[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012111510A1 - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
WO2012111510A1
WO2012111510A1 PCT/JP2012/052882 JP2012052882W WO2012111510A1 WO 2012111510 A1 WO2012111510 A1 WO 2012111510A1 JP 2012052882 W JP2012052882 W JP 2012052882W WO 2012111510 A1 WO2012111510 A1 WO 2012111510A1
Authority
WO
WIPO (PCT)
Prior art keywords
bolt
optical sensor
target
line
sensor
Prior art date
Application number
PCT/JP2012/052882
Other languages
French (fr)
Japanese (ja)
Inventor
裕文 家永
中村 幹夫
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012111510A1 publication Critical patent/WO2012111510A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present invention relates to a position detection device that detects a target point located substantially at the center of a target on the measurement surface by measuring a distance from the measurement surface to the target protruding with an optical sensor.
  • the target point that becomes the reference for drilling is first determined on the panel with high accuracy, and the relative positional relationship with this target point The position of the target bolt hole or the like is determined based on the above.
  • the center of the bolt hole of a so-called reference bolt may be adopted as a target point that becomes a reference for drilling.
  • This reference bolt is a bolt that temporarily fixes a panel that forms the upper and lower surfaces of the main wing and a spar that forms both longitudinal sides.
  • the position detection apparatus which detects the center of a bolt hole by detecting the external shape of the reference
  • a contact type position detection device using a so-called touch probe is known.
  • the position detection device acquires the position data of the probe when the probe contacts the reference bolt while moving the probe called a probe, and the center position of the bolt hole based on the acquired plurality of position data. Is obtained by arithmetic processing.
  • the position detection device moves the probe in the positive direction and the negative direction along the X axis when the X axis and the Y axis, which are the radial directions of the reference bolt and are orthogonal to each other, are set.
  • the probe is also moved along the positive direction and the negative direction.
  • the probe position data is acquired at a total of four locations, ie, two locations along the X-axis direction where the probe contacts the bolt head and two locations along the Y-axis direction.
  • the position detection device calculates the center position of the bolt hole, that is, the coordinates of the target point, based on the position data of the four locations.
  • a non-contact type position detection apparatus using a so-called laser length measuring device is known (for example, see Patent Document 1).
  • This position detection device measures the distance to the head of the reference bolt while moving the laser length measuring device.
  • the laser length measuring device acquires the position data of the laser length measuring device when the distance changes, and obtains the center position of the bolt hole by arithmetic processing based on the acquired plurality of position data.
  • the position detection apparatus moves the laser length measuring device in the positive direction along the X axis and also moves the laser length measuring device in the positive direction along the Y axis. And the position data of a laser length measuring device are each acquired in the total location of two places along the X-axis direction where the distance to a reference bolt changes, and two places along the Y-axis direction. Then, the position detection device calculates the coordinates of the target point based on the position data of the four places.
  • the conventional contact-type position detection device has a problem that it takes a long time to detect a target point that is a reference for drilling.
  • the contact-type position detecting device needs to perform the operation of moving the probe until it contacts the reference bolt in each of the four directions, and since the number of operations is large, the time required to detect the target point is long. Become.
  • the conventional non-contact type position detection device also has two directions for moving the laser length measuring device and less than the contact type
  • the distance for moving the laser length measuring device in each direction is the same as that of the contact type position detecting device. Since it is longer than the distance to which the probe is moved, there is a problem that it takes a long time to detect the target point as in the contact type.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a position detection device that can detect the coordinates of a target point serving as a reference for drilling on a panel in a short time. To do.
  • the position detection apparatus is an optical system that irradiates a target having a height in a direction intersecting the measurement surface with linear light and measures the distance to the target using the reflected light.
  • a sensor a moving means for moving the linear light in two directions intersecting an irradiation direction, and a position sensor for detecting a moving position of the moving means when a distance of a predetermined value is measured by the optical sensor;
  • a calculation unit that calculates coordinates of a target point that is substantially at the center of the target in a plane defined by the two movement directions from a plurality of position data obtained from the position sensor.
  • the calculation unit calculates the target based on the distance to the target measured by the optical sensor at each of the two movement positions and the movement position of the moving means detected by the position sensor.
  • the coordinates of the target point at the approximate center of the object can be detected quickly and accurately.
  • the target is a bolt head protruding from the measurement surface.
  • the optical sensor measures the distance to the bolt head at each of the two moving positions, so that the target point that is the approximate center of the bolt that is the target, that is, the bolt formed on the measurement surface The center of the hole can be detected quickly and accurately.
  • the optical sensor has one scanning direction, and the moving means moves the entire optical sensor in the two moving directions.
  • the moving means can easily and quickly move the linear light in two directions intersecting the irradiation direction by moving the entire optical sensor having one scanning direction in two moving directions.
  • the position detection apparatus can detect a target point serving as a reference for drilling on a panel in a short time.
  • FIGS. 1A and 1B are schematic perspective views showing the appearance of the position detection device 1 according to the present embodiment.
  • the position detection device 1 includes an optical sensor 2 that measures the distance to a reference bolt B (target) that protrudes from the panel P, and a rotary spindle that supports the optical sensor 2 and is rotationally driven by a motor or the like (not shown). 3 (moving means).
  • the optical sensor 2 measures the distance from the optical sensor 2 to the reference bolt B by irradiating the reference bolt B with light and receiving the reflected light.
  • the optical sensor 2 includes a sensor main body 21 as a housing, a light emitting unit 22 provided on a lower surface of the distal end portion of the sensor main body 21, and a proximal end portion of the sensor main body 21. And a light receiving portion 23 provided on the lower surface.
  • the sensor body 21 is driven by the rotation support shaft 3 provided through the base end portion thereof, so that the first scan position P1 shown in FIG.
  • the second scan position P2 is a position where the sensor main body 21 is rotated by approximately 90 ° from the first scan position P1 with the rotation support shaft 3 as a fulcrum.
  • the light emitting unit 22 is a member that irradiates the reference bolt B with linear light. That is, the light emitting unit 22 is provided in such a manner that the irradiation angle can be changed, although details are not shown in FIGS. 1A and 1B, and linear light can be irradiated by changing the irradiation angle in a short time.
  • the light receiving unit 23 is a member for receiving the reflected light of the linear light emitted from the light emitting unit 22. As shown in FIGS. 1A and 1B, the light receiving unit 23 receives the reflected light that is reflected back from the surface of the panel P with respect to the linear light that the light emitting unit 22 irradiates the reference bolt B while changing the irradiation direction. To do. Or the light-receiving part 23 receives the reflected light which reflected and returned with the head Bt of the reference
  • FIG. 2 is an explanatory diagram for explaining the scanning of the reference bolt B by the optical sensor 2.
  • the optical sensor 2 configured as described above emits first linear light L1 extending substantially parallel to a predetermined X-axis direction when the sensor main body 21 is first positioned at the first scan position P1 shown in FIG. 1A.
  • the reference bolt B is irradiated from the part 22 and the reflected light is received by the light receiving part 23.
  • the distance from the optical sensor 2 at the first scan position P1 to the head Bt of the reference bolt B or the surface Pa of the panel P is measured.
  • the sensor main body 21 rotates 90 ° from the first scan position P1 and moves to the second scan position P2.
  • the second linear light L2 extending substantially parallel to the Y-axis direction is irradiated from the light emitting unit 22 to the reference bolt B, and the reflected light is received by the light receiving unit 23.
  • the distance from the optical sensor 2 at the second scan position P2 to the head Bt of the reference bolt B or the surface Pa of the panel P is measured.
  • the Y-axis direction is a direction substantially orthogonal to the X-axis direction.
  • the scan at the first scan position P1 is performed first, and then the scan at the second scan position P2 is performed. Conversely, the scan at the second scan position P2 is performed, and then the first scan is performed. You may scan in the position P1.
  • FIG. 3 is a functional block diagram illustrating a functional configuration of the position detection device 1.
  • the position detection device 1 has a configuration in which a control unit 4, an optical sensor 2, a rotation support shaft 3, a position sensor 5, and a calculation unit 6 are electrically connected to each other via a control bus 7.
  • Control unit 4 controls the operation of each unit. More specifically, the control unit 4 controls the irradiation angle of the light emitting unit 22 constituting the optical sensor 2, the rotation angle of the rotation support shaft 3, the operation of the position sensor 5, the operation of the calculation unit 6, and the like.
  • the optical sensor 2 measures the distance to the reference bolt B as described above.
  • the measurement result at the first scan position P1 and the measurement result at the second scan position P2 by the optical sensor 2 are respectively input to the calculation unit 6 shown in FIG.
  • the position sensor 5 detects the position of the sensor body 21 constituting the optical sensor 2. That is, the position sensor 5 detects whether the optical sensor 2 is located at the first scan position P1 or the second scan position P2. The detection result by the position sensor 5 is input to the calculation unit 6 shown in FIG.
  • the calculation unit 6 calculates the coordinates of the target point that is a reference for drilling.
  • this target point is set to a point at the center of the target in the plane defined by the two movement directions of the optical sensor 2. That is, in this embodiment, as shown in FIG. 2, a bolt hole Pb (through which the reference bolt B is inserted in the surface Pa of the panel P which is a plane defined by the first linear light L1 and the second linear light L2. A center T (shown by a broken line in FIG. 2) is set as a target point. Also, as shown in FIG. 3, information about the outer shape of the head Bt of the reference bolt B is stored in advance as profile data 61 in the calculation unit 6.
  • the setting of the target point is not limited to this embodiment, and can be set to an arbitrary point according to the shape of the target.
  • the calculation unit 6 obtains a straight line expression representing the outer shape of the head Bt of the reference bolt B based on the measurement result of the optical sensor 2 at the first scan position P1. That is, the calculation unit 6 calculates the equation of line 1 indicating the upper surface of the head Bt of the reference bolt B in the cross section of the head Bt of the reference bolt B in FIG. 4 based on the profile data 61 as the following equation (1). To calculate. Similarly, the calculation unit 6 calculates an expression of the line 2 indicating the bottom surface of the head Bt of the reference bolt B, an expression of the lines 3 and 4 indicating both side surfaces of the head Bt based on the profile data 61 as follows: 2) Calculate as shown in Equation (3) and Equation (4), respectively.
  • the calculation unit 6 calculates the coordinates of the point A, which is the intersection of the line 1 and the line 3, based on the formulas (1) and (3) as the following formula (5). Similarly, the calculation unit 6 calculates the coordinates of the point B that is the intersection of the line 1 and the line 4 as in the following expression (6) based on the expressions (1) and (4).
  • the calculation unit 6 calculates the expression of the line 5 which is a perpendicular line from the point A to the line 2 as the following expression (7). Similarly, the calculation unit 6 calculates an expression of the line 6 that is a perpendicular line from the point B to the line 2 as the following expression (8).
  • the calculation unit 6 calculates an expression of the line 7 that is substantially parallel to both the line 5 and the line 6 and located at an approximately equal distance from both, as the following expression (9).
  • the calculation unit 6 calculates the Z coordinate of the point C that is the intersection of the line 7 and the line 2 based on the equations (9) and (2). Thereby, the calculating part 6 derives the coordinates (X1, Y1, Z1) of the point C.
  • the calculation unit 6 obtains a straight line expression representing the outer shape of the head Bt of the reference bolt B based on the measurement result of the optical sensor 2 at the second scan position P2. That is, the calculation unit 6 calculates the equation of the line 8 indicating the upper surface of the head Bt of the reference bolt B in the cross section of the head Bt of the reference bolt B in FIG. 5 as the following equation (10). Similarly, the calculation unit 6 calculates an expression of the line 9 indicating the bottom surface of the head Bt of the reference bolt B, an expression of the lines 10 and 11 indicating both side surfaces of the head Bt based on the profile data 61 ( 11), Equation (12), and Equation (13), respectively.
  • the calculation unit 6 calculates the coordinates of the point D, which is the intersection of the line 8 and the line 10, based on the equations (10) and (12) as the following equation (14). Similarly, the computing unit 6 calculates the coordinates of the point E, which is the intersection of the line 8 and the line 11, based on the equations (10) and (13) as the following equation (15).
  • the calculation unit 6 calculates an expression of the line 12 that is a perpendicular line from the point D to the line 9 as the following expression (16). Similarly, the calculation unit 6 calculates the expression of the line 13 that is a perpendicular line from the point E to the line 9 as the following expression (17).
  • the calculation unit 6 calculates an expression of the line 14 that is substantially parallel to both the line 12 and the line 13 and is located at an approximately equal distance from the line 12 and the line 13 as the following expression (18).
  • the calculation unit 6 calculates the expression of the line 15 that is parallel to the line 9 and passes through the point F (X1, Y1, Z1) as the following expression (19).
  • the calculation unit 6 derives the coordinates (X2, Y2, Z2) of the point G that is the intersection of the line 14 and the line 15 based on the equations (18) and (19). Further, the calculation unit 6 derives Y3 which is the Y coordinate of the point G on the line 7 shown in FIG.
  • the calculation unit 6 detects the center coordinates of the bolt hole Pb of the reference bolt B, which is the target point, as (X2, Y3, Z2).
  • a target point that is a reference for drilling can be detected on the panel in a short time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This position detection device (1) has: an optical sensor (2) for irradiating linear light onto a head part (Bt) of a reference bolt (B) having height in a direction that intersects a measurement surface, and for using the reflected light therefrom to measure the distance to the head part (Bt) of the reference bolt (B); a rotation support shaft (3) for moving the linear light in two directions that intersect the irradiation direction; a position sensor for detecting the movement position of the rotation support shaft (3) at a point in time in which the distance having a predetermined value has been measured by the optical sensor (2); and a computation unit for computing the coordinates of the center of a bolt hole (Pb) substantially at the center of the reference bolt (B) in the plane defined by the two movement directions, from a plurality of position data obtained from the position sensor.

Description

位置検出装置Position detection device
 本発明は、測定面から突出する目標物までの距離を光学センサで測定することにより、測定面上において目標物の略中心に位置する目標点を検出する位置検出装置に関する。
本願は、2011年2月16日に日本に出願された特願2011-030885号に基づいて優先権を主張し、その内容をここに援用する。
The present invention relates to a position detection device that detects a target point located substantially at the center of a target on the measurement surface by measuring a distance from the measurement surface to the target protruding with an optical sensor.
This application claims priority based on Japanese Patent Application No. 2011-030885 for which it applied to Japan on February 16, 2011, and uses the content here.
 従来、航空機の主翼パネルのような大型のパネルにボルト穴等の穴開けを行う場合、まず穴加工の基準となる目標点をパネル上に高い精度で定め、この目標点に対する相対的な位置関係に基づいて対象となるボルト穴等の位置が決定される。 Conventionally, when drilling holes such as bolt holes on large panels such as aircraft main wing panels, the target point that becomes the reference for drilling is first determined on the panel with high accuracy, and the relative positional relationship with this target point The position of the target bolt hole or the like is determined based on the above.
 ここで、穴加工の基準となる目標点として、いわゆる基準ボルトのボルト穴の中心を採用する場合がある。この基準ボルトは、主翼の上面と下面を形成するパネルと長手方向両側部を形成するスパーとを仮固定するボルトである。そして、パネルに取り付けられた状態の基準ボルトの外形形状を検知することにより、ボルト穴の中心を検出する位置検出装置が用いられている。 Here, the center of the bolt hole of a so-called reference bolt may be adopted as a target point that becomes a reference for drilling. This reference bolt is a bolt that temporarily fixes a panel that forms the upper and lower surfaces of the main wing and a spar that forms both longitudinal sides. And the position detection apparatus which detects the center of a bolt hole by detecting the external shape of the reference | standard bolt in the state attached to the panel is used.
 この位置検出装置の一例としては、いわゆるタッチプローブを使用する接触式の位置検出装置が知られている。この位置検出装置は、プローブと呼ばれる探針を移動させながら、この探針が基準ボルトに接触した時の探針の位置データを取得し、取得した複数の位置データに基づいてボルト穴の中心位置を演算処理により求める。 As an example of this position detection device, a contact type position detection device using a so-called touch probe is known. The position detection device acquires the position data of the probe when the probe contacts the reference bolt while moving the probe called a probe, and the center position of the bolt hole based on the acquired plurality of position data. Is obtained by arithmetic processing.
 すなわち位置検出装置は、基準ボルトの径方向であって互いに直交するX軸及びY軸を設定した場合に、X軸に沿って正方向及び負方向にそれぞれ探針を移動させるとともに、Y軸に沿って正方向及び負方向にもそれぞれ探針を移動させる。そして、探針がボルト頭部に接触するX軸方向に沿った2箇所及びY軸方向に沿った2箇所の合計4箇所において探針の位置データをそれぞれ取得する。そして位置検出装置は、この4箇所の位置データに基づいてボルト穴の中心位置、すなわち目標点の座標を算出する。 In other words, the position detection device moves the probe in the positive direction and the negative direction along the X axis when the X axis and the Y axis, which are the radial directions of the reference bolt and are orthogonal to each other, are set. The probe is also moved along the positive direction and the negative direction. Then, the probe position data is acquired at a total of four locations, ie, two locations along the X-axis direction where the probe contacts the bolt head and two locations along the Y-axis direction. Then, the position detection device calculates the center position of the bolt hole, that is, the coordinates of the target point, based on the position data of the four locations.
 また、他の方式の位置検出装置としては、いわゆるレーザー測長器を使用する非接触式の位置検出装置が知られている(例えば、特許文献1を参照)。この位置検出装置は、レーザー測長器を移動させながら基準ボルトの頭部までの距離を測定する。そしてレーザー測長器は、その距離が変化した時のレーザー測長器の位置データを取得し、取得した複数の位置データに基づいてボルト穴の中心位置を演算処理により求める。 Further, as another type of position detection apparatus, a non-contact type position detection apparatus using a so-called laser length measuring device is known (for example, see Patent Document 1). This position detection device measures the distance to the head of the reference bolt while moving the laser length measuring device. The laser length measuring device acquires the position data of the laser length measuring device when the distance changes, and obtains the center position of the bolt hole by arithmetic processing based on the acquired plurality of position data.
 すなわち位置検出装置は、前記X軸に沿って正方向にレーザー測長器を移動させるとともに、前記Y軸に沿って正方向にもレーザー測長器を移動させる。そして、基準ボルトまでの距離が変化するX軸方向に沿った2箇所及びY軸方向に沿った2箇所の合計箇所においてレーザー測長器の位置データをそれぞれ取得する。そして位置検出装置は、この4箇所の位置データに基づいて目標点の座標を算出する。 That is, the position detection apparatus moves the laser length measuring device in the positive direction along the X axis and also moves the laser length measuring device in the positive direction along the Y axis. And the position data of a laser length measuring device are each acquired in the total location of two places along the X-axis direction where the distance to a reference bolt changes, and two places along the Y-axis direction. Then, the position detection device calculates the coordinates of the target point based on the position data of the four places.
特開平1-308905号公報JP-A-1-308905
 しかし、従来の接触式の位置検出装置は、穴加工の基準となる目標点の検出までに長い時間を要するという問題があった。すなわち、接触式の位置検出装置は、探針を基準ボルトに接触するまで移動させる動作を4つの方向それぞれについて行う必要があり、動作数が多いために目標点を検出するための所要時間が長くなる。 However, the conventional contact-type position detection device has a problem that it takes a long time to detect a target point that is a reference for drilling. In other words, the contact-type position detecting device needs to perform the operation of moving the probe until it contacts the reference bolt in each of the four directions, and since the number of operations is large, the time required to detect the target point is long. Become.
 また、従来の非接触式の位置検出装置も、レーザー測長器を移動させる方向は2方向と接触式より少ないものの、各方向についてレーザー測長器を移動させる距離は接触式の位置検出装置が探針を移動させる距離より長いため、接触式と同様に目標点の検出までに長い時間を要するという問題があった。 In addition, although the conventional non-contact type position detection device also has two directions for moving the laser length measuring device and less than the contact type, the distance for moving the laser length measuring device in each direction is the same as that of the contact type position detecting device. Since it is longer than the distance to which the probe is moved, there is a problem that it takes a long time to detect the target point as in the contact type.
 本発明は、このような事情を考慮してなされたもので、パネル上に穴加工の基準となる目標点の座標を短時間で検出することが可能な位置検出装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a position detection device that can detect the coordinates of a target point serving as a reference for drilling on a panel in a short time. To do.
 本発明の第一の態様に係る位置検出装置は、測定面と交差する方向の高さを有する目標物に直線光を照射し、その反射光を用いて前記目標物までの距離を測定する光学センサと、前記直線光を照射方向と交差する2つの方向へ移動させる移動手段と、前記光学センサにより所定の値の距離が測定された時点の前記移動手段の移動位置を検出する位置センサと、この位置センサから得られた複数の位置データから前記2つの移動方向により規定される平面において、前記目標物の略中心にある目標点の座標を演算する演算部と、を有する。 The position detection apparatus according to the first aspect of the present invention is an optical system that irradiates a target having a height in a direction intersecting the measurement surface with linear light and measures the distance to the target using the reflected light. A sensor, a moving means for moving the linear light in two directions intersecting an irradiation direction, and a position sensor for detecting a moving position of the moving means when a distance of a predetermined value is measured by the optical sensor; A calculation unit that calculates coordinates of a target point that is substantially at the center of the target in a plane defined by the two movement directions from a plurality of position data obtained from the position sensor.
 このような構成によれば、光学センサが2つの移動位置それぞれにおいて測定した目標物までの距離と、位置センサによって検出された移動手段の移動位置とに基づいて演算部が演算することにより、目標物の略中心にある目標点の座標を高速かつ正確に検出できる。 According to such a configuration, the calculation unit calculates the target based on the distance to the target measured by the optical sensor at each of the two movement positions and the movement position of the moving means detected by the position sensor. The coordinates of the target point at the approximate center of the object can be detected quickly and accurately.
 また、本発明の第二の態様に係る位置検出装置では、前記目標物は、前記測定面から突出するボルト頭部である。 Further, in the position detection device according to the second aspect of the present invention, the target is a bolt head protruding from the measurement surface.
 このような構成によれば、光学センサが2つの移動位置においてボルト頭部までの距離をそれぞれ測定することにより、目標物であるボルトの略中心である目標点、すなわち測定面に形成されたボルト穴の中心を高速かつ正確に検出できる。 According to such a configuration, the optical sensor measures the distance to the bolt head at each of the two moving positions, so that the target point that is the approximate center of the bolt that is the target, that is, the bolt formed on the measurement surface The center of the hole can be detected quickly and accurately.
 また、本発明の第三の態様に係る位置検出装置では、前記光学センサが1つのスキャン方向を持ち、前記移動手段が前記光学センサ全体を前記2つの移動方向へ移動させる。 In the position detection device according to the third aspect of the present invention, the optical sensor has one scanning direction, and the moving means moves the entire optical sensor in the two moving directions.
 このような構成によれば、移動手段は、1つのスキャン方向を持つ光学センサ全体を2つの移動方向へ移動させることによって、直線光を照射方向と交差する2つの方向へ容易かつ高速に移動できる。 According to such a configuration, the moving means can easily and quickly move the linear light in two directions intersecting the irradiation direction by moving the entire optical sensor having one scanning direction in two moving directions. .
 本発明に係る位置検出装置によれば、パネル上に穴加工の基準となる目標点を短時間で検出できる。 The position detection apparatus according to the present invention can detect a target point serving as a reference for drilling on a panel in a short time.
本実施形態に係る位置検出装置の外観を示す概略斜視図である。It is a schematic perspective view which shows the external appearance of the position detection apparatus which concerns on this embodiment. 本実施形態に係る位置検出装置の外観を示す概略斜視図である。It is a schematic perspective view which shows the external appearance of the position detection apparatus which concerns on this embodiment. 光学センサによる基準ボルトのスキャンを説明するための説明図である。It is explanatory drawing for demonstrating the scan of the reference | standard bolt by an optical sensor. 位置検出装置の機能構成を示す機能ブロック図である。It is a functional block diagram which shows the function structure of a position detection apparatus. 演算部による目標点の座標の演算を説明するための説明図であって、図2において第1直線光の位置におけるボルトの頭部の概略断面図である。It is explanatory drawing for demonstrating the calculation of the coordinate of the target point by a calculating part, Comprising: It is a schematic sectional drawing of the head of the volt | bolt in the position of 1st linear light in FIG. 演算部による目標点の座標の演算を説明するための説明図であって、図2において第2直線光の位置におけるボルトの頭部の概略断面図である。It is explanatory drawing for demonstrating the calculation of the coordinate of the target point by a calculating part, Comprising: It is a schematic sectional drawing of the head of the volt | bolt in the position of 2nd linear light in FIG.
 本発明の実施形態について図面を参照し説明する。最初に、本発明の実施形態に係る位置検出装置の構成について説明する。本実施形態では、航空機の主翼の上面と下面を形成するパネルにボルト穴等の穴開けを行う場合に、穴加工の基準となる目標点として、基準ボルトのボルト穴の中心座標を検出する場合を例に説明する。尚、本実施形態における基準ボルトとは、主翼の長手方向両側部を形成するスパーに対して前記パネルを仮固定するために用いるボルトである。 Embodiments of the present invention will be described with reference to the drawings. Initially, the structure of the position detection apparatus which concerns on embodiment of this invention is demonstrated. In this embodiment, when drilling holes such as bolt holes on the panel that forms the upper and lower surfaces of the main wing of an aircraft, when detecting the center coordinate of the bolt hole of the reference bolt as a target point that becomes the reference for drilling Will be described as an example. In addition, the reference | standard bolt in this embodiment is a volt | bolt used in order to temporarily fix the said panel with respect to the spar which forms the longitudinal direction both sides of a main wing.
 本発明の実施形態に係る位置検出装置の外観構成について説明する。図1Aおよび図1Bは、本実施形態に係る位置検出装置1の外観を示す概略斜視図である。位置検出装置1は、パネルPから突出する基準ボルトB(目標物)までの距離を測定する光学センサ2と、この光学センサ2を支持するとともに不図示のモータ等によって回転駆動される回転支軸3(移動手段)と、を備えている。 The external configuration of the position detection apparatus according to the embodiment of the present invention will be described. 1A and 1B are schematic perspective views showing the appearance of the position detection device 1 according to the present embodiment. The position detection device 1 includes an optical sensor 2 that measures the distance to a reference bolt B (target) that protrudes from the panel P, and a rotary spindle that supports the optical sensor 2 and is rotationally driven by a motor or the like (not shown). 3 (moving means).
 光学センサ2は、基準ボルトBに対して光を照射してその反射光を受光することで、光学センサ2から基準ボルトBまでの距離を測定する。この光学センサ2は、図1Aおよび図1Bに示すように、筐体としてのセンサ本体21と、このセンサ本体21の先端部における下面に設けられた発光部22と、センサ本体21の基端部における下面に設けられた受光部23と、を有している。 The optical sensor 2 measures the distance from the optical sensor 2 to the reference bolt B by irradiating the reference bolt B with light and receiving the reflected light. As shown in FIGS. 1A and 1B, the optical sensor 2 includes a sensor main body 21 as a housing, a light emitting unit 22 provided on a lower surface of the distal end portion of the sensor main body 21, and a proximal end portion of the sensor main body 21. And a light receiving portion 23 provided on the lower surface.
 センサ本体21は、図1Aおよび図1Bに示すように、その基端部を挿通して設けられた回転支軸3が駆動されることにより、図1Aに示す第1スキャン位置P1と、図1Bに示す第2スキャン位置P2との間を移動可能である。ここで、第2スキャン位置P2は、センサ本体21が第1スキャン位置P1から回転支軸3を支点として略90°回転した位置である。 As shown in FIG. 1A and FIG. 1B, the sensor body 21 is driven by the rotation support shaft 3 provided through the base end portion thereof, so that the first scan position P1 shown in FIG. The second scan position P2 shown in FIG. Here, the second scan position P2 is a position where the sensor main body 21 is rotated by approximately 90 ° from the first scan position P1 with the rotation support shaft 3 as a fulcrum.
 発光部22は、基準ボルトBに対して直線光を照射する部材である。すなわち、この発光部22は、図1Aおよび図1Bに詳細は示さないが照射角度を変更可能に設けられ、この照射角度を短時間で変化させることにより、直線状の光を照射可能である。 The light emitting unit 22 is a member that irradiates the reference bolt B with linear light. That is, the light emitting unit 22 is provided in such a manner that the irradiation angle can be changed, although details are not shown in FIGS. 1A and 1B, and linear light can be irradiated by changing the irradiation angle in a short time.
 受光部23は、発光部22から照射した直線光の反射光を受光するための部材である。
この受光部23は、図1Aおよび図1Bに示すように、発光部22が照射方向を変更しながら基準ボルトBに照射した直線光について、パネルP表面で反射して戻ってきた反射光を受光する。あるいは、受光部23は、発光部22が照射方向を変更しながら基準ボルトBに照射した直線光について、基準ボルトBの頭部Btで反射して戻ってきた反射光を受光する。
The light receiving unit 23 is a member for receiving the reflected light of the linear light emitted from the light emitting unit 22.
As shown in FIGS. 1A and 1B, the light receiving unit 23 receives the reflected light that is reflected back from the surface of the panel P with respect to the linear light that the light emitting unit 22 irradiates the reference bolt B while changing the irradiation direction. To do. Or the light-receiving part 23 receives the reflected light which reflected and returned with the head Bt of the reference | standard bolt B about the linear light which the light emission part 22 irradiated to the reference | standard bolt B, changing the irradiation direction.
 ここで図2は、光学センサ2による基準ボルトBのスキャンを説明するための説明図である。上記のように構成される光学センサ2は、まず図1Aに示す第1スキャン位置P1にセンサ本体21が位置した状態において、所定のX軸方向に略平行して延びる第1直線光L1を発光部22から基準ボルトBに照射し、その反射光を受光部23にて受光する。これにより、第1スキャン位置P1における光学センサ2から基準ボルトBの頭部BtまたはパネルPの表面Paまでの距離が測定される。 Here, FIG. 2 is an explanatory diagram for explaining the scanning of the reference bolt B by the optical sensor 2. The optical sensor 2 configured as described above emits first linear light L1 extending substantially parallel to a predetermined X-axis direction when the sensor main body 21 is first positioned at the first scan position P1 shown in FIG. 1A. The reference bolt B is irradiated from the part 22 and the reflected light is received by the light receiving part 23. As a result, the distance from the optical sensor 2 at the first scan position P1 to the head Bt of the reference bolt B or the surface Pa of the panel P is measured.
 次に、回転支軸3が不図示のモータによって回転駆動されることにより、センサ本体21が第1スキャン位置P1から90°回動して第2スキャン位置P2へと移動する。そして、この第2スキャン位置P2において、Y軸方向に略平行して延びる第2直線光L2を発光部22から基準ボルトBに照射し、その反射光を受光部23にて受光する。これにより、第2スキャン位置P2における光学センサ2から基準ボルトBの頭部BtまたはパネルPの表面Paまでの距離が測定される。ここで、Y軸方向は、X軸方向に対して略直交する方向である。
 なお、本実施形態ではまず第1スキャン位置P1におけるスキャンを行った後に第2スキャン位置P2におけるスキャンを行ったが、これとは逆に、第2スキャン位置P2におけるスキャンを行った後に第1スキャン位置P1におけるスキャンを行ってもよい。
Next, when the rotation support shaft 3 is rotationally driven by a motor (not shown), the sensor main body 21 rotates 90 ° from the first scan position P1 and moves to the second scan position P2. At the second scan position P2, the second linear light L2 extending substantially parallel to the Y-axis direction is irradiated from the light emitting unit 22 to the reference bolt B, and the reflected light is received by the light receiving unit 23. Accordingly, the distance from the optical sensor 2 at the second scan position P2 to the head Bt of the reference bolt B or the surface Pa of the panel P is measured. Here, the Y-axis direction is a direction substantially orthogonal to the X-axis direction.
In the present embodiment, the scan at the first scan position P1 is performed first, and then the scan at the second scan position P2 is performed. Conversely, the scan at the second scan position P2 is performed, and then the first scan is performed. You may scan in the position P1.
 次に、本発明の実施形態に係る位置検出装置1の機能構成について説明する。図3は、位置検出装置1の機能構成を示す機能ブロック図である。位置検出装置1は、制御部4と、光学センサ2と、回転支軸3と、位置センサ5と、演算部6とが制御バス7を介して互いに電気的に接続された構成である。 Next, the functional configuration of the position detection device 1 according to the embodiment of the present invention will be described. FIG. 3 is a functional block diagram illustrating a functional configuration of the position detection device 1. The position detection device 1 has a configuration in which a control unit 4, an optical sensor 2, a rotation support shaft 3, a position sensor 5, and a calculation unit 6 are electrically connected to each other via a control bus 7.
 制御部4は、各部の動作を制御する。より詳細には、制御部4は、光学センサ2を構成する発光部22の照射角度、回転支軸3の回転角度、位置センサ5の動作、演算部6の動作等を制御する。 Control unit 4 controls the operation of each unit. More specifically, the control unit 4 controls the irradiation angle of the light emitting unit 22 constituting the optical sensor 2, the rotation angle of the rotation support shaft 3, the operation of the position sensor 5, the operation of the calculation unit 6, and the like.
 光学センサ2は、前述のように基準ボルトBまでの距離を測定する。この光学センサ2による第1スキャン位置P1における測定結果、及び第2スキャン位置P2における測定結果は、図3に示す演算部6にそれぞれ入力される。 The optical sensor 2 measures the distance to the reference bolt B as described above. The measurement result at the first scan position P1 and the measurement result at the second scan position P2 by the optical sensor 2 are respectively input to the calculation unit 6 shown in FIG.
 位置センサ5は、光学センサ2を構成するセンサ本体21の位置を検出する。すなわち位置センサ5は、光学センサ2が第1スキャン位置P1と第2スキャン位置P2のいずれに位置しているかを検出する。この位置センサ5による検出結果は、図2に示す演算部6に入力される。 The position sensor 5 detects the position of the sensor body 21 constituting the optical sensor 2. That is, the position sensor 5 detects whether the optical sensor 2 is located at the first scan position P1 or the second scan position P2. The detection result by the position sensor 5 is input to the calculation unit 6 shown in FIG.
 演算部6は、光学センサ2及び位置センサ5からの入力に基づいて、穴加工の基準となる目標点の座標を演算する。ここで本発明の実施形態では、この目標点を、光学センサ2の2つの移動方向により規定される平面において目標物の中心にある点に設定している。
すなわち本実施形態では、図2に示すように、第1直線光L1と第2直線光L2とによって規定される平面であるパネルPの表面Paにおいて、基準ボルトBが挿通されるボルト穴Pb(図2には破線で記載)の中心Tを目標点として設定している。また図3に示すように、演算部6の内部には、基準ボルトBの頭部Btの外形形状に関する情報が、プロファイルデータ61として予め格納されている。なお、目標点の設定は本実施形態に限定されず、目標物の形状等に応じて任意の点に設定が可能である。
Based on the inputs from the optical sensor 2 and the position sensor 5, the calculation unit 6 calculates the coordinates of the target point that is a reference for drilling. Here, in the embodiment of the present invention, this target point is set to a point at the center of the target in the plane defined by the two movement directions of the optical sensor 2.
That is, in this embodiment, as shown in FIG. 2, a bolt hole Pb (through which the reference bolt B is inserted in the surface Pa of the panel P which is a plane defined by the first linear light L1 and the second linear light L2. A center T (shown by a broken line in FIG. 2) is set as a target point. Also, as shown in FIG. 3, information about the outer shape of the head Bt of the reference bolt B is stored in advance as profile data 61 in the calculation unit 6. The setting of the target point is not limited to this embodiment, and can be set to an arbitrary point according to the shape of the target.
 次に、演算部6による目標点の座標の演算について説明する。図4及び図5は、演算部6による目標点の座標の演算を説明するための説明図である。図4は図2において第1直線光L1の位置、すなわちX=X1の位置におけるボルトの頭部Btの概略断面図である。また、図5は図2において第2直線光L2の位置、すなわちY=Y1の位置におけるボルトの頭部Btの概略断面図である。 Next, calculation of the coordinates of the target point by the calculation unit 6 will be described. 4 and 5 are explanatory diagrams for explaining the calculation of the coordinates of the target point by the calculation unit 6. FIG. 4 is a schematic cross-sectional view of the head Bt of the bolt at the position of the first linear light L1 in FIG. 2, that is, the position of X = X1. FIG. 5 is a schematic cross-sectional view of the head Bt of the bolt at the position of the second linear light L2 in FIG. 2, that is, the position of Y = Y1.
 まず演算部6は、第1スキャン位置P1における光学センサ2の測定結果に基づいて、基準ボルトBの頭部Btの外形を表す直線の式を求める。すなわち演算部6は、図4における基準ボルトBの頭部Btの断面において基準ボルトBの頭部Btの上面を示すライン1の式を、プロファイルデータ61に基づいて以下の式(1)のように算出する。同様に演算部6は、基準ボルトBの頭部Btの底面を示すライン2の式、頭部Btの両側面を示すライン3及びライン4の式を、プロファイルデータ61に基づいて以下の式(2)、式(3)、及び式(4)のようにそれぞれ算出する。 First, the calculation unit 6 obtains a straight line expression representing the outer shape of the head Bt of the reference bolt B based on the measurement result of the optical sensor 2 at the first scan position P1. That is, the calculation unit 6 calculates the equation of line 1 indicating the upper surface of the head Bt of the reference bolt B in the cross section of the head Bt of the reference bolt B in FIG. 4 based on the profile data 61 as the following equation (1). To calculate. Similarly, the calculation unit 6 calculates an expression of the line 2 indicating the bottom surface of the head Bt of the reference bolt B, an expression of the lines 3 and 4 indicating both side surfaces of the head Bt based on the profile data 61 as follows: 2) Calculate as shown in Equation (3) and Equation (4), respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 次に演算部6は、式(1)及び式(3)に基づいて、ライン1とライン3の交点である点Aの座標を以下の式(5)のように算出する。同様に演算部6は、式(1)及び式(4)に基づいて、ライン1とライン4の交点である点Bの座標を以下の式(6)のように算出する。 Next, the calculation unit 6 calculates the coordinates of the point A, which is the intersection of the line 1 and the line 3, based on the formulas (1) and (3) as the following formula (5). Similarly, the calculation unit 6 calculates the coordinates of the point B that is the intersection of the line 1 and the line 4 as in the following expression (6) based on the expressions (1) and (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 次に演算部6は、点Aからライン2へ下ろした垂線であるライン5の式を、以下の式(7)のように算出する。同様に演算部6は、点Bからライン2へ下ろした垂線であるライン6の式を、以下の式(8)のように算出する。 Next, the calculation unit 6 calculates the expression of the line 5 which is a perpendicular line from the point A to the line 2 as the following expression (7). Similarly, the calculation unit 6 calculates an expression of the line 6 that is a perpendicular line from the point B to the line 2 as the following expression (8).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 次に演算部6は、ライン5及びライン6の両方に略平行するとともに両方から略等しい距離に位置するライン7の式を、以下の式(9)のように算出する。 Next, the calculation unit 6 calculates an expression of the line 7 that is substantially parallel to both the line 5 and the line 6 and located at an approximately equal distance from both, as the following expression (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 次に演算部6は、ライン7とライン2の交点である点CのZ座標を、式(9)及び式(2)に基づいて算出する。これにより演算部6は、点Cの座標(X1,Y1,Z1)を導き出す。 Next, the calculation unit 6 calculates the Z coordinate of the point C that is the intersection of the line 7 and the line 2 based on the equations (9) and (2). Thereby, the calculating part 6 derives the coordinates (X1, Y1, Z1) of the point C.
 続いて演算部6は、第2スキャン位置P2における光学センサ2の測定結果に基づいて、基準ボルトBの頭部Btの外形を表す直線の式を求める。すなわち演算部6は、図5における基準ボルトBの頭部Btの断面において基準ボルトBの頭部Btの上面を示すライン8の式を、以下の式(10)のように算出する。同様に演算部6は、基準ボルトBの頭部Btの底面を示すライン9の式、頭部Btの両側面を示すライン10及びライン11の式を、プロファイルデータ61に基づいて以下の式(11)、式(12)、及び式(13)のようにそれぞれ算出する。 Subsequently, the calculation unit 6 obtains a straight line expression representing the outer shape of the head Bt of the reference bolt B based on the measurement result of the optical sensor 2 at the second scan position P2. That is, the calculation unit 6 calculates the equation of the line 8 indicating the upper surface of the head Bt of the reference bolt B in the cross section of the head Bt of the reference bolt B in FIG. 5 as the following equation (10). Similarly, the calculation unit 6 calculates an expression of the line 9 indicating the bottom surface of the head Bt of the reference bolt B, an expression of the lines 10 and 11 indicating both side surfaces of the head Bt based on the profile data 61 ( 11), Equation (12), and Equation (13), respectively.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 次に演算部6は、式(10)及び式(12)に基づいて、ライン8とライン10の交点である点Dの座標を以下の式(14)のように算出する。同様に演算部6は、式(10)及び式(13)に基づいて、ライン8とライン11の交点である点Eの座標を以下の式(15)のように算出する。 Next, the calculation unit 6 calculates the coordinates of the point D, which is the intersection of the line 8 and the line 10, based on the equations (10) and (12) as the following equation (14). Similarly, the computing unit 6 calculates the coordinates of the point E, which is the intersection of the line 8 and the line 11, based on the equations (10) and (13) as the following equation (15).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 次に演算部6は、点Dからライン9へ下ろした垂線であるライン12の式を、以下の式(16)のように算出する。同様に演算部6は、点Eからライン9へ下ろした垂線であるライン13の式を、以下の式(17)のように算出する。 Next, the calculation unit 6 calculates an expression of the line 12 that is a perpendicular line from the point D to the line 9 as the following expression (16). Similarly, the calculation unit 6 calculates the expression of the line 13 that is a perpendicular line from the point E to the line 9 as the following expression (17).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 次に演算部6は、ライン12及びライン13の両方に略平行するとともに、ライン12及びライン13から略等しい距離に位置するライン14の式を、以下の式(18)のように算出する。 Next, the calculation unit 6 calculates an expression of the line 14 that is substantially parallel to both the line 12 and the line 13 and is located at an approximately equal distance from the line 12 and the line 13 as the following expression (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 次に演算部6は、ライン9と平行であって、かつ、点F(X1,Y1,Z1)を通過するライン15の式を、以下の式(19)のように算出する。 Next, the calculation unit 6 calculates the expression of the line 15 that is parallel to the line 9 and passes through the point F (X1, Y1, Z1) as the following expression (19).
 次に演算部6は、式(18)及び式(19)に基づいて、ライン14とライン15の交点である点Gの座標(X2,Y2,Z2)を導き出す。更に演算部6は、図4に示すライン7上の点GのY座標であるY3を導き出す。 Next, the calculation unit 6 derives the coordinates (X2, Y2, Z2) of the point G that is the intersection of the line 14 and the line 15 based on the equations (18) and (19). Further, the calculation unit 6 derives Y3 which is the Y coordinate of the point G on the line 7 shown in FIG.
 以上により演算部6は、目標点である基準ボルトBのボルト穴Pbの中心座標を(X2,Y3,Z2)として検出する。 Thus, the calculation unit 6 detects the center coordinates of the bolt hole Pb of the reference bolt B, which is the target point, as (X2, Y3, Z2).
 なお、上述した実施形態において示した各構成部材の諸形状や組み合わせ、或いは動作手順等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Note that the shapes, combinations, operation procedures, and the like of the constituent members shown in the above-described embodiments are merely examples, and various changes can be made based on design requirements and the like without departing from the gist of the present invention.
 本発明の位置検出装置によれば、パネル上に穴加工の基準となる目標点を短時間で検出できる。 According to the position detection device of the present invention, a target point that is a reference for drilling can be detected on the panel in a short time.
1 位置検出装置
2 光学センサ
3 回転支軸
4 制御部
5 位置センサ
6 演算部
7 制御バス
21 センサ本体
22 発光部
23 受光部
61 プロファイルデータ
B 基準ボルト
Bt 頭部(基準ボルト)
L1 第1直線光
L2 第2直線光
P パネル
P1 第1スキャン位置
P2 第2スキャン位置
Pa 表面(パネル)
Pb ボルト穴(パネル)
T 中心(ボルト穴)
DESCRIPTION OF SYMBOLS 1 Position detection apparatus 2 Optical sensor 3 Rotation spindle 4 Control part 5 Position sensor 6 Calculation part 7 Control bus 21 Sensor main body 22 Light emission part 23 Light reception part 61 Profile data B Reference | standard bolt Bt Head (reference | standard bolt)
L1 First linear light L2 Second linear light P Panel P1 First scan position P2 Second scan position Pa Surface (panel)
Pb Bolt hole (panel)
T center (bolt hole)

Claims (3)

  1.  測定面と交差する方向の高さを有する目標物に直線光を照射し、その反射光を用いて前記目標物までの距離を測定する光学センサと、
     前記直線光を照射方向と交差する2つの方向へ移動させる移動手段と、
     前記光学センサにより所定の値の距離が測定された時点の前記移動手段の移動位置を検出する位置センサと、
     この位置センサから得られた複数の位置データから前記2つの移動方向により規定される平面において、前記目標物の略中心にある目標点の座標を演算する演算部と、
     を有する位置検出装置。
    An optical sensor that irradiates a target having a height in a direction intersecting the measurement surface with linear light, and measures the distance to the target using the reflected light;
    Moving means for moving the linear light in two directions intersecting the irradiation direction;
    A position sensor for detecting a moving position of the moving means when a distance of a predetermined value is measured by the optical sensor;
    A computing unit that computes coordinates of a target point substantially at the center of the target in a plane defined by the two movement directions from a plurality of position data obtained from the position sensor;
    A position detecting device.
  2.  前記目標物は、前記測定面から突出するボルト頭部である請求項1に記載の位置検出装置。 The position detection device according to claim 1, wherein the target is a bolt head protruding from the measurement surface.
  3.  前記光学センサが1つのスキャン方向を持ち、前記移動手段が前記光学センサ全体を前記2つの移動方向へ移動させる請求項1又は2に記載の位置検出装置。 3. The position detecting device according to claim 1, wherein the optical sensor has one scanning direction, and the moving means moves the entire optical sensor in the two moving directions.
PCT/JP2012/052882 2011-02-16 2012-02-08 Position detection device WO2012111510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011030885A JP5804722B2 (en) 2011-02-16 2011-02-16 Position detection device
JP2011-030885 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012111510A1 true WO2012111510A1 (en) 2012-08-23

Family

ID=46672435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052882 WO2012111510A1 (en) 2011-02-16 2012-02-08 Position detection device

Country Status (2)

Country Link
JP (1) JP5804722B2 (en)
WO (1) WO2012111510A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759646B (en) * 2014-01-27 2016-02-24 哈尔滨飞机工业集团有限责任公司 A kind of method utilizing threaded hole location and installation keeper
JP2016027320A (en) * 2014-06-23 2016-02-18 日産ネジ株式会社 Automatic screw dimensions measuring system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965203A (en) * 1982-10-06 1984-04-13 Hitachi Ltd Method and device for detecting position and attitude of body
JPH01203907A (en) * 1988-02-10 1989-08-16 Aisin Seiki Co Ltd Three-dimensional position and attitude measuring method
JPH03160303A (en) * 1989-11-17 1991-07-10 Kawasaki Heavy Ind Ltd How to detect multiple holes
JPH04176543A (en) * 1990-11-08 1992-06-24 Fanuc Ltd Control unit for digitizing
JPH07260422A (en) * 1994-03-22 1995-10-13 Honda Motor Co Ltd Method for measuring position of screw hole and method for assembling component
JP2006317288A (en) * 2005-05-12 2006-11-24 Central Japan Railway Co Bolt height measuring method and device, bolt looseness determination method, and bolt looseness detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965203A (en) * 1982-10-06 1984-04-13 Hitachi Ltd Method and device for detecting position and attitude of body
JPH01203907A (en) * 1988-02-10 1989-08-16 Aisin Seiki Co Ltd Three-dimensional position and attitude measuring method
JPH03160303A (en) * 1989-11-17 1991-07-10 Kawasaki Heavy Ind Ltd How to detect multiple holes
JPH04176543A (en) * 1990-11-08 1992-06-24 Fanuc Ltd Control unit for digitizing
JPH07260422A (en) * 1994-03-22 1995-10-13 Honda Motor Co Ltd Method for measuring position of screw hole and method for assembling component
JP2006317288A (en) * 2005-05-12 2006-11-24 Central Japan Railway Co Bolt height measuring method and device, bolt looseness determination method, and bolt looseness detection device

Also Published As

Publication number Publication date
JP5804722B2 (en) 2015-11-04
JP2012168107A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
CN108793013A (en) Fork truck system and its control method
CN108779981B (en) Crankshaft shape inspection device, system and method
WO2014112431A1 (en) Normal-line detection device, processing device, and normal-line detection method
US20170248399A1 (en) Inner-wall measuring instrument and offset-amount calculation method
JP6747151B2 (en) Inspection method and device for positioning machine using tracking laser interferometer
JP6064910B2 (en) Shape measuring apparatus and shape measuring method
US11162776B2 (en) Measuring device
WO2012111510A1 (en) Position detection device
KR101403377B1 (en) Method for calculating 6 dof motion of object by using 2d laser scanner
JP5371532B2 (en) CMM
JP2011148045A (en) Device and method for calibrating tool coordinate system
JP2008089541A (en) Reference for measuring motion error and motion error measuring device
JP6550621B2 (en) Spatial position measuring method and apparatus using tracking type laser interferometer
JP2009288107A (en) Shape measuring apparatus, method and program
JP2012145550A (en) Inter-target absolute distance measurement method of tracking laser interference measuring apparatus and tracking laser interference measuring apparatus
JP2020082231A (en) Measuring method
JP4835857B2 (en) Calibration method for shape measuring apparatus and shaft for calibration
JP7286232B2 (en) height measuring machine
JP2006234427A (en) Flatness measuring method and instrument
JP4889544B2 (en) Sphere center calculation method
JP2010096722A (en) Posture measuring method and grinding device
JP2005055311A (en) Calibration method of scanner
JP6083806B2 (en) Drilling hole position measuring device
JP7292133B2 (en) Machining inspection device, Machining inspection system, Machining inspection method and program
CN102419159A (en) Measuring device with rotating laser beam scanning in conical surface manner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747019

Country of ref document: EP

Kind code of ref document: A1