WO2012111249A1 - Method for detecting mass change in mass spectrometry method and method for quantifying absolute amount of stable isotope-labeled protein - Google Patents
Method for detecting mass change in mass spectrometry method and method for quantifying absolute amount of stable isotope-labeled protein Download PDFInfo
- Publication number
- WO2012111249A1 WO2012111249A1 PCT/JP2012/000227 JP2012000227W WO2012111249A1 WO 2012111249 A1 WO2012111249 A1 WO 2012111249A1 JP 2012000227 W JP2012000227 W JP 2012000227W WO 2012111249 A1 WO2012111249 A1 WO 2012111249A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- labeled
- stable isotope
- target protein
- tag
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6848—Methods of protein analysis involving mass spectrometry
Definitions
- the present invention relates to a method of using a stable isotope-labeled protein as an internal standard in an analysis using a mass spectrometer, and more specifically, by analyzing a plurality of peptide fragments derived from a target protein at a time in a biological sample. Quantitatively detect unknown post-translational modifications by detecting mass changes in mass spectrometry of target proteins in a sample by quantifying multiple peptide fragments from a target protein at once, with a highly sensitive detection method
- the present invention also relates to a method for identifying and / or quantifying and / or identifying a sequence abnormality of a target protein due to a gene mutation.
- the human genome project has comprehensively analyzed human gene sequences and identified genes that cause diseases one after another.
- many unexplained diseases remain, and detailed analysis of protein post-translational modifications and single nucleotide polymorphisms (SNPs) is expected in the future.
- post-translational modification of proteins that are considered to determine differences in race and individuality, and to determine the constitution of individuals such as disease and drug resistance.
- Analysis of single nucleotide polymorphisms (SNPs) and the like has become more important, and a method for identifying and / or quantifying these has been required.
- antibodies that detect post-translational modifications there are antibodies that can detect phosphorylation of tylosin, serine, and threonine, but examples where detection sensitivity is not sufficient, examples in which phosphorylation of each of these amino acid residues cannot be distinguished, Depending on the three-dimensional structure of the protein, there are problems such as the fact that these phosphorylations cannot always be detected. In addition, it is more difficult to produce an antibody that detects phosphorylation of a specific protein on a specific amino acid residue. Furthermore, detection of proteins and post-translational modifications using antibodies often poses a major problem in that antibodies often react with proteins other than the target protein.
- the non-specificity of this antibody is one of the major causes that hinders the increase in the accuracy of protein quantification in protein quantification using antibodies such as ELISA. Therefore, instead of the method using these antibodies, a technique for quantifying proteins and post-translational modifications with high accuracy using mass spectrometry is being developed.
- Mass spectrometry is a method in which a sample is ionized and the ionized molecules are separated and detected according to mass / charge (m / z). This method is used for detection and measurement of various biological materials. Have been used. Recent advances in mass spectrometry have enabled the use of various ionization methods such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), and ion traps. Various mass spectrometers have been developed using various analyzers that analyze ionized samples by the time of flight method (TOF: Timeof ⁇ Flight), quadrupole method, Fourier transform method, and the like.
- TOF Timeof ⁇ Flight
- mass spectrometers with various functions such as liquid chromatography mass spectrometer (LC-MS) connected with liquid chromatography and tandem mass spectrometer (MS / MS spectrum) with two mass spectrometers combined. A combination of these functions is used for detection, measurement, and quantification of biological materials (Patent Documents 1 to 3).
- LC-MS liquid chromatography mass spectrometer
- MS / MS spectrum tandem mass spectrometer
- a conventional protein quantification method using mass spectrometry is a method of selecting a peptide fragment to be quantified in a target protein and quantifying the amount of the peptide fragment. That is, as shown in FIG. 1, (1) a step of selecting an arbitrary peptide fragment to be quantified in the target protein; (2) each peptide fragment at a predetermined concentration stage and an amino acid sequence corresponding to a specific amount of the peptide fragment A step of carrying out mass spectrometry for a mixture of a certain stable isotope-labeled internal standard peptide fragment and calculating a mass spectrum area ratio of unlabeled peptide fragment / stable isotope-labeled internal standard peptide fragment, respectively, and preparing a calibration curve; 3) Mass spectrometry is performed on the sample containing the target protein subjected to the fragmentation treatment and the sample containing the specific amount of stable isotope-labeled peptide fragment, and the unlabeled peptide fragment / stable isotope-labele
- the conventional protein quantification method using mass spectrometry has a problem that the peptide fragment to be quantified must be selected.
- the ease of ionization of peptide fragments varies from peptide fragment to peptide fragment, and in order to quantify proteins by mass spectrometry, it is very important to determine which sequence of peptide fragments to target, and for various selections. Although criteria are being studied, the selection of peptide fragments to be quantified is a difficult process at present. Further, in the conventional method, after fragmenting the target protein in the sample, a stable isotope-labeled internal standard peptide fragment is added and subjected to mass spectrometry.
- JP 2004-28993 A Japanese Patent Laid-Open No. 2004-77276 JP-T-2004-533610 WO00 / 67017 JP 2010-210461 A
- An object of the present invention is to identify and / or quantify a post-translational modification of a protein using a mass spectrometer, to identify and / or quantify a genetic mutation of a protein, and to detect a protein with high sensitivity and high accuracy therefor. It is to provide a quantitative method.
- the present invention provides [1] (a) peptide fragmentation in a predetermined concentration step or a mixture of each target protein in a sample or a target protein in a sample and a stable isotope labeled protein corresponding to a specific amount of the target protein.
- a method for detecting a mass change in mass spectrometry of a target protein in a sample comprising a) to (c), and [2] detection of a mass change in mass spectrometry of a target protein is a post-translational modification of the target protein.
- the method according to [1] above which is the identification of a site abnormality in a target protein due to a gene mutation, and [7] the sequence abnormality in the target protein due to a gene mutation is caused by single nucleotide polymorphisms (SNPs).
- SNPs single nucleotide polymorphisms
- the method according to [5] or [6] above, or [8] a stable isotope-labeled protein having no post-translational modification or gene mutation as the stable isotope-labeled protein The present invention relates to the method according to any one of [1] to [7].
- the post-translational modification site or gene mutation site is (1) a site where amino acid sequence changes due to post-translational modification or gene mutation are published in public databases; (2) serine or It is a sequence site containing threonine and tylosin; (3) It is a sequence site containing asparagine at the extracellular position of a membrane protein or secreted protein; (4) It is a sequence site containing lysine; (5) Cysteine (6) a sequence site containing glutamic acid; (7) a sequence site containing proline; and (8) a quantitative value determined by the method described in [1] above is statistical.
- the present invention further provides [15] (i) a step of synthesizing a stable isotope-labeled tag protein fusion protein using a stable isotope-labeled amino acid; (ii) the stable isotope-labeled tag protein fusion protein, and a specific amount of Peptide fragmentation treatment is performed on the mixture with the non-stable isotope-labeled tag protein, mass analysis is performed on the resulting peptide fragment group, and the peptide fragment derived from the tag protein portion of the stable isotope-labeled tag protein fusion protein / unstable Quantifying each peptide fragment derived from the tag from the signal area ratio or signal intensity ratio of the peptide fragment derived from the isotope-labeled tag protein; (iii) all the peptide fragments derived from the tag protein of the stable isotope-labeled tag protein fusion protein The average value of the quantitative values of the synthesized stable isotope-labeled tag protein fusion tag A method
- (IV) a sequence containing lysine; (V) any protein digestion enzyme selected from trypsin, glutamyl peptidase, asparagine peptidase, and chymotrypsin. (VI) a sequence that is fragmented into a peptide using a chemical substance; an amino acid sequence that is set based on any of the conditions (I) to (VI)
- the quantitative method according to any one of the above [15] to [17], or [19] the amount of the non-stable isotope-labeled tag protein is determined by amino acid analysis [15]
- the amount of the non-stable isotope-labeled tag protein is determined by a biochemical colorimetric method. ] To the quantification method according to any one of [19].
- the protein since it is not necessary to select the target peptide fragment, the protein can be quantified more easily and more sensitively and more accurately than the conventional method in order to quantify a plurality of peptide fragments at once. Can do.
- the protein can be quantified at a cost of about 1/20 that was required for the measurement using a conventional peptide fragment.
- proteins can be quantified with higher accuracy than ELISA methods using conventional antibodies. Identification and translation of unknown post-translational modification sites of proteins and single nucleotide polymorphisms that have been difficult in the past The post-modification rate can be quantified.
- the present invention can identify and quantify post-translational modifications and identify genetic mutations simultaneously with quantitative analysis of proteins, the analysis time per protein can be dramatically reduced, and multiple molecules such as screening can be performed simultaneously. It also has the effect that it can be used effectively for analysis. That is, the method of the present invention, which is particularly excellent in quantitative accuracy, cost, post-translational modification quantification, and simplicity, can be said to be a technology that contributes to the fields of life science and medical technology in place of conventional methods (Table 1).
- the quantitative value is the peptide fragment not subjected to post-translational modification, and the amount obtained by subtracting the quantitative value from the average quantitative value is the peptide subjected to post-translational modification. Calculated as the amount of fragments.
- mass change in mass spectrometry of target protein means that the mass of the target protein and / or peptide fragment derived from the target protein is a database or information obtained by actually confirming the DNA sequence or amino acid sequence. This means that it differs from the mass calculated based on it, and does not necessarily mean that a substantial mass change is detected.
- detect means quantification and / or site identification, and the screening method for the “mass change in mass spectrometry of target protein” region also includes mass change in mass spectrometry in the target protein. Is included in the “detection” of the present invention.
- detection of post-translational modification means “quantification of post-translational modification” and “identification of post-translational modification site”
- detection of gene mutation means “quantification of gene mutation” and “identification of gene mutation site”.
- Examples of the “mass change in target protein mass spectrometry” in the present invention include post-translational modification of the target protein, target protein sequence abnormality due to gene mutation, splicing variant, and protein cleavage or degradation by protease.
- a target protein sequence abnormality due to post-translational modification or gene mutation of the target protein can be preferably exemplified.
- the post-translational modification is not particularly limited as long as it is a post-translational modification of the protein.
- Glycation (glycosylation), phosphorylation, methylation, acylation, alkylation, dimethylation, biotinylation, formylation, carboxyl , Glutamylation, glycylation, hydroxylation, iodination, isoprenylation, lipoylation, prenylation, GPI anchor formation, ADP ribosylation, FAD coupling, polyethylene glycolation, phosphatidylinositol addition, phosphopantetheinylation, pyroglutamic acid Formation, racemization, tylosin sulfate, selenoylation, ISGization, SUMOylation, ubiquitination, NEDDization and the like.
- target protein sequence abnormalities due to gene mutations include single nucleotide polymorphisms (SNPs), gene sequence duplication, deletion, insertion, differences in the number of repeated sequences, the number of transposons such as LINE and SINE, etc. Examples include differences caused by gene sequence mutations such as differences and transposon insertions and deletions.
- SNPs single nucleotide polymorphisms
- single nucleotide polymorphisms can be preferably exemplified.
- the mass change site such as the post-translational modification site or the gene mutation site is set according to any one of the following conditions (1) to (8).
- a site where changes in amino acid sequence due to post-translational modification or gene mutation are publicly disclosed in public databases; (2) a sequence site containing serine, threonine or tylosin; (3) an extracellular site of a membrane protein or a sequence site containing asparagine in a secreted protein; (4) a sequence site containing lysine; (5) a sequence site containing cysteine; (6) a sequence site containing glutamic acid; (7) a sequence site containing proline; (8)
- the quantitative value obtained by the method of the present invention is a sequence site that shows an outlier from the average quantitative value by a statistical method;
- the “predetermined concentration step or each target protein in a sample” of the present invention may be a target protein having a known concentration or a target protein in a sample to be measured, and the concentration of the target protein in the sample is often unknown.
- target proteins with known concentrations include those produced by cell-free systems such as cells, Escherichia coli, and wheat germ by genetic engineering techniques, purified and extracted, and measured for concentrations, and commercially available products.
- the sample can be exemplified by a biological sample such as a cell extract, a tissue extract, a culture solution, or a body fluid such as blood or spinal fluid.
- the “predetermined concentration step” can be appropriately set according to the amount of target protein in the sample to be measured, the purification method, and the sensitivity and accuracy of the mass spectrometer, for example, 10 fmol, 50 fmol, 100 fmol, 500 fmol, 1000 fmol concentration steps. It can also be.
- the “stable isotope labeled protein corresponding to a specific amount of the target protein” of the present invention (hereinafter, also simply referred to as “stable isotope labeled protein” or “stable isotope labeled internal standard protein”) It is a protein having the same amino acid sequence, and may be one that is labeled with a stable isotope by including one or more kinds of stable isotope elements.
- the nitrogen stable isotope 15 N examples thereof include a carbon stable isotope 13 C, an oxygen stable isotope 18 O, and a hydrogen stable isotope 2 H.
- a stable isotope-labeled protein can be artificially chemically synthesized using an amino acid containing a stable isotope-labeled element, or cells or E. coli are cultured in a culture solution containing a stable isotope-labeled element.
- a stable isotope-labeled protein can be produced in a cell-free system, and such stable isotope-labeled protein may not have post-translational modifications or gene mutations. preferable.
- the “specific amount” is not particularly limited, and can be any amount depending on the amount of target protein in the sample to be measured, the purification method, the sensitivity and accuracy of the mass spectrometer, for example, 500 fmol. Can do.
- the concentration of the stable isotope labeled protein can also be measured using the method for quantifying the stable isotope labeled protein of the present invention.
- the “peptide fragmentation treatment” of the present invention can be used as long as it can cleave proteins to produce peptide fragments. Fragmentation treatment using chemical substances and fragmentation treatment methods using protein digestive enzymes Can be mentioned.
- the method for detecting a mass change in mass spectrometry of a target protein in a sample of the present invention (hereinafter also referred to as “method of the present invention”) is to perform fragmentation treatment of the target protein and the internal standard protein in the same solution.
- the target protein and the internal standard protein are subjected to fragmentation treatment under the same conditions. Therefore, a fragmentation method using a chemical substance, which is generally said to be inferior in reproducibility compared with protein digestion enzymes, can also be used.
- Chemical substances used for fragmentation include acidic compounds such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, citric acid, malic acid and aspartic acid, alkaline compounds such as sodium hydroxide and potassium hydroxide, and cyanogen bromide. Can be mentioned.
- protein digestion enzymes used for fragmentation include endopeptidases and exopeptidases, and more specifically serine proteases such as chymotrypsin and subtilisin, pepsin, cathepsin D, and HIV protease.
- Examples include aspartic protease, metalloprotease such as thermolysin, cysteine protease such as papain and caspase, N-terminal threonine protease, glutamate protease, arginine endopeptidase, among others, trypsin, Preferable examples include glutamyl peptidase, asparagine peptidase and chymotrypsin. These peptide fragmentation methods can also be performed by combining two or more methods.
- a region included in a peptide fragment that could not be detected by a certain peptide fragmentation method is also subjected to mass spectrometry as a different peptide fragment depending on another peptide fragmentation method or a combination of a plurality of fragmentation methods. , May be detectable. Therefore, by using a plurality of peptide fragmentation methods, it is possible to improve the area detected in the target protein mass spectrometry, that is, the detection coverage.
- the mass spectrometry used in the present invention is not particularly limited as long as it is a method of ionizing a sample and separating and detecting ionized molecules according to mass / charge (m / z). Electrospray ionization (ESI) ) And matrix-assisted laser desorption / ionization (MALDI), ionization by ion trap, time-of-flight (TOF), quadrupole, Fourier transform, etc. A method for analyzing a sample can be mentioned.
- the mass spectrometer may be used alone, or may be connected to a separation instrument such as liquid chromatography or a measuring instrument, and two liquid chromatography mass spectrometers (LC-MS) and mass spectrometers are used.
- a tandem mass spectrometer MS / MS spectrum
- LC-MS / MS liquid chromatography tandem mass spectrometer
- LC-MS / MS can be preferably exemplified.
- one or more other separation devices, measurement devices, and the like may be appropriately disposed between a device such as liquid chromatography and a mass spectrometer or tandem mass spectrometer.
- the target protein is quantified.
- the peptide fragment quantification here is the signal of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment, even if it is an absolute amount obtained by creating a calibration curve described later and calculating the quantitative value. It may be a relative amount obtained from an area ratio or a signal intensity ratio.
- measurement is performed by mass spectrometry using each target protein (also referred to as “artificial standard protein”) at a predetermined concentration step with known concentration and a stable isotope-labeled internal standard protein.
- a method of preparing a calibration curve and calculating the absolute amount of the target protein in the sample as a quantitative value can be mentioned (FIG. 2).
- the calibration curve may be prepared in advance.
- a method for measuring the amount of a target protein in a sample using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS) comprising the following steps (A) to (C) is preferably exemplified. Can do.
- step (A) Peptide fragmentation treatment is performed on a mixture of each target protein at a predetermined concentration step and a stable isotope-labeled protein corresponding to a specific amount of the target protein, and LC-MS / Performing mass spectrometry using MS, and calculating a signal area ratio and a signal intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment, respectively, and creating a calibration curve;
- step (B) After adding the specific amount of stable isotope-labeled protein to the sample containing the target protein, the peptide fragmentation treatment in step (A) was performed, and LC-MS / MS was used for the obtained peptide fragment group Conducting mass spectrometry and calculating the mass spectrum area ratio and the intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment, respectively;
- C) A step of quantifying each target protein-derived peptide fragment in
- all the peptide fragments derived from the target protein are quantified by the protein quantification method using the mass spectrometer, and all the target protein-derived peptides are quantified.
- the amount of the peptide fragment in which mass change has occurred in mass spectrometry is used. I just need it.
- the method includes the following steps (a) to (c) and quantifies a change in mass in a mass spectrometry of a target protein in a sample.
- A) Peptide fragmentation treatment is performed on a mixture of each target protein in a predetermined concentration step or each sample and a stable amount of a stable isotope-labeled protein corresponding to the target protein.
- a protein quantification method using the mass spectrometer and / or a method for quantifying a mass change in the mass spectrometry method of the present invention The average value of the quantitative values of all the target protein-derived peptide fragments is obtained as an average quantitative value, and the average quantitative value is compared with the quantitative values of all the target protein-derived peptide fragments, and an outlier is obtained by a statistical method. Any method may be used as long as the target protein-derived peptide fragment to be shown is selected. Or you may select the target protein origin peptide fragment which shows an outlier by a statistical method based on the ratio of the mass change in mass spectrometry.
- Such a statistical method is not particularly limited, and examples thereof include a Suminorf Grubbs test.
- identifying a peptide fragment that shows a mass change in mass spectrometry in the target protein it is possible to screen for a mass change in mass spectrometry of the target protein.
- a method for identifying a mass change in mass spectrometry of a target protein in a sample comprising the following steps (a ′) to (c ′) can be exemplified.
- a ′ Peptide fragmentation treatment is performed on a mixture of each target protein in a predetermined concentration step or sample and a stable amount of a stable isotope-labeled protein corresponding to the target protein, and a peptide fragment group obtained is obtained.
- the method for detecting mass change in the mass spectrometry method of the present invention compares the analysis result of the mass change in the mass spectrometry method of the protein in the sample of the healthy subject and the disease patient, thereby determining the gene causing the disease or the disease. It can be used to identify related genes. Further, by detecting a mass change in mass spectrometry using a disease causal gene or the like as a target protein, it can be used for elucidation of a disease mechanism or prediction of drug efficacy.
- human EGFR (Epidermal®Growth®Factor®Receptor) has been identified as one of the causative genes of lung cancer, and is a target molecule of the lung cancer therapeutic drug gefitinib (trade name Iressa (registered trademark), manufactured by AstraZeneca).
- the lung cancer drug gefitinib has an excellent therapeutic effect on one group of patients, but it is known to cause severe side effects in other groups of patients and has become a social problem. This difference in the efficacy of gefitinib is considered to be different due to post-translational modifications such as EGFR gene mutation and EGFR protein phosphorylation in the patient.
- human EGFR can quantify and / or identify changes in amino acid sequences due to post-translational modifications to each amino acid shown in Table 2 and gene mutations shown in Table 3.
- the method for quantifying the absolute amount of the stable isotope-labeled protein of the present invention is used in the method for detecting the absolute amount of the stable isotope-labeled protein used as an internal standard in mass spectrometry and the mass change in the mass spectrometry of the present invention. It can be used to measure the absolute amount of stable isotope labeled protein.
- a step of synthesizing a stable isotope-labeled tag protein fusion protein using a stable isotope amino acid (I) a step of synthesizing a stable isotope-labeled tag protein fusion protein using a stable isotope amino acid; (Ii) Peptide fragmentation treatment is applied to a mixture of the stable isotope-labeled tag protein fusion protein and a specific amount of the non-stable isotope-labeled tag protein, and the resulting peptide fragment group is subjected to mass spectrometry and stable.
- the method is not particularly limited as long as it is a method for quantifying a stable isotope-labeled protein used as an internal standard in mass spectrometry, comprising the steps (i) to (iii).
- the stable isotope-labeled tag protein at a predetermined concentration step is used in the same manner as in the steps (A) to (C) of the method for measuring the amount of the target protein in the sample.
- the absolute amount can be calculated using a calibration curve prepared by mass spectrometry using a specific amount of non-stable isotope-labeled tag protein. Such a calibration curve may be prepared in advance.
- a stable isotope labeled tag protein fusion protein can be quantified using an unstable stable isotope labeled tag protein of known concentration as an internal standard.
- the tag protein of the stable isotope-labeled tag protein and the stable isotope-labeled tag protein fusion protein may be of the same type, and the tag protein of the stable isotope-labeled tag protein fusion protein. Any protein can be used as the protein to be fused.
- the stable isotope-labeled tag protein fusion protein may be a protein having a structure in which a tag protein of the same type as the non-stable isotope-labeled tag protein is fused to the N-terminus or C-terminus of any protein.
- a stable isotope-labeled tag protein fusion protein can be produced using genetic engineering or chemical synthesis technology.
- a tag in which the DNA sequence of the tag protein sequence is linked to the N-terminus or C-terminus of the DNA sequence of any protein It can also be synthesized by expressing a protein fusion protein expression vector in the presence of a stable isotope-labeled amino acid.
- Such amount can be quantified by a biochemical colorimetric method such as amino acid analysis method, Bradford method, Biuret method, Lowry method, BCA (bicinchoninic acid) method or the like.
- the tag protein may be any protein that can obtain a peptide fragment detectable by mass spectrometry by enzymatic digestion or chemical fragmentation.
- glutathione-S-transferase GST: Glutathione-S-transferase
- Histidine His
- MBP maltose binding protein
- c-Myc HA tag
- FLAG tag FLAG tag
- GFP tag etc.
- GST tag SEQ ID NO: 7
- His tag SEQ ID NO: 8
- the His tag In addition to the GST tag consisting of the amino acid sequence of SEQ ID NO: 7, amino acid sequences having substitutions, insertions and deletions in such a sequence, and those consisting of GST amino acid sequences published in various databases such as NCBI can also be used.
- the His tag a His tag having an arbitrary length in which 3 to 15 histidines are linked can also be used.
- the tag protein may be a single type of tag protein, or may be a plurality of the same tag protein or different types of tag proteins, or may be repeatedly linked.
- a stable isotope-labeled tag protein fusion protein obtained by fusing a stable isotope-labeled protein to the N-terminal side or C-terminal side of the stable isotope-labeled protein.
- stable isotope-labeled tag protein Using the tag protein not labeled with a stable isotope as an internal standard, analyzing the peptide fragment derived from the tag protein portion of the stable isotope-labeled tag protein fusion protein by mass spectrometry, stable isotope-labeled tag protein The absolute amount of the tag protein of the fusion protein can be measured, and the quantitative value of the tag protein can be used as the quantitative value of the stable isotope-labeled protein.
- a stable isotope-labeled tag protein fusion protein can be used as a stable isotope-labeled protein in the method for detecting mass change in the mass spectrometry of the target protein in the sample of the present invention.
- Nephrin artificial standard protein was prepared by the following method. Escherichia coli (BL21-CodonPlus (DE3) -RIPL) transformed with pET-vector inserted with Nephrin (swissprot accession No.Q9R044) cDNA was added to kanamycin and chloramphenicol at 30 mg / L and 50 mg / L, respectively. The LB medium was shaken overnight and then diluted in LB medium. D. Culturing was continued until 600 nm showed a value of around 0.4, IPTG was added at a final concentration of 100 mM, and further cultured for 3 hours to induce protein expression.
- the induced Escherichia coli was subjected to ultrasonic disruption in the presence of 8M urea to prepare a soluble fraction and an insoluble fraction, then fractionated by SDS-PAGE, and detected by CBB R-250.
- the Escherichia coli soluble fraction was added to a spin column packed with cobalt resin, and the column was washed with a 10 mM imidazole solution, and then the artificial standard protein was eluted with 50 mM, 150 mM, and 500 mM imidazole solutions.
- Nephrin's stable isotope-labeled protein was prepared by the following method. Escherichia coli (Rosseta (DE3), manufactured by Novagen) transformed with pET-vector with the full-length amino acid sequence of Nephrin (swissprot accession No.Q9R044) with GST and His tag added, magnesium sulfate heptahydrate added (Final concentration: 0.25 g / L) H. L. medium (manufactured by Chlorella Kogyo) at 37 ° C. D. Culturing was performed until 600 nm reached 0.7.
- LC-MS / MS measurement was performed using 1/5 volume of the peptide sample.
- GLVQPTR, LTQSMAIIR, DFETLK, VDFLSK , LPEMLK, for IEAIPQIDK stable isotopes (15 N) labeled peptide and a non-labeled peptide was measured with SRM mode LC-MS / MS .
- concentration of the stable isotope labeled GST in the sample from the peak area ratio of the stable isotope labeled and unlabeled it was 103.5 ⁇ 4.93 fmol / assay.
- Table 5 shows the results of detection of peptide fragments of stable isotope labeled and unlabeled GST (swissprot accession No. P08515) in the stable isotope labeled GST and His tag fusion Nephrin protein samples.
- the average value of the ratio of labeled to unlabeled in the 6 peptide fragments measured was 0.36 ⁇ 0.02, and the CV value (%) indicating the reliability of the measured value was 4.4%. That is, it was shown that GST protein can be quantified with high accuracy by using mass spectrometry.
- stable isotope-labeled GST protein is present in an equimolar amount with the fusion protein in the expressed protein sample, by quantifying stable isotope-labeled GST protein, all stable isotope-labeled GST fusion proteins can be analyzed using mass spectrometry. Quantification is possible.
- Nephrin protein was quantified by the following method using a stable isotope-labeled internal standard protein. 500 fmol of stable isotope-labeled internal standard protein was added to 10 fmol, 50 fmol, 100 fmol, 500 fmol, and 1000 fmol of artificial standard protein, respectively, to prepare a calibration curve sample. In addition, a measurement sample was prepared by adding 500 fmol of a stable isotope-labeled internal standard protein to a rat glomerular sample.
- a conventional protein quantification method using a mass spectrometer is a method for quantifying a protein by detecting a specific peptide fragment of a target protein (FIG. 1). Therefore, in the conventional method, Nephrin protein was quantified using GGNPPATLQWLK (SEQ ID NO: 4), which is a partial sequence of Nephrin, as a target peptide fragment. Nephrin artificial standard peptide was prepared by the following method. A partial amino acid sequence GGNPPATLQWLK (SEQ ID NO: 4) of Nephrin (swissprot accession No.
- Q9R044) was chemically synthesized using a solid phase method, and the peptide concentration in the sample was quantified by amino acid analysis.
- a peptide GGNPPATLQWL * K (stable isotope labeled L *) containing the stable isotope-labeled leucine was chemically synthesized using the solid phase method, and the peptide concentration was quantified by amino acid analysis.
- Stable isotope-labeled internal standard peptide fragment GGNPPATLQWL * K (L * is stable isotope) consisting of the same amino acid sequence as the artificial standard peptide fragment consisting of the amino acid sequence of GGNPPATLQWLK (SEQ ID NO: 4) Label) was used to quantify the Nephrin protein in the sample.
- Samples for preparing a calibration curve were prepared by adding 500 fmol of stable isotope-labeled peptide fragments to 10 fmol, 50 fmol, 100 fmol, 500 fmol and 1000 fmol artificial standard (unlabeled) peptide fragments, respectively.
- rat glomerular samples were denatured with 7 M guanidine hydrochloride solution (dissolved in 0.1 M Tris-HCl, 10 mM EDTA pH 8.5) to reduce the SH group of the cysteine residue and to reduce iodoacetamide with DTT.
- Carbamide methylation treatment was carried out. Subsequently, it was desalted and concentrated by methanol chloroform precipitation, and resuspended in 1.2 M urea / 10 mM Tris-HCl. Thereafter, trypsin in an amount of 1/100 of the protein weight was added and fragmented by enzymatic digestion at 37 degrees for 16 hours.
- the quantitative value of Nephrin protein in the sample was quantified as 66.4 ⁇ 6.1 fmol / assay in the method of the present invention and 51.0 ⁇ 5.6 fmol / assay in the conventional method, It was only quantified as about 76% protein compared to the inventive method (FIG. 4).
- the conventional method the undigested rate of the sample protein during the enzyme digestion process and the sample loss due to adsorption of the target protein to the tube are not corrected by the stable isotope-labeled internal standard peptide fragment. As a result, the conventional method is underestimated. It is considered that the amount of protein was calculated as a quantitative value.
- the method of the present invention shows a higher quantitative value than the conventional method.
- FIG. 5 shows a graph in which the quantitative value of each detected peptide fragment is plotted on the vertical axis with respect to the amino acid sequence number of the Nephrin protein on the horizontal axis. Average quantitative values are indicated by dotted lines. Since peptide fragments having a mass different from that of the amino acid sequence of Nephrin protein are not detected, peptide fragments whose mass is changed by post-translational modification or gene mutation are not detected. Therefore, when the quantitative value of the peptide fragment is statistically significantly smaller than the average quantitative value, the quantitative value of the peptide fragment is calculated from the amount of peptide fragment that has not undergone post-translational modification, and the quantitative value of the peptide fragment from the average quantitative value.
- the subtracted amount can be calculated as the amount of peptide fragment that has undergone post-translational modification (FIG. 5).
- the outliers of each peptide fragment relative to the average quantitative value were determined by the Suminorf Grubbs test, the quantitative values of the 5 peptide fragments showed outliers and were significantly smaller than the average quantitative values (Table 6, bold and Underline).
- NVTLCCLTK SEQ ID NO: 5
- ILSGGALQLWNVTR SEQ ID NO: 2
- SSTVSTAEVDPNYYSMR SEQ ID NO: 3
- the amount of post-translationally modified protein is 1.2 fmol / glomera for NVTLCCLTK (SEQ ID NO: 5), 1.3 fmol / glomera for ILSGGALQLWNVTR (SEQ ID NO: 2), 0.7 fmol / thread for SSTVSTAEVDPNYYSMR (SEQ ID NO: 3)
- NVTLCCLTK SEQ ID NO: 5
- ILSGGALQLWNVTR SEQ ID NO: 2
- ILSGGALQLWNVTR is of the protein that has undergone sugar chain modification is 100.
- the present invention can be suitably used in the field of protein analysis using a mass spectrometer. Quantitative accuracy, cost, quantification of post-translational modifications, and simplicity are easy, and post-translational modifications and genetic mutation identification and quantification can be performed simultaneously, dramatically reducing the analysis time per protein and simultaneously measuring multiple molecules. It is also useful in the field of analysis and screening, and the field of contract analysis business for protein analysis. In addition, it is a technology that makes it possible to search for unknown post-translational modification sites of proteins and quantify the rate of modification, which has been difficult in the past, and is also useful for analyzing factors related to diseases, such as disease research and drug development. It can also be suitably used in the life science and medical fields.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Food Science & Technology (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Conventional highly sensitive protein quantification methods using a spectrometer had the issue of sample loss and non-fragmentation rates during the process of fragmentation of the target protein not being corrected by internal standard peptide fragments. In addition, identification and/or quantification of posttranslational modification etc., of proteins using a spectrometer was extremely difficult. The present invention addresses the problem of developing a method for high-precision quantification of proteins using a spectrometer and identification and/or quantification of posttranslational modifications or genetic mutations in proteins. The present inventors found that a plurality of target protein-derived peptide fragments can be detected at one time using the spectrometer and proteins can be quantified with high sensitivity and high precision, by using a stable isotope-labeled, internal standard protein. The present inventors also found that the posttranslational modifications and genetic mutations of each peptide fragment could be identified and/or quantified using the average quantification value for the detected target protein-derived peptide fragments.
Description
本発明は、質量分析装置を用いた分析において安定同位体標識タンパク質を内部標準として使用する方法に関し、より詳細には、標的タンパク質由来の複数のペプチド断片を一度に解析することにより、生体試料中のタンパク質を高感度に検出する方法や、標的タンパク質由来の複数のペプチド断片を一度に定量することから、試料中の標的タンパク質の質量分析法における質量変化を検出し、未知の翻訳後修飾を定量及び/又は同定する方法や、遺伝子変異による標的タンパク質の配列異常を定量及び/又は同定する方法に関する。
The present invention relates to a method of using a stable isotope-labeled protein as an internal standard in an analysis using a mass spectrometer, and more specifically, by analyzing a plurality of peptide fragments derived from a target protein at a time in a biological sample. Quantitatively detect unknown post-translational modifications by detecting mass changes in mass spectrometry of target proteins in a sample by quantifying multiple peptide fragments from a target protein at once, with a highly sensitive detection method The present invention also relates to a method for identifying and / or quantifying and / or identifying a sequence abnormality of a target protein due to a gene mutation.
ヒトゲノムプロジェクトによってヒトの遺伝子配列が網羅的に解析され、疾患の原因となる遺伝子が次々に同定された。しかしながら、いまだ多くの原因不明の疾患が解明されずに残されており、今後はタンパク質の翻訳後修飾や一塩基多型(SNPs)などの詳細な解析が期待されている。また、オーダーメイド医療などが現実となりつつある昨今では、人種の違いや個人の違いを生み、個人の疾患や薬剤への耐性などの体質などを決定すると考えられているタンパク質の翻訳後修飾や一塩基多型(SNPs)などの解析はさらに重要となっており、これらを同定及び/又は定量する方法が求められている。
The human genome project has comprehensively analyzed human gene sequences and identified genes that cause diseases one after another. However, many unexplained diseases remain, and detailed analysis of protein post-translational modifications and single nucleotide polymorphisms (SNPs) is expected in the future. Also, in recent years when tailor-made medical care is becoming a reality, post-translational modification of proteins that are considered to determine differences in race and individuality, and to determine the constitution of individuals such as disease and drug resistance. Analysis of single nucleotide polymorphisms (SNPs) and the like has become more important, and a method for identifying and / or quantifying these has been required.
タンパク質や翻訳後修飾を検出する方法としては、従来は抗体を用いた方法が主に用いられてきた。抗体を用いてタンパク質を検出するためには、標的タンパク質に特異的な抗体を入手する必要がある。しかしながら、抗体の作製や精製には時間と技術の熟練が必要であり、標的タンパク質の種類によっては、様々な工夫を凝らし、努力を重ねても、標的タンパク質に特異的な抗体を得ることができない例も数多くある。さらに翻訳後修飾を検出する抗体としては、タイロシンやセリン、スレオニンのリン酸化を検出できる抗体もあるものの、検出感度が十分でない例や、これらの各アミノ酸残基のリン酸化を区別できない例や、タンパク質の立体構造などによっては必ずしもこれらのリン酸化を検出できない例が数多くあることなどの問題がある。また、特定のタンパク質の特定のアミノ酸残基に対するリン酸化を検出する抗体の作製はさらに困難である。さらに、抗体を用いたタンパク質や翻訳後修飾の検出は、抗体がしばしば標的タンパク質以外のタンパク質などにも反応してしまうことが大きな問題となる。この抗体の非特異性は、ELISAなどの抗体を用いたタンパク質の定量において、タンパク質の定量の精度の上昇を阻害する大きな原因の一つである。そこで、これらの抗体を用いた方法に代わって、質量分析法を用いて高精度でタンパク質や翻訳後修飾を定量する技術が開発されつつある。
Conventionally, methods using antibodies have been mainly used as methods for detecting proteins and post-translational modifications. In order to detect a protein using an antibody, it is necessary to obtain an antibody specific to the target protein. However, antibody production and purification require time and skill, and depending on the type of target protein, it is not possible to obtain an antibody specific for the target protein even after various efforts and efforts. There are many examples. Furthermore, as antibodies that detect post-translational modifications, there are antibodies that can detect phosphorylation of tylosin, serine, and threonine, but examples where detection sensitivity is not sufficient, examples in which phosphorylation of each of these amino acid residues cannot be distinguished, Depending on the three-dimensional structure of the protein, there are problems such as the fact that these phosphorylations cannot always be detected. In addition, it is more difficult to produce an antibody that detects phosphorylation of a specific protein on a specific amino acid residue. Furthermore, detection of proteins and post-translational modifications using antibodies often poses a major problem in that antibodies often react with proteins other than the target protein. The non-specificity of this antibody is one of the major causes that hinders the increase in the accuracy of protein quantification in protein quantification using antibodies such as ELISA. Therefore, instead of the method using these antibodies, a technique for quantifying proteins and post-translational modifications with high accuracy using mass spectrometry is being developed.
質量分析法(mass spectrometry)とは、試料をイオン化し、イオン化した分子を質量/電荷(m/z)に従って分離し検出する方法であり、種々の生物学材料の検出や測定にこの方法が検討、利用されてきた。近年の質量分析法の進展により、エレクトロスプレー・イオン化法(ESI:electrosprayionization)やマトリックス支援レーザー脱離イオン化法(MALDI:Matrix assisted laser desorptionionization)など様々なイオン化法を用いることが可能となり、またイオントラップ法、飛行時間法(TOF:Timeof Flight)、四重極法、フーリエ変換法などによるイオン化された試料を解析する様々なアナライザーを用いた様々な質量分析計が開発されている。また、液体クロマトグラフィーを接続した液体クロマトグラフィー質量分析計(LC-MS)や、質量分析計を2台結合した、タンデム質量分析計(MS/MS spectrum)等、種々の機能をもつ質量分析計が開発されており、これらの機能を組み合わせたものが、生物学材料の検出や測定や定量に利用されている(特許文献1~3)。
Mass spectrometry (mass-spectrometry) is a method in which a sample is ionized and the ionized molecules are separated and detected according to mass / charge (m / z). This method is used for detection and measurement of various biological materials. Have been used. Recent advances in mass spectrometry have enabled the use of various ionization methods such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), and ion traps. Various mass spectrometers have been developed using various analyzers that analyze ionized samples by the time of flight method (TOF: Timeof 法 Flight), quadrupole method, Fourier transform method, and the like. Also, mass spectrometers with various functions such as liquid chromatography mass spectrometer (LC-MS) connected with liquid chromatography and tandem mass spectrometer (MS / MS spectrum) with two mass spectrometers combined. A combination of these functions is used for detection, measurement, and quantification of biological materials (Patent Documents 1 to 3).
従来の質量分析法を用いたタンパク質の定量方法は、標的タンパク質における定量対象のペプチド断片を選択し、かかるペプチド断片の量を定量する方法であった。すなわち、図1に示すような(1)標的タンパク質における定量対象の任意のペプチド断片を選択する工程;(2)所定濃度段階の各ペプチド断片と、特定量の前記ペプチド断片に相当するアミノ酸配列である安定同位体標識内部標準ペプチド断片の混合物に対して質量分析を行い、非標識ペプチド断片/安定同位体標識内部標準ペプチド断片のマススペクトル面積比をそれぞれ算出して検量線を作成する工程;(3)断片化処理を施された標的タンパク質を含む試料及び、前記特定量の安定同位体標識ペプチド断片を含むサンプルに対し質量分析を行い、非標識ペプチド断片/安定同位体標識内部標準ペプチド断片のシグナル面積比やシグナル強度比をそれぞれ算出する工程;(4)工程(3)で算出した比から、工程(2)で作成した検量線を用いて、試料中の各標的タンパク質由来ペプチド断片をそれぞれ定量する工程;の工程(1)~(4)を備えた、質量分析装置を用いた、試料中の標的タンパク質の定量する方法であった。
A conventional protein quantification method using mass spectrometry is a method of selecting a peptide fragment to be quantified in a target protein and quantifying the amount of the peptide fragment. That is, as shown in FIG. 1, (1) a step of selecting an arbitrary peptide fragment to be quantified in the target protein; (2) each peptide fragment at a predetermined concentration stage and an amino acid sequence corresponding to a specific amount of the peptide fragment A step of carrying out mass spectrometry for a mixture of a certain stable isotope-labeled internal standard peptide fragment and calculating a mass spectrum area ratio of unlabeled peptide fragment / stable isotope-labeled internal standard peptide fragment, respectively, and preparing a calibration curve; 3) Mass spectrometry is performed on the sample containing the target protein subjected to the fragmentation treatment and the sample containing the specific amount of stable isotope-labeled peptide fragment, and the unlabeled peptide fragment / stable isotope-labeled internal standard peptide fragment Step of calculating signal area ratio and signal intensity ratio respectively; (4) From the ratio calculated in step (3), the test created in step (2) A method for quantifying a target protein in a sample using a mass spectrometer, comprising steps (1) to (4) of quantifying each target protein-derived peptide fragment in a sample using a line there were.
しかし、従来の質量分析法を用いたタンパク質の定量方法では、定量対象のペプチド断片を選択しなければならないという問題があった。ペプチド断片のイオン化されやすさは各ペプチド断片によって異なり、質量分析法によってタンパク質を定量するためには、どの配列のペプチド断片を標的とするかが非常で重要であるとともに、様々な選択のためのクライテリアが研究されつつあるものの、定量対象のペプチド断片の選択は困難が伴う工程であることが現状である。また、従来の方法では、試料中の標的タンパク質を断片化した後に、安定同位体標識内部標準ペプチド断片を添加して質量分析へ供するため、試料中の標的タンパク質を断片化する過程における誤差、すなわち断片化の未処理効率や標的タンパク質のチューブへの吸着等による試料損失が補正されない、などの問題があった。そのため、これまで十分に高感度で高精度の質量分析法を用いたタンパク質の定量方法はなかった。
However, the conventional protein quantification method using mass spectrometry has a problem that the peptide fragment to be quantified must be selected. The ease of ionization of peptide fragments varies from peptide fragment to peptide fragment, and in order to quantify proteins by mass spectrometry, it is very important to determine which sequence of peptide fragments to target, and for various selections. Although criteria are being studied, the selection of peptide fragments to be quantified is a difficult process at present. Further, in the conventional method, after fragmenting the target protein in the sample, a stable isotope-labeled internal standard peptide fragment is added and subjected to mass spectrometry. Therefore, an error in the process of fragmenting the target protein in the sample, that is, There were problems such as unprocessed efficiency of fragmentation and sample loss due to adsorption of the target protein to the tube and the like not being corrected. For this reason, there has been no protein quantification method using mass spectrometry with sufficiently high sensitivity and high accuracy.
従来の質量分析法を用いた翻訳後修飾の定量方法としては、安定同位体を含む培地又は安定同位体を含まない培地でそれぞれ別に培養した細胞を回収、又は合わせて培養した後に回収して質量分析に供することによりタンパク質のリン酸化部位などを同定する方法(特許文献4、5)などが開発されているが、これらはいずれも特定のペプチド断片の翻訳後修飾を検出するものであり、タンパク質における翻訳後修飾部位の同定や、翻訳後修飾の定量はできないという問題があった。
As a quantitative method of post-translational modification using conventional mass spectrometry, cells cultured separately in a medium containing a stable isotope or a medium not containing a stable isotope are collected or combined and cultured, and then collected to obtain a mass. Methods for identifying protein phosphorylation sites by analysis (Patent Documents 4 and 5) have been developed. These methods detect post-translational modifications of specific peptide fragments. In other words, there were problems that identification of post-translational modification sites and post-translational modification cannot be quantified.
本発明の課題は、質量分析計を用いてタンパク質の翻訳後修飾の同定及び/又は定量や、タンパク質の遺伝子変異の同定及び/又は定量の方法や、そのための、高感度かつ高精度のタンパク質の定量方法を提供することにある。
An object of the present invention is to identify and / or quantify a post-translational modification of a protein using a mass spectrometer, to identify and / or quantify a genetic mutation of a protein, and to detect a protein with high sensitivity and high accuracy therefor. It is to provide a quantitative method.
本発明者らは上記課題を解決すべく鋭意検討する中で、安定同位体標識内部標準タンパク質を用いることで、質量分析計を用いて一度に複数の標的タンパク質由来のペプチド断片を検出することにより、高感度かつ高精度にタンパク質を定量できるとの知見を得た(図2)。さらに、検出された標的タンパク質由来のペプチド断片の平均定量値を算出し、かかる平均定量値と各ペプチド断片の定量値を比較することにより、各ペプチド断片の翻訳後修飾及び/又は遺伝子変異を、同定及び/又は定量することができることを見出し、本発明を完成するに至った。
While the present inventors are diligently studying to solve the above problem, by using a stable isotope-labeled internal standard protein, by detecting a plurality of target protein-derived peptide fragments at once using a mass spectrometer. The knowledge that protein can be quantified with high sensitivity and high accuracy was obtained (FIG. 2). Furthermore, by calculating the average quantitative value of the detected peptide fragment derived from the target protein and comparing the average quantitative value and the quantitative value of each peptide fragment, post-translational modification and / or gene mutation of each peptide fragment, The present inventors have found that it can be identified and / or quantified and have completed the present invention.
すなわち、本発明は[1](a)所定濃度段階又は試料中の各標的タンパク質又は試料中の標的タンパク質と、特定量の前記標的タンパク質に相当する安定同位体標識タンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して、質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のシグナル面積比やシグナル強度比から各ペプチド断片をそれぞれ定量する工程;(b)全ての各標的タンパク質由来ペプチド断片の定量値の平均値を平均定量値として求める工程;(c)平均定量値に対する、各標的タンパク質由来ペプチド断片の定量値の割合x(%)をそれぞれ算出し、ペプチド断片の質量変化を受けた割合(100-x)(%)をそれぞれ算出する工程;の工程(a)~(c)を備えた、試料中の標的タンパク質の質量分析法における質量変化を検出する方法や、[2]標的タンパク質の質量分析法における質量変化の検出が、標的タンパク質の翻訳後修飾の定量であることを特徴とする前記[1]記載の方法や、[3]標的タンパク質の質量分析法における質量変化の検出が、標的タンパク質の翻訳後修飾部位の同定であることを特徴とする前記[1]記載の方法や、[4]翻訳後修飾が、リン酸化又は糖化であることを特徴とする前記[2]又は[3]記載の方法や、[5]標的タンパク質の質量分析法における質量変化の検出が、遺伝子変異による標的タンパク質の配列異常の定量であることを特徴とする前記[1]記載の方法や、[6]標的タンパク質の質量分析法における質量変化の検出が、遺伝子変異による標的タンパク質の配列異常部位の同定であることを特徴とする前記[1]記載の方法や、[7]遺伝子変異による標的タンパク質の配列異常が、一塩基多型(SNPs)によるものであることを特徴とする前記[5]又は[6]記載の方法や、[8]安定同位体標識タンパク質として、翻訳後修飾又は遺伝子変異がない安定同位体標識タンパク質を用いることを特徴とする前記[1]~[7]のいずれかに記載の方法に関する。
That is, the present invention provides [1] (a) peptide fragmentation in a predetermined concentration step or a mixture of each target protein in a sample or a target protein in a sample and a stable isotope labeled protein corresponding to a specific amount of the target protein. Applying the treatment, performing mass spectrometry on the obtained peptide fragment group, and quantifying each peptide fragment from the signal area ratio and signal intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment; (B) a step of determining an average value of quantitative values of all target protein-derived peptide fragments as an average quantitative value; (c) a ratio x (%) of the quantitative value of each target protein-derived peptide fragment to the average quantitative value; A step of calculating and calculating a ratio (100−x) (%) of the peptide fragment that has undergone a mass change, respectively. A method for detecting a mass change in mass spectrometry of a target protein in a sample comprising a) to (c), and [2] detection of a mass change in mass spectrometry of a target protein is a post-translational modification of the target protein. The method according to [1] above, wherein the detection of mass change in the mass spectrometry of the target protein is identification of a post-translational modification site of the target protein, The method according to [1] above, [4] the method according to [2] or [3] above, wherein the post-translational modification is phosphorylation or saccharification, and [5] mass spectrometry of the target protein The method according to [1] above, wherein the detection of a mass change in is a quantification of a sequence abnormality of a target protein due to a gene mutation, and [6] a detection of a mass change in mass spectrometry of a target protein. The method according to [1] above, which is the identification of a site abnormality in a target protein due to a gene mutation, and [7] the sequence abnormality in the target protein due to a gene mutation is caused by single nucleotide polymorphisms (SNPs). The method according to [5] or [6] above, or [8] a stable isotope-labeled protein having no post-translational modification or gene mutation as the stable isotope-labeled protein The present invention relates to the method according to any one of [1] to [7].
また、本発明は[9]翻訳後修飾部位又は遺伝子変異部位が、(1)公共のデータベースで翻訳後修飾又は遺伝子変異によるアミノ酸配列変化が公開されている部位であること;(2)セリンもしくはスレオニン、タイロシンを含む配列部位であること;(3)膜タンパク質の細胞外部位もしくは分泌タンパク質でアスパラギンを含む配列部位であること;(4)リジンを含む配列部位であること;(5)システインを含む配列部位であること;(6)グルタミン酸を含む配列部位であること;(7)プロリンを含む配列部位であること;(8)前記[1]記載の方法で求めた定量値が統計学的手法により平均定量値から外れ値を示す配列部位であること;の(1)~(8)のいずれかの条件から設定されていることを特徴とする前記[2]~[8]のいずれかに記載の方法や、[10]対象部位が、配列番号1~6に示される翻訳後修飾及び遺伝子変異によるアミノ酸配列変化を受ける部位であることを特徴とする前記[1]~[9]のいずれかに記載の方法や、[11]安定同位体標識タンパク質が、15N,13C,18O,2Hのいずれかを含むアミノ酸によって標識されるタンパク質であることを特徴とする前記[1]~[10]のいずれかに記載の方法や、[12]ペプチド断片化が、トリプシン、グルタミルペプチダーゼ、アスパラギンペプチダーゼ、キモトリプシンから選ばれるいずれかのタンパク質消化酵素を用いた断片化であることを特徴とする前記[1]~[11]のいずれかに記載の方法や、[13]ペプチド断片化が、化学物質を用いた断片化であることを特徴とする前記[1]~[11]のいずれかに記載の方法や、[14]標的タンパク質が、ヒトEGFR(Epidermal Growth Factor Receptor)であることを特徴とする前記[1]~[13]のいずれかに記載の方法に関する。
In the present invention, [9] the post-translational modification site or gene mutation site is (1) a site where amino acid sequence changes due to post-translational modification or gene mutation are published in public databases; (2) serine or It is a sequence site containing threonine and tylosin; (3) It is a sequence site containing asparagine at the extracellular position of a membrane protein or secreted protein; (4) It is a sequence site containing lysine; (5) Cysteine (6) a sequence site containing glutamic acid; (7) a sequence site containing proline; and (8) a quantitative value determined by the method described in [1] above is statistical. The above-mentioned [2], characterized in that it is a sequence region that shows an outlier from the average quantitative value by the method; [8] The method according to any one of [8] and [10], wherein the target site is a site that undergoes post-translational modification shown in SEQ ID NOs: 1 to 6 and amino acid sequence change due to gene mutation. ] To [9], or [11] the stable isotope labeled protein is a protein labeled with an amino acid containing any one of 15 N, 13 C, 18 O, and 2 H. The method according to any one of [1] to [10] above, and [12] Fragmentation using any protein digestion enzyme selected from trypsin, glutamyl peptidase, asparagine peptidase, and chymotrypsin. The method according to any one of [1] to [11] above, wherein [13] peptide fragmentation is fragmentation using a chemical substance. The method according to any one of the above [1] to [11], or [14] the target protein is human EGFR (Epidermal Growth Factor Receptor) [13] The method according to any one of [13].
さらに本発明は、[15](i)安定同位体標識アミノ酸を用いて、安定同位体標識タグタンパク質融合タンパク質を合成する工程;(ii)前記安定同位体標識タグタンパク質融合タンパク質と、特定量の非安定同位体標識前記タグタンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して質量分析を行い、安定同位体標識タグタンパク質融合タンパク質のタグタンパク質部分由来ペプチド断片/非安定同位体標識タグタンパク質由来ペプチド断片のシグナル面積比やシグナル強度比からタグ由来の各ペプチド断片をそれぞれ定量する工程;(iii)安定同位体標識タグタンパク質融合タンパク質のタグタンパク質由来の全ての各ペプチド断片の定量値の平均値を、合成した安定同位体標識タグタンパク質融合タンパク質の絶対量として求める工程;の工程(i)~(iii)を備えた、質量分析法で内部標準として使用する安定同位体標識タンパク質の絶対量の定量方法や、[16]タグタンパク質が、GSTタグタンパク質であることを特徴とする前記[15]に記載の定量方法や、[17]タグタンパク質が、Hisタグタンパク質であることを特徴とする前記[15]に記載の定量方法や、[18]タグタンパク質が、(I)アミノ酸残基数が、3から500残基であること;(II)アミノ酸残基数が、500残基数であること;(III)アルギニンを含む配列であること;(IV)リジンを含む配列であること;(V)トリプシン、グルタミルペプチダーゼ、アスパラギンペプチダーゼ、キモトリプシンから選ばれるいずれかのタンパク質消化酵素を用いて断片化される配列であること;(VI)化学物質を用いて、ペプチドに断片化される配列であること;の(I)~(VI)のいずれかの条件から設定されるアミノ酸の配列であることを特徴とする前記[15]~[17]いずれかに記載の定量方法や、[19]非安定同位体標識タグタンパク質の量が、アミノ酸分析法により決定されることを特徴とする前記[15]~[18]のいずれかに記載の定量方法や、[20]非安定同位体標識タグタンパク質の量が、生化学的比色法によって決定されることを特徴とする前記[15]~[19]のいずれかに記載の定量方法に関する。
The present invention further provides [15] (i) a step of synthesizing a stable isotope-labeled tag protein fusion protein using a stable isotope-labeled amino acid; (ii) the stable isotope-labeled tag protein fusion protein, and a specific amount of Peptide fragmentation treatment is performed on the mixture with the non-stable isotope-labeled tag protein, mass analysis is performed on the resulting peptide fragment group, and the peptide fragment derived from the tag protein portion of the stable isotope-labeled tag protein fusion protein / unstable Quantifying each peptide fragment derived from the tag from the signal area ratio or signal intensity ratio of the peptide fragment derived from the isotope-labeled tag protein; (iii) all the peptide fragments derived from the tag protein of the stable isotope-labeled tag protein fusion protein The average value of the quantitative values of the synthesized stable isotope-labeled tag protein fusion tag A method for determining the absolute amount of a stable isotope-labeled protein used as an internal standard in mass spectrometry, comprising the steps (i) to (iii): The quantification method according to [15] above, which is a GST tag protein, or the quantification method according to [15] above, wherein the [17] tag protein is a His tag protein, [18] The tag protein has (I) an amino acid residue number of 3 to 500 residues; (II) an amino acid residue number of 500 residues; and (III) a sequence containing arginine. (IV) a sequence containing lysine; (V) any protein digestion enzyme selected from trypsin, glutamyl peptidase, asparagine peptidase, and chymotrypsin. (VI) a sequence that is fragmented into a peptide using a chemical substance; an amino acid sequence that is set based on any of the conditions (I) to (VI) The quantitative method according to any one of the above [15] to [17], or [19] the amount of the non-stable isotope-labeled tag protein is determined by amino acid analysis [15] The quantitative method according to any one of [15] to [18] and [20] The amount of the non-stable isotope-labeled tag protein is determined by a biochemical colorimetric method. ] To the quantification method according to any one of [19].
本発明によれば、対象ペプチド断片を選択する必要がないため従来法よりも簡便に、さらに複数のペプチド断片を一度に定量するため従来法よりも高感度かつ高精度に、タンパク質を定量することができる。また、従来の一ペプチド断片を用いた測定にかかっていた約20分の1のコストで、タンパク質を定量することができるという利点も有する。また、従来の抗体を用いたELISA法などよりも高精度にタンパク質を定量することができ、従来困難であったタンパク質の未知の翻訳後修飾部位や一塩基多型などの遺伝子変異の同定、翻訳後修飾率の定量なども行うことができる。さらに、本発明は翻訳後修飾の同定や定量、遺伝子変異の同定が、タンパク質の定量解析と同時に行うことができるため、一タンパク質あたりの解析時間が劇的に短縮し、スクリーニングなどの多分子同時解析にも有効に利用することができるという効果も有する。すなわち、定量精度、コスト、翻訳後修飾の定量、簡便性において特に優れた本発明の方法は、従来の手法に代わってライフサイエンス、医療技術の分野に貢献する技術といえる(表1)。
According to the present invention, since it is not necessary to select the target peptide fragment, the protein can be quantified more easily and more sensitively and more accurately than the conventional method in order to quantify a plurality of peptide fragments at once. Can do. In addition, there is an advantage that the protein can be quantified at a cost of about 1/20 that was required for the measurement using a conventional peptide fragment. In addition, proteins can be quantified with higher accuracy than ELISA methods using conventional antibodies. Identification and translation of unknown post-translational modification sites of proteins and single nucleotide polymorphisms that have been difficult in the past The post-modification rate can be quantified. Furthermore, since the present invention can identify and quantify post-translational modifications and identify genetic mutations simultaneously with quantitative analysis of proteins, the analysis time per protein can be dramatically reduced, and multiple molecules such as screening can be performed simultaneously. It also has the effect that it can be used effectively for analysis. That is, the method of the present invention, which is particularly excellent in quantitative accuracy, cost, post-translational modification quantification, and simplicity, can be said to be a technology that contributes to the fields of life science and medical technology in place of conventional methods (Table 1).
本発明において「標的タンパク質の質量分析法における質量変化」とは、標的タンパク質及び/又は標的タンパク質由来のペプチド断片の質量が、データベースや実際にDNA配列やアミノ酸配列を確認して得た情報などに基づいて算出された質量と異なることをいい、実質的な質量の変化を検出することを必ずしも意味しない。また、本発明において「検出する」とは、定量及び/又は部位同定することをいい、「標的タンパク質の質量分析法における質量変化」領域のスクリーニング方法も、標的タンパク質において、質量分析法における質量変化を示すアミノ酸配列領域を同定する方法として、本発明の「検出」に含まれる。したがって、本発明において、翻訳後修飾の検出とは「翻訳後修飾の定量」及び「翻訳後修飾部位の同定」を、遺伝子変異の検出とは「遺伝子変異の定量」及び「遺伝子変異部位の同定」をそれぞれ意味する。また本発明において「定量」とは、絶対量の測定だけでなく、相対量の測定をも含む。
In the present invention, “mass change in mass spectrometry of target protein” means that the mass of the target protein and / or peptide fragment derived from the target protein is a database or information obtained by actually confirming the DNA sequence or amino acid sequence. This means that it differs from the mass calculated based on it, and does not necessarily mean that a substantial mass change is detected. Further, in the present invention, “detect” means quantification and / or site identification, and the screening method for the “mass change in mass spectrometry of target protein” region also includes mass change in mass spectrometry in the target protein. Is included in the “detection” of the present invention. Therefore, in the present invention, detection of post-translational modification means “quantification of post-translational modification” and “identification of post-translational modification site”, and detection of gene mutation means “quantification of gene mutation” and “identification of gene mutation site”. "Means each. In the present invention, “quantitative” includes not only measurement of absolute amount but also measurement of relative amount.
本発明における「標的タンパク質の質量分析法における質量変化」としては、標的タンパク質の翻訳後修飾、遺伝子変異による標的タンパク質の配列異常、スプライシングバリアント、プロテアーゼによるタンパク質の切断や分解などによるものを挙げることができ、中でも標的タンパク質の翻訳後修飾や遺伝子変異による標的タンパク質の配列異常を好適に例示することができる。翻訳後修飾としては、タンパク質の翻訳後に付加される修飾であれば特に制限されず、糖化(グリコシル化)、リン酸化、メチル化、アシル化、アルキル化、ジメチル化、ビオチニル化、ホルミル化、カルボキシル化、グルタミル化、グリシル化、ヒドロキシル化、ヨウ素化、イソプレニル化、リポイル化、プレニル化、GPIアンカー形成、ADPリボシル化、FAD結合、ポリエチレングリコール化、ホスファチジルイノシトール付加、ホスホパンテテイニル化、ピログルタミン酸形成、ラセミ化、タイロシン硫酸化、セレノイル化、ISG化、SUMO化、ユビキチン化、NEDD化などを挙げることができ、中でも糖鎖が付加される糖化(グリコシル化)及びリン酸化を好適に例示することができる。また、遺伝子変異による標的タンパク質の配列異常としては、一塩基多型(SNPs)や、遺伝子配列の重複、欠失、挿入や、繰り返し配列の数の相違や、LINEやSINEなどのトランスポゾンの数の相違やトランスポゾンの挿入、欠失などの、遺伝子配列の変異によるものを挙げることができ、中でも一塩基多型を好適に例示することができる。また、翻訳後修飾部位又は遺伝子変異部位等の質量変化部位が、次の(1)~(8)のいずれかの条件から設定されていることが好ましい。
(1)公共のデータベースで翻訳後修飾又は遺伝子変異によるアミノ酸配列変化が公開されている部位であること;
(2)セリンもしくはスレオニン、タイロシンを含む配列部位であること;
(3)膜タンパク質の細胞外部位もしくは分泌タンパク質でアスパラギンを含む配列部位であること;
(4)リジンを含む配列部位であること;
(5)システインを含む配列部位であること;
(6)グルタミン酸を含む配列部位であること;
(7)プロリンを含む配列部位であること;
(8)本発明の方法で求めた定量値が統計学的手法により平均定量値から外れ値を示す配列部位であること; Examples of the “mass change in target protein mass spectrometry” in the present invention include post-translational modification of the target protein, target protein sequence abnormality due to gene mutation, splicing variant, and protein cleavage or degradation by protease. Among them, a target protein sequence abnormality due to post-translational modification or gene mutation of the target protein can be preferably exemplified. The post-translational modification is not particularly limited as long as it is a post-translational modification of the protein. Glycation (glycosylation), phosphorylation, methylation, acylation, alkylation, dimethylation, biotinylation, formylation, carboxyl , Glutamylation, glycylation, hydroxylation, iodination, isoprenylation, lipoylation, prenylation, GPI anchor formation, ADP ribosylation, FAD coupling, polyethylene glycolation, phosphatidylinositol addition, phosphopantetheinylation, pyroglutamic acid Formation, racemization, tylosin sulfate, selenoylation, ISGization, SUMOylation, ubiquitination, NEDDization and the like. Among them, glycation (glycosylation) and phosphorylation to which a sugar chain is added are preferably exemplified. be able to. In addition, target protein sequence abnormalities due to gene mutations include single nucleotide polymorphisms (SNPs), gene sequence duplication, deletion, insertion, differences in the number of repeated sequences, the number of transposons such as LINE and SINE, etc. Examples include differences caused by gene sequence mutations such as differences and transposon insertions and deletions. Among them, single nucleotide polymorphisms can be preferably exemplified. Moreover, it is preferable that the mass change site such as the post-translational modification site or the gene mutation site is set according to any one of the following conditions (1) to (8).
(1) A site where changes in amino acid sequence due to post-translational modification or gene mutation are publicly disclosed in public databases;
(2) a sequence site containing serine, threonine or tylosin;
(3) an extracellular site of a membrane protein or a sequence site containing asparagine in a secreted protein;
(4) a sequence site containing lysine;
(5) a sequence site containing cysteine;
(6) a sequence site containing glutamic acid;
(7) a sequence site containing proline;
(8) The quantitative value obtained by the method of the present invention is a sequence site that shows an outlier from the average quantitative value by a statistical method;
(1)公共のデータベースで翻訳後修飾又は遺伝子変異によるアミノ酸配列変化が公開されている部位であること;
(2)セリンもしくはスレオニン、タイロシンを含む配列部位であること;
(3)膜タンパク質の細胞外部位もしくは分泌タンパク質でアスパラギンを含む配列部位であること;
(4)リジンを含む配列部位であること;
(5)システインを含む配列部位であること;
(6)グルタミン酸を含む配列部位であること;
(7)プロリンを含む配列部位であること;
(8)本発明の方法で求めた定量値が統計学的手法により平均定量値から外れ値を示す配列部位であること; Examples of the “mass change in target protein mass spectrometry” in the present invention include post-translational modification of the target protein, target protein sequence abnormality due to gene mutation, splicing variant, and protein cleavage or degradation by protease. Among them, a target protein sequence abnormality due to post-translational modification or gene mutation of the target protein can be preferably exemplified. The post-translational modification is not particularly limited as long as it is a post-translational modification of the protein. Glycation (glycosylation), phosphorylation, methylation, acylation, alkylation, dimethylation, biotinylation, formylation, carboxyl , Glutamylation, glycylation, hydroxylation, iodination, isoprenylation, lipoylation, prenylation, GPI anchor formation, ADP ribosylation, FAD coupling, polyethylene glycolation, phosphatidylinositol addition, phosphopantetheinylation, pyroglutamic acid Formation, racemization, tylosin sulfate, selenoylation, ISGization, SUMOylation, ubiquitination, NEDDization and the like. Among them, glycation (glycosylation) and phosphorylation to which a sugar chain is added are preferably exemplified. be able to. In addition, target protein sequence abnormalities due to gene mutations include single nucleotide polymorphisms (SNPs), gene sequence duplication, deletion, insertion, differences in the number of repeated sequences, the number of transposons such as LINE and SINE, etc. Examples include differences caused by gene sequence mutations such as differences and transposon insertions and deletions. Among them, single nucleotide polymorphisms can be preferably exemplified. Moreover, it is preferable that the mass change site such as the post-translational modification site or the gene mutation site is set according to any one of the following conditions (1) to (8).
(1) A site where changes in amino acid sequence due to post-translational modification or gene mutation are publicly disclosed in public databases;
(2) a sequence site containing serine, threonine or tylosin;
(3) an extracellular site of a membrane protein or a sequence site containing asparagine in a secreted protein;
(4) a sequence site containing lysine;
(5) a sequence site containing cysteine;
(6) a sequence site containing glutamic acid;
(7) a sequence site containing proline;
(8) The quantitative value obtained by the method of the present invention is a sequence site that shows an outlier from the average quantitative value by a statistical method;
本発明の「所定濃度段階又は試料中の各標的タンパク質」は、濃度既知の標的タンパク質又は、測定対象試料中の標的タンパク質であればよく、試料中の標的タンパク質は多くの場合濃度不明である。濃度既知の標的タンパク質としては遺伝子工学的手法で細胞や大腸菌、コムギ胚芽などの無細胞系を用いて産生させ、精製及び抽出して濃度を測定したものや市販品を例示することができる。また、本発明において試料とは、細胞抽出液、組織抽出液、培養液、血液や髄液等の体液等の生体試料を例示することができる。「所定濃度段階」は測定対象の試料中の標的タンパク質の量や精製方法、質量分析計の感度や精度に応じて適宜設定することができ、例えば10fmol、50fmol、100fmol、500fmol、1000fmolの濃度段階とすることもできる。そして本発明の「特定量の前記標的タンパク質に相当する安定同位体標識タンパク質」(以下単に、「安定同位体標識タンパク質」又は「安定同位体標識内部標準タンパク質」ともいう)は、かかる標的タンパク質と同じアミノ酸配列からなるタンパク質であり、1種類又は2種類以上の安定同位体の元素を含むことにより安定同位体標識されたものであればよく、安定同位体元素としては窒素安定同位体15N、炭素安定同位体13C、酸素安定同位体18O、水素安定同位体2Hを挙げることができる。かかる安定同位体標識タンパク質は、安定同位体標識された元素を含むアミノ酸を用いて人工的に化学合成することもできるし、安定同位体標識された元素を含む培養液中で細胞や大腸菌を培養することにより、又は安定同位体標識された元素の存在下で無細胞系にて安定同位体標識タンパク質を産生することもでき、かかる安定同位体標識タンパク質は翻訳後修飾又は遺伝子変異がないことが好ましい。前記「特定量」は特に制限されず、測定対象の試料中の標的タンパク質の量や精製方法、質量分析計の感度や精度に応じて任意の量とすることができ、例えば500fmolを例示することができる。なお安定同位体標識タンパク質濃度は、本発明の安定同位体標識タンパク質の定量方法を用いて測定することもできる。
The “predetermined concentration step or each target protein in a sample” of the present invention may be a target protein having a known concentration or a target protein in a sample to be measured, and the concentration of the target protein in the sample is often unknown. Examples of target proteins with known concentrations include those produced by cell-free systems such as cells, Escherichia coli, and wheat germ by genetic engineering techniques, purified and extracted, and measured for concentrations, and commercially available products. In the present invention, the sample can be exemplified by a biological sample such as a cell extract, a tissue extract, a culture solution, or a body fluid such as blood or spinal fluid. The “predetermined concentration step” can be appropriately set according to the amount of target protein in the sample to be measured, the purification method, and the sensitivity and accuracy of the mass spectrometer, for example, 10 fmol, 50 fmol, 100 fmol, 500 fmol, 1000 fmol concentration steps. It can also be. The “stable isotope labeled protein corresponding to a specific amount of the target protein” of the present invention (hereinafter, also simply referred to as “stable isotope labeled protein” or “stable isotope labeled internal standard protein”) It is a protein having the same amino acid sequence, and may be one that is labeled with a stable isotope by including one or more kinds of stable isotope elements. As the stable isotope element, the nitrogen stable isotope 15 N, Examples thereof include a carbon stable isotope 13 C, an oxygen stable isotope 18 O, and a hydrogen stable isotope 2 H. Such a stable isotope-labeled protein can be artificially chemically synthesized using an amino acid containing a stable isotope-labeled element, or cells or E. coli are cultured in a culture solution containing a stable isotope-labeled element. Or in the presence of a stable isotope-labeled element, a stable isotope-labeled protein can be produced in a cell-free system, and such stable isotope-labeled protein may not have post-translational modifications or gene mutations. preferable. The “specific amount” is not particularly limited, and can be any amount depending on the amount of target protein in the sample to be measured, the purification method, the sensitivity and accuracy of the mass spectrometer, for example, 500 fmol. Can do. The concentration of the stable isotope labeled protein can also be measured using the method for quantifying the stable isotope labeled protein of the present invention.
本発明の「ペプチド断片化処理」としては、タンパク質を切断しペプチド断片を生成するものであれば使用することができ、化学物質を用いた断片化処理やタンパク質消化酵素を用いた断片化処理方法を挙げることができる。本発明の試料中の標的タンパク質の質量分析法における質量変化を検出する方法(以下、「本発明の方法」ともいう)は、標的タンパク質及び内部標準タンパク質を同一溶液中で断片化処理を行うため、標的タンパク質及び内部標準タンパク質は同条件の断片化処理を受ける。したがって、一般的にタンパク質消化酵素に比べ再現性が劣るといわれる、化学物質を用いた断片化方法も使用することができる。断片化に用いられる化学物質としては、塩酸、硫酸、トリフルオロ酢酸、クエン酸、リンゴ酸、アスパラギン酸などの酸性化合物や、水酸化ナトリウム、水酸化カリウム、などのアルカリ性化合物や臭化シアンなどを挙げることができる。また、断片化に用いられるタンパク質消化酵素としてはエンドペプチダーゼやエキソペプチダーゼ、より具体的にはキモトリプシン(chymotrypsin)、スブチリシン(subtilisin)などのセリンプロテアーゼ、ペプシン、カテプシンD(cathepsin D)、HIVプロテアーゼなどのアスパラギン酸プロテアーゼ、サーモリシン(thermolysin)などの金属プロテアーゼ、パパイン、カスパーゼなどのシステインプロテアーゼ、N-末端スレオニンプロテアーゼ(N-terminal threonine protease)やグルタミン酸プロテアーゼ、アルギニンエンドペプチダーゼなどを挙げることができ、中でもトリプシン、グルタミルペプチダーゼ、アスパラギンペプチダーゼ、キモトリプシンを好適に例示することができる。また、これらのペプチド断片化方法は、2種類以上の方法を組み合わせて行うこともできる。例えば、あるペプチド断片化処理方法にて検出できなかったペプチド断片に含まれる領域も、別のペプチド断片化処理方法や、複数の断片化処理方法の組み合わせによって異なるペプチド断片として質量分析に供することにより、検出できる可能性がある。したがって、複数のペプチド断片化処理方法を利用することにより、標的タンパク質の質量分析法において検出される領域、すなわち検出のカバー率を向上させることができる。
The “peptide fragmentation treatment” of the present invention can be used as long as it can cleave proteins to produce peptide fragments. Fragmentation treatment using chemical substances and fragmentation treatment methods using protein digestive enzymes Can be mentioned. The method for detecting a mass change in mass spectrometry of a target protein in a sample of the present invention (hereinafter also referred to as “method of the present invention”) is to perform fragmentation treatment of the target protein and the internal standard protein in the same solution. The target protein and the internal standard protein are subjected to fragmentation treatment under the same conditions. Therefore, a fragmentation method using a chemical substance, which is generally said to be inferior in reproducibility compared with protein digestion enzymes, can also be used. Chemical substances used for fragmentation include acidic compounds such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, citric acid, malic acid and aspartic acid, alkaline compounds such as sodium hydroxide and potassium hydroxide, and cyanogen bromide. Can be mentioned. In addition, protein digestion enzymes used for fragmentation include endopeptidases and exopeptidases, and more specifically serine proteases such as chymotrypsin and subtilisin, pepsin, cathepsin D, and HIV protease. Examples include aspartic protease, metalloprotease such as thermolysin, cysteine protease such as papain and caspase, N-terminal threonine protease, glutamate protease, arginine endopeptidase, among others, trypsin, Preferable examples include glutamyl peptidase, asparagine peptidase and chymotrypsin. These peptide fragmentation methods can also be performed by combining two or more methods. For example, a region included in a peptide fragment that could not be detected by a certain peptide fragmentation method is also subjected to mass spectrometry as a different peptide fragment depending on another peptide fragmentation method or a combination of a plurality of fragmentation methods. , May be detectable. Therefore, by using a plurality of peptide fragmentation methods, it is possible to improve the area detected in the target protein mass spectrometry, that is, the detection coverage.
本発明において用いられる質量分析法は、試料をイオン化し、イオン化した分子を質量/電荷(m/z)に従って分離し検出する方法であれば特に制限されず、エレクトロスプレー・イオン化法(ESI:electrosprayionization)やマトリックス支援レーザー脱離イオン化法(MALDI:Matrix assisted laser desorptionionization)などによりイオン化し、イオントラップ法、飛行時間法(TOF:Time of Flight)、四重極法、フーリエ変換法などによってイオン化された試料を解析する方法を挙げることができる。また、質量分析計は単独で用いられてもよいし、液体クロマトグラフィーなどの分離機器や測定機器などと接続してもよく、液体クロマトグラフィー質量分析計(LC-MS)や質量分析計を2台結合したタンデム質量分析計(MS/MS spectrum)や、液体クロマトグラフィーとタンデム質量分析計を接続した液体クロマトグラフィータンデム質量分析計(LC-MS/MS)などを挙げることもでき、LC-MS/MSを好適に例示することができる。また、液体クロマトグラフィーなどの機器と質量分析計やタンデム質量分析計の間に、適宜他の分離機器、測定機器などを1又は複数台配置してもよい。
The mass spectrometry used in the present invention is not particularly limited as long as it is a method of ionizing a sample and separating and detecting ionized molecules according to mass / charge (m / z). Electrospray ionization (ESI) ) And matrix-assisted laser desorption / ionization (MALDI), ionization by ion trap, time-of-flight (TOF), quadrupole, Fourier transform, etc. A method for analyzing a sample can be mentioned. In addition, the mass spectrometer may be used alone, or may be connected to a separation instrument such as liquid chromatography or a measuring instrument, and two liquid chromatography mass spectrometers (LC-MS) and mass spectrometers are used. A tandem mass spectrometer (MS / MS spectrum) coupled to a stand or a liquid chromatography tandem mass spectrometer (LC-MS / MS) in which a liquid chromatography and a tandem mass spectrometer are connected can be used. LC-MS / MS can be preferably exemplified. In addition, one or more other separation devices, measurement devices, and the like may be appropriately disposed between a device such as liquid chromatography and a mass spectrometer or tandem mass spectrometer.
本発明の質量変化を検出する方法の工程(a)においては標的タンパク質を定量する。ここでのペプチド断片の定量は、後述の検量線を作成して定量値を算出する方法によって得られた絶対量であっても、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のシグナル面積比やシグナル強度比から得られた相対量であってもよい。かかる標的タンパク質の絶対量を定量する方法としては、濃度既知の所定濃度段階の各標的タンパク質(「人工標準タンパク質」ともいう)と安定同位体標識内部標準タンパク質を用いた質量分析法による測定を行い、検量線を作成して試料中の標的タンパク質の絶対量を定量値として算出する方法を挙げることができ(図2)、検量線はあらかじめ作成されたものでもよい。例えば以下の工程(A)~(C)を備え、液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた、試料中の標的タンパク質の量を測定する方法を好適に例示することができる。
(A)所定濃度段階の各標的タンパク質と、特定量の前記標的タンパク質に相当する安定同位体標識タンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して、LC-MS/MSを用いた質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のシグナル面積比やシグナル強度比をそれぞれ算出して検量線を作成する工程;
(B)標的タンパク質を含む試料に前記特定量の安定同位体標識タンパク質を添加した後、工程(A)におけるペプチド断片化処理を施し、得られるペプチド断片群に対しLC-MS/MSを用いた質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のマススペクトル面積比や強度比をそれぞれ算出する工程;
(C)工程(B)で算出した面積比や強度比から、工程(A)で作成した検量線を用いて、試料中の各標的タンパク質由来ペプチド断片をそれぞれ定量する工程; In step (a) of the method for detecting mass change of the present invention, the target protein is quantified. The peptide fragment quantification here is the signal of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment, even if it is an absolute amount obtained by creating a calibration curve described later and calculating the quantitative value. It may be a relative amount obtained from an area ratio or a signal intensity ratio. As a method for quantifying the absolute amount of such target protein, measurement is performed by mass spectrometry using each target protein (also referred to as “artificial standard protein”) at a predetermined concentration step with known concentration and a stable isotope-labeled internal standard protein. A method of preparing a calibration curve and calculating the absolute amount of the target protein in the sample as a quantitative value can be mentioned (FIG. 2). The calibration curve may be prepared in advance. For example, a method for measuring the amount of a target protein in a sample using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS) comprising the following steps (A) to (C) is preferably exemplified. Can do.
(A) Peptide fragmentation treatment is performed on a mixture of each target protein at a predetermined concentration step and a stable isotope-labeled protein corresponding to a specific amount of the target protein, and LC-MS / Performing mass spectrometry using MS, and calculating a signal area ratio and a signal intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment, respectively, and creating a calibration curve;
(B) After adding the specific amount of stable isotope-labeled protein to the sample containing the target protein, the peptide fragmentation treatment in step (A) was performed, and LC-MS / MS was used for the obtained peptide fragment group Conducting mass spectrometry and calculating the mass spectrum area ratio and the intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment, respectively;
(C) A step of quantifying each target protein-derived peptide fragment in a sample from the area ratio or intensity ratio calculated in step (B) using the calibration curve created in step (A);
(A)所定濃度段階の各標的タンパク質と、特定量の前記標的タンパク質に相当する安定同位体標識タンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して、LC-MS/MSを用いた質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のシグナル面積比やシグナル強度比をそれぞれ算出して検量線を作成する工程;
(B)標的タンパク質を含む試料に前記特定量の安定同位体標識タンパク質を添加した後、工程(A)におけるペプチド断片化処理を施し、得られるペプチド断片群に対しLC-MS/MSを用いた質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のマススペクトル面積比や強度比をそれぞれ算出する工程;
(C)工程(B)で算出した面積比や強度比から、工程(A)で作成した検量線を用いて、試料中の各標的タンパク質由来ペプチド断片をそれぞれ定量する工程; In step (a) of the method for detecting mass change of the present invention, the target protein is quantified. The peptide fragment quantification here is the signal of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment, even if it is an absolute amount obtained by creating a calibration curve described later and calculating the quantitative value. It may be a relative amount obtained from an area ratio or a signal intensity ratio. As a method for quantifying the absolute amount of such target protein, measurement is performed by mass spectrometry using each target protein (also referred to as “artificial standard protein”) at a predetermined concentration step with known concentration and a stable isotope-labeled internal standard protein. A method of preparing a calibration curve and calculating the absolute amount of the target protein in the sample as a quantitative value can be mentioned (FIG. 2). The calibration curve may be prepared in advance. For example, a method for measuring the amount of a target protein in a sample using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS) comprising the following steps (A) to (C) is preferably exemplified. Can do.
(A) Peptide fragmentation treatment is performed on a mixture of each target protein at a predetermined concentration step and a stable isotope-labeled protein corresponding to a specific amount of the target protein, and LC-MS / Performing mass spectrometry using MS, and calculating a signal area ratio and a signal intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment, respectively, and creating a calibration curve;
(B) After adding the specific amount of stable isotope-labeled protein to the sample containing the target protein, the peptide fragmentation treatment in step (A) was performed, and LC-MS / MS was used for the obtained peptide fragment group Conducting mass spectrometry and calculating the mass spectrum area ratio and the intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment, respectively;
(C) A step of quantifying each target protein-derived peptide fragment in a sample from the area ratio or intensity ratio calculated in step (B) using the calibration curve created in step (A);
また、本発明の質量分析法における質量変化を定量する方法としては、上記の質量分析計を用いたタンパク質の定量方法にて標的タンパク質由来の全てのペプチド断片を定量し、全ての標的タンパク質由来ペプチド断片の定量値の平均値を平均定量値として求め、平均定量値から各標的タンパク質由来ペプチド断片の定量値を引いた値を、質量分析法において質量変化が生じたペプチド断片の量とする方法であればよい。また、平均定量値に対する、各標的タンパク質由来ペプチド断片の定量値の割合x(%)をそれぞれ算出し、ペプチド断片の質量変化を受けた割合(100-x)(%)をそれぞれ算出することにより、質量分析法における質量変化が生じた割合を(100-x)(%)と表すこともできる。具体的には、以下の工程(a)~(c)を備えた、試料中の標的タンパク質の質量分析法における質量変化を定量する方法である。
(a)所定濃度段階又は試料中の各標的タンパク質と、特定量の前記標的タンパク質に相当する安定同位体標識タンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して、質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のシグナル面積比及び/又はシグナル強度比から各ペプチド断片をそれぞれ定量する工程;
(b)全ての各標的タンパク質由来ペプチド断片の定量値の平均値を平均定量値として求める工程;
(c)平均定量値に対する、各標的タンパク質由来ペプチド断片の定量値の割合x(%)をそれぞれ算出し、ペプチド断片の質量変化を受けた割合(100-x)(%)をそれぞれ算出する工程; In addition, as a method for quantifying the mass change in the mass spectrometry method of the present invention, all the peptide fragments derived from the target protein are quantified by the protein quantification method using the mass spectrometer, and all the target protein-derived peptides are quantified. By calculating the average value of the quantitative values of the fragments as the average quantitative value, and subtracting the quantitative value of each target protein-derived peptide fragment from the average quantitative value, the amount of the peptide fragment in which mass change has occurred in mass spectrometry is used. I just need it. Further, by calculating the ratio x (%) of the quantitative value of each target protein-derived peptide fragment to the average quantitative value, and calculating the ratio (100−x) (%) of the peptide fragment that has undergone mass change, respectively. The ratio of mass change in mass spectrometry can also be expressed as (100−x) (%). Specifically, the method includes the following steps (a) to (c) and quantifies a change in mass in a mass spectrometry of a target protein in a sample.
(A) Peptide fragmentation treatment is performed on a mixture of each target protein in a predetermined concentration step or each sample and a stable amount of a stable isotope-labeled protein corresponding to the target protein. Performing the analysis and quantifying each peptide fragment from the signal area ratio and / or the signal intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment;
(B) a step of obtaining an average value of quantitative values of all target protein-derived peptide fragments as an average quantitative value;
(C) calculating the ratio x (%) of the quantitative value of each target protein-derived peptide fragment to the average quantitative value, and calculating the ratio (100−x) (%) of the peptide fragment that has undergone a mass change ;
(a)所定濃度段階又は試料中の各標的タンパク質と、特定量の前記標的タンパク質に相当する安定同位体標識タンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して、質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のシグナル面積比及び/又はシグナル強度比から各ペプチド断片をそれぞれ定量する工程;
(b)全ての各標的タンパク質由来ペプチド断片の定量値の平均値を平均定量値として求める工程;
(c)平均定量値に対する、各標的タンパク質由来ペプチド断片の定量値の割合x(%)をそれぞれ算出し、ペプチド断片の質量変化を受けた割合(100-x)(%)をそれぞれ算出する工程; In addition, as a method for quantifying the mass change in the mass spectrometry method of the present invention, all the peptide fragments derived from the target protein are quantified by the protein quantification method using the mass spectrometer, and all the target protein-derived peptides are quantified. By calculating the average value of the quantitative values of the fragments as the average quantitative value, and subtracting the quantitative value of each target protein-derived peptide fragment from the average quantitative value, the amount of the peptide fragment in which mass change has occurred in mass spectrometry is used. I just need it. Further, by calculating the ratio x (%) of the quantitative value of each target protein-derived peptide fragment to the average quantitative value, and calculating the ratio (100−x) (%) of the peptide fragment that has undergone mass change, respectively. The ratio of mass change in mass spectrometry can also be expressed as (100−x) (%). Specifically, the method includes the following steps (a) to (c) and quantifies a change in mass in a mass spectrometry of a target protein in a sample.
(A) Peptide fragmentation treatment is performed on a mixture of each target protein in a predetermined concentration step or each sample and a stable amount of a stable isotope-labeled protein corresponding to the target protein. Performing the analysis and quantifying each peptide fragment from the signal area ratio and / or the signal intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment;
(B) a step of obtaining an average value of quantitative values of all target protein-derived peptide fragments as an average quantitative value;
(C) calculating the ratio x (%) of the quantitative value of each target protein-derived peptide fragment to the average quantitative value, and calculating the ratio (100−x) (%) of the peptide fragment that has undergone a mass change ;
また、本発明の質量分析法における質量変化を同定する方法としては、上記の質量分析計を用いたタンパク質の定量方法及び/又は本発明の質量分析法における質量変化を定量する方法を用いて、全ての各標的タンパク質由来ペプチド断片の定量値の平均値を平均定量値として求め、かかる平均定量値と、全ての各標的タンパク質由来ペプチド断片の定量値を比較して統計学的手法により外れ値を示す標的タンパク質由来ペプチド断片を選択する方法であればよい。あるいは、質量分析法における質量変化の割合に基づいて、統計学的手法により外れ値を示す標的タンパク質由来ペプチド断片を選択してもよい。かかる統計的手法は特に制限されず、例えばスミノルフグラブス検定を挙げることができる。このように、標的タンパク質において、質量分析法における質量変化を示すペプチド断片を同定することにより、標的タンパク質の質量分析法における質量変化をスクリーニングすることができる。具体的には、以下の工程(a’)~(c’)を備えた、試料中の標的タンパク質の質量分析法における質量変化を同定する方法を例示することができる。
(a’)所定濃度段階又は試料中の各標的タンパク質と、特定量の前記標的タンパク質に相当する安定同位体標識タンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して、質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のシグナル面積比及び/又はシグナル強度比から各ペプチド断片をそれぞれ定量する工程;
(b’)全ての各標的タンパク質由来ペプチド断片の定量値の平均値を平均定量値として求める工程;
(c’)平均定量値に対し、各標的タンパク質由来ペプチド断片の定量値が統計学的手法により平均定量値から外れ値を示す標的タンパク質由来ペプチド断片を同定する工程; In addition, as a method for identifying a mass change in the mass spectrometry method of the present invention, a protein quantification method using the mass spectrometer and / or a method for quantifying a mass change in the mass spectrometry method of the present invention, The average value of the quantitative values of all the target protein-derived peptide fragments is obtained as an average quantitative value, and the average quantitative value is compared with the quantitative values of all the target protein-derived peptide fragments, and an outlier is obtained by a statistical method. Any method may be used as long as the target protein-derived peptide fragment to be shown is selected. Or you may select the target protein origin peptide fragment which shows an outlier by a statistical method based on the ratio of the mass change in mass spectrometry. Such a statistical method is not particularly limited, and examples thereof include a Suminorf Grubbs test. Thus, by identifying a peptide fragment that shows a mass change in mass spectrometry in the target protein, it is possible to screen for a mass change in mass spectrometry of the target protein. Specifically, a method for identifying a mass change in mass spectrometry of a target protein in a sample, comprising the following steps (a ′) to (c ′) can be exemplified.
(A ′) Peptide fragmentation treatment is performed on a mixture of each target protein in a predetermined concentration step or sample and a stable amount of a stable isotope-labeled protein corresponding to the target protein, and a peptide fragment group obtained is obtained. Performing mass spectrometry and quantifying each peptide fragment from the signal area ratio and / or the signal intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment;
(B ′) a step of obtaining an average value of quantitative values of all the target protein-derived peptide fragments as an average quantitative value;
(C ′) identifying a target protein-derived peptide fragment in which the quantitative value of each target protein-derived peptide fragment is out of the average quantitative value by a statistical technique with respect to the average quantitative value;
(a’)所定濃度段階又は試料中の各標的タンパク質と、特定量の前記標的タンパク質に相当する安定同位体標識タンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して、質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のシグナル面積比及び/又はシグナル強度比から各ペプチド断片をそれぞれ定量する工程;
(b’)全ての各標的タンパク質由来ペプチド断片の定量値の平均値を平均定量値として求める工程;
(c’)平均定量値に対し、各標的タンパク質由来ペプチド断片の定量値が統計学的手法により平均定量値から外れ値を示す標的タンパク質由来ペプチド断片を同定する工程; In addition, as a method for identifying a mass change in the mass spectrometry method of the present invention, a protein quantification method using the mass spectrometer and / or a method for quantifying a mass change in the mass spectrometry method of the present invention, The average value of the quantitative values of all the target protein-derived peptide fragments is obtained as an average quantitative value, and the average quantitative value is compared with the quantitative values of all the target protein-derived peptide fragments, and an outlier is obtained by a statistical method. Any method may be used as long as the target protein-derived peptide fragment to be shown is selected. Or you may select the target protein origin peptide fragment which shows an outlier by a statistical method based on the ratio of the mass change in mass spectrometry. Such a statistical method is not particularly limited, and examples thereof include a Suminorf Grubbs test. Thus, by identifying a peptide fragment that shows a mass change in mass spectrometry in the target protein, it is possible to screen for a mass change in mass spectrometry of the target protein. Specifically, a method for identifying a mass change in mass spectrometry of a target protein in a sample, comprising the following steps (a ′) to (c ′) can be exemplified.
(A ′) Peptide fragmentation treatment is performed on a mixture of each target protein in a predetermined concentration step or sample and a stable amount of a stable isotope-labeled protein corresponding to the target protein, and a peptide fragment group obtained is obtained. Performing mass spectrometry and quantifying each peptide fragment from the signal area ratio and / or the signal intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment;
(B ′) a step of obtaining an average value of quantitative values of all the target protein-derived peptide fragments as an average quantitative value;
(C ′) identifying a target protein-derived peptide fragment in which the quantitative value of each target protein-derived peptide fragment is out of the average quantitative value by a statistical technique with respect to the average quantitative value;
また、本発明の質量分析法における質量変化を検出する方法は、健常者及び疾患患者の検体中のタンパク質の質量分析法における質量変化の解析結果を比較することにより、疾患の原因遺伝子や疾患に関連する遺伝子の同定に利用することができる。また、疾患の原因遺伝子などを標的タンパク質として、質量分析法における質量変化を検出することにより、疾患メカニズムの解明や薬効の予測等に利用することができる。例えば、ヒトEGFR(Epidermal Growth Factor Receptor)は肺がんの原因遺伝子の一つとして同定され、肺がん治療薬ゲフィチニブ(商品名イレッサ(登録商標)、アストラゼネカ社製)の標的分子である。肺がん治療薬ゲフィチニブは、あるグループの患者に対し優れた治療効果を示すが、他のグループの患者には重い副作用を引き起こすことが知られており、社会問題にもなっている。このゲフィチニブの薬効の違いは、患者のEGFR遺伝子の変異やEGFRタンパク質のリン酸化などの翻訳後修飾により異なると考えられており、本発明の質量分析法における質量変化を検出する方法によって、ゲフィチニブの薬効に関する遺伝子変異や翻訳後修飾の同定、薬効の予測を行うことができる。具体的には、例えばヒトEGFRは表2に示した各アミノ酸に対する翻訳後修飾や、表3に示した遺伝子変異によるアミノ酸配列の変化を定量及び/又は同定することができる。
In addition, the method for detecting mass change in the mass spectrometry method of the present invention compares the analysis result of the mass change in the mass spectrometry method of the protein in the sample of the healthy subject and the disease patient, thereby determining the gene causing the disease or the disease. It can be used to identify related genes. Further, by detecting a mass change in mass spectrometry using a disease causal gene or the like as a target protein, it can be used for elucidation of a disease mechanism or prediction of drug efficacy. For example, human EGFR (Epidermal®Growth®Factor®Receptor) has been identified as one of the causative genes of lung cancer, and is a target molecule of the lung cancer therapeutic drug gefitinib (trade name Iressa (registered trademark), manufactured by AstraZeneca). The lung cancer drug gefitinib has an excellent therapeutic effect on one group of patients, but it is known to cause severe side effects in other groups of patients and has become a social problem. This difference in the efficacy of gefitinib is considered to be different due to post-translational modifications such as EGFR gene mutation and EGFR protein phosphorylation in the patient. By the method of detecting mass change in the mass spectrometry of the present invention, It is possible to identify genetic mutations and post-translational modifications related to medicinal effects and predict medicinal effects. Specifically, for example, human EGFR can quantify and / or identify changes in amino acid sequences due to post-translational modifications to each amino acid shown in Table 2 and gene mutations shown in Table 3.
本発明の安定同位体標識タンパク質の絶対量の定量方法は、質量分析法で内部標準として使用する安定同位体標識タンパク質の絶対量や、本発明の質量分析法における質量変化を検出する方法において使用する安定同位体標識タンパク質の絶対量の測定に用いることができる。本発明の安定同位体標識タンパク質の定量方法としては、
(i)安定同位体アミノ酸を用いて、安定同位体標識タグタンパク質融合タンパク質を合成する工程;
(ii)前記安定同位体標識タグタンパク質融合タンパク質と、特定量の非安定同位体標識前記タグタンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して質量分析を行い、安定同位体標識タグタンパク質融合タンパク質のタグタンパク質部分由来ペプチド断片/非安定同位体標識タグタンパク質由来ペプチド断片のシグナル面積比やシグナル強度比からタグ由来の各ペプチド断片をそれぞれ定量する工程;
(iii)安定同位体標識タグタンパク質融合タンパク質のタグタンパク質由来の全ての各ペプチド断片の定量値の平均値を、合成した安定同位体標識タグタンパク質融合タンパク質の絶対量として求める工程;
の工程(i)~(iii)を備えた、質量分析法で内部標準として使用する安定同位体標識タンパク質の定量方法であれば特に制限されない。工程(ii)のペプチド断片の定量においては、上記の試料中の標的タンパク質の量を測定する方法の工程(A)~(C)と同様にして、所定濃度段階の安定同位体標識タグタンパク質と特定量の非安定同位体標識タグタンパク質を用いた質量分析によって作成した検量線を用いて、絶対量を算出することができる。かかる検量線はあらかじめ作成されたものを利用してもよい。 The method for quantifying the absolute amount of the stable isotope-labeled protein of the present invention is used in the method for detecting the absolute amount of the stable isotope-labeled protein used as an internal standard in mass spectrometry and the mass change in the mass spectrometry of the present invention. It can be used to measure the absolute amount of stable isotope labeled protein. As a method for quantifying the stable isotope labeled protein of the present invention,
(I) a step of synthesizing a stable isotope-labeled tag protein fusion protein using a stable isotope amino acid;
(Ii) Peptide fragmentation treatment is applied to a mixture of the stable isotope-labeled tag protein fusion protein and a specific amount of the non-stable isotope-labeled tag protein, and the resulting peptide fragment group is subjected to mass spectrometry and stable. Quantifying each peptide fragment derived from the tag from the signal area ratio and the signal intensity ratio of the peptide fragment derived from the tag protein portion of the isotope-labeled tag protein fusion protein / the peptide fragment derived from the unstable isotope-labeled tag protein;
(Iii) A step of obtaining an average value of quantitative values of all peptide fragments derived from the tag protein of the stable isotope-labeled tag protein fusion protein as an absolute amount of the synthesized stable isotope-labeled tag protein fusion protein;
The method is not particularly limited as long as it is a method for quantifying a stable isotope-labeled protein used as an internal standard in mass spectrometry, comprising the steps (i) to (iii). In the quantification of the peptide fragment in the step (ii), the stable isotope-labeled tag protein at a predetermined concentration step is used in the same manner as in the steps (A) to (C) of the method for measuring the amount of the target protein in the sample. The absolute amount can be calculated using a calibration curve prepared by mass spectrometry using a specific amount of non-stable isotope-labeled tag protein. Such a calibration curve may be prepared in advance.
(i)安定同位体アミノ酸を用いて、安定同位体標識タグタンパク質融合タンパク質を合成する工程;
(ii)前記安定同位体標識タグタンパク質融合タンパク質と、特定量の非安定同位体標識前記タグタンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して質量分析を行い、安定同位体標識タグタンパク質融合タンパク質のタグタンパク質部分由来ペプチド断片/非安定同位体標識タグタンパク質由来ペプチド断片のシグナル面積比やシグナル強度比からタグ由来の各ペプチド断片をそれぞれ定量する工程;
(iii)安定同位体標識タグタンパク質融合タンパク質のタグタンパク質由来の全ての各ペプチド断片の定量値の平均値を、合成した安定同位体標識タグタンパク質融合タンパク質の絶対量として求める工程;
の工程(i)~(iii)を備えた、質量分析法で内部標準として使用する安定同位体標識タンパク質の定量方法であれば特に制限されない。工程(ii)のペプチド断片の定量においては、上記の試料中の標的タンパク質の量を測定する方法の工程(A)~(C)と同様にして、所定濃度段階の安定同位体標識タグタンパク質と特定量の非安定同位体標識タグタンパク質を用いた質量分析によって作成した検量線を用いて、絶対量を算出することができる。かかる検量線はあらかじめ作成されたものを利用してもよい。 The method for quantifying the absolute amount of the stable isotope-labeled protein of the present invention is used in the method for detecting the absolute amount of the stable isotope-labeled protein used as an internal standard in mass spectrometry and the mass change in the mass spectrometry of the present invention. It can be used to measure the absolute amount of stable isotope labeled protein. As a method for quantifying the stable isotope labeled protein of the present invention,
(I) a step of synthesizing a stable isotope-labeled tag protein fusion protein using a stable isotope amino acid;
(Ii) Peptide fragmentation treatment is applied to a mixture of the stable isotope-labeled tag protein fusion protein and a specific amount of the non-stable isotope-labeled tag protein, and the resulting peptide fragment group is subjected to mass spectrometry and stable. Quantifying each peptide fragment derived from the tag from the signal area ratio and the signal intensity ratio of the peptide fragment derived from the tag protein portion of the isotope-labeled tag protein fusion protein / the peptide fragment derived from the unstable isotope-labeled tag protein;
(Iii) A step of obtaining an average value of quantitative values of all peptide fragments derived from the tag protein of the stable isotope-labeled tag protein fusion protein as an absolute amount of the synthesized stable isotope-labeled tag protein fusion protein;
The method is not particularly limited as long as it is a method for quantifying a stable isotope-labeled protein used as an internal standard in mass spectrometry, comprising the steps (i) to (iii). In the quantification of the peptide fragment in the step (ii), the stable isotope-labeled tag protein at a predetermined concentration step is used in the same manner as in the steps (A) to (C) of the method for measuring the amount of the target protein in the sample. The absolute amount can be calculated using a calibration curve prepared by mass spectrometry using a specific amount of non-stable isotope-labeled tag protein. Such a calibration curve may be prepared in advance.
本発明の安定同位体標識タンパク質の定量方法では、濃度既知の非安定同位体標識タグタンパク質を内部標準として用いて、安定同位体標識タグタンパク質融合タンパク質を定量することができる。本発明の安定同位体標識タンパク質の定量方法において非安定同位体標識タグタンパク質と安定同位体標識タグタンパク質融合タンパク質のタグタンパク質は同じ種類であればよく、安定同位体標識タグタンパク質融合タンパク質のタグタンパク質を融合されるタンパク質は任意のタンパク質を使用することができる。すなわち安定同位体標識タグタンパク質融合タンパク質は、任意のタンパク質のN末端又はC末端に非安定同位体標識タグタンパク質と同種のタグタンパク質が融合した構造のタンパク質であればよい。安定同位体標識タグタンパク質融合タンパク質は、遺伝子工学や化学合成技術を用いて作製することができ、例えば任意のタンパク質のDNA配列のN末端又はC末端にタグタンパク質配列のDNA配列を結合した、タグタンパク質融合タンパク質発現ベクターを安定同位体標識アミノ酸存在下で発現させることにより合成することもできる。かかる量は、アミノ酸分析法やBradford法、Biuret法、Lowry法、BCA(ビシンコニン酸)法等の生化学的比色定量法で定量することができる。
In the stable isotope labeled protein quantification method of the present invention, a stable isotope labeled tag protein fusion protein can be quantified using an unstable stable isotope labeled tag protein of known concentration as an internal standard. In the stable isotope-labeled protein quantification method of the present invention, the tag protein of the stable isotope-labeled tag protein and the stable isotope-labeled tag protein fusion protein may be of the same type, and the tag protein of the stable isotope-labeled tag protein fusion protein. Any protein can be used as the protein to be fused. That is, the stable isotope-labeled tag protein fusion protein may be a protein having a structure in which a tag protein of the same type as the non-stable isotope-labeled tag protein is fused to the N-terminus or C-terminus of any protein. A stable isotope-labeled tag protein fusion protein can be produced using genetic engineering or chemical synthesis technology. For example, a tag in which the DNA sequence of the tag protein sequence is linked to the N-terminus or C-terminus of the DNA sequence of any protein It can also be synthesized by expressing a protein fusion protein expression vector in the presence of a stable isotope-labeled amino acid. Such amount can be quantified by a biochemical colorimetric method such as amino acid analysis method, Bradford method, Biuret method, Lowry method, BCA (bicinchoninic acid) method or the like.
本発明の安定同位体標識タンパク質の定量方法において、タグタンパク質は酵素消化や化学的断片化によって質量分析法で検出可能なペプチド断片を得られるものであればよく、例えばグルタチオン-S-トランスフェラーゼ(GST:Glutathione-S-transferase)タグ、ヒスチジン(His)タグ、マルトース結合タンパク(MBP)タグ、c-Mycタグ、HAタグ、FLAGタグ、GFPタグ等を挙げることができ、中でもGSTタグ(配列番号7)やHisタグ(配列番号8)が好ましい。GSTタグは配列番号7のアミノ酸配列からなるものの他、かかる配列に置換や挿入、欠失を有するアミノ酸配列や、NCBI等の各種データベースに掲載されたGSTアミノ酸配列からなるものを用いることもでき、Hisタグはヒスチジンが3~15個連結した任意の長さのHisタグを用いることもできる。また、タグタンパク質は、一種類のタグタンパク質のみでも、同じタグタンパク質又は異なる種類のタグタンパク質が複数、あるいは繰り返し連結されたものでもよい。
In the method for quantifying a stable isotope-labeled protein of the present invention, the tag protein may be any protein that can obtain a peptide fragment detectable by mass spectrometry by enzymatic digestion or chemical fragmentation. For example, glutathione-S-transferase (GST) : Glutathione-S-transferase) tag, histidine (His) tag, maltose binding protein (MBP) tag, c-Myc tag, HA tag, FLAG tag, GFP tag, etc., among which GST tag (SEQ ID NO: 7) ) Or His tag (SEQ ID NO: 8) is preferred. In addition to the GST tag consisting of the amino acid sequence of SEQ ID NO: 7, amino acid sequences having substitutions, insertions and deletions in such a sequence, and those consisting of GST amino acid sequences published in various databases such as NCBI can also be used. As the His tag, a His tag having an arbitrary length in which 3 to 15 histidines are linked can also be used. In addition, the tag protein may be a single type of tag protein, or may be a plurality of the same tag protein or different types of tag proteins, or may be repeatedly linked.
すなわち、本発明の安定同位体標識タンパク質の定量方法では、安定同位体標識タンパク質を、安定同位体標識タンパク質のN末端側又はC末端側にタグタンパク質が融合した、安定同位体標識タグタンパク質融合タンパク質として合成する。安定同位体標識されていない前記タグタンパク質を内部標準として用いて、安定同位体標識タグタンパク質融合タンパク質のタグタンパク質部分由来ペプチド断片を対象として質量分析法で解析することで、安定同位体標識タグタンパク質融合タンパク質のタグタンパク質の絶対量を測定することができ、かかるタグタンパク質の定量値を安定同位体標識タンパク質の定量値とすることができる。かかる安定同位体標識タグタンパク質融合タンパク質は、本発明の試料中の標的タンパク質の質量分析法における質量変化を検出する方法において、安定同位体標識タンパク質として使用することができる。
That is, in the stable isotope-labeled protein quantification method of the present invention, a stable isotope-labeled tag protein fusion protein obtained by fusing a stable isotope-labeled protein to the N-terminal side or C-terminal side of the stable isotope-labeled protein. To synthesize. Using the tag protein not labeled with a stable isotope as an internal standard, analyzing the peptide fragment derived from the tag protein portion of the stable isotope-labeled tag protein fusion protein by mass spectrometry, stable isotope-labeled tag protein The absolute amount of the tag protein of the fusion protein can be measured, and the quantitative value of the tag protein can be used as the quantitative value of the stable isotope-labeled protein. Such a stable isotope-labeled tag protein fusion protein can be used as a stable isotope-labeled protein in the method for detecting mass change in the mass spectrometry of the target protein in the sample of the present invention.
したがって、濃度既知の非安定同位体標識タグタンパク質を用いて、安定同位体で標識された、同種のタグタンパク質が融合したあらゆる種類のタンパク質を定量することができ汎用性が高い。安定同位体標識GSTタンパク質融合タンパク質及び非標識GSTタンパク質を用いた場合には、表4に示すペプチド断片を、質量分析法による定量に用い得る測定対象ペプチド断片の配列として利用することができる。
Therefore, using a non-stable isotope-labeled tag protein with a known concentration, all kinds of proteins fused with the same kind of tag protein labeled with a stable isotope can be quantified and are highly versatile. When a stable isotope-labeled GST protein fusion protein and an unlabeled GST protein are used, the peptide fragments shown in Table 4 can be used as sequences of peptide fragments to be measured that can be used for quantification by mass spectrometry.
[ラット糸球体試料中のNephrinタンパク質の定量]
ラットの腎臓から糸球体50個をステンレスメッシュを用いたシービング法(文献J. Clin. Invest. 68: 920-93l, 1981 Schreiner GF et al.)にて単離し、かかるラット糸球体試料中のNephrinタンパク質(swissprot accession No.Q9R044)を従来法及び本発明の方法で定量し、比較した。 [Quantification of Nephrin protein in rat glomerular samples]
50 glomeruli were isolated from rat kidneys using a stainless mesh (see J. Clin. Invest. 68: 920-93l, 1981 Schreiner GF et al.), And Nephrin in such rat glomerular samples was isolated. The protein (swissprot accession No. Q9R044) was quantified and compared by the conventional method and the method of the present invention.
ラットの腎臓から糸球体50個をステンレスメッシュを用いたシービング法(文献J. Clin. Invest. 68: 920-93l, 1981 Schreiner GF et al.)にて単離し、かかるラット糸球体試料中のNephrinタンパク質(swissprot accession No.Q9R044)を従来法及び本発明の方法で定量し、比較した。 [Quantification of Nephrin protein in rat glomerular samples]
50 glomeruli were isolated from rat kidneys using a stainless mesh (see J. Clin. Invest. 68: 920-93l, 1981 Schreiner GF et al.), And Nephrin in such rat glomerular samples was isolated. The protein (swissprot accession No. Q9R044) was quantified and compared by the conventional method and the method of the present invention.
1.人工標準タンパク質の調製方法
Nephrin人工標準タンパク質の調製は次の方法によった。Nephrin(swissprot accession No.Q9R044)のcDNAを挿入したpET-vectorをトランスフォーメーションした大腸菌(BL21-CodonPlus(DE3)-RIPL)を、カナマイシン及びクロラムフェニコールをそれぞれ30mg/L、50mg/Lで添加したLB培地において一晩振盪培養した後、LB培地に希釈し、O.D.600nmが0.4付近の値を示すまで培養を行い、最終濃度100mMでIPTGを添加し、さらに3時間培養することで、タンパク質の発現誘導を行った。誘導を行った大腸菌は、8M尿素の存在下で超音波破砕を行い、可溶性画分と不溶性画分を調製した後、SDS-PAGEによって分画し、CBB R-250による検出を行った。コバルトレジンを充填したスピンカラムに、大腸菌可溶性画分を添加し、10mMイミダゾール溶液でカラムを洗浄後、50mM,150mM,500mMのイミダゾール溶液で人工標準タンパク質の溶出を行った。 1. Preparation method of artificial standard protein Nephrin artificial standard protein was prepared by the following method. Escherichia coli (BL21-CodonPlus (DE3) -RIPL) transformed with pET-vector inserted with Nephrin (swissprot accession No.Q9R044) cDNA was added to kanamycin and chloramphenicol at 30 mg / L and 50 mg / L, respectively. The LB medium was shaken overnight and then diluted in LB medium. D. Culturing was continued until 600 nm showed a value of around 0.4, IPTG was added at a final concentration of 100 mM, and further cultured for 3 hours to induce protein expression. The induced Escherichia coli was subjected to ultrasonic disruption in the presence of 8M urea to prepare a soluble fraction and an insoluble fraction, then fractionated by SDS-PAGE, and detected by CBB R-250. The Escherichia coli soluble fraction was added to a spin column packed with cobalt resin, and the column was washed with a 10 mM imidazole solution, and then the artificial standard protein was eluted with 50 mM, 150 mM, and 500 mM imidazole solutions.
Nephrin人工標準タンパク質の調製は次の方法によった。Nephrin(swissprot accession No.Q9R044)のcDNAを挿入したpET-vectorをトランスフォーメーションした大腸菌(BL21-CodonPlus(DE3)-RIPL)を、カナマイシン及びクロラムフェニコールをそれぞれ30mg/L、50mg/Lで添加したLB培地において一晩振盪培養した後、LB培地に希釈し、O.D.600nmが0.4付近の値を示すまで培養を行い、最終濃度100mMでIPTGを添加し、さらに3時間培養することで、タンパク質の発現誘導を行った。誘導を行った大腸菌は、8M尿素の存在下で超音波破砕を行い、可溶性画分と不溶性画分を調製した後、SDS-PAGEによって分画し、CBB R-250による検出を行った。コバルトレジンを充填したスピンカラムに、大腸菌可溶性画分を添加し、10mMイミダゾール溶液でカラムを洗浄後、50mM,150mM,500mMのイミダゾール溶液で人工標準タンパク質の溶出を行った。 1. Preparation method of artificial standard protein Nephrin artificial standard protein was prepared by the following method. Escherichia coli (BL21-CodonPlus (DE3) -RIPL) transformed with pET-vector inserted with Nephrin (swissprot accession No.Q9R044) cDNA was added to kanamycin and chloramphenicol at 30 mg / L and 50 mg / L, respectively. The LB medium was shaken overnight and then diluted in LB medium. D. Culturing was continued until 600 nm showed a value of around 0.4, IPTG was added at a final concentration of 100 mM, and further cultured for 3 hours to induce protein expression. The induced Escherichia coli was subjected to ultrasonic disruption in the presence of 8M urea to prepare a soluble fraction and an insoluble fraction, then fractionated by SDS-PAGE, and detected by CBB R-250. The Escherichia coli soluble fraction was added to a spin column packed with cobalt resin, and the column was washed with a 10 mM imidazole solution, and then the artificial standard protein was eluted with 50 mM, 150 mM, and 500 mM imidazole solutions.
2.安定同位体標識内部標準タンパク質の調製方法
Nephrinの安定同位体標識タンパク質の調製は次の方法によった。GSTとHisタグを付加したNephrin(swissprot accession No.Q9R044)の全長アミノ酸配列を挿入したpET-vectorをトランスフォーメーションした大腸菌(Rosseta(DE3)、Novagen社製)を、硫酸マグネシウム七水和物を添加(終濃度:0.25g/L)したC.H.L培地(クロレラ工業製)で37℃にてO.D.600nmが0.7になるまで培養を行った。その後、安定同位体(15N)標識アミノ酸を最終濃度0.5g/Lになるよう添加し、最終濃度1mMでIPTGを添加し、さらに4時間培養することでNephrinの発現誘導を行った。発現誘導した大腸菌を超音波破砕し、不溶性画分を調製した。界面活性剤を用いて不溶性画分を可溶化し、コバルトカラムおよびグルタチオンカラムを用いて安定同位体標識Nephrinを精製した。 2. Preparation of stable isotope-labeled internal standard protein Nephrin's stable isotope-labeled protein was prepared by the following method. Escherichia coli (Rosseta (DE3), manufactured by Novagen) transformed with pET-vector with the full-length amino acid sequence of Nephrin (swissprot accession No.Q9R044) with GST and His tag added, magnesium sulfate heptahydrate added (Final concentration: 0.25 g / L) H. L. medium (manufactured by Chlorella Kogyo) at 37 ° C. D. Culturing was performed until 600 nm reached 0.7. Thereafter, stable isotope ( 15 N) labeled amino acid was added to a final concentration of 0.5 g / L, IPTG was added at a final concentration of 1 mM, and further cultured for 4 hours to induce Nephrin expression. The expression-induced E. coli was sonicated and an insoluble fraction was prepared. The insoluble fraction was solubilized using a surfactant, and stable isotope-labeled Nephrin was purified using a cobalt column and a glutathione column.
Nephrinの安定同位体標識タンパク質の調製は次の方法によった。GSTとHisタグを付加したNephrin(swissprot accession No.Q9R044)の全長アミノ酸配列を挿入したpET-vectorをトランスフォーメーションした大腸菌(Rosseta(DE3)、Novagen社製)を、硫酸マグネシウム七水和物を添加(終濃度:0.25g/L)したC.H.L培地(クロレラ工業製)で37℃にてO.D.600nmが0.7になるまで培養を行った。その後、安定同位体(15N)標識アミノ酸を最終濃度0.5g/Lになるよう添加し、最終濃度1mMでIPTGを添加し、さらに4時間培養することでNephrinの発現誘導を行った。発現誘導した大腸菌を超音波破砕し、不溶性画分を調製した。界面活性剤を用いて不溶性画分を可溶化し、コバルトカラムおよびグルタチオンカラムを用いて安定同位体標識Nephrinを精製した。 2. Preparation of stable isotope-labeled internal standard protein Nephrin's stable isotope-labeled protein was prepared by the following method. Escherichia coli (Rosseta (DE3), manufactured by Novagen) transformed with pET-vector with the full-length amino acid sequence of Nephrin (swissprot accession No.Q9R044) with GST and His tag added, magnesium sulfate heptahydrate added (Final concentration: 0.25 g / L) H. L. medium (manufactured by Chlorella Kogyo) at 37 ° C. D. Culturing was performed until 600 nm reached 0.7. Thereafter, stable isotope ( 15 N) labeled amino acid was added to a final concentration of 0.5 g / L, IPTG was added at a final concentration of 1 mM, and further cultured for 4 hours to induce Nephrin expression. The expression-induced E. coli was sonicated and an insoluble fraction was prepared. The insoluble fraction was solubilized using a surfactant, and stable isotope-labeled Nephrin was purified using a cobalt column and a glutathione column.
3.安定同位体標識タンパク質の定量分析
安定同位体標識GST、Hisタグ融合Nephrinタンパク質(swissprot accession No.Q9R044)精製試料12μLに既知量のGSTタンパク質(swissprot accession No.P08515)1.4pmolを添加し、7Mグアニジン塩酸溶液で変性、DTTで還元処理した後に、メタノール、クロロホルム、水を混合し、遠心してタンパク質を沈殿させた。沈殿タンパク質を1.2M尿素存在下で可溶化し、トリプシンを添加して37℃で16時間酵素消化してペプチド試料とした。ペプチド試料の1/5液量を用いてLC-MS/MS測定を行った。ペプチド試料に含まれるGSTのペプチド断片のうち、GLVQPTR、LTQSMAIIR、DFETLK、VDFLSK、LPEMLK、IEAIPQIDKについて、安定同位体(15N)標識ペプチドと非標識ペプチドをLC-MS/MSのSRMモードで測定した。安定同位体標識体と非標識体のピーク面積比から、安定同位体標識体GSTの試料中濃度を定量した結果、103.5±4.93fmol/assayであった。 3. Quantitative analysis of stable isotope-labeled protein Stable isotope-labeled GST, His-tagged Nephrin protein (swissprot accession No.Q9R044) 1.4 μmol of GST protein (swissprot accession No.P08515) in a known amount was added to 12 μL, and 7M After denaturation with guanidine hydrochloride solution and reduction treatment with DTT, methanol, chloroform and water were mixed and centrifuged to precipitate the protein. The precipitated protein was solubilized in the presence of 1.2 M urea, trypsin was added, and enzyme digestion was performed at 37 ° C. for 16 hours to obtain a peptide sample. LC-MS / MS measurement was performed using 1/5 volume of the peptide sample. Of the peptide fragments of GST contained in the peptide samples, GLVQPTR, LTQSMAIIR, DFETLK, VDFLSK , LPEMLK, for IEAIPQIDK, stable isotopes (15 N) labeled peptide and a non-labeled peptide was measured with SRM mode LC-MS / MS . As a result of quantifying the concentration of the stable isotope labeled GST in the sample from the peak area ratio of the stable isotope labeled and unlabeled, it was 103.5 ± 4.93 fmol / assay.
安定同位体標識GST、Hisタグ融合Nephrinタンパク質(swissprot accession No.Q9R044)精製試料12μLに既知量のGSTタンパク質(swissprot accession No.P08515)1.4pmolを添加し、7Mグアニジン塩酸溶液で変性、DTTで還元処理した後に、メタノール、クロロホルム、水を混合し、遠心してタンパク質を沈殿させた。沈殿タンパク質を1.2M尿素存在下で可溶化し、トリプシンを添加して37℃で16時間酵素消化してペプチド試料とした。ペプチド試料の1/5液量を用いてLC-MS/MS測定を行った。ペプチド試料に含まれるGSTのペプチド断片のうち、GLVQPTR、LTQSMAIIR、DFETLK、VDFLSK、LPEMLK、IEAIPQIDKについて、安定同位体(15N)標識ペプチドと非標識ペプチドをLC-MS/MSのSRMモードで測定した。安定同位体標識体と非標識体のピーク面積比から、安定同位体標識体GSTの試料中濃度を定量した結果、103.5±4.93fmol/assayであった。 3. Quantitative analysis of stable isotope-labeled protein Stable isotope-labeled GST, His-tagged Nephrin protein (swissprot accession No.Q9R044) 1.4 μmol of GST protein (swissprot accession No.P08515) in a known amount was added to 12 μL, and 7M After denaturation with guanidine hydrochloride solution and reduction treatment with DTT, methanol, chloroform and water were mixed and centrifuged to precipitate the protein. The precipitated protein was solubilized in the presence of 1.2 M urea, trypsin was added, and enzyme digestion was performed at 37 ° C. for 16 hours to obtain a peptide sample. LC-MS / MS measurement was performed using 1/5 volume of the peptide sample. Of the peptide fragments of GST contained in the peptide samples, GLVQPTR, LTQSMAIIR, DFETLK, VDFLSK , LPEMLK, for IEAIPQIDK, stable isotopes (15 N) labeled peptide and a non-labeled peptide was measured with SRM mode LC-MS / MS . As a result of quantifying the concentration of the stable isotope labeled GST in the sample from the peak area ratio of the stable isotope labeled and unlabeled, it was 103.5 ± 4.93 fmol / assay.
安定同位体標識されたGST、Hisタグ融合Nephrinタンパク質試料において安定同位体標識体及び非標識体GST(swissprot accession No.P08515)の各ペプチド断片を検出した結果を表5に示す。測定した6ペプチド断片における標識体と非標識体の比率の平均値は0.36±0.02であり、測定値の信頼性を示すCV値(%)は4.4%であった。すなわち、質量分析法を用いることで、GSTタンパク質を高精度に定量できることが示された。発現タンパク質試料中に安定同位体標識GSTタンパク質は融合タンパク質と等モル存在することから、安定同位体標識GSTタンパク質を定量することで、質量分析法を用いて全ての安定同位体標識GST融合タンパク質の定量が可能である。
Table 5 shows the results of detection of peptide fragments of stable isotope labeled and unlabeled GST (swissprot accession No. P08515) in the stable isotope labeled GST and His tag fusion Nephrin protein samples. The average value of the ratio of labeled to unlabeled in the 6 peptide fragments measured was 0.36 ± 0.02, and the CV value (%) indicating the reliability of the measured value was 4.4%. That is, it was shown that GST protein can be quantified with high accuracy by using mass spectrometry. Since stable isotope-labeled GST protein is present in an equimolar amount with the fusion protein in the expressed protein sample, by quantifying stable isotope-labeled GST protein, all stable isotope-labeled GST fusion proteins can be analyzed using mass spectrometry. Quantification is possible.
4.タンパク質の定量分析
安定同位体標識内部標準タンパク質を用いて、以下の方法でNephrinタンパク質を定量した。10fmol、50fmol、100fmol、500fmol、1000fmolの人工標準タンパク質にそれぞれ500fmolの安定同位体標識内部標準タンパク質を添加し、検量線作成用サンプルとした。また、ラット糸球体試料に安定同位体標識内部標準タンパク質500fmolを添加した測定用サンプルを調製した。これらのサンプルを7M塩酸グアニジン溶液(0.1M Tris-HCl、10mM EDTA pH8.5に溶解)で変性させ、システイン残基のSH基を保護するために、DTTによる還元処理とヨードアセトアミドによるカルバミドメチル化処理を行なった。続いて、メタノールクロロホルム沈殿法により、脱塩濃縮し、1.2M尿素/10mM Tris-HClに再懸濁した。その後、タンパク質重量の1/100量のトリプシンを加え、37℃で16時間酵素消化して断片化した。これらの検量線作成用サンプル及び測定用サンプルをLC-MS/MSのSRMモードにより、以下の条件で測定し、MSスペクトル面積比(非標識ペプチド断片/安定同位体標識ペプチド断片)を取得した。
カラム:L-column ODS 0.1mm id×100mm, 5μm particles
HPLC:Paradigm MS4B
質量分析機:TSQ vantage
グラジエント条件:1-45%アセトニトリル/0.1%ギ酸,50μL/分,50分
得られたMSスペクトル面積比(非標識ペプチド断片/安定同位体標識ペプチド断片)から、検量線を作成し、試料中のNephrinタンパク質を定量した結果、66.4±6.1fmol/assayであった。 4). Quantitative analysis of protein Nephrin protein was quantified by the following method using a stable isotope-labeled internal standard protein. 500 fmol of stable isotope-labeled internal standard protein was added to 10 fmol, 50 fmol, 100 fmol, 500 fmol, and 1000 fmol of artificial standard protein, respectively, to prepare a calibration curve sample. In addition, a measurement sample was prepared by adding 500 fmol of a stable isotope-labeled internal standard protein to a rat glomerular sample. These samples were denatured with 7 M guanidine hydrochloride solution (dissolved in 0.1 M Tris-HCl, 10 mM EDTA pH 8.5) and reduced with DTT and carbamidomethyl with iodoacetamide to protect the SH group of the cysteine residue. The treatment was performed. Subsequently, it was desalted and concentrated by methanol chloroform precipitation, and resuspended in 1.2 M urea / 10 mM Tris-HCl. Thereafter, trypsin in an amount of 1/100 of the protein weight was added and fragmented by enzymatic digestion at 37 ° C. for 16 hours. These calibration curve preparation sample and measurement sample were measured by the SRM mode of LC-MS / MS under the following conditions to obtain the MS spectral area ratio (unlabeled peptide fragment / stable isotope labeled peptide fragment).
Column: L-column ODS 0.1mm id × 100mm, 5μm particles
HPLC: Paradigm MS4B
Mass spectrometer: TSQ vantage
Gradient conditions: 1-45% acetonitrile / 0.1% formic acid, 50 μL / min, 50 minutes MS spectrum area ratio (unlabeled peptide fragment / stable isotope labeled peptide fragment) As a result of quantifying the Nephrin protein in it, it was 66.4 ± 6.1 fmol / assay.
安定同位体標識内部標準タンパク質を用いて、以下の方法でNephrinタンパク質を定量した。10fmol、50fmol、100fmol、500fmol、1000fmolの人工標準タンパク質にそれぞれ500fmolの安定同位体標識内部標準タンパク質を添加し、検量線作成用サンプルとした。また、ラット糸球体試料に安定同位体標識内部標準タンパク質500fmolを添加した測定用サンプルを調製した。これらのサンプルを7M塩酸グアニジン溶液(0.1M Tris-HCl、10mM EDTA pH8.5に溶解)で変性させ、システイン残基のSH基を保護するために、DTTによる還元処理とヨードアセトアミドによるカルバミドメチル化処理を行なった。続いて、メタノールクロロホルム沈殿法により、脱塩濃縮し、1.2M尿素/10mM Tris-HClに再懸濁した。その後、タンパク質重量の1/100量のトリプシンを加え、37℃で16時間酵素消化して断片化した。これらの検量線作成用サンプル及び測定用サンプルをLC-MS/MSのSRMモードにより、以下の条件で測定し、MSスペクトル面積比(非標識ペプチド断片/安定同位体標識ペプチド断片)を取得した。
カラム:L-column ODS 0.1mm id×100mm, 5μm particles
HPLC:Paradigm MS4B
質量分析機:TSQ vantage
グラジエント条件:1-45%アセトニトリル/0.1%ギ酸,50μL/分,50分
得られたMSスペクトル面積比(非標識ペプチド断片/安定同位体標識ペプチド断片)から、検量線を作成し、試料中のNephrinタンパク質を定量した結果、66.4±6.1fmol/assayであった。 4). Quantitative analysis of protein Nephrin protein was quantified by the following method using a stable isotope-labeled internal standard protein. 500 fmol of stable isotope-labeled internal standard protein was added to 10 fmol, 50 fmol, 100 fmol, 500 fmol, and 1000 fmol of artificial standard protein, respectively, to prepare a calibration curve sample. In addition, a measurement sample was prepared by adding 500 fmol of a stable isotope-labeled internal standard protein to a rat glomerular sample. These samples were denatured with 7 M guanidine hydrochloride solution (dissolved in 0.1 M Tris-HCl, 10 mM EDTA pH 8.5) and reduced with DTT and carbamidomethyl with iodoacetamide to protect the SH group of the cysteine residue. The treatment was performed. Subsequently, it was desalted and concentrated by methanol chloroform precipitation, and resuspended in 1.2 M urea / 10 mM Tris-HCl. Thereafter, trypsin in an amount of 1/100 of the protein weight was added and fragmented by enzymatic digestion at 37 ° C. for 16 hours. These calibration curve preparation sample and measurement sample were measured by the SRM mode of LC-MS / MS under the following conditions to obtain the MS spectral area ratio (unlabeled peptide fragment / stable isotope labeled peptide fragment).
Column: L-column ODS 0.1mm id × 100mm, 5μm particles
HPLC: Paradigm MS4B
Mass spectrometer: TSQ vantage
Gradient conditions: 1-45% acetonitrile / 0.1% formic acid, 50 μL / min, 50 minutes MS spectrum area ratio (unlabeled peptide fragment / stable isotope labeled peptide fragment) As a result of quantifying the Nephrin protein in it, it was 66.4 ± 6.1 fmol / assay.
また、検量線作成用サンプルにおいてNephrin(swissprot accession No.Q9R044)の各ペプチド断片を検出した結果を図3に示す。Nephrinアミノ酸配列のうち、グレーの背景で示した配列が、検出されたペプチド断片の配列を示す。1234アミノ酸からなるNephrinをトリプシンにより断片化して得られる計104ペプチド断片のうち48%ペプチド断片、そのうち7~30アミノ酸である計56ペプチド断片の89%に相当する計50ペプチド断片が検出された。すなわち、一度で多量のペプチド断片について質量分析による定量を行うので、従来法に比べて高い検出感度と定量精度を得ることができるといえる。
The results of detecting each peptide fragment of Nephrin (swissprot accession No. Q9R044) in a sample for preparing a calibration curve are shown in FIG. Among the Nephrin amino acid sequences, the sequence indicated by a gray background indicates the sequence of the detected peptide fragment. Of the total 104 peptide fragments obtained by fragmenting Nephrin consisting of 1234 amino acids with trypsin, 48 peptide fragments were detected, and a total of 50 peptide fragments corresponding to 89% of the total 56 peptide fragments of 7-30 amino acids were detected. That is, since a large amount of peptide fragments are quantified by mass spectrometry at a time, it can be said that higher detection sensitivity and quantification accuracy can be obtained compared to the conventional method.
5.従来法によるタンパク質の定量分析
従来の質量分析計を用いたタンパク質の定量方法は、標的タンパク質の特定のペプチド断片を検出することによりタンパク質を定量する方法である(図1)。そこで、従来法では、Nephrinの部分配列であるGGNPPATLQWLK(配列番号4)を対象ペプチド断片として、Nephrinタンパク質を定量した。Nephrin人工標準ペプチドの調製は次の方法によった。Nephrin(swissprot accession No.Q9R044)の部分アミノ酸配列GGNPPATLQWLK(配列番号4)を固相法を用いて化学合成し、アミノ酸分析法によって試料中のペプチド濃度を定量した。安定同位体標識されたロイシンを含む同配列のペプチドGGNPPATLQWL*K(L*に安定同位体標識)を、固相法を用いて化学合成し、アミノ酸分析によってペプチド濃度を定量した。 5. Protein Quantitative Analysis by Conventional Method A conventional protein quantification method using a mass spectrometer is a method for quantifying a protein by detecting a specific peptide fragment of a target protein (FIG. 1). Therefore, in the conventional method, Nephrin protein was quantified using GGNPPATLQWLK (SEQ ID NO: 4), which is a partial sequence of Nephrin, as a target peptide fragment. Nephrin artificial standard peptide was prepared by the following method. A partial amino acid sequence GGNPPATLQWLK (SEQ ID NO: 4) of Nephrin (swissprot accession No. Q9R044) was chemically synthesized using a solid phase method, and the peptide concentration in the sample was quantified by amino acid analysis. A peptide GGNPPATLQWL * K (stable isotope labeled L *) containing the stable isotope-labeled leucine was chemically synthesized using the solid phase method, and the peptide concentration was quantified by amino acid analysis.
従来の質量分析計を用いたタンパク質の定量方法は、標的タンパク質の特定のペプチド断片を検出することによりタンパク質を定量する方法である(図1)。そこで、従来法では、Nephrinの部分配列であるGGNPPATLQWLK(配列番号4)を対象ペプチド断片として、Nephrinタンパク質を定量した。Nephrin人工標準ペプチドの調製は次の方法によった。Nephrin(swissprot accession No.Q9R044)の部分アミノ酸配列GGNPPATLQWLK(配列番号4)を固相法を用いて化学合成し、アミノ酸分析法によって試料中のペプチド濃度を定量した。安定同位体標識されたロイシンを含む同配列のペプチドGGNPPATLQWL*K(L*に安定同位体標識)を、固相法を用いて化学合成し、アミノ酸分析によってペプチド濃度を定量した。 5. Protein Quantitative Analysis by Conventional Method A conventional protein quantification method using a mass spectrometer is a method for quantifying a protein by detecting a specific peptide fragment of a target protein (FIG. 1). Therefore, in the conventional method, Nephrin protein was quantified using GGNPPATLQWLK (SEQ ID NO: 4), which is a partial sequence of Nephrin, as a target peptide fragment. Nephrin artificial standard peptide was prepared by the following method. A partial amino acid sequence GGNPPATLQWLK (SEQ ID NO: 4) of Nephrin (swissprot accession No. Q9R044) was chemically synthesized using a solid phase method, and the peptide concentration in the sample was quantified by amino acid analysis. A peptide GGNPPATLQWL * K (stable isotope labeled L *) containing the stable isotope-labeled leucine was chemically synthesized using the solid phase method, and the peptide concentration was quantified by amino acid analysis.
作製したGGNPPATLQWLK(配列番号4)のアミノ酸配列からなる人工標準ペプチド断片と、同じアミノ酸配列からなり、安定同位体で標識された安定同位体標識内部標準ペプチド断片GGNPPATLQWL*K(L*に安定同位体標識)を用いて、試料中のNephrinタンパク質を定量した。10fmol、50fmol、100fmol、500fmol、1000fmolの人工標準(非標識)ペプチド断片にそれぞれ500fmolの安定同位体標識ペプチド断片を添加した検量線作成用サンプルを調製した。また、ラット糸球体試料を7M塩酸グアニジン溶液(0.1M Tris-HCl、10mM EDTA pH8.5に溶解)で変性させ、システイン残基のSH基を保護するために、DTTによる還元処理とヨードアセトアミドによるカルバミドメチル化処理を行なった。続いて、メタノールクロロホルム沈殿法により、脱塩濃縮し、1.2M尿素/10mM Tris-HClに再懸濁した。その後、タンパク質重量の1/100量のトリプシンを加え、37度で16時間酵素消化して断片化した。かかるサンプルに500fmolの安定同位体標識内部標準ペプチド断片を添加し、これを従来法による測定用サンプルとした。これらの検量線作成用サンプル及び測定用サンプルをLC-MS/MSのSRMモードにより、以下の条件で定量を行った。
カラム:L-column ODS 0.1mm id×100mm, 5μm particles
HPLC:Paradigm MS4B
質量分析機:TSQ vantage
グラジエント条件:1-45%アセトニトリル/0.1%ギ酸,50μL/分,50分
得られたMSスペクトル面積比(非標識ペプチド断片/安定同位体標識ペプチド断片)から検量線を作成し、試料中のNephrinタンパク質を定量した結果、51.0±5.6fmol/assayであった。 Stable isotope-labeled internal standard peptide fragment GGNPPATLQWL * K (L * is stable isotope) consisting of the same amino acid sequence as the artificial standard peptide fragment consisting of the amino acid sequence of GGNPPATLQWLK (SEQ ID NO: 4) Label) was used to quantify the Nephrin protein in the sample. Samples for preparing a calibration curve were prepared by adding 500 fmol of stable isotope-labeled peptide fragments to 10 fmol, 50 fmol, 100 fmol, 500 fmol and 1000 fmol artificial standard (unlabeled) peptide fragments, respectively. In addition, rat glomerular samples were denatured with 7 M guanidine hydrochloride solution (dissolved in 0.1 M Tris-HCl, 10 mM EDTA pH 8.5) to reduce the SH group of the cysteine residue and to reduce iodoacetamide with DTT. Carbamide methylation treatment was carried out. Subsequently, it was desalted and concentrated by methanol chloroform precipitation, and resuspended in 1.2 M urea / 10 mM Tris-HCl. Thereafter, trypsin in an amount of 1/100 of the protein weight was added and fragmented by enzymatic digestion at 37 degrees for 16 hours. To this sample, 500 fmol of a stable isotope-labeled internal standard peptide fragment was added, and this was used as a measurement sample by a conventional method. These calibration curve preparation samples and measurement samples were quantified by the LC-MS / MS SRM mode under the following conditions.
Column: L-column ODS 0.1mm id × 100mm, 5μm particles
HPLC: Paradigm MS4B
Mass spectrometer: TSQ vantage
Gradient conditions: 1-45% acetonitrile / 0.1% formic acid, 50 μL / min, 50 minutes of MS spectrum area ratio (unlabeled peptide fragment / stable isotope-labeled peptide fragment) was prepared for a calibration curve. As a result of quantifying the Nephrin protein, it was 51.0 ± 5.6 fmol / assay.
カラム:L-column ODS 0.1mm id×100mm, 5μm particles
HPLC:Paradigm MS4B
質量分析機:TSQ vantage
グラジエント条件:1-45%アセトニトリル/0.1%ギ酸,50μL/分,50分
得られたMSスペクトル面積比(非標識ペプチド断片/安定同位体標識ペプチド断片)から検量線を作成し、試料中のNephrinタンパク質を定量した結果、51.0±5.6fmol/assayであった。 Stable isotope-labeled internal standard peptide fragment GGNPPATLQWL * K (L * is stable isotope) consisting of the same amino acid sequence as the artificial standard peptide fragment consisting of the amino acid sequence of GGNPPATLQWLK (SEQ ID NO: 4) Label) was used to quantify the Nephrin protein in the sample. Samples for preparing a calibration curve were prepared by adding 500 fmol of stable isotope-labeled peptide fragments to 10 fmol, 50 fmol, 100 fmol, 500 fmol and 1000 fmol artificial standard (unlabeled) peptide fragments, respectively. In addition, rat glomerular samples were denatured with 7 M guanidine hydrochloride solution (dissolved in 0.1 M Tris-HCl, 10 mM EDTA pH 8.5) to reduce the SH group of the cysteine residue and to reduce iodoacetamide with DTT. Carbamide methylation treatment was carried out. Subsequently, it was desalted and concentrated by methanol chloroform precipitation, and resuspended in 1.2 M urea / 10 mM Tris-HCl. Thereafter, trypsin in an amount of 1/100 of the protein weight was added and fragmented by enzymatic digestion at 37 degrees for 16 hours. To this sample, 500 fmol of a stable isotope-labeled internal standard peptide fragment was added, and this was used as a measurement sample by a conventional method. These calibration curve preparation samples and measurement samples were quantified by the LC-MS / MS SRM mode under the following conditions.
Column: L-column ODS 0.1mm id × 100mm, 5μm particles
HPLC: Paradigm MS4B
Mass spectrometer: TSQ vantage
Gradient conditions: 1-45% acetonitrile / 0.1% formic acid, 50 μL / min, 50 minutes of MS spectrum area ratio (unlabeled peptide fragment / stable isotope-labeled peptide fragment) was prepared for a calibration curve. As a result of quantifying the Nephrin protein, it was 51.0 ± 5.6 fmol / assay.
以上の結果から、試料中のNephrinタンパク質の定量値は、本発明の方法では66.4±6.1fmol/assay、従来法では51.0±5.6fmol/assayと定量され、従来法では本発明の方法に比べ約76%のタンパク質の量としてしか定量されなかった(図4)。従来法では酵素消化過程における試料タンパク質の未消化率や、標的タンパク質のチューブへの吸着等による試料損失が安定同位体標識内部標準ペプチド断片によって補正されておらず、その結果従来法では過小評価されたタンパク質量が定量値として算出されていると考えられる。本発明の方法は従来法より高い定量値を示しており、サンプル調製の最初、断片化処理の前に安定同位体標識内部標準タンパク質を加え、標的タンパク質及び安定同位体標識内部標準タンパク質が同時に断片化されることにより、酵素消化過程の損失率が補正されていることが示唆される。以上のように、本発明の方法では、従来法よりも高精度な定量が実現しており、タンパク質の定量方法としても優れていることが示された。
From the above results, the quantitative value of Nephrin protein in the sample was quantified as 66.4 ± 6.1 fmol / assay in the method of the present invention and 51.0 ± 5.6 fmol / assay in the conventional method, It was only quantified as about 76% protein compared to the inventive method (FIG. 4). In the conventional method, the undigested rate of the sample protein during the enzyme digestion process and the sample loss due to adsorption of the target protein to the tube are not corrected by the stable isotope-labeled internal standard peptide fragment. As a result, the conventional method is underestimated. It is considered that the amount of protein was calculated as a quantitative value. The method of the present invention shows a higher quantitative value than the conventional method. At the beginning of sample preparation, a stable isotope-labeled internal standard protein is added before the fragmentation treatment, and the target protein and stable isotope-labeled internal standard protein are simultaneously fragmented. This suggests that the loss rate of the enzyme digestion process has been corrected. As described above, it was shown that the method of the present invention achieves quantification with higher accuracy than the conventional method and is excellent as a protein quantification method.
[質量分析法における質量変化の検出]
ラット糸球体試料中のNephrinタンパク質(swissprot accession No.Q9R044)を本発明の方法で定量した結果を元に、質量分析法における質量変化の割合を解析した。本発明の方法では、ラット糸球体試料中からは、Nephrinタンパク質をトリプシン消化して得られるペプチド断片のうち、38のペプチド断片の定量値が得られた。これらの定量値に基づき平均定量値を算出し、各ペプチド断片の定量値と、平均定量値を比較した。横軸のNephrinタンパク質のアミノ酸配列番号に対して、検出された各ペプチド断片の定量値を縦軸にプロットしたグラフを図5に示す。平均定量値を点線で示す。Nephrinタンパク質のアミノ酸配列と異なる質量のペプチド断片は検出されないため、翻訳後修飾又は遺伝子変異により質量が変化したペプチド断片は検出されない。したがって、ペプチド断片の定量値が平均定量値よりも統計学的に有意に小さいとき、ペプチド断片の定量値を翻訳後修飾を受けていないペプチド断片の量、平均定量値からペプチド断片の定量値を引いた量を、翻訳後修飾を受けたペプチド断片の量と算出できる(図5)。平均定量値に対する、各ペプチド断片定量値の外れ値をスミノルフグラブス検定により求めたところ、5ペプチド断片の定量値が外れ値を示し、有意に平均定量値よりも小さかった(表6、太字及び下線)。 [Detection of mass change in mass spectrometry]
Based on the results of quantification of Nephrin protein (swissprot accession No. Q9R044) in rat glomerular samples by the method of the present invention, the rate of mass change in mass spectrometry was analyzed. In the method of the present invention, 38 peptide fragments were quantitatively determined from the peptide fragments obtained by trypsin digestion of Nephrin protein from rat glomerular samples. Based on these quantitative values, an average quantitative value was calculated, and the quantitative value of each peptide fragment was compared with the average quantitative value. FIG. 5 shows a graph in which the quantitative value of each detected peptide fragment is plotted on the vertical axis with respect to the amino acid sequence number of the Nephrin protein on the horizontal axis. Average quantitative values are indicated by dotted lines. Since peptide fragments having a mass different from that of the amino acid sequence of Nephrin protein are not detected, peptide fragments whose mass is changed by post-translational modification or gene mutation are not detected. Therefore, when the quantitative value of the peptide fragment is statistically significantly smaller than the average quantitative value, the quantitative value of the peptide fragment is calculated from the amount of peptide fragment that has not undergone post-translational modification, and the quantitative value of the peptide fragment from the average quantitative value. The subtracted amount can be calculated as the amount of peptide fragment that has undergone post-translational modification (FIG. 5). When the outliers of each peptide fragment relative to the average quantitative value were determined by the Suminorf Grubbs test, the quantitative values of the 5 peptide fragments showed outliers and were significantly smaller than the average quantitative values (Table 6, bold and Underline).
ラット糸球体試料中のNephrinタンパク質(swissprot accession No.Q9R044)を本発明の方法で定量した結果を元に、質量分析法における質量変化の割合を解析した。本発明の方法では、ラット糸球体試料中からは、Nephrinタンパク質をトリプシン消化して得られるペプチド断片のうち、38のペプチド断片の定量値が得られた。これらの定量値に基づき平均定量値を算出し、各ペプチド断片の定量値と、平均定量値を比較した。横軸のNephrinタンパク質のアミノ酸配列番号に対して、検出された各ペプチド断片の定量値を縦軸にプロットしたグラフを図5に示す。平均定量値を点線で示す。Nephrinタンパク質のアミノ酸配列と異なる質量のペプチド断片は検出されないため、翻訳後修飾又は遺伝子変異により質量が変化したペプチド断片は検出されない。したがって、ペプチド断片の定量値が平均定量値よりも統計学的に有意に小さいとき、ペプチド断片の定量値を翻訳後修飾を受けていないペプチド断片の量、平均定量値からペプチド断片の定量値を引いた量を、翻訳後修飾を受けたペプチド断片の量と算出できる(図5)。平均定量値に対する、各ペプチド断片定量値の外れ値をスミノルフグラブス検定により求めたところ、5ペプチド断片の定量値が外れ値を示し、有意に平均定量値よりも小さかった(表6、太字及び下線)。 [Detection of mass change in mass spectrometry]
Based on the results of quantification of Nephrin protein (swissprot accession No. Q9R044) in rat glomerular samples by the method of the present invention, the rate of mass change in mass spectrometry was analyzed. In the method of the present invention, 38 peptide fragments were quantitatively determined from the peptide fragments obtained by trypsin digestion of Nephrin protein from rat glomerular samples. Based on these quantitative values, an average quantitative value was calculated, and the quantitative value of each peptide fragment was compared with the average quantitative value. FIG. 5 shows a graph in which the quantitative value of each detected peptide fragment is plotted on the vertical axis with respect to the amino acid sequence number of the Nephrin protein on the horizontal axis. Average quantitative values are indicated by dotted lines. Since peptide fragments having a mass different from that of the amino acid sequence of Nephrin protein are not detected, peptide fragments whose mass is changed by post-translational modification or gene mutation are not detected. Therefore, when the quantitative value of the peptide fragment is statistically significantly smaller than the average quantitative value, the quantitative value of the peptide fragment is calculated from the amount of peptide fragment that has not undergone post-translational modification, and the quantitative value of the peptide fragment from the average quantitative value. The subtracted amount can be calculated as the amount of peptide fragment that has undergone post-translational modification (FIG. 5). When the outliers of each peptide fragment relative to the average quantitative value were determined by the Suminorf Grubbs test, the quantitative values of the 5 peptide fragments showed outliers and were significantly smaller than the average quantitative values (Table 6, bold and Underline).
そのうち、NVTLCCLTK(配列番号5)、ILSGGALQLWNVTR(配列番号2)は糖鎖修飾、SSTVSTAEVDPNYYSMR(配列番号3)はリン酸化修飾を受けることがそれぞれ報告されており、本発明の方法が翻訳後修飾の種類に関わらず検出可能な方法であることが示された。これらの定量値を平均定量値1.3fmol/糸球体から引いた値は、翻訳後修飾を受けたタンパク質の量を示す。翻訳後修飾を受けたタンパク質の量はNVTLCCLTK(配列番号5)は1.2fmol/糸球体、ILSGGALQLWNVTR(配列番号2)は1.3fmol/糸球体、SSTVSTAEVDPNYYSMR(配列番号3)は0.7fmol/糸球体であり、ラット糸球体試料中のNephrinタンパク質のうちNVTLCCLTK(配列番号5)に糖鎖修飾を受けたタンパク質は92.3%、ILSGGALQLWNVTR(配列番号2)に糖鎖修飾を受けたタンパク質は100%、SSTVSTAEVDPNYYSMR(配列番号3)にリン酸化修飾を受けたタンパク質は53.8%であると算出された。LEDVAAKPQSAPFK(配列番号1)、LAEEISEK(配列番号6)は外れ値を示したが、これらの部位に対する翻訳後修飾はこれまで報告されておらず、新規の翻訳後修飾を受けている可能性が示唆された。また、ラット糸球体試料中のNephrinタンパク質のこれらの領域のアミノ酸配列が、遺伝子変異によりデータベース上のアミノ酸配列と異なる可能性も考えられる。本発明の方法を用いることで、未知の翻訳後修飾部位や未知の遺伝子変異の検出が可能であることが示された。
Among them, NVTLCCLTK (SEQ ID NO: 5) and ILSGGALQLWNVTR (SEQ ID NO: 2) have been reported to undergo sugar chain modification, and SSTVSTAEVDPNYYSMR (SEQ ID NO: 3) have been reported to undergo phosphorylation modification. It was shown to be a detectable method regardless. The value obtained by subtracting these quantitative values from the average quantitative value 1.3 fmol / glomera indicates the amount of the protein that has undergone post-translational modification. The amount of post-translationally modified protein is 1.2 fmol / glomera for NVTLCCLTK (SEQ ID NO: 5), 1.3 fmol / glomera for ILSGGALQLWNVTR (SEQ ID NO: 2), 0.7 fmol / thread for SSTVSTAEVDPNYYSMR (SEQ ID NO: 3) Of the Nephrin proteins in rat glomerular samples, NVTLCCLTK (SEQ ID NO: 5) is 92.3% of the proteins that have undergone sugar chain modification, and ILSGGALQLWNVTR (SEQ ID NO: 2) is of the protein that has undergone sugar chain modification is 100. It was calculated that 53.8% of the proteins were phosphorylated in SSTVSTAEVDPNYYSMR (SEQ ID NO: 3). LEDVAAKPQSAPFK (SEQ ID NO: 1) and LAEEISEK (SEQ ID NO: 6) showed outliers, but no post-translational modifications to these sites have been reported so far, suggesting that they may have received new post-translational modifications. It was done. It is also possible that the amino acid sequences of these regions of the Nephrin protein in rat glomerular samples differ from the amino acid sequences on the database due to genetic mutation. It was shown that by using the method of the present invention, it is possible to detect unknown post-translational modification sites and unknown gene mutations.
本発明は、質量分析計を用いたタンパク質の解析の分野に好適に利用することができる。定量精度、コスト、翻訳後修飾の定量、簡便性に優れ、翻訳後修飾や遺伝子変異の同定と定量を同時に行うことができるため、一タンパク質あたりの解析時間を劇的に短縮でき、多分子同時解析やスクリーニングの分野、タンパク質解析の受託解析事業の分野においても有用である。また、従来困難であったタンパク質の未知の翻訳後修飾部位の探索と修飾率の定量を可能にする技術であり、疾患に関連する因子の解析などにも有用であり、疾患研究や薬剤開発など、ライフサイエンスや医療分野にも好適に利用することができる。
The present invention can be suitably used in the field of protein analysis using a mass spectrometer. Quantitative accuracy, cost, quantification of post-translational modifications, and simplicity are easy, and post-translational modifications and genetic mutation identification and quantification can be performed simultaneously, dramatically reducing the analysis time per protein and simultaneously measuring multiple molecules. It is also useful in the field of analysis and screening, and the field of contract analysis business for protein analysis. In addition, it is a technology that makes it possible to search for unknown post-translational modification sites of proteins and quantify the rate of modification, which has been difficult in the past, and is also useful for analyzing factors related to diseases, such as disease research and drug development. It can also be suitably used in the life science and medical fields.
Claims (20)
- 以下の工程(a)~(c)を備えた、試料中の標的タンパク質の質量分析法における質量変化を検出する方法。
(a)所定濃度段階又は試料中の各標的タンパク質と、特定量の前記標的タンパク質に相当する安定同位体標識タンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して、質量分析を行い、標的タンパク質由来ペプチド断片/安定同位体標識タンパク質由来ペプチド断片のシグナル面積比やシグナル強度比から各ペプチド断片をそれぞれ定量する工程;
(b)全ての各標的タンパク質由来ペプチド断片の定量値の平均値を平均定量値として求める工程;
(c)平均定量値に対する、各標的タンパク質由来ペプチド断片の定量値の割合x(%)をそれぞれ算出し、ペプチド断片の質量変化を受けた割合(100-x)(%)をそれぞれ算出する工程; A method for detecting a mass change in mass spectrometry of a target protein in a sample, comprising the following steps (a) to (c):
(A) Peptide fragmentation treatment is performed on a mixture of each target protein in a predetermined concentration step or each sample and a stable amount of a stable isotope-labeled protein corresponding to the target protein. Analyzing and quantifying each peptide fragment from the signal area ratio and signal intensity ratio of the target protein-derived peptide fragment / stable isotope-labeled protein-derived peptide fragment;
(B) a step of obtaining an average value of quantitative values of all target protein-derived peptide fragments as an average quantitative value;
(C) calculating the ratio x (%) of the quantitative value of each target protein-derived peptide fragment to the average quantitative value, and calculating the ratio (100−x) (%) of the peptide fragment that has undergone a mass change ; - 標的タンパク質の質量分析法における質量変化の検出が、標的タンパク質の翻訳後修飾の定量であることを特徴とする請求項1記載の方法。 2. The method according to claim 1, wherein the detection of the mass change in the mass spectrometry of the target protein is quantification of post-translational modification of the target protein.
- 標的タンパク質の質量分析法における質量変化の検出が、標的タンパク質の翻訳後修飾部位の同定であることを特徴とする請求項1記載の方法。 2. The method according to claim 1, wherein the detection of the mass change in the mass spectrometry of the target protein is identification of a post-translational modification site of the target protein.
- 翻訳後修飾が、リン酸化又は糖化であることを特徴とする請求項2又は3記載の方法。 4. The method according to claim 2, wherein the post-translational modification is phosphorylation or saccharification.
- 標的タンパク質の質量分析法における質量変化の検出が、遺伝子変異による標的タンパク質の配列異常の定量であることを特徴とする請求項1記載の方法。 2. The method according to claim 1, wherein the detection of the mass change in the mass spectrometry of the target protein is a quantification of a sequence abnormality of the target protein due to a gene mutation.
- 標的タンパク質の質量分析法における質量変化の検出が、遺伝子変異による標的タンパク質の配列異常部位の同定であることを特徴とする請求項1記載の方法。 2. The method according to claim 1, wherein the detection of the mass change in the mass spectrometry of the target protein is identification of an abnormal region of the target protein due to gene mutation.
- 遺伝子変異による標的タンパク質の配列異常が、一塩基多型(SNPs)によるものであることを特徴とする請求項5又は6記載の方法。 The method according to claim 5 or 6, wherein the sequence abnormality of the target protein due to gene mutation is due to single nucleotide polymorphisms (SNPs).
- 安定同位体標識タンパク質として、翻訳後修飾又は遺伝子変異がない安定同位体標識タンパク質を用いることを特徴とする請求項1~7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein a stable isotope-labeled protein having no post-translational modification or gene mutation is used as the stable isotope-labeled protein.
- 翻訳後修飾部位又は遺伝子変異部位が、次の(1)~(8)のいずれかの条件から設定されていることを特徴とする請求項2~8のいずれかに記載の方法。
(1)公共のデータベースで翻訳後修飾又は遺伝子変異によるアミノ酸配列変化が公開されている部位であること;
(2)セリンもしくはスレオニン、タイロシンを含む配列部位であること;
(3)膜タンパク質の細胞外部位もしくは分泌タンパク質でアスパラギンを含む配列部位であること;
(4)リジンを含む配列部位であること;
(5)システインを含む配列部位であること;
(6)グルタミン酸を含む配列部位であること;
(7)プロリンを含む配列部位であること;
(8)請求項1記載の方法で求めた定量値が統計学的手法により平均定量値から外れ値を示す配列部位であること; The method according to any one of claims 2 to 8, wherein the post-translational modification site or gene mutation site is set according to any one of the following conditions (1) to (8).
(1) A site where changes in amino acid sequence due to post-translational modification or gene mutation are publicly disclosed in public databases;
(2) a sequence site containing serine, threonine or tylosin;
(3) an extracellular site of a membrane protein or a sequence site containing asparagine in a secreted protein;
(4) a sequence site containing lysine;
(5) a sequence site containing cysteine;
(6) a sequence site containing glutamic acid;
(7) a sequence site containing proline;
(8) The quantitative value obtained by the method according to claim 1 is a sequence portion that shows an outlier from the average quantitative value by a statistical method; - 対象部位が、配列番号1~6に示される翻訳後修飾及び遺伝子変異によるアミノ酸配列変化を受ける部位であることを特徴とする請求項1~9のいずれかに記載の方法。 10. The method according to any one of claims 1 to 9, wherein the target site is a site that undergoes post-translational modification shown in SEQ ID NOs: 1 to 6 and amino acid sequence change due to gene mutation.
- 安定同位体標識タンパク質が、15N,13C,18O,2Hのいずれかを含むアミノ酸によって標識されるタンパク質であることを特徴とする請求項1~10のいずれかに記載の方法。 The method according to any one of claims 1 to 10, wherein the stable isotope-labeled protein is a protein labeled with an amino acid containing any one of 15 N, 13 C, 18 O, and 2 H.
- ペプチド断片化が、トリプシン、グルタミルペプチダーゼ、アスパラギンペプチダーゼ、キモトリプシンから選ばれるいずれかのタンパク質消化酵素を用いた断片化であることを特徴とする請求項1~11のいずれかに記載の方法。 The method according to any one of claims 1 to 11, wherein the peptide fragmentation is a fragmentation using any protein digestive enzyme selected from trypsin, glutamyl peptidase, asparagine peptidase, and chymotrypsin.
- ペプチド断片化が、化学物質を用いた断片化であることを特徴とする請求項1~11のいずれかに記載の方法。 The method according to any one of claims 1 to 11, wherein the peptide fragmentation is fragmentation using a chemical substance.
- 標的タンパク質が、ヒトEGFR(Epidermal Growth Factor Receptor)であることを特徴とする請求項1~13のいずれかに記載の方法。 The method according to any one of claims 1 to 13, wherein the target protein is human EGFR (Epidermal®Growth®Factor®Receptor).
- 以下の工程(i)~(iii)を備えた、質量分析法で内部標準として使用する安定同位体標識タンパク質の絶対量の定量方法。
(i)安定同位体標識アミノ酸を用いて、安定同位体標識タグタンパク質融合タンパク質を合成する工程;
(ii)前記安定同位体標識タグタンパク質融合タンパク質と、特定量の非安定同位体標識前記タグタンパク質との混合物にペプチド断片化処理を施し、得られるペプチド断片群に対して質量分析を行い、安定同位体標識タグタンパク質融合タンパク質のタグタンパク質部分由来ペプチド断片/非安定同位体標識タグタンパク質由来ペプチド断片のシグナル面積比やシグナル強度比からタグ由来の各ペプチド断片をそれぞれ定量する工程;
(iii)安定同位体標識タグタンパク質融合タンパク質のタグタンパク質由来の各ペプチド断片の定量値の平均値を、合成した安定同位体標識タグタンパク質融合タンパク質の絶対量として求める工程; A method for quantifying the absolute amount of a stable isotope-labeled protein used as an internal standard in mass spectrometry, comprising the following steps (i) to (iii):
(I) a step of synthesizing a stable isotope-labeled tag protein fusion protein using a stable isotope-labeled amino acid;
(Ii) Peptide fragmentation treatment is applied to a mixture of the stable isotope-labeled tag protein fusion protein and a specific amount of the non-stable isotope-labeled tag protein, and the resulting peptide fragment group is subjected to mass spectrometry and stable. Quantifying each peptide fragment derived from the tag from the signal area ratio and the signal intensity ratio of the peptide fragment derived from the tag protein portion of the isotope-labeled tag protein fusion protein / the peptide fragment derived from the unstable isotope-labeled tag protein;
(Iii) a step of obtaining an average value of quantitative values of peptide fragments derived from the tag protein of the stable isotope-labeled tag protein fusion protein as an absolute amount of the synthesized stable isotope-labeled tag protein fusion protein; - タグタンパク質が、GSTタグタンパク質であることを特徴とする請求項15に記載の定量方法。 The quantification method according to claim 15, wherein the tag protein is a GST tag protein.
- タグタンパク質が、Hisタグタンパク質であることを特徴とする請求項15に記載の定量方法。 The quantification method according to claim 15, wherein the tag protein is a His tag protein.
- タグタンパク質が、次の(I)~(VI)のいずれかの条件から設定されるアミノ酸の配列であることを特徴とする請求項15~17いずれかに記載の絶対値の定量方法。
(I)アミノ酸残基数が、3から500残基であること;
(II)アミノ酸残基数が、500残基数であること;
(III)アルギニンを含む配列であること;
(IV)リジンを含む配列であること;
(V)トリプシン、グルタミルペプチダーゼ、アスパラギンペプチダーゼ、キモトリプシンから選ばれるいずれかのタンパク質消化酵素を用いて断片化される配列であること;
(VI)化学物質を用いて、ペプチドに断片化される配列であること; 18. The absolute value quantification method according to claim 15, wherein the tag protein is an amino acid sequence set based on any of the following conditions (I) to (VI):
(I) the number of amino acid residues is 3 to 500 residues;
(II) the number of amino acid residues is 500 residues;
(III) a sequence containing arginine;
(IV) a sequence containing lysine;
(V) a sequence that is fragmented using any protein digestion enzyme selected from trypsin, glutamyl peptidase, asparagine peptidase, and chymotrypsin;
(VI) a sequence that is fragmented into peptides using chemicals; - 非安定同位体標識タグタンパク質の量が、アミノ酸分析法により決定されることを特徴とする請求項15~18のいずれかに記載の定量方法。 The method according to any one of claims 15 to 18, wherein the amount of the non-stable isotope-labeled tag protein is determined by amino acid analysis.
- 非安定同位体標識タグタンパク質の量が、生化学的比色法によって決定されることを特徴とする請求項15~19のいずれかに記載の定量方法。 The method according to any one of claims 15 to 19, wherein the amount of the non-stable isotope-labeled tag protein is determined by a biochemical colorimetric method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012557804A JPWO2012111249A1 (en) | 2011-02-14 | 2012-01-17 | Method for detecting mass change in mass spectrometry and method for quantifying absolute amount of stable isotope-labeled protein |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011029205 | 2011-02-14 | ||
JP2011-029205 | 2011-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012111249A1 true WO2012111249A1 (en) | 2012-08-23 |
Family
ID=46672198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/000227 WO2012111249A1 (en) | 2011-02-14 | 2012-01-17 | Method for detecting mass change in mass spectrometry method and method for quantifying absolute amount of stable isotope-labeled protein |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2012111249A1 (en) |
WO (1) | WO2012111249A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014096915A1 (en) * | 2012-12-20 | 2014-06-26 | Dh Technologies Development Pte. Ltd. | Compound identification using multiple spectra at different collision energies |
JP2015529342A (en) * | 2012-09-20 | 2015-10-05 | クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド | Thyroglobulin quantification by mass spectrometry |
JP2016028100A (en) * | 2012-11-29 | 2016-02-25 | 株式会社ニッピ | Stable isotope-labeled collagen, and amino acid composition and peptide composition in which the collagen is dissolved |
CN108088945A (en) * | 2016-11-21 | 2018-05-29 | 中国科学院大连化学物理研究所 | Absolute quantification method based on di-methylation multiple labelling and fragments characteristic ion |
JP2018533720A (en) * | 2015-07-07 | 2018-11-15 | セキラス ユーケー リミテッドSeqirus UK Limited | Influenza potency assay |
US10309971B2 (en) | 2007-12-06 | 2019-06-04 | Quest Diagnostics Investments Incorporated | Thyroglobulin quantitation by mass spectrometry |
US10446376B2 (en) | 2012-12-20 | 2019-10-15 | Dh Technologies Development Pte. Ltd. | Compound identification using multiple spectra at different collision energies |
WO2019246617A1 (en) * | 2018-06-22 | 2019-12-26 | Iroa Technologies, Llc | Method to correct ion source inefficiencies makes sample-to-sample normalization possible |
US10753928B2 (en) | 2015-12-14 | 2020-08-25 | Morinaga Institute Of Biological Science, Inc. | Protein detection method, and protein immunoassay method |
US10935558B2 (en) | 2005-04-06 | 2021-03-02 | Quest Diagnostics Investments Incorporated | Methods for detecting vitamin D metabolites by mass spectrometry |
US10955424B2 (en) | 2009-12-11 | 2021-03-23 | Quest Diagnostics Investments Incorporated | Mass spectrometry of steroidal compounds in multiplexed patient samples |
US11105821B2 (en) | 2009-12-03 | 2021-08-31 | Quest Diagnostics Investments Incorporated | Vitamin D metabolite determination utilizing mass spectrometry following derivatization |
JP2021532360A (en) * | 2018-08-08 | 2021-11-25 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | Use of LC-MS / MS to quantify protein biomarkers |
US11280799B2 (en) | 2009-12-11 | 2022-03-22 | Quest Diagnostics Investments Incorporated | Mass spectrometric determination of non-derivatized, non-metabolized vitamin D |
US11650216B2 (en) | 2007-11-28 | 2023-05-16 | Quest Diagnostics Investments Incorporated | Methods for detecting dihydroxyvitamin D metabolites by mass spectrometry |
US12140597B2 (en) | 2022-12-29 | 2024-11-12 | Quest Diagnostics Investments Incorporated | Thyroglobulin quantitation by mass spectrometry |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109073655A (en) * | 2016-02-04 | 2018-12-21 | 安口生物公司 | The method of the amino acid sequence of identification and analysis albumen |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000067017A1 (en) * | 1999-05-04 | 2000-11-09 | The Rockefeller University | Method for the comparative quantitative analysis of proteins and other biological material by isotopic labeling and mass spectroscopy |
WO2005050188A1 (en) * | 2003-11-21 | 2005-06-02 | Eisai Co., Ltd. | Quantification method with the use of isotope-labeled internal standard, analysis system for carrying out the quantification method and program for dismantling the same |
JP2005225858A (en) * | 2004-02-12 | 2005-08-25 | Cell Signaling Technology Inc | Immunoaffinity isolation of modified peptides from complex mixtures |
JP2006515987A (en) * | 2002-11-27 | 2006-06-15 | セクエノム,インコーポレイティド | Fragmentation-based methods and systems for sequence change detection and discovery |
WO2006096704A2 (en) * | 2005-03-07 | 2006-09-14 | Invitrogen Corporation | Isotopically-labeled proteome standards |
JP2006337176A (en) * | 2005-06-02 | 2006-12-14 | Eisai R & D Management Co Ltd | Determination method of metabolite |
WO2008145763A1 (en) * | 2007-06-01 | 2008-12-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for absolute quantification of polypeptides |
JP2010197110A (en) * | 2009-02-23 | 2010-09-09 | Tohoku Univ | Evaluating peptide for quantifying protein using mass analyzer, artificial standard protein and protein quantifying method |
-
2012
- 2012-01-17 WO PCT/JP2012/000227 patent/WO2012111249A1/en active Application Filing
- 2012-01-17 JP JP2012557804A patent/JPWO2012111249A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000067017A1 (en) * | 1999-05-04 | 2000-11-09 | The Rockefeller University | Method for the comparative quantitative analysis of proteins and other biological material by isotopic labeling and mass spectroscopy |
JP2006515987A (en) * | 2002-11-27 | 2006-06-15 | セクエノム,インコーポレイティド | Fragmentation-based methods and systems for sequence change detection and discovery |
WO2005050188A1 (en) * | 2003-11-21 | 2005-06-02 | Eisai Co., Ltd. | Quantification method with the use of isotope-labeled internal standard, analysis system for carrying out the quantification method and program for dismantling the same |
JP2005225858A (en) * | 2004-02-12 | 2005-08-25 | Cell Signaling Technology Inc | Immunoaffinity isolation of modified peptides from complex mixtures |
WO2006096704A2 (en) * | 2005-03-07 | 2006-09-14 | Invitrogen Corporation | Isotopically-labeled proteome standards |
JP2006337176A (en) * | 2005-06-02 | 2006-12-14 | Eisai R & D Management Co Ltd | Determination method of metabolite |
WO2008145763A1 (en) * | 2007-06-01 | 2008-12-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for absolute quantification of polypeptides |
JP2010197110A (en) * | 2009-02-23 | 2010-09-09 | Tohoku Univ | Evaluating peptide for quantifying protein using mass analyzer, artificial standard protein and protein quantifying method |
Non-Patent Citations (1)
Title |
---|
HELI PUTAALA ET AL.: "Primary Structure of Mouse and Rat Nephrin cDNA and Structure and Expression of the Mouse Gene", JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, vol. 11, no. 6, 1 June 2000 (2000-06-01), pages 991 - 1001 * |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10935558B2 (en) | 2005-04-06 | 2021-03-02 | Quest Diagnostics Investments Incorporated | Methods for detecting vitamin D metabolites by mass spectrometry |
US11921122B2 (en) | 2005-04-06 | 2024-03-05 | Quest Diagnostics Investments Incorporated | Methods for detecting vitamin D metabolites by mass spectrometry |
US11579154B2 (en) | 2005-04-06 | 2023-02-14 | Quest Diagnostics Investments Incorporated | Methods for detecting vitamin D metabolites by mass spectrometry |
US12066446B2 (en) | 2007-11-28 | 2024-08-20 | Quest Diagnostics Investments Incorporated | Methods for detecting dihydroxyvitamin D metabolites by mass spectrometry |
US11650216B2 (en) | 2007-11-28 | 2023-05-16 | Quest Diagnostics Investments Incorporated | Methods for detecting dihydroxyvitamin D metabolites by mass spectrometry |
US10309971B2 (en) | 2007-12-06 | 2019-06-04 | Quest Diagnostics Investments Incorporated | Thyroglobulin quantitation by mass spectrometry |
US11543415B2 (en) | 2007-12-06 | 2023-01-03 | Quest Diagnostics Investments Incorporated | Thyroglobulin quantitation by mass spectrometry |
US11105821B2 (en) | 2009-12-03 | 2021-08-31 | Quest Diagnostics Investments Incorporated | Vitamin D metabolite determination utilizing mass spectrometry following derivatization |
US11885820B2 (en) | 2009-12-03 | 2024-01-30 | Quest Diagnostics Investments Incorporated | Vitamin D metabolite determination utilizing mass spectrometry following derivatization |
US11280799B2 (en) | 2009-12-11 | 2022-03-22 | Quest Diagnostics Investments Incorporated | Mass spectrometric determination of non-derivatized, non-metabolized vitamin D |
US11549954B2 (en) | 2009-12-11 | 2023-01-10 | Quest Diagnostics Investments Incorporated | Mass spectrometric determination of non-derivatized, non-metabolized vitamin D |
US10955424B2 (en) | 2009-12-11 | 2021-03-23 | Quest Diagnostics Investments Incorporated | Mass spectrometry of steroidal compounds in multiplexed patient samples |
US11852636B2 (en) | 2009-12-11 | 2023-12-26 | Quest Diagnostics Investments Incorporated | Mass spectrometric determination of non-derivatized, non-metabolized vitamin D |
US11808773B2 (en) | 2009-12-11 | 2023-11-07 | Quest Diagnostics Investments Incorporated | Mass spectrometry of steroidal compounds in multiplexed patient samples |
US10718779B2 (en) | 2012-09-20 | 2020-07-21 | Quest Diagnostics Investments Incorporated | Thyroglobulin quantitation by mass spectroscopy |
US9915663B2 (en) | 2012-09-20 | 2018-03-13 | Quest Diagnostics Investments Incorporated | Thyroglobulin quantitation by mass spectroscopy |
US9580740B2 (en) | 2012-09-20 | 2017-02-28 | Quest Diagnostics Investments Incorporated | Thyroglobulin quantitation by mass spectroscopy |
JP2015529342A (en) * | 2012-09-20 | 2015-10-05 | クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド | Thyroglobulin quantification by mass spectrometry |
US10191064B2 (en) | 2012-09-20 | 2019-01-29 | Quest Diagnostics Investments Incorporated | Thyroglobulin quantitation by mass spectroscopy |
JP2016165284A (en) * | 2012-09-20 | 2016-09-15 | クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド | Thyroglobulin quantitation by mass spectroscopy |
JP2016028100A (en) * | 2012-11-29 | 2016-02-25 | 株式会社ニッピ | Stable isotope-labeled collagen, and amino acid composition and peptide composition in which the collagen is dissolved |
US10446376B2 (en) | 2012-12-20 | 2019-10-15 | Dh Technologies Development Pte. Ltd. | Compound identification using multiple spectra at different collision energies |
WO2014096915A1 (en) * | 2012-12-20 | 2014-06-26 | Dh Technologies Development Pte. Ltd. | Compound identification using multiple spectra at different collision energies |
JP2021036909A (en) * | 2015-07-07 | 2021-03-11 | セキラス ユーケー リミテッドSeqirus UK Limited | Influenza potency assays |
JP7069281B2 (en) | 2015-07-07 | 2022-05-17 | セキラス ユーケー リミテッド | Influenza efficacy assay |
US11249088B2 (en) | 2015-07-07 | 2022-02-15 | Seqirus UK Limited | Influenza potency assays |
JP2018533720A (en) * | 2015-07-07 | 2018-11-15 | セキラス ユーケー リミテッドSeqirus UK Limited | Influenza potency assay |
US10753928B2 (en) | 2015-12-14 | 2020-08-25 | Morinaga Institute Of Biological Science, Inc. | Protein detection method, and protein immunoassay method |
CN108088945B (en) * | 2016-11-21 | 2020-11-17 | 中国科学院大连化学物理研究所 | Absolute quantification method based on dimethylation multiple markers and characteristic fragment ions |
CN108088945A (en) * | 2016-11-21 | 2018-05-29 | 中国科学院大连化学物理研究所 | Absolute quantification method based on di-methylation multiple labelling and fragments characteristic ion |
AU2019288827B2 (en) * | 2018-06-22 | 2023-06-15 | Iroa Technologies, Llc | Method to correct ion source inefficiencies makes sample-to-sample normalization possible |
AU2019288827C1 (en) * | 2018-06-22 | 2023-12-14 | Iroa Technologies, Llc | Method to correct ion source inefficiencies makes sample-to-sample normalization possible |
CN112771375A (en) * | 2018-06-22 | 2021-05-07 | 伊罗亚科技有限公司 | Methods to correct ion source inefficiency enable sample-to-sample normalization |
CN112771375B (en) * | 2018-06-22 | 2024-05-10 | 伊罗亚科技有限公司 | Methods to correct for ion source inefficiency enable sample-to-sample normalization |
WO2019246617A1 (en) * | 2018-06-22 | 2019-12-26 | Iroa Technologies, Llc | Method to correct ion source inefficiencies makes sample-to-sample normalization possible |
JP2021532360A (en) * | 2018-08-08 | 2021-11-25 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | Use of LC-MS / MS to quantify protein biomarkers |
JP7419340B2 (en) | 2018-08-08 | 2024-01-22 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Use of LC-MS/MS to quantify protein biomarkers |
JP7584418B2 (en) | 2018-12-04 | 2024-11-15 | ブリストル-マイヤーズ スクイブ カンパニー | Analysis method using in-sample calibration curves by multiple reaction isotope molecular species reaction monitoring |
US12140597B2 (en) | 2022-12-29 | 2024-11-12 | Quest Diagnostics Investments Incorporated | Thyroglobulin quantitation by mass spectrometry |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012111249A1 (en) | 2014-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012111249A1 (en) | Method for detecting mass change in mass spectrometry method and method for quantifying absolute amount of stable isotope-labeled protein | |
Rozanova et al. | Quantitative mass spectrometry-based proteomics: an overview | |
US20210311072A1 (en) | Absolute Quantitation of Proteins and Protein Modifications by Mass Spectrometry with Multiplexed Internal Standards | |
Schrader et al. | Historical perspective of peptidomics | |
AU2003249692B2 (en) | Methods for quantitative proteome analysis of glycoproteins | |
EP2098859B1 (en) | Method for quantification of peptide and protein | |
EP1766412B1 (en) | Compositions and methods for quantification of serum glycoproteins | |
US8669116B2 (en) | Detection and quantification of modified proteins | |
Palaniappan et al. | Isotopic signature transfer and mass pattern prediction (IsoStamp): an enabling technique for chemically-directed proteomics | |
WO2008066629A2 (en) | Methods for quantitative proteome analysis of glycoproteins | |
Steffen et al. | Protein species as diagnostic markers | |
JP2010509567A (en) | Compounds and methods for double labeling of polypeptides to allow multiplexing in mass spectrometry analysis | |
EP2572192A2 (en) | A general mass spectrometry assay using continuously eluting co-fractionating reporters of mass spectrometry detection efficiency | |
Niles et al. | Acid-catalyzed oxygen-18 labeling of peptides | |
KR102509880B1 (en) | Method for Absolute Quantification of Minor Polypeptides Using Mass Spectrometry | |
US20190073452A1 (en) | Method for determining the in vivo comparability of a biologic drug and a reference drug | |
CN110139935A (en) | For measuring the method and system of ADAMTS13 enzymatic activity | |
Ogata et al. | Targeted proteomics for cancer biomarker verification and validation | |
Kingon et al. | Multi-peptide nLC-PC-IDMS-SRM-based assay for the quantification of biomarkers in the chicken ovarian cancer model | |
JP4220257B2 (en) | Method for identifying sugar chain binding site of glycopeptide | |
US20100075356A1 (en) | Analysis of proteolytic processing by mass spectrometry | |
WO2024133743A1 (en) | Method for diagnosing and/or classifying the severity of a neurodegenerative disease | |
EP1945796A2 (en) | Method for screening for proteases and their substrates | |
Chen | Development and Applications of Mass Spectrometric Methods for Proteome Analysis and Protein Sequence Characterization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12746554 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2012557804 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12746554 Country of ref document: EP Kind code of ref document: A1 |