[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012111458A1 - X線画像診断装置及び画像表示方法 - Google Patents

X線画像診断装置及び画像表示方法 Download PDF

Info

Publication number
WO2012111458A1
WO2012111458A1 PCT/JP2012/052525 JP2012052525W WO2012111458A1 WO 2012111458 A1 WO2012111458 A1 WO 2012111458A1 JP 2012052525 W JP2012052525 W JP 2012052525W WO 2012111458 A1 WO2012111458 A1 WO 2012111458A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
grid
subject
head
Prior art date
Application number
PCT/JP2012/052525
Other languages
English (en)
French (fr)
Inventor
忍 竹之内
鈴木 克己
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Priority to JP2012557887A priority Critical patent/JP5706452B2/ja
Priority to CN201280008817.2A priority patent/CN103379859B/zh
Publication of WO2012111458A1 publication Critical patent/WO2012111458A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector

Definitions

  • the present invention relates to an X-ray diagnostic imaging apparatus and an image display method, and particularly to a technique for displaying a captured image of a subject obtained by radiography using an X-ray flat panel detector.
  • a device that irradiates an object with radiation and detects an intensity distribution of the radiation transmitted through the object to obtain a photographed image of the object has been widely used in industrial nondestructive inspection and medical diagnosis.
  • a film / screen method for X-rays can be mentioned.
  • a method for obtaining a high-quality captured image by converting a captured image into an electrical signal, processing the electrical signal, and reproducing the image as a visible image on a CRT or the like has been demanded.
  • an apparatus for taking a photographed image in the same manner using an X-ray flat panel detector has been developed. These systems have a very wide dynamic range compared to conventional radiation systems using photosensitive films, and have the practical advantage of being able to obtain captured images that are not affected by fluctuations in radiation exposure. Have.
  • Such X-ray flat panel detectors have been downsized to the size of conventional analog cassettes due to technological advances, and so-called mobile digital X-ray imaging devices called electronic cassettes have been developed.
  • Such an X-ray flat panel detector is generally the same size as a conventional analog cassette and has a large rectangular size in order to use an existing imaging table without updating it.
  • the rectangular size depending on the size of the subject, there may be a case where it is inserted vertically with respect to the imaging table or a case where it is inserted horizontally.
  • FIG. 1A and 1B are explanatory views showing the relationship between the insertion direction and the head and foot direction of an X-ray flat panel detector in the background art, where FIG. 1A shows vertical insertion and FIG. 1B shows horizontal insertion. As shown in FIG.
  • the image when the image is vertically inserted (meaning that the flat detector 102 is inserted vertically with respect to the head-and-foot direction 101 of the standing position imaging stand 100), the image is displayed on the image display device 103. Although displayed in the vertical direction (the head of the subject imaged in the image is up), when inserted horizontally as shown in FIG. 1B, the image is displayed in the horizontal direction (image was captured in the image). The head of the subject is displayed on the right or left).
  • the user rotates an image with a GUI (Graphical User Interface) or detects the direction of a Flat Pnel Detector (hereinafter abbreviated as “FPD”) which is a kind of X-ray flat panel detector.
  • GUI Graphic User Interface
  • FPD Flat Pnel Detector
  • Patent Document 1 proposes a technique of embedding marks in the corners of an image and inverting / rotating the image.
  • a mark may be inserted into a region in which a subject is imaged in a captured image, and the mark may interfere with diagnosis. Furthermore, since the mark has to be inserted, the workflow is hindered.
  • An object of the present invention is to solve the above-described problems and provide a technique capable of accurately displaying the head and foot direction on the image display device regardless of the insertion direction of the X-ray flat panel detector.
  • the present invention determines whether the fringe direction caused by the grid included in the image data is vertical or horizontal, and based on the determination result, the region of the subject imaged in the image (hereinafter referred to as “ The image is rotated so that the head direction in the “subject image” matches the upward direction on the display screen of the image display unit, and the rotated image is displayed.
  • the present invention it is possible to provide a technique capable of accurately displaying the head and foot direction on the display unit regardless of the insertion direction of the X-ray flat panel detector.
  • the X-ray diagnostic imaging apparatus is disposed so as to face an X-ray tube that irradiates a subject with X-rays, a grid that removes scattered radiation components generated by the subject, and the X-ray tube.
  • An X-ray flat panel detector that detects transmitted X-rays of the subject and outputs image data, an image display unit that displays an image based on the image data, and a fringe direction caused by the grid included in the image data
  • the head direction in the region (subject image) of the subject photographed in the image is determined based on the determination result by the grid stripe direction determination unit and the grid stripe direction determination unit.
  • An image rotation unit that rotates the image so as to coincide with the upward direction on the display screen of the image display unit.
  • the image display unit displays the rotated image.
  • the grid stripe direction determination unit performs a fast Fourier transform process on the image data, the value of the grid stripe frequency response, or the ratio between the grid stripe frequency response and the frequency response in the vicinity of the grid stripe frequency, May be used to determine the grid stripe direction.
  • the grid stripe direction determination unit may perform the fast Fourier transform process on a direct X-ray region in which X-rays are directly incident on the image.
  • the grid stripe direction determining unit determines the grid stripe frequency according to an imaging distance between the subject and the X-ray tube when the image data is acquired by the X-ray image diagnostic apparatus. May be.
  • the image rotation unit further includes a detector insertion direction storage unit that stores insertion direction information indicating an insertion direction of the X-ray flat panel detector with respect to an imaging table that stores the grid and the X-ray flat panel detector.
  • the rotation direction of the image is determined based on the determination result by the grid stripe direction determination unit and the insertion direction information so that the head direction of the subject in the image matches the upward direction in the image display unit.
  • the image may be rotated.
  • the insertion direction information is a parameter that associates the head-and-foot direction of the imaging table with the insertion direction of the X-ray plane device with respect to the imaging table, and rotates the image 180 degrees and rotates 90 degrees to the right.
  • the information may be associated with either left 90 ° rotation.
  • the image rotation unit extracts a subject region where the subject is imaged in the image, detects a head-foot direction of the subject, and based on the detection result, the rotation direction of the image is rotated to the right or It may be determined whether the rotation is counterclockwise.
  • a storage unit that stores the rotation information determined by the image rotation unit along with the image data may be further provided.
  • the image display method is obtained by imaging the subject using an X-ray diagnostic imaging apparatus including a grid that removes scattered radiation components generated by the subject and an X-ray flat panel detector.
  • a step of reading the obtained image data, a step of determining whether the stripe direction caused by the grid included in the image data is vertical or horizontal, and an image based on the image data based on the determination result A step of rotating the image so that a head direction in the region of the subject (subject image) coincides with an upward direction on a display screen on which the image is displayed; and the rotated image is displayed on the display screen.
  • a step of displaying is obtained by imaging the subject using an X-ray diagnostic imaging apparatus including a grid that removes scattered radiation components generated by the subject and an X-ray flat panel detector.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the X-ray image diagnostic apparatus 10 according to the present embodiment.
  • the X-ray diagnostic imaging apparatus 10 is disposed so as to face the X-ray tube 1 that irradiates the subject 20 with X-rays, the grid 2 that removes scattered radiation components generated by the subject 20, and the X-ray tube 1.
  • An X-ray plane detector 3 for detecting transmitted X-rays of the specimen 20, an imaging table 4 in which the grid 2 and the X-ray plane detector 3 are stored, and storage of image data output from the X-ray plane detector 3
  • an image processing device 5 that performs image processing
  • an image display device 6 that displays image data stored in the image processing device 5.
  • the image processing device 5 includes an image storage unit 5a for storing image data, image data output from the X-ray flat panel detector 3, or a scattered light removal grid (hereinafter referred to as a captured image read by the image processing device 5).
  • a grid stripe direction discriminating section 5b for discriminating whether the stripe direction of 2 is vertical or horizontal, and a detector insertion direction in which insertion direction information of the X-ray flat panel detector 3 in the imaging table 4 is stored.
  • a storage unit 5c, and an image rotation unit 5d that rotates an image stored in the image storage unit 5a based on information from the insertion direction information and the grid stripe direction determination unit 5b.
  • the image storage unit 5a and the detector insertion direction storage unit 5c are configured to include a nonvolatile or volatile storage device, for example, a memory, a magnetic disk, or a nonvolatile memory included in the hardware configuring the image processing device 5.
  • the Further, the grid stripe direction discriminating unit 5b and the image rotating unit 5d perform fast Fourier transform (FFT Fourier Transform; hereinafter abbreviated as “FFT”) on the read image data, and give a response response of the grid stripe frequency.
  • FFT fast Fourier transform
  • a program for causing a computer to execute an image display method including a step of calculating and determining a grid stripe direction based on the calculated result, a step of performing image rotation processing using the determination result, and hardware for executing the program And are configured by cooperation.
  • the grid stripe direction of the image data output from the X-ray flat panel detector 3 provided in the X-ray image diagnostic apparatus 10 is determined and the image is rotated.
  • the image processing apparatus 5 may read the image data of the photographed image and perform image processing similar to the above on the image data.
  • FIG. 3 is a flowchart showing a flow of image display processing of the X-ray image diagnostic apparatus according to the first embodiment. Hereinafter, description will be made along the order of steps in FIG.
  • Step S1 Image data is acquired from the X-ray flat panel detector 3 and temporarily stored in the image storage unit 5a.
  • the grid stripe direction determining unit 5b determines the grid stripe direction included in the image data.
  • the vertical direction flag is stored.
  • the horizontal direction flag is stored (S1). Details of this step will be described later.
  • Step S2 The image rotation unit 5d reads insertion direction information indicating the insertion direction of the X-ray flat panel detector 3 with respect to the imaging table 4 from the detector insertion direction storage unit 5c.
  • the insertion direction information determines whether to insert from the right side or the left side of the imaging table when the X-ray diagnostic imaging apparatus 1 or the imaging table 4 is installed, and is stored as a setting value when the imaging table 4 is installed.
  • the head-and-foot direction of the imaging platform 4 is expressed as a parameter corresponding to the determined insertion direction, and the image rotation direction corresponding to the parameter is associated and stored as insertion direction information.
  • the image rotation unit 5d uses the insertion direction information read from the detector insertion direction storage unit 5c and the grid stripe direction information in step S1 to adjust the image to the head and foot direction of the image display device 6. It is determined whether or not rotation of the data in the direction of the head and feet is unnecessary (S2). If unnecessary, the process proceeds to step S4. If necessary, the process proceeds to step S3.
  • Step S3 The image rotation unit 5d performs head and foot rotation processing (S3).
  • the grid stripe direction is vertical, it is rotated 180 degrees, and when the grid stripe direction is horizontal, it is rotated 90 degrees.
  • the history of image rotation and information indicating the rotation direction such as “IMEGEROTATION: 1”, as supplementary information of DICOM (note: a kind of medical image communication protocol)
  • Saving as DICOM incidental information is only one example of saving, and may be saved as image incidental information of another project, or image rotation history and rotation direction are associated with information for identifying an image. May be saved.
  • Step S4 The image processing device 5 executes processing necessary before image display processing, such as grid stripe removal processing, and displays an image after rotation processing or an image that does not require rotation on the image display device 6 (S4). At this time, the up-and-down direction of the image display device 6 and the head-and-foot direction of the subject image included in the displayed captured image match.
  • the image data in the image storage unit 5a is updated to the image data after the rotation process, and the process ends.
  • FIG. 4 is a flowchart showing a flow of grid stripe direction discrimination processing.
  • 5A and 5B are explanatory diagrams showing the contents of the grid stripe direction discrimination process, where FIG. 5A shows the scanning direction of the line, FIG. 5B shows the frequency response response when the grid stripe direction is vertical, and (c ) Shows the relationship between the line direction and the grid stripe direction being vertical, (d) shows the frequency response response when the grid stripe direction is horizontal, and (e) is the case where the line direction and grid stripe direction are horizontal. Shows the relationship.
  • description will be made along the order of steps in FIG.
  • Step S11 The grid stripe direction determination unit 5b scans an arbitrary line in the image 50 (S11).
  • Line scanning is preferably performed in the vicinity of the center of the image 50 in order to avoid a position in the image 50 where grid stripes are difficult to detect, such as an aperture region.
  • all line processing may be performed, but processing may be performed for each predetermined number of lines in order to shorten processing time.
  • smoothing processing or the like may be performed after the FFT processing.
  • line scanning is advanced at 100 line intervals. Furthermore, an upper limit value (for example, n times) of the number of line scans is set. If the number of line scans is less than or equal to the upper limit (corresponding to “No”), the process proceeds to step S12. If line scanning has been performed for the upper limit number of times, it is determined that line scanning has ended (corresponding to “Yes”), and the process proceeds to step S16.
  • an upper limit value for example, n times
  • the line 50t that is 100 lines above the center line 50m of the image 50 is read, and in the next loop, the line that is 100 lines below the center line 50m.
  • the line scan is advanced to 50u.
  • Step S12 The grid stripe direction discriminating unit 5b performs an FFT process on one line read in step S11 (S12).
  • the grid stripe direction determination unit 5b determines the presence or absence of grid stripes based on the response Rg of the grid stripe frequency (S13).
  • the grid stripe direction determination unit 5b determines that there is a grid when the ratio between the response Rg of the grid stripe frequency and the response Ra of the neighboring frequency is equal to or greater than the threshold th.
  • the threshold value th is 2.0.
  • step S14 If it is determined that there are grid stripes, the process proceeds to step S14. If it is determined that there is no grid stripes, the process proceeds to step S15, the line scanning position is changed, and the process returns to step S11.
  • the grid stripe direction determination unit 5b may be configured to determine that there is a grid stripe when the response Rg of the grid stripe frequency is equal to or greater than a predetermined value.
  • Step S15 The grid stripe direction discriminating unit 5b adds a vertical direction flag and ends the grid stripe direction discrimination process (S15).
  • Step S16 If grid stripes are not detected even after the processes from step S11 to step S14 are repeated a predetermined number of times, the grid stripe direction discriminating unit 5b attaches a horizontal direction flag and ends the grid stripe direction discrimination processing (S16).
  • FIG. 6 is a flowchart showing the flow of the head and foot rotation process.
  • FIG. 7 is an explanatory diagram showing the contents of the head-and-foot rotation process in the table for taking a standing position.
  • the head direction 71h and the foot direction 71l are determined in advance in the position table photographing base 70 (hereinafter, abbreviated as "photographing base 70"). It is also assumed that the image reading start position 3a and the image reading direction 3b of the X-ray flat panel detector 3 are known. Further, in the captured image obtained from the X-ray flat panel detector 3, the upper left corner of the display screen in the image display device 6 corresponds to the image reading start position 3a, and the direction from the left to the right of the display screen and the image reading direction 3b. It is known that the captured image is displayed so that the direction along the line matches.
  • the imaging table 70 and the insertion direction of the X-ray flat panel detector 3 it is inserted such that the long side of the rectangular X-ray flat panel detector 3 coincides with the long side of the imaging table 70.
  • the case of inserting from the right side of the top surface of the imaging table 70 and the case of inserting from the left side can be considered. Therefore, in the following, four types of insertion direction information of “vertical insertion and right insertion”, “vertical insertion and left insertion”, “lateral insertion and right insertion”, and “lateral insertion and left insertion” will be described.
  • the parameter indicating the relationship between the head and foot directions 71h and 71l of the imaging table 70 and the insertion direction (vertical insertion and right insertion) of the X-ray flat panel detector 3 is set to “0”.
  • the parameter “0” as described above, the upper left corner of the display screen in the image display device 6 corresponds to the image reading start position 3a, and the captured image read from the X-ray flat panel detector 3 corresponds to the image reading start position 3a.
  • the head direction of the captured image coincides with the upward direction on the display screen of the X image display device 6 (“state 0 before image rotation”). Equivalent to '"). Therefore, since the image rotation process is unnecessary, insertion direction information “0: output as it is” indicating that the image rotation is unnecessary is stored for the parameter 0.
  • the parameter indicating the relationship between the head and foot directions 71h and 71l of the imaging table 70 and the insertion direction (vertical insertion and left insertion) of the X-ray flat panel detector 3 is set to “1”.
  • the image reading start position 3 a of the X-ray flat panel detector 3 is located on the foot side of the imaging table 70. Therefore, the foot side of the subject 20 is imaged on the image reading start position 3 a side of the X-ray flat panel detector 3.
  • the parameter indicating the relationship between the head and foot directions 71h and 71l of the imaging table 70 and the insertion direction (lateral insertion and right insertion) of the X-ray flat panel detector 3 is set to “2”.
  • the image reading start position 3 a of the X-ray flat panel detector 3 is located on the foot side of the imaging table 70.
  • the image reading direction 3b coincides with the head direction 71h of the imaging table 70. Therefore, the foot side of the subject 20 is photographed on the image readout start position 3a side of the X-ray flat panel detector 3, and the head direction of the subject 20 is photographed along the image readout direction 3b.
  • the parameter indicating the relationship between the head and foot directions 71h and 71l of the imaging base 70 and the insertion direction (lateral insertion and left insertion) of the X-ray flat panel detector 3 is set to “3”.
  • the image reading start position 3 a of the X-ray flat panel detector 3 is located on the head side of the imaging table 70.
  • the image reading direction 3b coincides with the foot direction 71l of the imaging table 70. Therefore, the head side of the subject is photographed on the image readout start position 3a side of the X-ray flat panel detector 3, and the foot direction 71l of the subject 20 is photographed along the image readout direction 3b.
  • the above four cases have been described.
  • the user decides either right insertion or left insertion when installing the imaging stand 70.
  • two patterns of insertion direction information corresponding to the determined insertion direction and the insertion direction (vertical insertion, horizontal insertion) of the X-ray flat panel detector 3 are stored in advance in the detector insertion direction information storage unit 5c as set values. Keep it.
  • the image rotation unit 5d performs the head-foot rotation process
  • the image rotation unit 5d determines which of the two patterns of insertion direction information corresponds from the detector insertion direction storage unit 5c, and performs the head-foot rotation process.
  • Step S21 The image rotation unit 5d reads the vertical and horizontal flags stored in the grid stripe direction discrimination process. If the value is vertical, the process proceeds to step S22. If the value is horizontal, the process proceeds to step S24 (S21).
  • Step S22 The image rotation unit 5d refers to the insertion direction information stored in the detector insertion direction storage unit 5c, and proceeds to the 0 or 1 branch. In the case of 0, it is output as it is. If 1, the process proceeds to step S23 (S22).
  • Step S23 The image rotation unit 5d rotates the image by 180 degrees and outputs it (S23).
  • Step S24 In the case of the horizontal flag, the image rotation unit 5d refers to the insertion direction information in the horizontal direction stored in the detector insertion direction storage unit 5c, and proceeds to branch 2 or 3. If it is 2, the process proceeds to step S25, and if it is 3, the process proceeds to step S26 (S24).
  • Step S25 The image rotation unit 5d rotates the image 90 degrees to the left and outputs it, and ends the head-foot rotation process (S25).
  • Step S26 The image rotation unit 5d rotates the image 90 degrees to the right and outputs it, and ends the head and foot rotation process (S26).
  • the head and foot direction can be accurately displayed on the image display device regardless of the insertion direction of the X-ray flat panel detector.
  • FIG. 8 is a flowchart showing a processing flow of the second embodiment.
  • FIG. 9 is an explanatory diagram showing processing of the second embodiment.
  • Step S201 The grid stripe direction determination unit 5b extracts a region that is not a subject region (subject image) from the captured image.
  • the region that is not the subject region (subject image) referred to here is not a diaphragm region or subject region that reduces X-ray exposure as shown in FIG. 9, but a region directly irradiated with X-rays (hereinafter referred to as “directly”).
  • the grid stripe direction determination unit 5b directly extracts an X-ray region 91 from the captured image 90 (S201).
  • Steps S202 to S204 The grid stripe direction determination unit 5 b sets an arbitrary line in the extracted direct X-ray region 91. Subsequently, based on the line, the grid stripe direction determination process described in step S1 is executed.
  • the grid direction is determined for the extracted direct X-ray region (S202). If the vertical direction is determined, the vertical direction flag is stored and the process proceeds to the next step. If it is discriminated as the horizontal direction, the horizontal direction flag is stored. Next, using the insertion direction information in the detector insertion direction storage unit 5c, the image rotation unit 5d determines whether or not the rotation in the head and foot direction is necessary (S203). If unnecessary, go to the next step. If necessary, it is rotated 180 degrees or right or left 90 degrees (S204). In the case of 180 degree rotation, it is implemented when the grid direction is vertical. The 90 degree rotation is performed when the grid direction is horizontal.
  • the grid stripe direction is determined using only the direct X-ray region in which the subject is not imaged, noise such as signal components of the subject does not enter, so that the detection accuracy is improved.
  • FIG. 10 is a flowchart showing a processing flow of the third embodiment.
  • FIG. 11 is an explanatory diagram showing processing of the third embodiment.
  • description will be made along the order of the steps in FIG.
  • Step S301 The grid stripe direction is determined with respect to the captured image 110 (S301).
  • the grid stripe direction discrimination process may be either the process of the first embodiment or the second embodiment. If the vertical direction is determined, the vertical direction flag is stored and the process proceeds to the next step. If the horizontal direction is determined, the horizontal direction flag is stored and the process proceeds to the next step.
  • Step S302 The image rotation unit 5d extracts a subject region (subject image) 111 from which the subject is photographed from the photographed image 110, and determines the head and foot direction based on the feature amount of the subject region (S302). .
  • the image rotation unit 5d acquires information on the cervical vertebrae, the clavicle, and the shoulder joint in the head direction when photographing the chest front.
  • information on the heart and the diaphragm can be acquired as the foot direction.
  • the head and foot direction can be estimated from the shape of the lung field.
  • one direction of the captured image 110 is scanned to generate a density profile. Then, the spread of the density profile is sequentially compared along a direction orthogonal to the one direction.
  • line scanning is performed along the arrow AA 'in FIG. 11, and a density profile is generated for each line. Then, the widths of the density profiles are compared. Since the width of the density profile of the neck is narrower than the width of the density profile of the chest, by comparing these, the position of the neck with respect to the chest can be known, and the head and foot direction can be determined.
  • line scanning is performed along the arrow BB ′ in FIG.
  • the image rotation unit 5d determines the head and foot direction from the density profile generated based on the subject region (subject image), and determines whether or not the head and foot rotation is necessary. If unnecessary, go to the next step. If necessary, the process proceeds to step S303.
  • Step S303 If the grid stripe direction is the vertical direction, the image rotation unit 5d rotates the captured image by 180 degrees. If it is in the horizontal direction, it rotates 90 degrees to the right or left.
  • the head and foot direction can be determined regardless of the insertion direction information, an image whose insertion direction information is unknown, for example, a photographed image whose insertion direction is unknown because it has been captured by another X-ray diagnostic imaging apparatus is read.
  • the head direction of the captured image can be displayed in the upward direction of the image display device.
  • the grid fringe frequency differs depending on the imaged subject-X-ray tube distance, so a table in which the grid fringe frequency is determined in advance for each thinning number and photographing distance is prepared.
  • the grid fringe direction discriminating unit 5b reads the thinning number and the subject-X-ray tube distance included in the imaging conditions and display conditions, and refers to the above table to determine the grid fringe frequency suitable for each condition. It may be set.
  • the grid fringe frequency discriminating unit 5b may detect and use the corresponding grid fringe frequency for the processing.
  • 1 X-ray tube
  • 2 Scattered ray removal grid
  • 3 X-ray flat detector
  • 4 Imaging table
  • 5 Image processing device
  • 6 Image display device
  • 10 X-ray image diagnostic device
  • 20 Covered Specimen

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Human Computer Interaction (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

 X線平面検出器の挿入方向に関わらず、表示部に頭足方向を正確に表示させるために、X線画像診断装置は、被検体にX線を照射するX線管球1と、被検体20により生じる散乱線成分を除去するグリッド2と、X線管球1に対向配置され、被検体20の透過X線を検出して画像データを出力するX線平面検出器3と、画像データに基づく画像を表示する画像表示部6と、画像データに含まれるグリッドに起因する縞方向が縦か横かを判別するグリッド縞方向判別部5bと、グリッド縞方向判別部による判別結果に基づいて、画像に撮影された被検体20の領域における頭方向が、画像表示部6の表示画面において上方向と一致するように、画像を回転する画像回転部5dと、を備え、画像表示部6は、回転後の画像を表示する。

Description

X線画像診断装置及び画像表示方法
 本発明は、X線画像診断装置及び画像表示方法に係り、特に、X線平面検出器を使用した放射線撮影により得られた被検体の撮影画像の表示技術に関するものである。
 従来、対象物に放射線を照射し、対象物を透過した放射線の強度分布を検出して対象物の撮影画像を得る装置が工業用の非破壊検査や医療診断の場で広く一般に利用されている。このような撮影の一般的な方法としては、X線に対するフィルム/スクリーン法が挙げられる。近年では、デジタル技術の進歩により、撮影画像を電気信号に変換し、この電気信号を画像処理した後に、可視画像としてCRT等に再生することにより高画質の撮影画像を得る方式が求められている。また、半導体プロセス技術の進歩に伴い、X線平面検出器を使用して同様に撮影画像を撮影する装置が開発されている。これらのシステムは、従来の感光性フィルムを用いる放射線システムと比較して非常に広いダイナミックレンジを有しており、放射線の露光量の変動に影響されない撮影画像を得ることができる実利的な利点を有している。
 このようなX線平面検出器では、技術の進歩により、従来のアナログカセッテのサイズまで小型化され、いわゆる、電子カセッテと呼ばれる移動型デジタルX線撮影装置が開発されている。
 このようなX線平面検出器は、既存の撮影台を更新することなく使用するために、従来のアナログカセッテと同様なサイズが一般的であり長方形サイズが多い。長方形サイズの場合、被検体の大きさにより、撮影台に対して縦挿入される場合と、横挿入される場合がある。胸部正面撮影を行う場合の一例を図1に示す。図1は、背景技術におけるX線平面検出器の挿入方向と頭足方向との関係を示す説明図であって、(a)は縦挿入を、(b)は横挿入を示す。図1の(a)のように、縦挿入(立位撮影台100の頭足方向101に対して縦長に平面検出器102を挿入することを意味する)した場合、画像表示装置103に画像が縦方向(画像に撮影された被検体の頭が上)に表示されるが、図1(b)のように、横挿入した場合、画像表示装置103に画像が横方向(画像に撮影された被検体の頭が右又は左)に表示される。
 この問題を解決する方法としては、GUI(Graphical User Interface)でユーザが画像を回転したり、X線平面検出器の一種であるFlat Pnnel Detector(以下「FPD」と略記する)の方向を検出するセンサ―や回転機構を設け、その情報を元に回転していた。
 しかし、ユーザが画像を回転することは検査のワークフローに支障をきたす。また、FPD方向検出センサ―や回転機構を設けると、コストアップとなり、更に構成も大きくなり、被検体に圧迫感を与える恐れがある。
 この問題を解決するために、特許文献1には、画像の隅にマークを埋め込み、画像の反転・回転を行う手法が提案されている。
特開2000-107158号公報
 しかし、特許文献1に記載されている手法は、撮影画像内における被検体が撮影された領域内にマークが挿入される場合があり、そのマークが診断に支障をきたす場合がある。更に、マークを挿入しなければいけないため、ワークフローに支障をきたす。
 本発明の目的は、上記記載の問題点を解消し、X線平面検出器の挿入方向に関わらず、画像表示装置に頭足方向を正確に表示できる技術を提供することにある。
 上記目的を達成するために、本発明は、画像データに含まれるグリッドに起因する縞方向が縦か横かを判別し、判別結果に基づいて、画像に撮影された被検体の領域(以下「被検体像」という)における頭方向が画像表示部の表示画面において上方向と一致するように画像を回転し、回転後の画像を表示することを特徴とする。
 本発明によれば、X線平面検出器の挿入方向に関わらず、表示部に頭足方向を正確に表示できる技術を提供することができる。
背景技術におけるX線平面検出器の挿入方向と頭足方向との関係を示す説明図であって、(a)は縦挿入を、(b)は横挿入を示す。 本実施形態に係るX線画像診断装置10の概略構成を示す模式図 第一施形態に係るX線画像診断装置の画像表示処理の流れを示すフローチャート グリッド縞方向判別処理の流れを示すフローチャート グリッド縞方向判別処理の内容を示す説明図であって、(a)はラインの走査方向を示し、(b)はグリッド縞方向が縦の場合の周波数レスポンス応答を示し、(c)はライン方向とグリッド縞方向が縦の場合との関係を示し、(d)はグリッド縞方向が横の場合の周波数レスポンス応答を示し、(e)はライン方向とグリッド縞方向が横の場合との関係を示す。 頭足回転処理の流れを示すフローチャート 臥位用テーブル撮影台における頭足回転処理の内容を示す説明図 第二実施形態の処理の流れを示すフローチャート 第二実施形態の処理を示す説明図 第三実施形態の処理の流れを示すフローチャート 第三実施形態の処理を示す説明図
 本実施形態に係るX線画像診断装置は、被検体にX線を照射するX線管球と、前記被検体により生じる散乱線成分を除去するグリッドと、前記X線管球に対向配置され、前記被検体の透過X線を検出して画像データを出力するX線平面検出器と、前記画像データに基づく画像を表示する画像表示部と、前記画像データに含まれる前記グリッドに起因する縞方向が縦か横かを判別するグリッド縞方向判別部と、前記グリッド縞方向判別部による判別結果に基づいて、前記画像に撮影された前記被検体の領域(被検体像)における頭方向が、前記画像表示部の表示画面において上方向と一致するように、前記画像を回転する画像回転部と、を備える。そして、前記画像表示部は、前記回転後の画像を表示することを特徴とする。
 また、前記グリッド縞方向判別部は、前記画像データに対して高速フーリエ変換処理を行い、グリッド縞周波数レスポンスの値、又は前記グリッド縞周波数レスポンスと前記グリッド縞周波数の近隣の周波数レスポンスとの比、を用いてグリッド縞方向を判別してもよい。
 また、前記グリッド縞方向判別部は、前記画像において直接X線が入射した直接X線領域に対して前記高速フーリエ変換処理を行ってもよい。
 更に、前記グリッド縞方向判別部は、前記グリッド縞周波数を、前記X線画像診断装置により前記画像データを取得する際の前記被検体と前記X線管球との間の撮影距離に応じて決定してもよい。
 また、前記グリッド及び前記X線平面検出器を格納する撮影台に対する、前記X線平面検出器の挿入方向を示す挿入方向情報を記憶する検出器挿入方向記憶部を更に備え、前記画像回転部は、前記グリッド縞方向判別部による判別結果及び前記挿入方向情報に基づいて、前記画像の回転方向を決定し、前記画像における前記被検体の頭方向が前記画像表示部における上方向と一致するように前記画像を回転してもよい。
 また、前記挿入方向情報は、前記撮影台の頭足方向と前記撮影台に対する前記X線平面器の挿入方向とを対応付けたパラメータに、前記画像の回転方向として180度回転、右90度回転、又は左90度回転のいずれかを関連付けた情報であってもよい。
 前記画像回転部は、前記画像において、前記被検体が撮影された被検体領域を抽出して前記被検体の頭足方向を検出し、その検出結果を基に前記画像の回転方向が右回転又は左回転であるかを判別してもよい。
 また、前記画像回転部で判別された回転情報を、前記画像データに付帯して記憶する記憶部を更に備えてもよい。
 また、本実施形態に係る画像表示方法は、被検体により生じる散乱線成分を除去するグリッドと、X線平面検出器と、を備えたX線画像診断装置により、前記被検体を撮影して得られた画像データを読み込むステップと、前記画像データに含まれる前記グリッドに起因する縞方向が縦か横かを判別するステップと、前記判別結果に基づいて、前記画像データに基づく画像に撮影された前記被検体の領域(被検体像)における頭方向が、当該画像が表示される表示画面における上方向と一致するように、前記画像を回転するステップと、前記回転後の画像を前記表示画面に表示するステップと、を含むことを特徴とする。
 以下、本発明の実施形態について図面を用いてより具体的に説明する。同一機能を有する構成及び同一の処理内容の手順には同一符号を付し、その説明の繰り返しを省略する。
 図2は、本実施形態に係るX線画像診断装置10の概略構成を示す模式図である。X線画像診断装置10は、被検体20にX線を照射するX線管球1と、被検体20により生じる散乱線成分を除去するグリッド2と、X線管球1に対向配置され、被検体20の透過X線を検出するX線平面検出器3と、グリッド2やX線平面検出器3が格納されている撮影台4と、X線平面検出器3より出力される画像データの記憶及び画像処理を行う画像処理装置5と、画像処理装置5に記憶されている画像データを表示する画像表示装置6と、を備える。
 画像処理装置5は、画像データを記憶する画像記憶部5aと、X線平面検出器3から出力された画像データ、若しくは画像処理装置5が読みこんだ撮影画像に含まれる散乱光除去グリッド(以下「グリッド」と略記する)2の縞方向が縦か横かを判別するグリッド縞方向判別部5bと、撮影台4におけるX線平面検出器3の挿入方向情報が格納されている検出器挿入方向記憶部5cと、挿入方向情報とグリッド縞方向判別部5bからの情報により、画像記憶部5aに記憶されている画像を回転する画像回転部5dと、を備える。
 画像記憶部5aと検出器挿入方向記憶部5cとは、画像処理装置5を構成するハードウェアに含まれる不揮発性又は揮発性の記憶装置、例えばメモリ、磁気ディスク、不揮発性メモリを備えて構成される。また、グリッド縞方向判別部5b及び画像回転部5dは、読みこまれた画像データに対し高速フーリエ変換(Fast Fourier Transform;以下「FFT」と略記する。)を施してグリッド縞周波数のレスポンス応答を算出し、これに基づいてグリッド縞方向を判別するステップと、その判別結果を用いて画像回転処理を行うステップと、を含む画像表示方法をコンピュータに実行させるプログラムと、そのプログラムを実行するハードウェアと、が協働することにより構成される。
 本実施形態では、X線画像診断装置10に備えられたX線平面検出器3から出力された画像データのグリッド縞方向を判別し、画像を回転したが、他のX線画像診断装置が撮影した撮影画像の画像データを画像処理装置5が読込み、これに対して上記同様の画像処理を行ってよい。
 図3に基づいて、第一実施形態に係るX線画像診断装置の画像表示処理の概要について説明する。図3は、第一実施形態に係るX線画像診断装置の画像表示処理の流れを示すフローチャートである。以下、図3のステップ順に沿って説明する。
 (ステップS1)
 X線平面検出器3から画像データを取得し、画像記憶部5aに一旦、記憶する。グリッド縞方向判別部5bは、その画像データに含まれるグリッド縞方向を判別する。縦方向と判別されたら縦方向フラグが格納され、横方向と判別されたら横方向フラグが格納される(S1)。本ステップの詳細は、後述する。
 (ステップS2)
 画像回転部5dは、検出器挿入方向記憶部5cから、X線平面検出器3の撮影台4に対する挿入方向を示す挿入方向情報を読み込む。挿入方向情報は、X線画像診断装置1又は撮影台4の設置時に、撮影台の右側又は左側どちらから挿入するかを決めて、撮影台4の設置時に設定値として格納しておく。そして、撮影台4の頭足方向を、定めた挿入方向に対応するパラメータとして表し、そのパラメータに対する画像回転方向を対応付けて挿入方向情報として記憶しておく。そして、画像回転部5dが、検出器挿入方向記憶部5cから読み出した挿入方向情報と、ステップS1のグリッド縞方向情報と、に基づいて、画像表示装置6の頭足方向に合わせるために、画像データの頭足方向の回転が不要か必要か判別する(S2)。不要の場合はステップS4へ進む。必要の場合は、ステップS3へ進む。
 (ステップS3)
 画像回転部5dは、頭足回転処理を行う(S3)。グリッド縞方向が縦の場合、180度回転を行い、グリッド縞方向が横方向の場合、90度回転を行う。上記グリッド縞の縦横判別及び頭足判別処理で判別された回転フラグを画像の付帯情報として記憶してもよい。例えば、「IMEGEROTATION:1」のように、画像回転を行った履歴と、その回転方向とを示す情報と、をDICOM(注記:医療画像の通信プロトコルの一種)の付帯情報として保存することで、後でどの方向で撮影されたか分かる。本ステップの詳細は後述する。上記DICOMの付帯情報として保存することは、保存例の一つに過ぎず、他の企画の画像付帯情報に保存しても良いし、画像を識別する情報に画像回転履歴及び回転方向を対応付けて保存してもよい。
 (ステップS4)
 画像処理装置5は、グリッド縞の除去処理等、画像表示処理の前に必要な処理を実行し、回転処理後の画像、若しくは回転不要な画像を画像表示装置6に表示する(S4)。このとき、画像表示装置6の上下方向と、表示された撮影画像に含まれる被検体像の頭足方向とが一致する。
 必要があれば、画像記憶部5aの画像データを回転処理後の画像データに更新し、処理を終了する。
 <グリッド縞方向判別処理>
 図4及び図5に基づいてグリッド縞方向判別処理について説明する。図4は、グリッド縞方向判別処理の流れを示すフローチャートである。図5は、グリッド縞方向判別処理の内容を示す説明図であって、(a)はラインの走査方向を示し、(b)はグリッド縞方向が縦の場合の周波数レスポンス応答を示し、(c)はライン方向とグリッド縞方向が縦の場合との関係を示し、(d)はグリッド縞方向が横の場合の周波数レスポンス応答を示し、(e)はライン方向とグリッド縞方向が横の場合との関係を示す。以下、図4の各ステップ順に沿って説明する。
 (ステップS11)
 グリッド縞方向判別部5bは、画像50内の任意の1ラインを走査する(S11)。ライン走査は、画像50において、絞り領域のようにグリッド縞が検出困難な位置を避けるために、画像の中央部付近を始点とすると好ましい。また、ライン走査において、全ライン処理を行っても良いが、処理時間を短縮させるため所定ライン数毎に処理を行ってもよい。更にノイズ成分を除去するために、FFT処理後に平滑化処理等を施しても良い。
 本実施形態では、100line間隔でライン走査を進める。更に、ライン走査をする回数の上限値(例えば、n回)を設定しておく。ライン走査回数が上限値以下であれば(「No」に相当)、ステップS12へ進む。上限値回数分ライン走査を行った場合には、ライン走査終了と判断(「Yes」に相当)して、ステップS16へ進む。
 本実施形態では、図5の(a)に示すように、まず、画像50の中央ライン50mから100ライン上部にあるライン50tを読出し、次のループで、中央ライン50mから100ライン下にあるライン50uへライン走査を進める。
 (ステップS12)
 グリッド縞方向判別部5bは、ステップS11で読み出した1ラインに対してFFT処理を行う(S12)。
 (ステップS13)
 グリッド縞方向判別部5bは、グリッド縞周波数のレスポンスRgに基づいて、グリッド縞の有無を判定する(S13)。グリッド縞方向判別部5bは、グリッド縞周波数のレスポンスRgと近隣の周波数のレスポンスRaとの比が閾値th以上の場合にグリッドありと判別する。図5の(c)に示すように、ラインに直交する方向にグリッド縞が存在する場合、FFT処理を行うと図5の(b)のように、横軸が周波数、縦軸がレスポンスを示すレスポンスの分布図51において、グリッド縞周波数帯域Rgでピークが存在する。また、レスポンスの分布を輝度に対応させた画像52において、グリッド縞周波数帯域では、その周辺に比べて輝度が高く(白く)描出される。本実施形態では閾値thを2.0とする。
 X線平面検出器を横方向に挿入した場合(図5の(e)参照)、図5の(d)の分布図53に示すように、全ラインにおいてRg=Raとなりグリッドなしと判別される。
 グリッド縞がありと判定されるとステップS14へ進み、グリッド縞がなしと判定されると、ステップS15へ進み、ライン走査をする箇所を変更し、ステップS11へ戻る。
 または、グリッド縞方向判別部5bは、グリッド縞周波数のレスポンスRgが、所定値以上である場合に、グリッド縞有りと判別するように構成してもよい。
 (ステップS15)
 グリッド縞方向判別部5bは、縦方向フラグを付けてグリッド縞方向判別処理を終了する(S15)。
 (ステップS16)
 ステップS11~ステップS14までの処理を所定回数繰り返しても、グリッド縞が検出されない場合、グリッド縞方向判別部5bは、横方向フラグを付けてグリッド縞方向判別処理を終了する(S16)。
 <頭足回転処理>
 図6及び図7に基づいて頭足回転処理について説明する。図6は、頭足回転処理の流れを示すフローチャートである。図7は、臥位用テーブル撮影台における頭足回転処理の内容を示す説明図である。
 図7に示す臥位用テーブル撮影台70(以下「撮影台70」と略記する)は、頭方向71hと足方向71lとが予め決まっているものとする。また、X線平面検出器3の画像読み出し開始位置3a及び画像読出し方向3bも既知であるとする。さらに、X線平面検出器3から得られた撮影画像は、画像表示装置6における表示画面の左上隅が画像読出し開始位置3aに対応し、表示画面の左から右に向かう方向と画像読出し方向3bに沿った方向とが一致するように、撮影画像が表示されることが既知である。
 更に、撮影台70と、X線平面検出器3の挿入方向との関係については、矩形状のX線平面検出器3の長辺が撮影台70の長辺と一致するように挿入する「縦挿入」と、矩形状のX線平面検出器3の長辺が撮影台70の短辺と一致するように挿入する「横挿入」とがあり、「縦挿入」「横挿入」のそれぞれの場合について、撮影台70の天面の右側から挿入する場合と、左側から挿入する場合とが考えられる。よって、以下では、「縦挿入かつ右挿入」、「縦挿入かつ左挿入」、「横挿入かつ右挿入」、「横挿入かつ左挿入」の4通りにおける挿入方向情報について説明する。
 (縦挿入かつ右挿入の場合)
 この場合の撮影台70の頭足方向71h、71lと、X線平面検出器3の挿入方向(縦挿入かつ右挿入)との関係を示すパラメータを「0」とする。パラメータ「0」においては、X線平面検出器3から読み出される撮影画像を、上記の如く、画像表示装置6における表示画面の左上隅が画像読出し開始位置3aに対応し、表示画面の左から右に向かう方向と画像読出し方向3bに沿った方向とが一致するように表示すると、撮影画像の頭方向とX画像表示装置6の表示画面における上方向とが一致する(画像回転前の「状態0’」に相当する)。よって、画像回転処理は不要となるので、パラメータ0に対しては画像回転が不要であることを示す「0:そのまま出力」とする挿入方向情報が格納される。
 (縦挿入かつ左挿入の場合)
 この場合の撮影台70の頭足方向71h、71lと、X線平面検出器3の挿入方向(縦挿入かつ左挿入)との関係を示すパラメータを「1」とする。パラメータ「1」においては、X線平面検出器3の画像読出し開始位置3aが撮影台70の足側に位置する。よって、X線平面検出器3の画像読出し開始位置3a側には、被検体20の足側が撮影されることとなる。この状態で、X線平面検出器3の画像読出し開始位置3aを左上隅として画像表示装置6に撮影画像を表示すると、表示される撮影画像では被検体の足が上(画像回転前の「状態1’」に相当する)となって、すなわち、撮影画像の頭足方向が180度反転して表示される。そこで、X線平面検出器3から読み出される撮影画像を、180度回転してから画像表示装置6に表示すると、撮影画像の頭側が上となって画像表示装置6に表示される。よって、パラメータ「1」に対しては画像の180度回転が必要であることを示す「1:180度回転」とする挿入方向情報が格納される。
 (横挿入かつ右挿入の場合)
 この場合の撮影台70の頭足方向71h、71lと、X線平面検出器3の挿入方向(横挿入かつ右挿入)との関係を示すパラメータを「2」とする。パラメータ「2」においては、X線平面検出器3の画像読出し開始位置3aが撮影台70の足側に位置する。また、画像読出し方向3bが撮影台70の頭方向71hと一致する。よって、X線平面検出器3の画像読出し開始位置3a側には、被検体20の足側が撮影され、画像読出し方向3bに沿って被検体20の頭方向が撮影される。この状態で、X線平面検出器3の画像読出し開始位置3aを左上隅として画像表示装置6に撮影画像を表示すると、表示される撮影画像では被検体20の足側が左、頭側が右となって(画像回転前の「状態2’」に相当する)、すなわち、撮影画像の頭方向が、表示画面の上方向に対して90度右回転して表示される。そこで、X線平面検出器3から読み出される撮影画像を、左90度回転してから画像表示装置6に表示すると、撮影画像の頭方向が上となって画像表示装置6に表示される。よって、パラメータ「2」に対しては画像の左90度回転が必要であることを示す「2:90度左回転」とする挿入方向情報が格納される。
 (横挿入かつ左挿入の場合)
 この場合の撮影台70の頭足方向71h、71lと、X線平面検出器3の挿入方向(横挿入かつ左挿入)との関係を示すパラメータを「3」とする。パラメータ「3」においては、X線平面検出器3の画像読出し開始位置3aが撮影台70の頭側に位置する。また、画像読出し方向3bが撮影台70の足方向71lと一致する。よって、X線平面検出器3の画像読出し開始位置3a側には、被検体の頭側が撮影され、画像読出し方向3bに沿って被検体20の足方向71lが撮影される。この状態で、X線平面検出器3の画像読出し開始位置3aを左上隅として画像表示装置6に撮影画像を表示すると、表示される撮影画像では被検体20の頭側が左、足側が右となって(画像回転前の「状態3’」に相当する)、すなわち、撮影画像の頭方向が表示画面の上方向に対して90度左回転して表示される。そこで、X線平面検出器3から読み出される撮影画像を、右90度回転してから画像表示装置6に表示すると、撮影画像の頭方向が上となって画像表示装置6に表示される。よって、パラメータ「3」に対しては画像の右90度回転が必要であることを示す「3:90度右回転」とする挿入方向情報が格納される。
 本実施形態では、上記4つの場合について説明したが、通常は、ユーザが撮影台70を設置時に、右挿入か左挿入かのどちらか一方を決める。そして決められた挿入方向とX線平面検出器3の挿入向き(縦挿入、横挿入)のそれぞれが対応した2パターンの挿入方向情報を設定値として検出器挿入方向情報記憶部5cに予め格納しておく。そして、画像回転部5dが、頭足回転処理を行う際に、検出器挿入方向記憶部5cから、2パターンのいずれの挿入方向情報に該当するかを判断して、頭足回転処理を行う。
 以下、臥位用テーブル撮影台における頭足回転処理について、図6の各ステップ順に沿って説明する。
 (ステップS21)
 画像回転部5dは、グリッド縞方向判別処理で格納された縦、横フラグを読みだす。その値が縦の場合、ステップS22へ進み、横の場合は、ステップS24へ進む(S21)。
 (ステップS22)
 画像回転部5dは、検出器挿入方向記憶部5cに記憶されている挿入方向情報を参照し、0か1の分岐へ進む。0の場合はそのまま出力される。1の場合、ステップS23へ進む(S22)。
 (ステップS23)
 画像回転部5dは、画像を180度回転し、出力する(S23)。
 (ステップS24)
 横フラグの場合、画像回転部5dは、検出器挿入方向記憶部5cに記憶されている横方向の場合の挿入方向情報を参照し、2か3の分岐へ進む。2の場合はステップS25へ進み、3の場合はステップS26へ進む(S24)。
 (ステップS25)
 画像回転部5dは、画像を90度左回転して出力し、頭足回転処理を終了する(S25)。
 (ステップS26)
 画像回転部5dは、画像を90度右回転して出力し、頭足回転処理を終了する(S26)。
 本実施形態によれば、X線平面検出器の挿入方向に関わらず、画像表示装置に頭足方向を正確に表示できる。
 <第二実施形態>
 次に、図8、図9に基づいて第二実施形態について説明する。第二実施形態は、グリッド縞方向検出処理の精度向上に資する実施形態である。ここで、図8は第二実施形態の処理の流れを示すフローチャートである。図9は、第二実施形態の処理を示す説明図である。以下、図8の各ステップ順に沿って説明する。
 (ステップS201)
 グリッド縞方向判別部5bは、撮影画像より被検体領域(被検体像)でない領域を抽出する。ここでいう被検体領域(被検体像)でない領域とは、図9に示すようにX線被曝を低減させる絞り領域及び被検体領域でなく、直接X線が照射されている領域(以下「直接X線領域」という)である。グリッド縞方向判別部5bは、図9に示すように、撮影画像90のうち、直接X線領域91を抽出する(S201)。
 (ステップS202~S204)
 グリッド縞方向判別部5bは、抽出した直接X線領域91内において、任意の一ラインを設定する。続いて、そのラインを基に、ステップS1において説明したグリッド縞方向判別処理を実行する。
 以下、第一実施形態と同様、抽出された直接X線領域に対してグリッド方向を判別する(S202)。縦方向と判別されたら縦方向フラグが格納され、次のステップへ進む。横方向と判別されたら横方向フラグが格納される。次に前記検出器挿入方向記憶部5cの挿入方向情報を用いて、画像回転部5dが頭足方向の回転が不要か必要か判別する(S203)。不要の場合は次のステップへ進む。必要の場合は180度回転或いは右又は左90度回転する(S204)。180度回転の場合は、グリッド方向が縦の場合実施される。90度回転は、グリッド方向が横の場合実施される。
 本実施形態によれば、被検体が撮像されていない直接X線領域のみを用いてグリッド縞方向を判別することにより、被検体の信号成分等のノイズが入り込まないため、検出精度が向上される。
 <第三実施形態>
 次に、図10、図11に基づいて第三実施形態について説明する。第三実施形態は、頭足回転処理の精度に資する実施形態である。ここで、図10は第三実施形態の処理の流れを示すフローチャートである。図11は、第三実施形態の処理を示す説明図である。以下、図10の各ステップ順に沿って説明する。
 (ステップS301)
 撮影画像110に対してグリッド縞方向を判別する(S301)。グリッド縞方向判別処理は、第一、第二実施形態のどちらの処理でもよい。縦方向と判別されたら縦方向フラグが格納され、次のステップへ進む。横方向と判別されたら横方向フラグが格納され、次のステップへ進む。
 (ステップS302)
 画像回転部5dは、撮影画像110のうち、被検体が撮影された被検体領域(被検体像)111を抽出し、その被検体領域の特徴量を基に頭足方向を判別する(S302)。図11に示すように、画像回転部5dは、胸部正面撮影であれば頭方向に頚椎や鎖骨、肩関節の情報を取得する。また、心臓や横隔膜の情報が足方向として取得できる。更に、肺野の形状等でも頭足方向が推定できる。このように人の臓器や骨の位置を抽出することにより、頭足方向の判定ができる。
 画像回転部5dの頭足方向の判定処理の一例として、例えば、撮影画像110の一方向を走査して濃度プロファイルを生成する。そして、濃度プロファイルの広がりを上記一方向と直交する方向に沿って順次比較する。胸部撮影画像の場合、図11の矢印AA’に沿ってライン走査をして、各ライン毎に濃度プロファイルを生成する。そして、各濃度プロファイルの幅を比較する。胸部の濃度プロファイルの幅に対し首部の濃度プロファイルの幅は狭いので、これらを比較することにより、胸部に対する首部の位置が分かり、頭足方向を判別することができる。または、図11の矢印BB’に沿ってライン走査をして、各ライン毎に濃度プロファイルを生成すると、肩部より頭寄りには、被検体領域(被検体像)が存在しないため、濃度プロファイルの形状は、一方(胸部)に偏った形状となる。よって、濃度プロファイルの形状から、胸部に対する首部の位置が分かり、頭足方向を判別することができる。
 画像回転部5dは、被検体領域(被検体像)を基に生成した濃度プロファイルから、頭足方向を判別し、頭足回転が不要か必要か判別する。不要の場合は次のステップへ進む。必要の場合はステップS303へ進む。
 (ステップS303)
 画像回転部5dは、グリッド縞方向が縦方向であれば、撮影画像を180度回転する。横方向であれば、右又は左に90度回転する。
 本実施形態によれば、挿入方向情報によらず頭足方向を判別できるため、挿入方向情報が不明な画像、例えば他のX線画像診断装置が撮影したため、挿入方向が分からない撮影画像を読み込んで、画像表示装置に表示させる場合にも、画像表示装置の上方向に撮影画像の頭方向を一致させて表示させることが出来る。
 <その他の実施形態>
 上記実施形態のほか、間引き画像を使用する場合、グリッド縞周波数は、撮影された被検体-X線管球距離により異なるため、間引き数と撮影距離毎に予めグリッド縞周波数を定めたテーブルを用意しておき、撮影条件や表示条件に含まれる間引き数、被検体-X線管球距離をグリッド縞方向判別部5bが読みこみ、上記テーブルを参照して、各条件にあったグリッド縞周波数を設定してもよい。
 更に、グリッド密度やX線平面検出器のピクセルサイズに応じて、グリッド縞周波数帯域が変わるが、それに応じたグリッド縞周波数をグリッド縞方向判別部5bが検出してその処理に用いてもよい。
 また、上記実施形態では、矩形状のX線平面検出器の例に説明したが、正方形のX線平面検出器の場合でも、画像の読出し位置と読み出し方向とを基に、本発明を適用することができる。
1:X線管球、2:散乱線除去グリッド、3:X線平面検出器、4:撮影台、5:画像処理装置、6:画像表示装置、10:X線画像診断装置、20:被検体

Claims (9)

  1.  被検体にX線を照射するX線管球と、
     前記被検体により生じる散乱線成分を除去するグリッドと、
     前記X線管球に対向配置され、前記被検体の透過X線を検出して画像データを出力するX線平面検出器と、
     前記画像データに基づく画像を表示する画像表示部と、
     前記画像データに含まれる前記グリッドに起因する縞方向が縦か横かを判別するグリッド縞方向判別部と、
     前記グリッド縞方向判別部による判別結果に基づいて、前記画像に撮影された前記被検体の領域における頭方向が、前記画像表示部の表示画面において上方向と一致するように、前記画像を回転する画像回転部と、を備え、
     前記画像表示部は、前記回転後の画像を表示する、
     ことを特徴とするX線画像診断装置。
  2.  前記グリッド縞方向判別部は、前記画像データに対して高速フーリエ変換処理を行い、グリッド縞周波数レスポンスの値、又は前記グリッド縞周波数レスポンスと前記グリッド縞周波数の近隣の周波数レスポンスとの比、を用いてグリッド縞方向を判別する、
     ことを特徴とする請求項1記載のX線画像診断装置。
  3.  前記グリッド縞方向判別部は、前記画像において直接X線が入射した直接X線領域に対して前記高速フーリエ変換処理を行う、
     ことを特徴とする請求項2記載のX線画像診断装置。
  4.  前記グリッド縞方向判別部は、前記グリッド縞周波数を、前記X線画像診断装置により前記画像データを取得する際の前記被検体と前記X線管球との間の撮影距離に応じて決定する、
     ことを特徴とする請求項1乃至3の何れか一つに記載のX線画像診断装置。
  5.  前記グリッド及び前記X線平面検出器を格納する撮影台に対する、前記X線平面検出器の挿入方向を示す挿入方向情報を記憶する検出器挿入方向記憶部を更に備え、
     前記画像回転部は、前記グリッド縞方向判別部による判別結果及び前記挿入方向情報に基づいて、前記画像の回転方向を決定し、前記画像における前記被検体の頭方向が前記画像表示部における上方向と一致するように前記画像を回転する、
     ことを特徴する請求項1に記載のX線画像診断装置。
  6.  前記挿入方向情報は、前記撮影台の頭足方向と前記撮影台に対する前記X線平面器の挿入方向とを対応付けたパラメータに、前記画像の回転方向として180度回転、右90度回転、又は左90度回転のいずれかを関連付けた情報である、
     ことを特徴とする請求項5に記載のX線画像診断装置。
  7.  前記画像回転部は、前記画像において、前記被検体が撮影された被検体領域を抽出して前記被検体の頭足方向を検出し、その検出結果を基に前記画像の回転方向が右回転又は左回転であるかを判別する、
     ことを特徴とする請求項1に記載のX線画像診断装置。
  8.  前記画像回転部で判別された回転情報を、前記画像データに付帯して記憶する記憶部を更に備える、
     ことを特徴とする請求項1に記載のX線画像診断装置。
  9.  被検体により生じる散乱線成分を除去するグリッドと、X線平面検出器と、を備えたX線画像診断装置により、前記被検体を撮影して得られた画像データを読み込むステップと、
     前記画像データに含まれる前記グリッドに起因する縞方向が縦か横かを判別するステップと、
     前記判別結果に基づいて、前記画像データに基づく画像に撮影された前記被検体の領域における頭方向が、当該画像が表示される表示画面における上方向と一致するように、前記画像を回転するステップと、
     前記回転後の画像を前記表示画面に表示するステップと、
     を含むことを特徴とする画像表示方法。
PCT/JP2012/052525 2011-02-15 2012-02-03 X線画像診断装置及び画像表示方法 WO2012111458A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012557887A JP5706452B2 (ja) 2011-02-15 2012-02-03 X線画像診断装置及び画像表示方法
CN201280008817.2A CN103379859B (zh) 2011-02-15 2012-02-03 X射线图像诊断装置和图像显示方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-030060 2011-02-15
JP2011030060 2011-02-15

Publications (1)

Publication Number Publication Date
WO2012111458A1 true WO2012111458A1 (ja) 2012-08-23

Family

ID=46672388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052525 WO2012111458A1 (ja) 2011-02-15 2012-02-03 X線画像診断装置及び画像表示方法

Country Status (3)

Country Link
JP (1) JP5706452B2 (ja)
CN (1) CN103379859B (ja)
WO (1) WO2012111458A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104248445A (zh) * 2013-06-28 2014-12-31 株式会社日立医疗器械 X射线图像诊断装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111096759A (zh) * 2018-10-26 2020-05-05 深圳迈瑞生物医疗电子股份有限公司 X射线摄影系统及其平板探测器、相关方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263279A (ja) * 1989-04-03 1990-10-26 Fuji Photo Film Co Ltd 静止グリッド方向判別方法
JPH11285493A (ja) * 1997-12-29 1999-10-19 Canon Inc 画像読取装置
JP2002345795A (ja) * 2001-03-19 2002-12-03 Konica Corp 放射線撮影装置の調整方法、放射線撮影装置及び放射線撮影装置の検査方法
JP2011239828A (ja) * 2010-05-14 2011-12-01 Canon Inc 画像処理装置、画像処理方法、プログラム、撮影システム及び放射線撮影システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028784A (en) * 1989-04-11 1991-07-02 Fuji Photo Film Co., Ltd. Method for generating radiation image signals, image processing method, and radiation image read-out apparatus
JP2859315B2 (ja) * 1989-08-30 1999-02-17 日本電信電話株式会社 頭部回転方向検出方法
DE19640936C2 (de) * 1996-10-04 1999-06-10 Siegbert Prof Dr Ing Hentschke Positionsadaptiver Autostereoskoper Monitor (PAM)
JP2002116516A (ja) * 2000-10-05 2002-04-19 Fuji Photo Film Co Ltd 放射線画像情報読取装置
US6895106B2 (en) * 2001-09-11 2005-05-17 Eastman Kodak Company Method for stitching partial radiation images to reconstruct a full image
JP2009011596A (ja) * 2007-07-05 2009-01-22 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263279A (ja) * 1989-04-03 1990-10-26 Fuji Photo Film Co Ltd 静止グリッド方向判別方法
JPH11285493A (ja) * 1997-12-29 1999-10-19 Canon Inc 画像読取装置
JP2002345795A (ja) * 2001-03-19 2002-12-03 Konica Corp 放射線撮影装置の調整方法、放射線撮影装置及び放射線撮影装置の検査方法
JP2011239828A (ja) * 2010-05-14 2011-12-01 Canon Inc 画像処理装置、画像処理方法、プログラム、撮影システム及び放射線撮影システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104248445A (zh) * 2013-06-28 2014-12-31 株式会社日立医疗器械 X射线图像诊断装置

Also Published As

Publication number Publication date
CN103379859B (zh) 2015-09-09
JPWO2012111458A1 (ja) 2014-07-03
JP5706452B2 (ja) 2015-04-22
CN103379859A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
US20040071269A1 (en) Method for automatic arrangement determination of partial radiation images for reconstructing a stitched full image
JP2001351091A (ja) 画像処理装置、撮影装置、画像処理システム、画像処理方法、及び記憶媒体
JP2009268827A (ja) 放射線画像撮影装置及びその駆動方法
JP2013150762A (ja) 骨塩定量分析方法および骨塩定量分析システム、並びに記録媒体
JP2005065944A (ja) 診断支援装置
JP3888046B2 (ja) 放射線画像処理方法および放射線画像処理装置
JP2016087222A (ja) 画像処理装置及びプログラム
KR20130075531A (ko) 방사선 영상 처리 방법 및 그에 따른 방사선 영상 처리 장치
JP2014138654A (ja) X線画像診断装置
JP2007300966A (ja) 画像処理装置
JP5706452B2 (ja) X線画像診断装置及び画像表示方法
JP3925058B2 (ja) 放射線画像処理方法および放射線画像処理装置
Collins et al. Comparison of measurements from photographed lateral cephalograms and scanned cephalograms
JP5074054B2 (ja) X線画像診断装置
JP5362282B2 (ja) X線診断装置
WO2013039054A1 (ja) 画像処理装置
JP5311846B2 (ja) 画像処理方法および装置並びに放射線画像撮影処理方法および装置
JP6789130B2 (ja) X線撮影装置
JP5088287B2 (ja) 放射線撮影装置
JP2003265450A (ja) 医用画像表示方法および医用画像処理装置
JP2005109908A (ja) 画像処理装置および画像処理プログラム
JP2012232062A (ja) 解析領域特定方法、解析領域特定プログラム、及び解析領域特定装置
JP2006122084A (ja) Ct装置、画像処理装置、画像処理方法、プログラム、記録媒体。
JP5839709B2 (ja) 骨塩量計測装置および方法
CN107613870B (zh) 图像处理装置以及图像处理程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746624

Country of ref document: EP

Kind code of ref document: A1