WO2012118133A1 - ウェッジカム式ブレーキの自動隙間調整機構 - Google Patents
ウェッジカム式ブレーキの自動隙間調整機構 Download PDFInfo
- Publication number
- WO2012118133A1 WO2012118133A1 PCT/JP2012/055145 JP2012055145W WO2012118133A1 WO 2012118133 A1 WO2012118133 A1 WO 2012118133A1 JP 2012055145 W JP2012055145 W JP 2012055145W WO 2012118133 A1 WO2012118133 A1 WO 2012118133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- camshaft
- brake
- wedge cam
- adjustment mechanism
- wedge
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61H—BRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
- B61H15/00—Wear-compensating mechanisms, e.g. slack adjusters
- B61H15/0007—Wear-compensating mechanisms, e.g. slack adjusters mechanical and self-acting in one direction
- B61H15/0014—Wear-compensating mechanisms, e.g. slack adjusters mechanical and self-acting in one direction by means of linear adjustment
- B61H15/0028—Wear-compensating mechanisms, e.g. slack adjusters mechanical and self-acting in one direction by means of linear adjustment with screw-thread and nut
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D55/00—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
- F16D55/02—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
- F16D55/22—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
- F16D55/224—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
- F16D55/2245—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members in which the common actuating member acts on two levers carrying the braking members, e.g. tong-type brakes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/38—Slack adjusters
- F16D65/40—Slack adjusters mechanical
- F16D65/52—Slack adjusters mechanical self-acting in one direction for adjusting excessive play
- F16D65/56—Slack adjusters mechanical self-acting in one direction for adjusting excessive play with screw-thread and nut
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2121/00—Type of actuator operation force
- F16D2121/02—Fluid pressure
- F16D2121/04—Fluid pressure acting on a piston-type actuator, e.g. for liquid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2121/00—Type of actuator operation force
- F16D2121/02—Fluid pressure
- F16D2121/04—Fluid pressure acting on a piston-type actuator, e.g. for liquid pressure
- F16D2121/06—Fluid pressure acting on a piston-type actuator, e.g. for liquid pressure for releasing a normally applied brake
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2123/00—Multiple operation forces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2125/00—Components of actuators
- F16D2125/18—Mechanical mechanisms
- F16D2125/58—Mechanical mechanisms transmitting linear movement
- F16D2125/64—Levers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2125/00—Components of actuators
- F16D2125/18—Mechanical mechanisms
- F16D2125/58—Mechanical mechanisms transmitting linear movement
- F16D2125/66—Wedges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2125/00—Components of actuators
- F16D2125/18—Mechanical mechanisms
- F16D2125/58—Mechanical mechanisms transmitting linear movement
- F16D2125/70—Rods
Definitions
- the present invention is a wedge cam type brake in which a base end portion of a brake arm is expanded and oscillated by a cam action of the wedge cam generated by an axial movement of a cam shaft forming a wedge cam, and an excessive stroke is generated in the cam shaft.
- the present invention relates to an automatic clearance adjustment mechanism for a wedge cam brake configured to fill a swinging clearance of the brake arm.
- the brake cylinder disclosed in Patent Document 1 includes a piston 103 that moves relative to the cylinder body 102, and a shaft rod 104 that moves together with the piston 103. And a push rod 105 attached to the shaft rod 104, and a projection length adjusting means 106 for adjusting the projection length of the push rod 105 from the cylinder body 102 when the brake is operated.
- the push rod 105 is formed in a cylindrical shape having a shaft hole extending in parallel with the moving direction of the piston 103, and a female screw 151 is threaded on at least a part of the inner surface of the shaft hole.
- a male screw 141 that engages with the female screw 151 is screwed into at least a part of the outer surface and screwed into the shaft hole, and is engageable with a rotational force applying means that applies a rotational force around the shaft from the outside.
- the engaging portion 142 is provided.
- the piston 103 is connected via the shaft rods 104 and 105 by supplying pressure into the pressure chamber 102b as shown in FIG.
- the connecting member 107 is moved in the expanding direction with respect to the first casing 121 in the cylinder body 102.
- a brake arm (not shown) connected to each of the connecting member 107 and the first casing 121 is swung to perform a braking operation.
- the cover 108 is removed, and a socket such as a handle wrench is externally engaged with the engaging portion 142 of the shaft rod 104 to rotate the female screw 151 of the push rod 105.
- the problems in the conventional adjuster mechanism are solved, and the gap adjustment can be stably performed without requiring high accuracy with a simple structure excellent in assemblability, and the brake force may be reduced. It is another object of the present invention to provide an automatic clearance adjustment mechanism for a wedge cam type brake that can clearly distinguish normal strokes from excessive strokes and that can be easily added with an operating means such as a hydraulic cylinder as an emergency brake.
- a wedge cam type brake in which a base end portion of a brake arm is expanded and oscillated by a cam action of the wedge cam generated by an axial movement of a cam shaft forming a wedge cam, when an excessive stroke occurs in the cam shaft
- An automatic clearance adjustment mechanism for a wedge cam type brake configured to fill a rocking clearance of the brake arm, wherein an adjustment rod fitted to a distal end portion of the camshaft is a stationary portion when the excessive stroke occurs
- An automatic wedge gap adjusting mechanism for a wedge cam type brake that changes the initial axial position of the camshaft by adjusting the relative axial position of the camshaft.
- a wedge cam automatic gap adjusting mechanism configured as described in (1) above, wherein the adjusting rod is fitted to the inner periphery of a sleeve member fixed to the body via a friction member. Automatic gap adjustment mechanism of the type brake.
- An automatic clearance adjustment mechanism for a wedge cam type brake having the structure according to any one of (1) to (3) above, wherein the adjustment rod is pressed from the outside via a release plug.
- An automatic gap adjustment mechanism for a wedge cam type brake configured to reset an original position of the camshaft in the axial direction with respect to the stationary part via the shaft.
- An automatic clearance adjustment mechanism for a wedge cam type brake configured to fill a rocking clearance of the brake arm, and when the excessive stroke occurs, it is screwed into a reversible screw portion provided at a tip portion of the camshaft.
- An automatic clearance adjustment mechanism for a wedge cam type brake that adjusts an axial relative position by rotation with a nut member to change an initial position of the cam shaft in the axial direction.
- a wedge cam type automatic gap adjusting mechanism configured as described in (5) above, which is slidably fitted to the nut member and elastically contacted with a conical surface formed on the inner peripheral surface of the sleeve member.
- An automatic clearance adjustment mechanism for a wedge cam brake that adjusts and changes the initial position of the camshaft by rotating the nut member when the cone clutch is released from the sleeve member due to an excessive stroke of the camshaft.
- An automatic clearance adjustment mechanism for a wedge cam brake configured as described in (6) or (7) above, wherein the cone clutch is pulled from the outside via a release plug so that the cone clutch is moved to the sleeve member.
- An automatic clearance adjustment mechanism for a wedge cam type brake configured to reset the original position in the axial direction of the camshaft by rotation with respect to the nut member screwed into the reversible screw portion by being released from the conical surface of the camshaft .
- An automatic clearance adjustment mechanism for a wedge cam brake configured as described in any of (6) to (8) above, wherein the wedge cam camshaft is a normal brake that is operated by an air cylinder,
- An automatic clearance adjustment mechanism for a wedge cam type brake wherein a hydraulic piston is connected to the sleeve member on the leading end side of the opposing camshaft to form a hydraulic cylinder for an emergency brake.
- a wedge cam type automatic gap adjusting mechanism configured as described in (10) above, wherein the pressure fluid introduced when the emergency brake is operated is configured to return to the reservoir through an orifice. Brake automatic clearance adjustment mechanism.
- the clearance adjustment at the time of excessive stroke can be performed in the axial direction at the tip of the camshaft itself, so that stable clearance adjustment can be achieved with respect to the amount of pad wear even with a single adjustment mechanism.
- control is ensured even if parts are damaged.
- the camshaft slides in the adjusting rod during the normal stroke, and the sleeve member which is a stationary part is combined with a very simple structure in which the friction member is interposed during an excessive stroke due to pad wear.
- the position of the adjusting rod in the axial direction can be simply and continuously moved to adjust the automatic gap with respect to pad wear over a wide range.
- the simple configuration in which the front end surface of the wedge cam only abuts against the rear end surface of the adjustment rod eliminates the risk of failure or breakage, and the camshaft and the adjustment rod during overstroke It is possible to easily and easily adjust the gaps integrated with each other.
- the axial position of the adjustment rod with respect to the stationary portion that is, the sleeve member can be simply returned to the original position simply by pressing the adjustment rod from the outside via the release plug. Can be reset.
- the cone clutch that enables the rotation adjustment of the nut member screwed into the reversible screw portion of the camshaft constitutes the clutch portion with a conical surface with respect to the sleeve member, High stability without rotating due to vibration.
- the clearance adjustment mechanism provided on the camshaft tip side can adjust the clearance from new brake lining to total wear. In the unlikely event that the gap increases, the brakes will not stop working and safety is high.
- the structure of the clearance adjustment mechanism is utilized as it is, and the hydraulic piston in the hydraulic cylinder of the emergency brake is simply connected to the sleeve member that is a component thereof. Compensation for the delay in operation due to the air pressure in the brake makes it possible to perform a quick braking operation with the hydraulic pressure, improving safety.
- the pressure fluid introduced when the emergency brake is operated returns to the reservoir of the master cylinder for a while, and the pressing force by the hydraulic piston is automatically released.
- FIG. 1 is a plan cross-sectional view of a main part of a first embodiment provided with an automatic clearance adjustment mechanism for a wedge cam type brake according to the present invention.
- 2 is an exploded perspective view of the automatic gap adjusting mechanism shown in FIG.
- FIG. 3 is a plan sectional view of a principal part showing an initial state of the automatic gap adjusting mechanism shown in FIG.
- FIG. 4 is a cross-sectional plan view of a main part showing a normal brake operating state of the automatic gap adjusting mechanism shown in FIG.
- FIG. 5 is a principal cross-sectional plan view showing a brake operating state immediately before clearance adjustment (adjustment) due to excessive stroke of the automatic clearance adjustment mechanism shown in FIG.
- FIG. 1 is a plan cross-sectional view of a main part of a first embodiment provided with an automatic clearance adjustment mechanism for a wedge cam type brake according to the present invention.
- 2 is an exploded perspective view of the automatic gap adjusting mechanism shown in FIG.
- FIG. 3 is a plan sectional view of
- FIG. 6 is a plan cross-sectional view of the main part showing a brake operating state during clearance adjustment of the automatic clearance adjustment mechanism shown in FIG.
- FIG. 7 is a cross-sectional plan view of the main part showing the brake non-operating state after the clearance adjustment of the automatic clearance adjustment mechanism shown in FIG. 8 (A) and 8 (B) are schematic views of the gap adjustment process in relation to the automatic gap adjustment mechanism shown in FIG. 1 and the pad assembly via the brake arm
- FIG. 8 (A) is a left side view.
- FIG. 8 (A) right side shows a brake operating state
- FIG. 8 (B) left side shows a state where the pad is worn and a gap adjustment is performed by an automatic gap adjustment mechanism.
- B) The right side view shows the brake operating state after the gap adjustment is performed.
- FIG. 8 (A) right side shows a brake operating state
- FIG. 8 (B) left side shows a state where the pad is worn and a gap adjustment is performed by an automatic gap adjustment mechanism.
- B) The right side view
- FIG. 9 is a plan cross-sectional view of a main part of a second embodiment provided with an automatic clearance adjustment mechanism for a wedge cam type brake according to the present invention.
- 10A is an exploded perspective view of components of the automatic gap adjustment mechanism shown in FIG. 9,
- FIG. 10B is a longitudinal sectional view of the assembled state, and
- FIG. 10C is the bracket side. It is the cross-sectional view before the bolt attachment seen from.
- FIG. 11 is a main part plan sectional view showing an initial state of the automatic gap adjusting mechanism shown in FIG.
- FIG. 12 is a principal cross-sectional plan view showing a non-actuated (normal stroke) state of the automatic gap adjusting mechanism shown in FIG. FIG.
- FIG. 13 is a plan cross-sectional view of a main part showing an operation (excess stroke) state of the automatic gap adjusting mechanism shown in FIG.
- FIG. 14 is a plan sectional view of an essential part showing a return state after the automatic gap adjusting mechanism shown in FIG. 9 is actuated.
- FIG. 15 is a cross-sectional plan view of a main part of a third embodiment provided with an automatic clearance adjustment mechanism for a wedge cam type brake according to the present invention.
- FIG. 16 is a cross-sectional plan view of a main part showing an emergency brake non-actuated state of the automatic gap adjusting mechanism and emergency brake mechanism shown in FIG.
- FIG. 17 is a principal cross-sectional plan view showing an emergency brake operating state of the automatic gap adjusting mechanism and the emergency brake mechanism shown in FIG.
- FIG. 18 is an overall perspective view of the automatic gap adjusting mechanism and emergency brake mechanism shown in FIG.
- FIG. 19 is an operational system circuit diagram of the automatic gap adjusting mechanism and emergency brake mechanism shown in FIG. 20 (A) and 20 (B) are explanatory views of a brake cylinder provided with a conventional gap adjusting mechanism.
- the automatic clearance adjustment mechanism for a wedge cam type brake brakes by the cam action of the wedge cam 10 generated by the axial movement of the cam shaft 11 forming the wedge cam 10.
- the wedge cam type brake is configured to fill the rocking gap of the brake arms 4 and 4 when an excessive stroke occurs in the camshaft 11.
- the adjustment rod 22 fitted to the tip of the camshaft 11 adjusts the relative position in the axial direction with respect to the stationary part (sleeve member 20).
- the initial position of the camshaft 11 in the axial direction is changed.
- the body 1 is fixed to the vehicle body stationary part through an appropriate support. As shown in the schematic views of FIGS. 8A and 8B, the body 1 (FIGS. 8A and 8B).
- the intermediate portions of the pair of brake arms 4 and 4 are pivotally supported by the brake arm shafts 5 and 5 on both sides of the lower portion of the lower portion of FIG.
- Pad assemblies 6 and 6 are attached to the open ends of the upper parts of the brake arms 4 and 4 via brake holders.
- a link rod 15 constituting an output shaft connected and supported by a spherical bush 14 to a roller arm 13 of a link type booster as shown in FIG.
- the cam rollers 12, 12 are respectively connected to one end of a pair of roller arms 13, 13 whose other ends are respectively supported by bearings 18, 18 at both ends of a strut 19 constituting a link type booster. It is supported.
- the cam rollers 12 and 12 are lifted onto the inclined surface of the wedge cam 10, the roller arms 13 and 13 swing in the expanding direction, and are connected and supported by a spherical bush 14 at a substantially intermediate portion of the roller arms 13 and 13.
- the link rods 15 and 15 are boosted by the lever principle and axially moved outward (left and right in the drawing).
- the base ends of the brake arms 4 and 4 are moved in the expanding direction with the brake arm shaft 5 as the pivot center, and are arranged on the open ends (the back side of the paper in FIG. 1) of the brake arms 4 and 4.
- the provided pad assemblies 6 and 6 are clamped by the disk rotor 3 to perform a braking operation.
- a single automatic gap adjustment mechanism is disposed on the tip 11A side of the camshaft 11 which is the opposite side of the axial direction with respect to the air cylinder 2.
- the automatic gap adjusting mechanism includes a sleeve member 20 supported with respect to the body 1 that is a stationary part, an adjustment rod 22 fitted to the inner periphery thereof, and a slidably fitted inside the adjustment rod 22. Further, the camshaft 11 and the wedge cam 10 whose front end face comes into contact with the rear end face of the adjusting rod 22 at the time of excessive stroke.
- a friction member that acts on the outer peripheral surface of the adjusting rod 22 and regulates the sliding of each other with a predetermined frictional force (resistance force due to the friction> restoring force of the chamber spring 9). 21 is disposed and is prevented from coming off by the retaining ring 17.
- a bush 23 is press-fitted into the inner peripheral surface of the adjusting rod 22 between the inner peripheral surface of the adjusting rod 22 and the outer peripheral surface of the camshaft 11.
- a large-diameter portion 11B is formed at the distal end portion 11A of the camshaft 11 and abuts against a small-diameter step portion 22A formed in the middle of the adjustment rod 22 to return the camshaft 11.
- the adjusting rod 22 is about to be returned to the return position by the camshaft 11 due to the restoring force of the chamber spring 9, but the frictional force with the friction member 21 is larger and the adjusting rod 22 returns after adjusting the clearance.
- the adjustment rod 22 that protrudes to the other side (brake operating direction) with respect to the sleeve member 20 is provided.
- a release plug 29 for pressing from the outside is disposed on the other side of the body 1.
- Reference numeral 25 denotes a cap that covers the release plug 29.
- Reference numeral 27 denotes a return spring of the release plug 29.
- FIG. 2 is an exploded perspective view showing the automatic gap adjusting mechanism employed in the wedge cam type brake according to the first embodiment of the present invention in an easily understandable manner.
- one automatic gap adjustment mechanism is configured and disposed on the distal end portion 11 ⁇ / b> A side of the camshaft 11.
- the automatic gap adjustment mechanism includes a sleeve member 20 supported with respect to the body 1 that is a stationary part, an adjustment rod 22 fitted to the inner periphery thereof, The camshaft 11 is slidably fitted in the adjusting rod 22, and the wedge cam 10 has a front end face that abuts on the rear end face of the adjusting rod 22 when the stroke is excessive.
- the sleeve portion of the sleeve member 20 is fitted with an adjustment rod 22 in which a bush 23 that guides the distal end portion 11A of the camshaft 11 is press-fitted into the inner peripheral surface, and an intermediate small-diameter step portion 22A ( The large-diameter portion 11B of the distal end portion 11A of the camshaft 11 is further fitted in a form of abutting against (see FIG. 3).
- a friction member 21 is disposed between the sleeve member 20 and the adjustment rod 22, and the friction member 21 is prevented from coming off by a retaining ring 17 provided between the sleeve member 20 and the friction member 21.
- the camshaft 11 is fastened to the wedge cam 10 by a nut 24 that is screwed into the proximal end portion of the camshaft 11 inserted through the sleeve member 20 and the wedge cam 10.
- the inner diameter hole of the sleeve portion of the sleeve member 20 is a tapered hole that becomes wider toward the retaining ring 17 side, so that the adjuster operates loosely to suppress caliper efficiency loss, and the return side operates tightly. It can also be considered that the adjuster does not return due to the vibration of the vehicle.
- the configuration of the friction member 21 may be a corresponding tapered shape.
- FIG. 3 is a fragmentary plan sectional view showing an initial state of the automatic gap adjusting mechanism according to the first embodiment, in which the body 1, the air cylinder 2, the release plug 29, and the like are omitted.
- FIG. 1 is a view similar to FIG. 1, showing an initial state in which the brake is not activated as well as the automatic gap adjusting mechanism, and the camshaft 11 is moved to the other side in the axial direction against the restoring force of the chamber spring 9 of the air piston 8 not shown
- FIG. 4 which is a plan sectional view of a main part showing a normal brake operating state, cam rollers 12 and 12 are formed on the inclined surface of the wedge cam 10 formed by being attached to the camshaft 11. Get on.
- the pair of roller arms 13 and 13 that are pivotally supported by the bearings 18 and 18 at both ends of the strut 19 constituting the link type booster expand outwardly with the bearings 18 and 18 as pivot points.
- the link rods 15, 15 connected and supported by the spherical bush 14 on the substantially intermediate portion of the roller arms 13, 13 are boosted by the lever principle and axially moved outward (left and right in the drawing).
- the base end portions of the brake arms 4 and 4 are moved in the expanding direction with the brake arm shaft 5 as the swing center, so that the open end portions of the brake arms 4 and 4 are opened.
- a brake operation is performed by pressing the pad assemblies 6, 6 disposed on the disc rotor 3.
- the camshaft 11 has a large diameter portion 11 ⁇ / b> B at its tip, a bush 23 pressed into the adjustment rod 22, and a small diameter step portion 22 ⁇ / b> A at the inner periphery of the adjustment rod 22. Since it is stably supported at a plurality of locations and can move in the adjustment rod 22 in the axial direction, the roller arms 13 and 13 are expanded by the inclined surface of the wedge cam 10 and the link rods 15 and 15 are interposed. Brake operation will be performed. When the brake operation is released from the state shown in FIG. 4, the camshaft 11 moves backward in the drawing to return to the initial position. The large-diameter portion 11B at the tip end portion of the camshaft 11 comes into contact with the small-diameter step portion 22A in the adjustment rod 22 and becomes the initial position.
- FIG. 5 is a cross-sectional plan view of a main part showing a brake operating state immediately before clearance adjustment (adjustment) due to excessive stroke of the automatic clearance adjustment mechanism according to the first embodiment
- FIG. 6 shows the automatic clearance adjustment mechanism according to the first embodiment. It is a principal part cross-sectional view which shows the brake operating state at the time of clearance adjustment.
- the front end surface of the wedge cam 10 comes into contact with the rear end surface of the adjustment rod 22.
- the camshaft 11 further advances as shown in FIG. 6 due to the excessive stroke, the sleeve exceeds the resistance value due to the friction of the friction member 21 disposed between the sleeve member 20 which is a stationary portion and the adjusting rod 22, and the sleeve
- the adjustment rod 22 advances relative to the member 20 and protrudes. The gap adjustment has been completed.
- FIG. 7 is a plan cross-sectional view of the main part showing the brake non-operating state after the clearance adjustment of the automatic clearance adjustment mechanism according to the first embodiment.
- the camshaft 11 returns from the state of FIG. 6 to the initial position in the adjustment rod 22 by the chamber spring 9 (not shown).
- the large-diameter portion 11B at the tip of the camshaft 11 comes into contact with the small-diameter step portion 22A of the adjustment rod 22 and reaches the initial position (FIG. 7).
- the adjustment rod 22 is in a state of protruding relative to the sleeve member 20 by the clearance adjustment compensated to fill the swinging clearance of the brake arm caused by excessive stroke caused by wear of the pad or the like.
- the initial position of the camshaft 11 after the clearance adjustment is at a position where the wedge cam 10 has advanced by the amount of protrusion of the adjustment rod 22 whose clearance is adjusted from the original position. Therefore, the roller arms 13 and 13 that are cam-engaged with the inclined surface of the wedge cam 10 are also in an expanded state, and a clearance adjustment state that has advanced in advance by the wear amount of the pad or the like appears.
- 8 (A) and 8 (B) are schematic views of the gap adjustment process in relation to the automatic gap adjustment mechanism according to the first embodiment and the pad assembly via the brake arm.
- 8A and 8B illustration of the sleeve member 20 attached to the body 1 on the stationary side is omitted.
- 8A the wedge cam 10 and the cam shaft 11 advance by the boost cam stroke S during braking, and the base end of the brake arm 4 is expanded via the cam rollers 12 and 12.
- 8B is a right side view of the pad assembly 6 that is swinging around the brake arm shaft 5 that is a swinging fulcrum and that is mounted on the open end portion and held in pressure contact with the side surface of the disk rotor 3.
- the brake is activated.
- the camshaft 11 advances relative to the adjustment rod 22.
- FIG. 8B is a left side view of the pad assembly 6 in which the pad is worn and the gap is adjusted by the automatic gap adjustment mechanism, and the adjustment rod 22 of the sleeve member 20 (not shown) is in a protruding state in which the adjustment rod 22 has advanced.
- a state corresponding to FIG. 7 in which the brake assembly is not operated is shown in which the pad assembly 6 in the full wear state is not in contact with the disk rotor 3.
- the right side view of FIG. 8 (B) shows that the wedge cam 10 and the camshaft 11 are both advanced by the boost cam stroke S during braking and the brake arm 4 swings to the operating position and is attached to its open end.
- a state in which the brake assembly is in operation is shown in which the pad assembly 6 in a fully worn state is sandwiched and pressed against the side surface of the disk rotor 3.
- the shape of the wedge cam, its mounting form on the camshaft, and the related configuration of the wedge cam and the brake arm base end portion (Wedge cam shafts cam rollers without a link rod interposed via a pair of link type boosters arranged on both sides of the camshaft, or via a link type booster.
- the supported link rod can be expanded, or the wedge cam can be configured to directly expand the base end of the brake arm.
- Boost ratio in link type booster automatic clearance adjustment
- a shim for adjusting a production error between the end faces buttocks may be interposed.
- the material, friction coefficient, and arrangement of the friction member as a friction applying member for the sleeve member of the adjustment rod (in place of the arrangement on the inner circumference side of the sleeve member in the first embodiment, it is arranged on the outer circumference side of the adjustment rod.
- the contact form between the large-diameter portion at the tip of the camshaft and the small-diameter step portion at the adjustment rod, the shape and type of the release plug, and the arrangement form on the body can be selected as appropriate.
- the specifications described in the first embodiment are merely examples in all respects and should not be interpreted in a limited manner.
- the automatic clearance adjustment mechanism of the wedge cam type brake according to the second embodiment of the present invention is braked by the cam action of the wedge cam 10 caused by the axial movement of the cam shaft 211 forming the wedge cam 10.
- the wedge cam type brake is configured so as to fill the swinging gap of the brake arms 4 and 4 when an excessive stroke occurs in the camshaft 211.
- the relative position in the axial direction is adjusted by the rotation with the nut member 222 that is screwed into the reversible screw portion 211B provided at the distal end portion of the camshaft 211.
- the initial position of the camshaft 211 in the axial direction is changed by adjustment.
- FIG. 18 also provided with a hydraulic cylinder 203 of a third embodiment to be described later
- the body 1 is fixed to the vehicle body stationary part via an appropriate support, and a pair of brake arms are provided on both lower sides of the body 1.
- the intermediate portions of 4 and 4 are supported by the brake arm shafts 5 and 5.
- Pad assemblies 6 and 6 are attached to the open ends of the brake arms 4 and 4 via brake holders.
- a link rod constituting an output shaft connected to and supported by a spherical bush 14 on a roller arm 13 of a link type booster as shown in FIG.
- the outer end of 15 is supported by the spherical bush 16.
- the air cylinder 2 that introduces air from the air supply port 7 and operates the air piston 8 against the restoring force of the chamber spring 9 on the other side in the axial direction (left side in the drawing) Arranged on one side (right side of the drawing).
- cam rollers 12 and 12 that ride on the inclined surface of the wedge cam 10 formed by being attached to the cam shaft 211 are disposed.
- the cam rollers 12 and 12 constitute a link type booster.
- the cam rollers 12 and 12 are respectively connected to one end of a pair of roller arms 13 and 13 that are supported by bearings 18 and 18 at both ends of the strut 19. It is supported.
- a single automatic gap adjustment mechanism is disposed on the tip end side of the camshaft 211 that is opposite to the air cylinder 2 in the axial direction.
- the automatic gap adjustment mechanism includes a sleeve member 220 having a large-diameter portion supported with respect to the body 1 via a guide 217, a nut member 222 sub-assembled inside the large-diameter portion, and the nut member 222. It comprises a cone clutch 225 that is slidably fitted by a pin 224, springs 223, 227, a release plug 229, and the like.
- the sleeve member 220 is restricted from moving in the axial direction by a bracket 232 attached and fixed to the other side of the body 1.
- FIG. 10A is an exploded perspective view of components of the automatic gap adjusting mechanism of the present invention
- FIG. 10B is a longitudinal sectional view of the assembled state
- FIG. 10C is a bolt viewed from the bracket 232 side. It is a cross-sectional view before attachment.
- a case 221 in which a nut member 222 into which a distal end portion of the camshaft 211 is screwed is fitted is fitted in a sleeve member 220 having a small-diameter portion into which a camshaft 211 (not shown) is fitted.
- a cone clutch 225 urged so that the conical surface 225 A is in contact with the conical surface of the inner peripheral surface of the sleeve member 220 by the spring 227 via the spring seat 233 and the bearing 226 on the outer side of the sleeve member 220. Is disposed. Inside the cone clutch 225 is housed a release plug 229 that is biased to the opposite side of the nut member 222 by a spring 223 via a bearing 234 interposed between the cone member 225 and the nut member 222.
- symbol 231 arrange
- a camshaft 211 is slidably disposed within a small-diameter portion of the sleeve member 220 supported by the guide 217, and a nut member 222 that is screwed into a reversible screw portion 211B provided at the distal end portion of the camshaft 211 includes a sleeve. Housed in a case 221 housed in the member 220.
- the pin 224 inserted into the pin hole 221 ⁇ / b> A of the case 221 is received in the outer circumferential axial groove 222 ⁇ / b> A of the nut member 222.
- the pin 224 is also inserted into a pin hole 225 ⁇ / b> C of a hollow cone clutch 225 that simultaneously rotates in the sleeve member 220.
- a clutch portion that is connected and disconnected by the conical surface 225A (FIG. 13) is formed.
- the cone clutch 225 is urged by a spring 227 disposed on the inner peripheral surface of the sleeve member 220 in a direction to connect the clutch portion which is the conical surface 225A.
- the cone clutch 225 can be pulled from the outside by a release plug 229 disposed at a substantially central portion of a bracket 232 attached and fixed to the other side of the body 1.
- the large-diameter step portion 230 at one end of the release plug 229 is in contact with the small-diameter step portion 225B at the other end of the cone clutch 225 via a bearing 228, and resists the restoring force of the spring 227 by the release plug 229. Only the clutch 225 can be pulled outward. When the release plug 229 is pressed inward, the cone clutch 225 is not affected at all, and malfunction can be prevented.
- the cone clutch 225 When replacing a new pad assembly or the like, the cone clutch 225 is separated from the clutch portion of the conical surface 225 ⁇ / b> A on the inner peripheral surface of the sleeve member 220 by pulling the cone clutch 225 outward by the release plug 229. At that time, along with the axial movement of the cone clutch 225, the case 221 is also axially moved through the pin 224, and the nut member 222 is also moved outward.
- the cone clutch 225 and the nut member 222 that are freely rotatable are adjusted in the axial relative position with respect to the reversible screw portion 211B at the front end portion of the camshaft 211 that is easily restored by the chamber spring 9, and the camshaft 211
- the initial position in the axial direction can be changed and can be easily reset to the original position in the axial direction.
- FIG. 11 is a view similar to FIG. 9 and shows an initial state of the brake in which the automatic gap adjusting mechanism according to the second embodiment is not operated, and the brake arm 4 and the like are omitted.
- a spring 223 is disposed between the release plug 229 and the tip of the camshaft 211, and contributes to the outward biasing of the release plug 229 and the restoration of the camshaft 211.
- FIG. 12 is a cross-sectional plan view of a principal part showing the non-operating (normal stroke) state of the automatic gap adjusting mechanism according to the second embodiment.
- the tip of the camshaft 211 compresses the spring 223, the stroke of the camshaft 211 is Within the normal range, the spring 223 does not affect the release plug 229. Therefore, the nut member 222 does not rotate with respect to the distal end portion of the camshaft 211, but simply moves together with the distal end portion of the camshaft 211 in the axial direction.
- FIG. 13 is a plan cross-sectional view of the main part showing the operation (excess stroke) state of the automatic gap adjusting mechanism according to the second embodiment.
- the swing stroke of the brake arm 4 increases.
- the stroke of the camshaft 211 deviates from the normal range and moves to the other side in the axial direction with an excessive stroke.
- the spring 223 disposed between the release plug 229 and the nut member 222 abuts against the release plug 229 and slightly pushes the release plug 229 outward.
- the cone clutch 225 is separated from the clutch portion constituted by the conical surface 225 ⁇ / b> A, and can be rotated together with the pin 224, the case 221, and the nut member 222. Therefore, as the camshaft 211 further advances, the nut member 222 urged through the cone clutch 225 and the pin 224 by the restoring force of the spring 227 rotates while maintaining its position, and the camshaft 211 advances. On the other hand, it is screwed to one side (air cylinder 2 side) and relatively moved, and the distance between the camshaft 211 and the wedge cam 10 is adjusted to be small. That is, the automatic clearance adjustment is completed by filling the swinging clearance of the roller arm 13 via the cam roller 12 by the wedge cam 10.
- FIG. 14 is a principal cross-sectional view showing a return state after the operation of the automatic gap adjusting mechanism according to the second embodiment.
- the camshaft 211 is moved by the restoring force of the spring 223 and the chamber spring 9. Return to the initial position.
- the cone clutch 225 comes into contact with the clutch portion constituted by the conical surface 225A by the spring 227.
- the nut member 222 via the cone clutch 225 and the pin 224 becomes non-rotatable, and the position of the nut member 222 adjusted for the clearance relative to the camshaft 211 is maintained in an adjusted relationship.
- FIG. 15 is a cross-sectional plan view of a main part of a third embodiment provided with an automatic clearance adjustment mechanism for a wedge cam type brake according to the present invention.
- the wedge cam 10 side which is one side, is used as a normal brake by an air cylinder 2 that operates by introducing air, and the tip side that is the other side of the camshaft 211 that faces the air cylinder 2 is used.
- the hydraulic cylinder 235 side formed by connecting the hydraulic piston 236 to the sleeve member 220 is configured as an emergency brake that is an emergency brake.
- a member having a long axial dimension is prepared instead of the sleeve member 220 in FIG.
- a hydraulic cylinder 235 is arranged and fixed on the other side of the body 1 instead of the bracket 232.
- a hydraulic chamber 236A is formed between the hydraulic piston 236 accommodated in the hydraulic cylinder 235 and the cylinder inner wall.
- a chamber spring 237 for restoring the hydraulic piston 236 is disposed outside the hydraulic piston 236.
- FIG. 16 is a cross-sectional plan view of a principal part showing an emergency brake non-actuated state provided with an automatic gap adjusting mechanism and an emergency brake mechanism according to the third embodiment, and the brake arm 4 and the like are omitted.
- the sleeve member on the emergency brake side is caused by the axial movement of the camshaft 211 configured to be slidable with respect to the sleeve member 220. No effect on 220.
- FIG. 18 is an overall perspective view of the automatic gap adjusting mechanism according to the third embodiment described above, including the air cylinder 2 using air as a normal brake and the hydraulic cylinder 203 using hydraulic pressure as an emergency brake.
- FIG. 19 is an operation system circuit diagram of an automatic gap adjusting mechanism and an emergency brake mechanism according to the third embodiment.
- the air supply port 7 (FIG. 9) of the air cylinder 2 on one side of the body 1 is configured to be supplied with air from the chamber 39 ⁇ / b> A in the air chamber 39.
- the hydraulic pressure is supplied from the chamber 42A of the accumulator 42.
- the electromagnetic valve 43 disposed in the middle of the pipe line from the accumulator 42 is operated by an emergency brake operation signal, and the chamber 42A of the accumulator 42 and the hydraulic chamber 36A of the hydraulic cylinder 203 (FIG. 17), and by quickly supplying the hydraulic fluid to the hydraulic chamber 36A of the hydraulic cylinder 203, the operation delay of the air cylinder 2 using the air pressure in the normal brake is eliminated, and the emergency brake is quickly applied. It can be activated.
- the oil from the reservoir 41 is accumulated in the chamber 42A of the accumulator 42 from the chamber 40A of the master cylinder 40 by the movement of the air piston in the air chamber 39. Keep it.
- the chamber 42A is pressurized to a predetermined pressure by a pressure spring 42B.
- this predetermined pressure is exceeded, the pressure oil is returned to the reservoir 41 via the check valve 44.
- the electromagnetic valve 43 is closed, and the pressure oil from the hydraulic chamber 36A is gradually returned to the reservoir 41 through the orifice 45. Therefore, the only medium supplied from the outside is air.
- the shape of the wedge cam and its mounting form on the camshaft, the wedge cam and the brake arm base end is the shape of the wedge cam and its mounting form on the camshaft, the wedge cam and the brake arm base end, Related configuration (without interposing a link rod via a pair of link type booster devices such as the second and third embodiments arranged on both sides of the camshaft, without using a link type booster device,
- the wedge cam can be configured to expand the link rod that pivotally supports the cam roller, or the wedge cam can be configured to directly expand the brake arm base end.
- Structure of force ratio and automatic gap adjustment mechanism (the relative rotation prevention mode between the sleeve member and the nut member is the axial direction of the pin and nut member inserted into the pin hole of the sleeve member of the second and third embodiments.
- the automatic clearance adjustment mechanism of the wedge cam type brake of the present invention is preferably applied to a caliper type disc brake of a railway vehicle, but can also be applied to a vehicle such as an automobile or an industrial disc brake.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Braking Arrangements (AREA)
Abstract
過剰ストロークが生じる際に、カムシャフト11の先端部11Aに嵌合された調整ロッド22を静止部(スリーブ部材20)に対して軸方向の相対位置を調整してカムシャフト11の軸方向の初期位置を変更することにより、カムシャフト11自体の先端部11Aにおいて、軸方向にて過剰ストローク時の隙間調整が行える。
Description
本発明は、ウェッジカムを形成したカムシャフトの軸動により生じる前記ウェッジカムのカム作用によりブレーキアームの基端部を拡開揺動するウェッジカム式ブレーキであって、カムシャフトに過剰ストロークが生じる際に前記ブレーキアームの揺動隙間を埋めるように構成したウェッジカム式ブレーキの自動隙間調整機構に関する。
従来、ブレーキを搭載する車両、特に鉄道車両用のディスクブレーキでは、一対のブレーキアームの基端部を拡開してそれらの開放端部に設けられたパッドアッセンブリをブレーキロータ(ディスクロータ)の両側から挟圧してブレーキ動作を行う梃子式のキャリパブレーキが知られている。これらの梃子式のキャリパブレーキにあって、前記パッドアッセンブリが摩耗すると、ブレーキが効き始める時期が遅れて制動距離が長くなるものであった。そこで、ブレーキアームに過剰ストロークが発生することがないように、通常、隙間調整機構であるアジャスタ機構をアクチュエータとブレーキアームの基端部との間に配設している。そのようなアジャスタ機構として、下記特許文献1に記載されたブレーキシリンダがある。
前記特許文献1に開示されたブレーキシリンダは、図20(A)及び図20(B)に示すように、シリンダ本体102に対して相対移動するピストン103と、該ピストン103とともに移動する軸棒104と、該軸棒104に取り付けられた押棒105と、該押棒105の前記シリンダ本体102からの突出長さをブレーキ作動の際に調整する突出長さ調整手段106とを備えている。前記押棒105は、前記ピストン103の移動方向と平行に延びる軸孔を有する円筒状に形成されるとともに、該軸孔の内面の少なくとも一部に雌ネジ151が螺刻され、前記軸棒104は、外面の少なくとも一部に前記雌ネジ151と螺合する雄螺子141が螺刻され前記軸孔に螺挿されるとともに、外部からの軸周りの回転力を付与する回転力付与手段と係合可能な係合部142を有するものである。
このような突出長さ調整手段106を備えたブレーキシリンダ101においては、圧力室102b内への圧力供給によって、図20(B)に示したように、ピストン103が軸棒104および105を介して連結部材107を、シリンダ本体102における第1ケーシング121に対して拡開方向に移動させる。これによって、連結部材107と第1ケーシング121とのそれぞれに接続された図示外のブレーキアームが揺動させられてブレーキ動作が行われる。パッドアッセンブリに摩耗が生じた場合には、蓋部108を取り外して軸棒104における係合部142に、外部からハンドルレンチ等のソケットを係合させて回転させることで、押棒105の雌ネジ151に対する軸棒104の雄ネジ141の螺合を進行させて、軸棒104と押棒105との軸方向距離を拡大させることで、ブレーキアームの過剰ストロークを抑制する隙間調整が可能となる。
また、ブレーキパッドの制動面が摩耗すると、ブレーキを作動させる押棒105の必要ストロークが増大し、凹凸面152を介して係合することによって押棒105と連結されたガイド部材161のストロークも大きくなり過剰ストロークが発生する。規制体165がストッパ166に当接するようになると、ガイド部材161に大きな戻し力が作用するので、凹凸面152の凸部を乗り越えて押棒105が突出方向に変位する。このようにして、ブレーキアームの過剰ストロークを抑制する自動隙間調整がなされる。
しかしながら、このような従来のアジャスタ機構にあっては、調整作業が外部からのハンドルレンチ等を用いた手動により行われており、作業が面倒である。また、従来のアジャスタ機構は、部品構成が複雑になりがちで誤組付けの虞れを生じ易く、外部からのハンドルレンチ等を用いた手動による調整作業が押棒105と軸棒104との間でなされることから、雌ネジ151と雄螺子141との螺合部に過大な力が作用して螺合部が破損した場合には、ブレーキ力低下の虞れも生じた。また、ブレーキアームの過剰ストロークを抑制する自動隙間調整の場合は、押棒105とガイド部材161との間の凹凸面152の凸部を乗り越えた押棒105側の進行によってなされることになるものの、規制体165やストッパ166等の余分な部材を要して複雑な構成となる上、これらの部品の損傷で隙間調整機能が低下する虞れがあった。
そこで本発明では、前記従来のアジャスタ機構における諸課題を解決して、組付け性に優れて簡素な構造で高い精度を要することなく、隙間調整も安定して行え、ブレーキ力低下の虞れもなく、通常ストロークと過剰ストロークとを明確に区別することができ、非常ブレーキとして油圧シリンダ等の作動手段も付加も容易なウェッジカム式ブレーキの自動隙間調整機構を提供することを目的とする。
本発明の上記目的は、下記構成により達成される。
(1) ウェッジカムを形成したカムシャフトの軸動により生じる前記ウェッジカムのカム作用によりブレーキアームの基端部を拡開揺動するウェッジカム式ブレーキにおいて、前記カムシャフトに過剰ストロークが生じる際に前記ブレーキアームの揺動隙間を埋めるように構成したウェッジカム式ブレーキの自動隙間調整機構であって、前記過剰ストロークが生じる際に、前記カムシャフトの先端部に嵌合された調整ロッドが静止部に対して軸方向の相対位置を調整して前記カムシャフトの軸方向の初期位置を変更するウェッジカム式ブレーキの自動隙間調整機構。
(1) ウェッジカムを形成したカムシャフトの軸動により生じる前記ウェッジカムのカム作用によりブレーキアームの基端部を拡開揺動するウェッジカム式ブレーキにおいて、前記カムシャフトに過剰ストロークが生じる際に前記ブレーキアームの揺動隙間を埋めるように構成したウェッジカム式ブレーキの自動隙間調整機構であって、前記過剰ストロークが生じる際に、前記カムシャフトの先端部に嵌合された調整ロッドが静止部に対して軸方向の相対位置を調整して前記カムシャフトの軸方向の初期位置を変更するウェッジカム式ブレーキの自動隙間調整機構。
(2) 上記(1)の構成のウェッジカム式ブレーキの自動隙間調整機構であって、前記調整ロッドが、ボディに固定されたスリーブ部材の内周にフリクション部材を介して嵌合されたウェッジカム式ブレーキの自動隙間調整機構。
(3) 上記(2)の構成のウェッジカム式ブレーキの自動隙間調整機構であって、前記過剰ストロークが生じる際に、前記ウェッジカムの前端面が前記調整ロッドの後端面に衝接して、前記スリーブ部材に対する前記調整ロッドの軸方向の相対位置を変更するウェッジカム式ブレーキの自動隙間調整機構。
(4) 上記(1)から(3)のいずれかの構成のウェッジカム式ブレーキの自動隙間調整機構であって、前記調整ロッドがリリースプラグを介して外部から押圧されることにより、前記調整ロッドを介した前記静止部に対する前記カムシャフトの軸方向の原位置が再設定されるように構成したウェッジカム式ブレーキの自動隙間調整機構。
(5) ウェッジカムを形成したカムシャフトの軸動により生じる前記ウェッジカムのカム作用によりブレーキアームの基端部を拡開揺動するウェッジカム式ブレーキにおいて、前記カムシャフトに過剰ストロークが生じる際に前記ブレーキアームの揺動隙間を埋めるように構成したウェッジカム式ブレーキの自動隙間調整機構であって、前記過剰ストロークが生じる際に、前記カムシャフトの先端部に設けた可逆螺子部に螺合するナット部材との間の回転により軸方向の相対位置を調整して前記カムシャフトの軸方向の初期位置を変更するウェッジカム式ブレーキの自動隙間調整機構。
(6) 上記(5)の構成のウェッジカム式ブレーキの自動隙間調整機構であって、前記ナット部材とスライド自在のみに嵌合され、スリーブ部材の内周面に形成した円錐面に弾接されたコーンクラッチが、前記カムシャフトの過剰ストロークで前記スリーブ部材から開放されて前記ナット部材を回転させることにより、前記カムシャフトの初期位置を調整して変更するウェッジカム式ブレーキの自動隙間調整機構。
(7) 上記(6)の構成のウェッジカム式ブレーキの自動隙間調整機構であって、前記ナット部材および前記コーンクラッチが、前記スリーブ部材内にてサブアッセンブリ構造とされたウェッジカム式ブレーキの自動隙間調整機構。
(8) 上記(6)または(7)の構成のウェッジカム式ブレーキの自動隙間調整機構であって、前記コーンクラッチがリリースプラグを介して外部から引かれることにより、該コーンクラッチが前記スリーブ部材の円錐面から開放されることで、前記可逆螺子部に螺合する前記ナット部材に対する回転により前記カムシャフトの軸方向の原位置を再設定するように構成したウェッジカム式ブレーキの自動隙間調整機構。
(9) 上記(6)から(8)のいずれかの構成のウェッジカム式ブレーキの自動隙間調整機構であって、前記ウェッジカムのカムシャフトをエアーシリンダにより作動させる通常ブレーキとし、前記エアーシリンダと対向する前記カムシャフトの先端部側の前記スリーブ部材に油圧ピストンを連結して非常用ブレーキの油圧シリンダとしたウェッジカム式ブレーキの自動隙間調整機構。
(10) 上記(9)の構成のウェッジカム式ブレーキの自動隙間調整機構であって、前記油圧シリンダを作動させるアキュムレータは、通常ブレーキの作動時にエアーチャンバにより蓄圧されるように構成されたウェッジカム式ブレーキの自動隙間調整機構。
(11) 上記(10)の構成のウェッジカム式ブレーキの自動隙間調整機構であって、前記非常用ブレーキ作動時に導入された圧液は、オリフィスによってリザーバへ還流するように構成されたウェッジカム式ブレーキの自動隙間調整機構。
上記(1)の構成によれば、カムシャフト自体の先端部において、軸方向にて過剰ストローク時の隙間調整が行えるので、安定した隙間調整が単一の調整機構によってもパッド摩耗量に対して広い範囲で行うことが可能となる上、部品に破損が生じても制御が確保される。
上記(2)の構成によれば、通常ストローク時にはカムシャフトが調整ロッド内を摺動し、パッド摩耗による過剰ストローク時にはフリクション部材の介在というきわめて簡素な構造の組合せにより、静止部であるスリーブ部材に対する調整ロッドの軸方向位置を簡便に無段階で移動させて広い範囲でパッド摩耗に対して自動隙間調整をすることができる。
上記(3)の構成によれば、ウェッジカムの前端面が調整ロッドの後端面に衝接するだけの単純な構成によって、故障や破損の虞れもなく、過剰ストローク時のカムシャフトと調整ロッドとの一体となった隙間調整が簡便かつ容易に行える。
上記(4)の構成によれば、パッド交換等の際に、リリースプラグを介して調整ロッドを外部から押圧するだけで、静止部すなわちスリーブ部材に対する調整ロッドの軸方向位置を簡便に原位置に再設定できる。
上記(5)の構成によれば、カムシャフト自体の先端部において所定の力が作用した状態で過剰ストローク時の隙間調整が行えるので、安定した隙間調整が単一の調整機構にて広い範囲で行うことが可能となる。
上記(6)の構成によれば、カムシャフトの可逆螺子部に螺合するナット部材の回転調整を可能にするコーンクラッチがスリーブ部材に対して円錐面でクラッチ部を構成するので、調整前に振動等で回転することがなく安定性が高い。しかも、ウェッジカムおよびカムシャフトの軸動方向に充分なストロークを確保できるので、カムシャフトの先端部側に配設された隙間調整機構により、ブレーキライニングの新品から全摩耗までの隙間調整が可能で、万一、隙間が増加してもブレーキが作用しなくなることがなく、安全性が高い。
上記(7)の構成によれば、精度を要する構成部品を容易に保護できるとともに、組付け性も向上する。
上記(8)の構成によれば、リリースプラグを内側へ押すようなことがあっても何も変化せず、誤作動の危険性がきわめて低く安全である。
上記(9)の構成によれば、隙間調整機構の構造をそのまま活用して、その構成部品であるスリーブ部材に非常用ブレーキの油圧シリンダにおける油圧ピストンを連結するだけで、非常ブレーキ作動時には、通常ブレーキにおける空圧による作動遅れを補填して油圧による迅速なブレーキ動作が可能となり、安全性が向上する。
上記(10)の構成によれば、空圧以外の作動源を必要とせず、システムが簡素化できる。
上記(11)の構成によれば、非常用ブレーキ作動時に導入された圧液は、暫時マスターシリンダのリザーバに戻り、油圧ピストンによる押圧力は自動的に解除される。
以下、本発明のウェッジカム式ブレーキの自動隙間調整機構を実施するための好適な形態を図面に基づいて説明する。本発明の第1実施例に係るウェッジカム式ブレーキの自動隙間調整機構は、図1に示すように、ウェッジカム10を形成したカムシャフト11の軸動により生じる前記ウェッジカム10のカム作用によりブレーキアーム4、4の基端部を拡開揺動するウェッジカム式ブレーキにおいて、カムシャフト11に過剰ストロークが生じる際に前記ブレーキアーム4、4の揺動隙間を埋めるように構成したウェッジカム式ブレーキの自動隙間調整機構であって、前記過剰ストロークが生じる際に、前記カムシャフト11の先端部に嵌合された調整ロッド22が静止部(スリーブ部材20)に対して軸方向の相対位置を調整してカムシャフト11の軸方向の初期位置を変更するものである。
以下、本発明のウェッジカム式ブレーキの自動隙間調整機構の第1実施例について説明する。適宜のサポートを介してボディ1が車体静止部に固定され、図8(A)及び図8(B)の模式図に示すように、該ボディ1(図8(A)及び図8(B)では図示省略)の下部両側に一対のブレーキアーム4、4の中間部がブレーキアーム軸5、5によって軸支される。ブレーキアーム4、4の上部の各開放端には、ブレーキホルダを介してパッドアッセンブリ6、6が装着される。そして、ブレーキアーム4、4の各基端部には、図1に示すような、リンク式倍力装置のローラアーム13に球面ブッシュ14により連結・支持された出力軸を構成するリンクロッド15の外側端が球面ブッシュ16により支持される。
なお、図8(A)及び図8(B)の例では、ローラアーム13等により構成されるリンク式倍力装置ではなく、ウェッジカム10にて押し広げられるカムローラ12がリンクロッドを介して直接にブレーキアーム4の基端部を拡開するような形式となっている。無論、図8(A)及び図8(B)においても、図1のようなローラアーム13を備えたリンク式倍力装置としてもよい。
なお、図8(A)及び図8(B)の例では、ローラアーム13等により構成されるリンク式倍力装置ではなく、ウェッジカム10にて押し広げられるカムローラ12がリンクロッドを介して直接にブレーキアーム4の基端部を拡開するような形式となっている。無論、図8(A)及び図8(B)においても、図1のようなローラアーム13を備えたリンク式倍力装置としてもよい。
図1に示すように、エアーをエアー供給口7から導入して空圧室8Aに充填させると、エアーピストン8をチャンバスプリング9の復元力に抗して軸方向他方側(図面下側)に作動させるエアーシリンダ2がカムシャフト11の一方側(図面上側)に配設される。カムシャフト11の軸方向他方側への移動に伴い、カムシャフト11にナット24により取り付けられて形成されたウェッジカム10の傾斜面に乗り上げるカムローラ12、12が配設される。カムローラ12、12は、例えば、リンク式倍力装置を構成するストラット19の両端部に他端部がそれぞれベアリング18、18によって軸支された一対のローラアーム13、13の一端部に、それぞれ軸支されている。ウェッジカム10の傾斜面へのカムローラ12、12の乗上げによって、ローラアーム13、13は拡開方向に揺動して、ローラアーム13、13の略中間部に球面ブッシュ14により連結・支持されたリンクロッド15、15を梃子の原理によって倍力して外方(図面左右方向)へ軸動させる。これによって、ブレーキアーム4、4の各基端部がブレーキアーム軸5を揺動中心として拡開方向に移動させられて、ブレーキアーム4、4の開放端部(図1の紙背側)に配設されたパッドアッセンブリ6、6(図8(A)及び図8(B)参照)がディスクロータ3に挟圧させられてブレーキ動作が行われる。
エアーシリンダ2に対して軸方向の反対側であるカムシャフト11の先端部11A側には、1つの自動隙間調整機構が配設される。自動隙間調整機構は、静止部であるボディ1に対して支持されたスリーブ部材20と、その内周部に嵌合された調整ロッド22と、該調整ロッド22内に摺動自在に嵌合された前記カムシャフト11、さらには、過剰ストローク時に調整ロッド22の後端面に前端面が衝接することになるウェッジカム10とから構成される。前記スリーブ部材20の内周面には、調整ロッド22の外周面に作用して所定の摩擦力(その摩擦による抵抗力>チャンバスプリング9の復元力)にて互いの摺動を規制するフリクション部材21が配設され、止め輪17によって抜け止めされる。調整ロッド22の内周面とカムシャフト11の外周面との間には、ブッシュ23が調整ロッド22の内周面に圧入される。
図7にて明確なように、カムシャフト11の先端部11Aには径大部11Bが形成され、調整ロッド22の中間に形成された径小段差部22Aに衝接して、カムシャフト11の復帰時に調整ロッド22に衝接して抜け止めされる。(図7では前記チャンバスプリング9の復元力によりカムシャフト11によって調整ロッド22が共に復帰位置に連れ戻されようとするが、フリクション部材21との摩擦力の方が大きく隙間調整後に調整ロッド22が戻ることはない)
また、図6および図7にて後述するところの過剰ストロークにより隙間調整がなされた後に、図1に示すように、スリーブ部材20に対して他方側(ブレーキ作動方向)に突出した調整ロッド22を外部から押圧するためのリリースプラグ29がボディ1の他方側に配設される。符号25はリリースプラグ29を被覆するキャップを示す。符号27はリリースプラグ29の復帰スプリングである。パッドアッセンブリ等の新品の交換等の際に、リリースプラグ29による内方への押圧によって、カムシャフト11の軸方向の初期位置を変更して軸方向の原位置に容易に再設定できるので、パッドアッセンブリ等の新品の交換等が迅速に行える。
図2は、本発明の第1実施例に係るウェッジカム式ブレーキに採用される自動隙間調整機構を理解し易く示した分解斜視図である。前述したように、カムシャフト11の先端部11A側には、1つの自動隙間調整機構が構成されて配設される。図1を参照しつつ図2に示すように、自動隙間調整機構は、静止部であるボディ1に対して支持されたスリーブ部材20と、その内周部に嵌合された調整ロッド22と、該調整ロッド22内に摺動自在に嵌合されたカムシャフト11、さらには、過剰ストローク時に調整ロッド22の後端面に前端面が衝接することになるウェッジカム10とから構成される。スリーブ部材20のスリーブ部には、カムシャフト11の先端部11Aをガイドするブッシュ23を内周面に圧入した調整ロッド22が嵌合され、該調整ロッド22内の中間の径小段差部22A(図3参照)に衝接する形態にて、カムシャフト11の先端部11Aの径大部11Bがさらに嵌合される。スリーブ部材20と調整ロッド22との間には、フリクション部材21が配設され、該フリクション部材21はスリーブ部材20との間に設置される止め輪17によって抜け止めされる。スリーブ部材20およびウェッジカム10に渡って挿通されたカムシャフト11の基端部に螺合されるナット24により、カムシャフト11はウェッジカム10に緊締される。なお、スリーブ部材20のスリーブ部の内径孔を止め輪17側に行く程広いテーパ孔とすることで、アジャスタ作動時は緩く作動させてキャリパの効率ロスを抑制する構成とし、戻り側はきつく作動させることにより車両の振動等によりアジャスタが戻らない構成とすることも考慮できる。この際に、フリクション部材21の構成も対応するテーパ状としてもよい。
図3は、第1実施例に係る自動隙間調整機構の初期状態を示す要部平断面図で、ボディ1やエアーシリンダ2およびリリースプラグ29等が図示省略されている。図1と同様の図で、自動隙間調整機構はもとよりブレーキも非作動の初期状態を示し、図示外のエアーピストン8のチャンバスプリング9の復元力に抗してカムシャフト11を軸方向他方側(図面下側)に作動させると、通常のブレーキ作動状態を示す要部平断面図である図4に示すよう、カムシャフト11に取り付けられて形成されたウェッジカム10の傾斜面にカムローラ12、12が乗り上げる。これによって、例えば、リンク式倍力装置を構成するストラット19の両端部のベアリング18、18に軸支された一対のローラアーム13、13が、ベアリング18、18を軸支点として外側に拡開し、ローラアーム13、13の略中間部に球面ブッシュ14により連結・支持されたリンクロッド15、15を梃子の原理によって倍力されて外方(図面左右方向)へ軸動させる。かくして、図8(A)に示すように、ブレーキアーム4、4の各基端部がブレーキアーム軸5を揺動中心として拡開方向に移動させられて、ブレーキアーム4、4の開放端部に配設されたパッドアッセンブリ6、6をディスクロータ3に挟圧させてブレーキ動作が行われる。
図4にて理解されるように、このときカムシャフト11は、自身の先端部の径大部11B、調整ロッド22内に圧入されたブッシュ23や調整ロッド22内周の径小段差部22Aの複数箇所で安定して支持されて、調整ロッド22内を軸方向に移動することができるので、ウェッジカム10の傾斜面によってローラアーム13、13を拡開してリンクロッド15、15を介してブレーキ動作を行うことになる。図4の状態からブレーキ動作が解除されると、カムシャフト11は初期位置に復帰すべく図面上方へ後退する。カムシャフト11の先端部の径大部11Bが調整ロッド22における径小段差部22Aに衝接して初期位置となる。
図5は第1実施例に係る自動隙間調整機構の過剰ストロークによる隙間調整(アジャスト)直前のブレーキ作動状態を示す要部平断面図で、図6は第1実施例に係る自動隙間調整機構の隙間調整時のブレーキ作動状態を示す要部平断面図である。パッド等が摩耗すると、図示外のブレーキアーム4の揺動ストロークが増大し、ひいては、カムシャフト11のストロークが通常の範囲を逸脱して過剰ストロークにて軸方向の他方側(図面下方側)に移動する。これによって、図5に示すように、調整ロッド22の後端面にウェッジカム10の前端面が衝接することになる。カムシャフト11が過剰ストロークにより、図6に示すようにさらに進行すると、静止部であるスリーブ部材20と調整ロッド22との間に配設されたフリクション部材21の摩擦による抵抗値を超えて、スリーブ部材20に対して調整ロッド22が相対的に進行して突出する。隙間調整が完了した状態である。
図7は、第1実施例に係る自動隙間調整機構の隙間調整後のブレーキ非作動状態を示す要部平断面図である。隙間調整が完了すると、図6の状態から図示外のチャンバスプリング9によりカムシャフト11が調整ロッド22内を初期位置に戻る。カムシャフト11の先端部の径大部11Bが調整ロッド22における径小段差部22Aに衝接して初期位置(図7)となる。パッド等の摩耗により起因した過剰ストロークによって生じたブレーキアームの揺動隙間を埋めるべく補償された隙間調整により、調整ロッド22がスリーブ部材20から相対的に進行して突出した状態となっていることから、隙間調整後のカムシャフト11の初期位置は原位置よりも隙間調整された調整ロッド22の突出分だけウェッジカム10も進行した位置にある。したがって、ウェッジカム10の傾斜面とカム係合するローラアーム13、13も拡開した状態となっており、パッド等の摩耗分だけ予め進行した隙間調整状態が現出される。
図8(A)及び図8(B)は、第1実施例に係る自動隙間調整機構とブレーキアームを介したパッドアッセンブリとの関連による隙間調整工程の模式図である。図8(A)及び図8(B)では静止側であるボディ1に取り付けられたスリーブ部材20については図示を省略されている。図8(A)左側図の初期状態からウェッジカム10およびカムシャフト11が、制動時の倍力カムストロークSだけ進行し、カムローラ12、12を介してブレーキアーム4の基端部が拡開し、揺動支点であるブレーキアーム軸5を中心に揺動して開放端部に装着された新品状態のパッドアッセンブリ6をディスクロータ3の側面に挟持して圧接して図8(A)右側図のブレーキ作動状態になる。このとき、カムシャフト11は調整ロッド22に対して進行する。
図8(B)左側図は、パッドアッセンブリ6におけるパッドが摩耗して自動隙間調整機構により隙間調整が行われて、図示省略のスリーブ部材20のフリクション部材21に対する調整ロッド22が進行した突出状態にあり、なおかつフル摩耗状態のパッドアッセンブリ6がディスクロータ3に接触していないブレーキ非作動の前記図7に対応する状態が示されている。図8(B)右側図は、ウェッジカム10およびカムシャフト11が共に、制動時の倍力カムストロークSだけ進行してブレーキアーム4が作動位置に揺動し、その開放端部に装着されたフル摩耗状態のパッドアッセンブリ6がディスクロータ3の側面に挟持して圧接したブレーキ作動中の状態が示されている。
以上、本発明の第1実施例について説明してきたが、本発明の趣旨の範囲内で、ウェッジカムの形状、およびそのカムシャフトへの取付け形態、ウェッジカムとブレーキアーム基端部との関連構成(カムシャフトの両側に配置した第1実施例のような一対のリンク式倍力装置を介してリンクロッドを介在させたものや、リンク式倍力装置を介さずに、ウェッジカムがカムローラを軸支したリンクロッドを拡開させたり、さらには、ウェッジカムが直接にブレーキアーム基端部を拡開させるように構成することもできる。)、リンク式倍力装置における倍力比率、自動隙間調整機構の構造としての、過剰ストロークが生じる際に、前記ウェッジカムの前端面が調整ロッドの後端面に衝接する構造として、調整ロッドの後端面とウェッジカムの前端面殿間に制作誤差を調整するシム等を介在させるようにしてもよい。調整ロッドのスリーブ部材に対する摩擦付与部材としてのフリクション部材の材質、摩擦係数、配設形態(第1実施例におけるスリーブ部材の内周側に配設するものに代えて、調整ロッドの外周側に配設することもできる)、カムシャフトの先端部における径大部と調整ロッドにおける径小段差部との衝接形態、リリースプラグの形状、形式およびそのボディへの配設形態等については適宜選定できる。また、第1実施例に記載の諸元はあらゆる点で単なる例示に過ぎず限定的に解釈してはならない。
以下、本発明の第2及び第3実施例に係るウェッジカム式ブレーキの自動隙間調整機構を実施するための好適な形態を図面に基づいて説明する。本発明の第2実施例に係るウェッジカム式ブレーキの自動隙間調整機構は、図9に示すように、ウェッジカム10を形成したカムシャフト211の軸動により生じる前記ウェッジカム10のカム作用によりブレーキアーム4、4の基端部を拡開揺動するウェッジカム式ブレーキにおいて、カムシャフト211に過剰ストロークが生じる際に前記ブレーキアーム4、4の揺動隙間を埋めるように構成したウェッジカム式ブレーキの自動隙間調整機構であって、前記過剰ストロークが生じる際に、前記カムシャフト211の先端部に設けた可逆螺子部211Bに螺合するナット部材222との間の回転により軸方向の相対位置を調整してカムシャフト211の軸方向の初期位置を変更するものである。
以下、本発明のウェッジカム式ブレーキの自動隙間調整機構の第2実施例について説明する。図18(後述する第3実施例の油圧シリンダ203も備えている)に示すように、適宜のサポートを介してボディ1が車体静止部に固定され、該ボディ1の下部両側に一対のブレーキアーム4、4の中間部がブレーキアーム軸5、5によって軸支される。ブレーキアーム4、4の各開放端には、ブレーキホルダを介してパッドアッセンブリ6、6が装着される。そして、ブレーキアーム4、4の各基端部には、後述する図9に示すような、リンク式倍力装置のローラアーム13に球面ブッシュ14により連結・支持された出力軸を構成するリンクロッド15の外側端が球面ブッシュ16により支持される。
図9に示すように、エアーをエアー供給口7から導入してエアーピストン8をチャンバスプリング9の復元力に抗して軸方向他方側(図面左側)に作動させるエアーシリンダ2がカムシャフト211の一方側(図面右側)に配設される。カムシャフト211の軸方向他方側への移動に伴い、カムシャフト211に取り付けられて形成されたウェッジカム10の傾斜面に乗り上げるカムローラ12、12が配設される。カムローラ12、12は、例えば、リンク式倍力装置を構成する、ストラット19の両端部に他端部がそれぞれベアリング18、18によって軸支された一対のローラアーム13、13の一端部にそれぞれ軸支されている。ウェッジカム10の傾斜面へのカムローラ12、12の乗上げによって、ローラアーム13、13は拡開方向に揺動して、ローラアーム13、13の略中間部に球面ブッシュ14により連結・支持されたリンクロッド15、15を梃子の原理によって倍力して外方(図面上下方向)へ軸動させる。これによって、ブレーキアーム4、4の各基端部を拡開方向に揺動させて、ブレーキアーム4、4、の開放端部に配設されたパッドアッセンブリ6、6(図18)をブレーキロータに挟圧させてブレーキ動作が行われる。
エアーシリンダ2に対して軸方向の反対側であるカムシャフト211の先端部側には、1つの自動隙間調整機構が配設される。自動隙間調整機構は、ボディ1に対してガイド217を介して支持された径大部を有するスリーブ部材220と、その径大部の内部にサブアッセンブリされたナット部材222と、該ナット部材222にピン224によりスライド自在のみに嵌合されたコーンクラッチ225と、スプリング223、227、リリースプラグ229等から構成される。エアーシリンダ2のみの設置の場合には、前記スリーブ部材220はボディ1の他方側に装着・固定されたブラケット232によって軸方向の移動が規制されている。
図10(A)は本発明の自動隙間調整機構の構成部品の分解斜視図で、図10(B)は組み立てられた状態の縦断面図、図10(C)はブラケット232側から見たボルト取付け前の横断面図である。図示外のカムシャフト211が嵌合される径小部を有するスリーブ部材220内に、カムシャフト211の先端部が螺合されるナット部材222を内部に嵌合したケース221が嵌合され、ケース221の外側でスリーブ部材220の内側には、スプリングシート233およびベアリング226を介してスプリング227により円錐面225Aがスリーブ部材220の内周面の円錐面に接触するように付勢されるコーンクラッチ225が配設される。コーンクラッチ225の内部には、ナット部材222との間に介設されたベアリング234を介してスプリング223によりナット部材222と反対側に付勢されるリリースプラグ229が収容される。なお、ブラケット232内に配設された符号231で示したものは、自動隙間調整機構内に塵埃等が侵入するのを防止するブーツである。
このように構成された第2実施例に係る自動隙間調整機構を動作の一部とともに、図9~図10(C)を用いてさらに詳述すると、第2実施例に係る自動隙間調整機構のガイド217に支持されたスリーブ部材220の径小部内にてカムシャフト211が摺動自在に配置され、該カムシャフト211の先端部に設けた可逆螺子部211Bに螺合するナット部材222が、スリーブ部材220内に収容されたケース221内に収納される。ケース221のピン孔221Aに挿入されたピン224がナット部材222における外周の軸方向の溝222Aに受け入れられる。前記ピン224は同時にスリーブ部材220内にて軸動する中空状のコーンクラッチ225のピン孔225Cにも挿入されている。コーンクラッチ225の端面とスリーブ部材220の内周面との間には、円錐面225A(図13)によって断接するクラッチ部が形成される。コーンクラッチ225はスリーブ部材220の内周面に配設されたスプリング227によって、円錐面225Aであるクラッチ部を接続する方向に付勢されている。
また、前記コーンクラッチ225は、ボディ1の他方側に装着・固定されたブラケット232の略中央部に配設されたリリースプラグ229によって外部から引くことができる。リリースプラグ229の一端部の径大段差部230がコーンクラッチ225の他端部の径小段差部225Bにベアリング228を介して当接しており、リリースプラグ229によるスプリング227の復元力に抗したコーンクラッチ225の外方への牽引のみが可能である。リリースプラグ229を内方へ押圧した場合には、コーンクラッチ225に何らの影響を及ぼすことはないので誤動作を防止できる。パッドアッセンブリ等の新品の交換等の際に、リリースプラグ229によるコーンクラッチ225の外方への牽引によって、コーンクラッチ225はスリーブ部材220の内周面の円錐面225Aのクラッチ部から離れる。そのとき、コーンクラッチ225の軸動に伴い、ピン224を介してケース221も軸動してナット部材222をも外方へ移動させる。これにより、回転自在となったコーンクラッチ225およびナット部材222は、チャンバスプリング9により復元勝手なカムシャフト211の先端部の可逆螺子部211Bに対して軸方向の相対位置が調整され、カムシャフト211の軸方向の初期位置を変更して軸方向の原位置に容易に再設定できる。
図11は、図9と同様の図で第2実施例に係る自動隙間調整機構が非作動のブレーキの初期状態を示し、ブレーキアーム4等が省略されて示されている。前記リリースプラグ229とカムシャフト211の先端部との間にはスプリング223が配設されており、前述したリリースプラグ229の外方への付勢とカムシャフト211の復元にも寄与する。図12は第2実施例に係る自動隙間調整機構の非作動(通常ストローク)状態を示す要部平断面図で、カムシャフト211の先端部がスプリング223を圧縮するものの、カムシャフト211のストロークが通常の範囲内にあってスプリング223がリリースプラグ229に影響を与えることはない。したがって、ナット部材222はカムシャフト211の先端部に対して回転することなく、単にカムシャフト211の先端部と軸方向の移動を共にする。
図13は、第2実施例に係る自動隙間調整機構の作動(過剰ストローク)状態を示す要部平断面図で、パッド等が摩耗すると、図示外のブレーキアーム4の揺動ストロークが増大し、ひいては、カムシャフト211のストロークが通常の範囲を逸脱して過剰ストロークにて軸方向の他方側に移動する。これによって、リリースプラグ229との間に配設されたスプリング223は圧縮され、ナット部材222がリリースプラグ229に当接し、僅かにリリースプラグ229を外方へ押し出す。すると、コーンクラッチ225は円錐面225Aから構成されるクラッチ部から離れ、ピン224、ケース221、ナット部材222とともに回転可能となる。したがって、さらにカムシャフト211の進行により、スプリング227の復元力にてコーンクラッチ225、ピン224を介して付勢されたナット部材222がその位置を維持したまま回転して、進行するカムシャフト211に対して一方側(エアーシリンダ2側)に螺進して相対移動し、カムシャフト211におけるウェッジカム10との軸間距離が小さく調整される。つまり、ウェッジカム10によるカムローラ12を介したローラアーム13の揺動隙間を埋めて、自動隙間調整が完了する。
図14は、第2実施例に係る自動隙間調整機構の作動後の戻り状態を示す要部平断面図で、自動隙間調整が完了すると、スプリング223およびチャンバスプリング9の復元力によりカムシャフト211が初期位置に戻る。スプリング223に対するカムシャフト211の押付けが解除されると、スプリング227によりコーンクラッチ225が円錐面225Aから構成されるクラッチ部に接触して。コーンクラッチ225、ピン224を介したナット部材222は回転不可能となって、カムシャフト211に対する隙間調整がなされたナット部材222の位置が調整された関係に維持される。
図15は、本発明のウェッジカム式ブレーキの自動隙間調整機構を備えた第3実施例の要部平断面図である。本第3実施例では、一方側であるウェッジカム10側をエアーを導入して作動するエアーシリンダ2による通常ブレーキとし、前記エアーシリンダ2と対向するカムシャフト211の他方側である先端部側のスリーブ部材220に油圧ピストン236を連結して構成した油圧シリンダ235側を緊急ブレーキである非常用ブレーキとして構成したものである。好適には、前記図9におけるスリーブ部材220に代えて軸方向の寸法の長いものを準備し、ブラケット232に代えて油圧シリンダ235をボディ1の他方側に配設・固定するものである。油圧シリンダ235内に収容された油圧ピストン236とシリンダ内壁との間には油圧室236Aが形成される。油圧ピストン236の外側には油圧ピストン236の復元のためのチャンバスプリング237が配設される。
かくして、前述した第2実施例の自動隙間調整機構の構造をそのまま活用してその構成部品であるスリーブ部材220を非常用ブレーキの油圧シリンダ235における油圧ピストン236に連結するだけで、後述する応答遅れの少ない油圧を用いた非常用ブレーキを後付けにて容易に設置することができ、非常ブレーキ作動時には、通常ブレーキにおける空圧による作動遅れを補填して油圧による迅速なブレーキ動作が可能となり、安全性が向上する。
図16は、第3実施例に係る自動隙間調整機構と非常ブレーキ機構を備えたものの非常ブレーキ非作動状態を示す要部平断面図で、ブレーキアーム4等が省略されて示されている。図から理解されるように、エアーシリンダ2におけるエアーピストン8による通常のブレーキ作動時には、スリーブ部材220に対して摺動自在に構成されたカムシャフト211の軸動によって、非常ブレーキ側であるスリーブ部材220に対して影響を及ぼすことはない。図17に示すように、緊急時に非常ブレーキを作動させるには、油圧シリンダ235における油圧室236Aに圧油を供給することにより、油圧ピストン236をチャンバスプリング237の復元力に抗して他方側へ軸動させる。かくして、油圧ピストン236に連結されたスリーブ部材220を牽引し、コーンクラッチ225を接続したままでナット部材222が回転することなく、カムシャフト211をブレーキ作動方向へ軸動させて、油圧による迅速なブレーキ動作が行われる。図18は、以上説明した第3実施例に係る自動隙間調整機構を備え、通常ブレーキであるエアーによるエアーシリンダ2と非常ブレーキである油圧による油圧シリンダ203を備えたものの全体斜視図である。
図19は、第3実施例に係る自動隙間調整機構と非常ブレーキ機構を備えたものの作動システム回路図である。エアーによる通常ブレーキ機構と油圧による緊急時の非常ブレーキとを備える言わば、ハイブリッドキャリパ作動システムである。ボディ1の一方側のエアーシリンダ2のエアー供給口7(図9)には、エアーチャンバ39における室39Aからのエアーが供給されるように構成され、ボディ1の他方側の油圧シリンダ203には、アキュムレータ42の室42Aからの油圧が供給されるように構成される。緊急時に非常ブレーキを作動させるには、アキュムレータ42からの管路の途中に配設された電磁弁43を緊急ブレーキの作動信号により作動させてアキュムレータ42の室42Aと油圧シリンダ203の油圧室36Aとを連通させ(図17)、圧液を油圧シリンダ203の油圧室36Aに迅速に供給することで、通常ブレーキにおけるエアー圧を用いたエアーシリンダ2の作動遅れを解消して、迅速に非常ブレーキを作動させるとができる。
通常ブレーキ作動時のエアーチャンバ39における室39Aへのエアーの供給時に、同時に、エアーチャンバ39におけるエアーピストンの移動によって、リザーバ41からの油をマスターシリンダ40の室40Aからアキュムレータ42の室42Aに蓄圧しておく。室42Aは加圧スプリング42Bによって所定の圧力に加圧されている。この所定圧を超えると、圧油はチェック弁44を介してリザーバ41へ還流される。非常ブレーキの作動後には電磁弁43は閉じられ、前記油圧室36Aからの圧油はオリフィス45を介してリザーバ41に少しずつ還流する。したがって、外部から供給される媒体はエアーのみでよい。
以上、本発明の第2及び第3実施例について説明してきたが、本発明の趣旨の範囲内で、ウェッジカムの形状、およびそのカムシャフトへの取付け形態、ウェッジカムとブレーキアーム基端部との関連構成(カムシャフトの両側に配置した第2及び第3実施例のような一対のリンク式倍力装置を介してリンクロッドを介在させたものや、リンク式倍力装置を介さずに、ウェッジカムがカムローラを軸支したリンクロッドを拡開させたり、さらには、ウェッジカムが直接にブレーキアーム基端部を拡開させるように構成することもできる。)、リンク式倍力装置における倍力比率、自動隙間調整機構の構造(スリーブ部材とナット部材との相対回転阻止形態は、第2及び第3実施例のスリーブ部材のピン孔に挿入されたピンとナット部材の軸方向溝との嵌合の他、スプライン嵌合等による相対回転阻止形態でもよい)、スリーブ部材の内周面に形成した円錐面にコーンクラッチを弾接したクラッチ部の形状(円錐面に放射状の凹凸を形成して回転の妄動を抑止するようにしてもよい)、形式、リリースプラグの形状、形式およびそのコーンクラッチとの接続形態、油圧シリンダ等を作動させるアキュムレータの蓄圧形態、電磁弁の形式、オリフィスの形状、形式等については適宜選定できる。また、第2及び第3実施例に記載の諸元はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。
更に、本出願は、2011年3月2日出願の日本特許出願(特願2011-044717)、2011年3月9日出願の日本特許出願(特願2011-050947)、2011年11月30日出願の日本特許出願(特願2011-261202)及び2012年2月13日出願の日本特許出願(特願2012-027891)に基づくものであり、その内容はここに参照として取り込まれる。
更に、本出願は、2011年3月2日出願の日本特許出願(特願2011-044717)、2011年3月9日出願の日本特許出願(特願2011-050947)、2011年11月30日出願の日本特許出願(特願2011-261202)及び2012年2月13日出願の日本特許出願(特願2012-027891)に基づくものであり、その内容はここに参照として取り込まれる。
本発明のウェッジカム式ブレーキの自動隙間調整機構は、好適には鉄道車両のキャリパ型ディスクブレーキに適用されるが、自動車等の車両や産業用ディスクブレーキ等への適用も可能である。
4 ブレーキアーム
10 ウェッジカム
11 カムシャフト
11A 先端部
20 静止部(スリーブ部材)
22 調整ロッド
10 ウェッジカム
11 カムシャフト
11A 先端部
20 静止部(スリーブ部材)
22 調整ロッド
Claims (13)
- ウェッジカムを形成したカムシャフトの軸動により生じる前記ウェッジカムのカム作用によりブレーキアームの基端部を拡開揺動するウェッジカム式ブレーキにおいて、前記カムシャフトに過剰ストロークが生じる際に前記ブレーキアームの揺動隙間を埋めるように構成したウェッジカム式ブレーキの自動隙間調整機構であって、
前記過剰ストロークが生じる際に、前記カムシャフトの先端部に嵌合された調整ロッドが静止部に対して軸方向の相対位置を調整して前記カムシャフトの軸方向の初期位置を変更するウェッジカム式ブレーキの自動隙間調整機構。 - 前記調整ロッドが、ボディに固定されたスリーブ部材の内周にフリクション部材を介して嵌合された請求項1に記載のウェッジカム式ブレーキの自動隙間調整機構。
- 前記過剰ストロークが生じる際に、前記ウェッジカムの前端面が前記調整ロッドの後端面に衝接して、前記スリーブ部材に対する前記調整ロッドの軸方向の相対位置を変更する請求項1または2に記載のウェッジカム式ブレーキの自動隙間調整機構。
- 前記調整ロッドがリリースプラグを介して外部から押圧されることにより、前記調整ロッドを介した前記静止部に対する前記カムシャフトの軸方向の原位置が再設定されるように構成した請求項1または2に記載のウェッジカム式ブレーキの自動隙間調整機構。
- 前記調整ロッドがリリースプラグを介して外部から押圧されることにより、前記調整ロッドを介した前記静止部に対する前記カムシャフトの軸方向の原位置が再設定されるように構成した請求項3に記載のウェッジカム式ブレーキの自動隙間調整機構。
- ウェッジカムを形成したカムシャフトの軸動により生じる前記ウェッジカムのカム作用によりブレーキアームの基端部を拡開揺動するウェッジカム式ブレーキにおいて、前記カムシャフトに過剰ストロークが生じる際に前記ブレーキアームの揺動隙間を埋めるように構成したウェッジカム式ブレーキの自動隙間調整機構であって、
前記過剰ストロークが生じる際に、前記カムシャフトの先端部に設けた可逆螺子部に螺合するナット部材との間の回転により軸方向の相対位置を調整して前記カムシャフトの軸方向の初期位置を変更するウェッジカム式ブレーキの自動隙間調整機構。 - 前記ナット部材とスライド自在のみに嵌合され、スリーブ部材の内周面に形成した円錐面に弾接されたコーンクラッチが、前記カムシャフトの過剰ストロークで前記スリーブ部材から開放されて前記ナット部材を回転させることにより、前記カムシャフトの初期位置を調整して変更する請求項6に記載のウェッジカム式ブレーキの自動隙間調整機構。
- 前記ナット部材および前記コーンクラッチが、前記スリーブ部材内にてサブアッセンブリ構造とされた請求項7に記載のウェッジカム式ブレーキの自動隙間調整機構。
- 前記コーンクラッチがリリースプラグを介して外部から引かれることにより、該コーンクラッチが前記スリーブ部材の円錐面から開放されることで、前記可逆螺子部に螺合する前記ナット部材に対する回転により前記カムシャフトの軸方向の原位置を再設定するように構成した請求項7または8に記載のウェッジカム式ブレーキの自動隙間調整機構。
- 前記ウェッジカムのカムシャフトをエアーシリンダにより作動させる通常ブレーキとし、前記エアーシリンダと対向する前記カムシャフトの先端部側の前記スリーブ部材に油圧ピストンを連結して非常用ブレーキの油圧シリンダとした請求項7または8に記載のウェッジカム式ブレーキの自動隙間調整機構。
- 前記油圧シリンダを作動させるアキュムレータは、通常ブレーキの作動時にエアーチャンバにより蓄圧されるように構成された請求項10に記載のウェッジカム式ブレーキの自動隙間調整機構。
- 前記非常用ブレーキ作動時に導入された圧液は、オリフィスによってリザーバへ還流するように構成された請求項11に記載のウェッジカム式ブレーキの自動隙間調整機構。
- 前記ウェッジカムのカムシャフトをエアーシリンダにより作動させる通常ブレーキとし、前記エアーシリンダと対向する前記カムシャフトの先端部側の前記スリーブ部材に油圧ピストンを連結して非常用ブレーキの油圧シリンダとした請求項9に記載のウェッジカム式ブレーキの自動隙間調整機構。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011044717 | 2011-03-02 | ||
JP2011-044717 | 2011-03-02 | ||
JP2011050947 | 2011-03-09 | ||
JP2011-050947 | 2011-03-09 | ||
JP2011261202A JP5313324B2 (ja) | 2011-03-02 | 2011-11-30 | ウェッジカム式ブレーキの自動隙間調整機構 |
JP2011-261202 | 2011-11-30 | ||
JP2012-027891 | 2012-02-13 | ||
JP2012027891A JP5318981B2 (ja) | 2011-03-09 | 2012-02-13 | ウェッジカム式ブレーキの自動隙間調整機構 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012118133A1 true WO2012118133A1 (ja) | 2012-09-07 |
Family
ID=46758061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/055145 WO2012118133A1 (ja) | 2011-03-02 | 2012-02-29 | ウェッジカム式ブレーキの自動隙間調整機構 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012118133A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014117968A1 (de) * | 2013-01-31 | 2014-08-07 | Siemens Aktiengesellschaft | Bremseinheit für ein fahrzeug und fahrzeug mit einer derartigen bremseinheit |
WO2017022847A1 (ja) * | 2015-08-06 | 2017-02-09 | 曙ブレーキ工業株式会社 | ウェッジカム式ブレーキ |
JP2017036827A (ja) * | 2015-08-06 | 2017-02-16 | 曙ブレーキ工業株式会社 | ウェッジカム式ブレーキ |
CN110715002A (zh) * | 2018-07-13 | 2020-01-21 | 纳博特斯克有限公司 | 离合器装置和制动装置 |
CN113719562A (zh) * | 2020-05-26 | 2021-11-30 | 纳博特斯克有限公司 | 制动钳装置 |
AT524544A4 (de) * | 2021-06-25 | 2022-07-15 | Siemens Mobility Austria Gmbh | Bremsaktuator und Bremseinheit für eine Fahrzeugbremse |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003156087A (ja) * | 2001-11-22 | 2003-05-30 | Nisshinbo Ind Inc | ブレーキシリンダ装置 |
JP2006315422A (ja) * | 2005-05-10 | 2006-11-24 | Nabtesco Corp | 鉄道車両用ディスクブレーキ装置 |
JP2010065751A (ja) * | 2008-09-10 | 2010-03-25 | Akebono Brake Ind Co Ltd | アジャスタ機構 |
-
2012
- 2012-02-29 WO PCT/JP2012/055145 patent/WO2012118133A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003156087A (ja) * | 2001-11-22 | 2003-05-30 | Nisshinbo Ind Inc | ブレーキシリンダ装置 |
JP2006315422A (ja) * | 2005-05-10 | 2006-11-24 | Nabtesco Corp | 鉄道車両用ディスクブレーキ装置 |
JP2010065751A (ja) * | 2008-09-10 | 2010-03-25 | Akebono Brake Ind Co Ltd | アジャスタ機構 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104955692A (zh) * | 2013-01-31 | 2015-09-30 | 西门子公司 | 用于交通工具的制动单元和具有这种制动单元的交通工具 |
WO2014117968A1 (de) * | 2013-01-31 | 2014-08-07 | Siemens Aktiengesellschaft | Bremseinheit für ein fahrzeug und fahrzeug mit einer derartigen bremseinheit |
US10794437B2 (en) | 2015-08-06 | 2020-10-06 | Akebono Brake Industry Co., Ltd. | Wedge cam brake |
WO2017022847A1 (ja) * | 2015-08-06 | 2017-02-09 | 曙ブレーキ工業株式会社 | ウェッジカム式ブレーキ |
JP2017036827A (ja) * | 2015-08-06 | 2017-02-16 | 曙ブレーキ工業株式会社 | ウェッジカム式ブレーキ |
CN107889517A (zh) * | 2015-08-06 | 2018-04-06 | 曙制动器工业株式会社 | 楔形凸轮式制动器 |
EP3333443A4 (en) * | 2015-08-06 | 2019-05-01 | Akebono Brake Industry Co., Ltd. | WEDGE BRAKE CAM |
CN110715002A (zh) * | 2018-07-13 | 2020-01-21 | 纳博特斯克有限公司 | 离合器装置和制动装置 |
EP3597955A1 (en) * | 2018-07-13 | 2020-01-22 | Nabtesco Corporation | Clutch device and brake device |
CN110715002B (zh) * | 2018-07-13 | 2021-12-28 | 纳博特斯克有限公司 | 离合器装置和制动装置 |
CN113719562A (zh) * | 2020-05-26 | 2021-11-30 | 纳博特斯克有限公司 | 制动钳装置 |
AT524544A4 (de) * | 2021-06-25 | 2022-07-15 | Siemens Mobility Austria Gmbh | Bremsaktuator und Bremseinheit für eine Fahrzeugbremse |
AT524544B1 (de) * | 2021-06-25 | 2022-07-15 | Siemens Mobility Austria Gmbh | Bremsaktuator und Bremseinheit für eine Fahrzeugbremse |
EP4108951A3 (de) * | 2021-06-25 | 2023-01-04 | Siemens Mobility Austria GmbH | Bremsaktuator und bremseinheit für eine fahrzeugbremse |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012118133A1 (ja) | ウェッジカム式ブレーキの自動隙間調整機構 | |
US9127735B2 (en) | Friction brake | |
JP5273870B2 (ja) | レール上の車両用小型ディスクブレーキユニット | |
PL169820B1 (en) | Pressure-operated control system for vehicle brakes | |
KR20090007596A (ko) | 브레이크 장치용 마모 보상 장치 및 브레이크 장치 | |
WO2017051785A1 (ja) | ブレーキ装置 | |
JP6438327B2 (ja) | ブレーキ装置 | |
KR20190032483A (ko) | 디스크 브레이크 및 브레이크 작동 기구 | |
EP2037146B1 (en) | Pressing and actuating mechanism of disc brake device | |
JP5313324B2 (ja) | ウェッジカム式ブレーキの自動隙間調整機構 | |
US20140374198A1 (en) | Disc brake device and caliper | |
WO2016143908A1 (ja) | ディスクブレーキ装置 | |
JP5814176B2 (ja) | ウェッジカム式ブレーキの自動隙間調整機構 | |
WO2019073786A1 (ja) | フローティングキャリパタイプのディスクブレーキ装置 | |
JPH0158780B2 (ja) | ||
JP5708801B2 (ja) | ディスクブレーキ装置及びキャリパスライド機構 | |
JP5318981B2 (ja) | ウェッジカム式ブレーキの自動隙間調整機構 | |
EP1596090A1 (en) | Parking brake assembly | |
JP4926677B2 (ja) | 鉄道車両用ブレーキ装置 | |
JP5889764B2 (ja) | ブレーキキャリパ及びそれを備えた鞍乗型車両 | |
GB2090355A (en) | Improvements relating to brake adjusters | |
JP5260616B2 (ja) | リンク式倍力装置におけるアジャスタ機構 | |
JP7444764B2 (ja) | ウェッジカム式ブレーキ | |
JP4552528B2 (ja) | 常用兼駐車ブレーキ装置 | |
TW202006265A (zh) | 離合器裝置及制動裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12752626 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12752626 Country of ref document: EP Kind code of ref document: A1 |