[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012111145A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2012111145A1
WO2012111145A1 PCT/JP2011/053527 JP2011053527W WO2012111145A1 WO 2012111145 A1 WO2012111145 A1 WO 2012111145A1 JP 2011053527 W JP2011053527 W JP 2011053527W WO 2012111145 A1 WO2012111145 A1 WO 2012111145A1
Authority
WO
WIPO (PCT)
Prior art keywords
probability
value
combustion engine
internal combustion
torque
Prior art date
Application number
PCT/JP2011/053527
Other languages
English (en)
French (fr)
Inventor
岡田 吉弘
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/978,664 priority Critical patent/US8949003B2/en
Priority to EP11858573.6A priority patent/EP2677151B1/en
Priority to JP2012557757A priority patent/JP5556910B2/ja
Priority to CN201180067498.8A priority patent/CN103370520B/zh
Priority to PCT/JP2011/053527 priority patent/WO2012111145A1/ja
Publication of WO2012111145A1 publication Critical patent/WO2012111145A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/11Oil dilution, i.e. prevention thereof or special controls according thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine that is suitable for preventing abnormal combustion such as pre-ignition.
  • Patent Document 1 discloses a combustion diagnosis method for an internal combustion engine that makes it possible to clearly identify and determine pre-ignition and abnormality of the in-cylinder pressure sensor using an in-cylinder pressure sensor.
  • this conventional combustion diagnosis method the standard deviation of the change in in-cylinder pressure at a predetermined crank angle before ignition is equal to or greater than the standard deviation threshold, and the differential pressure between the reference crank angle and top dead center is driven.
  • the load factor in-cylinder differential pressure divided by the load factor on the side is equal to or greater than the load factor in-cylinder differential pressure threshold, it is determined that pre-ignition has occurred.
  • the applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
  • the probability of occurrence of abnormal combustion such as pre-ignition as described above changes according to the operating conditions of the internal combustion engine. Therefore, it is necessary to control the internal combustion engine that can satisfactorily suppress the occurrence of abnormal combustion regardless of the operating conditions.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control device for an internal combustion engine that can satisfactorily suppress the occurrence of abnormal combustion regardless of operating conditions.
  • a first invention is a control device for an internal combustion engine,
  • An abnormal combustion probability acquisition means for acquiring an occurrence probability of abnormal combustion of the internal combustion engine;
  • Expected value calculating means for calculating an expected value of the number of occurrences of the abnormal combustion per predetermined time based on the occurrence probability of the abnormal combustion acquired by the abnormal probability acquiring means;
  • Torque limiting means for limiting the upper limit value of torque generated by the internal combustion engine to be low so that the expected value calculated by the expected value calculating means does not exceed a predetermined allowable value; It is characterized by providing.
  • the second invention is the first invention, wherein
  • the torque limiting means limits the upper limit value of the torque to a lower value as the expected value calculated by the expected value calculating means increases toward the allowable value.
  • the third invention is the second invention, wherein
  • the torque limiting means limits the upper limit value of the torque to a lower value as the value of the dividing point of the allowable value that exceeds the expected value calculated by the expected value calculating means is larger.
  • the fourth invention is An abnormal combustion probability acquisition means for acquiring an occurrence probability of abnormal combustion of the internal combustion engine in association with an operation region of the internal combustion engine; Torque that limits the upper limit value of the torque generated by the internal combustion engine so that the maximum probability point at which the occurrence probability is maximum on the operating region shifts to a position where the occurrence probability is a predetermined allowable value or less.
  • Limiting means It is characterized by providing.
  • the fifth invention is the fourth invention, wherein When the occurrence probability of the maximum probability point is larger than the allowable value, the torque limiting means has the maximum probability point at a position where the occurrence probability is equal to or lower than the allowable value.
  • the upper limit value of the torque is limited to be low so as to shift on the equal output line.
  • the sixth invention is the fourth invention, wherein When the occurrence probability of the maximum probability point is greater than the allowable value, the torque limiting means is configured to output the equal probability of generation equivalent to a maximum torque curve in an allowable state where the generation probability is at an allowable level.
  • the upper limit value of the torque is limited to be low so that the torque curve obtained on the line becomes the upper limit torque curve.
  • the abnormal combustion probability acquisition means includes a fuel dilution index acquisition means for acquiring a fuel dilution index indicating the degree of fuel dilution of oil adhering to the cylinder wall surface of the internal combustion engine, and is acquired by the fuel dilution index acquisition means The generation probability is obtained based on the fuel dilution index.
  • the upper limit value of the torque generated by the internal combustion engine is limited to a low value so that the expected value of the number of occurrences of abnormal combustion per predetermined time does not exceed a predetermined allowable value.
  • the expected value of the number of occurrences of abnormal combustion per predetermined time does not exceed a predetermined allowable value.
  • the second aspect of the invention it is possible to satisfactorily suppress the occurrence of abnormal combustion while preventing the usable operating range from being limited as much as possible by limiting the upper limit value of the torque.
  • the third invention it is possible to provide a specific method for limiting the upper limit value of the torque to a lower value as the expected value increases toward the allowable value.
  • the upper limit value of is limited to be low.
  • the use of the operation region on the high load side where the occurrence probability of abnormal combustion exceeds the allowable value is limited. For this reason, it is possible to satisfactorily suppress the occurrence of abnormal combustion regardless of the operating conditions.
  • the allowable state where the occurrence probability of abnormal combustion is at an allowable level in a state where the internal combustion engine can exhibit an equal output. It is possible to reduce the occurrence probability of equivalent abnormal combustion.
  • the probability of occurrence of abnormal combustion can be favorably acquired based on the fuel dilution index that represents the degree of fuel dilution of the oil adhering to the cylinder inner wall surface.
  • FIG. 6 is a diagram showing an abnormal combustion occurrence probability map in an allowable state in which an abnormal combustion occurrence probability index is at an allowable level. It is a figure for demonstrating the characteristic control method for generation
  • FIG. 1 is a diagram for explaining a system configuration of an internal combustion engine 10 according to Embodiment 1 of the present invention.
  • the system of this embodiment includes a spark ignition type internal combustion engine (gasoline engine) 10.
  • An intake passage 12 and an exhaust passage 14 communicate with each cylinder of the internal combustion engine 10.
  • Each cylinder of the internal combustion engine 10 is provided with a fuel injection valve 16 for directly injecting fuel into the cylinder and an ignition plug 18 for igniting the air-fuel mixture.
  • An air cleaner 20 is attached in the vicinity of the inlet of the intake passage 12.
  • An air flow meter 22 that outputs a signal corresponding to the flow rate of air taken into the intake passage 12 is provided in the vicinity of the downstream side of the air cleaner 20.
  • a compressor 24 a of the turbocharger 24 is installed downstream of the air flow meter 22.
  • the compressor 24a is integrally connected to a turbine 24b disposed in the exhaust passage 14 via a connecting shaft.
  • An intercooler 26 for cooling the compressed air is provided downstream of the compressor 24a.
  • An electronically controlled throttle valve 28 is provided downstream of the intercooler 26.
  • An intake pressure sensor 30 for detecting the pressure in the intake passage is installed downstream of the throttle valve 28.
  • a catalyst 32 for purifying exhaust gas is disposed in the exhaust passage 14 on the downstream side of the turbine 24b. Further, an air-fuel ratio sensor 34 that emits an output substantially linear with respect to the air-fuel ratio of the exhaust gas flowing into the catalyst 32 is disposed upstream of the catalyst 32.
  • a crank angle sensor 36 for detecting the engine speed is provided in the vicinity of the crankshaft.
  • the internal combustion engine 10 is also provided with a water temperature sensor 38 for detecting the engine coolant temperature.
  • the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 40.
  • Various sensors for detecting the operating state of the internal combustion engine 10 such as the air flow meter 22, the intake pressure sensor 30, the air-fuel ratio sensor 34, the crank angle sensor 36, and the water temperature sensor 38 are connected to the input portion of the ECU 40. Yes.
  • various actuators for controlling the operating state of the internal combustion engine 10 such as the fuel injection valve 16, the spark plug 18, and the throttle valve 28 are connected to the output portion of the ECU 40.
  • the ECU 40 controls the operating state of the internal combustion engine 10 by operating various actuators according to a predetermined program based on the outputs of the various sensors described above.
  • an ignition source such as oil (ignition point is lower than the gasoline mixture) or deposit is present in the cylinder during the compression stroke or Preignition or heavy knock may occur by self-igniting before the flame propagation arrives after spark ignition.
  • the occurrence probability of these abnormal combustions changes according to the operating conditions of the internal combustion engine 10. Specifically, the probability of occurrence of abnormal combustion is increased by accumulating substances serving as ignition sources such as oil and deposits in the combustion chamber. The probability of occurrence of abnormal combustion is also increased by the intrusion of the substance accumulated in the intake system into the cylinder.
  • the fuel injected into the cylinder by the fuel injection valve 16 adheres to the cylinder inner wall surface
  • the oil adhering to the cylinder inner wall surface is diluted by the fuel. Due to such dilution of oil with fuel (so-called fuel dilution), the surface tension of the oil film on the inner wall surface of the cylinder decreases, and the probability of occurrence of droplets floating in the cylinder increases, so that the probability of abnormal combustion increases. Become. Further, when the cooling water temperature of the internal combustion engine 10 is low, the fuel dilution rate increases, so that the probability of occurrence of abnormal combustion increases.
  • a fuel dilution index representing the degree of fuel dilution of oil adhering to the cylinder inner wall surface.
  • the fuel dilution index is defined as a value obtained by subtracting the air-fuel ratio (air amount / fuel injection amount) of the air-fuel mixture supplied into the cylinder from the exhaust air-fuel ratio.
  • Fuel dilution index exhaust air-fuel ratio-(air amount / fuel injection amount)
  • the degree of fuel dilution increases.
  • the exhaust air-fuel ratio becomes leaner (larger) than the air-fuel ratio of the air-fuel mixture supplied into the cylinder. Therefore, the fuel dilution state in the cylinder of the internal combustion engine 10 can be estimated based on the size of the fuel dilution index set as described above.
  • FIG. 2 is a diagram for explaining the setting of the abnormal combustion occurrence probability map used for the control in the first embodiment of the present invention.
  • the ECU 40 is provided with a plurality of abnormal combustion occurrence probability maps according to the magnitude of the fuel dilution index.
  • These abnormal combustion occurrence probability maps (hereinafter sometimes simply referred to as “occurrence probability maps”) are abnormal in relation to the operating region of the internal combustion engine 10 (defined by the load (torque) and the engine speed). It defines the combustion probability index.
  • This occurrence probability index is an index indicating the occurrence probability of abnormal combustion.
  • the occurrence probability index is the number of occurrences of abnormal combustion per hour.
  • a curve indicated by a solid line in FIG. 2 indicates a torque curve (a curve obtained by connecting the maximum torque points at each engine speed) when the internal combustion engine 10 is fully loaded (WOT (Wide Open Throttle)).
  • a curve indicated by a broken line indicates a contour line of the occurrence probability index obtained by connecting operating points having the same occurrence probability index of abnormal combustion.
  • FIG. 2A shows an occurrence probability map in a standard state where the fuel dilution index is small
  • FIG. 2B shows a state where the occurrence probability index increases as the load increases.
  • 2 shows an occurrence probability map in a high probability state where the probability of occurrence of abnormal combustion is high due to the large fuel dilution index, that is, the occurrence probability map shown in FIG. Compared with, it extends to the abnormal operation region where combustion may occur more lower load, and the maximum value of the probability indicator of high load side is increased.
  • FIG. 3 is a diagram showing an abnormal combustion occurrence probability map in an allowable state in which the abnormal combustion occurrence probability index is at an allowable level
  • FIG. 4 is for suppressing the occurrence of abnormal combustion in the first embodiment of the present invention. It is a figure for demonstrating the characteristic control method.
  • the occurrence probability index of the maximum probability point at which the occurrence probability index is maximum in the driving region is a predetermined allowable value (the maximum value of the occurrence probability index in the allowable state shown in FIG. 3). ) (For example, the high probability state shown in FIG. 2B is applicable), the following control is performed. That is, in this case, as shown in FIG. 4, the torque generated by the internal combustion engine 10 is such that the maximum probability point moves on the iso-output line of the internal combustion engine 10 to a position where the generation probability is equal to the allowable value. The upper limit was limited to a low level.
  • the occurrence probability index of the maximum probability point when the occurrence probability index of the maximum probability point is larger than the allowable value, it is equivalent to the maximum torque curve in the allowable state shown in FIG.
  • the upper limit value of the torque is limited to be low so that the torque curve with the probability of occurrence on the iso-output line becomes the upper limit torque curve.
  • FIG. 5 is a flowchart showing a control routine executed by the ECU 40 in the first embodiment in order to realize the above-described control. This routine is repeatedly executed every predetermined control cycle.
  • the fuel dilution index defined as a value obtained by subtracting the air-fuel ratio (air amount / fuel injection amount) of the air-fuel mixture supplied into the cylinder from the exhaust air-fuel ratio. Is calculated (step 100).
  • a value calculated based on the output of the air-fuel ratio sensor 34 is used as the exhaust air-fuel ratio, and a value calculated based on the output of the air flow meter 22 or the intake pressure sensor 30 is used as the air amount.
  • the fuel injection amount used is a value calculated based on the fuel injection period and fuel pressure by the fuel injection valve 16.
  • an abnormal combustion occurrence probability map is read based on the fuel dilution index calculated in step 100 (step 102).
  • the ECU 40 stores a plurality of occurrence probability maps in advance according to the size of the fuel dilution index.
  • an occurrence probability map corresponding to the current fuel dilution index is acquired.
  • it is determined whether or not the occurrence probability index of the maximum probability point on the read occurrence probability map is larger than the maximum value (the above-described allowable value) of the occurrence probability index on the allowable occurrence probability map (step 104). ).
  • step 106 when the determination in step 104 is established, the torque upper limit value is low so that the torque curve obtained on the iso-output line with the same probability of occurrence as the maximum torque curve in the allowable state becomes the upper limit torque curve. Limited (step 106).
  • the upper limit value of the torque is limited to be low so that becomes the upper limit torque curve.
  • the maximum probability point moves on the iso-output line to a position where the occurrence probability is equal to the allowable value.
  • the upper limit value of the torque is limited by limiting the intake air amount by adjusting the opening of the throttle valve 28.
  • the internal combustion engine 10 can exhibit an equal output by setting the upper limit torque curve as the upper limit torque curve in which the occurrence probability equivalent to the maximum torque curve in the allowable state is obtained on the equal output line. It is possible to reduce the occurrence probability of abnormal combustion equivalent to the above-described allowable state.
  • the maximum probability point in the present invention is not limited to the one having only one point on the operation region. That is, the present invention is also applicable to a case where a plurality of maximum probability points exist on the driving region.
  • the upper limit value of the torque is limited to be low so that the maximum probability point shifts on the iso-output line to a position where the occurrence probability becomes equal to the allowable value.
  • the present invention is not limited to this, and the upper limit value of the torque is limited to be low so that the maximum probability point shifts on the iso-output line to a position where the occurrence probability is lower than the allowable value. There may be.
  • the ECU 40 executes the process of step 102, whereby the “abnormal combustion probability acquisition means” in the fourth aspect of the invention executes the processes of step 104 and step 106.
  • the “torque limiting means” according to the fourth aspect of the present invention is realized.
  • the “fuel dilution index acquisition means” according to the seventh aspect of the present invention is implemented when the ECU 40 executes the process of step 100.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIGS.
  • the system of the present embodiment can be realized by causing the ECU 40 to execute a routine shown in FIG. 8 described later instead of the routine shown in FIG. 5 using the hardware configuration shown in FIG.
  • the use of the operation region on the low rotation and high load side is restricted under a situation where the occurrence probability of abnormal combustion is high, so that the low speed torque is always reduced. As a result, the drivability of the internal combustion engine 10 may be deteriorated.
  • the time for using the operation region on the low-rotation and high-load side where the occurrence probability index is large can be shortened. In this case, it is unlikely that abnormal combustion actually occurs.
  • the operation region on the low-rotation and high-load side with a large occurrence probability index is used. If the time is long, there is a high possibility that abnormal combustion actually occurs.
  • an index described below is introduced as an index used when limiting the operation region in order to suppress the occurrence of abnormal combustion.
  • the numerical value of the occurrence probability index shown in FIG. 2B is here the number of occurrences of abnormal combustion per hour. Then, the expected value I (60 min.) Of the number of occurrences of abnormal combustion when the internal combustion engine 10 is operated for 1 hour on the contour line of the occurrence probability index 2 in FIG. It can be expressed as follows using the occurrence probability p (N, T) of abnormal combustion in each operation region of the internal combustion engine 10 defined by the torque (T).
  • FIG. 6 is a diagram illustrating an example of how the expected value I (6 min.) Of the number of occurrences of abnormal combustion changes.
  • the allowable value of the number of occurrences of abnormal combustion per 60 minutes is set to one. Then, the permissible value is 0.1 per 6 minutes.
  • the expected value I (6 min.) Of the number of abnormal combustion occurrences per 6 minutes is obtained by integrating the abnormal combustion occurrence probability p (N, T) for the past 6 minutes during the operation of the internal combustion engine 10. It can be expressed as
  • the expected value I (6 min.) Is an integral value of the occurrence probability p (N, T) of abnormal combustion during the past 6 minutes during operation as described above, the operation history of the internal combustion engine 10 during the past 6 minutes (during that time) 6 depending on the operation region used in the operation. For example, when the low rotation and high load region is used for a long time, the expected value I (6 min.) Increases. When the expected value I (6 min.) Exceeds the allowable value 0.1, the number of occurrences of abnormal combustion per 60 minutes exceeds the allowable value of 1.
  • an expected value I (here, I (6 min.)) Of the number of occurrences of abnormal combustion per predetermined time (here, 6 minutes) is predetermined.
  • the upper limit value of the torque generated by the internal combustion engine 10 is limited to be low so that the allowable value (here, 0.1) is not exceeded.
  • FIG. 7 is a diagram for explaining a characteristic control method for suppressing the occurrence of abnormal combustion in Embodiment 2 of the present invention.
  • the operation history shown in FIG. 7 is an operation history when the fuel dilution index is large and the vehicle is in the high probability state (the state where the maximum value of the occurrence probability index is 5) shown in FIG.
  • the allowable value (in this case, 0.1) of the number of occurrences of abnormal combustion in this case is 5 which is the maximum value of the occurrence probability index of abnormal combustion according to the current fuel dilution index (FIG. 2 ( B) The number of contour lines in the middle) was equally divided.
  • the upper limit value of the torque is restricted lower. More specifically, as shown in FIG. 7, the upper limit value of the torque is set so as not to exceed the contour line of the occurrence probability index having a smaller value as the value of the dividing point exceeding the expected value I (6 min.) Is larger.
  • the lower limit was set (that is, the operating range on the low rotation / high load side was more limited).
  • FIG. 8 is a flowchart showing a control routine executed by the ECU 40 in the second embodiment to realize the above-described control.
  • the same steps as those shown in FIG. 5 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the routine shown in FIG. 8 after the abnormal combustion occurrence probability map corresponding to the fuel dilution index is read in step 102, the expected value I (6 min.) Of the number of occurrences of abnormal combustion is calculated (step 200). More specifically, by using the abnormal combustion occurrence probability p (N, T) obtained by referring to the read abnormal combustion occurrence probability map, the expected value I (6 min.) Of the occurrence number of abnormal combustion is described above. It is calculated according to the relational expression.
  • the value of each dividing point is the maximum value of the occurrence probability index in the abnormal combustion occurrence probability map read in step 102, as described above.
  • the maximum value of the occurrence probability index is 5, and therefore, there are five values from 0.02 to 0.1 (see FIG. 7). ) Will respond. In this way, the division number of the allowable value of the number of occurrences of abnormal combustion is changed according to the maximum value of the occurrence probability index on the abnormal combustion occurrence probability map read according to the fuel dilution index.
  • the upper limit value of the torque generated by the internal combustion engine 10 is limited to a lower value according to the magnitude of the value of the dividing point where the expected value I (6 min.) Has been exceeded (Ste 204).
  • the ECU 40 has a value of each dividing point and an occurrence probability index on the abnormal combustion occurrence probability map corresponding to each of these values. The relationship is remembered. The value of the division point and the occurrence probability index are stored in such a relationship that the corresponding occurrence probability index decreases as the value of the division point increases.
  • torque is used in a manner that prohibits the use of the operating region on the low rotation high load side so that the expected value I (6 min.) Does not exceed the contour line of the occurrence probability index corresponding to the value of the division point that has exceeded this time.
  • the upper limit value of is restricted.
  • the upper limit value of the torque is not limited until the expected value I (6 min.) Exceeds the value of the first division point.
  • the operating area There are no restrictions on the use of the operating area. That is, in a short time, it is possible to use such an operation region on the low rotation high load side.
  • the upper limit value of the torque is lowered as the dividing point value exceeding the expected value I (6 min.) Increases.
  • the operating region on the low rotation high load side is gradually limited by the method of limiting. That is, according to the method of the present embodiment, as the expected value I (6 min.) Increases toward the allowable value, the upper limit value of the torque is restricted lower.
  • an index called the expected value I of the number of occurrences of abnormal combustion is introduced, and the operating region on the low rotation and high load side is limited so that the expected value I does not exceed the allowable value. I am doing so. For this reason, it is possible to suppress the occurrence of abnormal combustion while considering as much as possible the limitation of the usable operating range by considering the usage time of the low rotation and high load range. As a result, it is possible to suppress the occurrence of abnormal combustion while suppressing deterioration of drivability of the internal combustion engine 10 as much as possible.
  • the ECU 40 executes the process of step 102, so that the “abnormal combustion probability acquisition means” in the first invention executes the process of step 200.
  • the “expected value calculating means” in the first invention realizes the “torque limiting means” in the first invention by executing the processing of the above step 202 and step 204, respectively.
  • the “fuel dilution index acquisition means” according to the seventh aspect of the present invention is implemented when the ECU 40 executes the process of step 100.
  • the occurrence probability of abnormal combustion is acquired based on the fuel dilution index.
  • the method for acquiring the probability of occurrence of abnormal combustion in the present invention is not limited to the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 異常燃焼の発生を運転条件によらずに良好に抑制可能とする内燃機関の制御装置を提供する。 燃料希釈指標に基づいて内燃機関(10)の異常燃焼の発生確率を取得する。異常燃焼の発生確率に基づいて、所定時間当たりの異常燃焼の発生回数の期待値Iを算出する。期待値Iが所定の許容値を超えないように、内燃機関(10)が発生するトルクの上限値を低く制限する。

Description

内燃機関の制御装置
 この発明は、内燃機関の制御装置に係り、特に、プレイグニッション等の異常燃焼を防止するうえで好適な内燃機関の制御装置に関する。
 従来、例えば特許文献1には、筒内圧力センサを利用して、過早着火と筒内圧力センサの異常とを明確に識別して判定可能とする内燃機関の燃焼診断方法が開示されている。この従来の燃焼診断方法では、着火前の所定クランク角度における筒内圧力の変化の標準偏差が標準偏差閾値以上で、かつ、基準クランク角度と上死点とにおける筒内圧力の差圧を被駆動側の負荷率で除した負荷率筒内差圧が負荷率筒内差圧閾値以上である場合に、過早着火が発生していると判定するようにしている。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
日本特開2009-133284号公報 日本特開2007-224862号公報 日本特開平11-324775号公報
 上述した過早着火(プレイグニッション)等の異常燃焼の発生確率は、内燃機関の運転条件に応じて変化する。従って、異常燃焼の発生を運転条件によらずに良好に抑制可能とする内燃機関の制御が必要とされる。
 この発明は、上述のような課題を解決するためになされたもので、異常燃焼の発生を運転条件によらずに良好に抑制可能とする内燃機関の制御装置を提供することを目的とする。
 第1の発明は、内燃機関の制御装置であって、
 前記内燃機関の異常燃焼の発生確率を取得する異常燃焼確率取得手段と、
 前記異常確率取得手段により取得された前記異常燃焼の発生確率に基づいて、所定時間当たりの前記異常燃焼の発生回数の期待値を算出する期待値算出手段と、
 前記期待値算出手段により算出された前記期待値が所定の許容値を超えないように、前記内燃機関が発生するトルクの上限値を低く制限するトルク制限手段と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記トルク制限手段は、前記期待値算出手段により算出された前記期待値が前記許容値に向けて大きくなるにつれ、前記トルクの上限値をより低く制限することを特徴とする。
 また、第3の発明は、第2の発明において、
 前記トルク制限手段は、前記期待値算出手段により算出された前記期待値が超える、前記許容値の分割点の値が大きいほど、前記トルクの上限値をより低く制限することを特徴とする。
 また、第4の発明は、
 前記内燃機関の異常燃焼の発生確率を当該内燃機関の運転領域と関連付けて取得する異常燃焼確率取得手段と、
 前記運転領域上において前記発生確率が最大となる最大確率点が、当該発生確率が所定の許容値以下となる位置に移行するように、前記内燃機関が発生するトルクの上限値を低く制限するトルク制限手段と、
 を備えることを特徴とする。
 また、第5の発明は、第4の発明において、
 前記トルク制限手段は、前記最大確率点の前記発生確率が前記許容値よりも大きい場合に、当該発生確率が前記許容値と等しいかもしくはそれよりも低くなる位置に前記最大確率点が前記内燃機関の等出力線上で移行するように、前記トルクの上限値を低く制限することを特徴とする。
 また、第6の発明は、第4の発明において、
 前記トルク制限手段は、前記最大確率点の前記発生確率が前記許容値よりも大きい場合に、前記発生確率が許容されるレベルにある許容状態における最大トルクカーブと同等の前記発生確率が前記等出力線上で得られるトルクカーブが上限トルクカーブとなるように、前記トルクの上限値を低く制限することを特徴とする。
 また、第7の発明は、第1乃至第6の発明の何れかにおいて、
 前記異常燃焼確率取得手段は、前記内燃機関の筒内壁面に付着しているオイルの燃料希釈の程度を表す燃料希釈指標を取得する燃料希釈指標取得手段を含み、当該燃料希釈指標取得手段により取得された前記燃料希釈指標に基づいて前記発生確率を取得する手段であることを特徴とする。
 第1の発明によれば、所定時間当たりの異常燃焼の発生回数の期待値が所定の許容値を超えないように、内燃機関が発生するトルクの上限値が低く制限される。これにより、異常燃焼の発生を運転条件によらずに良好に抑制することが可能となる。また、本発明は、期待値の変化に応じてトルクの上限値の制限を行うか否かを決定するものである。このため、期待値が許容値を超えない範囲内では、トルクの上限値の制限によって使用可能な運転領域ができるだけ制限されないようにしつつ、異常燃焼の発生を抑制することが可能となる。
 第2の発明によれば、トルクの上限値の制限によって使用可能な運転領域ができるだけ制限されないようにしつつ、異常燃焼の発生を良好に抑制することが可能となる。
 第3の発明によれば、期待値が許容値に向けて大きくなるにつれ、トルクの上限値をより低く制限するための具体的な手法を提供することができる。
 第4の発明によれば、運転領域上において異常燃焼の発生確率が最大となる最大確率点が、当該発生確率が所定の許容値以下となる位置に移行するように、内燃機関が発生するトルクの上限値が低く制限される。これにより、異常燃焼の発生確率が許容値を超えるような高負荷側の運転領域の使用が制限されることになる。このため、異常燃焼の発生を運転条件によらずに良好に抑制することが可能となる。
 第5および第6の発明によれば、最大確率点の発生確率が許容値よりも大きい場合に、内燃機関が等出力を発揮できる状態で、異常燃焼の発生確率が許容レベルにある許容状態と同等の異常燃焼の発生確率に低減することが可能となる。
 第7の発明によれば、筒内壁面に付着しているオイルの燃料希釈の程度を表す燃料希釈指標に基づいて、異常燃焼の発生確率を良好に取得することができる。
本発明の実施の形態1の内燃機関のシステム構成を説明するための図である。 本発明の実施の形態1における制御に用いる異常燃焼発生確率マップの設定を説明するための図である。 異常燃焼の発生確率指標が許容レベルにある許容状態における異常燃焼発生確率マップを表した図である。 本発明の実施の形態1における、異常燃焼の発生抑制のための特徴的な制御手法を説明するための図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 異常燃焼の発生回数の期待値I(6min.)が変化する様子の一例を表した図である。 本発明の実施の形態2における、異常燃焼の発生抑制のための特徴的な制御手法を説明するための図である。 本発明の実施の形態2において実行されるルーチンのフローチャートである。
実施の形態1.
[システム構成の説明]
 図1は、本発明の実施の形態1の内燃機関10のシステム構成を説明するための図である。本実施形態のシステムは、火花点火式の内燃機関(ガソリンエンジン)10を備えている。内燃機関10の各気筒には、吸気通路12および排気通路14が連通している。また、内燃機関10の各気筒には、筒内に燃料を直接噴射するための燃料噴射弁16と、混合気に点火するための点火プラグ18とが設けられている。
 吸気通路12の入口近傍には、エアクリーナ20が取り付けられている。エアクリーナ20の下流近傍には、吸気通路12に吸入される空気の流量に応じた信号を出力するエアフローメータ22が設けられている。エアフローメータ22の下流には、ターボ過給機24のコンプレッサ24aが設置されている。コンプレッサ24aは、排気通路14に配置されたタービン24bと連結軸を介して一体的に連結されている。
 コンプレッサ24aの下流には、圧縮された空気を冷却するインタークーラ26が設けられている。インタークーラ26の下流には、電子制御式のスロットルバルブ28が設けられている。スロットルバルブ28の下流には、吸気通路内圧力を検出するための吸気圧力センサ30が設置されている。
 また、タービン24bよりも下流側の排気通路14には、排気ガスを浄化するための触媒32が配置されている。また、触媒32の上流には、触媒32に流入する排気ガスの空燃比に対してほぼリニアな出力を発する空燃比センサ34が配置されている。
 また、クランクシャフトの近傍には、エンジン回転数を検出するためのクランク角センサ36が設けられている。また、内燃機関10には、エンジン冷却水温度を検出するための水温センサ38が取り付けられている。更に、図1に示すシステムは、ECU(Electronic Control Unit)40を備えている。ECU40の入力部には、上述したエアフローメータ22、吸気圧力センサ30、空燃比センサ34、クランク角センサ36および水温センサ38等の内燃機関10の運転状態を検知するための各種センサが接続されている。また、ECU40の出力部には、上述した燃料噴射弁16、点火プラグ18およびスロットルバルブ28等の内燃機関10の運転状態を制御するための各種アクチュエータが接続されている。ECU40は、上述した各種センサの出力に基づき、所定のプログラムに従って各種アクチュエータを作動させることにより、内燃機関10の運転状態を制御するものである。
 ところで、内燃機関10の低回転高負荷領域(主に過給領域)において、筒内に存在するオイル(ガソリン混合気よりも発火点が低い)またはデポジットなどの着火源が、圧縮行程中または火花点火後に火炎伝播が到達する以前に自着火することで、プレイグニッションまたはヘビーノックが発生し得る。これらの異常燃焼の発生確率は、内燃機関10の運転条件に応じて変化する。具体的には、オイルやデポジット等の着火源となる物質が燃焼室内に蓄積されることにより、異常燃焼の発生確率が高まる。また、吸気系に蓄積された上記物質の筒内への侵入によっても、異常燃焼の発生確率が高まる。更に、燃料噴射弁16によって筒内に噴射された燃料が筒内壁面に付着すると、筒内壁面に付着しているオイルが燃料によって希釈されることになる。このような燃料によるオイルの希釈(いわゆる燃料希釈)によって、筒内壁面の油膜の表面張力が低下し、筒内を浮遊する液滴の発生確率が増加することで、異常燃焼の発生確率が高くなる。また、内燃機関10の冷却水温度が低いと、燃料希釈率が増加するので、異常燃焼の発生確率が高まることとなる。
[実施の形態1における特徴的な制御]
 本実施形態では、筒内壁面に付着しているオイルの燃料希釈の程度を表す燃料希釈指標を導入する。具体的には、燃料希釈指標は、以下に示すように、排気空燃比から筒内に供給された混合気の空燃比(空気量/燃料噴射量)を減じて得た値として定義されている。
   燃料希釈指標 = 排気空燃比 - (空気量/燃料噴射量)
 例えば、冷却水温度が低くなることで筒内壁面に付着する燃料量が増えると、燃料希釈の度合いが高くなる。その結果、排気空燃比は、筒内に供給された混合気の空燃比よりもリーンになる(大きくなる)。このため、上記のように設定された燃料希釈指標の大きさに基づいて、内燃機関10の筒内の燃料希釈状態を推定することができる。
 図2は、本発明の実施の形態1における制御に用いる異常燃焼発生確率マップの設定を説明するための図である。
 本実施形態では、図2に示すように、上記燃料希釈指標の大きさに応じて、複数の異常燃焼発生確率マップをECU40に備えるようにしている。これらの異常燃焼発生確率マップ(以下、単に「発生確率マップ」と略することがある)は、内燃機関10の運転領域(負荷(トルク)とエンジン回転数とで規定)との関係で、異常燃焼の発生確率指標を定めたものである。この発生確率指標は、異常燃焼の発生確率を示す指標であり、ここでは一例として、1時間当たりの異常燃焼の発生回数であるものとする。
 図2中に実線で示す曲線は、内燃機関10の全負荷(WOT(Wide Open Throttle)時のトルクカーブ(各エンジン回転数における最大トルク点を繋げて得られるカーブ)を示し、同図中に破線で示す曲線は、異常燃焼の発生確率指標が等しい動作点を繋げて得られる当該発生確率指標の等高線を示している。発生確率マップでは、図2に示すように、低回転数領域において、負荷が高くなるにつれ、発生確率指標が大きくなるように設定されている。図2(A)は、燃料希釈指標が小さい標準状態における発生確率マップを示し、図2(B)は、標準状態よりも燃料希釈指標が大きいために異常燃焼の発生確率が高くなる高確率状態における発生確率マップを示している。すなわち、図2(B)に示す発生確率マップは、図2(A)に示すものと比べて、異常燃焼が発生する可能性のある運転領域がより低負荷側にまで延び、かつ、高負荷側の発生確率指標の最大値が大きくなっている。
 図3は、異常燃焼の発生確率指標が許容レベルにある許容状態における異常燃焼発生確率マップを表した図であり、図4は、本発明の実施の形態1における、異常燃焼の発生抑制のための特徴的な制御手法を説明するための図である。
 以上説明した発生確率マップを用いる本実施形態では、運転領域上において発生確率指標が最大となる最大確率点の発生確率指標が所定の許容値(図3に示す許容状態における発生確率指標の最大値)よりも大きい場合(例えば、図2(B)に示す高確率状態が該当)には、次のような制御を行うようにした。すなわち、この場合には、図4に示すように、発生確率が上記許容値と等しくなる位置に最大確率点が内燃機関10の等出力線上で移行するように、内燃機関10が発生するトルクの上限値を低く制限するようにした。
 より具体的には、本実施形態では、最大確率点の発生確率指標が上記許容値よりも大きい場合に、発生確率が許容されるレベルにある図3に示す許容状態における最大トルクカーブと同等の発生確率が等出力線上で得られるトルクカーブが上限トルクカーブとなるように、トルクの上限値を低く制限するようにした。
 図5は、上述した制御を実現するために、本実施の形態1においてECU40が実行する制御ルーチンを示すフローチャートである。尚、本ルーチンは、所定の制御周期毎に繰り返し実行されるものとする。
 図5に示すルーチンでは、先ず、上述したように、排気空燃比から筒内に供給された混合気の空燃比(空気量/燃料噴射量)を減じて得た値として定義された燃料希釈指標が算出される(ステップ100)。尚、上記排気空燃比には、空燃比センサ34の出力に基づいて算出される値が使用され、上記空気量には、エアフローメータ22もしくは吸気圧力センサ30の出力に基づいて算出される値が使用され、上記燃料噴射量は、燃料噴射弁16による燃料噴射期間および燃料圧力に基づいて算出される値が使用される。
 次に、上記ステップ100において算出された燃料希釈指標に基づいて、異常燃焼発生確率マップが読み込まれる(ステップ102)。既述したように、ECU40には、燃料希釈指標の大きさに応じて複数の発生確率マップが予め記憶されている。本ステップ102では、現在の燃料希釈指標に対応した発生確率マップが取得される。次いで、読み込まれた発生確率マップ上の最大確率点の発生確率指標が許容状態の発生確率マップ上の発生確率指標の最大値(上記許容値)よりも大きいか否かが判定される(ステップ104)。
 その結果、上記ステップ104の判定が成立する場合には、許容状態における最大トルクカーブと同等の発生確率が等出力線上で得られるトルクカーブが上限トルクカーブとなるように、トルクの上限値が低く制限される(ステップ106)。
 以上説明した図5に示すルーチンによれば、最大確率点の発生確率指標が上記許容値よりも大きい場合に、上記許容状態における最大トルクカーブと同等の発生確率が等出力線上で得られるトルクカーブが上限トルクカーブとなるように、トルクの上限値が低く制限される。これにより、図4に示すように、発生確率が上記許容値と等しくなる位置に最大確率点が等出力線上で移行するようになる。トルクの上限値の制限は、より具体的には、スロットルバルブ28の開度調整によって吸入空気量を制限することによって行われる。
 上記の制御が行われた結果、異常燃焼の発生確率を下げるために、図4に示すように、上限トルクカーブを超える低回転高負荷側の運転領域の使用が制限されることになる。これにより、燃料希釈指標が大きいことで異常燃焼の発生確率が高くなる状況下において、異常燃焼の発生確率を上記許容状態と同等にまで下げることができる。このため、異常燃焼の発生を運転条件によらずに良好に抑制することが可能となる。
 また、上記ルーチンによれば、上記許容状態における最大トルクカーブと同等の発生確率が等出力線上で得られるトルクカーブを上限トルクカーブとしたことによって、内燃機関10が等出力を発揮できる状態で、上記許容状態と同等の異常燃焼の発生確率に低減することが可能となる。
 ところで、上述した実施の形態1においては、図2乃至図4に示すように、異常燃焼の発生確率が最大となる最大確率点が1点となるケースについて説明を行った。しかしながら、本発明における最大確率点は、運転領域上に1点のみ存在するものに限らない。すなわち、本発明は、最大確率点が運転領域上に複数点存在するものも対象となる。
 また、上述した実施の形態1においては、発生確率が上記許容値と等しくなる位置に最大確率点が等出力線上で移行するように、トルクの上限値を低く制限するようにしている。しかしながら、本発明は、これに限定されるものではなく、発生確率が上記許容値よりも低くなる位置に最大確率点が等出力線上で移行するように、トルクの上限値を低く制限するものであってもよい。
 尚、上述した実施の形態1においては、ECU40が、上記ステップ102の処理を実行することにより前記第4の発明における「異常燃焼確率取得手段」が、上記ステップ104およびステップ106の処理を実行することにより前記第4の発明における「トルク制限手段」が、それぞれ実現されている。
 また、上述した実施の形態1においては、ECU40が上記ステップ100の処理を実行することにより前記第7の発明における「燃料希釈指標取得手段」が実現されている。
実施の形態2.
 次に、図6乃至図8を参照して、本発明の実施の形態2について説明する。
 本実施形態のシステムは、図1に示すハードウェア構成を用いて、ECU40に図5に示すルーチンに代えて後述の図8に示すルーチンを実行させることにより実現することができるものである。
 上述した実施の形態1の制御手法によれば、異常燃焼の発生確率が高い状況下では、低回転高負荷側の運転領域の使用が制限されるため、低速トルクが常に低下することになる。その結果、内燃機関10のドライバビリティが悪化してしまう可能性がある。ここで、実際には、異常燃焼の発生確率が高い高確率状態(例えば、図2(B))であっても、発生確率指標が大きな低回転高負荷側の運転領域を使用する時間が短ければ、異常燃焼が実際に発生してしまう可能性は低い。逆に、異常燃焼の発生確率が増加していない低確率状態(例えば、図2(A)に示す標準状態)であっても、発生確率指標が大きな低回転高負荷側の運転領域を使用する時間が長ければ、異常燃焼が実際に発生してしまう可能性が高くなる。
[実施の形態2における特徴的な制御]
 そこで、本実施形態では、異常燃焼の発生を抑制するために運転領域を制限する際に用いる指標として、以下に説明する指標を導入するようにした。
 図2(B)中に示す発生確率指標の数値を、ここでは、1時間当たりの異常燃焼の発生回数とする。そうすると、図2(B)中の発生確率指標2の等高線上で内燃機関10が1時間運転された際の異常燃焼の発生回数の期待値I(60min.)は、エンジン回転数Nと負荷(トルク)Tとによって定義される内燃機関10の各運転領域における異常燃焼の発生確率p(N,T)を用いて、以下のように表すことができる。
Figure JPOXMLDOC01-appb-I000001
 図6は、異常燃焼の発生回数の期待値I(6min.)が変化する様子の一例を表した図である。
 ここでは、60分当たりの異常燃焼の発生回数の許容値を1回とする。そうすると、6分当たりでは、当該許容値は0.1となる。また、6分当たりの異常燃焼の発生回数の期待値I(6min.)は、内燃機関10の運転中の過去6分間の異常燃焼の発生確率p(N,T)を積分することによって、以下のように表すことができる。
Figure JPOXMLDOC01-appb-I000002
 期待値I(6min.)は、上記のように運転中の過去6分間の異常燃焼の発生確率p(N,T)の積分値であるため、過去6分間の内燃機関10の運転履歴(その間に使用される運転領域)に応じて、図6に示すように変動する。例えば、低回転高負荷領域が長く使用されると、期待値I(6min.)が増加するようになる。そして、この期待値I(6min.)が許容値0.1を超えると、60分当たりの異常燃焼の発生回数が許容値である1回を超えることになる。
 そこで、本実施形態では、異常燃焼の発生を抑制するために、所定時間(ここでは、6分間)当たりの異常燃焼の発生回数の期待値I(ここでは、I(6min.))が所定の許容値(ここでは、0.1)を超えないように、内燃機関10が発生するトルクの上限値を低く制限するようにした。
 図7は、本発明の実施の形態2における、異常燃焼の発生抑制のための特徴的な制御手法を説明するための図である。
 図7に表された運転履歴は、燃料希釈指標が大きいために図2(B)に示す高確率状態(発生確率指標の最大値が5である状態)にあるときの運転履歴である。本実施形態では、この場合の異常燃焼の発生回数の許容値(ここでは、0.1)を、現在の燃料希釈指標に応じた異常燃焼の発生確率指標の最大値である5(図2(B)中の等高線の数)で等分割するようにした。
 そのうえで、期待値I(6min.)が5つに等分割された後の個々の分割点の値を超える度に、トルクの上限値をより低く制限するようにした。より具体的には、図7に示すように、期待値I(6min.)が超える分割点の値が大きいほど、より値の小さな発生確率指標の等高線を超えないようにトルクの上限値をより低く制限するようにした(すなわち、低回転高負荷側の運転領域をより広く制限するようにした)。
 図8は、上述した制御を実現するために、本実施の形態2においてECU40が実行する制御ルーチンを示すフローチャートである。尚、図8において、実施の形態1における図5に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
 図8に示すルーチンでは、ステップ102において燃料希釈指標に応じた異常燃焼発生確率マップが読み込まれた後に、異常燃焼の発生回数の期待値I(6min.)が算出される(ステップ200)。より具体的には、読み込まれた異常燃焼発生確率マップを参照して得た異常燃焼の発生確率p(N,T)を用いて、異常燃焼の発生回数の期待値I(6min.)が上述した関係式に従って算出される。
 次に、上記ステップ200において算出された期待値(6min.)が許容値の分割点の値の何れかを超えたか否かが判定される(ステップ202)。各分割点の値は、既述したように、異常燃焼の発生回数の許容値(ここでは、0.1)を、上記ステップ102において読み込まれた異常燃焼発生確率マップにおける発生確率指標の最大値(図2(B)の発生確率マップの場合では5)で等分割して得られた値である。例えば、図2(B)の発生確率マップの場合では、発生確率指標の最大値が5となるので、分割点の値には、0.02~0.1までの5つの値(図7参照)が対応することになる。このように、燃料希釈指標に応じて読み込まれた異常燃焼発生確率マップ上の発生確率指標の最大値に応じて、異常燃焼の発生回数の許容値の分割数が変更される。
 上記ステップ202の判定が成立する場合には、期待値I(6min.)が超えた分割点の値の大きさに応じて、内燃機関10が発生するトルクの上限値がより低く制限される(ステップ204)。具体的には、ECU40には、発生確率指標の最大値の異なる異常燃焼発生確率マップ毎に、個々の分割点の値と、これらのそれぞれに対応する異常燃焼発生確率マップ上の発生確率指標との関係が記憶されている。そして、これらの分割点の値と発生確率指標とは、分割点の値が大きくなるほど、対応する発生確率指標が小さくなるような関係で記憶されている。本ステップ204では、期待値I(6min.)が今回超えた分割点の値に対応する発生確率指標の等高線を超えないように低回転高負荷側の運転領域の使用を禁止する態様で、トルクの上限値の制限が行われる。
 図7中に破線で示す波形は、以上説明した図8に示すルーチンの制御が行われない場合のものである。これに対し、上記ルーチンに示す制御を行うことにより、期待値I(6min.)が各分割点の値を超える度にトルクの上限値の制限(低回転高負荷側の運転領域の制限)が行われるので、図7中に実線で示す波形のように、許容値を超えないように期待値I(6min.)を低減することができる。これにより、異常燃焼の発生を運転条件によらずに良好に抑制することが可能となる。
 また、本実施形態の制御手法によれば、期待値I(6min.)が最初の分割点の値を超えるまでは、トルクの上限値の制限が行われず、その結果、低回転高負荷側の運転領域の使用の制限が行われない。つまり、短時間であれば、そのような低回転高負荷側の運転領域の使用が可能となる。また、期待値I(6min.)が最初の分割点の値を超えた後であっても、期待値I(6min.)が超える分割点の値が大きくなるにつれ、トルクの上限値をより低く制限するという手法によって、低回転高負荷側の運転領域が徐々に制限されるようにしている。つまり、本実施形態の手法によれば、期待値I(6min.)が許容値に向けて大きくなるにつれ、トルクの上限値がより低く制限されるようになる。
 上記のように、本実施形態では、異常燃焼の発生回数の期待値Iという指標を導入して、この期待値Iが許容値を超えないように低回転高負荷側の運転領域の制限を行うようにしている。このため、低回転高負荷領域の使用時間を考慮することによって使用可能な運転領域の制限をできるだけ設けないようにしつつ、異常燃焼の発生を抑制することが可能となる。これにより、内燃機関10のドライバビリティの悪化を極力抑制しつつ、異常燃焼の発生を抑制することが可能となる。
 尚、上述した実施の形態2においては、ECU40が、上記ステップ102の処理を実行することにより前記第1の発明における「異常燃焼確率取得手段」が、上記ステップ200の処理を実行することにより前記第1の発明における「期待値算出手段」が、上記ステップ202およびステップ204の処理を実行することにより前記第1の発明における「トルク制限手段」が、それぞれ実現されている。
 また、上述した実施の形態2においては、ECU40が上記ステップ100の処理を実行することにより前記第7の発明における「燃料希釈指標取得手段」が実現されている。
 ところで、上述した実施の形態1および2においては、燃料希釈指標に基づいて、異常燃焼の発生確率を取得するようにしている。しかしながら、本発明における異常燃焼の発生確率の取得手法は、上記手法に限定されるものではない。
10 内燃機関
12 吸気通路
14 排気通路
16 燃料噴射弁
18 点火プラグ
22 エアフローメータ
24 ターボ過給機
24a コンプレッサ
24b タービン
28 スロットルバルブ
30 吸気圧力センサ
32 触媒
34 空燃比センサ
36 クランク角センサ
38 水温センサ
40 ECU(Electronic Control Unit)

Claims (7)

  1.  前記内燃機関の異常燃焼の発生確率を取得する異常燃焼確率取得手段と、
     前記異常確率取得手段により取得された前記異常燃焼の発生確率に基づいて、所定時間当たりの前記異常燃焼の発生回数の期待値を算出する期待値算出手段と、
     前記期待値算出手段により算出された前記期待値が所定の許容値を超えないように、前記内燃機関が発生するトルクの上限値を低く制限するトルク制限手段と、
     を備えることを特徴とする内燃機関の制御装置。
  2.  前記トルク制限手段は、前記期待値算出手段により算出された前記期待値が前記許容値に向けて大きくなるにつれ、前記トルクの上限値をより低く制限することを特徴とする請求項1記載の内燃機関の制御装置。
  3.  前記トルク制限手段は、前記期待値算出手段により算出された前記期待値が超える、前記許容値の分割点の値が大きいほど、前記トルクの上限値をより低く制限することを特徴とする請求項2記載の内燃機関の制御装置。
  4.  前記内燃機関の異常燃焼の発生確率を当該内燃機関の運転領域と関連付けて取得する異常燃焼確率取得手段と、
     前記運転領域上において前記発生確率が最大となる最大確率点が、当該発生確率が所定の許容値以下となる位置に移行するように、前記内燃機関が発生するトルクの上限値を低く制限するトルク制限手段と、
     を備えることを特徴とする内燃機関の制御装置。
  5.  前記トルク制限手段は、前記最大確率点の前記発生確率が前記許容値よりも大きい場合に、当該発生確率が前記許容値と等しいかもしくはそれよりも低くなる位置に前記最大確率点が前記内燃機関の等出力線上で移行するように、前記トルクの上限値を低く制限することを特徴とする請求項4記載の内燃機関の制御装置。
  6.  前記トルク制限手段は、前記最大確率点の前記発生確率が前記許容値よりも大きい場合に、前記発生確率が許容されるレベルにある許容状態における最大トルクカーブと同等の前記発生確率が前記等出力線上で得られるトルクカーブが上限トルクカーブとなるように、前記トルクの上限値を低く制限することを特徴とする請求項4記載の内燃機関の制御装置。
  7.  前記異常燃焼確率取得手段は、前記内燃機関の筒内壁面に付着しているオイルの燃料希釈の程度を表す燃料希釈指標を取得する燃料希釈指標取得手段を含み、当該燃料希釈指標取得手段により取得された前記燃料希釈指標に基づいて前記発生確率を取得する手段であることを特徴とする請求項1乃至6の何れか1項記載の内燃機関の制御装置。
PCT/JP2011/053527 2011-02-18 2011-02-18 内燃機関の制御装置 WO2012111145A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/978,664 US8949003B2 (en) 2011-02-18 2011-02-18 Control apparatus for internal combustion engine
EP11858573.6A EP2677151B1 (en) 2011-02-18 2011-02-18 Device for controlling internal combustion engine
JP2012557757A JP5556910B2 (ja) 2011-02-18 2011-02-18 内燃機関の制御装置
CN201180067498.8A CN103370520B (zh) 2011-02-18 2011-02-18 内燃机的控制装置
PCT/JP2011/053527 WO2012111145A1 (ja) 2011-02-18 2011-02-18 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053527 WO2012111145A1 (ja) 2011-02-18 2011-02-18 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012111145A1 true WO2012111145A1 (ja) 2012-08-23

Family

ID=46672105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053527 WO2012111145A1 (ja) 2011-02-18 2011-02-18 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8949003B2 (ja)
EP (1) EP2677151B1 (ja)
JP (1) JP5556910B2 (ja)
CN (1) CN103370520B (ja)
WO (1) WO2012111145A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199667A1 (ja) * 2013-06-11 2014-12-18 日産自動車株式会社 内燃機関の制御装置および制御方法
JP2015098790A (ja) * 2013-11-18 2015-05-28 トヨタ自動車株式会社 内燃機関の制御装置
JP2015229966A (ja) * 2014-06-05 2015-12-21 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5502176B2 (ja) * 2012-10-26 2014-05-28 三菱電機株式会社 内燃機関の制御装置
US10731585B2 (en) 2014-02-26 2020-08-04 Nissan Motor Co., Ltd. Control device of an internal combustion engine and a control method thereof
MY165603A (en) * 2015-03-04 2018-04-16 Nissan Motor Internal combustion engine control device and internal combustion engine control method
FR3048264B1 (fr) * 2016-02-26 2020-01-03 Peugeot Citroen Automobiles Sa Procede de gestion preventive de combustions anormales dans un moteur thermique
FR3049311A3 (fr) * 2016-03-24 2017-09-29 Renault Sas "procede de commande d'un groupe motopropulseur en fonction d'un parametre representatif de la diminution du pouvoir de lubrification d'un fluide lubrifiant"
US10288019B2 (en) * 2016-07-21 2019-05-14 Ford Global Technologies, Llc Secondary system and method for controlling an engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324775A (ja) 1998-05-12 1999-11-26 Nippon Soken Inc 吸排気弁制御装置
JP2001193534A (ja) * 2000-01-17 2001-07-17 Nissan Motor Co Ltd エンジンの制御装置
JP2002357174A (ja) * 2001-05-31 2002-12-13 Ngk Spark Plug Co Ltd 2サイクル内燃機関の点火時期制御装置
JP2007224862A (ja) 2006-02-24 2007-09-06 Toyota Motor Corp 異常燃焼予測装置
JP2007232007A (ja) * 2006-02-28 2007-09-13 Toyota Motor Corp 内燃機関の制御装置
JP2009133284A (ja) 2007-11-30 2009-06-18 Mitsubishi Heavy Ind Ltd 内燃機関の燃焼診断方法および燃焼診断装置
JP2010133367A (ja) * 2008-12-05 2010-06-17 Denso Corp 筒内噴射内燃機関の燃料噴射制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233112B2 (ja) * 1998-10-27 2001-11-26 トヨタ自動車株式会社 内燃機関の制御装置
JP3066005B1 (ja) * 1999-02-22 2000-07-17 大阪瓦斯株式会社 内燃機関の失火検出方法及び装置
DE10040251A1 (de) * 2000-08-14 2002-03-07 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und/oder Regeleinrichtung zum Betreiben einer Brennkraftmaschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324775A (ja) 1998-05-12 1999-11-26 Nippon Soken Inc 吸排気弁制御装置
JP2001193534A (ja) * 2000-01-17 2001-07-17 Nissan Motor Co Ltd エンジンの制御装置
JP2002357174A (ja) * 2001-05-31 2002-12-13 Ngk Spark Plug Co Ltd 2サイクル内燃機関の点火時期制御装置
JP2007224862A (ja) 2006-02-24 2007-09-06 Toyota Motor Corp 異常燃焼予測装置
JP2007232007A (ja) * 2006-02-28 2007-09-13 Toyota Motor Corp 内燃機関の制御装置
JP2009133284A (ja) 2007-11-30 2009-06-18 Mitsubishi Heavy Ind Ltd 内燃機関の燃焼診断方法および燃焼診断装置
JP2010133367A (ja) * 2008-12-05 2010-06-17 Denso Corp 筒内噴射内燃機関の燃料噴射制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677151A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199667A1 (ja) * 2013-06-11 2014-12-18 日産自動車株式会社 内燃機関の制御装置および制御方法
EP3009646A4 (en) * 2013-06-11 2016-06-29 Nissan Motor DEVICE AND METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
JP6020722B2 (ja) * 2013-06-11 2016-11-02 日産自動車株式会社 内燃機関の制御装置および制御方法
CN105264211B (zh) * 2013-06-11 2017-07-28 日产自动车株式会社 内燃机的控制装置及控制方法
US9745904B2 (en) 2013-06-11 2017-08-29 Nissan Motor Co., Ltd. Internal combustion engine control device, and control method
JP2015098790A (ja) * 2013-11-18 2015-05-28 トヨタ自動車株式会社 内燃機関の制御装置
JP2015229966A (ja) * 2014-06-05 2015-12-21 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
EP2677151B1 (en) 2016-06-01
JPWO2012111145A1 (ja) 2014-07-03
EP2677151A4 (en) 2014-11-05
JP5556910B2 (ja) 2014-07-23
CN103370520B (zh) 2015-04-22
US8949003B2 (en) 2015-02-03
EP2677151A1 (en) 2013-12-25
US20130333662A1 (en) 2013-12-19
CN103370520A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5556910B2 (ja) 内燃機関の制御装置
US7861686B2 (en) Fuel injection control apparatus and fuel injection control method
JP4826560B2 (ja) 内燃機関の燃料性状検出装置
US10208692B2 (en) Misfire detecting system for engine
WO2011155054A1 (ja) 内燃機関の制御装置
US20170276084A1 (en) Misfire detecting system for engine
JP2011241727A (ja) 内燃機関の異常検出装置および内燃機関の制御装置
JP5708543B2 (ja) 内燃機関の制御装置
JP4900513B1 (ja) 内燃機関の異常燃焼判定装置
JP5783107B2 (ja) 内燃機関の制御装置
JP2011085081A (ja) エンジンの失火判定方法
JP6795933B2 (ja) ターボ回転数制御装置およびターボ回転数制御方法
JP2015001156A (ja) 内燃機関の熱発生率波形作成装置及び燃焼状態診断装置
US11920535B2 (en) Apparatuses, methods, systems, and techniques of misfire detection using engine speed sensor
JP2011157852A (ja) 内燃機関の制御装置
JP2012145041A (ja) 内燃機関の制御装置
JP5035285B2 (ja) 過給機付き内燃機関の制御装置
US10094316B2 (en) Control apparatus for internal combustion engine
JP2012112300A (ja) 内燃機関の制御装置
JP6497174B2 (ja) 過給機付き内燃機関の制御装置
JP6494822B1 (ja) 内燃機関の制御装置、及び内燃機関の制御方法
JP2016156295A (ja) 内燃機関の燃料噴射制御装置及び燃料噴射制御方法
JP5894041B2 (ja) 内燃機関の制御装置
JP2013104323A (ja) 内燃機関の制御装置
JP2013160130A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557757

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13978664

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011858573

Country of ref document: EP