハレベルパッケージ10の製造方法では、第1溝露出工程では、第1溝23が形成されたデバイスウエハ20とキャップウエハ30とのいずれか一方における第1溝23の裏面側から第1溝23までをハーフダイス26することにより、第1溝23を露出させることが可能である。
 これにより、ダイシングプロセスを経ることなく、第1溝23までをハーフダイス26する方法にて第1溝23を露出させ、ウエハレベルパッケージ10を個片化することができる。また、本実施の形態においては、デバイスウエハ20の表面に搭載された各デバイスチップ1は、第1溝23、及び帯状貫通開口32又は第2溝の切断面にて既に区画化されている。このため、第1溝23の裏面側からディスク幅の大きいダイシングにてハーフダイス26しても、ダイシング代がデバイスチップ1の個片化に影響することがない。したがって、デバイスチップ1の取り数が減少することはない。
 また、本実施の形態のウエハレベルパッケージ10の製造方法では、第1溝露出工程では、第1溝23が形成されたデバイスウエハ20とキャップウエハ30とのいずれか一方における第1溝23を境界として該接合されたデバイスウエハ20及びキャップウエハ30を両側へ延伸させることにより、第1溝23を露出させることが可能である。
 すなわち、接合されたデバイスウエハ20及びキャップウエハ30においては、第1溝23及び帯状貫通開口32又は第2溝が同一線上に存在しており、これによって、接合されたデバイスウエハ20及びキャップウエハ30おける連結部分の寸法は小さいものとなっている。
 この結果、接合されたデバイスウエハ20及びキャップウエハ30を、第1溝23及び帯状貫通開口32又は第2溝を境界として該デバイスウエハ20及びキャップウエハ30を両側に延伸、つまり引き剥がすこと等により、容易に、ウエハレベルパッケージ10を個片化することができる。
 したがって、ダイシングプロセスを経ることなく、第1溝23を境界として該接合されたデバイスウエハ20及びキャップウエハ30を両側へ延伸させる方法にて第1溝23を露出させ、ウエハレベルパッケージ10を個片化することができる。
 また、本実施の形態のウエハレベルパッケージ10の製造方法では、接合工程では、金属、ガラスフリット又は樹脂からなる接合材を使用することが可能である。
 これにより、接合材を用いて、デバイスウエハ20とキャップウエハ30とを確実に接合及び封止することができる。
 また、本実施の形態のウエハレベルパッケージ10の製造方法では、接合工程では、シリコン(Si)-シリコン(Si)接合又はシリコン(Si)-二酸化シリコン(SiO2 )接合にてデバイスウエハ20とキャップウエハ30とを接合することが可能である。
 これにより、接合材を使用しないで、デバイスウエハ20とキャップウエハ30とを接合及び封止する。したがって、接合材を用いないことによるコストの低減を図ることができる。
 以上のように、本発明のウエハレベルパッケージの製造方法では、前記第1溝形成工程では、前記第1溝は前記第1のウエハと第2のウエハとのいずれか一方に形成されていると共に、前記接合工程の後、前記第1溝を形成した前記第1のウエハと第2のウエハとのいずれか一方とは異なる他方の第2のウエハ又は第1のウエハにも個片化するための帯状貫通開口又は第2溝をダイシング以外で形成する第2溝形成工程を含んでいることが好ましい。
 本発明のウエハレベルパッケージでは、前記第1溝は前記第1のウエハと第2のウエハとのいずれか一方に形成されていると共に、上記第1溝が形成された前記第1のウエハと第2のウエハとのいずれか一方とは異なる他方の第2のウエハ又は第1のウエハには、接合後にダイシング以外で形成された個片化するための帯状貫通開口又は第2溝が設けられていることが好ましい。尚、第2溝は有底帯状開口であり、帯状貫通開口は、無底のものをいう。また、必ずしも帯状貫通開口でなくても、有底帯状開口である第2溝とすることによっても、スクライブ等によってウエハレベルパッケージを個片化することは可能である。さらに、ダイシング以外での帯状貫通開口又は第2溝の形成方法としては、例えば、エッチング又はレーザにて穿孔する方法がある。
 これにより、第2溝形成工程にて、第1溝を形成した第1のウエハと第2のウエハとのいずれか一方とは異なる他方の第2のウエハ又は第1のウエハにも個片化するための帯状貫通開口又は第2溝をダイシング以外で形成する。
 この結果、接合された第1のウエハ及び第2のウエハにおいては、第1溝及び帯状貫通開口又は第2溝が同一線上に存在しており、これによって、接合された第1のウエハ及び第2のウエハにおける連結部分の寸法は小さいものとなっている。これにより、接合された第1のウエハ及び第2のウエハを、例えば、第1溝及び帯状貫通開口又は第2溝を境界として該第1のウエハ及び第2のウエハを両側に延伸すること等により、容易に、ウエハレベルパッケージを個片化することができる。このため、ダイシングプロセスを不要とすることができる。
 この結果、ダイシングプロセスに伴うダイシング代が不要となるので、デバイスチップの取り数を増加することができる。また、ダイシング時のダイシング近傍域へのひび割れ、つまりチッピングによる封止不良を削減することができる。
 したがって、ウエハ歩留まり及び製品歩留まりを向上し得るウエハレベルパッケージの製造方法、及びウエハレベルパッケージを提供することができる。
 本発明のウエハレベルパッケージの製造方法では、前記第2溝形成工程の後、前記第1溝形成工程にて形成された第1のウエハと第2のウエハとのいずれか一方に形成された第1溝の裏面から、該第1溝を露出するための第1溝露出工程を含んでいる。
 これにより、第1溝露出工程にて、第1溝を露出して、ウエハレベルパッケージを個片化することができる。
 本発明のウエハレベルパッケージの製造方法では、前記第1溝露出工程では、前記第1のウエハと第2のウエハとのいずれか一方における第1溝の裏面から該第1溝の対向位置に沿ってスクライブすることにより、第1溝を露出させることが可能である。尚、スクライブとは、目印として尖った器具で線等を刻み付け、折曲等することによって第1溝に沿ってウエハレベルパッケージを切断することをいう。
 これにより、ダイシングプロセスを経ることなく、スクライブの方法にて第1溝を露出させ、ウエハレベルパッケージを個片化することができる。
 本発明のウエハレベルパッケージの製造方法では、前記第1溝露出工程では、前記第1溝が形成された第1のウエハと第2のウエハとのいずれか一方における第1溝の裏面側を研削、研磨、又はエッチングにて削り取って薄ウエハ化することにより、第1溝を露出させることが可能である。
 すなわち、第1溝は第1のウエハと第2のウエハとのいずれか一方における途中の厚さまで存在している。このため、第1のウエハ又は第2のウエハにおける第1溝の裏面側を研削、研磨、又はエッチングにて削り取って薄ウエハ化することにより、第1溝が露出する。
 これにより、ダイシングプロセスを経ることなく、研削、研磨、又はエッチングにて削り取って薄ウエハ化する方法にて第1溝を露出させ、ウエハレベルパッケージを個片化することができる。
 本発明のウエハレベルパッケージの製造方法では、前記第1溝露出工程では、前記第1溝が形成された第1のウエハと第2のウエハとのいずれか一方における第1溝の裏面側から第1溝までをハーフダイスすることにより、第1溝を露出させることが可能である。尚、ハーフダイスとは、ダイシングに用いるディスクカッターにて、溝が形成された第1のウエハと第2のウエハとのいずれか一方における第1溝の裏面側から第1溝までを切断することをいう。
 これにより、ダイシングプロセスを経ることなく、第1溝までをハーフダイスする方法にて第1溝を露出させ、ウエハレベルパッケージを個片化することができる。また、本発明においては、第1のウエハの表面に搭載された各デバイスチップは、第1溝、及び帯状貫通開口又は第2溝の切断面にて既に区画化されている。このため、第1溝の裏面側からディスク幅の大きいダイシングにてハーフダイスしても、ダイシング代がデバイスチップの個片化に影響することがない。したがって、デバイスチップの取り数が減少することはない。
 本発明のウエハレベルパッケージの製造方法では、前記第1溝露出工程では、前記第1溝が形成された第1のウエハと第2のウエハとのいずれか一方における第1溝を境界として該接合された第1のウエハ及び第2のウエハを両側へ延伸させることにより、第1溝を露出させることが可能である。
 すなわち、接合された第1のウエハ及び第2のウエハにおいては、第1溝及び帯状貫通開口又は第2溝が同一線上に存在しており、これによって、接合された第1のウエハ及び第2のウエハにおける連結部分の寸法は小さいものとなっている。
 この結果、接合された第1のウエハ及び第2のウエハを、第1溝及び帯状貫通開口又は第2溝を境界として該第1のウエハ及び第2のウエハを両側に延伸、つまり引き剥がすこと等により、容易に、ウエハレベルパッケージを個片化することができる。
 したがって、ダイシングプロセスを経ることなく、第1溝を境界として該接合された第1のウエハ及び第2のウエハを両側へ延伸させる方法にて第1溝を露出させ、ウエハレベルパッケージを個片化することができる。
 尚、本発明は、上記の実施の形態に限定されるものではなく、本発明の範囲内で種々の変更が可能であり、本実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、携帯電話、モバイルコンピュータ、パーソナル携帯情報機器(PDA)、デジタルスチルカメラ(DSC)等に代表されるエレクトニクス製品に搭載される半導体パッケージに適用されるウエハレベルパッケージ、MEMS(Micro Electro Mechanical Systems)デバイス等のウエハレベルパッケージの製造方法、及びウエハレベルパッケージに適用することができる。
 1   デバイスチップ
 2   基部
 3   キャップ部
 4   接合封止部(接合材)
 5   スルーホール
 6   配線パターン
10   ウエハレベルパッケージ
20   デバイスウエハ(第1のウエハ)
20a  薄化デバイスウエハ(第1のウエハ)
23   第1溝
24   スクライブライン
25   切断面
26   ハーフダイス
30   キャップウエハ(第2のウエハ)
32   帯状貫通開口

Claims (9)

  1.  面内に複数のデバイスチップが搭載又は形成された第1のウエハと該第1のウエハに対向する第2のウエハとが互いに接合された後、デバイス毎に個片化されるウエハレベルパッケージの製造方法において、
     上記第1のウエハと第2のウエハとの少なくとも一方に個片化するための第1溝を形成する第1溝形成工程と、
     上記第1のウエハと第2のウエハとを接合する接合工程とをこの順に含んでいることを特徴とするウエハレベルパッケージの製造方法。
  2.  前記第1溝形成工程では、前記第1溝は前記第1のウエハと第2のウエハとのいずれか一方に形成されていると共に、
     前記接合工程の後、
     前記第1溝を形成した前記第1のウエハと第2のウエハとのいずれか一方とは異なる他方の第2のウエハ又は第1のウエハにも個片化するための帯状貫通開口又は第2溝をダイシング以外で形成する第2溝形成工程を含んでいることを特徴とする請求項1記載のウエハレベルパッケージの製造方法。
  3.  前記第2溝形成工程の後、前記第1溝形成工程にて形成された第1のウエハと第2のウエハとのいずれか一方に形成された第1溝の裏面から、該第1溝を露出するための第1溝露出工程を含んでいることを特徴とする請求項2記載のウエハレベルパッケージの製造方法。
  4.  前記第1溝露出工程では、前記第1のウエハと第2のウエハとのいずれか一方における第1溝の裏面から該第1溝の対向位置に沿ってスクライブすることにより、第1溝を露出させることを特徴とする請求項3記載のウエハレベルパッケージの製造方法。
  5.  前記第1溝露出工程では、前記第1溝が形成された第1のウエハと第2のウエハとのいずれか一方における第1溝の裏面側を研削、研磨、又はエッチングにて削り取って薄ウエハ化することにより、第1溝を露出させることを特徴とする請求項3記載のウエハレベルパッケージの製造方法。
  6.  前記第1溝露出工程では、前記第1溝が形成された第1のウエハと第2のウエハとのいずれか一方における第1溝の裏面側から第1溝までをハーフダイスすることにより、第1溝を露出させることを特徴とする請求項3記載のウエハレベルパッケージの製造方法。
  7.  前記第1溝露出工程では、前記第1溝が形成された第1のウエハと第2のウエハとのいずれか一方における第1溝を境界として該接合された第1のウエハ及び第2のウエハを両側へ延伸させることにより、第1溝を露出させることを特徴とする請求項3記載のウエハレベルパッケージの製造方法。
  8.  面内に複数のデバイスチップが搭載又は形成された第1のウエハと該第1のウエハに対向する第2のウエハとが互いに接合された後、デバイス毎に個片化されたウエハレベルパッケージにおいて、
     上記第1のウエハと第2のウエハとの少なくとも一方には、デバイス毎に個片化するために形成された第1溝が設けられていることを特徴とするウエハレベルパッケージ。
  9.  前記第1溝は前記第1のウエハと第2のウエハとのいずれか一方に形成されていると共に、
     上記第1溝が形成された前記第1のウエハと第2のウエハとのいずれか一方とは異なる他方の第2のウエハ又は第1のウエハには、接合後にダイシング以外で形成された個片化するための帯状貫通開口又は第2溝が設けられていることを特徴とする請求項8記載のウエハレベルパッケージ。
PCT/JP2011/056251 2011-03-04 2011-03-16 ウエハレベルパッケージの製造方法、及びウエハレベルパッケージ WO2012120694A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011048249A JP2012186309A (ja) 2011-03-04 2011-03-04 ウエハレベルパッケージの製造方法、及びウエハレベルパッケージ
JP2011-048249 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012120694A1 true WO2012120694A1 (ja) 2012-09-13

Family

ID=46797687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056251 WO2012120694A1 (ja) 2011-03-04 2011-03-16 ウエハレベルパッケージの製造方法、及びウエハレベルパッケージ

Country Status (2)

Country Link
JP (1) JP2012186309A (ja)
WO (1) WO2012120694A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045701A1 (ja) * 2012-09-19 2014-03-27 三菱電機株式会社 半導体装置の製造方法
CN112018027A (zh) * 2019-05-31 2020-12-01 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法、晶圆切割方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102149332B1 (ko) * 2013-08-26 2020-08-31 삼성전자주식회사 정전용량 미세가공 초음파 변환기 및 그 싱귤레이션 방법
US10163709B2 (en) * 2015-02-13 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056999A (ja) * 2003-08-01 2005-03-03 Fuji Photo Film Co Ltd 固体撮像装置およびその製造方法
JP2007184426A (ja) * 2006-01-06 2007-07-19 Shinko Electric Ind Co Ltd 半導体装置の製造方法
JP2007331099A (ja) * 2006-06-14 2007-12-27 Magnachip Semiconductor Ltd Mems素子のパッケージ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056999A (ja) * 2003-08-01 2005-03-03 Fuji Photo Film Co Ltd 固体撮像装置およびその製造方法
JP2007184426A (ja) * 2006-01-06 2007-07-19 Shinko Electric Ind Co Ltd 半導体装置の製造方法
JP2007331099A (ja) * 2006-06-14 2007-12-27 Magnachip Semiconductor Ltd Mems素子のパッケージ及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045701A1 (ja) * 2012-09-19 2014-03-27 三菱電機株式会社 半導体装置の製造方法
TWI505411B (zh) * 2012-09-19 2015-10-21 Mitsubishi Electric Corp 半導體裝置的製造方法
JP5943086B2 (ja) * 2012-09-19 2016-06-29 三菱電機株式会社 半導体装置の製造方法
US9508564B2 (en) 2012-09-19 2016-11-29 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
CN112018027A (zh) * 2019-05-31 2020-12-01 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法、晶圆切割方法

Also Published As

Publication number Publication date
JP2012186309A (ja) 2012-09-27

Similar Documents

Publication Publication Date Title
KR101094450B1 (ko) 플라즈마를 이용한 다이싱 방법
US8409925B2 (en) Chip package structure and manufacturing method thereof
TWI505428B (zh) 晶片封裝體及其形成方法
JP5114017B2 (ja) 半導体装置、該半導体装置の製造方法
US20100327465A1 (en) Package process and package structure
US20130292825A1 (en) Chip package and method for forming the same
TWI567894B (zh) 晶片封裝
US20080233714A1 (en) Method for fabricating semiconductor device
WO2012120694A1 (ja) ウエハレベルパッケージの製造方法、及びウエハレベルパッケージ
US12060266B2 (en) Method with mechanical dicing process for producing MEMS components
US7598125B2 (en) Method for wafer level packaging and fabricating cap structures
JP5271610B2 (ja) 半導体装置の製造方法
CN105551945B (zh) 晶圆键合工艺中减小界面应力的方法
US9064950B2 (en) Fabrication method for a chip package
JP7510654B2 (ja) パッケージ筐体の製造方法及びパッケージチップの製造方法
US9219011B2 (en) Separation of chips on a substrate
CN110713165A (zh) 一种具有tsv结构的mems芯片及其圆片级气密性封装方法
TWI525763B (zh) 晶片封裝體及其形成方法
JP2010135565A (ja) 半導体装置及びその製造方法
CN207061863U (zh) 具有背面圆弧形棱边的mems芯片
TWI796210B (zh) 影像感測器封裝之切單方法及影像感測器封裝
US20110294237A1 (en) Packaging method of semiconductor device
CN111696968A (zh) 半导体结构的制造方法
US11905170B2 (en) MEMS tab removal process
KR100681264B1 (ko) 전자소자 패키지 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860390

Country of ref document: EP

Kind code of ref document: A1