[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012108311A1 - 液晶ディスプレイ - Google Patents

液晶ディスプレイ Download PDF

Info

Publication number
WO2012108311A1
WO2012108311A1 PCT/JP2012/052240 JP2012052240W WO2012108311A1 WO 2012108311 A1 WO2012108311 A1 WO 2012108311A1 JP 2012052240 W JP2012052240 W JP 2012052240W WO 2012108311 A1 WO2012108311 A1 WO 2012108311A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
substrate
mode
pretilt angle
crystal display
Prior art date
Application number
PCT/JP2012/052240
Other languages
English (en)
French (fr)
Inventor
敢 三宅
井上 威一郎
寺下 慎一
宮地 弘一
宏一 松橋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012108311A1 publication Critical patent/WO2012108311A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133746Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for high pretilt angles, i.e. higher than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations

Definitions

  • the present invention relates to a liquid crystal display including a liquid crystal cell and a polarizing plate. More specifically, the present invention relates to a VATN (Vertical Aligned Twisted Nematic) mode having a vertically aligned liquid crystal layer, and particularly to a liquid crystal display suitable for small and medium sized liquid crystal applications such as mobile devices, electronic books, and PC monitors. It is.
  • VATN Very Aligned Twisted Nematic
  • a liquid crystal display is configured by sandwiching a liquid crystal display element between a pair of substrates such as a glass substrate, and has a feature of being thin, light and low power consumption.
  • Liquid crystal displays are indispensable for daily life and business because they are used for mobile applications, various monitors, televisions, etc., taking advantage of these features.
  • liquid crystal displays in various display modes (generally also referred to as liquid crystal display panels) have been studied. In each display mode, an electrode arrangement and / or a substrate design specific to each display mode is employed in order to change the optical characteristics of the liquid crystal layer.
  • a display mode that can be applied to a small and medium-sized liquid crystal display for example, a CPA (ContinuousConPinwheel Alignment) mode can be cited.
  • a liquid crystal display suitable for such a CPA mode a liquid crystal layer having a vertical alignment type liquid crystal layer, and having an alignment control structure in the liquid crystal layer that expresses an alignment control force that takes a radially inclined alignment state when a voltage is applied.
  • a display device is disclosed (for example, see Patent Document 1).
  • a liquid crystal layer containing liquid crystal molecules having negative dielectric anisotropy is sandwiched between an active matrix substrate and a counter substrate, as in the above-described configuration of the liquid crystal display device.
  • the opposing substrate has a convex portion which is an alignment regulating structure for stabilizing the radial tilt alignment in a region corresponding to the center of the opposing electrode and the liquid crystal domain.
  • a liquid crystal display device in which a vertical alignment film is provided on the surface of the active matrix substrate and the counter substrate on the liquid crystal layer side is disclosed (for example, see Patent Document 2).
  • This liquid crystal display device includes a polymer structure formed on a vertical alignment film, and the orientation of the pretilt direction of liquid crystal molecules around the polymer structure is the same as the tilt direction when a voltage is applied even in the absence of voltage application. It is defined in the same direction.
  • the polymer structure is formed by previously mixing a polymerizable composition (polymerizable monomer or oligomer) into the liquid crystal material constituting the liquid crystal layer and polymerizing the polymerizable composition with ultraviolet light irradiation. .
  • This polymerization process is also referred to as a PSA (Polymer-Sustained Alignment) process.
  • the present invention relates to a liquid crystal display that operates in a so-called VA (Vertically Aligned) mode in which liquid crystal molecules having negative dielectric anisotropy are aligned in a substantially vertical direction with respect to the panel surface of the liquid crystal display, and the liquid crystal molecules form a twist angle.
  • VA Very Aligned
  • a liquid crystal display device in which liquid crystal molecules are aligned in a direction substantially perpendicular to a pair of substrates is disclosed (see, for example, Patent Documents 3 and 4).
  • Patent Document 3 describes that in this liquid crystal display device, response speed, viewing angle, and contrast are optimized.
  • a configuration using an elliptically polarizing plate is disclosed (see, for example, Patent Documents 5 to 7), and these documents particularly describe a TN mode liquid crystal display device. Describes that the viewing angle of contrast can be expanded.
  • the TN mode using an elliptically polarizing plate is also referred to as an elliptically polarized TN mode.
  • the display is crushed at a low gradation at an oblique viewing angle, and there is a problem that the transmittance is reduced due to the rivet that is an alignment regulating structure.
  • the reason is as follows. That is, the problem that the display is crushed at a low gradation is caused by the fact that the pretilt angle of the CPA mode is 90 °, and the direction in which the liquid crystal molecules are tilted is not determined near the threshold when a voltage is applied.
  • the rivet serves as a trigger for the liquid crystal molecules to fall radially around the rivet. In the case of the CPA mode, as shown in FIG.
  • Such problems include the occurrence of image sticking due to the residual monomer in the liquid crystal layer, a decrease in reliability caused by decomposition or degradation of the liquid crystal due to ultraviolet irradiation, and a decrease in reliability due to the residual monomer.
  • a display mode that can be manufactured by a more reliable and simple process is required.
  • Patent Document 3 discloses an embodiment using a linearly polarizing plate in a liquid crystal display device that combines the VA mode and the TN mode as described above, and optimizes contrast, viewing angle characteristics, and response characteristics. Is disclosed.
  • a mode in which the VA mode and the TN mode are combined is also referred to as a VATN (Vertical Aligned Twisted Nematic) mode
  • a VATN mode using a linearly polarizing plate is also referred to as a linearly polarized VATN mode.
  • the transmittance decreases as described above as the pretilt angle increases. Conversely, the transmittance increases as the pretilt angle decreases.
  • the birefringence felt by the lens increases, so that light leakage increases, resulting in a decrease in contrast.
  • a defect line dark line
  • the horizontal alignment mode represented by the TN mode has a lower contrast than the VA (vertical alignment) mode.
  • touch panel type liquid crystal displays have become widespread rapidly, and in particular, the demand for medium- and small-sized liquid crystal panels having a touch panel function has been greatly increased.
  • the liquid crystal alignment is disturbed by the pressing, and the problem that the alignment does not return to the original state has been clarified.
  • the pretilt angle is 90 °, that is, the vertical direction in which the liquid crystal molecules have no tilt with respect to the substrate surface. Since the alignment is disturbed, it takes a long time to restore the alignment disorder, and the alignment is not stable (it takes a long time to restore the alignment).
  • the present invention has been made in view of the above-described present situation, and an object thereof is to provide a liquid crystal display of a new display mode that can realize high transmittance, high contrast, and high alignment stability.
  • high transmittance and high contrast can be realized.
  • the transmittance decreases when the pretilt angle is large, and the contrast decreases when the pretilt angle is small.
  • Another object of the present invention is to provide a liquid crystal display of a new display mode that can solve the problems such as the reduction in contrast and the stability of alignment of the liquid crystal when the panel surface is pressed.
  • the inventors of the present invention have studied various combinations of the display mode and the polarizing plate.
  • the liquid crystal display adopting the CPA mode and the circular polarizing plate and further adopting the PSA technology and the linear polarization VATN mode liquid crystal display are described above. Since such a problem to be improved arises, attention was paid to further room for optimization in optimizing the display mode and the polarizing plate.
  • One aspect of the present invention is a liquid crystal display that uses a circularly polarized VATN mode or a circularly polarized VAECB mode as a new display mode.
  • the liquid crystal display according to the present invention is also expressed as a circularly polarized VATN mode or a circularly polarized VAECB mode.
  • the circularly polarized VATN mode liquid crystal molecules are twisted and aligned as in the general TN mode, but the pretilt angle is about 5 ° in the TN mode, and the pretilt angle is large in the circularly polarized VATN mode ( In a preferred embodiment, about 80 ° or more).
  • a liquid crystal element combining a TN mode with a circularly polarizing plate cannot be used as a display element. This is because in order to achieve high transmittance in the circularly polarized light mode, it is necessary that the liquid crystal layer does not contain a twist component. In order to allow a liquid crystal element combining a TN mode and a circularly polarizing plate to function as a display element, a seemingly impossible configuration is required in which an orientation with less twisted components is achieved from the twisted initial orientation. In the CPA mode, since there is no twist component, if a circularly polarizing plate is adopted in the CPA mode, high transmittance can be obtained from that point alone.
  • the liquid crystal molecules are usually twisted at a predetermined angle (for example, 90 °) between the upper and lower substrates, it is expected that the transmittance is lower than that in the CPA mode.
  • a predetermined angle for example, 90 °
  • the torsional component can be remarkably reduced, higher transmittance can be achieved than in the CPA mode, and the display is crushed at an oblique viewing angle at a low gradation. It was found that such a problem can be solved.
  • the circularly polarized VAECB mode does not include a twist component, and the circularly polarized VAECB mode is characterized by a large pretilt angle (in the preferred embodiment, approximately 80 ° or more), which is higher transmission than the CPA mode. It is possible to solve the problem that the display is crushed at an oblique viewing angle at a low gradation. Furthermore, in these methods, it is not necessary to employ the PSA technology.
  • the voltage holding ratio (VHR: VoltageVHolding Ratio) does not decrease, Since an additive such as a monomer is not added to the liquid crystal material, that is, no residual monomer is contained in the liquid crystal layer, a highly reliable liquid crystal display can be manufactured. Furthermore, it is not necessary to arrange a protrusion (rivet) in the pixel. In that case, a decrease in the transmittance due to the protrusion is suppressed, and the transmittance becomes higher.
  • a circularly polarizing plate is used instead of only a linearly polarizing plate. Further, by optimizing the pretilt angle, a high transmittance higher than that of the linearly polarized VATN mode can be achieved. As described above, when the circularly polarizing plate is used in the VATN mode and the VAECB mode, it should be noted that the transmittance hardly decreases even if the tilt angles (pretilt angles) of the liquid crystal molecules with respect to the upper and lower substrates are different from each other due to process factors. Can be mentioned.
  • the difference between the pretilt angles on the upper and lower substrates is not easily affected, and thus such a difference in the pretilt angle occurs in the production process. And a new feature that the process margin is wide can be added to the VATN mode and the VAECB mode.
  • the essential configuration of the liquid crystal display according to the present invention is as follows. That is, another aspect of the present invention is a liquid crystal display including a liquid crystal cell and a polarizing plate,
  • the liquid crystal cell includes a first substrate and a second substrate including a plurality of pixels, a vertically aligned liquid crystal layer including liquid crystal molecules provided between the substrates, and a liquid crystal layer side of the first substrate.
  • Each of the plurality of pixels has one or more alignment regions, In the alignment region, the major axis direction of the liquid crystal molecules has a pretilt angle with respect to the first and second substrate surfaces, and the major axis direction of the liquid crystal molecules in the vicinity of the first alignment film is projected onto the first substrate surface; The direction in which the major axis direction of the liquid crystal molecules in the vicinity of the second alignment film is projected on the surface of the second substrate intersects each other,
  • the polarizing plate is a liquid crystal display in which a circularly polarizing plate provided on the viewer side of the liquid crystal cell is essential.
  • liquid crystal display comprising a liquid crystal cell and a polarizing plate
  • the liquid crystal cell includes a first substrate and a second substrate including a plurality of pixels, a vertically aligned liquid crystal layer including liquid crystal molecules provided between the substrates, and a liquid crystal layer side of the first substrate.
  • Each of the plurality of pixels has one or more alignment regions, In the alignment region, the major axis direction of the liquid crystal molecules has a pretilt angle with respect to the first and second substrate surfaces, and the major axis direction of the liquid crystal molecules in the vicinity of the first alignment film is projected onto the first substrate surface; The major axis direction of the liquid crystal molecules in the vicinity of the second alignment film is parallel to and opposite to the directions projected on the second substrate surface,
  • the polarizing plate is a liquid crystal display in which a circularly polarizing plate provided on the viewer side of the liquid crystal cell is essential.
  • first and second substrates are also referred to as upper and lower substrates
  • one of the first and second substrates is also referred to as an upper substrate
  • the other is a lower substrate.
  • the liquid crystal display according to the present invention is a vertical alignment mode liquid crystal display, and includes a VATN mode or VAECB mode liquid crystal cell and a circular polarizer on the viewer side of the liquid crystal cell.
  • the VATN mode is a kind of display mode of a liquid crystal display and is classified as a TN mode.
  • the major axis direction of the liquid crystal molecules in the liquid crystal layer is usually the alignment regulation of the alignment film in a state where the voltage in the liquid crystal layer is less than the threshold voltage, preferably in a state where no voltage is applied to the liquid crystal layer.
  • the VAECB mode is a kind of display mode of a liquid crystal display and is classified as an ECB mode.
  • the major axis direction of the liquid crystal molecules in the liquid crystal layer usually has a pretilt angle with respect to the substrate surface while the major axis direction of the liquid crystal layer has a vertical alignment with respect to the substrate surface by the alignment regulating force of the alignment film.
  • the directions in which the major axis directions of the liquid crystal molecules in the vicinity of the alignment film surfaces of the upper and lower substrates are projected on the substrate surface are parallel and opposite to each other.
  • a vertical alignment film may be formed on both substrates and an alignment process (preferably a photo alignment process) for providing a pretilt angle may be performed.
  • the VATN mode and VAECB mode liquid crystal layers are usually configured to include nematic liquid crystal molecules having negative dielectric anisotropy.
  • the liquid crystal cell includes a plurality of pixels each having one or more alignment regions (domains), and has a vertical alignment type liquid crystal layer as described above sandwiched between first and second substrates.
  • the orientation in which the major axis direction of the liquid crystal molecules in the vicinity of the first alignment film is projected onto the surface of the first substrate and the major axis direction of the liquid crystal molecules in the vicinity of the second alignment film are in the second state.
  • the directions projected on the substrate surface intersect each other.
  • the orientation direction of the liquid crystal molecules near the first substrate and the orientation direction of the liquid crystal molecules near the second substrate are set to intersect each other in each domain.
  • the angle (intersection angle) formed by both positions is not particularly limited and can be set as appropriate.
  • the feature of the circularly polarized VATN mode according to the present invention that the allowable range of the difference in pretilt angle between the upper and lower substrates is wider than that of the linearly polarized VATN mode is a feature unique to the circularly polarizing plate, and this feature is the circularly polarized VATN according to the present invention.
  • the mode reflects the fact that the transmittance is high regardless of the orientation direction of the liquid crystal molecules. That is, even if the angle formed by the orientation directions of the liquid crystal molecules on the upper and lower substrates is deviated from 90 °, only the orientation direction of the liquid crystal molecules is changed. In the circularly polarized VATN mode according to the present invention, the transmittance remains high.
  • the allowable range of the crossing angle is wider than that of the linearly polarized VATN mode. More specifically, the crossing angle can be set within a range of 30 ° or more and less than 180 ° (for example, 179.9 ° or less). However, from the viewpoint of using the production line of the linearly polarized VATN mode, it is preferably set within a range allowed in the normal linearly polarized VATN mode. More specifically, the crossing angle is from 90 °. It is preferably within a range of ⁇ 5 ° (85 to 95 °).
  • the orientation in which the major axis direction of the liquid crystal molecules in the vicinity of the first alignment film is projected onto the surface of the first substrate and the major axis direction of the liquid crystal molecules in the vicinity of the second alignment film are in the second state.
  • the directions projected on the substrate surface are parallel and opposite to each other.
  • the angle formed by the orientation direction of the liquid crystal molecules near the first substrate and the orientation direction of the liquid crystal molecules near the second substrate is substantially 180 ° (for example, 179 in each domain). Is set to be larger than .9 °).
  • the pretilt directions of the liquid crystal molecules in the vicinity of the alignment film on the upper substrate are the same, that is, aligned, and the liquid crystal molecules in the vicinity of the alignment film on the lower substrate are aligned.
  • the pretilt directions are the same, ie, aligned.
  • the pretilt direction of the liquid crystal molecules in the vicinity of the alignment film on the upper substrate and the pretilt direction of the liquid crystal molecules in the vicinity of the alignment film on the lower substrate are divided into one domain and the other domain. At least one of them will be different from each other. Having two or more domains in one pixel is also called orientation division.
  • the pretilt angle in the liquid crystal display according to the present invention is an angle formed between the surface of the substrate (alignment film) and the major axis direction of the liquid crystal molecules in the vicinity of the alignment film inclined with respect to the surface of the substrate (alignment film) in the off state. It is. If it demonstrates using FIG. 3, in the said OFF state, it is a polar angle which the long axis of a liquid crystal molecule makes with respect to a substrate (alignment film) surface, Comprising: It is an angle which exceeds 0 degree and is less than 90 degrees. Regardless of the off state or the on state, the angle formed by the substrate (alignment film) surface and the major axis direction of the liquid crystal molecules in the vicinity of the alignment film is referred to as a tilt angle or a polar angle.
  • the technical range in terms of vertical alignment is not limited to being strictly vertical, but within the range allowed in the normal VATN mode and / or VAECB mode, the vertical alignment is near the substrate (alignment film). Anything that can be evaluated is acceptable.
  • the pretilt angle of the liquid crystal molecules in the vicinity of the first alignment film and the pretilt angle of the liquid crystal molecules in the vicinity of the second alignment film are 80 ° or more and 89.9 ° or less, respectively.
  • the configuration of the liquid crystal display according to the present invention is not particularly limited by other components as long as the components described above are essential.
  • the liquid crystal display according to the present invention may be a liquid crystal panel, a liquid crystal display element, or a liquid crystal display device. Other preferred modes in the circularly polarized VATN mode will be described in detail below. Various forms shown below may be combined as appropriate.
  • the pretilt angle has a form in which the difference between the vicinity of the first alignment film and the vicinity of the second alignment film is less than 1.0 ° (pretilt angle vertically symmetrical form). Also called).
  • the pretilt angle of the liquid crystal molecules on the first alignment film and the pretilt angle of the liquid crystal molecules on the second alignment film are substantially the same, that is, the pretilt angles on the upper and lower substrates are substantially the same. It is evaluated that it is the same.
  • the transmittance is more susceptible to the influence of the pretilt angle than in a form in which the pretilt angles on the upper and lower substrates described later are substantially different from each other. The larger the pretilt angle, the higher the transmittance and the brighter.
  • the pretilt angle is 84 ° or more and less than 90 ° (for example, 89.9 ° or less), that is, the pretilt angle of the liquid crystal molecules near the first alignment film and the liquid crystal molecules near the second alignment film.
  • pre-tilt angles of 84 ° or more and less than 90 ° (for example, 89.9 ° or less).
  • a higher contrast can be realized at 84 ° or more as compared with the linearly polarized VATN mode, and the contrast increases as the pretilt angle increases, and reaches a peak state around 90 °.
  • the pretilt angle is 86 ° or more, that is, the pretilt angle of the liquid crystal molecules near the first alignment film and the pretilt angle of the liquid crystal molecules near the second alignment film are each 86 ° or more. It is a form.
  • a higher transmittance can be realized as compared with the embodiment in which the circularly polarizing plate is combined with the CPA mode, and the transmittance is improved as the pretilt angle is increased.
  • the pretilt angle is 89.7 ° or less, more preferably the pretilt angle is 89.5 ° or less, that is, the pretilt angle of the liquid crystal molecules in the vicinity of the first alignment film.
  • the pretilt angles of the liquid crystal molecules in the vicinity of the bi-alignment film are each 89.7 ° or less, more preferably 89.5 ° or less.
  • display disturbance due to pressing on the liquid crystal display can be improved.
  • the smaller the pretilt angle the greater the alignment regulating force acting in the direction of the pretilt azimuth angle, which is considered to be due to the strong restoring force against the alignment disturbance caused by pressing.
  • the pretilt angle is less than 90 °, the time from when the orientation is disturbed by pressurization until the orientation is restored can be remarkably improved.
  • the time from when the orientation is disturbed by pressurization until the orientation is restored can be remarkably improved.
  • the polarizing plate further includes a circularly polarizing plate provided on the back side of the liquid crystal cell.
  • the liquid crystal display according to the present invention further includes a circularly polarizing plate provided on the back side of the liquid crystal cell.
  • it is essential to provide a circularly polarizing plate on the viewer side of the liquid crystal cell, but whether to provide a circularly polarizing plate on the back side of the liquid crystal cell is as follows. It depends on whether the display method of the display is a transmission type or a reflection type.
  • the liquid crystal display according to the present invention may be a transmissive liquid crystal display device that performs display by transmitting light from the backlight through the liquid crystal cell, and the external light is incident on the liquid crystal cell and reflected.
  • a reflective liquid crystal display device that performs display may be used, or a combination of the two may be a transflective type that includes a region that displays by transmission (transmission region) and a region that performs display by reflection (reflection region). You may apply to a liquid crystal display device.
  • the transmission type it is preferable to provide a circularly polarizing plate on both sides of the observer side and the back side of the liquid crystal cell.
  • the reflection type it is preferable to provide a circularly polarizing plate only on the viewer side of the liquid crystal cell.
  • the semi-transmissive type when the incident light that has passed through the liquid crystal layer is reflected by the substrate, if a circularly polarizing plate is provided on both the viewer side and the back side of the liquid crystal cell, the transmitted light is transmitted on the back side in the transmissive region. The light passes through the circularly polarizing plate, the liquid crystal layer, and the circular polarizing plate on the viewer side in this order. In the reflection region, incident light passes through the circular polarizing plate and the liquid crystal layer on the viewer side in this order, and then is reflected by the substrate.
  • the transmissive type the reflective type, and the transflective type
  • the light emitted from the liquid crystal cell to the viewer side is similarly affected by the circularly polarizing plate.
  • the liquid crystal cell is one embodiment in which the retardation of the liquid crystal layer is preferably 315 to 385 nm.
  • the retardation of the liquid crystal layer is determined by (cell thickness) ⁇ ( ⁇ n) ( ⁇ n is refractive index anisotropy) and is related to the transmittance. Therefore, the graph showing the relationship between transmittance and retardation may be set so that the retardation becomes higher. In the case of the circularly polarized VATN mode, the optimum retardation is 350 nm. However, since the cell thickness of a liquid crystal cell (liquid crystal panel) generally has a process margin of about ⁇ 10%, it may be 350 ⁇ 35 nm. preferable.
  • the retardation setting is effective when applied to a transmission region of a transmissive liquid crystal display device and a transflective liquid crystal display device, but is also applicable to a reflective type and a transflective type.
  • the preferred retardation range of the liquid crystal layer in the reflective region of the reflective liquid crystal display device and the transflective liquid crystal display device is half of the transmissive type, that is, (350 ⁇ 35) / 2 nm.
  • the pretilt angle has a form in which the difference between the vicinity of the first alignment film and the vicinity of the second alignment film is 1.0 ° or more (pretilt angle up and down Also referred to as an asymmetric form).
  • the pretilt angle of the liquid crystal molecules on the first alignment film and the pretilt angle of the liquid crystal molecules on the second alignment film are substantially different from each other, that is, the pretilt angles on the upper and lower substrates are substantially different. It is evaluated that they are different.
  • the transmittance is higher and brighter as the pretilt angle is larger.
  • the circularly polarized VATN mode it is possible to maintain a high transmittance even with respect to the pretilt angle up / down asymmetry when there is a difference between the pretilt angles in the upper and lower substrates in the production process. It is possible to widen the process margin.
  • the pretilt angle is such that the angle in the vicinity of one alignment film is not less than 84 ° and less than 90 ° (for example, 89.9 ° or less), that is, the pretilt angle of the liquid crystal molecules in the vicinity of the first alignment film and the second alignment film Of the pretilt angles of the liquid crystal molecules in the vicinity, one of the pretilt angles (also referred to as pretilt angle (A)) is 84 ° or more and less than 90 ° (for example, 89.9 ° or less), and the other pretilt angle ( The pretilt angle (also referred to as “B”) is less than 90 ° (for example, 89.9 ° or less).
  • the pretilt angle (A) is 84 ° or more, and higher contrast can be realized as compared with the linear polarization VATN mode.
  • the lower limit of the preferable range of the pretilt angle (A) may be 80 ° or more. In this case, higher transmittance can be realized as compared with a mode in which a circularly polarizing plate is combined with the CPA mode. it can.
  • the upper limit of the preferable range of the pretilt angle (A) may be 89.7 ° or less, and more preferably 89.5 °.
  • the lower limit of the pretilt angle (B) is preferably 75 ° or more, more preferably 80 ° or more, and even more preferably 88 ° or more.
  • the upper limit of the pretilt angle (B) is preferably the upper limit. May be 89.7 ° or less, and more preferably 89.5 °.
  • both the pretilt angles on the upper and lower substrates are less than 90 °.
  • the pretilt angle may be less than 90 ° (for example, 89.9 ° or less) in at least one of the upper and lower substrates.
  • the liquid crystal display according to the present invention is applied to the VATN mode or the VAECB mode in which the pretilt angles are both less than 90 ° (for example, 89.9 ° or less) on the upper and lower substrates.
  • the pretilt angle in one of the pair of substrates is 90 ° or less and the pretilt angle in the other substrate is less than 90 °.
  • the pretilt angle may be 90 ° in any one of the pair of substrates, and the pretilt angle may be less than 90 ° in the other substrate.
  • the VATN mode or the VAECB mode is employed in the liquid crystal display according to the present invention in order to further exhibit the advantages of the pretilt angle for obtaining a wide viewing angle and high-speed response.
  • a form in which the pretilt angle is approximately 90 ° (for example, larger than 89.9 °) in any one of the pair of substrates is VAHAN (Vertical Alignment Hybrid Aligned) in which the pretilt angle is less than 90 ° only on one side substrate.
  • VAHAN Vertical Alignment Hybrid Aligned
  • a liquid crystal display including such a VAHAN mode liquid crystal cell and a circularly polarizing plate on the viewer side of the liquid crystal cell can also exhibit good performance in both contrast and transmittance.
  • the pretilt angle it is possible to measure the pretilt angle not only in the case of the pretilt angle vertically symmetrical form but also in the case of the pretilt angle vertically asymmetrical form.
  • the pretilt angle up-down asymmetrical form after disassembling the upper and lower substrates, producing a liquid crystal cell using each substrate and injecting liquid crystal, producing a liquid crystal cell between upper substrates and a liquid crystal cell between lower substrates If the respective pretilt angles are measured, the pretilt angle of the liquid crystal molecules in the vicinity of the first alignment film and the pretilt angle of the liquid crystal molecules in the vicinity of the second alignment film can be measured.
  • the polarizing plate further includes a circularly polarizing plate provided on the back side of the liquid crystal cell.
  • the details are the same as the pretilt angle vertically symmetrical form described above.
  • the pretilt angle up / down asymmetric configuration can also be applied to transmissive, reflective, and transflective liquid crystal display devices, as described above.
  • the liquid crystal cell is preferably one in which the retardation of the liquid crystal layer is 315 to 385 nm.
  • the details are the same as the pretilt angle vertically symmetrical form described above.
  • the retardation range can be applied to the pretilt angle up / down asymmetric configuration as in the case of the pretilt angle up / down symmetry for the following reason. That is, as shown in FIG. 22, even in the pretilt angle up / down asymmetrical form, the inclination of the graph showing the relationship between the director azimuth angle (pretilt azimuth angle of liquid crystal molecules) -cell thickness, that is, the effective retardation is hardly changed.
  • each of the plurality of pixels preferably has two or more alignment regions, and more preferably has four or more alignment regions. From the viewpoint of improving the viewing angle characteristics, the efficiency of the production process, and the like, a particularly preferred embodiment is a form in which each of the plurality of pixels has four alignment regions.
  • the configuration in which the divided domain configuration is adopted in the circularly polarized VATN mode is effective for a new problem found when the divided domain configuration is adopted in the linearly polarized VATN mode. That is, in the linearly polarized light VATN mode, new problems have been found that cause a reduction in transmittance and low contrast due to the dark line at the boundary dividing one pixel into a plurality of domains. On the other hand, in the case of a single domain having only one orientation azimuth area per pixel, there is no boundary between the domains, so that the transmittance and contrast are not greatly lowered even if the pretilt angle is high.
  • the liquid crystal display according to the present invention has a technical significance with respect to a display mode such as a conventional CPA mode, whether or not a divided domain configuration is adopted, but adopts a divided domain configuration. In this case, it is effective for the above-described new problem, and therefore has a greater technical significance.
  • the range of the optimum pretilt angle of the linearly polarized VATN mode and the optimum pretilt angle of the circularly polarized VATN mode are different.
  • the same characteristic is exhibited that the optimum pretilt angle of both is better as it is closer to 90 °.
  • the optimum pretilt angles of both are different. Therefore, the optimum configuration of the liquid crystal display according to the present invention has an important technical significance not only by changing the linearly polarized VATN mode polarizing plate to a circularly polarizing plate but also by optimizing the pretilt angle. It will be.
  • the preferred embodiment of the liquid crystal display according to the present invention is particularly suitable for these in that it can solve a new problem found in the circularly polarized CPA mode and / or the linearly polarized VATN mode. It has a useful configuration.
  • the liquid crystal display according to the present invention may be a monochrome display liquid crystal display or a color display liquid crystal display in which each pixel includes a plurality of sub-pixels.
  • each pixel described above can be read as a sub-pixel.
  • the liquid crystal display of the novel display mode which can implement
  • high transmittance and high contrast can be realized. In a domain-divided configuration, when the pretilt angle is large, the transmittance is decreased, and when the pretilt angle is small.
  • FIG. 1 It is a schematic diagram for demonstrating the domain division
  • (b) is a schematic plan view showing the direction of an average liquid crystal director in one subpixel), the direction of optical alignment treatment for a pair of substrates (upper and lower substrates), and the domain division pattern.
  • It is a schematic diagram which shows the absorption-axis direction of the linearly-polarizing plate which comprises the circularly-polarizing plate provided in the liquid crystal display shown by a).
  • the solid line arrow indicates the direction of the photo-alignment process for the lower substrate (for example, the drive element substrate), and the dotted line arrow indicates the direction of the photo-alignment process for the upper substrate (for example, the color filter substrate).
  • FIG. 7A is a diagram illustrating alignment division in an embodiment of the present invention.
  • FIG. 6A is a diagram in which an AC voltage equal to or higher than a threshold value is applied between a pair of substrates when the liquid crystal display has four domains different from those in FIG. 6.
  • FIG. 6 is a schematic plan view showing the direction of an average liquid crystal director in one pixel (or one sub-pixel) in a state where it is aligned, the direction of photo-alignment treatment for a pair of substrates (upper and lower substrates), and domain division patterns;
  • (B) is a schematic diagram which shows the absorption-axis direction of the linearly-polarizing plate which comprises the circularly-polarizing plate provided in the liquid crystal display shown to (a), (c) is more than a threshold value between a pair of board
  • FIG. 2 It is a perspective conceptual diagram which shows the relationship between the linearly-polarizing plate in the linearly polarized light VATN mode which is a comparative form (comparative example 2) of this invention, and the liquid crystal cell of VATN mode.
  • the linearly polarized light VATN mode which is the comparative form (Comparative Example 2) of the present invention one pixel when the pretilt angle is changed in the range of 75 ° to 89.8 ° and the liquid crystal display is viewed from the normal direction when a voltage is applied. The brightness simulation result in is shown.
  • FIG. 6 is a graph showing a pretilt angle-contrast ratio in a circularly polarized VATN mode according to an embodiment (Example 2) of the present invention.
  • FIG. 3 It is a conceptual diagram which shows the principle that the liquid crystal element of the circularly polarized light TN mode which is a comparative form (comparative example 3) of this invention does not become a display element.
  • (A) is a state when no voltage is applied to the liquid crystal panel
  • (b) is a state when a voltage is applied to the liquid crystal panel.
  • FIG. 3 An example showing that the pretilt azimuth angle of liquid crystal molecules is twisted between the upper and lower substrates in the liquid crystal cell of the circularly polarized VATN mode (in the case of the pretilt angle vertically symmetrical form) which is an embodiment of the present invention.
  • both the pretilt angles of the liquid crystal molecules on the upper and lower substrates are changed from 75 ° to 89.8 °. It is a graph which shows distribution of the pretilt azimuth angle of a liquid crystal molecule.
  • the circular polarization CPA mode which is a comparative form of the present invention (Comparative Example 4)
  • a simulation result of brightness in one pixel when the liquid crystal display is viewed from the normal direction when a voltage is applied is shown.
  • FIG. 4 In the circularly polarized VATN mode (in the case of the pretilt angle asymmetrical form) that is an embodiment of the present invention (Example 4), the pretilt angle is fixed to 88 ° on the lower substrate, and the pretilt angle on the upper substrate is from 75 ° to 89.89. It is a graph which shows distribution of the director azimuth angle when it changes to 8 degrees.
  • the pretilt angle is fixed to 88 ° on the lower substrate, and the pretilt angle on the upper substrate is 75 ° to 90 °.
  • the brightness simulation results for one pixel when the liquid crystal display is viewed from the normal direction when a voltage is applied are shown in FIG.
  • Transmitted light in the circularly polarized VATN mode (in the case of the pretilt angle vertically symmetrical form and vertically asymmetrical form) which is an embodiment of the present invention (Examples 2 and 5) and the linearly polarized VATN mode which is a comparative form (Comparative Example 2) It is the graph which showed the pretilt angle dependence of intensity
  • FIG. 1A is a schematic plan view of the relationship between the liquid crystal layer and the rivet in the liquid crystal cell as viewed from the viewer side of the liquid crystal cell (normal direction of the upper substrate).
  • FIG. 1B is a schematic cross-sectional view taken along the line AB of FIG.
  • FIG. 1C is an enlarged schematic plan view of the rivet shown in FIG.
  • a projection (rivet) 7 is arranged at the center of the unit cell, the thickness of the rivet 7 is 0.5 ⁇ m, and the taper angle of the rivet 7 is 50 °. is there.
  • the transparent electrode (for example, ITO film) 3 and the alignment film 5 are disposed on the entire surface (solidly). The thicknesses are about 100 to 2000 mm, and are sufficiently small with respect to the thickness of the liquid crystal layer 9 being 1.5 ⁇ m, so that the thickness is set to be infinite in the calculation. Only the transparent electrode (for example, ITO film) 4 and the alignment film 6 are disposed on the lower substrate (back side substrate, for example, glass substrate) 2.
  • the transparent electrode 4 has a size of 48 ⁇ m ⁇ 58 ⁇ m 1 ⁇ m inside the unit cell boundary.
  • the alignment film 6 is solid (no breaks) and is disposed on the entire surface.
  • the thickness of each of the transparent electrode 4 and the alignment film 6 is set to an infinite thickness for the same reason as the upper substrate 1.
  • the liquid crystal molecules 8 are oriented radially with respect to the rivets 7 of the upper substrate 1 while being oriented perpendicularly to the orientation films 5 and 6. It is shown conceptually.
  • the liquid crystal cell 10B is sandwiched between two circularly polarizing plates 11a and 11b as shown in FIG.
  • the absorption axes 13a and 13b of the upper and lower linear polarizing plates are orthogonal to each other, and the slow axes 14a and 14b of the ⁇ / 4 plates laminated adjacent to the respective linear polarizing plates are relative to the absorption axes 13a and 13b.
  • the laminated body has a function as a circularly polarizing plate.
  • the definition of the angle is as shown in FIG. In FIG. 3, the polar angle is an angle with respect to the substrate surface, and the direction parallel to the substrate surface is 0 °, and the vertical direction (normal direction) is 90 °.
  • the azimuth angle is an angle indicating an azimuth relative to a certain direction in a plane parallel to the substrate surface at 0 °, that is, a reference.
  • a polar angle is defined as an angle formed with respect to the x-axis direction in the xy plane
  • an azimuth angle is defined with respect to the x-axis direction in the xz plane. It is defined as the angle formed.
  • the polar angle is an angle with respect to the substrate surface in the major axis direction in the liquid crystal molecules
  • the azimuth angle is a projection of the major axis direction in the liquid crystal molecules onto the substrate surface, and a certain orientation on the substrate surface is 0. This is the angle indicated by the azimuth projected onto the substrate surface with respect to it.
  • FIG. 4 shows the result of simulating the relationship between the voltage and the transmitted light intensity when the circularly polarized CPA mode liquid crystal panel is viewed obliquely (polar angle 45 °).
  • this graph there is a portion where the transmitted light intensity changes steeply in the vicinity of 4.1V. The smoothness of gradation expression is lost at this location, and gradation jump and / or collapse occurs. Further, if the graph showing the relationship between the voltage and the transmitted light intensity is shifted to the left or right as much as possible, the difference in transmitted light intensity between before and after the shift increases. Therefore, in the circularly polarized CPA mode, there is a problem that an afterimage is likely to occur.
  • Example 1 Circularly polarized VATN mode liquid crystal cell
  • the calculation conditions are as follows.
  • the dividing method of the liquid crystal layer 9 is as shown in FIG. 5.
  • the unit cell is divided into four regions (D1 to D4 having the same area), and the pretilt angle of the liquid crystal is set to 88.0 ° (polar angle). .
  • the orientations of the pretilt directions of D1 and D3 differ from each other by 180 °
  • the orientations of the pretilt directions of D2 and D4 differ from each other by 180 °.
  • the pretilt direction orientations of D1 and D2 differ from each other by 180 °
  • the pretilt direction orientations of D3 and D4 differ from each other by 180 °
  • the absolute values of the twist angles D1 and D2 are 90 °, but the signs are different from each other.
  • the absolute values of the twist angles D3 and D4 are 90 °, but the signs are different from each other.
  • Other conditions such as cell size, cell thickness, liquid crystal, and physical property values thereof are the same as those in Comparative Example 1. However, no rivets are arranged.
  • 5B is a schematic cross-sectional view taken along the line CD in FIG. 5A
  • FIG. 5C is a schematic cross-sectional view taken along the line EF in FIG. 5A.
  • the first alignment film and the second alignment film are The liquid crystal molecules having negative dielectric anisotropy are aligned in a direction slightly inclined from the direction perpendicular to the substrate surface (alignment film surface).
  • the orientation direction of liquid crystal molecules hereinafter also referred to as upper liquid crystal molecules
  • the liquid crystal molecules hereinafter referred to as lower liquid crystal molecules
  • the orientation directions of the liquid crystal molecules are also substantially orthogonal to each other.
  • the orientation direction of liquid crystal molecules means the direction shown when the tilt direction of liquid crystal molecules is projected onto the substrate surface.
  • the absolute values of the pretilt direction and the twist angle are as described above, and the upper liquid crystal molecules and the lower liquid crystal molecules are substantially separated from each other. It will be oriented in an orthogonal direction.
  • the upper liquid crystal molecules and the lower liquid crystal molecules are aligned in directions substantially perpendicular to each other to the extent that liquid crystal display in the VATN mode is possible, these liquid crystal molecules are completely orthogonal.
  • the orientation orientation of the upper liquid crystal molecules (or the orientation orientation defined by the first orientation film) and the orientation orientation of the lower liquid crystal molecules (or the orientation orientation prescribed by the second orientation film) are, for example, , They may cross each other at 85 ° to 95 °.
  • the liquid crystal molecules having negative dielectric anisotropy are substantially reduced with respect to the substrate surface according to the applied voltage. It is aligned in the parallel direction and exhibits birefringence with respect to the light transmitted through the liquid crystal layer.
  • Examples of the alignment-divided VA mode include a VATN mode, a VAECB mode, and a VAHAN mode.
  • the VATN mode and the VAECB mode to be described later are preferably applied.
  • a first alignment film is formed on the first substrate, two regions whose alignment directions are different from each other by about 180 ° are formed on the first alignment film, a second alignment film is formed on the second substrate, Two regions in which the orientation directions differ from each other by about 180 ° are formed in the two orientation films.
  • the alignment films may be opposed to each other so that the alignment direction defined by the first alignment film and the alignment direction defined by the second alignment film are orthogonal to each other. Thereby, each region of the alignment film on one substrate is aligned and divided by each region of the alignment film on the other substrate, and four domain regions having different twist directions of liquid crystal molecules can be formed in each pixel.
  • FIG. 6 and FIG. 7 are conceptual diagrams illustrating an on-state configuration in the orientation division having four domains.
  • FIG. 6 shows a form in which one pixel (or one sub-pixel) is divided vertically and horizontally and divided into approximately four equal parts, and corresponds to the case of this embodiment.
  • FIG. 7 shows another embodiment in which one pixel (or one subpixel) is divided into stripes and divided into approximately four equal parts.
  • FIG. 7C is a schematic cross-sectional view taken along the line GH in FIG.
  • the on state is a state in which a voltage (usually an AC voltage) in the liquid crystal layer is equal to or higher than a threshold voltage, and preferably a voltage is applied to the liquid crystal layer.
  • a voltage usually an AC voltage
  • the alignment orientation of the liquid crystal molecules located near the center in the thickness direction of the liquid crystal layer has four domain regions (FIG. 6 ( In a), in i to iv), quadrant domains different from each other, more specifically, substantially orthogonal to each other are formed.
  • FIG. 6B when the substrate is viewed in plan, the direction of the photo-alignment treatment with respect to the upper substrate (for example, the color filter substrate) (the dotted arrow in FIG. 6A) is the upper substrate.
  • the same direction as the absorption axis direction (azimuth) 20 of the linearly polarizing plate in the circularly polarizing plate disposed on the side may be the same, and the direction of the photo-alignment treatment with respect to the lower substrate (for example, the drive element substrate) (solid line in FIG. 6A) The arrow) may be in the same direction as the absorption axis direction (orientation) 19 of the linearly polarizing plate in the circularly polarizing plate disposed on the lower substrate side.
  • the absorption axis directions 19 and 20 of the linear polarizing plate are not particularly limited, and may be appropriately rotated from the direction shown in FIG.
  • the orientation direction of the liquid crystal molecules on one substrate coincides with the absorption axis direction of the linear polarizing plate, and the orientation direction of the liquid crystal molecules on the other substrate is almost perpendicular to the substrate. It has become. Therefore, when only a linear polarizing plate is arranged in crossed Nicols instead of a circularly polarizing plate (linear polarizing plate and ⁇ / 4 plate) as in this embodiment, the boundary between domains does not transmit light even in the on state. So it becomes a dark line (dark line).
  • the alignment direction of the liquid crystal molecules located near the center in the thickness direction of the liquid crystal layer has four domain regions (FIG. 7 ( In a), in i to iv), quadrant domains different from each other, more specifically, substantially orthogonal to each other are formed.
  • FIG. 7B in this embodiment, when the substrate is viewed in plan, the direction of the photo-alignment process with respect to the upper substrate (for example, the color filter substrate) (solid arrow in FIG. 7A).
  • the major axis direction of the liquid crystal molecules is tilted with a pretilt angle with respect to the upper and lower substrates by the alignment regulating force of the alignment film, and twisted by approximately 90 ° between the upper and lower substrates.
  • the major axis direction of the liquid crystal molecules changes under the influence of the electric field. In this case, too, for example, as schematically shown in FIG. Thus, there are four orientation states different in four domains.
  • one of the first substrate and the second substrate is a thin film transistor (hereinafter also referred to as TFT) which is a switching element and a pixel electrode is a matrix.
  • TFT thin film transistor
  • a TFT array substrate provided in a shape is preferable.
  • the other of the first substrate and the second substrate is preferably a color filter substrate (hereinafter also referred to as a CF substrate) having a color filter and a common electrode.
  • the liquid crystal display according to the present invention is preferably an active matrix liquid crystal display, but may be a simple matrix liquid crystal display.
  • the first substrate and the second substrate are a substrate provided with a stripe-shaped signal electrode (column electrode), and a stripe-shaped scanning electrode so as to be substantially orthogonal to the signal electrode. It becomes a combination with a substrate provided with (row electrode).
  • the pixels in these liquid crystal displays are defined by a pixel electrode and a common electrode facing the pixel electrode. Further, in a simple matrix type liquid crystal display, it is defined by the intersection of a striped signal electrode and a scanning electrode.
  • the configuration of the circularly polarizing plate is the same as that of Comparative Example 1. It should be noted that the VATN modes described in Patent Document 3 and Patent Document 4 are described on the assumption that a linearly polarizing plate is used.
  • Patent Document 3 presents a configuration in which a phase difference plate is disposed between a linearly polarizing plate and a liquid crystal cell. This is a configuration intended to improve the viewing angle characteristics of the linearly polarized VATN mode. That is, the absorption axis of the linear polarizing plate is parallel to or orthogonal to the slow axis of the retardation plate.
  • a retardation plate is arranged between the linear polarizing plate and the liquid crystal cell, but the absorption axis of the linear polarizing plate and the slow axis of the retardation plate are 45 ° or ⁇ 45 °.
  • the phase difference is substantially specified as ⁇ / 4, and the configuration is for the circular polarization mode. That is, the circularly polarizing plate in this example has the same configuration as the circularly polarizing plates 11a and 11b in the circularly polarized CPA mode shown in FIG.
  • the configuration of the circularly polarizing plate in the liquid crystal display according to the present invention may be anything as long as it generates circularly polarized light.
  • a structure having a helical structure at an optical pitch for example, cholesteric liquid crystal
  • the liquid crystal display according to the present invention includes a pair of circularly polarizing plates
  • the liquid crystal display usually includes a right polarizing plate and a left polarizing plate, and both polarizing plates are arranged in crossed Nicols.
  • the circularly polarizing plate is preferably composed of a combination of a linearly polarizing plate (polarizer) and a ⁇ / 4 plate.
  • polarizer linearly polarizing plate
  • the in-plane slow axes of the first (observer side) and second (back side) ⁇ / 4 plates are the first ( Most preferably, it has a relative angle of 45 ° (+ 45 ° or -45 °) with the absorption axis of the linear polarizer on the viewer side and the second (back side), but it reduces the contrast ratio in the front direction. As long as it is within the range, it may be slightly deviated from 45 °.
  • the angle formed by the in-plane slow axis of the first ⁇ / 4 plate and the absorption axis of the first linear polarizing plate, and the second The angles formed by the in-plane slow axis of the ⁇ / 4 plate and the absorption axis of the second linearly polarizing plate are each preferably in the range of 45 ° to ⁇ 2 ° (43 ° to 47 °).
  • the angle formed by the in-plane slow axis of the first ⁇ / 4 plate and the in-plane slow axis of the second ⁇ / 4 plate is 90 °.
  • the ⁇ / 4 plate is a phase difference plate that generates a phase difference of approximately 1 ⁇ 4 wavelength with respect to a light wave having a set wavelength.
  • the ⁇ / 4 plate is approximately 1 ⁇ 4 wavelength (accurately at 137.5 nm with respect to light having a wavelength of 550 nm). It is a layer having an optical anisotropy of greater than 115 nm and smaller than 160 nm, and is synonymous with a ⁇ / 4 retardation film and a ⁇ / 4 retardation plate.
  • a linear polarizing plate (linear polarizer) is an element having a function of changing natural light into linearly polarized light.
  • a polyvinyl alcohol (PVA) film obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism can be used.
  • a protective film such as a triacetyl cellulose (TAC) film is laminated on both sides of the PVA film and used for practical use.
  • TAC triacetyl cellulose
  • FIG. 8 is a graph showing a result of simulating the relationship between the voltage and the transmitted light intensity when the circularly polarized VATN mode liquid crystal panel is viewed obliquely (polar angle 45 °) as in Comparative Example 1.
  • the sharply changing portion near 4.1 V disappears, and the smoothness of gradation expression can be realized, and gradation jumping and / or collapse are not substantially generated.
  • an afterimage is not easily produced. Since this has a pretilt angle (88.0 ° in this embodiment), the direction in which the liquid crystal molecules are tilted in the vicinity of the threshold is defined in advance in a specific direction, and the liquid crystal molecules are tilted according to the applied voltage. Because.
  • the configuration of the circularly polarized VATN mode in the above embodiment can be similarly applied to the circularly polarized VAECB mode, and the same result can be obtained.
  • Example 2 Relationship between pretilt angle of linearly polarized VATN mode, transmittance and contrast
  • the VATN mode liquid crystal cell 10A having a cell thickness of 2 ⁇ m is the same as in Example 1 except that it is not a circularly polarized mode but a linearly polarized mode.
  • the structure of the liquid crystal display element is shown in FIG.
  • the liquid crystal cell 10A is sandwiched between two linearly polarizing plates 12a and 12b as shown in FIG. 9, and the absorption axes 13a and 13b of the upper and lower linearly polarizing plates 12a and 12b are orthogonal to each other.
  • FIG. 10 Shown in FIG. 10 is a simulation result of brightness in one pixel when the liquid crystal display is viewed from the normal direction when a voltage is applied.
  • the pretilt angle is 89.8 ° in FIG. 10A and 88 in FIG. 0.0 °, 86.0 ° in FIG. 10 (c), 84.0 ° in FIG. 10 (d), 82.0 ° in FIG. 10 (e), 80.0 ° in FIG. 10 (f), FIG. In (g), it is 75.0 °.
  • the linearly polarized VATN mode is preferably brighter (higher transmittance) as the pretilt angle is smaller. This is because as the pretilt angle is larger, the dark line on the domain-divided boundary becomes thicker and the orientation of the pixel edge is disturbed by the effect of the oblique electric field around the pixel.
  • the larger the pretilt angle the lower the alignment regulating force acting in the direction of the pretilt azimuth angle, so the force that constrains the alignment azimuth of the liquid crystal molecules in the specified azimuth angle direction becomes weaker. Leads to an increase in Conventionally, since this effect is not taken into consideration, it has been considered that the higher the pretilt angle, the better.
  • the horizontal axis indicates the pretilt angle (pretilt angle / deg.), And the vertical axis indicates the contrast ratio (Contrast ratio).
  • the contrast has an extreme value, and shows a maximum value when the pretilt angle is around 86 °. That is, the most preferred pretilt angle in the linearly polarized VATN mode is around 86 °. If the pretilt angle is too larger than this value, the dark line on the domain-divided boundary becomes thicker when a voltage is applied, and the pixel edge orientation is disturbed by the effect of the oblique electric field around the pixel. Lowers, resulting in a decrease in contrast. On the other hand, when the pretilt angle is smaller than 86 °, the birefringence felt by the propagating light becomes large when no voltage is applied, so that light leakage increases, resulting in a decrease in contrast.
  • Example 2 Relationship between Pretilt Angle, Transmittance, and Contrast of Circularly Polarized VATN Mode
  • FIG. 13 is a simulation result of brightness in one pixel when the liquid crystal display is viewed from the normal direction when a voltage is applied.
  • the pretilt angle is 89.8 ° in FIG. 13A and 88 in FIG. 13B.
  • FIG. 13 shows that the circularly polarized VATN mode becomes brighter (the transmittance is higher) as the pretilt angle is larger.
  • the brightness is less dependent on the alignment direction of the liquid crystal, and it is not affected by the dark lines at the domain boundary and the disturbance in the alignment around the pixels, which are noticeable in the linearly polarized VATN mode. Recognize.
  • the alignment direction of the liquid crystal molecules does not depend on the transmittance, so that no dark line is generated due to the alignment direction of the liquid crystal molecules.
  • the reason why the circularly polarized VATN mode is bright can be explained from the result of Example 3 described later.
  • a graph of the pretilt angle dependence of contrast is shown in FIG.
  • the horizontal axis represents a pretilt angle (pretilt angle / deg.), And the vertical axis represents a contrast ratio.
  • the larger the pretilt angle the better.
  • a high contrast can be achieved with respect to Comparative Example 2.
  • the maximum value 3500 in FIG. 11 in the linearly polarized VATN mode of Comparative Example 2 can be achieved at a pretilt angle of 84 ° or more in the circularly polarized VATN mode. From this, it can be seen that the pretilt angle is preferably 84 ° or more.
  • Comparative Example 3 Comparison between linearly polarized light and circularly polarized light in TN mode
  • the liquid crystal was set to 5 CB, and the pretilt angle was set to 5 °.
  • This pretilt angle is a value of a general TN mode.
  • the relationship between voltage and transmitted light intensity at this time is shown in FIG. Comparative Example 3 does not function as a liquid crystal display element.
  • a TN mode using a circularly polarizing plate also referred to as a circularly polarized TN mode
  • FIG. 16 shows a display principle of a liquid crystal display in a normal TN mode (also referred to as a linearly polarized TN mode) using a linearly polarizing plate.
  • the liquid crystal layer rotates light when no voltage is applied, and functions as an optical shutter by turning on and off the voltage.
  • (a) is when no voltage is applied
  • (b) is when voltage is applied.
  • left and right linearly polarized light means linearly polarized light that oscillates in the left and right direction
  • left and right linearly polarized light means linearly polarized light that transmits left and right linearly polarized light.
  • FIG. 17 shows a circularly polarized TN mode liquid crystal element.
  • the liquid crystal molecules in the liquid crystal layer are twisted and have the role of rotating light, but right circularly polarized light is incident on the liquid crystal layer, so only the phase changes even if the right circularly polarized light is rotated.
  • the polarization state of right circularly polarized light does not change regardless of the voltage on / off state. Therefore, the right circularly polarized light cannot pass through the left circularly polarizing plate, and the circularly polarized TN mode does not function as a display element. The same applies when the right and left polarizing plates are switched.
  • FIG. 18 conceptually shows an example showing that the pretilt azimuth angle of liquid crystal molecules is twisted between the upper and lower substrates in a circularly polarized VATN mode liquid crystal cell.
  • the pretilt azimuth angle is an angle indicated by an azimuth obtained by projecting the major axis direction of liquid crystal molecules having a pretilt angle on the substrate surface.
  • the pretilt angle is vertically symmetrical.
  • the distribution of pretilt azimuth angles of liquid crystal molecules inside the liquid crystal layer was simulated.
  • the liquid crystal molecules are pretilted in 0 ° azimuth and 90 ° azimuth, respectively, and the liquid crystal molecules are twisted in the liquid crystal layer.
  • the liquid crystal used was MBBA.
  • the cell thickness is 2 ⁇ m.
  • the applied voltage is 6V.
  • FIG. 19 shows the distribution of pretilt azimuth angles of liquid crystal molecules when the pretilt angle is changed from 75 ° to 89.8 ° on both the upper and lower substrates.
  • FIG. 19 is a graph showing the relationship between the internal position of the liquid crystal layer and the azimuth angle of the liquid crystal molecules.
  • the internal position of the liquid crystal layer indicates the distance ( ⁇ m) from one end to the liquid crystal molecules in the substrate normal direction in the liquid crystal layer.
  • the liquid crystal molecule azimuth indicates the pretilt azimuth (°) of the liquid crystal molecules. This shows how the graph showing the relationship between the internal position of the liquid crystal layer and the liquid crystal molecule azimuth varies depending on the difference in pretilt angle.
  • the liquid crystal molecules are twisted almost uniformly inside the liquid crystal layer, whereas when the pretilt angle is 89.8 °, the liquid crystal molecules are at the interface (in the normal direction of the substrate in the liquid crystal layer). It can be seen that it is largely twisted at the end) but not twisted in most areas. That is, as the pretilt angle increases, the twist is biased toward the interface, and the alignment is uniform in other regions. Therefore, in the circularly polarized VATN mode, the liquid crystal molecules are twisted. I understand that it will become.
  • FIG. 20 shows the result of pixel simulation in a liquid crystal display device having the same configuration as in Comparative Example 1 except that the cell thickness is 2 ⁇ m.
  • Patent Document 4 discloses a problem that in the VATN mode configuration, when the pretilt angles are different between the upper and lower substrates, the transmittance is significantly reduced. This is because if the pretilt angles at the upper and lower interfaces are different from each other in the linearly polarized light VATN mode, the average direction of the pretilt azimuth angles of the liquid crystal molecules deviates from the direction of 45 ° with respect to the absorption axis of the linearly polarizing plate.
  • FIG. 21 conceptually shows an example showing that the pretilt azimuth angle of liquid crystal molecules is twisted between the upper and lower substrates in a circularly polarized VATN mode liquid crystal cell.
  • the pretilt angle was fixed to 88 ° on the lower substrate, and the pretilt angle was changed from 75 ° to 89.8 ° on the upper substrate.
  • the distribution of the pretilt azimuth angle at this time is shown in FIG. Accordingly, in the case of FIG. 21, the pretilt angle is vertically asymmetrical.
  • FIG. 22 is a graph showing the relationship between the internal position of the liquid crystal layer (the horizontal axis is expressed as “cell thickness”) ⁇ liquid crystal molecule azimuth (the vertical axis is expressed as “director azimuth”), as in FIG.
  • the liquid crystal layer internal position indicates the distance ( ⁇ m) from one end to the liquid crystal molecule in the substrate normal direction in the liquid crystal layer, and the liquid crystal molecule azimuth indicates the pretilt azimuth angle (°) of the liquid crystal molecule.
  • Patent Document 4 describes that in the linearly polarized VATN mode, it is preferable that the difference in pretilt angle between the upper and lower substrates is less than 1 °, but this is also acceptable in the circularly polarized VATN mode. In other words, it is possible to positively make the pretilt angles different between the upper and lower substrates.
  • the pretilt angle is fixed at 90 ° on the lower substrate and the pretilt angle is changed from 75 ° to 89.8 ° on the upper substrate.
  • the distribution of director azimuth is constant.
  • FIG. 23 shows the result of pixel simulation when the pretilt angle is fixed to 88 ° on the lower substrate and the pretilt angle is changed from 75 ° to 90 ° on the upper substrate with the same configuration as in the second embodiment.
  • FIG. 23 is a simulation result of brightness in one pixel when the liquid crystal display is viewed from the normal direction when a voltage is applied.
  • the pretilt angle on the upper substrate is 90.0 ° in FIG. b) 89.8 °, FIG. 23 (c) 88.0 °, FIG. 23 (d) 86.0 °, FIG. 23 (e) 84.0 °, FIG. 23 (f) 82.0 °.
  • the angle is 80.0 °
  • FIG. 23 (h) the angle is 75.0 °.
  • the transmitted light intensity is maintained high without depending on the pretilt angle.
  • the configuration with a pretilt angle of 90.0 ° shows good transmittance despite the VAHAN (Vertical Alignment Hybrid Aligned Nematic) mode in which only one substrate is aligned.
  • VAHAN Very Alignment Hybrid Aligned Nematic
  • FIG. 24 is a graph showing the dependence of the transmittance on the pretilt angle.
  • the horizontal axis indicates the pretilt angle (pretilt angle / deg.), And the vertical axis indicates the transmitted light intensity (transmittance).
  • the transmitted light intensity is 1 for air.
  • the transmittance deteriorates as the pretilt angle increases.
  • the transmittance increases as the pretilt angle increases.
  • Example 5 shows the result when the pretilt angle is fixed to 88 ° on one side of the substrate, and shows that the circularly polarized VATN mode maintains a high transmittance without any problem with respect to the pretilt angle up-and-down asymmetry. Yes.
  • the transmittance in the CPA mode is 0.359, and in order to obtain a transmittance exceeding this, the pretilt angle may be set to 86 ° or more in the configuration of Example 2. In the configuration of the fifth embodiment, the pretilt angle may be set to 80 ° or more.
  • the circularly polarized VATN mode that does not require rivets has an advantage that a high transmittance can be achieved as compared with the CPA mode that requires rivets described in Comparative Example 4.
  • the horizontal axis indicates the pretilt angle (pretilt angle / deg.), And the vertical axis indicates the contrast ratio (Contrast ratio).
  • the contrast in the pretilt angle asymmetrical form of the circularly polarized VATN mode also improves as the pretilt angle increases.
  • a configuration with a pretilt angle of 90 ° indicates a HAN alignment in which the pretilt angle is less than 90 °, that is, the liquid crystal molecules are tilted only on one substrate, indicating that there is no problem in both contrast and transmittance.
  • the liquid crystal molecules on one substrate side is 90 ° and the polar angle (pretilt angle) of the liquid crystal molecules on the other substrate side is less than 90 °, the liquid crystal molecules are inclined with respect to the substrate surface.
  • the form of the HAN orientation is disclosed as a reference example for the embodiment of the present invention.
  • the configuration of the circularly polarized VATN mode in the above embodiment can be similarly applied to the circularly polarized VAECB mode, and the same result can be obtained.
  • Example 6 Retardation of circularly polarized VATN mode
  • the configuration differs from Example 2 only in the following points.
  • the cell thickness is 3.6 ⁇ m
  • the pretilt angle is 88 °
  • the applied voltage is 6V.
  • FIG. 26 is a graph showing the retardation dependency of transmittance.
  • the horizontal axis represents retardation (Retardation / nm), and the vertical axis represents transmitted light intensity (transmittance).
  • the transmitted light intensity is 1 for air.
  • FIG. 26 shows the optimum retardation (cell thickness ⁇ ⁇ n) from the viewpoint of transmittance.
  • a more preferable value is 350 nm, but generally, the cell thickness of the liquid crystal panel has a process margin of about ⁇ 10%, so 350 ⁇ 35 nm is preferable.
  • the transmittance of the CPA mode of Comparative Example 4 exceeds 0.359, which is also preferable in this sense.
  • the configuration of the circularly polarized VATN mode in the above embodiment can be similarly applied to the circularly polarized VAECB mode, and the same result can be obtained.
  • Example 7 Two glass substrates with ITO (0.7 mm thickness) were prepared, and a vertical photo-alignment film forming solution was applied onto each substrate by spin coating.
  • the photo-alignment film material contained in this solution is polyamic acid, and is a cinnamic acid derivative containing a functional group that reacts with light in the molecule. After spin coating, this was temporarily dried at 90 ° C. for 1 minute, and then a firing step was performed at 200 ° C. for 60 minutes while purging with nitrogen. The thickness of the alignment film was 100 nm. Next, a liquid crystal alignment treatment was performed on these substrates.
  • thermosetting seal (HC1413FP: manufactured by Mitsui Chemicals, Inc.) was printed on one of these substrates using a screen plate.
  • liquid crystal layer 3.5 ⁇ m
  • 3.5 ⁇ m diameter beads SP-2035: manufactured by Sekisui Chemical Co., Ltd.
  • VATN ultraviolet irradiation azimuths were orthogonal to each other
  • the bonded substrate was heated at 200 ° C. for 60 minutes in a furnace purged with nitrogen while being pressurized at 0.5 kgf / cm 2 to cure the seal.
  • Liquid crystal was injected into the cell produced by the above method under vacuum.
  • MLC6610 manufactured by Merck
  • MLC6610 manufactured by Merck
  • the inlet of the cell into which the liquid crystal was injected was sealed with an ultraviolet curable resin (TB3026E: manufactured by Three Bond Co.).
  • the wavelength of ultraviolet rays irradiated in the sealing process is 365 nm, and the pixel portion is shielded from light so as to remove the influence of ultraviolet rays as much as possible.
  • the cell was heated at 130 ° C. for 40 minutes, and the liquid crystal was subjected to a realignment treatment with an isotropic phase. Then, a VATN mode liquid crystal cell without domain division was obtained.
  • the conceptual cross-sectional view is shown in FIG.
  • FIG. 28 is a conceptual plan view showing the relationship between the outline of the liquid crystal cell and the pressure point, and the liquid crystal cell viewed from the normal direction with respect to the substrate.
  • the method for evaluating the afterimage resulting from the pressurization is as follows. First, the cell is sandwiched between two circularly polarizing plates. Next, as shown in FIG. 28, a load of 250 g, approximately 0.3 seconds is applied to one central point (pressing point 15, area 1 mm 2 ) of the liquid crystal filling region 16 of 20 mm square surrounded by the thermosetting seal 17 in the cell. Applying pressure results in disturbing the alignment of the liquid crystal. And the time (orientation return time after pressurization) until the orientation is spontaneously restored after that time is measured visually through the circularly polarizing plate. At this time, a rectangular wave of 3 V and 30 Hz was applied to the liquid crystal filling region 16.
  • FIG. 29 is a graph showing the relationship between the pretilt angle and the alignment return time after pressurization.
  • the alignment recovery time deteriorates rapidly when the pretilt angle is 89.7 ° or more, and is saturated in about 2 seconds or less when the pretilt angle is 89.5 ° or less. This time is practically a good display for the use of touch panels and the like. Give performance.
  • a pretilt angle of 89.7 ° or less for rapidly stabilizing the alignment is preferable, and practically 89.5 ° or less is more preferable.
  • the reason why the alignment return time is shortened as the pretilt angle is smaller is that the smaller the pretilt angle, the greater the alignment regulating force acting in the direction of the pretilt azimuth angle, and the stronger the restoring force against the alignment disorder due to pressing. It is.
  • the configuration of the circularly polarized VATN mode in the above embodiment can be similarly applied to the circularly polarized VAECB mode, and the same result can be obtained.
  • Example 8 Relationship between pretilt direction of circularly polarized VATN mode, transmittance and contrast
  • the configuration of Example 6 is different from that of Example 6 only in the following points.
  • ⁇ n 0.096
  • the orientation of the pretilt direction on the upper and lower substrates is as shown in FIG.
  • the crossing angle of the azimuths in the pretilt direction of each domain is 120 ° for D1 and D3, and 60 ° for D2 and D4.
  • the dotted arrow indicates the orientation in the pretilt direction on the lower substrate side
  • the solid arrow indicates the orientation in the pretilt direction on the upper substrate side.
  • FIG. 31 is a simulation result of brightness in one pixel when the liquid crystal display is viewed from the normal direction when a voltage is applied.
  • Example 9 Relationship between pretilt direction of circularly polarized VATN mode, transmittance and contrast
  • the configuration of Example 8 is different from that of Example 8 only in the following points.
  • the orientation of the pretilt direction on the upper and lower substrates is as shown in FIG.
  • the crossing angle of the azimuths in the pretilt direction of each domain is 150 ° for D1 and D3, and 30 ° for D2 and D4.
  • the dotted arrow indicates the orientation in the pretilt direction on the lower substrate side
  • the solid arrow indicates the orientation in the pretilt direction on the upper substrate side.
  • FIG. 33 is a simulation result of brightness in one pixel when the liquid crystal display is viewed from the normal direction when a voltage is applied.
  • Example 10 Transmittance and contrast of circularly polarized VAECB mode
  • the configuration differs from Example 8 only in the following points.
  • the orientation of the pretilt direction on the upper and lower substrates is as shown in FIG. In each of the domains D1 to D4, the angles formed by the azimuths in the pretilt direction are all 180 °.
  • the dotted arrow indicates the orientation in the pretilt direction on the lower substrate side
  • the solid arrow indicates the orientation in the pretilt direction on the upper substrate side. They are no longer in VATN mode, but in VAECB mode.
  • FIG. 35 is a simulation result of brightness in one pixel when the liquid crystal display is viewed from the normal direction when a voltage is applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、高透過率、高コントラスト、及び、高い配向安定性を実現できる新規表示モードの液晶ディスプレイを提供することを目的とする。本発明は、液晶セルと偏光板とを備えた液晶ディスプレイであって、上記液晶セルは、複数の画素を含んで構成される第1基板及び第2基板と、液晶分子を含む垂直配向型の液晶層と、上記第1基板の液晶層側の表面に設けられた第1配向膜と、上記第2基板の液晶層側の表面に設けられた第2配向膜とを備え、上記複数の画素は各々、1以上の配向領域を有するものであり、上記配向領域において、第1及び第2基板表面に対して液晶分子の長軸方向がプレチルト角を有し、第1配向膜近傍の液晶分子の長軸方向を第1基板表面に投影した方位と第2配向膜近傍の液晶分子の長軸方向を第2基板表面に投影した方位とが互いに交差し、上記偏光板は、液晶セルの観察者側に設けられる円偏光板を必須とする。

Description

液晶ディスプレイ
本発明は、液晶セルと偏光板とを備える液晶ディスプレイに関する。より詳しくは、垂直配向型の液晶層をもつVATN(Vertical Aligned Twisted Nematic)モード等に適用され、特に、モバイル機器、電子ブック、PCモニター等のような中小型液晶用途に好適な液晶ディスプレイに関するものである。
液晶ディスプレイは、一対のガラス基板等の基板間に液晶表示素子を挟持して構成され、薄型で軽量かつ低消費電力といった特長を有する。液晶ディスプレイは、それらの特長を活かして、モバイル用途、各種のモニター、テレビ等の用途に利用され、日常生活及びビジネスに欠かすことのできないものとなっている。近年においては、携帯電子機器の発展及び市場展開による中小型液晶ディスプレイの需要増大に伴って、モバイル機器、電子ブック、フォトフレーム、IA(産業機器)、PC(パーソナルコンピュータ)モニター用途等の用途に幅広く採用されている。これらの様々な用途に対応して種々の表示特性を発揮させるために、各種表示モードの液晶ディスプレイ(一般的に液晶表示パネルともいう)が検討されている。各表示モードでは、液晶層の光学特性を変化させるために、各表示モードに特有の電極配置及び/又は基板設計が採用される。
従来の液晶ディスプレイの中で、中小型液晶ディスプレイに適用できる表示モードとしては、例えば、CPA(Continuous Pinwheel Alignment)モードが挙げられる。このようなCPAモードに適した液晶ディスプレイとしては、垂直配向型の液晶層を有し、電圧印加状態において放射状傾斜配向状態をとる配向規制力を発現する配向規制構造が液晶層に形成された液晶表示装置が開示されている(例えば、特許文献1参照)。
またCPAモードの液晶ディスプレイとしては、上述した液晶表示装置の構成と同様に、アクティブマトリクス基板と対向基板とによって負の誘電異方性を有する液晶分子を含む液晶層が挟持され、アクティブマトリクス基板には画素電極及びTFTの走査配線(ゲートバスライン)が設けられ、対向基板には対向電極と液晶ドメインの中心に対応する領域に放射状傾斜配向を安定化させるための配向規制構造である凸部とが設けられ、アクティブマトリクス基板及び対向基板の液晶層側の表面には垂直配向膜が設けられた液晶表示装置が開示されている(例えば、特許文献2参照)。この液晶表示装置は、垂直配向膜上に形成されたポリマー構造物を含んでいて、ポリマー構造物周辺の液晶分子のプレチルト方向の方位は、電圧無印加状態においても、電圧印加時の傾斜方向と同じ方向に規定される。ポリマー構造物は、液晶層を構成する液晶材料に重合性組成物(重合性を有するモノマー又はオリゴマー)を予め混入しておき、この重合性組成物を紫外光照射で重合することによって形成される。この重合工程は、PSA(Polymer-Sustained Alignment)工程とも呼ばれる。
更に、液晶ディスプレイのパネル面に対して負の誘電率異方性を有する液晶分子を略垂直方向に配向した、いわゆるVA(Vertically Aligned)モードで動作する液晶ディスプレイに関し、液晶分子がツイスト角を形成し、かつ、液晶分子が一対の基板に対して略垂直な方向に配向する液晶表示装置が開示されている(例えば、特許文献3、4参照)。特許文献3には、この液晶表示装置においては、応答速度、視野角及びコントラストが最適化されると記載されている。
なお、従来のTN(Twisted Nematic)モードの液晶ディスプレイにおいては、楕円偏光板を使用する構成が開示され(例えば、特許文献5~7参照)、これらの文献には、特にTNモードの液晶表示装置において、コントラストの視野角を拡大できることが記載されている。以下、楕円偏光板を用いたTNモードを楕円偏光TNモードともいう。
特開2002-202511号公報 特開2009-122254号公報 特許第3282986号明細書 特表2008-538819号公報 特開2006-301579号公報 特開2008-116984号公報 特開2009-75533号公報
液晶ディスプレイの需要が増大する中、特に、モバイル機器、電子ブック、PCモニター等のような中小型液晶ディスプレイの発展が目覚ましく、高透過率、高コントラストで配向安定性の高い液晶ディスプレイの供給に対する要求が高まっている。
このような液晶ディスプレイにおいては、液晶セルと偏光板とをどのように構成するのかが重要な検討項目である。偏光板は、円偏光板と直線偏光板とに大別される。以下、直線偏光板を用いる方式を直線偏光モード、円偏光板を用いる方式を円偏光モードともいう。例えば、偏光板の種類と液晶セルの表示モードとの組み合わせとしては、一つの代表的な表示モードであるCPAモードと円偏光板との組み合わせが考えられる。
しかしながら、円偏光板とCPAモードとを組み合わせた場合、斜め視角において低階調で表示が潰れる課題や、配向規制構造であるリベットによる透過率低下の課題がある。その原因としては、次のことが挙げられる。すなわち、低階調で表示が潰れる課題は、CPAモードのプレチルト角が90°であり、電圧印加時に閾値付近で液晶分子の倒れる方向が定まらないことに起因する。リベットは液晶分子がリベットを中心に放射状に倒れるためのトリガーの役割を担っている。CPAモードの場合、図4に示されるように電圧(液晶の駆動電圧)-透過光強度の関係を示すグラフにおいて、液晶の配向特性が変化する閾値付近で透過光強度が急峻に変化する。そのため、そのような変曲点付近において、階調表現の滑らかさが失われ、階調の跳び及び/又は潰れが発生する。また、該グラフが少しでも左右にシフトするとシフト前後で透過光強度の差が大きくなる。従って焼付き残像が発生しやすい。
上記のような円偏光板を用いたCPAモードにおいては、プレチルト角が90°よりも小さければ、すなわち液晶分子がパネル面の法線方向から傾いていれば上述したような課題は解決される。
そこで、CPAモードに90°未満のプレチルト角を付与することが考えられるが、そのような技術としては、すでにPSA技術を用いることが提案されている(例えば、特許文献2参照)。ただ、依然としてリベットを取り除くことはできず、図20に示されるように突起物であるリベットの面積分の透過率ロスがあり、これによる透過率低下の課題が残っている。
また、PSA技術特有の課題が新たに生じてしまう。そのような課題としては、液晶層中の残存モノマーに起因する焼付きの発生、紫外線照射による液晶の分解又は劣化によってもたらされる信頼性低下、残存モノマーによる信頼性低下等が挙げられる。これらの現状を鑑みて、より信頼性の高い、簡便なプロセスによって作製できる表示モードが求められている。
一方で、特許文献3には、上述のようにVAモードとTNモードを組み合わせたモードの液晶表示装置において直線偏光板を用いた実施形態が開示され、コントラスト、視野角特性及び応答特性を最適化することが開示されている。以下、VAモードとTNモードを組み合わせたモードをVATN(Vertical Aligned Twisted Nematic)モードともいい、直線偏光板を用いたVATNモードを直線偏光VATNモードともいう。ただ、このような直線偏光VATNモードにおいては、視野角特性を良くするために、一画素において液晶分子の配向特性が異なる領域を複数設けるドメイン分割(例えば4ドメイン分割等)を行った場合、隣り合うドメイン間の境界(ドメイン境界)及び画素のエッジに発生する暗線が透過率を落とすといった課題が生ずる。また、プロセス上の要因により、上下基板においてプレチルト角が互いに異なる場合、透過率が下がる。このため、プロセスマージンが狭く、高品位液晶製品を提供するための生産工程管理を厳密に行う必要が生ずる。また、直線偏光VATNモードの場合、プレチルト角が大きいほど上記のように透過率低下をきたし、逆にプレチルト角が小さいほど透過率が高くなるが、プレチルト角が小さくなると電圧無印加時の伝播光の感じる複屈折は大きくなるため光抜けが増大し、結果としてコントラストの低下をもたらす。
なお、楕円偏光TNモードにおいても、視野角特性向上のためにドメイン分割を行った場合には、ドメイン境界に欠陥線(暗線)を生じ、コントラスト及び/又は透過率の低下をもたらす。またドメイン分割を行わなくとも、TNモードに代表される水平配向モードは、VA(垂直配向)モードに比べてコントラストが低くなる。
更に、近年、タッチパネル方式の液晶ディスプレイが急速に普及していて、特にタッチパネル機能を備えた中小型液晶パネルの需要拡大が著しい。そのような状況の中、液晶パネルの表面を指又はペンで押すと、押圧による液晶の配向乱れが起き、配向が元通りに戻らないという課題が明らかになった。
このように、パネル表面を押すと表示が乱れるという課題の詳細な原因は不明であるが、CPAモードの場合、プレチルト角が90°、すなわち液晶分子が基板表面に対して傾きをもたない垂直配向であるため、配向乱れが生ずると、それを復元するのに時間がかかり、配向が安定しない(配向が復元するまでの時間が長くなる)ことに起因するものと思われる。
上記のように各種のモードの中で、従来のCPAモードに円偏光板を組み合わせ、更にPSA技術を採用することによって高透過率を達成できる可能性があるが、本発明者らは、CPAモードに円偏光板を組み合わせただけであれば、階調表示の潰れ、リベットによる透過率低下が生じ、また、PSA技術を採用したとしてもそれに伴う課題が生じることを見出した。また、直線偏光VATNモードにおいても、画素エッジの暗線による透過率低下、上下基板におけるプレチルト角の差によるプロセスマージンの減少、プレチルト角の大小による透過率低下、コントラスト低下、パネル表面押圧時における液晶の配向安定性の課題があることを見出した。そして、上記課題を詳細に分析し、表示モードと偏光板との組み合わせに関して鋭意検討したものである。
本発明は、上記現状に鑑みてなされたものであり、高透過率、高コントラスト、及び、高い配向安定性を実現できる新規表示モードの液晶ディスプレイを提供することを目的とする。好ましくは、高透過率、高コントラストを実現することができ、ドメイン分割をした構成において、プレチルト角が大きいときに透過率が低下し、プレチルト角が小さいときにコントラストが低下するために透過率とコントラストとを両立できる構成とすることができないという課題を解決することができ、しかも、PSA技術に伴う課題や、上下基板におけるプレチルト角の差によるプロセスマージンの減少、プレチルト角の大小による透過率低下、コントラスト低下、パネル表面押圧時における液晶の配向安定性といった課題を解決することができる新規表示モードの液晶ディスプレイを提供することを目的とする。
本発明者らは、表示モードと偏光板との組み合わせについて種々検討したところ、CPAモードに円偏光板を組み合わせ、更にPSA技術を採用した液晶ディスプレイと、直線偏光VATNモードの液晶ディスプレイとでは上述したような改善すべき課題が生ずることから、表示モードと偏光板との最適化において更に工夫の余地があることに着目した。そして、円偏光VATNモード又は円偏光VAECB(Vertical Alignment Electrically Controlled Birefringence)モードを使用することによって、上記表示モードと偏光板との組み合わせからは予期し得ない表示特性が発現されることを見出すとともに、例えば視野角向上のためのドメイン分割を採用したとしても、直線偏光VATNモードとは異なり、透過率低下の課題を解決することができることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
本発明のある側面は、新たな表示モードとして円偏光VATNモード又は円偏光VAECBモードを使用する液晶ディスプレイである。以下では、本発明に係る液晶ディスプレイを円偏光VATNモード又は円偏光VAECBモードとも表現する。円偏光VATNモードは、一般的なTNモードと同様に液晶分子が捩れて配向しているが、プレチルト角がTNモードで約5°程度のところを、円偏光VATNモードではプレチルト角が大きいこと(好ましい実施形態においては約80°以上)が特徴である。本来、TNモードに円偏光板を組み合わせた液晶素子は、表示素子として使用することはできない。円偏光モードで高透過率を達成するためには、液晶層が捩れ(ツイスト)成分を含まないことが必要なためである。TNモードに円偏光板を組み合わせた液晶素子を表示素子として機能させるためには、捩れた初期配向から捩れ成分が少ない配向を達成するという、一見不可能な構成を要求される。CPAモードでは、捩れ成分が存在しないため、CPAモードにおいて円偏光板を採用すれば、その点だけからすれば高透過率となる。一方、VATNモードでは通常、液晶分子は上下基板の間で所定の角度(例えば90°)捩れているため、CPAモードより透過率が低くなることが一見予想される。しかし、円偏光VATNモードにおいて最適なプレチルト角を選ぶことにより、捩れ成分を著しく低減することが可能となり、CPAモードよりも更に高透過率を実現でき、かつ低階調において斜め視角で表示が潰れるといった課題を解決することができることを見出した。また、円偏光VAECBモードは、捩れ(ツイスト)成分を含まず、円偏光VAECBモードではプレチルト角が大きいこと(好ましい実施形態においては約80°以上)が特徴であり、CPAモードよりも更に高透過率、かつ低階調において斜め視角で表示が潰れるといった課題を解決することができる。更に、これらの方式では、PSA技術を採用しなくてもよく、その場合、PSA工程における液晶層への紫外線照射が無いため、電圧保持率(VHR:Voltage Holding Ratio)の低下がなく、また、液晶材料にモノマー等の添加剤を加えないため、すなわち液晶層には残存モノマーが含有されないために、信頼性の高い液晶ディスプレイが作製可能である。更に、画素中に、突起物(リベット)を配置しなくてもよく、その場合、突起物による透過率低下が抑制され、より高透過率となる。
本発明に係る液晶ディスプレイでは、上記のようにVATNモード又はVAECBモードにおいて、直線偏光板のみを用いず、円偏光板を使用する。更に、プレチルト角を最適化することで直線偏光VATNモード以上の高透過率を達成することができる。このようにVATNモード、VAECBモードにおいて円偏光板を用いた場合、特筆すべきは、プロセス上の要因により上下基板に対する液晶分子の傾き角(プレチルト角)が互いに異なっても透過率はほとんど下がらないことが挙げられる。すなわち、直線偏光VATNモード及び直線偏光VAECBモードとは異なって、上下基板におけるプレチルト角の間に差が生じたことによる影響を受けにくく、そのため、生産工程においてこのようなプレチルト角の差が生じることを許容することができ、プロセスマージンが広いという新たな特徴をVATNモード、VAECBモードに対して付与することができる。
本発明に係る液晶ディスプレイにおける必須構成を示せば、下記の通りとなる。
すなわち、本発明の別の側面は、液晶セルと偏光板とを備えた液晶ディスプレイであって、
上記液晶セルは、複数の画素を含んで構成される第1基板及び第2基板と、上記基板間に設けられ、液晶分子を含む垂直配向型の液晶層と、上記第1基板の液晶層側の表面に設けられた第1配向膜と、上記第2基板の液晶層側の表面に設けられた第2配向膜とを備え、
上記複数の画素は各々、1以上の配向領域を有するものであり、
上記配向領域において、第1及び第2基板表面に対して液晶分子の長軸方向がプレチルト角を有し、第1配向膜近傍の液晶分子の長軸方向を第1基板表面に投影した方位と第2配向膜近傍の液晶分子の長軸方向を第2基板表面に投影した方位とが互いに交差し、
上記偏光板は、液晶セルの観察者側に設けられる円偏光板を必須とするものである
液晶ディスプレイである。
本発明の更に別の側面は、液晶セルと偏光板とを備えた液晶ディスプレイであって、
上記液晶セルは、複数の画素を含んで構成される第1基板及び第2基板と、上記基板間に設けられ、液晶分子を含む垂直配向型の液晶層と、上記第1基板の液晶層側の表面に設けられた第1配向膜と、上記第2基板の液晶層側の表面に設けられた第2配向膜とを備え、
上記複数の画素は各々、1以上の配向領域を有するものであり、
上記配向領域において、第1及び第2基板表面に対して液晶分子の長軸方向がプレチルト角を有し、第1配向膜近傍の液晶分子の長軸方向を第1基板表面に投影した方位と第2配向膜近傍の液晶分子の長軸方向を第2基板表面に投影した方位とが互いに平行かつ逆向きであり、
上記偏光板は、液晶セルの観察者側に設けられる円偏光板を必須とするものである
液晶ディスプレイである。
以下に、本発明に係る液晶ディスプレイを詳述する。なお、以下では、第1及び第2基板を上下基板ともいい、第1及び第2基板の一方を上基板、他方を下基板ともいう。
本発明に係る液晶ディスプレイは、垂直配向モードの液晶ディスプレイであり、VATNモード又はVAECBモードの液晶セルと、液晶セルの観察者側の円偏光板とを備える。
上記VATNモードは、液晶ディスプレイの表示モードの一種であり、TNモードに分類される。上記VATNモードでは通常、液晶層における電圧が閾値電圧未満の状態、好ましくは、液晶層に電圧が印加されない電圧無印加の状態で、液晶層中の液晶分子の長軸方向が配向膜の配向規制力によって基板表面に対して垂直配向性を有しつつ、基板表面に対してプレチルト角を有し、かつ上下基板の配向膜表面近傍における液晶分子の長軸方向を基板表面に投影した方位が捩じれた状態となっている。なお、液晶層における電圧が閾値電圧未満の状態、液晶層に電圧が印加されない電圧無印加の状態を総称してオフ状態という。上記VAECBモードは、液晶ディスプレイの表示モードの一種であり、ECBモードに分類される。上記VAECBモードでは通常、オフ状態で、液晶層中の液晶分子の長軸方向が配向膜の配向規制力によって基板表面に対して垂直配向性を有しつつ、基板表面に対してプレチルト角を有し、かつ上下基板の配向膜表面近傍における液晶分子の長軸方向を基板表面に投影した方位が平行かつ逆向きとなっている。このようなVATNモード、VAECBモードの生産工程においては、例えば、両基板に垂直配向膜を形成し、プレチルト角を付与する配向処理(好適には光配向処理)を施せばよい。
上記VATNモード、VAECBモードの液晶層は、通常では、負の誘電率異方性を有するネマチック液晶分子を含んで構成されることになる。
上記液晶セルは、1以上の配向領域(ドメイン)を各々有する複数の画素を含んで構成され、第1及び第2基板によって挟持された上記のような垂直配向型の液晶層を有する。
円偏光VATNモードにおいては通常、上記オフ状態で、第1配向膜近傍の液晶分子の長軸方向を第1基板表面に投影した方位と第2配向膜近傍の液晶分子の長軸方向を第2基板表面に投影した方位とが互いに交差する。言い換えれば、円偏光VATNモードでは、各ドメイン内において、第一基板近傍の液晶分子の配向方位と、第二基板近傍の液晶分子の配向方位とが互い交差するように設定される。両方位のなす角(交差角度)は特に限定されず適宜設定することができる。上下基板におけるプレチルト角の差の許容範囲が直線偏光VATNモードより広いという本発明に係る円偏光VATNモードの特徴は、円偏光板ならではの特徴であり、この特徴は、本発明に係る円偏光VATNモードでは液晶分子の配向方位によらず透過率が高いという事実を反映している。すなわち、上下基板における液晶分子の配向方位のなす角が90°からずれたとしても、液晶分子の配向方位が変わるだけであり、本発明に係る円偏光VATNモードにおいては透過率が高いまま保持されるため、交差角度の許容範囲は直線偏光VATNモードに比べて広い。より具体的には、交差角度は、30°以上、180°未満(例えば、179.9°以下)の範囲内で設定することができる。ただし、直線偏光VATNモードの製造ラインを利用するという観点からは、通常の直線偏光VATNモードにおいて許容される範囲内で設定されることが好ましく、より具体的には、交差角度は、90°から±5°(85~95°)の範囲内であることが好ましい。
円偏光VAECBモードにおいては通常、上記オフ状態で、第1配向膜近傍の液晶分子の長軸方向を第1基板表面に投影した方位と第2配向膜近傍の液晶分子の長軸方向を第2基板表面に投影した方位とが互いに平行かつ逆向きである。言い換えれば、円偏光VAECBモードでは、各ドメイン内において、第一基板近傍の液晶分子の配向方位と、第二基板近傍の液晶分子の配向方位とのなす角が実質的に180°(例えば、179.9°よりも大きい角度)となるように設定される。
なお、通常の実施形態においては、一画素における一つのドメインにおいては、上基板の配向膜近傍の液晶分子のプレチルト方向は互いに同じ、すなわち揃っており、かつ下基板の配向膜近傍の液晶分子のプレチルト方向は互いに同じ、すなわち揃っている。一画素に2以上のドメインを有する場合、一つのドメインと他の一つのドメインとでは、上基板の配向膜近傍の液晶分子のプレチルト方向と下基板の配向膜近傍の液晶分子のプレチルト方向とのうち少なくとも一方が互いに異なることになる。一画素に2以上のドメインを有することを配向分割ともいう。
本発明に係る液晶ディスプレイにおけるプレチルト角とは、上記オフ状態で、基板(配向膜)表面と、基板(配向膜)表面に対して傾いた配向膜近傍の液晶分子の長軸方向とがなす角度である。図3を用いて説明すれば、上記オフ状態において、液晶分子の長軸が基板(配向膜)表面に対してなす極角であって、0°を超えて90°未満となる角度である。また、オフ状態かオン状態かに関わらず、基板(配向膜)表面と、配向膜近傍の液晶分子の長軸方向とがなす角度を表すときは、チルト角又は極角という。
なお、垂直配向性の用語における技術的範囲は、厳密に垂直であることに限られず、通常のVATNモード及び/又はVAECBモードにおいて許容される範囲内で基板(配向膜)近傍において垂直配向性であると評価されるものであればよい。好ましくは、第1配向膜近傍の液晶分子のプレチルト角と、第2配向膜近傍の液晶分子のプレチルト角とは各々、80°以上、89.9°以下である。
また本発明に係る液晶ディスプレイの構成としては、上述したような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
本発明に係る液晶ディスプレイは、液晶パネル、液晶表示素子、液晶表示装置と呼ばれるものであってもよい。
円偏光VATNモードにおける他の好ましい形態について以下に詳しく説明する。以下に示す各種形態は、適宜組み合わされてもよい。
本発明に係る液晶ディスプレイの好ましい実施形態の一つとしては、上記プレチルト角は、第1配向膜近傍と第2配向膜近傍とにおける差が1.0°未満である形態(プレチルト角上下対称形態ともいう)が挙げられる。この形態では、VATNモードにおいて第1配向膜上の液晶分子のプレチルト角と、第2配向膜上の液晶分子のプレチルト角とは、実質的に同じである、すなわち上下基板におけるプレチルト角が実質的に同じであると評価される。この場合、後述する上下基板におけるプレチルト角が実質的に互いに異なる形態よりも透過率がプレチルト角の影響を受けやすく、プレチルト角が大きいほど透過率が高く、明るくなる。
上記プレチルト角については、特に、上下基板におけるプレチルト角が実質的に同じ形態の場合、下記のような好ましい実施形態を挙げることができる。
一つ目は、上記プレチルト角が84°以上、90°未満(例えば89.9°以下)である形態、すなわち第1配向膜近傍の液晶分子のプレチルト角と、第2配向膜近傍の液晶分子のプレチルト角とが各々、84°以上、90°未満(例えば89.9°以下)である形態である。この形態においては、直線偏光VATNモードと比較して84°以上でより高いコントラストを実現することができ、該プレチルト角が大きくなるほどコントラストが高くなり、90°近辺では頭打ち状態となる。
二つ目は、上記プレチルト角が86°以上である形態、すなわち第1配向膜近傍の液晶分子のプレチルト角と、第2配向膜近傍の液晶分子のプレチルト角とが各々、86°以上である形態である。この形態においては、CPAモードに円偏光板を組み合わせた形態と比較してより高い透過率を実現することができ、プレチルト角が大きくなるほど透過率が向上する。
三つ目は、上記プレチルト角が89.7°以下である形態、更に好ましくは、上記プレチルト角が89.5°以下である形態、すなわち第1配向膜近傍の液晶分子のプレチルト角と、第2配向膜近傍の液晶分子のプレチルト角とが各々、89.7°以下、更に好ましくは、89.5°以下である形態である。この形態においては、液晶ディスプレイに対する押圧による表示の乱れを改善することができる。円偏光VATNモードにおいて、プレチルト角が小さいほどプレチルト方位角の方向にはたらく配向規制力が増し、押圧による配向乱れに対して復元力が強く働くためであると考えられる。また、プレチルト角が90°未満であるため、加圧により配向が乱れてから配向が復帰するまでの時間を顕著に改善することができる。このような形態においては、高透過率及び高コントラストを達成できることに加えて、配向安定性が高いことが相まって、液晶ディスプレイの表面に押圧がかかる用途において表示性能の向上を図ることができ、特にタッチパネル方式の中小型液晶ディスプレイに好適なものとなる。
上記偏光板は、更に、液晶セルの背面側に設けられる円偏光板を含むものであることが好ましい一つの実施形態である。この形態においては、本発明に係る液晶ディスプレイが液晶セルの背面側に設けられた円偏光板を更に備えることになる。本発明に係る液晶ディスプレイにおいては、液晶セルの観察者側に円偏光板を設けることが必須であるが、液晶セルの背面側にも円偏光板を設けるか否かは、次のように液晶ディスプレイの表示方式が透過型であるか反射型であるかによる。すなわち、本発明に係る液晶ディスプレイは、バックライトによる光が液晶セルを透過することによって表示を行う透過型の液晶表示装置であってもよく、外光が液晶セルに入射し、反射することによって表示を行う反射型の液晶表示装置であってもよく、また、これら両者を合わせて透過によって表示を行う領域(透過領域)と反射によって表示を行う領域(反射領域)とを有する半透過型の液晶表示装置に適用されてもよい。透過型の場合、液晶セルの観察者側と背面側との両側に円偏光板を設けることが好ましく、反射型の場合、液晶セルの観察者側のみに円偏光板を設けることが好ましい。また、半透過型において、液晶層を通過した入射光を基板で反射させる場合、液晶セルの観察者側と背面側との両側に円偏光板を設けると、透過領域では透過光は背面側の円偏光板、液晶層及び観察者側の円偏光板をこの順に通り、反射領域では入射光が観察者側の円偏光板及び液晶層をこの順に通った後に基板で反射し、そして、反射光が液晶層及び観察者側の円偏光板をこの順に通ることになるため好ましい。
これによって、透過型、反射型及び半透過型のいずれの場合も、液晶セルから観察者側に出射する光が円偏光板による作用を同様に受けることになる。
上記液晶セルは、液晶層のリタデーションが315~385nmであることが好ましい一つの実施形態である。液晶層のリタデーションは、(セル厚)×(Δn)によって決まり(Δnは屈折率異方性)、透過率に関係することになる。従って、透過率-リタデーションの関係を示すグラフから、透過率が高くなるリタデーションとなるように設定すればよい。円偏光VATNモードの場合は、最適なリタデーションは、350nmであるが、一般的に液晶セル(液晶パネル)のセル厚は±10%程度のプロセスマージンが存在するので、350±35nmとすることが好ましい。この範囲においては、CPAモードに円偏光板を組み合わせた形態と比較して高い透過率を実現することができる。
また上記リタデーションの設定は、透過型の液晶表示装置及び半透過型の液晶表示装置の透過領域に適用する場合に有効であるが、反射型及び半透過型にも適用可能である。反射型の液晶表示装置及び半透過型の液晶表示装置の反射領域における好適な液晶層のリタデーション範囲は、透過型の半分、すなわち(350±35)/2nmとなる。
更に、本発明に係る液晶ディスプレイの好ましい実施形態の一つとしては、上記プレチルト角は、第1配向膜近傍と第2配向膜近傍とにおける差が1.0°以上である形態(プレチルト角上下非対称形態ともいう)が挙げられる。この形態では、VATNモードにおいて第1配向膜上の液晶分子のプレチルト角と、第2配向膜上の液晶分子のプレチルト角とは、実質的に互いに異なっている、すなわち上下基板におけるプレチルト角が実質的に相違していると評価される。この場合、上述した上下基板におけるプレチルト角が実質的に同じ形態よりも透過率のプレチルト角への依存性が少ないが、プレチルト角が大きいほど透過率が高く、明るくなる。このように、本発明に係る円偏光VATNモードによれば、生産工程において上下基板におけるプレチルト角の間に差が生じた場合のプレチルト角上下非対称形態に対しても、高透過率を維持することができ、プロセスマージンを広くすることが可能である。
上記プレチルト角については、特に、上下基板におけるプレチルト角が実質的に互いに異なる形態の場合、下記のような好ましい実施形態を挙げることができる。
それは、上記プレチルト角が一方の配向膜近傍における角度が84°以上、90°未満(例えば89.9°以下)である形態、すなわち第1配向膜近傍の液晶分子のプレチルト角及び第2配向膜近傍の液晶分子のプレチルト角のうち、いずれか一方のプレチルト角(プレチルト角(A)ともいう)が84°以上、90°未満(例えば89.9°以下)であり、もう一方のプレチルト角(プレチルト角(B)ともいう)が90°未満(例えば89.9°以下)である形態である。この形態においては、プレチルト角(A)が84°以上で直線偏光VATNモードと比較してより高いコントラストを実現することができ、プレチルト角(A)が大きくなるほどコントラストが高くなり、90°近辺では頭打ち状態となる。
上記プレチルト角(A)の好ましい範囲の下限としては、80°以上であってもよく、この場合は、CPAモードに円偏光板を組み合わせた形態と比較してより高い透過率を実現することができる。また、上記プレチルト角(A)の好ましい範囲の上限としては、89.7°以下、より好ましくは、89.5°であってもよい。
上記プレチルト角(B)の好ましい範囲の下限としては、75°以上、より好ましくは、80°以上、更に好ましくは、88°以上であってもよく、上記プレチルト角(B)の好ましい範囲の上限としては、89.7°以下、より好ましくは、89.5°であってもよい。
プレチルト角(A)、(B)の好ましい範囲の上限値を上記のように設定することによって、液晶ディスプレイに対する押圧による表示の乱れを改善することができる。
上記プレチルト角上下対称形態と上記プレチルト角上下非対称形態とにおいて、プレチルト角が発現されるためには、一般的な考え方では、プレチルト角上下対称形態の場合、上下基板においてプレチルト角を共に90°未満(例えば89.9°以下)とし、プレチルト角上下非対称形態の場合、上下基板のうち少なくとも一方においてプレチルト角を90°未満(例えば89.9°以下)とすればよい。しかしながら、本発明に係る液晶ディスプレイは、上下基板においてプレチルト角を共に90°未満(例えば89.9°以下)とするVATNモード又はVAECBモードに適用されることになる。換言すると、プレチルト角が発現されるためには一般的には、一対の基板のいずれか一方においてプレチルト角が90°以下、もう一方の基板においてのプレチルト角が90°未満となればよく、例えば、一対の基板のいずれか一方においてプレチルト角が90°、もう一方の基板においてプレチルト角が90°未満となっていてもよい。しかしながら、広視野角及び高速応答性を得るというプレチルト角による利点をより発揮させるために、本発明に係る液晶ディスプレイではVATNモード又はVAECBモードを採用する。
なお、一対の基板のいずれか一方においてプレチルト角が略90°となる(例えば89.9°よりも大きくなる)形態は、片側基板のみにおいてプレチルト角が90°未満であるVAHAN(Vertical Alignment Hybrid Aligned Nematic、HAN配向ともいう)モードである。このようなVAHANモードの液晶セルと、液晶セルの観察者側の円偏光板とを備える液晶ディスプレイもコントラストと透過率の両面で良好な性能を発揮することができる。
なお、プレチルト角の測定に関して、プレチルト角上下対称形態の場合はもちろんのこと、プレチルト角上下非対称形態の場合にもプレチルト角を測定することは可能である。プレチルト角上下非対称形態の場合には、上下基板を分解して各々の基板を用いて液晶セルを作製して液晶を注入し、上基板同士の液晶セル、下基板同士の液晶セルを作製した後、それぞれのプレチルト角を測定すれば、第1配向膜近傍における液晶分子のプレチルト角、第2配向膜近傍における液晶分子のプレチルト角を測定することができる。
上記プレチルト角上下非対称形態においても、上記偏光板は、更に、液晶セルの背面側に設けられる円偏光板を含むものであることが好ましい一つの実施形態である。詳細は、上述したプレチルト角上下対称形態と同様である。また、プレチルト角上下非対称形態も、上述したのと同様に、透過型、反射型及び半透過型の液晶表示装置に適用することができる。
更に、上記プレチルト角上下非対称形態においても、上記液晶セルは、液晶層のリタデーションが315~385nmであることが好ましい一つの実施形態である。
詳細は、上述したプレチルト角上下対称形態と同様である。なお、プレチルト角上下非対称形態においてもプレチルト角上下対称形態の場合と同様に上記リタデーション範囲を適用できるのは、次のような理由による。すなわち、図22に示されるように、プレチルト角上下非対称形態においても、ダイレクター方位角(液晶分子のプレチルト方位角)-セル厚の関係を示すグラフの傾き、すなわち実効的なリタデーションはほとんど変わらず、液晶分子の平均方位角のみが大きく変わることになる。従って、円偏光モードにおいては、原理的に複屈折媒質(=液晶分子)の軸方位(=平均方位角)は透過率に依存しないので、上記リタデーション範囲を適用可能となる。
本発明に係る液晶ディスプレイには、一画素において液晶分子の配向方位が互いに異なる複数の領域(ドメイン)を形成する配向分割(分割ドメイン)を適用することができ、下記のような好ましい形態を挙げることができる。
すなわち、上記複数の画素は各々、2以上の配向領域を有する形態が好ましく、また、4以上の配向領域を有する形態がより好ましい。視野角特性の向上、生産工程の効率性等の観点から、特に好ましい実施形態は、上記複数の画素は各々、4つの配向領域を有する形態である。
上記のように、円偏光VATNモードにおいて分割ドメインの構成を採用する形態は、直線偏光VATNモードにおいて分割ドメインの構成を採用する場合に見出された新たな課題に対して有効なものとなる。すなわち、直線偏光VATNモードにおいては、一画素を複数のドメインに分割している境界の暗線が原因で、透過率ダウン、低コントラストを引き起こすという課題が新たに見出された。これに対して、一画素に1つの配向方位の領域しかないシングルドメインの場合は、ドメイン間の境界がないため、プレチルト角が高くても透過率及びコントラストはあまり下がらない。本発明に係る液晶ディスプレイは、分割ドメインの構成を採用する場合も採用しない場合も、従来のCPAモード等の表示モードに対して技術的意義を有することになるが、分割ドメインの構成を採用する場合は、上記新規な課題に対しても有効なものとなり、従って、より大きな技術的意義を有することになる。
また分割ドメインの構成を採用する場合、直線偏光VATNモードの最適プレチルト角と円偏光VATNモードの最適プレチルト角との範囲が異なることになる。シングルドメインでは、両者の最適プレチルト角は90°に近いほど良い、という同様な特性を発揮する。これに対して、分割ドメインの構成を採用するマルチドメインでは、両者の最適プレチルト角は異なることになる。従って、本発明に係る液晶ディスプレイの最適な構成は、直線偏光VATNモードの偏光板を円偏光板にただ変えただけではなく、更にプレチルト角を最適化したところにも重要な技術的意義を有することになる。
このように、本発明に係る液晶ディスプレイの好ましい形態は、円偏光CPAモード及び/又は直線偏光VATNモードに見出された新たな課題の解決を図ることができるという点で、これらに対して特に有用な構成を備えたものとなっている。
本発明に係る液晶ディスプレイは、モノクロ表示の液晶ディスプレイであってもよいし、各画素が複数のサブ画素から構成されるカラー表示の液晶ディスプレイであってもよい。本発明に係る液晶ディスプレイをカラー表示の液晶ディスプレイに適用する場合は、上述の各画素は、サブ画素と読み替えることができる。
上記円偏光VATNモードにおける種々の好ましい形態は、円偏光VAECBモードにおいても同様に適用することができ、同様の結果を得ることができる。
本発明によれば、高透過率、高コントラスト、及び、高い配向安定性を実現できる新規表示モードの液晶ディスプレイを提供することができる。また、本発明の好ましい実施形態によれば、高透過率、高コントラストを実現することができ、ドメイン分割をした構成において、プレチルト角が大きいときに透過率が低下し、プレチルト角が小さいときにコントラストが低下するために透過率とコントラストとを両立できる構成とすることができないという課題を解決することができ、しかも、PSA技術に伴う課題や、上下基板におけるプレチルト角の差によるプロセスマージンの減少、プレチルト角の大小による透過率低下、コントラスト低下、パネル表面押圧時における液晶の配向安定性といった新たな課題を解決することができる新規表示モードの液晶ディスプレイを提供することができる。
本発明の比較形態(比較例1)である円偏光CPAモードにおける液晶セルの(a)平面模式図、(b)断面模式図、(c)リベットの拡大平面模式図である。 本発明の比較形態(比較例1)である円偏光CPAモードにおける円偏光板とCPAモードの液晶セルとの関係を示す斜視概念図である。 本明細書における角度の定義を示す概念図である。 本発明の比較形態(比較例1)である円偏光CPAモードにおける電圧-透過光強度の関係をシミュレーションした結果を示すグラフである。 本発明の実施形態(実施例1)である円偏光VATNモードにおけるドメイン分割を説明するための模式図であり、液晶セルの(a)平面模式図(一画素にD1、D2、D3、D4の4つのドメイン)、(b)断面模式図(D1、D2の2つのドメイン)、(c)断面模式図(D3、D4の2つのドメイン)である。 本発明の実施形態における配向分割を例示する図であり、(a)は、液晶ディスプレイが4ドメインを有する形態において、一対の基板の間に閾値以上のAC電圧が印加された状態における一画素(又は1サブ画素)内の平均の液晶ダイレクターの方向と、一対の基板(上下基板)に対する光配向処理の方向と、ドメインの分割パターンとを示す平面模式図であり、(b)は、(a)で示した液晶ディスプレイに設けられる円偏光板を構成する直線偏光板の吸収軸方向を示す模式図である。なお、(a)中、実線矢印は、下基板(例えば、駆動素子基板)に対する光配向処理の方向を示し、点線矢印は、上基板(例えば、カラーフィルタ基板)に対する光配向処理の方向を示す。 本発明の実施形態における配向分割を例示する図であり、(a)は、液晶ディスプレイが図6とは別の4ドメインを有する形態において、一対の基板の間に閾値以上のAC電圧が印加された状態における一画素(又は1サブ画素)内の平均の液晶ダイレクターの方向と、一対の基板(上下基板)に対する光配向処理の方向と、ドメインの分割パターンとを示す平面模式図であり、(b)は、(a)で示した液晶ディスプレイに設けられる円偏光板を構成する直線偏光板の吸収軸方向を示す模式図であり、(c)は、一対の基板の間に閾値以上のAC電圧が印加された時の(a)のG-H線における断面模式図であり、液晶分子の配向方向を示す。なお、(a)中、点線矢印は、下基板(例えば、駆動素子基板)に対する光配向処理の方向を示し、実線矢印は、上基板(例えば、カラーフィルタ基板)に対する光配向処理の方向を示す。また、(c)中、点線は、ドメイン間の境界を示す。 本発明の実施形態(実施例1)である円偏光VATNモードにおける電圧-透過光強度の関係をシミュレーションした結果を示すグラフである。 本発明の比較形態(比較例2)である直線偏光VATNモードにおける直線偏光板とVATNモードの液晶セルとの関係を示す斜視概念図である。 本発明の比較形態(比較例2)である直線偏光VATNモードにおいて、プレチルト角を75°~89.8°の範囲で変化させ、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果を示す。 本発明の比較形態(比較例2)である直線偏光VATNモードにおけるプレチルト角-コントラスト比を示すグラフである。 本発明の実施形態(実施例2)である円偏光VATNモードにおける円偏光板とVATNモードの液晶セルとの関係を示す斜視概念図である。 本発明の実施形態(実施例2)である円偏光VATNモードにおいて、プレチルト角を75°~89.8°の範囲で変化させ、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果を示す。 本発明の実施形態(実施例2)である円偏光VATNモードにおけるプレチルト角-コントラスト比を示すグラフである。 本発明の比較形態(比較例3)である円偏光TNモードにおける電圧-透過光強度の関係と、本発明の実施形態(実施例2)である円偏光VATNモードにおける電圧-透過光強度の関係とを示すグラフである。 本発明の比較形態(比較例3)である通常の直線偏光TNモードの表示原理を示す概念図である。(a)は、液晶パネルに電圧無印加時であり、(b)は、液晶パネルに電圧印加時の状態である。 本発明の比較形態(比較例3)である円偏光TNモードの液晶素子が表示素子にならない原理を示す概念図である。(a)は、液晶パネルに電圧無印加時であり、(b)は、液晶パネルに電圧印加時の状態である。 本発明の実施形態(実施例3)である円偏光VATNモード(プレチルト角上下対称形態の場合)の液晶セルにおいて、液晶分子のプレチルト方位角が上下基板間で捩じれていることを示す一例を概念的に表した図である。 本発明の実施形態(実施例3)である円偏光VATNモード(プレチルト角上下対称形態の場合)において、上下基板における液晶分子のプレチルト角を共に75°から89.8°に変化させたときの液晶分子のプレチルト方位角の分布を示すグラフである。 本発明の比較形態(比較例4)である円偏光CPAモードにおいて、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果を示す。 本発明の実施形態(実施例4)である円偏光VATNモード(プレチルト角上下非対称形態の場合)の液晶セルにおいて、液晶分子のプレチルト方位角が上下基板間で捩じれていることを示す一例を概念的に表した図である。 本発明の実施形態(実施例4)である円偏光VATNモード(プレチルト角上下非対称形態の場合)において、下基板においてプレチルト角を88°に固定し、上基板においてプレチルト角を75°から89.8°まで変化させたときのダイレクター方位角の分布を示すグラフである。 本発明の実施形態(実施例5)である円偏光VATNモード(プレチルト角上下非対称形態の場合)において、下基板においてプレチルト角を88°に固定し、上基板においてプレチルト角を75°から90°の範囲で変化させ、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果を示す。 本発明の実施形態(実施例2及び実施例5)である円偏光VATNモード(プレチルト角上下対称形態及び上下非対称形態の場合)並びに比較形態(比較例2)である直線偏光VATNモードにおける透過光強度のプレチルト角依存を比較して示したグラフである。 本発明の実施形態(実施例5)である円偏光VATNモード(プレチルト角上下非対称形態の場合)におけるプレチルト角-コントラスト比を示すグラフである。 本発明の実施形態(実施例6)である円偏光VATNモード(プレチルト角上下非対称形態の場合)における透過光強度のリタデーション依存を示すグラフである。 本発明の実施形態(実施例7)である円偏光VATNモードにおける液晶セルの断面概念図である。 本発明の実施形態(実施例7)において、液晶セルの概形と加圧点の関係を示す平面概念図である。 本発明の実施形態(実施例7)において、プレチルト角-加圧後の配向復帰時間の関係を示すグラフである。 本発明の実施形態(実施例8)である円偏光VATNモードにおけるドメイン分割を説明するための模式図であり、液晶セルの平面模式図(一画素にD1、D2、D3、D4の4つのドメイン)である。 本発明の実施形態(実施例8)である円偏光VATNモードにおいて、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果を示す。 本発明の実施形態(実施例9)である円偏光VATNモードにおけるドメイン分割を説明するための模式図であり、液晶セルの平面模式図(一画素にD1、D2、D3、D4の4つのドメイン)である。 本発明の実施形態(実施例9)である円偏光VATNモードにおいて、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果を示す。 本発明の実施形態(実施例10)である円偏光VAECBモードにおけるドメイン分割を説明するための模式図であり、液晶セルの平面模式図(一画素にD1、D2、D3、D4の4つのドメイン)である。 本発明の実施形態(実施例10)である円偏光VAECBモードにおいて、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果を示す。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
なお、本発明の実施形態(実施例)及び比較形態(比較例)の説明順は、比較形態と対比した本発明の実施形態の特徴を把握しやすいようにするために、比較例、実施例の順に説明する。
(比較例1)
円偏光CPAモード液晶セル
液晶の配向シミュレーションは、「LCDMASTER Prime3D ver.4.97(商品名、シンテック社製)」にて行った。計算条件は下記の通りである。
セルサイズは50μm×60μm、セル厚は液晶層厚1.5μmで計算した。
用いた液晶は、MBBA(N-(4-Methoxybenzylidene)-4-n-butylaniline)であり、屈折率異方性Δn=0.255、誘電率異方性Δε=-0.5、プレチルト角は90°で計算した。計算波長は550nmである。
図1に示すようなCPAモード液晶セル10Bを用いた。図1(a)は、液晶セルにおける液晶層とリベットとの関係を液晶セルの観察者側(上側基板の法線方向)から見た平面模式図である。図1(b)は、図1(a)のA-B線における断面模式図である。また、図1(c)は、図1(a)に示されたリベットの拡大平面模式図である。
上側基板(観察者側基板、例えばガラス基板)1には突起物(リベット)7を単位セルの中心に配置しており、リベット7の厚みは0.5μm、リベット7のテーパー角は50°である。更に透明電極(例えばITO膜)3と配向膜5を全面にベタで(切れ目なく)配置している。その厚さはそれぞれ100~2000Å程度であり、液晶層9の厚み1.5μmに対して充分に小さいので、計算上は無限の薄さに設定している。下側基板(背面側基板、例えばガラス基板)2には透明電極(例えばITO膜)4と配向膜6のみを配置しており、透明電極4は単位セル境界から1μm内側に48μm×58μmの大きさでベタで(切れ目なく)配置しており、配向膜6は全面にベタで(切れ目なく)配置してある。透明電極4と配向膜6のそれぞれの厚みは上側基板1と同様の理由により、無限の薄さに設定している。
なお、図1(a)及び図1(b)においては、液晶分子8が配向膜5、6に対して垂直に配向しつつ、上側基板1のリベット7を中心に、放射状に配向していることが概念的に示されている。
前述の液晶セル10Bを図2の如く2枚の円偏光板11a、11bで挟む。上下の直線偏光板の吸収軸13a、13bは互いに直交しており、それぞれの直線偏光板と隣接して積層されたλ/4板の遅走軸14a、14bは、吸収軸13a、13bに対して45°の角度をなす方向に配置されており、こられの積層体が円偏光板としての機能を有している。角度の定義は図3の通りである。
図3において、極角は、基板表面に対する角度であり、基板表面に対して平行な方向を0°とし、垂直方向(法線方向)を90°とする。また、方位角は、基板表面に対して平行な面におけるある方向を0°、すなわち基準としたときに、それに対する方位を示す角度である。3次元方向を示す(x,y,z)を用いて説明すると、極角は、xy平面においてx軸方向に対してなす角度と定義され、方位角は、xz平面においてx軸方向に対してなす角度と定義される。図3においては、極角及び方位角がともに0°となる方向が(方位角,極角)=(0°,0°)で示されている。
なお、図3に示される角度の定義を液晶分子の配向に当てはめれば、次のようになる。
すなわち、図3において、極角は、液晶分子における長軸方向の基板表面に対する角度であり、また、方位角は、液晶分子における長軸方向を基板表面に投影し、基板表面におけるある方位を0°としたときに、それに対して基板表面に投影された方位が示す角度である。
図4は、円偏光CPAモードの液晶パネルを斜め(極角45°)から見た場合の電圧-透過光強度の関係をシミュレーションした結果である。このグラフにおいて、4.1V付近に急峻に透過光強度が変化する箇所が存在する。この箇所において階調表現の滑らかさが失われ、階調の跳び及び/又は潰れが発生する。また、この電圧-透過光強度の関係を示すグラフは少しでも左右にシフトすると、シフト前後で透過光強度の差が大きくなる。従って、円偏光CPAモードにおいては、焼付き残像が発生しやすいという課題がある。
(実施例1)
円偏光VATNモード液晶セル
比較例1と同様に、液晶の配向シミュレーションを行った。計算条件は下記の通りである。
液晶層9の分割方法は図5に示される通りであり、単位セルを4つの領域(同一面積のD1~D4)に分割し、液晶のプレチルト角は88.0°(極角)に設定した。上側基板1近傍においてD1とD3のプレチルト方向の方位は互いに180°異なり、上側基板1近傍においてD2とD4のプレチルト方向の方位は互いに180°異なる。また、下側基板2近傍においてD1とD2のプレチルト方向の方位は互いに180°異なり、下側基板2近傍においてD3とD4のプレチルト方向の方位は互いに180°異なる。D1とD2のツイスト角については、絶対値はそれぞれ90°であるが、符号の正負が互いに異なる。D3とD4のツイスト角については、絶対値はそれぞれ90°であるが、符号の正負が互いに異なる。セルサイズ、セル厚、液晶、その物性値等の他の条件は比較例1と同様である。ただし、リベットは配置していない。図5(b)は、図5(a)のC-D線における断面模式図であり、図5(c)は、図5(a)のE-F線における断面模式図である。
このように、本実施形態の液晶表示装置では、図5に示すように液晶層を挟持する基板間に印加される電圧が閾値電圧未満のオフ状態において、第1配向膜及び第2配向膜は、負の誘電率異方性を有する液晶分子を基板面(配向膜表面)に対して垂直な方向から少し傾いた方向に配向させる。また、オフ状態において、一方の基板(配向膜)近傍の液晶分子(以下、上方の液晶分子ともいう。)の配向方位と、他方の基板(配向膜)の近傍の液晶分子(以下、下方の液晶分子ともいう。)の配向方位とは、互いに略直交する。
液晶分子の配向方位とは、液晶分子の傾斜方向を基板面に投影したときに示す方位を意味している。液晶層を挟持する基板間に印加される電圧が閾値電圧未満のオフ状態においては、プレチルト方向及びツイスト角の絶対値が上記のようになり、上方の液晶分子と下方の液晶分子とを互いに略直交する方位に配向させることになる。この場合、VATNモードにおける液晶表示が可能な程度に、上方の液晶分子と下方の液晶分子とを実質的に互いに直交する方位に配向させるものであれば、これらの液晶分子を完全には直交させなくてもよく、例えば、上方の液晶分子の配向方位(又は第1配向膜によって規定される配向方位)と下方の液晶分子の配向方位(又は第2配向膜によって規定される配向方位)とは、互いに85°~95°で交わってもよい。一方で、液晶層を挟持する基板間に印加される電圧が閾値電圧を超えたオン状態においては、負の誘電率異方性を有する液晶分子が印加電圧に応じて、基板面に対して略平行方向に配向し、液晶層の透過光に対して複屈折性を示すことになる。
また配向分割されたVAモードとしては、VATNモード、VAECBモード、VAHANモード等が挙げられるが、本発明に係る液晶ディスプレイにおいては、特に、VATNモード、後述するVAECBモードに好適に適用されることになる。
本実施形態のように一画素を4つの領域(ドメイン)に配向分割する場合、例えば、以下の方法を採用することができる。第1基板上に第1配向膜を形成し、第1配向膜に配向方位が互いに略180°異なることになる2つの領域を形成し、第2基板上に第2配向膜を形成し、第2配向膜に配向方位が互いに略180°異なることになる2つの領域を形成する。そして、第1配向膜によって規定される配向方位と第2配向膜によって規定される配向方位とが互いに直交するように配向膜同士を対向させればよい。これにより、一方の基板における配向膜の各領域が他方の基板における配向膜の各領域によって配向分割され、各画素内に液晶分子のツイスト方向が互いに異なる4つのドメイン領域を形成することができる。
図6及び図7は、4つのドメインをもつ配向分割におけるオン状態の形態を例示した概念図である。図6は、一画素(又は1サブ画素)を縦横で区切って略4等分に配向分割した形態であり、本実施形態の場合に相当する。図7は、一画素(又は1サブ画素)をストライプ状に区切って略4等分に配向分割した他の実施形態である。図7(c)は、図7(a)のG-H線における断面模式図である。オン状態とは、液晶層における電圧(通常はAC電圧)が閾値電圧以上の状態、好ましくは、液晶層に電圧が印加された状態である。
図6の配向分割の形態においては、図6(a)に示すように、オン状態において、液晶層の厚み方向における中央付近に位置する液晶分子の配向方位が、4つのドメイン領域(図6(a)中、i~iv)において、互いに異なる、より具体的には互いに略直交する4分割ドメインが形成されている。また、図6(b)に示すように、基板を平面視したときに、上基板(例えば、カラーフィルタ基板)に対する光配向処理の方向(図6(a)中、点線矢印)は、上基板側に配置された円偏光板における直線偏光板の吸収軸方向(方位)20と同一方向でもよく、下基板(例えば、駆動素子基板)に対する光配向処理の方向(図6(a)中、実線矢印)は、下基板側に配置された円偏光板における直線偏光板の吸収軸方向(方位)19と同一方向でもよい。しかしながら、直線偏光板の吸収軸方向19、20は特に限定されず、図6(b)に示した方向から適宜回転されてもよい。
なお、それぞれのドメイン間の境界においては、一方の基板上の液晶分子の配向方位が直線偏光板の吸収軸方向と一致し、他方の基板上の液晶分子の配向方位は基板に対してほぼ垂直となっている。したがって、本実施形態のように円偏光板(直線偏光板及びλ/4板)ではなく、直線偏光板のみをクロスニコルに配置した場合、ドメイン間の境界は、オン状態においても光を透過しないので暗線(暗い線)となる。
図7の配向分割の形態においては、図7(a)に示すように、オン状態において、液晶層の厚み方向における中央付近に位置する液晶分子の配向方位が、4つのドメイン領域(図7(a)中、i~iv)において、互いに異なる、より具体的には互いに略直交する4分割ドメインが形成されている。また、図7(b)に示すように、この形態においては、基板を平面視したときに、上基板(例えば、カラーフィルタ基板)に対する光配向処理の方向(図7(a)中、実線矢印)は、上基板側に配置された直線偏光板の吸収軸方向20と同一方向でもよく、下基板(例えば、駆動素子基板)に対する光配向処理の方向(図7(a)中、点線矢印)は、下基板側に配置された直線偏光板の吸収軸方向19と同一方向でもよい。しかしながら、上述のように、直線偏光板の吸収軸方向19、20は、図7(b)に示した方向から適宜回転されてもよい。
これらの配向分割の形態のオフ状態においては、液晶分子の長軸方向は、配向膜の配向規制力によって、上下基板に対してプレチルト角をもって傾斜配向し、かつ上下基板間でほぼ90°ツイストし、4つのドメインで異なる4つの配向状態が存在することになる。
そして、オン状態においては、液晶分子の長軸方向は、電界の影響を受けて変化することになるが、この場合も、例えば、図7(c)に模式的に示されるように上下基板間でほぼ90°ツイストし、4つのドメインで異なる4つの配向状態が存在することになる。
なお、本発明に係る液晶ディスプレイにおける液晶セルの好ましい形態に関し、第1基板及び第2基板のうちいずれか一方の基板は、スイッチング素子である薄膜トランジスタ(以下、TFTともいう。)及び画素電極がマトリクス状に設けられたTFTアレイ基板であることが好ましい。
また第1基板及び第2基板のうち他方の基板は、カラーフィルタ及び共通電極を有するカラーフィルタ基板(以下、CF基板ともいう。)であることが好ましい。このように、本発明に係る液晶ディスプレイは、アクティブマトリクス型液晶ディスプレイであることが好ましいが、単純マトリクス型液晶ディスプレイであってもよい。単純マトリクス型液晶ディスプレイの場合、通常は、第1基板及び第2基板は、ストライプ状の信号電極(列電極)が設けられた基板と、該信号電極と略直交するようにストライプ状の走査電極(行電極)が設けられた基板との組み合わせとなる。これら液晶ディスプレイにおける画素は、アクティブマトリクス型液晶ディスプレイの場合、画素電極と、それに対向する共通電極とによって規定される。また、単純マトリクス型液晶ディスプレイにおいては、ストライプ状の信号電極と走査電極との交差によって規定される。
本実施形態においては、円偏光板の構成も比較例1と同様である。特許文献3及び特許文献4に記載のVATNモードは、直線偏光板を用いることを前提として記載されているところに注意すべきである。特に特許文献3では、直線偏光板と液晶セルの間に位相差板を配置する構成を提示しているが、これは直線偏光VATNモードの視野角特性を改善する目的の構成である。すなわち、直線偏光板の吸収軸は、位相差板の遅相軸に平行か、若しくは直交している。
一方、本実施例は、直線偏光板と液晶セルの間に位相差板を配置する同様の構成ではあるが、直線偏光板の吸収軸と位相差板の遅相軸が45°又は-45°を成しており、その位相差も実質的にλ/4に特定される、円偏光モードとするための構成である。すなわち、本実施例における円偏光板は、図2に示した円偏光CPAモードにおける円偏光板11a、11bと同様の構成である。ただし、本発明に係る液晶ディスプレイにおける円偏光板の構成は、円偏光を生成する構成であれば何でも良く、一例として光学ピッチで螺旋構造を有する構造体(例えば、コレステリック液晶)でもかまわない。本発明に係る液晶ディスプレイが一対の円偏光板を備える場合は通常、右偏光板及び左偏光板を備え、両偏光板はクロスニコルに配置される。
円偏光板は、好適には、直線偏光板(偏光子)とλ/4板との組み合わせによって構成される。以下、この場合について詳述する。透過率の高い白表示状態と略完全な黒表示状態を実現する観点から、第一(観察者側)及び第二(背面側)のλ/4板の面内遅相軸は、第一(観察者側)及び第二(背面側)の直線偏光板の吸収軸とそれぞれ45°の相対角度(+45°又は-45°)をなしていることが最も好ましいが、正面方向のコントラスト比を低下させない範囲であれば、45°から多少ずれていてもよい。具体的には、液晶セルの基板面を平面視したときに、第一のλ/4板の面内遅相軸と第一の直線偏光板の吸収軸とのなす角、及び、第二のλ/4板の面内遅相軸と第二の直線偏光板の吸収軸とのなす角がそれぞれ、45°から±2°(43°~47°)の範囲内であることが好ましい。また同様に、液晶セルの基板面を平面視したときに、第一のλ/4板の面内遅相軸と第二のλ/4板の面内遅相軸とのなす角が90°から±1°(89°~91°)の範囲内であることが好ましい。λ/4板とは、設定波長の光波について略1/4波長の位相差を生じさせる位相差板であり、少なくとも波長550nmの光に対して略1/4波長(正確には137.5nmであるが、115nmよりも大きく、160nmよりも小さければよい)の光学的異方性を有する層のことであり、λ/4位相差フィルム、λ/4位相差板と同義である。また、直線偏光板(直線偏光子)とは、自然光を直線偏光に変える機能を有する素子のことである。典型的にはポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体等の異方性材料を吸着配向させたものが挙げられる。通常は、PVAフィルムの両面にトリアセチルセルロース(TAC)フィルム等の保護フィルムをラミネートして実用に供されることになる。
図8は、比較例1と同様に円偏光VATNモードの液晶パネルを斜め(極角45°)から見た場合の電圧-透過光強度の関係をシミュレーションした結果のグラフである。このグラフにおいては、4.1V付近の急峻に変化する箇所が消失して、階調表現の滑らかさを実現でき、階調の跳び及び/又は潰れが実質的に発生しない。また、焼付き残像が出にくいという長所もある。これはプレチルト角があるために(この実施例においては88.0°)、閾値付近での液晶分子の倒れる方向が予め特定方向に規定されており、印加電圧に応じて素直に液晶分子が倒れるためである。
上記実施形態における円偏光VATNモードの構成は、円偏光VAECBモードにおいても同様に適用することができ、同様の結果を得ることができる。
(比較例2)
直線偏光VATNモードのプレチルト角と透過率、コントラストとの関連性
セル厚が2μmのVATNモードの液晶セル10Aで、円偏光モードではなく直線偏光モードである他は実施例1と同様の液晶表示素子の構成を図9に示す。液晶セル10Aを図9の如く2枚の直線偏光板12a、12bで挟み、上下の直線偏光板12a、12bの吸収軸13a、13bは互いに直交している。この直線偏光VATNモードの液晶表示素子を用いて、白表示電圧(=6V)の印可時における画素を、プレチルト角を75°~89.8°の範囲で変化させて、シミュレーションした結果を図10に示す。図10は、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果であり、プレチルト角が図10(a)では89.8°、図10(b)では88.0°、図10(c)では86.0°、図10(d)では84.0°、図10(e)では82.0°、図10(f)では80.0°、図10(g)では75.0°となっている。
図10より、電圧印加時、直線偏光VATNモードはプレチルト角が小さいほど明るく(透過率が高く)好ましいことがわかる。
これは、プレチルト角が大きいほどドメイン分割した境界上の暗線が太くなることと、更に画素周辺の斜め電界の効果により画素エッジの配向が乱されることに起因する。プレチルト角が大きいほど、プレチルト方位角の方向にはたらく配向規制力が低下するため、液晶分子の配向方位を規定された方位角の方向に束縛する力は弱くなり、結果として電圧印加時の暗線領域の増大につながる。
従来においては、この効果が考慮されていないことから、プレチルト角は高ければ高いほど良いという考えがあったが、実際のドメイン分割をした画素においては逆の現象が生じていることがわかる。
しかし、逆にプレチルト角が小さければ小さいほど性能が良いというわけでもなく、プレチルト角が小さいほど、電圧無印加時の伝播光の感じる複屈折は大きくなるため光抜けが増大し、結果としてコントラストの低下をもたらす。このグラフを図11に示す。
図11においては、横軸にプレチルト角(pretilt angle/deg.)、縦軸にコントラスト比(Contrast ratio)が示されている。
コントラストは極値を持ち、プレチルト角が86°付近において最大値を示す。
すなわち、直線偏光VATNモードの最も好ましいプレチルト角は86°付近である。この値よりもプレチルト角が大きすぎると、電圧印加時、ドメイン分割した境界上の暗線が太くなることと、更に画素周辺の斜め電界の効果により画素エッジの配向が乱されることにより、透過率が下がってしまい、コントラスト低下をもたらす。逆にプレチルト角が86°よりも小さいと、電圧無印加時、伝播光の感じる複屈折は大きくなるため光抜けが増大し、結果としてコントラストの低下をもたらす。
(実施例2)
円偏光VATNモードのプレチルト角と透過率、コントラストとの関連性
VATNモードの液晶セル10Aを円偏光板11a、11bで両側から挟んだ他は比較例2と同様の構成の液晶表示素子を図12に示す。上下の直線偏光板の吸収軸13a、13bは互いに直交しており、それぞれの直線偏光板と隣接して積層されたλ/4板の遅走軸14a、14bは、吸収軸13a、13bに対して45°の角度をなす方向に配置されている。この円偏光VATNモードの液晶表示素子を用いて、白表示電圧(=6V)の印可時における画素を、プレチルト角を75°~89.8°の範囲で変化させて、シミュレーションした結果を図13に示す。図13は、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果であり、プレチルト角が図13(a)では89.8°、図13(b)では88.0°、図13(c)では86.0°、図13(d)では84.0°、図13(e)では82.0°、図13(f)では80.0°、図13(g)では75.0°となっている。
図13より、円偏光VATNモードはプレチルト角が大きいほど明るくなる(透過率が高い)ことがわかる。また、液晶の配向方向に明るさが依存しにくく、直線偏光VATNモードに顕著に見られるドメイン境界の暗線及び画素周辺の配向乱れの影響をうけないため、比較例2に対しても明るいことがわかる。円偏光モードにおいては、液晶分子の配向方位は透過率に依存しないため、液晶分子の配向方位に起因する暗線は発生しない。円偏光VATNモードが明るい理由は後述する実施例3の結果から説明することができる。コントラストのプレチルト角依存のグラフを図14に示す。
図14においては、横軸にプレチルト角(pretilt angle/deg.)、縦軸にコントラスト比(Contrast ratio)が示されている。
比較例2とは異なり、プレチルト角は大きければ大きいほど良い。また、比較例2に対して高コントラストが達成できる。比較例2の直線偏光VATNモードにおける図11の最大値3500は、円偏光VATNモードでは、プレチルト角84°以上で達成できる。ここから、プレチルト角は84°以上であることが好ましいことがわかる。
(比較例3)
TNモードにおける直線偏光と円偏光との比較
実施例2と同様の構成で、液晶を5CB、プレチルト角を5°と設定した。このプレチルト角は一般的なTNモードの値である。この時の電圧-透過光強度の関係を図15に示す。
比較例3は、液晶表示素子として機能していない。本来、円偏光板を用いたTNモード(円偏光TNモードともいう。)は、表示素子として使用することはできない。この理由の原理を図16及び図17に示す。
図16は、直線偏光板を用いた通常のTNモード(直線偏光TNモードともいう。)の液晶ディスプレイの表示原理を示す。電圧無印加時に液晶層が光を旋光させる役割を有し、電圧のオンオフで光シャッターの機能を有する。図16中、(a)が電圧無印加時、(b)が電圧印加時である。なお、図16中、左右直線偏光とは、左右方向に振動する直線偏光を意味し、左右直線偏光板とは、左右直線偏光を透過する直線偏光板を意味する。
図17に円偏光TNモードの液晶素子を示す。電圧無印加時に液晶層の液晶分子は捩れており、光を旋光させる役割を有するが、液晶層には右円偏光が入射されるため、右円偏光を旋光してもその位相が変化するのみで、右円偏光が出射されることにかわりはない。従って、電圧のオンオフに関わらず、右円偏光の偏光状態は変化しない。そのため、右円偏光は左円偏光板を透過することができず、円偏光TNモードは表示素子として機能しない。右偏光板と左偏光板の場所を入れ替えた場合も同様である。
この現象は液晶層の旋光能が、円偏光に対しては位相シフトのみしか引き起こさないことに原因がある。従って、特許文献5~7のようなTNモードにおいては、円偏光板ではなく、楕円偏光板を使用する構成が提案されている。しかしこれらの文献に記載の構成において視野角特性向上のためにドメイン分割を行った場合には、ドメイン境界に欠陥線を生じ、コントラスト低下及び/又は透過率の低下をもたらすという致命的欠点がある。またドメイン分割を行わなくとも、TNモードに代表される水平配向モードは、VA(垂直配向)モードに比べてコントラストが低いという原理的欠点がある。円偏光モードで高透過率及び高コントラストを達成するためには、CPAモードのように捩れ(ツイスト)成分を含まないことが必要であり、TNモードに円偏光板を組み合わせた液晶素子を表示素子として機能させるためには、捩れた初期配向から捩れ成分が少ない配向を達成するという、一見不可能な構成を要求される。しかし本発明に係る円偏光VATNモード又は円偏光VAECBモードとすれば、上記TNモードのように電圧のオンオフに関わらず、円偏光の偏光状態は変化しないということにはならず、更にプレチルト角を最適化することで上記課題をすべて解決可能である。これらのことは本発明者らによって初めて見出された。
次に、円偏光VATNモード及び円偏光VAECBモードでこれらの課題を解決して、CPAモードを上回る高透過率を達成する構成及び手法を実施例3以降にて述べる。
(実施例3)
円偏光VATNモードにおける液晶分子のプレチルト方位角の分布(プレチルト角上下対称形態)
図18は、円偏光VATNモードの液晶セルにおいて、液晶分子のプレチルト方位角が上下基板間で捩じれていることを示す一例を概念的に表したものである。プレチルト方位角とは、プレチルト角をもった液晶分子の長軸方向を基板表面に投影した方位が示す角度のことである。図18の場合は、プレチルト角上下対称形態となっている。図18に示したVATNモードの液晶セルにおいて、液晶層内部の液晶分子のプレチルト方位角の分布をシミュレーションした。上下基板においてそれぞれ0°方位と90°方位に液晶分子はプレチルトしており、液晶分子は液晶層内でツイストしている。液晶はMBBAを使用した。セル厚は2μmである。印加電圧は6Vである。上下基板においてプレチルト角を共に75°から89.8°に変化させたときの液晶分子のプレチルト方位角の分布を図19に示す。
図19は、液晶層内部位置-液晶分子方位角の関係を示すグラフであり、液晶層内部位置は、液晶層内の基板法線方向における一方の端から液晶分子までの距離(μm)を示し、液晶分子方位角は、当該液晶分子のプレチルト方位角(°)を示している。プレチルト角の違いによって液晶層内部位置-液晶分子方位角の関係を示すグラフがどのように変化するのかを見たものである。
プレチルト角が75°の場合は液晶分子は液晶層内部でほぼ均一に捩れているのに対して、プレチルト角が89.8°の場合は液晶分子は界面(液晶層内の基板法線方向における端の部分)で大きく捩れているが、大部分の領域で捩れていないことがわかる。すなわち、プレチルト角が大きくなるほど捩れが界面に偏り、他の領域で均一な配向になるため、円偏光VATNモードでは液晶分子が捩れているにも関わらず、プレチルト角が大きくなれば高透過率となっていくことがわかる。
(比較例4)
円偏光CPAモードの透過率
セル厚が2μmである他は比較例1と同様の構成の液晶表示素子における画素シミュレーションの結果を図20に示す。
これは電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果である。
中央の黒領域は液晶をCPA配向させるためのリベットである。透過率は0.359(空気=1)であった。
(実施例4)
円偏光VATNモードにおける液晶分子のプレチルト方位角の分布(プレチルト角上下非対称形態)
特許文献4にはVATNモードの構成において、プレチルト角が上下基板で互いに異なる場合、著しく透過率が下がる課題が開示されている。これは直線偏光VATNモードにおいて上下界面におけるプレチルト角が互いに異なると、液晶分子のプレチルト方位角の平均の方向が直線偏光板の吸収軸に対して45°の方向からずれてしまうためである。
図21は、円偏光VATNモードの液晶セルにおいて、液晶分子のプレチルト方位角が上下基板間で捩じれていることを示す一例を概念的に表したものである。実施例3とプレチルト角以外は同様の構成で、本実施例においては下基板においてプレチルト角を88°に固定し、上基板においてプレチルト角を75°から89.8°まで変化させた。このときのプレチルト方位角の分布を図22に示す。従って図21の場合は、プレチルト角上下非対称形態となっている。
図22は、図19と同様に、液晶層内部位置(横軸を「セル厚」と表示)-液晶分子方位角(縦軸を「ダイレクター方位角」と表示)の関係を示すグラフであり、液晶層内部位置は、液晶層内の基板法線方向における一方の端から液晶分子までの距離(μm)を示し、液晶分子方位角は、当該液晶分子のプレチルト方位角(°)を示している。
図22において特筆すべきは、図19と比較して、プレチルト角が変化しても分布の傾き(=捩れの程度)がさほど変わらないことである。すなわち、プレチルト角が上下基板で互いに異なっていたとしても、円偏光VATNモードでは透過率は高いまま殆ど変化しないことが予想される。これに関しては実施例5で詳しく述べる。特許文献4には、直線偏光VATNモードにおいては上下基板でプレチルト角の差が1°未満であることが好ましいとの記載があるが、円偏光VATNモードではこれも許容される特徴がある。換言すれば、積極的に上下基板でプレチルト角を互いに異ならしめることも可能である。
なお、円偏光VAECBモードは、捩れ(ツイスト)成分を含まないので、例えば、下基板においてプレチルト角を90°に固定し、上基板においてプレチルト角を75°から89.8°まで変化させたとしても、ダイレクター方位角の分布は一定になる。
(実施例5)
円偏光VATNモードのプレチルト角と透過率、コントラストとの関連性(プレチルト角上下非対称形態)
実施例2と同様の構成で、下基板においてプレチルト角を88°に固定し、上基板においてプレチルト角を75°から90°まで変化させた時の画素シミュレーションの結果を図23に示す。
図23は、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果であり、上基板でのプレチルト角が図23(a)では90.0°、図23(b)では89.8°、図23(c)では88.0°、図23(d)では86.0°、図23(e)では84.0°、図23(f)では82.0°、図23(g)では80.0°、図23(h)では75.0°となっている。
図13と比較して、殆どプレチルト角に依存せずに透過光強度が高いまま維持されていることがわかる。特にプレチルト角が90.0°の構成は片側基板のみ配向処理を行う、VAHAN(Vertical Alignment Hybrid Aligned Nematic)モードであるにもかかわらず、良好な透過率を示す。
図24は透過率のプレチルト角依存を示すグラフである。横軸にプレチルト角(pretilt angle/deg.)、縦軸に透過光強度(透過率)が示されている。透過光強度は、空気を1とする。
比較例2ではプレチルト角が大きくなるほど透過率は悪化するのに対し、実施例2と実施例5ではプレチルト角が大きくなるほど透過率は良い。実施例5は片側の基板においてプレチルト角を88°に固定した場合の結果であり、円偏光VATNモードがプレチルト角上下非対称形態に対して問題なく、高透過率を維持していることを示している。
また、比較例4で述べたようにCPAモードの透過率は0.359であり、これを上回る透過率を得るためには、実施例2の構成ではプレチルト角を86°以上に設定すればよく、実施例5の構成ではプレチルト角を80°以上に設定すればよい。このようにリベットの必要の無い円偏光VATNモードは比較例4で述べたリベットが必要なCPAモードに比べて高透過率を達成することができる利点がある。
図25は、横軸にプレチルト角(pretilt angle/deg.)、縦軸にコントラスト比(Contrast ratio)が示されている。
円偏光VATNモードのプレチルト角上下非対称形態におけるコントラストもプレチルト角が高くなるほど良くなる。特にプレチルト角が90°の構成は、片側の基板においてのみプレチルト角が90°未満、すなわち液晶分子が傾いているHAN配向を示し、コントラストと透過率の両面で問題ないことを示している。
なお、片側の基板側における液晶分子の極角(プレチルト角)が90°、もう片側の基板側における液晶分子の極角(プレチルト角)が90°未満で該液晶分子が基板表面に対して傾いているHAN配向の形態は、本発明の実施形態に対しての参考例として開示したものである。
上記実施例における円偏光VATNモードの構成は、円偏光VAECBモードにおいても同様に適用することができ、同様の結果を得ることができる。
(実施例6)
円偏光VATNモードのリタデーション
実施例2と構成が次の点のみ異なる。
セル厚は3.6μm、プレチルト角は88°、印加電圧は6Vである。
液晶の物性はK11=14、K22=8、K33=16、Δε=4として、Δnの値を0.066~0.116の間でふって、液晶のリタデーションに対する透過率の変化を評価した。
図26は透過率のリタデーション依存を示すグラフである。横軸にリタデーション(Retardation/nm)、縦軸に透過光強度(透過率)が示されている。透過光強度は、空気を1とする。
図26は透過率の観点から最適なリタデーション(セル厚×Δn)を示している。より好ましい値は350nmであるが、一般的に液晶パネルのセル厚は±10%程度のプロセスマージンが存在するので、350±35nmが好ましい。この範囲においては比較例4のCPAモードの透過率0.359を上回っており、この意味においても好ましい。
上記実施例における円偏光VATNモードの構成は、円偏光VAECBモードにおいても同様に適用することができ、同様の結果を得ることができる。
(実施例7)
ITOつきガラス基板(0.7mm厚)を2枚用意し、垂直光配向膜形成用溶液を各基板上にスピンコートで塗布した。この溶液に含まれる光配向膜材料は、ポリアミド酸であり、分子内に光に反応する官能基を含んだ、桂皮酸誘導体である。スピンコート塗布後、90℃で1分間、これを仮乾燥して、その後、窒素パージしながら200℃で60分間、焼成工程を行った。配向膜の膜厚は100nmであった。
次に、これらの基板に液晶配向処理を施した。具体的には、波長313nmの直線偏光紫外線を基板法線から40°傾いた方向から基板全面に適量照射した。この時の偏光はp偏光であった。紫外線の照射量は液晶分子のプレチルト角が88.6°~89.8°の範囲内になるように調節した。
次に、これらの基板の一方に、スクリーン版を使用して熱硬化性シール(HC1413FP:三井化学社製)を印刷した。更に液晶層の厚みを3.5μmにするために対向側の基板には3.5μm径のビーズ(SP-2035:積水化学工業社製)を散布した。この二種類の基板を紫外線の照射方位角が互いに直交するように貼り合わせた(VATN)。次に貼り合わせた基板を0.5kgf/cmで加圧しながら窒素パージした炉で200℃で60分間加熱して、シールを硬化させた。
以上の方法で作製したセルに、液晶を真空下で注入した。本実施例では液晶として誘電率異方性が負のMLC6610(メルク社製)を用いた。液晶が注入されたセルの注入口は紫外線硬化樹脂(TB3026E:スリーボンド社製)で封止した。封止工程で照射する紫外線の波長は365nmであり、画素部は遮光して紫外線の影響を極力取り除くようにした。次に液晶の流動配向を消すために、セルを130℃で40分間加熱し、液晶を等方相にして再配向処理を行った。そして、ドメイン分割をしていないVATNモードの液晶セルを得た。その断面概念図を図27に示した。上側(観察者側)光配向膜(第1配向膜)5の近傍の液晶分子8と、下側(背面側)光配向膜(第2配向膜)6の近傍の液晶分子8との間のツイスト角の絶対値は、実施例1のD1等のドメインと同様に、90°とした。
このように、プレチルト角測定のため、ドメイン分割をしていない液晶セルを作製したが、当然、ドメイン分割をした液晶セルでも本実施例と同じ結果がもたらされることが容易に想像できる。出来上がった液晶セルのプレチルト角の測定にはシンテック社製オプチプロを使用した。
図28は、液晶セルの概形と加圧点の関係を示し、液晶セルを基板に対して法線方向から見たときの平面概念図である。
加圧に起因する残像の評価の方法は、以下の通りである。まず、セルを2枚の円偏光板で挟む。次に、図28のごとくセル中の熱硬化性シール17で囲まれた20mm四方の液晶充填領域16の中央1点(加圧点15、面積1mm)に、荷重250g、およそ0.3秒間加圧して、その結果、液晶の配向を乱す。そして、その時から配向が自発的に元通りになるまでの時間(加圧後の配向復帰時間)を、円偏光板を通して目視で測定するものである。このとき、液晶充填領域16には3V、30Hzの矩形波を印加した。
図29は、プレチルト角-加圧後の配向復帰時間の関係を示すグラフである。
このように、プレチルト角が小さくなるほど、加圧後の配向復帰時間が短縮され、表示乱れが改善する。
配向復帰時間は、プレチルト角が89.7°以上で急激に悪化し、89.5°以下においてはほぼ2秒以下で飽和しており、この時間は実用的にタッチパネル等の利用において良好な表示性能を与える。すなわち配向安定性の観点においては、急激に配向安定化するプレチルト角の89.7°以下が好ましく、実用的には89.5°以下が更に好ましい。プレチルト角が小さいほど配向復帰時間が短縮される理由は、プレチルト角が小さいほどプレチルト方位角の方向にはたらく配向規制力が増し、押圧による配向乱れに対して復元力が強く働くためであると思われる。
上記実施例における円偏光VATNモードの構成は、円偏光VAECBモードにおいても同様に適用することができ、同様の結果を得ることができる。
(実施例8)
円偏光VATNモードのプレチルト方向と透過率、コントラストとの関連性
実施例6と構成が次の点のみ異なる。
Δn=0.096であり、上下基板におけるプレチルト方向の方位が図30の通りである。各ドメインのプレチルト方向の方位の交差角度は、D1とD3では120°、D2とD4では60°である。図30中、点線矢印は下基板側のプレチルト方向の方位を、実線矢印は上基板側のプレチルト方向の方位を示す。白表示電圧(=6V)の印可時における画素シミュレーションを図31に示す。
図31は、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果である。透過率は0.380(空気=1)でコントラストは4900であり、比較例4に対して優れている。
(実施例9)
円偏光VATNモードのプレチルト方向と透過率、コントラストとの関連性
実施例8と構成が次の点のみ異なる。
上下基板におけるプレチルト方向の方位が図32の通りである。各ドメインのプレチルト方向の方位の交差角度は、D1とD3では150°、D2とD4では30°である。図32中、点線矢印は下基板側のプレチルト方向の方位を、実線矢印は上基板側のプレチルト方向の方位を示す。白表示電圧(=6V)の印可時における画素シミュレーションを図33に示す。
図33は、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果である。透過率は0.379(空気=1)でコントラストは4900であり、比較例4に対して優れている。
(実施例10)
円偏光VAECBモードの透過率、コントラスト
実施例8と構成が次の点のみ異なる。
上下基板におけるプレチルト方向の方位が図34の通りである。各ドメインD1~D4においてプレチルト方向の方位のなす角度は、全て180°である。図34中、点線矢印は下基板側のプレチルト方向の方位を、実線矢印は上基板側のプレチルト方向の方位を示す。これらはもはやVATNモードではなく、VAECBモードである。白表示電圧(=6V)の印可時における画素シミュレーションを図35に示す。
図35は、電圧印加時に液晶ディスプレイを法線方向から見たときの一画素における明るさのシミュレーション結果である。透過率は0.389(空気=1)でコントラストは5000であり、比較例4に対して優れている。
本願は、2011年2月8日に出願された日本国特許出願2011-024964号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1:上側(観察者側)基板(ガラス基板)
2:下側(背面側)基板(ガラス基板)
3:透明電極(観察者側)(ITO膜)
4:透明電極(背面側)(ITO膜)
5:(光)配向膜(観察者側)
6:(光)配向膜(背面側)
7:突起物(リベット)
8:液晶分子
9:液晶層
10A:液晶セル(VATNモード)
10B:液晶セル(CPAモード)
11a:円偏光板(観察者側)
11b:円偏光板(背面側)
12a:直線偏光板(観察者側)
12b:直線偏光板(背面側)
13a:直線偏光板の吸収軸(観察者側)
13b:直線偏光板の吸収軸(背面側)
14a:λ/4板の遅走軸(観察者側)
14b:λ/4板の遅走軸(背面側)
15:加圧点
16:液晶充填領域
17:熱硬化性シール
18:AC電圧印加時の平均の液晶ダイレクター方向
19:下基板側に配置された円偏光板における直線偏光板の吸収軸方向
20:上基板側に配置された円偏光板における直線偏光板の吸収軸方向

Claims (16)

  1. 液晶セルと偏光板とを備えた液晶ディスプレイであって、
    該液晶セルは、複数の画素を含んで構成される第1基板及び第2基板と、該基板間に設けられ、液晶分子を含む垂直配向型の液晶層と、該第1基板の液晶層側の表面に設けられた第1配向膜と、該第2基板の液晶層側の表面に設けられた第2配向膜とを備え、
    該複数の画素は各々、1以上の配向領域を有するものであり、
    該配向領域において、第1及び第2基板表面に対して液晶分子の長軸方向がプレチルト角を有し、第1配向膜近傍の液晶分子の長軸方向を第1基板表面に投影した方位と第2配向膜近傍の液晶分子の長軸方向を第2基板表面に投影した方位とが互いに交差し、
    該偏光板は、液晶セルの観察者側に設けられる円偏光板を必須とするものである
    ことを特徴とする液晶ディスプレイ。
  2. 前記プレチルト角は、第1配向膜近傍と第2配向膜近傍とにおける差が1.0°未満であることを特徴とする請求項1に記載の液晶ディスプレイ。
  3. 前記プレチルト角は、84°以上、90°未満であることを特徴とする請求項1又は2に記載の液晶ディスプレイ。
  4. 前記プレチルト角は、86°以上であることを特徴とする請求項3に記載の液晶ディスプレイ。
  5. 前記プレチルト角は、89.7°以下であることを特徴とする請求項3又は4に記載の液晶ディスプレイ。
  6. 前記プレチルト角は、89.5°以下であることを特徴とする請求項5に記載の液晶ディスプレイ。
  7. 前記偏光板は、更に、液晶セルの背面側に設けられる円偏光板を含むものであることを特徴とする請求項1~6のいずれかに記載の液晶ディスプレイ。
  8. 前記液晶セルは、液晶層のリタデーションが315~385nmであることを特徴とする請求項1~7のいずれかに記載の液晶ディスプレイ。
  9. 前記プレチルト角は、第1配向膜近傍と第2配向膜近傍とにおける差が1.0°以上であることを特徴とする請求項1に記載の液晶ディスプレイ。
  10. 前記プレチルト角は、一方の配向膜近傍における角度が84°以上、90°未満であることを特徴とする請求項9に記載の液晶ディスプレイ。
  11. 前記偏光板は、更に、液晶セルの背面側に設けられる円偏光板を含むものであることを特徴とする請求項9又は10に記載の液晶ディスプレイ。
  12. 前記液晶セルは、液晶層のリタデーションが315~385nmであることを特徴とする請求項9~11のいずれかに記載の液晶ディスプレイ。
  13. 前記複数の画素は各々、2以上の配向領域を有するものであることを特徴とする請求項1~12のいずれかに記載の液晶ディスプレイ。
  14. 前記複数の画素は各々、4以上の配向領域を有するものであることを特徴とする請求項13に記載の液晶ディスプレイ。
  15. 前記複数の画素は各々、4つの配向領域を有するものであることを特徴とする請求項14に記載の液晶ディスプレイ。
  16. 液晶セルと偏光板とを備えた液晶ディスプレイであって、
    該液晶セルは、複数の画素を含んで構成される第1基板及び第2基板と、該基板間に設けられ、液晶分子を含む垂直配向型の液晶層と、該第1基板の液晶層側の表面に設けられた第1配向膜と、該第2基板の液晶層側の表面に設けられた第2配向膜とを備え、
    該複数の画素は各々、1以上の配向領域を有するものであり、
    該配向領域において、第1及び第2基板表面に対して液晶分子の長軸方向がプレチルト角を有し、第1配向膜近傍の液晶分子の長軸方向を第1基板表面に投影した方位と第2配向膜近傍の液晶分子の長軸方向を第2基板表面に投影した方位とが互いに平行かつ逆向きであり、
    該偏光板は、液晶セルの観察者側に設けられる円偏光板を必須とするものである
    ことを特徴とする液晶ディスプレイ。
PCT/JP2012/052240 2011-02-08 2012-02-01 液晶ディスプレイ WO2012108311A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-024964 2011-02-08
JP2011024964 2011-02-08

Publications (1)

Publication Number Publication Date
WO2012108311A1 true WO2012108311A1 (ja) 2012-08-16

Family

ID=46638527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052240 WO2012108311A1 (ja) 2011-02-08 2012-02-01 液晶ディスプレイ

Country Status (1)

Country Link
WO (1) WO2012108311A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034471A1 (ja) * 2012-08-27 2014-03-06 シャープ株式会社 液晶表示装置
CN109557724A (zh) * 2017-09-25 2019-04-02 夏普株式会社 液晶显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270024A (ja) * 1988-04-22 1989-10-27 Toshiba Corp 液晶表示素子
JPH03192217A (ja) * 1989-12-21 1991-08-22 Stanley Electric Co Ltd 液晶表示装置
JP2002040428A (ja) * 1999-09-28 2002-02-06 Stanley Electric Co Ltd 液晶表示装置
JP2007034308A (ja) * 2005-07-27 2007-02-08 Samsung Electronics Co Ltd 液晶表示装置とその製造方法
JP2010224012A (ja) * 2009-03-19 2010-10-07 Asahi Kasei E-Materials Corp マルチドメイン化垂直配向型液晶パネル及びこれを具備する液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270024A (ja) * 1988-04-22 1989-10-27 Toshiba Corp 液晶表示素子
JPH03192217A (ja) * 1989-12-21 1991-08-22 Stanley Electric Co Ltd 液晶表示装置
JP2002040428A (ja) * 1999-09-28 2002-02-06 Stanley Electric Co Ltd 液晶表示装置
JP2007034308A (ja) * 2005-07-27 2007-02-08 Samsung Electronics Co Ltd 液晶表示装置とその製造方法
JP2010224012A (ja) * 2009-03-19 2010-10-07 Asahi Kasei E-Materials Corp マルチドメイン化垂直配向型液晶パネル及びこれを具備する液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034471A1 (ja) * 2012-08-27 2014-03-06 シャープ株式会社 液晶表示装置
CN109557724A (zh) * 2017-09-25 2019-04-02 夏普株式会社 液晶显示装置
US10551678B2 (en) 2017-09-25 2020-02-04 Sharp Kabushiki Kaisha Liquid crystal display device
CN109557724B (zh) * 2017-09-25 2021-11-16 夏普株式会社 液晶显示装置

Similar Documents

Publication Publication Date Title
JP4138759B2 (ja) 液晶表示装置および電子機器
JP4476137B2 (ja) 液晶装置および電子機器
US7864276B2 (en) Liquid crystal display device
Lee et al. Emerging vertical‐alignment liquid‐crystal technology associated with surface modification using UV‐curable monomer
US8294860B2 (en) Liquid crystal display device
JP4228004B2 (ja) 透過型液晶表示装置
US20030160927A1 (en) Liquid crystal display with sub pixel regions defined by sub electrode regions
US20020047968A1 (en) Liquid crystal display device
JP2002303869A (ja) 液晶表示装置
JP2008309957A (ja) 透過型液晶表示装置
JP5508427B2 (ja) 液晶表示装置
US7965359B2 (en) Self-compensating, quasi-homeotropic liquid crystal device
JPH0365926A (ja) 液晶表示装置
WO2012108311A1 (ja) 液晶ディスプレイ
JP4553585B2 (ja) 表面の波状によって形成された多重領域効果を持つ液晶表示装置
JP4031658B2 (ja) 液晶表示装置
WO2007032356A1 (ja) 液晶表示素子
WO2012108313A1 (ja) 液晶ディスプレイ
Lu et al. 4.4: Transflective Liquid Crystal Display Using In-plane Switching Effect
JP4241364B2 (ja) 液晶表示装置および電子機器
JP4515203B2 (ja) 垂直配向型ecbモード液晶表示素子
JP2002116463A (ja) 液晶表示素子
KR102634252B1 (ko) 편광판
Kim et al. P‐128: Viewing Angle Switching of Liquid Crystal Displays Driven by Fringe Field Switching
JP5657288B2 (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP