[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012120683A1 - 絶縁抵抗検知回路 - Google Patents

絶縁抵抗検知回路 Download PDF

Info

Publication number
WO2012120683A1
WO2012120683A1 PCT/JP2011/055673 JP2011055673W WO2012120683A1 WO 2012120683 A1 WO2012120683 A1 WO 2012120683A1 JP 2011055673 W JP2011055673 W JP 2011055673W WO 2012120683 A1 WO2012120683 A1 WO 2012120683A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
value
measured
voltage dividing
Prior art date
Application number
PCT/JP2011/055673
Other languages
English (en)
French (fr)
Inventor
義人 今井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013503304A priority Critical patent/JPWO2012120683A1/ja
Priority to PCT/JP2011/055673 priority patent/WO2012120683A1/ja
Publication of WO2012120683A1 publication Critical patent/WO2012120683A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an insulation resistance detection circuit for measuring an insulation resistance of a DC power supply configured by connecting a plurality of power supply units in series and parallel.
  • a solar cell, a fuel cell, and the like are known as a DC power source configured by connecting a plurality of power source units in series and parallel. Since a system that generates AC power using such a DC power supply is configured by combining a DC power supply and a power converter (power conditioner), in the insulation resistance standard that should be satisfied as a system from the viewpoint of ensuring safety, The insulation resistance value to be satisfied by each component is determined.
  • the non-insulated power conditioner that supplies the converted AC power directly to the load without an insulating transformer is widely used because it has a feature that can improve the power conversion efficiency at low cost.
  • the insulation resistance deterioration at the input DC power supply is caused to the load. It is required to take measures to prevent the impact.
  • a solar power generation system will be described as an example.
  • a solar cell used in a photovoltaic power generation system is configured by connecting a plurality of solar cell modules in series and parallel.
  • the ground insulation resistance value of each solar cell module is very high (for example, 1000 M ⁇ ), but when the 100 solar cell modules are connected in series, for example, the ground insulation resistance value is reduced to 10 M ⁇ . Since the leakage current of the solar cell module is proportional to the area, the total insulation resistance of the solar cell having a large capacity by greatly increasing the number of solar cell modules is greatly reduced.
  • the insulation resistance of the solar cell that is the DC power supply It is necessary to provide a function of self-diagnosis whether or not is equal to or greater than a predetermined value required by the system.
  • the insulation resistance detection circuit targeted by the present invention is a non-insulated power conditioner for converting a DC power source configured by connecting a plurality of power supply units in series and parallel. It is a circuit for measuring the insulation resistance of the DC power supply.
  • the ground fault location occurs at an arbitrary voltage point. Therefore, for the insulation resistance detection circuit, the ground fault resistance regardless of the ground fault voltage point. Is required to be measured.
  • Patent Document 1 As a method for measuring the ground fault resistance, for example, the method proposed in Patent Document 1 is helpful. That is, in Patent Document 1, if the unknown point is supplemented, the unknowns in the ground fault resistance measurement are the ground fault voltage point where the insulation resistance has deteriorated and the insulation resistance value. It can be said that the example of a structure which measures by 2 voltages and calculates
  • the purpose of the insulation resistance detection circuit is to measure the ground fault resistance regardless of the ground fault voltage point, but in order to ensure and improve its measurement accuracy, the measurement time is determined and the circuit configuration is devised. It is necessary to consider from both sides.
  • the method of determining the measurement time is not shown in Patent Document 1.
  • the measurement time is set to be long, so even in normal operation in fine weather, even if the voltage generated by the solar cells reaches a voltage that can be connected, The power generation efficiency of the power generation system has been reduced.
  • the measurement circuit uses a voltage dividing ratio of a voltage dividing circuit that generates an intermediate potential of the output voltage of the DC power supply (the voltage dividing output terminal is connected to the circuit ground).
  • the first current flowing from the voltage dividing output terminal of the voltage dividing circuit to the earth ground when the voltage dividing ratio is the first value and the voltage dividing ratio being the second value are changed to the first value and the second value.
  • This measurement circuit has the following problems. First, if there is a part of the leakage current that changes in temperature or aging (for example, an aluminum electrolytic capacitor) in parallel with the voltage divider circuit, the accuracy of the voltage division ratio as the equivalent impedance of the voltage divider circuit decreases, and the possibility of linkage is determined. The accuracy of the determination level to be determined decreases. Further, the voltage division ratio is switched using a semiconductor switch such as an FET, but a leakage current in the semiconductor switch portion also causes a decrease in the accuracy of the determination level.
  • a semiconductor switch such as an FET
  • the present invention has been made in view of the above, and the insulation resistance of a DC power supply configured by connecting a plurality of power supply units in series and parallel is used to change the ground floating capacitance of the DC power supply or the output voltage of the DC power supply. It is an object of the present invention to obtain an insulation resistance detection circuit that can easily measure and accurately measure changes in electrical resistance, variations in insulation resistance measurement system elements, changes in leakage current, and the like.
  • the present invention provides a voltage dividing circuit that generates an intermediate potential of an output voltage of a DC power supply configured by connecting a plurality of power supply units in series and parallel.
  • a voltage dividing circuit whose intermediate potential generating terminal is connected to circuit ground; a voltage dividing ratio changing means for changing a voltage dividing ratio of the voltage dividing circuit between a first value and a second value; and the voltage dividing circuit.
  • a voltage dividing voltage measuring means for measuring a voltage output from the intermediate potential generation terminal of the circuit, and a ground fault protection resistor arranged in a path from the ground terminal connected to the ground to the intermediate potential generation terminal of the voltage dividing circuit
  • Current measuring means for measuring a ground fault current flowing through the voltage dividing circuit, and a first ground fault current measured by the current measuring means when the voltage dividing ratio changing means is caused to set the voltage dividing ratio of the voltage dividing circuit to a first value.
  • the first current value measured from the above and the divided voltage measuring means are A first measurement voltage output from the intermediate potential generation terminal set, and a first measurement voltage measured by the current measurement unit when the voltage division ratio changing unit is caused to set the voltage division ratio of the voltage dividing circuit to a second value.
  • Insulation resistance calculation control means for calculating a value of a ground fault resistance component formed between the ground terminal and a ground fault voltage point in the DC power supply, wherein the insulation resistance calculation control means comprises the first and The current measuring means measures the time interval for changing the voltage dividing ratio of the voltage dividing circuit between the first value and the second value in the voltage dividing ratio changing means, which is the measurement time for measuring the second current value. Variable setting according to the amount of change in the first and second ground fault currents And wherein the Rukoto.
  • the measurement time is variably set according to the amount of change in the ground fault current, and the insulation resistance value can be calculated so as not to include measurement errors due to variations in the voltage dividing ratio of the voltage dividing circuit. Therefore, the installation area of a DC power source such as a solar cell constituted by connecting a plurality of power supply units in series and parallel, the change in ground floating capacitance due to rain, etc., the change in the output voltage of the DC power source, the insulation resistance measurement system There is an effect that it is possible to easily measure the insulation resistance with high accuracy in response to changes in element variations, leakage current, and the like.
  • FIG. 1 is a conceptual circuit diagram showing a configuration of an insulation resistance detection circuit according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram in which a ground stray capacitance or the like is added to the insulation resistance detection circuit shown in FIG.
  • FIG. 3 is a specific circuit diagram of the insulation resistance detection circuit shown in FIG.
  • FIG. 4 is a waveform diagram showing a measurement example of a change in the measured current due to the ground floating capacitance used in the saturation time measurement.
  • FIG. 5 is an equivalent circuit diagram of the insulation resistance measurement system for explaining the procedure in the case of performing measurement calculation of insulation resistance using the voltage measured by the divided voltage measurement circuit at the saturation point when the measurement current is stable. A) shows the case where the switch S1 is open, and (B) shows the case where the switch S1 is closed.
  • FIG. 1 is a conceptual circuit diagram showing a configuration of an insulation resistance detection circuit according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram in which a ground stray capacitance or the like is added to the insulation resistance detection circuit shown in FIG.
  • FIG. 3 is a circuit diagram showing a specific configuration example of the insulation resistance detection circuit shown in FIG.
  • an insulation resistance detection circuit 1 includes a power supply voltage measuring circuit 3 and voltage dividing resistors R1, R2 connected in parallel between a positive terminal (+) and a negative terminal ( ⁇ ) of a DC power source 2. And a voltage dividing circuit.
  • the common connection end 5 of the voltage dividing resistors R1 and R2 is an intermediate potential generation end that generates an intermediate potential of the output voltage of the DC power supply 2, and is connected to the circuit ground GND.
  • a series circuit of a voltage changing resistor R3 and a switch S1 is connected between the positive terminal (+) of the DC power source 2 and the common connection terminal 5, that is, in parallel with the voltage dividing resistor R1.
  • the switch S1 is controlled to open and close by a control circuit (CPU) 4.
  • the voltage dividing ratio of the voltage dividing circuit becomes different between when the switch S1 is open and when the switch S1 is closed. That is, the series circuit of the voltage changing resistor R3 and the switch S1 constitutes a voltage dividing ratio changing means for changing the voltage dividing ratio of the voltage dividing circuit.
  • the potential of the common connection terminal 5 is the circuit S1 is open. It changes between the potential at the time (first potential of the DC power supply 2) and the potential when the switch S1 is closed (second potential of the DC power supply 2).
  • the power supply voltage measurement circuit 3 converts the output voltage value of the DC power supply 2 and outputs it to the CPU 4 as the voltage Vm1.
  • a divided voltage measuring circuit 6 is provided between the negative terminal ( ⁇ ) of the DC power supply 2 and the common connection terminal 5, that is, in parallel with the voltage dividing resistor R2.
  • the divided voltage measuring circuit 6 measures the voltage output from the common connection end 5 of the voltage dividing circuit and outputs it to the CPU 4 as the voltage Vm2.
  • a ground fault protection resistor Rsafe, a voltage conversion resistor Rsense, and a zero adjustment resistor Rbias are inserted in this order between the ground terminal 7 connected to the ground Earth and the common connection end 5.
  • the ground fault protection resistor Rsafe is for securing the insulation performance required between the electronic circuit and the earth, and is generally set to a high resistance of about 10 M ⁇ .
  • the voltage conversion resistor Rsense converts the current flowing from the insulation resistance detection circuit 1 toward the ground Earth through the ground terminal 7 (that is, the ground fault current flowing through the ground fault protection resistor Rsafe).
  • the voltage across the voltage conversion resistor Rsense is amplified by the operational amplifier AMP and input to the CPU 4 as the measurement current Isense.
  • the resistor Rbias and the reference power supply Vbias connected in parallel are provided for adjusting the zero point for current measurement in the operational amplifier AMP. That is, the operational amplifier AMP, the voltage conversion resistor Rsense, the zero adjustment resistor Rbias, and the reference power source Vbias as a whole constitute a current measurement circuit 8.
  • DC power supply 2 is configured by connecting a plurality of power supply units in series and parallel.
  • a solar cell is shown as an example.
  • the solar cell is a series connection body of a plurality of solar cell modules Vy1, Vy2, and Vx.
  • a ground fault resistance component Rx is generated in the path of the ground fault current flowing between the ground fault voltage point 9 where the ground fault has occurred and the ground terminal 7, and the output voltage Vx of the solar cell module Vx is the ground fault voltage.
  • Vx is assumed.
  • FIG. 3 shows that the voltage measurement circuits 3 and 6 can be configured by operational amplifiers OP3 and OP4 having a negative feedback amplifier configuration, and the switch S1 can be configured by a transistor.
  • a specific configuration example of the current measurement circuit 8 is shown in FIG. It is shown.
  • the DC power source (solar cell) 2 the solar cell modules Vy1 and Vy2 are combined with the solar cell module Vy, and a ground fault occurs at the ground fault voltage point 9 between the solar cell module Vx and the solar cell module Vy. It is said.
  • the operational amplifier OP3 outputs the output voltage of the DC power source (solar cell) 2 during the insulation resistance measurement to the CPU 4 as the voltage Vm1.
  • the operational amplifier OP4 outputs the divided output voltage of the voltage dividing circuit during the insulation resistance measurement to the CPU 4 as the voltage Vm2.
  • an operational amplifier AMP for current measurement is configured by an operational amplifier OP1 having a voltage follower configuration and an operational amplifier OP2 having a negative feedback amplifier configuration, and a zero adjustment resistor Rbias is configured by resistors RB1 to RB4.
  • the reference power supply Vbias is connected to them.
  • ground fault resistance component Rx which is the insulation resistance of the DC power supply 2 by measuring the current Isense flowing through the ground fault protection resistor Rsafe.
  • the “value” used in the derivation of the expression uses the identification code of each element.
  • the output voltage (Vx + Vy1 + Vy2) of the DC power source 2 is an input DC voltage of the insulation resistance detection circuit 1.
  • the output voltage of the DC power supply 2 is measured by the power supply voltage measuring circuit 3 as the voltage Vm1 and input to the CPU 4.
  • the current Isense flowing through the ground fault protection resistor Rsafe is measured by the current measuring circuit 8 and input to the CPU 4.
  • the voltage output from the common connection end 5 of the voltage dividing circuit is measured by the divided voltage measuring circuit 6 and input to the CPU 4 as the voltage Vm2.
  • the CPU 4 samples and digitizes the voltages Vm1 and Vm2 and the current Isense input when the switch S1 is opened and closed, and calculates the ground fault resistance value Rx and the ground fault voltage Vx based on them.
  • the time interval for opening and closing the switch S1 is the measurement time. Since the impedance of the current measuring circuit 8 is extremely smaller than the resistance value Rsafe of the ground fault protection resistor Rsafe, it becomes a negligible value in the calculation of the ground fault resistance value Rx.
  • Isense2 (Vm1-Vx) / ⁇ Rx + Rsafe + R1 ⁇ R2 ⁇ R3 / (R1R3 + R1R2 + R2R3) ⁇ (2)
  • the CPU 4 opens and closes the switch S1 at a predetermined time interval, and measures the current Isense1 when the switch S1 is opened and the current Isense2 when the switch S1 is closed, which are input from the current measurement circuit 8.
  • the ground fault resistance value Rx is obtained by applying the equation (6) and the obtained ground fault resistance value Rx is compared with the insulation resistance determination level defined for the insulation resistance standard. This makes it possible to determine whether the insulation resistance is good or not regardless of the DC power supply output voltage and the ground fault potential.
  • the measurement of the ground fault resistance value Rx is affected by the accuracy of measuring the current Isense input by the CPU 4.
  • the current Isense is measured as a charge / discharge current. Is done. That is, if the value of the current Isense before the charge is saturated is measured, the measurement accuracy of the ground fault resistance value Rx is not good.
  • the ground-floating capacitances Cy and Cx are not constant values, and differ depending on the time of fine weather or rain. Further, the insulation resistance of the solar cell is not a constant value, but varies depending on the scale of the solar cell. Therefore, the CPU 4 does not set the time interval for opening and closing the switch S1, that is, the measurement time for determining and taking in the value of the current Isense to be a fixed time, but varies the measurement time according to the amount of change in the current Isense. It has become.
  • the measurement error due to the stray capacitance component of the solar cell module can be reduced, so that the measurement accuracy of the ground fault resistance value Rx can be improved.
  • the voltage Vm1 generated by the voltage dividing circuit is divided. Measurement errors due to variations are not taken into account. That is, in addition, components (such as voltage dividing resistors R1 and R2, voltage changing resistor R3, switch S1, and an aluminum electrolytic capacitor (not shown) arranged in the vicinity) that affect the accuracy of the voltage dividing ratio of the voltage dividing circuit. It is necessary to be able to calculate the insulation resistance value so as not to include measurement errors due to variations in the value of the voltage Vm1 caused by temperature variations and aging of the leakage current.
  • a second calculation method capable of solving this problem will be described.
  • the CPU 4 measures the amount of change in the input current Isense, determines the current value when the current change is stable (when it can be regarded as saturated), and inputs the current value at that time.
  • the voltage Vm2 is measured, and the ground fault resistance value Rx is calculated.
  • an accurate ground fault resistance value Rx can be measured and calculated without being affected by variations in the voltage Vm1. Since the open / close time interval (measurement time) of the switch S1 is a charging standby time, an optimal measurement time can be set. Since the saturation time is measured, the change waveform of the input current Isense is, for example, as shown in FIG. In FIG. 4, the vertical axis indicates the converted voltage by the voltage conversion resistor Rsense, but an example of measuring the measurement current change due to the ground floating capacitance when the switch S1 is opened and closed at intervals of 6 seconds is shown.
  • the second calculation method since the optimum measurement time can be set, the measurement accuracy is increased.
  • the insulation resistance determination level prepared for the power conditioner is not required to have a margin for the required standard value. Therefore, more stable operation is possible against a decrease in the overall insulation resistance value that occurs when the solar cell area increases. Further, since the saturation point at which the current Isense is stabilized is monitored, even when the ground capacity of the solar cell increases in rainy weather or the like, the measurement time is automatically extended, and erroneous determination can be prevented.
  • FIG. 5 is an equivalent circuit diagram of the insulation resistance measurement system for explaining the procedure in the case of performing measurement calculation of insulation resistance using the voltage measured by the divided voltage measurement circuit at the saturation point when the measurement current is stable.
  • A) shows the case where the switch S1 is open, and (B) shows the case where the switch S1 is closed.
  • the divided voltage measuring circuit 6 measures the divided voltage generation voltage Vs output from the common connection end 5 of the voltage dividing circuit through the resistor Rs.
  • the divided voltage generation voltage Vs is the value Vs1 when the switch S1 is open, and the value Vs2 when the switch S1 is closed.
  • the resistance value of the resistor Rs is the value Rs1 when the switch S1 is open, and the value Rs2 when the switch S1 is closed.
  • the voltage Vm2 measured by the divided voltage measuring circuit 6 is the value Vm21 when the switch S1 is open, and the value Vm22 when the switch S1 is closed.
  • the resistor Ramp has a combined resistance value of the voltage conversion resistor Rsense and the resistor Rbias in the current measurement circuit 8 shown in FIG. Further, the DC power source 2 has a configuration in which the positive electrode end (+) and the negative electrode end ( ⁇ ) are connected.
  • the difference between the measurement voltage Vm21 and the measurement voltage Vm22 is a main parameter. Therefore, the current measurement circuit is configured to measure the difference between the measurement voltages Vm21 and Vm22. 8 can reduce the offset error of the amplifier circuit used. That is, more accurate insulation resistance detection can be realized.
  • the second calculation method can be a method of performing measurement a plurality of times as follows. The procedure is the same for each time, but the peak value of the current Isense1 input when the switch S1 is opened is memorized, the current value is continuously measured, and the rate of change of the current reaches a predetermined value (saturated) Current value at a time point that can be regarded as having been measured), and at the same time, the measured voltage Vm21 at that time is stored. Subsequently, the switch S1 is closed, the peak current of the current Isense2 is stored in the same saturation standby time as when the switch S1 is opened, the current value is continuously measured, and the current value and the measured voltage Vm22 at the same elapsed time are stored. . By this measurement, insulation resistance detection (calculation) is performed. In the power conditioner, the quality of the insulation resistance is judged based on the detection result.
  • the rate of change used in the first round is set to a level that passes with high accuracy if the capacitance and the normal insulation resistance value are fine in order to allow the insulation resistance detection to be determined in the shortest time.
  • the current value and the measured voltage at a stable time point are applied to the equation (12) and used for pass / fail judgment of the insulation resistance value, but the difference between the peak current of the current Isense1 and the peak current of the current Isense2 Is not greater than or equal to a predetermined value, it is determined that the insulation resistance detection circuit 1 is in failure, and the process proceeds to failure processing mode.
  • the power conditioner starts system interconnection and starts sending the converted AC power to the distribution system.
  • the process proceeds to the second insulation resistance detection measurement again without immediately determining that the insulation resistance is defective.
  • the current change rate judgment value is set to a smaller value than the first measurement, and in addition to the maximum number of installed solar cell modules in the system specifications, the stray capacitance in rainy weather exceeds the system required insulation resistance value. If so, set the current change rate to pass.
  • the input voltage Vm2 changes during measurement, a voltage fluctuation determination value indicating whether or not the measurement error is within an allowable level is prepared in advance as a simulation result. The insulation resistance detection can be repeated until it is settled.
  • the second calculation method is not limited to the saturation point at which the current Isense is stable. If the switch S1 is inverted before the amount of change in the current Isense1 is stabilized and the current Isense2 is measured in the same manner, the charging current to the ground capacitance is added, so that the ground fault current increases and the estimated insulation resistance value Is smaller than actual. However, since the DC power supply (solar cell) 2 in a normal state has a margin with respect to the insulation resistance determination level, even when the switch S1 is inverted in a short time when determining the ground fault resistance, the insulation is determined. If the resistance value satisfies the judgment standard, the required insulation resistance value can be guaranteed.
  • the measurement result only needs to be an insulation resistance exceeding the required standard, so that the shortest time can be obtained without measuring an accurate insulation resistance. System linkage becomes possible. In this case, if it is determined that there is an abnormality, a method of sequentially extending the determination time may be performed.
  • the measurement time is variably set according to the change amount of the ground fault current, and the insulation resistance is not included so as not to include a measurement error due to variation in the voltage dividing ratio of the voltage dividing circuit. Since the value can be calculated, the installation area of a DC power source such as a solar cell configured by connecting multiple power supply units in series and parallel, the change in ground floating capacity, such as during rain, and the output voltage of the DC power source Insulation resistance can be measured with high accuracy by easily responding to changes in the resistance, variation in insulation resistance measurement system elements, changes in leakage current, and the like.
  • the measurement time is automatically shortened, so that the generated power can be used in a short time.
  • the insulation resistance detection circuit includes the insulation resistance of a DC power supply configured by connecting a plurality of power supply units in series and parallel, the change in the floating capacitance of the DC power supply, and the output of the DC power supply. It is useful as an insulation resistance detection circuit that can easily and accurately measure changes in voltage, variations in insulation resistance measurement system elements, leakage currents, etc., especially non-insulated power in solar power generation systems It is suitable as an insulation resistance detection circuit equipped in the conditioner.
  • Insulation resistance detection circuit DC power supply (solar cell) 3 Power supply voltage measurement circuit 4 Control circuit (CPU) 5 Common connection end (intermediate potential generation end) of voltage dividing resistors R1 and R2 constituting the voltage dividing circuit 6 Divided voltage measurement circuit 7 Ground terminal connected to ground 8 Current measurement circuit 9 Ground fault voltage point Vx, Vy (Vy1, Vy2) Solar cell module Rx Ground fault resistance component R3 Voltage change resistor S1 Switch OP3 Power supply voltage Operational amplifier constituting the measurement circuit OP4 Operational amplifier constituting the divided voltage measurement circuit Rsafe Ground fault protection resistor Rsense Voltage conversion resistor constituting the current measurement circuit AMP, OP1, OP2 Operational amplifier constituting the current measurement circuit Rbias, RB1 to RB4 Zero adjustment resistors for current measurement Vbias Reference power supply for current measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

 CPU4は、スイッチS1を開路した時に分圧電圧測定回路6が測定した電圧Vm21(第1の測定電圧)および電流測定回路8が測定した電流Isence1(第1の地絡電流)から測定した第1の電流値と、スイッチS1を閉路した時に分圧電圧測定回路6が測定した電圧Vm22(第2の測定電圧)および電流測定回路8が測定した電流Isence2(第2の地絡電流)から測定した第2の電流値とを用いて直流電源2の絶縁抵抗値を算出するが、前記第1および第2の電流値を測定する測定時間を決めるスイッチS1を開閉させる時間間隔を、電流測定回路8が測定した第1および第2の地絡電流の変化量に応じて可変設定する。

Description

絶縁抵抗検知回路
 本発明は、複数の電源ユニットが直並列接続されて構成される直流電源の絶縁抵抗を測定する絶縁抵抗検知回路に関するものである。
 複数の電源ユニットが直並列接続されて構成される直流電源としては、太陽電池や燃料電池などが知られている。そのような直流電源を用いて交流電力を発生するシステムは、直流電源と電力変換装置(パワーコンディショナー)とを組み合わせて構成されるので、安全性確保の観点からシステムとして満たすべき絶縁抵抗規格において、個々の構成要素が満たすべき絶縁抵抗値が定められている。
 パワーコンディショナーとしては、変換した交流電力を、絶縁変圧器を介在させず、直接負荷へ供給する非絶縁型パワーコンディショナーが、安価に電力変換効率を向上できる特徴を有していることから、広く利用されている。この非絶縁型パワーコンディショナーを用いるシステムでは、電力発生側と負荷側との間に絶縁手段である絶縁変圧器がないので、非絶縁型パワーコンディショナーにおいて、入力直流電源での絶縁抵抗劣化が負荷に影響を与えないようにする措置を講ずることが要求されている。以下、理解を容易にするため、太陽光発電システムを例に挙げて説明する。
 太陽光発電システムで使用される太陽電池は、複数の太陽電池モジュールを直並列に接続して構成される。個々の太陽電池モジュールの対地絶縁抵抗値は、非常に高抵抗(例えば1000MΩ)であるが、その太陽電池モジュールが例えば100枚直並列接続された場合の対地絶縁抵抗値は10MΩに低下する。太陽電池モジュールの漏れ電流は面積に比例するので、太陽電池モジュールの個数を大幅に増やして大容量化した太陽電池の総合絶縁抵抗は大きく低下する。そのため、大容量化した太陽光発電システムでは、正常な太陽電池モジュールであっても、総合絶縁抵抗が低下し、太陽光発電システムに要求される絶縁抵抗規格と正常な太陽電池モジュール群の絶縁抵抗との差が少なくなり、問題になっている。しかし、個々の太陽電池モジュールの絶縁抵抗を更に高抵抗化することは高価となるので、対応が困難である。
 そのため、太陽光発電システムでは、配電系統への系統連系機器として使用される非絶縁型パワーコンディショナーにおいて、変換した交流電力を配電系統へ連系する前に、直流電源である太陽電池の絶縁抵抗がシステムとして要求される所定値以上であるか否かを自己診断する機能を備える必要がある。
 本発明が対象とする絶縁抵抗検知回路は、複数の電源ユニットが直並列に接続されて構成される直流電源を変換対象とする非絶縁型パワーコンディショナーにおいて、上記した自己診断を実行する際に、該直流電源の絶縁抵抗を測定する回路である。複数の電源ユニットが直並列に接続されている直流電源においては、地絡する箇所は任意の電圧点で生ずるので、絶縁抵抗検知回路に対しては、地絡する電圧点に関わらず地絡抵抗を測定できることが要求される。
 この地絡抵抗を測定する方法としては、例えば特許文献1に提案されている方法が参考になる。すなわち、特許文献1では、不明点を補足すれば、地絡抵抗測定での未知数は、絶縁抵抗が劣化した地絡電圧点と絶縁抵抗値との2つであることから、絶縁抵抗測定電圧を2電圧で測定し、地絡抵抗の未知数を求める構成例が提案されていると言える。
国際公開第2004/093284号
 絶縁抵抗検知回路は、地絡する電圧点に関わらず地絡抵抗を測定することを目的としているが、その測定精度を確保し高めるためには、測定時間の定め方と、回路構成の工夫との両面から検討する必要がある。この測定時間の定め方については、特許文献1では示されていない。
 まず、特許文献1では配慮されていないが、太陽電池モジュールは、モジュールフレームを一般には大地にアースするので、大地アースに対し太陽電池電源は浮遊容量が生じている。また、その対地浮遊容量が降雨時においては、太陽電池表面の水膜が導電性の大地電極化する事により大きく増加する。その結果として太陽電池の対地総合容量値は、接続する太陽電池モジュールの枚数や降雨により大きく増加することになる。したがって、太陽電池の絶縁抵抗を正確に測定するには、対地浮遊容量への最大充電時間を考慮した測定時間を設定する必要がある。
 また、太陽電池においては、一般的な起動となるのは、日の出の時間帯であるが、その日の出の時間帯においては発生電圧が大きく変化することから、発生電圧が安定するまでの待ち時間が必要となる。
 従来では、正確な測定を行うために、測定時間を長めに設定していたので、晴天での正常運転において、太陽電池の発生電圧が連系可能な電圧に達していても、速やかに系統連系することができず、発電システムとしての発電効率の低下を招来していた。
 一方、測定回路は、特許文献1に示されるように、直流電源の出力電圧の中間電位を分圧生成する分圧回路(分圧出力端は回路グランドに接続されている)の分圧比を第1の値と第2の値とに変化させ、分圧比が第1の値のときに分圧回路の分圧出力端から大地アースに流れる第1の電流と、分圧比が第2の値のときに分圧回路の分圧出力端から大地アースに流れる第2の電流とを取り込み地絡抵抗を測定するように構成される。
 この測定回路では、次のような問題がある。まず、分圧回路と並列に漏れ電流の温度変化や経年変化の部品(例えばアルミ電解コンデンサなど)が配置されていると、分圧回路の等価インピーダンスとしての分圧比精度が低下し、連係可否を決める判定レベルの精度が低下する。また、分圧比の切り替えは、FETなどの半導体スイッチを用いて行うが、この半導体スイッチの部分での漏れ電流も判定レベルの精度を低下させる要因となる。
 この場合、判定レベルを法規制により要求される絶縁抵抗値を満足するように判定精度低下分を加算した判定規格に設定すると、太陽電池モジュールに要求される絶縁抵抗値が増加するので、高価な太陽電池モジュールが必要となり大容量化が困難となる。また、分圧抵抗器を低抵抗化すれば測定精度の向上が図れるが、特許文献1に示される構成では、分圧抵抗器の消費電力上昇や抵抗発熱の問題があり、精度向上の手段として容易に用いることができない。
 本発明は、上記に鑑みてなされたものであり、複数の電源ユニットが直並列接続されて構成される直流電源の絶縁抵抗を、該直流電源の対地浮遊容量の変化や該直流電源の出力電圧の変化、絶縁抵抗測定系素子のバラツキや漏れ電流等の変化に対し、容易に対応して正確に測定することができる絶縁抵抗検知回路を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、複数の電源ユニットが直並列接続されて構成される直流電源の出力電圧の中間電位を分圧生成する分圧回路であって該中間電位生成端が回路グランドに接続される分圧回路と、前記分圧回路の分圧比を第1の値と第2の値とに変化させるための分圧比変化手段と、前記分圧回路の中間電位生成端から出力される電圧を測定する分圧電圧測定手段と、大地に接続されるアース端子から前記分圧回路の中間電位生成端に至る経路に配置される地絡保護用抵抗器を流れる地絡電流を測定する電流測定手段と、前記分圧比変化手段に前記分圧回路の分圧比を第1の値に設定させたときに前記電流測定手段が測定した第1の地絡電流から測定した第1の電流値および前記分圧電圧測定手段が測定した前記中間電位生成端から出力される第1の測定電圧と、前記分圧比変化手段に前記分圧回路の分圧比を第2の値に設定させたときに前記電流測定手段が測定した第2の地絡電流から測定した第2の電流値および前記分圧電圧測定手段が測定した前記中間電位生成端から出力される第2の測定電圧とを用いて前記直流電源の絶縁抵抗値である前記アース端子と前記直流電源内の地絡電圧点との間に形成される地絡抵抗成分の値を算出する絶縁抵抗算出制御手段とを備え、前記絶縁抵抗算出制御手段は、前記第1および第2の電流値を測定する測定時間である前記分圧比変化手段に前記分圧回路の分圧比を第1の値と第2の値とに変化させる時間間隔を、前記電流測定手段が測定した第1および第2の地絡電流の変化量に応じて可変設定することを特徴とする。
 本発明によれば、地絡電流の変化量に応じて測定時間を可変設定する構成とするとともに、分圧回路の分圧比のバラツキによる測定誤差を含まないように絶縁抵抗値を算出できる構成としたので、複数の電源ユニットを直並列接続して構成される太陽電池等の直流電源の設置面積や降雨時等による対地浮遊容量の変化や、該直流電源の出力電圧の変化、絶縁抵抗測定系素子のバラツキや漏れ電流等の変化に対し、容易に対応して精度よく絶縁抵抗を測定することができるという効果を奏する。
図1は、本発明の一実施例による絶縁抵抗検知回路の構成を示す概念回路図である。 図2は、図1に示す絶縁抵抗検知回路に対地浮遊容量等を追加した回路図である。 図3は、図1に示す絶縁抵抗検知回路の具体的な回路図である。 図4は、飽和時点測定で用いる対地浮遊容量による測定電流変化の測定例を示す波形図である。 図5は、測定電流が安定した飽和時点での分圧電圧測定回路が測定した電圧を用いて絶縁抵抗の測定算出を行う場合の手順を説明する絶縁抵抗測定系の等価回路図であり、(A)はスイッチS1が開路している場合を示し、(B)はスイッチS1が閉路している場合を示す。
 以下に、本発明にかかる絶縁抵抗検知回路の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 図1は、本発明の一実施例による絶縁抵抗検知回路の構成を示す概念回路図である。図2は、図1に示す絶縁抵抗検知回路に対地浮遊容量等を追加した回路図である。図3は、図1に示す絶縁抵抗検知回路の具体的な構成例を示す回路図である。
 図1において、絶縁抵抗検知回路1は、直流電源2の正極端(+)と負極端(-)との間に並列に接続された、電源電圧測定回路3と、分圧用抵抗器R1,R2による分圧回路とを備えている。分圧用抵抗器R1,R2の共通接続端5は、直流電源2の出力電圧の中間電位を分圧生成する中間電位生成端であり、回路グランドGNDに接続されている。
 そして、図1では、直流電源2の正極端(+)と共通接続端5との間に、つまり分圧用抵抗器R1に並列に,電圧変更用抵抗器R3とスイッチS1との直列回路が接続されている。スイッチS1は、制御回路(CPU)4により開閉制御される。これによって、分圧回路の分圧比が、スイッチS1が開路している時と閉路している時とで異なる値となる。すなわち、電圧変更用抵抗器R3とスイッチS1の直列回路は、分圧回路の分圧比を変化させる分圧比変化手段を構成している。
 スイッチS1が開路している時の分圧比を第1の値とし、閉路している時の分圧比を第2の値とすれば、共通接続端5の電位は、スイッチS1が開路している時の電位(直流電源2の第1の電位)とスイッチS1が閉路している時の電位(直流電源2の第2の電位)との間で変化する。電源電圧測定回路3は、直流電源2の出力電圧値を変換し電圧Vm1としてCPU4へ出力する。
 また、直流電源2の負極端(-)と共通接続端5との間に、つまり分圧用抵抗器R2に並列に、分圧電圧測定回路6が設けられている。分圧電圧測定回路6は、分圧回路の共通接続端5から出力される電圧を測定し電圧Vm2としてCPU4へ出力する。
 大地Earthに接続されるアース端子7と共通接続端5との間に、地絡保護用抵抗器Rsafe、電圧変換用抵抗器Rsence、零点調整用抵抗器Rbiasがこの順に挿入されている。地絡保護用抵抗器Rsafeは、電子回路と大地Earthとの間に要求される絶縁性能を確保するためのもので、一般に10MΩ程度の高抵抗に設定される。
 電圧変換用抵抗器Rsenceは、当該絶縁抵抗検知回路1からアース端子7を介して大地Earthに向かって流れる電流(つまり、地絡保護用抵抗器Rsafeを流れる地絡電流)を電圧変換する。電圧変換用抵抗器Rsenceの両端電圧は、演算増幅器AMPにて増幅され、測定電流IsenceとしてCPU4に入力される。抵抗器Rbiasおよび並列に接続される基準電源Vbiasは、演算増幅器AMPにおいて電流測定用の零点を調節するために設けられている。すなわち、演算増幅器AMP、電圧変換用抵抗器Rsence、零点調整用抵抗器Rbiasおよび基準電源Vbiasの全体は、電流測定回路8を構成している。
 直流電源2は、複数の電源ユニットを直並列接続して構成される。図1では、その一例として太陽電池を示してある。太陽電池は、複数の太陽電池モジュールVy1,Vy2、Vxの直列接続体である。図1では、地絡が生じた地絡電圧点9とアース端子7との間を流れる地絡電流の経路に地絡抵抗成分Rxが生成され、太陽電池モジュールVxの出力電圧Vxが地絡電圧Vxとなるとしている。
 次に、図2では、図1に示した構成において、電流測定回路8を簡潔に示してあるが、直流電源(太陽電池)2の対地浮遊容量Cx,Cyが追加され、また、回路の雑音防止コンデンサCemcが追加されている。対地浮遊容量Cx,Cyや雑音防止コンデンサCemcの静電容量は非常に大きい。
 次に、図3では、電圧測定回路3,6が負帰還増幅器構成の演算増幅器OP3,OP4で構成でき、スイッチS1がトランジスタで構成できることが示され、電流測定回路8の具体的な構成例が示されている。また、直流電源(太陽電池)2は、太陽電池モジュールVy1,Vy2が太陽電池モジュールVyとまとめられ、太陽電池モジュールVxと太陽電池モジュールVyとの間の地絡電圧点9で地絡が生じたとしている。
 演算増幅器OP3は、絶縁抵抗測定中の直流電源(太陽電池)2の出力電圧を電圧Vm1としてCPU4へ出力する。演算増幅器OP4は、絶縁抵抗測定中の分圧回路の分圧出力電圧を電圧Vm2としてCPU4へ出力する。
 電流測定回路8では、電流測定用の演算増幅器AMPが電圧フォロワ構成の演算増幅器OP1と負帰還増幅器構成の演算増幅器OP2とにより構成され、零点調整用抵抗器Rbiasが抵抗器RB1~RB4により構成され、それらに基準電源Vbiasが接続されている。
 以下、地絡保護用抵抗器Rsafeを流れる電流Isenceを測定して直流電源2の絶縁抵抗である地絡抵抗成分Rxを測定算出する方法について説明する。ここでは、2つの算出方法を示す。なお、式の導出で用いる「値」には、各要素の識別符号を用いる。
 図1において、直流電源2の出力電圧(Vx+Vy1+Vy2)は、当該絶縁抵抗検知回路1の入力直流電圧である。直流電源2の出力電圧は、電圧Vm1として電源電圧測定回路3にて測定されCPU4へ入力される。また、地絡保護用抵抗器Rsafeを流れる電流Isenceは、電流測定回路8にて測定されCPU4へ入力される。さらに、分圧回路の共通接続端5から出力される電圧は、分圧電圧測定回路6にて測定され電圧Vm2としてCPU4に入力される。
 CPU4は、スイッチS1を開路した時および閉路した時に入力される電圧Vm1,Vm2および電流Isenceをそれぞれサンプリングしてデジタル化し、それらに基づき地絡抵抗値Rxおよび地絡電圧Vxを算出する。スイッチS1を開閉する時間間隔が測定時間である。なお、電流測定回路8のインピーダンスは、地絡保護用抵抗器Rsafeの抵抗値Rsafeよりも極めて小さいので、地絡抵抗値Rxの算出においては、無視できる値となる。
<第1の算出方法>
 まず、図1と図2を参照して、電圧Vm1と電流Isenceとを用いて地絡抵抗値Rxおよび地絡電圧Vxを算出する場合について説明する。スイッチS1を開路して電圧変更用抵抗器R3を開放した時の電流Isence1は、式(1)で示される。
 Isence1=(Vm1-Vx)
          /{Rx+Rsafe+R1×R2/(R1+R2)} …(1)
 また、スイッチS1を閉路して電圧変更用抵抗器R3を分圧用抵抗器R1に並列接続した時の電流Isence2は、同様に式(2)で示される。
 Isence2=(Vm1-Vx)
   /{Rx+Rsafe+R1×R2×R3/(R1R3+R1R2+R2R3)}  …(2)
 式(1)における固定値「Rsafe+R1×R2/(R1+R2)」をC1とし、式(2)における固定値「R1×R2×R3/(R1R3+R1R2+R2R3)」をC2とすると、式(1)、式(2)は、
 Isence1=(Vm-Vx)/(Rx+C1) …(3)
 Isence2=(Vm-Vx)/(Rx+C2) …(4)
となる。
 式(3)、式(4)から、
 Isence1×(Rx+C1)=Isence2×(Rx+C2) …(5)
であるので、地絡抵抗値Rxは、
 Rx=(Isence2×C2-Isence1×C1)
                /(Isence1-Isence2) …(6)
と求められる。
 すなわち、CPU4は、スイッチS1を所定の時間間隔で開閉し、電流測定回路8から入力される、スイッチS1を開路した時の電流Isence1と、スイッチS1を閉路した時の電流Isence2とをそれぞれ測定して取り込み、式(6)に適用して地絡抵抗値Rxを求め、求めた地絡抵抗値Rxと絶縁抵抗規格に対して定められた絶縁抵抗判定レベルとを比較する。これによって、直流電源出力電圧および地絡電位に関わらずに絶縁抵抗の良否を判定することが可能となる。
 ここで、地絡抵抗値Rxの測定では、CPU4が入力される電流Isenceを測定する精度の影響を受ける。実際には図2に示すように、対地浮遊容量Cy,Cxや回路の雑音防止コンデンサCemcが存在し、高抵抗の地絡保護用抵抗器Rsafeが存在するので、電流Isenceは充放電電流として測定される。つまり、充電が飽和する前の電流Isenceの値を測定したのでは、地絡抵抗値Rxの測定精度はよくない。
 しかし、対地浮遊容量Cy,Cxは、一定値ではなく、晴天時や降雨時などによって異なる。また、太陽電池の絶縁抵抗は、一定値ではなく、太陽電池の規模によって異なる。そこで、CPU4は、スイッチS1を開閉する時間間隔、つまり電流Isenceの値を確定して取り込む測定時間を一定の固定時間とするのではなく、電流Isenceの変化量に応じて測定時間を可変するようになっている。
 上記した第1の算出方法でも、太陽電池モジュールの浮遊容量成分による測定誤差を少なくできるので、一応地絡抵抗値Rxの測定精度を向上させ得るが、分圧回路が分圧生成する電圧Vm1のバラツキによる測定誤差が考慮されていない。すなわち、さらに、分圧回路の分圧比の精度に影響を与える部品(分圧用抵抗器R1,R2、電圧変更用抵抗器R3、スイッチS1、周辺に配置される図示しないアルミ電解コンデンサなど)での値のバラツキ、漏れ電流の温度変化や経年変化によって生ずる電圧Vm1のバラツキによる測定誤差を含まないように絶縁抵抗値を算出できることが必要である。以下、この問題を解決できる第2の算出方法を説明する。
<第2の算出方法>
 第2の算出方法では、CPU4は、入力される電流Isenceの変化量を測定し、電流変化が安定した時点(飽和したと見なせる時点)にて電流値を確定し、その確定時点において入力される電圧Vm2を測定し、地絡抵抗値Rxを算出する。この第2の算出方法によれば、電圧Vm1のバラツキに影響されず、正確な地絡抵抗値Rxを測定算出することができる。スイッチS1の開閉時間間隔(測定時間)は、充電待機時間となるので、最適な測定時間を設定することができる。飽和時間測定となるので、入力される電流Isenceの変化波形は例えば図4に示すようになる。図4では、縦軸を電圧変換用抵抗器Rsenceによる変換電圧で示してあるが、スイッチS1を6秒の間隔で開閉した場合の対地浮遊容量による測定電流変化の測定例が示されている。
 この第2の算出方法によれば、最適な測定時間を設定できるので測定精度が高くなる。測定精度が向上することにより、パワーコンディショナーに用意する絶縁抵抗判定レベルは、必要とされる規格値に余裕をとる必要性がなくなる。したがって、太陽電池面積が増加した場合において生じる総合絶縁抵抗値の低下に対し、より安定な動作が可能となる。また、電流Isenceが安定した飽和時点を監視するので、雨天等において太陽電池の対地容量が増加した場合においても、自動的に測定時間が延長され、誤判定を防ぐことが可能となる。
 図5を参照して、第2の算出方法(分圧電圧測定回路6が測定した電圧Vm2を用いて算出する方法)を説明する。図5は、測定電流が安定した飽和時点での分圧電圧測定回路が測定した電圧を用いて絶縁抵抗の測定算出を行う場合の手順を説明する絶縁抵抗測定系の等価回路図であり、(A)はスイッチS1が開路している場合を示し、(B)はスイッチS1が閉路している場合を示す。
 図5において、分圧電圧測定回路6は、分圧回路の共通接続端5から出力される分圧発生電圧Vsを抵抗器Rsを通して測定する。分圧発生電圧Vsは、スイッチS1が開路している場合は値Vs1であり、スイッチS1が閉路している場合は値Vs2である。また、抵抗器Rsの抵抗値は、スイッチS1が開路している場合は値Rs1であり、スイッチS1が閉路している場合は値Rs2である。分圧電圧測定回路6が測定する電圧Vm2は、スイッチS1が開路している場合は値Vm21であり、スイッチS1が閉路している場合は値Vm22である。抵抗器Rampは、図1に示す電流測定回路8における電圧変換用抵抗器Rsenceと抵抗器Rbiasとの合成抵抗値を有する。また、直流電源2は、正極端(+)と負極端(-)とが接続された構成になる。
 さて、図5(A)から、スイッチS1が閉路している場合の電流Isence1は、
 Isence1=(Vm21-Vx)/(Rx+Rsafe+Ramp) …(7)
と表されるから、
 Vm21-Vx=Isence1×(Rx+Rsafe+Ramp) …(8)
と求まり、地絡電圧Rxは、
 Rx=Vm21-Isence1×(Rx+Rsafe+Ramp) …(9)
となる。
 同様に、図5(B)から、スイッチS1が閉路している場合の地絡電圧Rxは、
 Rx=Vm22-Isence2×(Rx+Rsafe+Ramp) …(10)
と求まる。
 式(9)=式(10)から、
 Vm21-Isence1×(Rx+Rsafe+Ramp)
    =Vm22-Isence2×(Rx+Rsafe+Ramp) …(11)
となり、式(11)から、
 Rx+Rsafe+Ramp
   =(Vm21-Vm22)/(Isence1-Isence2)
   =ΔVm2/ΔIsence  …(12)
が導出される。式(12)において、Rsafe+Rampは、回路定数であるから、地絡抵抗値Rxは計算できる。
 地絡抵抗値Rxを求める式(12)においては測定電圧Vm21と測定電圧Vm22との差分が主要なパラメータであることから、測定電圧Vm21,Vm22の差分を測定する構成とすることにより電流測定回路8で使用される増幅回路のオフセット誤差を軽減することができる。すなわち、より精度の高い絶縁抵抗検知が実現できる。
 この第2の算出方法は、具体的には、次のように測定を複数回行う方法が可能である。各回において手順は同じであるが、スイッチS1を開路させたときに入力される電流Isence1のピーク電流を記憶し継続して電流値を測定し、電流の変化率が所定以下に達した時点(飽和したと見なせる時点)での電流値を記憶し、同時にその時の測定電圧Vm21を記憶する。続いて、スイッチS1を閉路させ、スイッチS1開路時と同じ飽和待機時間において電流Isence2のピーク電流を記憶し継続して電流値を測定し、同じ経過時間での電流値および測定電圧Vm22を記憶する。この測定によって絶縁抵抗検知(算出)を実施する。パワーコンディショナーでは、検知結果に基づき絶縁抵抗の良否判定を実施する。
 この1回目で用いる変化率は、絶縁抵抗検知を最短で判定できるようにするため、晴天時における静電容量並びに正常な絶縁抵抗値ならば高確度で合格するレベルに設定する。安定した時点(飽和したとみなせる時点)での電流値および測定電圧は式(12)に適用し、絶縁抵抗値の合否判定に用いるが、電流Isence1のピーク電流と電流Isence2のピーク電流との差分が所定値以上でない場合は、当該絶縁抵抗検知回路1の故障と判断し、故障処理モードへ移行する。
 上記の1回目の判定にて絶縁抵抗値合格並びに絶縁抵抗検知回路1が正常であれば、パワーコンディショナーは系統連系を行って変換した交流電力を配電系統へ送出することを開始する。一方、絶縁抵抗値不合格時においては、直ちに絶縁抵抗不良とは判定せずに、再度、2回目の絶縁抵抗検知測定へ移行する。2回目の測定では、電流変化率の判定値を1回目測定よりも小さい値とし、システム仕様での最大設置太陽電池モジュール枚数に加えて、雨天時の浮遊容量においてもシステム要求の絶縁抵抗値以上であれば合格する電流変化率に設定する。なお、測定中に入力電圧Vm2が変化した場合には、予め測定誤差として許容レベル内であるか否の電圧変動判定値をシミュレーション結果等にて用意しておけば、電圧変動が所定値以下に収まるまで、絶縁抵抗検知を繰り返すこともできる。
 なお、第2の算出方法は、電流Isenceが安定する飽和時点に限定されるものではない。電流Isence1の変化量が安定する前にスイッチS1を反転し、電流Isence2も同様に測定した場合は、対地容量への充電電流が加算されるので、地絡電流は大きくなり、推定する絶縁抵抗値は実際よりも小さくなる。しかし、正常な状態の直流電源(太陽電池)2においては、絶縁抵抗判定レベルに対して余裕があるので、地絡抵抗を判定する場合において、短時間にスイッチS1を反転させた場合でも、絶縁抵抗値が判定規格を満足していれば、要求する絶縁抵抗値を保証できる。
 すなわち、スイッチS1の開閉周期を充電電流が変化している状態時間内に設定しても測定結果が要求規格以上の絶縁抵抗であればよいので、正確な絶縁抵抗を測定せずとも最短時間にて系統連係が可能となる。なお、この場合において、異常と判定した場合においては、順次判定時間を延長する方法へ移行するなどを行えばよい。
 以上のように、この実施例によれば、地絡電流の変化量に応じて測定時間を可変設定する構成とするとともに、分圧回路の分圧比のバラツキによる測定誤差を含まないように絶縁抵抗値を算出できる構成としたので、複数の電源ユニットを直並列接続して構成される太陽電池等の直流電源の設置面積や降雨時等によう対地浮遊容量の変化や、該直流電源の出力電圧の変化、絶縁抵抗測定系素子のバラツキや漏れ電流等の変化に対し、容易に対応して精度よく絶縁抵抗を測定することができる。
 絶縁性能が正常な場合は、自動的に測定時間が短くなるので、発生電力の利用を短時間に開始することが可能となる。
 また、太陽電池を例に挙げて説明すれば、設置面積の増加などで、該太陽電池の電源容量が大きい場合は、各太陽電池パネルが正常にも関わらず総合漏れ電流は増加するので、正確な絶縁抵抗測定が必要となる。この場合、この実施例によれば、自動的に長時間測定での高精度測定を実施することができるので、最適な測定時間を得ることが可能となる。
 以上のように、本発明にかかる絶縁抵抗検知回路は、複数の電源ユニットが直並列接続されて構成される直流電源の絶縁抵抗を、該直流電源の対地浮遊容量の変化や該直流電源の出力電圧の変化、絶縁抵抗測定系素子のバラツキや漏れ電流等の変化に容易に対応して正確に測定することができる絶縁抵抗検知回路として有用であり、特に太陽光発電システムでの非絶縁型パワーコンディショナーに装備する絶縁抵抗検知回路として好適である。
 1 絶縁抵抗検知回路
 2 直流電源(太陽電池)
 3 電源電圧測定回路
 4 制御回路(CPU)
 5 分圧回路を構成する分圧用抵抗器R1,R2の共通接続端(中間電位生成端)
 6 分圧電圧測定回路
 7 大地に接続されるアース端子
 8 電流測定回路
 9 地絡電圧点
 Vx,Vy(Vy1,Vy2) 太陽電池モジュール
 Rx 地絡抵抗成分
 R3 電圧変更用抵抗器
 S1 スイッチ
 OP3 電源電圧測定回路を構成する演算増幅器
 OP4 分圧電圧測定回路を構成する演算増幅器
 Rsafe 地絡保護用抵抗器
 Rsence 電流測定回路を構成する電圧変換用抵抗器
 AMP,OP1,OP2 電流測定回路を構成する演算増幅器
 Rbias,RB1~RB4 電流測定用の零点調整用抵抗器
 Vbias 電流測定用の基準電源

Claims (4)

  1.  複数の電源ユニットが直並列接続されて構成される直流電源の出力電圧の中間電位を分圧生成する分圧回路であって該中間電位生成端が回路グランドに接続される分圧回路と、
     前記分圧回路の分圧比を第1の値と第2の値とに変化させるための分圧比変化手段と、
     前記分圧回路の中間電位生成端から出力される電圧を測定する分圧電圧測定手段と、
     大地に接続されるアース端子から前記分圧回路の中間電位生成端に至る経路に配置される地絡保護用抵抗器を流れる地絡電流を測定する電流測定手段と、
     前記分圧比変化手段に前記分圧回路の分圧比を第1の値に設定させたときに前記電流測定手段が測定した第1の地絡電流から測定した第1の電流値および前記分圧電圧測定手段が測定した前記中間電位生成端から出力される第1の測定電圧と、前記分圧比変化手段に前記分圧回路の分圧比を第2の値に設定させたときに前記電流測定手段が測定した第2の地絡電流から測定した第2の電流値および前記分圧電圧測定手段が測定した前記中間電位生成端から出力される第2の測定電圧とを用いて前記直流電源の絶縁抵抗値である前記アース端子と前記直流電源内の地絡電圧点との間に形成される地絡抵抗成分の値を算出する絶縁抵抗算出制御手段と、
     を備え、
     前記絶縁抵抗算出制御手段は、前記第1および第2の電流値を測定する測定時間である前記分圧比変化手段に前記分圧回路の分圧比を第1の値と第2の値とに変化させる時間間隔を、前記電流測定手段が測定した第1および第2の地絡電流の変化量に応じて可変設定することを特徴とする絶縁抵抗検知回路。
  2.  前記絶縁抵抗算出制御手段は、
     前記分圧比変化手段に前記分圧回路の分圧比を第1の値と第2の値とに変化させる時間間隔を、前記電流測定手段が測定した第1および第2の地絡電流が安定したとみなさせる所定の変化率となる時点で前記第1および第2の電流値を測定できるように設定する
     ことを特徴とする請求項1に記載の絶縁抵抗検知回路。
  3.  前記絶縁抵抗算出制御手段は、
     前記分圧比変化手段に前記分圧回路の分圧比を第1の値と第2の値とに変化させる時間間隔を、前記電流測定手段が測定した第1および第2の地絡電流が大きな変化率で変化している時間内で前記第1および第2の電流値を測定できるように設定する
     ことを特徴とする請求項1に記載の絶縁抵抗検知回路。
  4.  前記絶縁抵抗算出制御手段は、
     前記分圧電圧測定手段が測定した第1の測定電圧と第2の測定電圧値との差分を用いて前記電流測定手段内の増幅回路のオフセット誤差を軽減する処理を行う
     ことを特徴とする請求項1に記載の絶縁抵抗検知回路。
PCT/JP2011/055673 2011-03-10 2011-03-10 絶縁抵抗検知回路 WO2012120683A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013503304A JPWO2012120683A1 (ja) 2011-03-10 2011-03-10 絶縁抵抗検知回路
PCT/JP2011/055673 WO2012120683A1 (ja) 2011-03-10 2011-03-10 絶縁抵抗検知回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055673 WO2012120683A1 (ja) 2011-03-10 2011-03-10 絶縁抵抗検知回路

Publications (1)

Publication Number Publication Date
WO2012120683A1 true WO2012120683A1 (ja) 2012-09-13

Family

ID=46797679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055673 WO2012120683A1 (ja) 2011-03-10 2011-03-10 絶縁抵抗検知回路

Country Status (2)

Country Link
JP (1) JPWO2012120683A1 (ja)
WO (1) WO2012120683A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105537A (zh) * 2012-12-26 2013-05-15 深圳创动科技有限公司 电池板对地绝缘阻抗检测电路及方法
CN103944506A (zh) * 2013-12-26 2014-07-23 中国电子科技集团公司第四十一研究所 一种光伏阵列接地阻抗的检测系统及方法
EP2975720A1 (en) * 2014-06-30 2016-01-20 Sungrow Power Supply Co., Ltd. Device and method for detecting insulation of photovoltaic modules against ground and photovoltaic grid-connected power generation system
CN105425048A (zh) * 2015-11-04 2016-03-23 武汉精测电子技术股份有限公司 可对多路阻抗进行采样与检测的装置及方法
CN105683765A (zh) * 2013-11-06 2016-06-15 施耐德电气太阳能逆变器美国股份有限公司 用于绝缘阻抗监测的系统和方法
CN106645959A (zh) * 2016-11-09 2017-05-10 南京磐能电力科技股份有限公司 一种用于直流充电桩绝缘阻值的测量电路及方法
CN107870298A (zh) * 2017-11-29 2018-04-03 深圳市锐能微科技有限公司 一种分压电路的电路参数检测电路、方法及电能表
CN107925383A (zh) * 2015-06-26 2018-04-17 新港公司 测量一个或多个光伏电池的一个或多个特性的装置和方法
CN109521277A (zh) * 2018-12-03 2019-03-26 欣旺达电子股份有限公司 绝缘性能检测电路及检测方法
CN109917186A (zh) * 2019-03-13 2019-06-21 江苏迈吉易威电动科技有限公司 一种车辆高压直流系统绝缘监测装置及监测方法
CN111983393A (zh) * 2020-07-03 2020-11-24 中广核核电运营有限公司 一种电压时间法测量发电机密封瓦绝缘的方法及装置
CN112083299A (zh) * 2020-09-11 2020-12-15 国网重庆市电力公司北碚供电分公司 一种基于卡尔曼滤波的直流系统绝缘故障预测方法
WO2021043173A1 (zh) * 2019-09-06 2021-03-11 中兴通讯股份有限公司 一种多级直流系统分布式绝缘检测装置
CN114696743A (zh) * 2022-05-31 2022-07-01 锦浪科技股份有限公司 一种组串式光伏系统及其绝缘阻抗检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221873A (ja) * 1989-02-22 1990-09-04 Sumitomo Electric Ind Ltd ケーブル活線下絶縁測定方法および装置
JPH02237421A (ja) * 1989-03-09 1990-09-20 Mitsubishi Electric Corp 太陽電池回路の地絡検出装置
JPH03179272A (ja) * 1989-12-07 1991-08-05 Tenpaale Kogyo Kk 直流回路の地絡抵抗の表示装置
JP2006526378A (ja) * 2003-04-15 2006-11-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 太陽エネルギシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221873A (ja) * 1989-02-22 1990-09-04 Sumitomo Electric Ind Ltd ケーブル活線下絶縁測定方法および装置
JPH02237421A (ja) * 1989-03-09 1990-09-20 Mitsubishi Electric Corp 太陽電池回路の地絡検出装置
JPH03179272A (ja) * 1989-12-07 1991-08-05 Tenpaale Kogyo Kk 直流回路の地絡抵抗の表示装置
JP2006526378A (ja) * 2003-04-15 2006-11-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 太陽エネルギシステム

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105537A (zh) * 2012-12-26 2013-05-15 深圳创动科技有限公司 电池板对地绝缘阻抗检测电路及方法
CN103105537B (zh) * 2012-12-26 2015-08-12 深圳创动科技有限公司 电池板对地绝缘阻抗检测电路及方法
US10859623B2 (en) 2013-11-06 2020-12-08 Schneider Electric Solar Inverters Usa, Inc. Systems and methods for insulation impedance monitoring
CN105683765B (zh) * 2013-11-06 2019-06-07 施耐德电气太阳能逆变器美国股份有限公司 用于绝缘阻抗监测的系统和方法
EP3066481A4 (en) * 2013-11-06 2017-07-26 Schneider Electric Solar Inverters USA, Inc. Systems and methods for insulation impedance monitoring
CN105683765A (zh) * 2013-11-06 2016-06-15 施耐德电气太阳能逆变器美国股份有限公司 用于绝缘阻抗监测的系统和方法
CN103944506B (zh) * 2013-12-26 2017-01-04 中国电子科技集团公司第四十一研究所 一种光伏阵列接地阻抗的检测系统及方法
CN103944506A (zh) * 2013-12-26 2014-07-23 中国电子科技集团公司第四十一研究所 一种光伏阵列接地阻抗的检测系统及方法
EP2975720A1 (en) * 2014-06-30 2016-01-20 Sungrow Power Supply Co., Ltd. Device and method for detecting insulation of photovoltaic modules against ground and photovoltaic grid-connected power generation system
CN107925383A (zh) * 2015-06-26 2018-04-17 新港公司 测量一个或多个光伏电池的一个或多个特性的装置和方法
CN107925383B (zh) * 2015-06-26 2019-11-26 新港公司 便于测量光伏电池的一个或多个特性的装置
US10965247B2 (en) 2015-06-26 2021-03-30 Newport Corporation Apparatus and method for measuring one or more characteristics of one or more photovoltaic cells
CN105425048A (zh) * 2015-11-04 2016-03-23 武汉精测电子技术股份有限公司 可对多路阻抗进行采样与检测的装置及方法
CN105425048B (zh) * 2015-11-04 2019-06-07 武汉精测电子集团股份有限公司 可对多路阻抗进行采样与检测的装置及方法
CN106645959A (zh) * 2016-11-09 2017-05-10 南京磐能电力科技股份有限公司 一种用于直流充电桩绝缘阻值的测量电路及方法
CN107870298A (zh) * 2017-11-29 2018-04-03 深圳市锐能微科技有限公司 一种分压电路的电路参数检测电路、方法及电能表
CN107870298B (zh) * 2017-11-29 2023-09-05 深圳市锐能微科技有限公司 一种分压电路的电路参数检测电路、方法及电能表
CN109521277A (zh) * 2018-12-03 2019-03-26 欣旺达电子股份有限公司 绝缘性能检测电路及检测方法
CN109917186B (zh) * 2019-03-13 2021-04-06 江苏迈吉易威电动科技有限公司 一种车辆高压直流系统绝缘监测装置及监测方法
CN109917186A (zh) * 2019-03-13 2019-06-21 江苏迈吉易威电动科技有限公司 一种车辆高压直流系统绝缘监测装置及监测方法
WO2021043173A1 (zh) * 2019-09-06 2021-03-11 中兴通讯股份有限公司 一种多级直流系统分布式绝缘检测装置
CN111983393A (zh) * 2020-07-03 2020-11-24 中广核核电运营有限公司 一种电压时间法测量发电机密封瓦绝缘的方法及装置
CN111983393B (zh) * 2020-07-03 2023-04-07 中广核核电运营有限公司 一种电压时间法测量发电机密封瓦绝缘的方法及装置
CN112083299A (zh) * 2020-09-11 2020-12-15 国网重庆市电力公司北碚供电分公司 一种基于卡尔曼滤波的直流系统绝缘故障预测方法
CN114696743A (zh) * 2022-05-31 2022-07-01 锦浪科技股份有限公司 一种组串式光伏系统及其绝缘阻抗检测方法

Also Published As

Publication number Publication date
JPWO2012120683A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
WO2012120683A1 (ja) 絶縁抵抗検知回路
JP5818820B2 (ja) 絶縁抵抗検知回路
JP5802076B2 (ja) 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP6130419B2 (ja) 高感度に非接地型直流給電の絶縁抵抗を検出する方法及びその電気回路
USRE44455E1 (en) Measuring array
US9176201B2 (en) Ground fault detection device, ground fault detection method, solar energy system, and ground fault detection program
JP2013162585A (ja) Dc/dcコンバータ
US20150249391A1 (en) Dc-dc converter and dc-dc converter system thereof
US9599520B2 (en) Method for determining and operating temperature of an electronic component
US8228014B2 (en) Multi-phase DC/DC boost converter
US7075311B1 (en) Insulation detecting device for non-grounded power source
US10197608B2 (en) Apparatus for determining insulation resistance at a PV generator, and photovoltaic installation
US10181787B2 (en) Power factor correction device, and current sensing method and apparatus thereof
US9140760B2 (en) Resistance measurement for battery cells
EP2837941A1 (en) Shunt resistance type current sensor
KR20140070148A (ko) 배터리 전류 측정 장치 및 그 방법
KR101398465B1 (ko) 배터리 상태 판단 장치 및 그 판단 방법
JP2014153090A (ja) 絶縁状態検出装置
US8970063B2 (en) Method and arrangement for balancing voltages of series connection of storage units for electrical energy
US9977088B2 (en) Battery fuel gauge current sensing circuit and method thereof
JP2004170103A (ja) 非接地電源の絶縁検出装置
US20070007969A1 (en) Circuit and system for detecting dc component in inverter device for grid-connection
EP2365625B1 (en) Control circuit, power conditioner including the control circuit, and photovoltaic system
US9923479B2 (en) Power supply unit and calibration method to improve reliability
JP7097741B2 (ja) 電流検出システム、蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860638

Country of ref document: EP

Kind code of ref document: A1