[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012108310A1 - 電気式脱イオン水製造装置 - Google Patents

電気式脱イオン水製造装置 Download PDF

Info

Publication number
WO2012108310A1
WO2012108310A1 PCT/JP2012/052239 JP2012052239W WO2012108310A1 WO 2012108310 A1 WO2012108310 A1 WO 2012108310A1 JP 2012052239 W JP2012052239 W JP 2012052239W WO 2012108310 A1 WO2012108310 A1 WO 2012108310A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
desalting chamber
anion
small
exchanger
Prior art date
Application number
PCT/JP2012/052239
Other languages
English (en)
French (fr)
Inventor
一哉 長谷川
慶介 佐々木
友二 浅川
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to KR1020137022779A priority Critical patent/KR101526093B1/ko
Priority to CN201280008026.XA priority patent/CN103370281B/zh
Publication of WO2012108310A1 publication Critical patent/WO2012108310A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46128Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to an electric deionized water production apparatus, and more particularly to a structure of a demineralization chamber.
  • a deionized water production apparatus that performs deionization by passing water to be treated through an ion exchanger.
  • a chemical such as acid or alkali.
  • a treatment for replacing the anion or cation adsorbed on the ion exchange group with H + or OH ⁇ derived from an acid or alkali is necessary.
  • an electric deionized water production apparatus that does not require regeneration with a drug has been developed and put into practical use.
  • the electric deionized water production apparatus is a combination of electrophoresis and electrodialysis.
  • the basic configuration of a general electric deionized water production apparatus is as follows. That is, the electric deionized water production apparatus includes a demineralization chamber, a pair of concentration chambers disposed on both sides of the demineralization chamber, an anode chamber disposed outside one of the concentration chambers, and the other concentration chamber. And a cathode chamber disposed on the outside.
  • the desalting chamber has an anion exchange membrane and a cation exchange membrane arranged opposite to each other, and an ion exchanger (anion exchanger or / and cation exchanger) filled between the exchange membranes.
  • the electric deionized water production apparatus may be abbreviated as “deionized water production apparatus”.
  • water to be treated is supplied to the demineralization chamber while a DC voltage is applied between the electrodes provided in the anode chamber and the cathode chamber, respectively. Allow water to pass.
  • anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2 , etc.) are captured by the anion exchanger, and cation components (Na + , Ca 2+ , Mg 2+, etc.) are captured by the cation exchanger.
  • a water dissociation reaction occurs at the interface between the anion exchanger and the cation exchanger in the desalting chamber, and hydrogen ions and hydroxide ions are generated (2H 2 O ⁇ H + + OH ⁇ ).
  • the ion component captured by the ion exchanger is exchanged with the hydrogen ions and hydroxide ions to be released from the ion exchanger.
  • the liberated ion component travels through the ion exchanger to the ion exchange membrane (anion exchange membrane or cation exchange membrane), is electrodialyzed by the ion exchange membrane, and moves to the concentration chamber.
  • the ion component that has moved to the concentration chamber is discharged by the water flowing through the concentration chamber.
  • the deionized water production apparatus when the deionized water production apparatus is continuously operated, hardness components in the water to be treated are deposited, and scales such as calcium carbonate and magnesium hydroxide are generated.
  • the scale is generated on the concentration chamber side surface of the anion exchange membrane separating the cathode chamber and the concentration chamber.
  • scale is generated on the surface of the anion exchange membrane in the concentration chamber sandwiched between two desalting chambers. The reason is as follows. The hydroxide ion generated by electrolysis in the cathode chamber and the hydroxide ion generated by the water dissociation reaction in the desalting chamber pass, so that the anion exchange membrane surface in the concentration chamber becomes alkaline.
  • Patent Document 1 discloses a deionized water production apparatus in which an anion exchanger having a specific structure is disposed on the anion exchange membrane side of a concentration chamber. According to this deionized water production apparatus, diffusion dilution of OH ⁇ into concentrated water is promoted from the surface of the porous anion exchanger, and the OH ⁇ concentration on the surface can be rapidly reduced. On the other hand, hardness component ions are less likely to enter the interior of the porous anion exchanger. As a result, the opportunity for OH ⁇ and hardness component ions to come into contact and react with each other is reduced, and the precipitation and accumulation of scale is suppressed.
  • Patent Document 2 two or more ion exchanger layers having different water permeability are provided in the concentration chamber, and an ion exchanger layer having a low water permeability is disposed on the anion exchange membrane side.
  • An apparatus for producing deionized water having an anion exchange group on at least the surface of the layer is disclosed. According to this deionized water production apparatus, when concentrated water containing a large amount of hardness component that has moved through a layer with high water permeability reaches a layer with low water permeability, the moving force of the concentrated water is reduced. As a result, concentrated water containing a large amount of hardness components is prevented from flowing into the concentration chamber side surface of the anion exchange membrane, and scale deposition and accumulation are suppressed.
  • a weak acid anion component typified by carbonic acid and silica contained in the concentrated water passes through the ion exchange membrane partitioning the concentration chamber and the desalting chamber and diffuses into the treated water, thereby reducing the purity of the treated water.
  • Such a decrease in the purity of the treated water appears more conspicuously when the concentration chamber is filled with an anion exchanger.
  • carbon dioxide and silica will be specifically described as examples.
  • a cation exchange membrane is an ion exchange membrane that selectively permeates only cations.
  • the principle is that the membrane itself has a-(minus) charge, and a repulsive force is exerted on the anion having the -charge to block permeation.
  • carbonic acid (carbon dioxide) and silica take the form of each ionic species in an aqueous solution, and they are in an equilibrium state.
  • a concentration chamber C2 is disposed on the cathode side of the desalting chamber D via a cation exchange membrane, and a concentration chamber C1 is disposed on the anode side via an anion exchange membrane.
  • the desalting chamber D is filled with a cation exchanger and an anion exchanger, and the concentration chambers C1 and C2 are filled with an anion exchanger.
  • the treated water passes through the desalting chamber D and is discharged out of the system.
  • a large amount of hydrogen ions (H + ) generated by the water dissociation reaction together with the cation components in the water to be treated move from the desalting chamber D toward the concentration chamber C2 through the cation exchanger. Since the concentration chamber C2 is filled with an anion exchanger, the hydrogen ions (H + ) that have passed through the cation exchange membrane are released simultaneously on the concentration chamber side surface of the cation exchange membrane. That is, the concentration chamber side surface of the cation exchange membrane is in a state where there are many hydrogen ions (H + ) (that is, a state where the pH is low).
  • carbonic acid or silica contained in the concentrated water (in the figure, carbonic acid is explained, but the same applies to silica) is captured as ions by the anion exchangers in the concentration chambers C1 and C2, and passes through the anion exchanger to exchange cation. Move to the membrane surface. On the surface of the cation exchange membrane in the concentration chamber C2, the concentration of carbonic acid and silica is high, and the pH is low. As a result, carbonic acid and silica that are not ionized under low pH conditions lose their charge after being released from the anion exchanger, and permeate the cation exchange membrane and diffuse into the water to be treated.
  • the deionized water production apparatus shown in FIG. 7 is provided with two demineralization chambers (D1, D2).
  • D1, D2 demineralization chambers
  • An object of the present invention is to make it possible to produce high-purity deionized water while suppressing the generation of scale.
  • One aspect of the present invention is an electrical deionized water production apparatus in which at least one demineralization treatment unit is provided between an opposing cathode chamber and an anode chamber, and the demineralization treatment unit includes a demineralization chamber, And a pair of concentrating chambers provided on both sides of the desalting chamber and filled with an anion exchanger.
  • the desalting chamber is partitioned by an ion exchange membrane into a first small desalting chamber adjacent to one of the pair of concentrating chambers and a second small desalting chamber adjacent to the other of the pair of concentrating chambers.
  • the first small desalting chamber is filled with an anion exchanger
  • the second small desalting chamber is filled with anions in the order in which the ion exchanger through which the water to be treated passes last becomes an anion exchanger.
  • the exchanger and cation exchanger are filled.
  • a bipolar membrane is arranged with the anion exchange membrane surface facing the anion exchanger.
  • the desalination chamber is divided into two chambers, the behavior of ions is basically the same as the case where the desalination chamber is one chamber without partition.
  • the anion component when a part of anion components such as carbonic acid and silica existing in the concentration chamber on the cathode side passes through the ion exchange membrane and moves to the second small desalting chamber, the anion component is second small desorption. It is trapped by the anion exchanger in the salt chamber and moves to the concentration chamber on the anode side through the first small desalting chamber. Therefore, carbonic acid or silica existing in the concentration chamber does not diffuse into the treated water.
  • the bipolar membrane promotes the water dissociation reaction and realizes appropriate distribution of current density.
  • an electric deionized water production apparatus capable of producing high-purity deionized water while suppressing the generation of scale is realized.
  • FIG. (A) to (d) are schematic views showing the presence and arrangement of bipolar membranes in the second small desalination chambers of Example 1 and Comparative Examples 1 to 3.
  • FIG. It is a schematic block diagram which shows the other example of embodiment of the electrical deionized water manufacturing apparatus of this invention. It is a schematic block diagram which shows the other example of embodiment of the electrical deionized water manufacturing apparatus of this invention. It is a schematic block diagram which shows the other example of embodiment of the electrical deionized water manufacturing apparatus of this invention. It is a figure which shows the principle which the carbonic acid component in concentrated water diffuses in to-be-processed water. It is a schematic diagram which shows the principle that the carbonic acid component in treated water re-diffuses in treated water.
  • FIG. 1 is a schematic configuration diagram of a deionized water production apparatus according to this embodiment.
  • a pair of concentrating layers disposed on both sides of a desalting chamber D and a desalting chamber D between a cathode chamber E1 having a cathode and an anode chamber E2 having an anode.
  • a desalinating section composed of the chambers C1 and C2 is provided.
  • the concentration chamber C1 adjacent to the anode chamber E2 is referred to as “first concentration chamber C1”
  • the concentration chamber C2 adjacent to the cathode chamber E1 is referred to as “first”.
  • concentration chamber C2 concentration chamber C2
  • the desalting chamber D is divided into two small desalting chambers.
  • the desalination chamber D includes a first small desalination chamber D-1 adjacent to the first concentration chamber C1 and a second small desalination chamber adjacent to the second concentration chamber C2. It is partitioned with D-2.
  • Each chamber described so far is formed by dividing the inside of the frame 1 into a plurality of spaces by a plurality of ion exchange membranes, and is adjacent to each other through the ion exchange membranes.
  • the arrangement of the chambers will be described in order from the cathode chamber E1 side as follows. That is, the cathode chamber E1 is adjacent to the second concentration chamber C2 via the first anion exchange membrane a1, and the second concentration chamber C2 is connected to the second small desalination via the first cation exchange membrane c1. Adjacent to chamber D-2.
  • the second small desalting chamber D-2 is adjacent to the first small desalting chamber D-1 via the second anion exchange membrane a2, and the first small desalting chamber D-1 is the third anion exchange. It is adjacent to the first concentration chamber C1 through the membrane a3.
  • the first concentration chamber C1 is adjacent to the anode chamber E2 through the second cation exchange membrane c2.
  • an anion exchange membrane that divides the desalting chamber D into a first small desalting chamber D-1 and a second desalting chamber D-2 is referred to as “intermediate ion exchange”. It may be called a “membrane” to be distinguished from other ion exchange membranes. However, such a distinction is merely a distinction for convenience of explanation.
  • the cathode chamber E1 contains a cathode.
  • the cathode is made of a metal net or plate, and for example, a stainless steel net or plate can be used.
  • An anode is accommodated in the anode chamber E2.
  • the anode is made of a metal net or plate.
  • the water to be treated Cl - if it contains chlorine is generated in the anode.
  • a material having chlorine resistance for the anode and examples thereof include metals such as platinum, palladium and iridium, or materials obtained by coating titanium with these metals.
  • Electrode water is supplied to each of the cathode chamber E1 and the anode chamber E2. These electrode waters generate hydrogen ions and hydroxide ions by electrolysis near the electrodes.
  • the cathode chamber E1 and the anode chamber E2 are preferably filled with an ion exchanger.
  • the cathode chamber E1 is more preferably filled with an anion exchanger such as a weakly basic anion exchanger or a strongly basic anion exchanger.
  • the anode chamber E2 is more preferably filled with a cation exchanger such as a weak acid cation exchanger or a strong acid cation exchanger.
  • the first concentration chamber C1 and the second concentration chamber C2 are provided for taking in the anion component or cation component discharged from the desalting chamber D and releasing them out of the system.
  • Each of the concentrating chambers C1 and C2 is filled with an anion exchanger in a single bed form to suppress the generation of scale.
  • FIG. 2 is an enlarged view of the desalting chamber D shown in FIG.
  • the first small desalting chamber D-1 is filled with an anion exchanger in a single bed form.
  • the second small desalting chamber D-2 is filled with an anion exchanger and a cation exchanger in a double bed form.
  • the layer of the cation exchanger and the layer of the anion exchanger are laminated along the direction of water flow of the water to be treated. More specifically, the cation exchanger layer is disposed at the front stage in the water passage direction, and the anion exchanger layer is disposed at the rear stage in the water passage direction.
  • the water to be treated that has flowed into the second small desalting chamber D-2 passes through the cation exchanger layer and the anion exchanger layer in this order.
  • the anion exchanger layer and the cation exchanger layer are laminated in the order in which the ion exchanger layer through which the water to be treated finally passes becomes an anion exchanger layer.
  • a bipolar membrane is disposed in the second small desalting chamber D-2.
  • the bipolar membrane 4a is disposed between the anion exchanger (anion exchanger layer) filled in the second small desalting chamber D-2 and the first cation exchange membrane c1.
  • a bipolar membrane is an ion exchange membrane in which an anion exchange membrane and a cation exchange membrane are bonded together, and the water dissociation reaction is greatly accelerated at the interface between the anion exchange membrane and the cation exchange membrane. It has the feature of being.
  • the bipolar membrane 4a is arranged in such a direction that the anion exchange membrane 2 faces the anion exchanger (anion exchanger layer).
  • the frame 1 is shown integrally. However, actually, each room is provided with a separate frame, and the frames are provided in close contact with each other.
  • the frame 1 is not particularly limited as long as it has insulating properties and does not leak treated water.
  • resin such as polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, m-PPE (modified polyphenylene ether) Can be mentioned.
  • the main flow of the treated water and concentrated water in the deionized water production apparatus shown in FIG. 1 will be outlined in advance.
  • the water to be treated is supplied to the first small desalting chamber D-1 after passing through a RO (Rverse Osmosis) membrane, and passes through the small desalting chamber D-1.
  • the water to be treated that has passed through the first small desalting chamber D-1 is supplied to the second small desalting chamber D-2, and is discharged outside the system after passing through the small desalting chamber D-2.
  • the concentrated water is supplied in parallel to the first concentration chamber C1 and the second concentration chamber C2, respectively, passes through these concentration chambers, and is discharged out of the system.
  • the flow path U1 shown above the deionized water production apparatus in FIG. 1 has one end connected to the treated water supply side and the other end connected to the first small desalting chamber D-1.
  • the flow path L1 shown below the deionized water production apparatus has one end connected to the first small desalting chamber D-1 and the other end connected to the second small desalting chamber D-2.
  • the flow path U2 shown above the deionized water production apparatus has one end connected to the second small desalting chamber D-2 and the other end connected to the discharge side of the water to be treated.
  • the flow path U3 shown above the deionized water production apparatus in FIG. 1 has one end connected to the concentrated water supply side and the other end branched in the middle to provide the first concentration chamber C1, the first The two concentrating chambers C2 are connected to each other.
  • the flow path L2 shown below the deionized water production apparatus is connected to the first concentrating chamber C1 and the second concentrating chamber C2, and is connected to the concentrated water discharge side after joining in the middle. .
  • the cathode chamber E1 and the anode chamber E2 are connected to a channel for supplying electrode water and a channel for discharging the supplied electrode water, respectively.
  • the first concentration chamber C1 and the second concentration chamber C2 are supplied with concentrated water from the flow path U3 and discharged from the flow path L2.
  • electrode water is supplied to the cathode chamber E1 and the anode chamber E2 from a flow path (not shown) and discharged from the flow path (not shown). Further, a predetermined DC voltage is applied between the anode and the cathode.
  • the water to be treated is supplied from the flow path U1 to the first small desalting chamber D-1.
  • Anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2, etc.) in the supplied treated water are captured in the process of passing the treated water through the first small desalting chamber D-1.
  • the anion component captured in the first small desalting chamber D-1 moves to the adjacent first concentration chamber C1 via the first small desalting chamber D-1 and the third anion exchange membrane a3.
  • the concentrated water passing through the first concentration chamber C1 are discharged out of the system.
  • the water to be treated that has passed through the first small desalting chamber D-1 is supplied to the second small desalting chamber D-2 through the flow path L1.
  • a cation exchanger layer and an anion exchanger layer are laminated in this order in the second small desalting chamber D-2. Therefore, the water to be treated supplied to the second small desalting chamber D-2 first passes through the cation exchanger layer and then passes through the anion exchanger layer. At that time, in the process of passing through the cation exchanger layer, cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated are captured.
  • the cation component captured in the cation exchanger in the second small desalting chamber D-2 is adjacent to the second small desalting chamber D-2 via the first cation exchange membrane c1. It moves to the 2nd concentration chamber C2, and is discharged
  • the water to be treated that has passed through the cation exchanger layer in the second small desalting chamber D-2 passes through the anion exchanger layer in the next stage, and anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 - , SiO 2 etc.) are captured again.
  • the anion component captured in the anion exchanger of the second small desalting chamber D-2 is the first small desalting chamber adjacent to the second small desalting chamber D-2 via the intermediate ion exchange membrane a2.
  • Salt chamber D-1 moves to salt chamber D-1.
  • the anion component that has moved to the first small desalting chamber D-1 moves to the adjacent first concentration chamber C1 via the first small desalting chamber D-1 and the third anion exchange membrane a3. It is discharged out of the system together with concentrated water passing through one concentration chamber C1.
  • the above is the flow of deionization processing in the deionized water production apparatus according to this embodiment.
  • a part of the anion component (carbonic acid or silica) contained in the concentrated water supplied to the second concentration chamber C2 passes through the first cation exchange membrane c1, and the second small Move to desalination chamber D-2.
  • the principle of carbonic acid or silica passing through the cation exchange membrane is as described above.
  • the carbonic acid and silica moved from the second concentration chamber C2 to the second small desalting chamber D-2 are uniformly diffused on the anode side surface of the first cation exchange membrane c1.
  • carbonic acid and silica are also in contact with the anion exchanger layer in the region in contact with the cation exchanger layer in the second small desalting chamber D-2 on the anode side surface of the first cation exchange membrane c1. It spreads to the area where it is. Since carbonic acid and silica are not trapped by the cation exchanger, the carbonic acid and silica diffused in the region in contact with the cation exchanger layer on the anode side surface of the first cation exchange membrane c1 flow of the water to be treated. And pass through the cation exchanger layer. However, a cation exchanger layer and an anion exchanger layer are stacked in the second small desalting chamber D-2 along the direction of water flow.
  • the carbonic acid or silica that has passed through the cation exchanger layer is ionized and captured again in the next anion exchanger layer, and moves to the first small desalting chamber D-1.
  • the carbonic acid and silica moved to the first small desalting chamber D-1 pass through the third anion exchange membrane a3, move to the first concentration chamber C1, and pass through the first concentration chamber C1. It is discharged out of the system together with concentrated water. Therefore, carbonic acid and silica contained in the concentrated water are not diffused into the water to be treated, and the purity of the treated water is not lowered.
  • the above effect can be obtained if the final stage of the stack of ion exchangers provided in the second small desalting chamber D-2 is an anion exchanger layer.
  • the ion exchanger through which the water to be treated that passes through the second small desalting chamber D-2 finally passes is an anion exchanger, the above-described effect can be obtained.
  • the type, stacking order, and number of stacks of the ion exchanger layer before the final anion exchanger layer are not particularly limited. For example, four or more cation exchanger layers and anion exchanger layers may be stacked in the order in which the final stage is an anion exchanger layer.
  • the first small demineralization chamber D-1 to which the water to be treated is first supplied is filled with the anion exchanger, and the water to be treated is supplied next.
  • the second small desalting chamber D-2 a cation exchanger and an anion exchanger are laminated in this order.
  • the water to be treated first passes through the anion exchanger.
  • an anionic component is removed from to-be-processed water, and pH of to-be-processed water rises.
  • the water to be treated that has passed through the first small desalting chamber D-1 is supplied to the second small desalting chamber D-2 in which the cation exchanger and the anion exchanger are laminated in this order. That is, the water to be treated that has passed through the anion exchanger in the first small desalting chamber D-1 then passes through the cation exchanger, and then passes again through the anion exchanger.
  • the water to be treated passes through the anion exchanger and the cation exchanger alternately.
  • the anion exchanger has a higher ability to capture anion components when the pH of the water to be treated is low, and the cation exchanger has a higher ability to capture cation components when the pH of the water to be treated is high. Therefore, according to the configuration of this embodiment, the water to be treated first passes through the anion exchanger, and then passes through the cation exchanger and the anion exchanger alternately. The water to be treated whose components have been removed and whose pH has been raised continues to pass through the cation exchanger. Therefore, the cation removal reaction by the cation exchanger is promoted more than usual.
  • the cation component is removed by passing through the cation exchanger, and the water to be treated whose pH has been lowered continues to pass through the anion exchanger. Therefore, the anion removal reaction by the anion exchanger is promoted more than usual. Therefore, not only the removal ability of the anion component containing carbonic acid and silica is further improved, but also the removal ability of the cation component is improved, thereby further improving the purity of the treated water.
  • the deionized water production apparatus As described above, according to the deionized water production apparatus according to the present embodiment, it is possible to prevent a part of carbonic acid and silica contained in the concentrated water from passing through the ion exchange membrane and diffusing into the water to be treated. In addition to the effect of improving the purity of the treated water, the ability to remove anionic components such as carbonic acid and silica contained in the treated water is improved, and further, the cation component contained in the treated water is improved. The removal ability is also improved.
  • the water dissociated by electricity functions as a regenerant of the ion exchanger.
  • most of the voltage applied to the deionized water production apparatus is used for the water dissociation reaction. Therefore, it is desirable to promote the dissociation reaction of water in order to realize operation at a low voltage and a high current density.
  • the water dissociation reaction is promoted, and operation at a low voltage and a high current density is possible.
  • the bipolar membrane 4a that promotes the water dissociation reaction is formed between the anion exchanger in the second small desalting chamber D-2 and the ion exchange membrane (cation exchange membrane c1). It is arranged only between. In other words, no bipolar membrane is disposed between the cation exchanger in the second small desalting chamber D-2 and the ion exchange membrane (cation exchange membrane c1 and anion exchange membrane a2).
  • This has the following significance. That is, in the deionized water production apparatus of the present embodiment in which the ion exchangers with different signs are stacked in the second small desalting chamber D-2, the overvoltage necessary for water dissociation is different in each layer, and drift occurs.
  • the treated water passed through the RO membrane often has less cation component than the anion component.
  • the anionic component and the cation component can be sufficiently removed by the drift. In other words, the drift is a desirable distribution.
  • the configuration in which the bipolar membrane is installed on the ion exchange membrane has been described.
  • the upper half of the cation exchange membrane c1 shown in FIG. 2 may be replaced with a bipolar membrane.
  • a bipolar membrane may be provided on each ion exchange membrane in contact with each anion exchanger.
  • Comparative test 1 In order to confirm the effect of the present invention, the following comparative test was conducted. That is, four deionized water production apparatuses having different bipolar membrane presence or location in the second small desalting chamber D-2 shown in FIG. 1 were prepared.
  • a bipolar membrane 4a is disposed in the second small desalting chamber D-2 of the deionized water production apparatus (Example 1). Furthermore, the bipolar membrane 4a is disposed in such a direction that the anion exchange membrane 2 faces the anion exchanger (anion exchanger layer). That is, the deionized water production apparatus includes the same demineralization chamber as the deionized water production apparatus according to this embodiment.
  • the 1st bipolar membrane 4a and the 2nd bipolar membrane 4b are each arrange
  • the first bipolar membrane 4a is arranged in such a direction that the anion exchange membrane 2 faces the anion exchanger (anion exchanger layer), and the second bipolar membrane 4b has the cation exchange membrane 3 as the cation exchanger. It arrange
  • CER is an abbreviation for a cation exchanger (cation exchange resin) and AER is an anion exchanger (anion exchange resin).
  • the deionized water production apparatus according to the present embodiment is the same as the deionized water production apparatus according to the first embodiment, except that a plurality of demineralization treatment units are provided between the cathode chamber and the anode chamber.
  • a plurality of demineralization treatment units are provided between the cathode chamber and the anode chamber.
  • Have a common configuration Therefore, only the configuration different from the deionized water production apparatus according to Embodiment 1 will be described below, and the description of the common configuration will be omitted as appropriate.
  • FIG. 4 is a schematic configuration diagram of a deionized water production apparatus according to the present embodiment.
  • two demineralization treatment units are provided between the cathode chamber E1 and the anode chamber E2.
  • the first desalting treatment unit relatively located on the cathode side includes a desalting chamber D1 and a pair of concentration chambers C1 and C2 disposed on both sides of the desalting chamber D1. It is configured.
  • the 2nd desalination process part relatively located in an anode side is comprised from a pair of concentration chambers C1 and C3 arrange
  • the desalting chamber D1 constituting the first desalting treatment section is referred to as “cathode side desalting chamber D1”, and the desalting chamber D2 constituting the second desalting treatment section is referred to as “anode”. This is called “side desalting chamber D2”.
  • the concentration chamber C1 is referred to as “first concentration chamber C1”
  • the concentration chamber C2 is referred to as “second concentration chamber C2”
  • the concentration chamber C3 is referred to as “third concentration chamber C3”.
  • such a distinction is merely a distinction for convenience of explanation.
  • cathode-side desalting chamber D1 and the anode-side desalting chamber D2 are each divided into two small desalting chambers.
  • the small desalting chamber adjacent to the first concentration chamber C1 is referred to as “cathode side first small desalting chamber”.
  • D1-1 ”and the small desalting chamber adjacent to the second concentration chamber C2 are referred to as“ cathode side second small desalting chamber D1-2 ”.
  • anode-side first small desalting chamber D2-1 The small desalting chamber adjacent to the first concentration chamber C1 is referred to as “anode-side second small desalting chamber D2-2”.
  • anode-side second small desalting chamber D2-2 the small desalting chamber adjacent to the first concentration chamber C1 is referred to as “anode-side second small desalting chamber D2-2”.
  • the cathode chamber E1 is adjacent to the second concentration chamber C2 via the first anion exchange membrane a1, and the second concentration chamber C2 is connected to the second small side on the cathode side via the first cation exchange membrane c1. Adjacent to the desalination chamber D1-2.
  • the cathode side second small desalination chamber D1-2 is adjacent to the cathode side first small desalination chamber D1-1 via the second anion exchange membrane a2, and the cathode side first small desalination chamber D1-1 is , Adjacent to the first concentration chamber C1 through the third anion exchange membrane a3.
  • the first concentrating chamber C1 is adjacent to the anode-side second small desalting chamber D2-2 via the second cation exchange membrane c2, and the anode-side second small desalting chamber D2-2 is a fourth anion. It is adjacent to the anode side first small desalting chamber D2-1 through the exchange membrane a4.
  • the anode side first small desalting chamber D2-1 is adjacent to the third concentration chamber C3 via the fifth anion exchange membrane a5, and the third concentration chamber C3 is interposed via the third cation exchange membrane c3. Adjacent to the anode chamber E2.
  • the first to third concentrating chambers C1 to C3 are provided to take in the anion component or cation component discharged from the cathode-side desalting chamber D1 or the anode-side desalting chamber D2 and discharge them out of the system. Yes.
  • Each of the concentrating chambers C1 to C3 is filled with an anion exchanger in a single bed form to suppress the generation of scale.
  • the cathode-side first small desalting chamber D1-1 and the anode-side first small desalting chamber D2-1 are each filled with an anion exchanger in a single-bed form.
  • the cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2 are each filled with an anion exchanger and a cation exchanger in the form of a multiple bed.
  • the specific filling form of the anion exchanger and the cation exchanger in the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2 is as described in the first embodiment.
  • Bipolar membranes 4a are respectively disposed in the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2. The specific position and orientation of the bipolar film 4a are as described in the first embodiment.
  • the water to be treated is supplied in parallel to the cathode side first small desalination chamber D1-1 and the anode side first small desalination chamber D2-1, respectively, and passes through these small desalination chambers.
  • the treated water that has passed through the cathode-side first small desalting chamber D1-1 and the anode-side first small desalting chamber D2-1 is once merged outside these small desalting chambers, and then divided into the cathode-side second small desalting chamber D2-1.
  • the concentrated water is supplied in parallel to each of the first to third concentration chambers C1 to C3, passes through these concentration chambers, and is discharged out of the system.
  • the flow path U1 shown above the deionized water production apparatus in FIG. 4 has one end connected to the supply side of the water to be treated and the other end branched in the middle to provide the first small desalting on the cathode side.
  • the chamber D1-1 and the anode side first small desalination chamber D2-1 are connected to each other.
  • the flow path L1 shown below the deionized water production apparatus is connected to the cathode side first small desalination chamber D1-1 and the anode side first small desalination chamber D2-1, respectively, and merges in the middle.
  • the flow path U2 shown above the deionized water production apparatus is connected to the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2, and joins in the middle. Connected to the discharge side of the treated water.
  • the flow path U3 shown above the deionized water production apparatus in FIG. 4 has one end connected to the concentrated water supply side and the other end branched in the middle to provide the first concentration chamber C1, the first The second concentrating chamber C2 and the third concentrating chamber C3 are connected to each other.
  • the flow path L2 shown below the deionized water production apparatus is connected to the first concentration chamber C1, the second concentration chamber C2, and the third concentration chamber C3, respectively, and after having joined in the middle, the concentrated water. Connected to the discharge side.
  • the first to third concentration chambers C1 to C3 are supplied with concentrated water from the flow path U3 and discharged from the flow path L2. Moreover, electrode water is supplied to the cathode chamber E1 and the anode chamber E2 from a channel (not shown), and the electrode water is discharged from the channel (not shown). Further, a predetermined DC voltage is applied between the anode and the cathode.
  • the water to be treated is supplied in parallel from the flow path U1 to the cathode-side first small desalination chamber D1-1 and the anode-side first small desalination chamber D2-1.
  • the anion component (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2, etc.) supplied to the treated water is a process in which the treated water passes through the first small desalting chambers D1-1 and D2-1. Be captured.
  • the anion component captured in the cathode-side first small desalination chamber D1-1 is adjacent to the cathode-side first small desalination chamber D1-1 via the third anion exchange membrane a3.
  • the anion component trapped in the anode-side first small desalting chamber D2-1 is adjacent to the anode-side first small desalting chamber D2-1 through the fifth anion exchange membrane a5 in the third concentration chamber. It moves to C3 and is discharged out of the system together with the concentrated water passing through the third concentration chamber C3.
  • the water to be treated that has passed through the cathode-side first small desalting chamber D1-1 and the anode-side first small desalting chamber D2-1 passes through the flow path L1 to form the cathode-side second small desalting chamber D1-1. 2 and the anode side second small desalting chamber D2-2.
  • the cation exchanger layer and the anion exchanger layer are laminated in this order in the cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2. As described above.
  • the water to be treated supplied to the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2 first passes through the cation exchanger layer and then the anion exchanger layer. Pass through. At that time, in the process of passing through the cation exchanger layer, cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated are captured. Specifically, the cation component captured in the cation exchanger in the cathode-side second small desalting chamber D1-2 passes through the cathode-side second small desalting chamber D1-2 and the first cation exchange membrane c1.
  • the cation component captured in the cation exchanger in the anode-side second small desalting chamber D2-2 is adjacent to the anode-side second small desalting chamber D2-2 via the second cation-exchange membrane c2. It moves to the 1st concentration chamber C1, and is discharged
  • the water to be treated that has passed through the cation exchanger layer in the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2 passes through the next-stage anion exchanger layer.
  • Anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2, etc.) are captured again.
  • the anion component captured in the anion exchanger of the cathode side second small desalting chamber D1-2 is adjacent to the cathode side second small desalting chamber D1-2 via the intermediate ion exchange membrane a2. It moves to the cathode side first small desalination chamber D1-1.
  • the anion component moved to the cathode-side first small desalting chamber D1-1 moves to the adjacent first concentration chamber C1 via the cathode-side first small desalting chamber D1-1 and the third anion exchange membrane a3. Then, it is discharged out of the system together with the concentrated water passing through the first concentration chamber C1.
  • the anion component trapped in the anion exchanger of the anode side second small desalting chamber D2-2 is the anode side second adjacent to the anode side second small desalting chamber D2-2 via the intermediate ion exchange membrane a4. Move to 1 small desalination chamber D2-1.
  • the anion component moved to the anode side first small desalting chamber D2-1 moves to the adjacent third concentration chamber C3 via the anode side first small desalting chamber D2-1 and the fifth anion exchange membrane a5. Then, it is discharged out of the system together with the concentrated water passing through the third concentration chamber C3.
  • the concentration of carbonic acid and silica in a specific concentration chamber is higher than that in other concentration chambers.
  • the first concentration chamber C1 adjacent to the demineralization chamber D1 shown in FIG. 4 is included in the concentrated water supplied to the concentration chamber C1.
  • carbonic acid and silica move from the cathode-side desalting chamber D1.
  • the anode-side desalination chamber Carbonic acid and silica move from D2.
  • the principle that carbonic acid and silica move from the adjacent desalting chamber to the concentration chamber is as described in the first embodiment. Therefore, in the 1st concentration chamber C1 and the 3rd concentration chamber C3, the density
  • the concentrating chamber C1 is adjacent to the anode-side desalting chamber D2, and movement of carbonic acid or silica to the anode-side desalting chamber D2 (diffusion into the water to be treated) becomes a problem.
  • the carbonic acid and silica moved from the first concentration chamber C1 to the anode-side second small desalting chamber D2-2 are filled in the desalting chamber D2-2. It is captured by the anion exchanger, moves to the third concentration chamber C3 via the anode side first small desalination chamber D2-1, and is discharged out of the system. Therefore, the carbonic acid and silica moved from the first concentration chamber C1 to the anode side second small desalting chamber D2-2 do not diffuse into the water to be treated.
  • the cathode side first small desalination chamber D1-1 and the anode side first small desalination chamber D2-1 to which the water to be treated is first supplied are filled with an anion exchanger.
  • the cathode side second small desalination chamber D1-2 and the anode side first desalination chamber D1-1 and the anode side first small desalination chamber D2-1 to which the water to be treated that has passed through is supplied.
  • a cation exchanger and an anion exchanger are stacked in this order. That is, the water to be treated first passes through the anion exchanger, then passes through the cation exchanger, and then passes through the anion exchanger again. Therefore, the purity of water to be treated is further improved by the same principle as described in the first embodiment.
  • bipolar membranes 4a are arranged in the cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2, respectively. Therefore, operation at a low voltage and a high current density is possible based on the same principle as described in the first embodiment. In addition, positive current drift (distribution) can sufficiently remove the anionic and cationic components.
  • a sub-demineralization chamber S1 is provided between the cathode chamber E1 and the second concentration chamber C2.
  • the sub-desalting chamber S1 is adjacent to the cathode chamber E1 via the sixth anion exchange membrane a6, is adjacent to the second concentration chamber C2 via the first anion exchange membrane c1, and the chamber is anion exchanger. Is filled in a single bed form.
  • water to be treated is supplied from the flow path U1 to the cathode side first small desalination chamber D1-1, the anode side first small desalination chamber D2-1, and the sub desalination chamber S1. Supplied in parallel.
  • anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2, etc.) are captured in the process of passing through the sub-desalting chamber S1.
  • the trapped anion component moves to the adjacent second concentration chamber C2 via the secondary desalting chamber S1 and the first anion exchange membrane a1, and the system together with the concentrated water passing through the second concentration chamber C2.
  • the water to be treated that has passed through the sub-desalination chamber S1 merges with the water to be treated that has passed through the cathode-side first small desalination chamber D1-1 and the anode-side first small desalination chamber D2-1, Is supplied to the second side small desalting chamber D1-2 or the second anode side small desalting chamber D2-2. Since the flow of water to be treated and the movement of ions after this are as described in the first and second embodiments, description thereof will be omitted.
  • hardness components such as magnesium ions and calcium ions contained in the water to be treated move from the demineralization chamber to the concentration chamber.
  • These hardness components react with ions such as CO 3 2 ⁇ and OH 2 ⁇ on the surface of the ion exchange membrane, and calcium carbonate, magnesium hydroxide and the like are deposited as scales.
  • Such scale precipitation is likely to occur at a high pH portion, and in a deionized water production apparatus, the scale is often observed at a locally high pH portion such as the cathode surface of the cathode chamber or the anion exchange membrane surface. It is done.
  • the first concentration chamber C1 is mainly fed from the cathode side desalting chamber D1
  • the third concentration chamber C3 is mainly fed from the anode side desalting chamber D2.
  • Ingredients are supplied. Therefore, generation of scale on the membrane surfaces of the third anion exchange membrane a3 and the fifth anion exchange membrane a5 is suppressed.
  • the supply amount of the anion component to the second concentration chamber C2 located closest to the cathode chamber side is smaller than the supply amount to the first concentration chamber C1 and the third concentration chamber C3. That is, scale is more likely to occur on the membrane surface of the first anion exchange membrane a1 than on the membrane surfaces of the third anion exchange membrane a3 and the fifth anion exchange membrane a5.
  • the sub-demineralization chamber S1 filled with the anion exchanger is provided between the cathode chamber E1 and the second concentration chamber C2, the sub-demineralization chamber S1.
  • the second concentration chamber C2 Therefore, a local increase in pH on the membrane surface of the first anion exchange membrane a1 is suppressed, and scale generation is also suppressed.
  • the anion exchanger filled in the sub-desalting chamber S1 is regenerated by OH ⁇ generated in the cathode chamber E1. Therefore, in the deionized water production apparatus according to the present embodiment, OH ⁇ generated in the cathode chamber E1 and discarded without being conventionally used is effectively used for regeneration of the ion exchanger.
  • the sub-desalting chamber S1 is added as a new desalting chamber, but it is not necessary to add a new concentrating chamber accordingly. That is, the number of concentration chambers can be relatively reduced. This not only reduces the size and cost of the device, but also reduces the applied voltage and operating costs.
  • the number of the desalination process part may be one or three or more.
  • a sub-desalting chamber having the above-described configuration can be provided between the cathode chamber E1 and the second concentration chamber C2 shown in FIG.
  • Examples of the anion exchanger used in the deionized water production apparatus of the present invention include ion exchange resins, ion exchange fibers, monolithic porous ion exchangers, etc., and the most versatile ion exchange resins are preferably used.
  • Examples of the anion exchanger include weakly basic anion exchangers and strong basic anion exchangers.
  • Examples of the cation exchanger include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers, and the most general-purpose ion exchange resin is preferably used.
  • Examples of the cation exchanger include weakly acidic cation exchangers and strongly acidic cation exchangers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

スケールの発生を抑制しつつ、高純度の脱イオン水を製造可能とする。 脱塩室(D)と、脱塩室(D)の両隣に設けられるとともに、アニオン交換体が充填された一対の濃縮室(C1、C2)とから構成される脱塩処理部が陰極室(E1)と陽極室(E2)との間に少なくとも1つ設けられた電気式脱イオン水製造装置であって、脱塩室(D)は、イオン交換膜によって、濃縮室(C1)の一方に隣接する第1小脱塩室(D-1)と、濃縮室(C2)に隣接する第2小脱塩室(D-2)とに仕切られ、第1小脱塩室(D-1)には、アニオン交換体が充填され、第2小脱塩室(D-2)には、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体とカチオン交換体とが充填され、第2小脱塩室(D-2)に充填されているアニオン交換体の陰極側には、バイポーラ膜(4a)がそのアニオン交換膜面がアニオン交換体と対向する向きで配置されている。

Description

電気式脱イオン水製造装置
 本発明は、電気式脱イオン水製造装置に関し、特に脱塩室の構造に関する。
 従来、イオン交換体に被処理水を通水させて脱イオンを行う脱イオン水製造装置が知られている。このような製造装置では、イオン交換体のイオン交換基が飽和して脱塩性能が低下したときに、酸やアルカリといった薬剤によってイオン交換基の再生を行う必要がある。具体的には、イオン交換基に吸着された陰イオンや陽イオンを酸またはアルカリ由来のHやOHで置換する処理が必要となる。近年、上記のような運転上の不利な点を解消するため、薬剤による再生が不要な電気式脱イオン水製造装置が開発され、実用化されている。
 電気式脱イオン水製造装置は、電気泳動と電気透析を組み合わせた装置である。一般的な電気式脱イオン水製造装置の基本構成は次のとおりである。すなわち、電気式脱イオン水製造装置は、脱塩室と、該脱塩室の両側に配置された一対の濃縮室と、一方の濃縮室の外側に配置された陽極室と、他方の濃縮室の外側に配置された陰極室とを有する。脱塩室は、対向配置されたアニオン交換膜およびカチオン交換膜と、それら交換膜の間に充填されたイオン交換体(アニオン交換体又は/及びカチオン交換体)とを有する。以下、電気式脱イオン水製造装置を「脱イオン水製造装置」と略称する場合もある。
 上記のような構成を有する脱イオン水製造装置によって脱イオン水を製造するには、陽極室および陰極室にそれぞれ設けられている電極間に直流電圧を印加した状態で脱塩室に被処理水を通水させる。脱塩室では、アニオン交換体によってアニオン成分(Cl、CO 2-、HCO 、SiO等)が、カチオン交換体によってカチオン成分(Na、Ca2+、Mg2+等)が捕捉される。同時に、脱塩室内のアニオン交換体とカチオン交換体の界面で水の解離反応が起こり、水素イオンと水酸化物イオンが発生する(2HO→H+OH)。イオン交換体に捕捉されたイオン成分は、この水素イオン及び水酸化物イオンと交換されてイオン交換体から遊離する。遊離したイオン成分はイオン交換体を伝ってイオン交換膜(アニオン交換膜またはカチオン交換膜)まで電気泳動し、イオン交換膜で電気透析されて濃縮室へ移動する。濃縮室に移動したイオン成分は、濃縮室を流れる水によって排出される。
 以上のように、電気式脱イオン水製造装置では、水素イオンと水酸化物イオンがイオン交換体を再生する再生剤(酸やアルカリ)として連続的に作用する。このため、上述のような薬剤によるイオン交換体の再生が基本的には不要であり、連続運転が可能である。
 しかし、脱イオン水製造装置を連続運転すると、被処理水中の硬度成分が析出し、炭酸カルシウムや水酸化マグネシウム等のスケールが発生する。スケールは特に、陰極室と濃縮室を隔てるアニオン交換膜の濃縮室側表面で発生する。また、脱塩室が複数設けられている場合には、2つの脱塩室に挟まれた濃縮室のアニオン交換膜表面でスケールが発生する。その理由は次のとおりである。陰極室内における電気分解によって生成された水酸化イオン、脱塩室における水解離反応によって生成された水酸化イオンが通過することによって、濃縮室のアニオン交換膜表面はアルカリ性になっている。すると、脱塩室からカチオン交換膜を通過してきた硬度成分(マグネシウムイオンやカルシウムイオン)が、アルカリ性になっているアニオン交換膜表面において反応し、水酸化マグネシウムや水酸化カルシウムが生成される。濃縮水に炭酸イオンが含まれている場合には、さらに炭酸カルシウムや炭酸マグネシウムが生成される。スケールが発生すると、スケール発生部分における電気抵抗が上昇し、電流が流れにくくなる。すなわち、スケールの発生が無い場合と同一の電流値を流すためには電圧を上昇させる必要があり、消費電力の増加を招く。また、濃縮室内における電流密度が不均一になる場合もある。さらに、スケールの量がさらに増加すると、通水差圧の上昇が生じるとともに、電気抵抗がさらに上昇する。この場合、イオン除去に必要な電流が流せなくなり、処理水質の低下を招く。加えて、成長したスケールがイオン交換膜の内部にまで侵入し、イオン交換膜を損傷させることもある。
 そこで、上記のようなスケールの生成を抑制する方法の一つとして、濃縮室内にアニオン交換体を充填することが提案されている。例えば、特許文献1には、濃縮室のアニオン交換膜側に特定構造のアニオン交換体が配置された脱イオン水製造装置が開示されている。この脱イオン水製造装置によれば、OHの濃縮水への拡散希釈が、多孔性アニオン交換体表面より促進され、該表面におけるOH濃度の速やかな低減が図られる。他方、硬度成分イオンは、多孔性アニオン交換体の内部に侵入し難くなる。この結果、OHと硬度成分イオンとが接触し反応する機会が低減し、スケールの析出や蓄積が抑制される。
 また、特許文献2には、水透過性の異なるイオン交換体の層が濃縮室内に二層以上設けられ、かつ、水透過性の小さいイオン交換体の層がアニオン交換膜側に配置され、その層の少なくとも表面にアニオン交換基を有する脱イオン水製造装置が開示されている。この脱イオン水製造装置によれば、水透過性の大きな層を移動してきた、硬度成分を多く含む濃縮水が水透過性の小さい層に到達すると、該濃縮水の移動力が低減する。この結果、硬度成分を多く含む濃縮水が陰イオン交換膜の濃縮室側表面に流れ込むことが防止され、スケールの析出や蓄積が抑制される。
特開2001-225078号公報 特開2002―1345号公報
 しかし、脱イオン水製造装置では、濃縮室にアニオン交換体を充填することでスケールの生成を回避できたとしても、スケールの生成とは別の次のような問題が発生する。濃縮水に含まれる炭酸やシリカに代表される弱酸アニオン成分が濃縮室と脱塩室とを仕切るイオン交換膜を通過して処理水中に拡散し、処理水の純度を低下させる。かかる処理水の純度低下は、濃縮室にアニオン交換体が充填されている場合により顕著に現れてしまう。以下、炭酸とシリカを例として、具体的に説明する。
 一般的に、カチオン交換膜はカチオンのみ選択的に透過させるイオン交換膜である。その原理は、膜自体に-(マイナス)電荷を持たせ、-電荷を有するアニオンに対して反発力を働かせて透過を阻止するものである。一方、炭酸(二酸化炭素)やシリカは水溶液中で各イオン種の形態を取り、それらは平衡状態にある。
CO⇔HCO ⇔CO 2-
SiO⇔Si(OH)⇔Si(OH)
 上記のような平衡状態において各イオン種が全体に占める割合は、pHによって大きく変化する。pHが低い領域では炭酸やシリカの大部分はイオン化していない、つまり電荷を持たない状態でCO、SiOとして存在している。
 このため、pHが低い領域でカチオン交換膜を用いて炭酸やシリカの移動を阻止しようとしても、-電荷による反発力が有効に働かないために、これらの分子は容易にカチオン交換膜を通過してしまう。
 図6を参照して具体的に説明する。脱塩室Dの陰極側にはカチオン交換膜を介して濃縮室C2が配置され、陽極側にはアニオン交換膜を介して濃縮室C1が配置されている。ここで、脱塩室Dにはカチオン交換体およびアニオン交換体が充填され、濃縮室C1、C2にはアニオン交換体が充填されている。処理水は脱塩室Dを通過して系外に排出される。
 脱塩室Dから濃縮室C2に向かって、被処理水中のカチオン成分と共に水解離反応により生じる多量の水素イオン(H)がカチオン交換体を伝って移動してくる。濃縮室C2にはアニオン交換体が充填されているので、カチオン交換膜を通過した水素イオン(H)は、カチオン交換膜の濃縮室側表面で一斉に放出される。すなわち、カチオン交換膜の濃縮室側表面は、水素イオン(H)が多い状態(つまりpHが低い状態)になる。一方、濃縮水に含まれる炭酸やシリカ(図では炭酸で説明しているが、シリカでも同じ)は濃縮室C1及びC2内のアニオン交換体によりイオンとして捕捉され、アニオン交換体を伝ってカチオン交換膜表面まで移動する。濃縮室C2のカチオン交換膜表面では炭酸やシリカの濃度が高くなる上に、pHが低くなっている。結果としてpHが低い条件下でイオン化しない炭酸やシリカは、アニオン交換体から遊離した後に電荷を失い、カチオン交換膜を透過して被処理水に拡散してしまう。
 また、図7に示す脱イオン水製造装置には2つの脱塩室(D1、D2)が設けられている。このように複数の脱塩室が設けられている場合には、濃縮水にもともと含まれている炭酸やシリカに加え、被処理水に含まれている炭酸やシリカが脱塩室から濃縮室へ移動してくる。従って、濃縮室内における炭酸やシリカの濃度が上昇し、脱塩室への混入による処理水の純度低下はより顕著となる。(図中には炭酸が示されているが、シリカについても同じ)。
 本発明の目的は、スケールの発生を抑制しつつ、高純度の脱イオン水を製造可能とすることである。
 本発明の一態様は、対向する陰極室と陽極室との間に少なくとも1つの脱塩処理部が設けられた電気式脱イオン水製造装置であり、前記脱塩処理部は、脱塩室と、該脱塩室の両隣に設けられるとともに、アニオン交換体が充填された一対の濃縮室とから構成されている。前記脱塩室は、イオン交換膜によって、前記一対の濃縮室の一方に隣接する第1小脱塩室と、前記一対の濃縮室の他方に隣接する第2小脱塩室とに仕切られている。さらに、前記第1小脱塩室には、アニオン交換体が充填され、前記第2小脱塩室には、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体とカチオン交換体とが充填されている。加えて、前記第2小脱塩室に充填されている前記アニオン交換体の陰極側には、バイポーラ膜がそのアニオン交換膜面が前記アニオン交換体と対向する向きで配置されている。
 ここで脱塩室は2室に仕切られてはいるが、イオンの挙動は、脱塩室が仕切りのない1室の場合と基本的に同じである。
 上記の態様では、陰極側の濃縮室に存在する炭酸やシリカなどのアニオン成分の一部がイオン交換膜を通過して第2小脱塩室へ移動した場合、そのアニオン成分は第2小脱塩室内のアニオン交換体によって捕捉され、第1小脱塩室を介して陽極側の濃縮室へ移動する。よって、濃縮室に存在する炭酸やシリカなどが処理水中に拡散することがない。また、バイポーラ膜によって水の解離反応が促進されるとともに、電流密度の適切な分配が実現する。
 したがって本発明によれば、スケールの発生を抑制しつつ、高純度の脱イオン水を製造可能な電気式脱イオン水製造装置が実現される。
本発明の電気式脱イオン水製造装置の実施形態の一例を示す概略構成図である。 図1に示す脱塩室の拡大図である。 (a)~(d)は、実施例1および比較例1~3の第2小脱塩室におけるバイポーラ膜の有無および配置状態を示す模式図である。 本発明の電気式脱イオン水製造装置の実施形態の他例を示す概略構成図である。 本発明の電気式脱イオン水製造装置の実施形態の他例を示す概略構成図である。 濃縮水中の炭酸成分が被処理水中に拡散する原理を示す図である。 処理水中の炭酸成分が被処理水中に再拡散する原理を示す模式図である。
 (実施形態1)
 以下、図面を参照して、本発明の電気式脱イオン水製造装置の実施形態の一例について説明する。
 図1は、本実施形態に係る脱イオン水製造装置の概略構成図である。図1に示す脱イオン水製造装置では、陰極を備えた陰極室E1と陽極を備えた陽極室E2との間に、脱塩室Dと、脱塩室Dの両隣に配置された一対の濃縮室C1、C2から構成される脱塩処理部が設けられている。以下の説明では、一対の濃縮室C1、C2のうち、陽極室E2に隣接している濃縮室C1を「第1の濃縮室C1」、陰極室E1に隣接している濃縮室C2を「第2の濃縮室C2」と呼んで区別する。もっとも、かかる区別は説明の便宜上の区別に過ぎない。
 ここで、脱塩室Dは二つの小脱塩室に仕切られている。具体的には、脱塩室Dは、第1の濃縮室C1に隣接している第1小脱塩室D-1と、第2の濃縮室C2に隣接している第2小脱塩室D-2とに仕切られている。
 これまで説明した各室は、枠体1の内部を複数のイオン交換膜によって多数の空間に仕切ることによって形成されており、イオン交換膜を介して隣接している。各室の配列状況を陰極室E1の側から順に説明すると、次の通りである。すなわち、陰極室E1は、第1のアニオン交換膜a1を介して第2の濃縮室C2に隣接し、第2の濃縮室C2は、第1のカチオン交換膜c1を介して第2小脱塩室D-2と隣接している。第2小脱塩室D-2は、第2のアニオン交換膜a2を介して第1小脱塩室D-1と隣接し、第1小脱塩室D-1は、第3のアニオン交換膜a3を介して第1の濃縮室C1と隣接している。第1の濃縮室C1は、第2のカチオン交換膜c2を介して陽極室E2と隣接している。
 以下の説明では、上記複数のイオン交換膜のうち、脱塩室Dを第1小脱塩室D-1と第2脱塩室D-2とに仕切っているアニオン交換膜を「中間イオン交換膜」と呼んで他のイオン交換膜と区別する場合がある。もっとも、かかる区別は説明の便宜上の区別に過ぎない。
 陰極室E1には陰極が収容されている。陰極は金属の網状体あるいは板状体からなっており、例えばステンレス製の網状体あるいは板状体を用いることができる。
 陽極室E2には陽極が収容されている。陽極は金属の網状体あるいは板状体からなっている。被処理水にClを含む場合、陽極に塩素が発生する。このため、陽極には耐塩素性能を有する材料を用いることが望ましく、一例として、白金、パラジウム、イリジウム等の金属、あるいはチタンをこれらの金属で被覆した材料が挙げられる。
 陰極室E1および陽極室E2には電極水がそれぞれ供給される。これらの電極水は電極近傍での電気分解により、水素イオン及び水酸化物イオンを発生させる。脱イオン水製造装置の電気抵抗を抑えるために、陰極室E1および陽極室E2にはイオン交換体が充填されていることが好ましい。さらに、陰極室E1には、弱塩基性アニオン交換体、強塩基性アニオン交換体等のアニオン交換体が充填されていることがより好ましい。また、陽極室E2には、弱酸性カチオン交換体、強酸性カチオン交換体等のカチオン交換体が充填されていることがより好ましい。
 第1の濃縮室C1および第2の濃縮室C2は、脱塩室Dから排出されるアニオン成分またはカチオン成分を取り込み、それらを系外に放出するために設けられている。各濃縮室C1、C2には、スケールの発生を抑制すべくアニオン交換体が単床形態で充填されている。
 図2は、図1に示す脱塩室Dの拡大図である。図2に示すように、第1小脱塩室D-1には、アニオン交換体が単床形態で充填されている。また、第2小脱塩室D-2には、アニオン交換体およびカチオン交換体が複床形態で充填されている。具体的には、カチオン交換体の層とアニオン交換体の層とが被処理水の通水方向に沿って積層されている。より具体的には、通水方向前段にカチオン交換体層が配置され、通水方向後段にアニオン交換体層が配置されている。すなわち、第2小脱塩室D-2に流入した被処理水は、カチオン交換体層とアニオン交換体層をこの順で通過する。換言すれば、第2小脱塩室D-2において被処理水が最後に通過するイオン交換体の層がアニオン交換体層となる順序でアニオン交換体層とカチオン交換体層とが積層されている。
 さらに、第2小脱塩室D-2には、バイポーラ膜が配置されている。具体的には、第2小脱塩室D-2に充填されているアニオン交換体(アニオン交換体層)と第1のカチオン交換膜c1との間にバイポーラ膜4aが配置されている。ここで、バイポーラ膜とは、アニオン交換膜とカチオン交換膜とが貼り合わされて一体化されたイオン交換膜であって、アニオン交換膜とカチオン交換膜の接合面において水の解離反応が非常に促進されるという特徴を有する。図2に示すように、バイポーラ膜4aは、そのアニオン交換膜2がアニオン交換体(アニオン交換体層)と対向する向きで配置されている。
 再び図1を参照する。図1では、枠体1が一体的に示されている。しかし、実際には部屋毎に別々の枠体を備え、枠体同士が互いに密着して設けられている。枠体1は絶縁性を有し、被処理水が漏洩しない素材であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、m-PPE(変性ポリフェニレンエーテル)等の樹脂を挙げることができる。
 ここで、本発明の理解を容易するために、図1に示す脱イオン水製造装置における被処理水および濃縮水の主な流れについて予め概説する。被処理水は、RO(Rverse Osmosis)膜に通液された後に第1小脱塩室D-1へ供給され、該小脱塩室D-1を通過する。第1小脱塩室D-1を通過した被処理水は、第2小脱塩室D-2に供給され、該小脱塩室D-2を通過した後に系外に排出される。一方、濃縮水は、第1の濃縮室C1および第2の濃縮室C2にそれぞれ並列的に供給され、これら濃縮室を通過して系外に排出される。
 上記のように被処理水および濃縮水を流すためにいくつかの流路U1~U3、L1~L2が設けられている。図1において脱イオン水製造装置の上方に示されている流路U1は、その一端が被処理水の供給側に接続され、他端が第1小脱塩室D-1に接続されている。脱イオン水製造装置の下方に示されている流路L1は、その一端が第1小脱塩室D-1に接続され、他端が第2小脱塩室D-2に接続されている。脱イオン水製造装置の上方に示されている流路U2は、その一端が第2小脱塩室D-2に接続され、他端が被処理水の排出側に接続されている。
 図1において脱イオン水製造装置の上方に示されている流路U3は、その一端が濃縮水の供給側に接続され、他端側は途中で分岐されて、第1の濃縮室C1、第2の濃縮室C2にそれぞれ接続されている。脱イオン水製造装置の下方に示されている流路L2は、第1の濃縮室C1、第2の濃縮室C2にそれぞれ接続され、途中で合流した後に濃縮水の排出側に接続されている。
 なお、図示は省略されているが、陰極室E1および陽極室E2には、電極水を供給するための流路と供給された電極水を排出するための流路がそれぞれ接続されている。
 次に、上記構成を有する脱イオン水製造装置の動作および作用について説明する。第1の濃縮室C1、第2の濃縮室C2には、流路U3から濃縮水が供給され、流路L2から排出される。また、陰極室E1および陽極室E2には、図示しない流路から電極水が供給され、図示しない流路から電極水が排出されるようにしておく。さらに、陽極、陰極の間に所定の直流電圧が印加される。
 以上の状態の下で、流路U1から第1小脱塩室D-1に被処理水が供給される。供給された被処理水中のアニオン成分(Cl、CO 2-、HCO 、SiO等)は、被処理水が第1小脱塩室D-1を通過する過程で捕捉される。そして、第1小脱塩室D-1において捕捉されたアニオン成分は、第1小脱塩室D-1と第3のアニオン交換膜a3を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。
 次に、第1小脱塩室D-1を通過した被処理水は、流路L1を介して第2小脱塩室D-2に供給される。ここで、第2小脱塩室D-2には、カチオン交換体層とアニオン交換体層とがこの順で積層されていることは既述の通りである。よって、第2小脱塩室D-2に供給された被処理水は、まずカチオン交換体層を通過し、その後にアニオン交換体層を通過する。その際、カチオン交換体層を通過する過程で、被処理水中のカチオン成分(Na、Ca2+、Mg2+等)が捕捉される。具体的には、第2小脱塩室D-2内のカチオン交換体において捕捉されたカチオン成分は、第2小脱塩室D-2と第1のカチオン交換膜c1を介して隣接する第2の濃縮室C2へ移動し、該第2の濃縮室C2を通水する濃縮水と共に系外に排出される。
 さらに、第2小脱塩室D-2においてカチオン交換体層を通過した被処理水は、次段のアニオン交換体層を通過する過程で、アニオン成分(Cl、CO 2-、HCO 、SiO等)が再度捕捉される。具体的には、第2小脱塩室D-2のアニオン交換体において捕捉されたアニオン成分は、第2小脱塩室D-2と中間イオン交換膜a2を介して隣接する第1小脱塩室D-1へ移動する。第1小脱塩室D-1へ移動したアニオン成分は、第1小脱塩室D-1と第3のアニオン交換膜a3を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。
 以上が本実施形態に係る脱イオン水製造装置における脱イオン処理の流れである。しかし、上記処理の過程で、第2の濃縮室C2に供給される濃縮水に含まれているアニオン成分(炭酸やシリカ)の一部が第1のカチオン交換膜c1を通過し、第2小脱塩室D-2へ移動する。炭酸やシリカがカチオン交換膜を通過する原理については既に説明した通りである。ここで、第2の濃縮室C2から第2小脱塩室D-2へ移動した炭酸やシリカは、第1のカチオン交換膜c1の陽極側表面上に一様に拡散する。すなわち、炭酸やシリカは、第1のカチオン交換膜c1の陽極側表面のうち、第2小脱塩室D-2内のカチオン交換体層と接している領域にも、アニオン交換体層と接している領域にも拡散する。そして、炭酸やシリカはカチオン交換体によっては捕捉されないので、第1のカチオン交換膜c1の陽極側表面のうち、カチオン交換体層と接している領域に拡散した炭酸やシリカは被処理水の流れに乗ってカチオン交換体層を通過してしまう。しかし、第2小脱塩室D-2には、被処理水の通水方向に沿ってカチオン交換体層とアニオン交換体層とが積層されている。よって、カチオン交換体層を通過した炭酸やシリカは、次段のアニオン交換体層において再度イオン化し捕捉され、第1小脱塩室D-1へ移動する。第1小脱塩室D-1に移動した炭酸やシリカは、第3のアニオン交換膜a3を通過して、第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。従って、濃縮水に含まれている炭酸およびシリカが被処理水中に拡散し、処理水の純度を低下させることはない。
 なお、第2小脱塩室D-2内のカチオン交換体層とアニオン交換体層の積層順序が逆の場合には、第1のカチオン交換膜c1の陽極側表面のうち、カチオン交換体層と接している領域に拡散した炭酸やシリカを捕捉することはできず、処理水の純度が低下することは自明である。
 これまでの説明より、第2小脱塩室D-2内に設けられたイオン交換体の積層体の最終段がアニオン交換体層であれば上記効果が得られることが理解できるはずである。換言すれば、第2小脱塩室D-2を通過する被処理水が最後に通過するイオン交換体がアニオン交換体であれば上記効果が得られる。よって、最終段のアニオン交換体層よりも前段のイオン交換体層の種類、積層順序、積層数は特に限定されない。例えば、カチオン交換体層とアニオン交換体層を最終段がアニオン交換体層となる順序で4層以上積層してもよい。
 さらに、本実施形態に係る脱イオン水製造装置では、被処理水が最初に供給される第1小脱塩室D-1にアニオン交換体が充填され、被処理水が次に供給される第2小脱塩室D-2には、カチオン交換体とアニオン交換体がこの順で積層されている。よって、被処理水は、最初にアニオン交換体を通過する。これにより、被処理水からアニオン成分が除去され、被処理水のpHが上昇する。
 さらに、第1小脱塩室D-1を通過した被処理水は、カチオン交換体とアニオン交換体がこの順で積層されている第2小脱塩室D-2に供給される。すなわち、第1小脱塩室D-1内のアニオン交換体を通過した被処理水は、次いでカチオン交換体を通過し、続いてアニオン交換体を再度通過する。要するに、本実施形態の構成よれば、被処理水は、アニオン交換体とカチオン交換体を交互に通過する。
 ここで、アニオン交換体は被処理水のpHが低い場合にアニオン成分の捕捉能力が高まり、カチオン交換体は被処理水のpHが高い場合にカチオン成分の捕捉能力が高まる。よって、被処理水が最初にアニオン交換体を通過し、その後にカチオン交換体とアニオン交換体を交互に通過することになる本実施形態の構成によれば、アニオン交換体を通過することによってアニオン成分が除去され、pHが上昇した被処理水が続けてカチオン交換体を通過する。よって、カチオン交換体によるカチオン除去反応が通常よりも促進される。さらに、カチオン交換体を通過することによってカチオン成分が除去され、pHが低下した被処理水が続けてアニオン交換体を通過する。よって、アニオン交換体によるアニオン除去反応が通常よりも促進される。よって、炭酸やシリカを含むアニオン成分の除去能力がさらに向上するのみでなく、カチオン成分の除去能力も向上し、よって処理水の純度がより一層向上する。
 以上のように、本実施形態に係る脱イオン水製造装置によれば、濃縮水に含まれている炭酸やシリカの一部がイオン交換膜を通過して被処理水中に拡散することが防止されることによって処理水の純度が向上する効果に加えて、被処理水に含まれている炭酸やシリカ等のアニオン成分の除去能力が向上し、さらには被処理水に含まれているカチオン成分の除去能力も向上する。
 次に、脱塩室Dにバイポーラ膜4aが配置されていることの意義について説明する。脱イオン水製造装置では、電気により解離した水がイオン交換体の再生剤として機能することは既述の通りである。ここで、脱イオン水製造装置に印加される電圧の大部分は水の解離反応に利用される。したがって、低電圧、高電流密度での運転を実現するためには、水の解離反応を促進させることが望ましい。この点、脱塩室Dにバイポーラ膜4aが配置されている本実施形態の脱イオン水製造装置では、水の解離反応が促進され、低電圧、高電流密度での運転が可能となる。
 さらに、本実施形態の脱イオン水製造装置では、水の解離反応を促進させるバイポーラ膜4aが第2小脱塩室D-2内のアニオン交換体とイオン交換膜(カチオン交換膜c1)との間のみ配置されている。換言すれば、第2小脱塩室D-2内のカチオン交換体とイオン交換膜(カチオン交換膜c1およびアニオン交換膜a2)との間にはバイポーラ膜が配置されていない。このことには、次のような意義がある。すなわち、第2小脱塩室D-2内に異符号のイオン交換体が積層されている本実施形態の脱イオン水製造装置では、水解離に必要な過電圧が各層で異なり偏流が発生し、その偏流は上記構造によってさらに顕著になる。具体的には、アニオン成分が除去されるアニオン交換体層に流れる電流はより増加し、カチオン成分が除去されるカチオン交換体層に流れる電流はより減少する。このことは、アニオン成分の除去量が相対的に増加し、カチオン成分の除去量が相対的に減少することを意味する。
 しかし、RO膜に通された被処理水においては、アニオン成分に比べてカチオン成分が少ない場合が多い。特に、RO膜に2回以上通された被処理水においては、アニオン成分に比べてカチオン成分が少ない場合が殆どである。よって、上記偏流によってアニオン成分およびカチオン成分を十分に除去することができる。換言すれば、上記偏流は、むしろ望ましい分配である。
 本実施形態では、イオン交換膜の上にバイポーラ膜を設置する構成について説明した。しかし、イオン交換膜の一部をバイポーラ膜で置換することも可能であり、かかる置換によっても上記と同様の作用効果が得られる。例えば、図2に示すカチオン交換膜c1の上半分(アニオン交換体と接している部分)をバイポーラ膜に置換してもよい。
 また、第2小脱塩室D-2内のイオン交換体の積層数を4層以上にする場合、各アニオン交換体と接する各イオン交換膜上にそれぞれバイポーラ膜を設置すればよい。
 (比較試験1)
 本発明の効果を確認すべく、次のような比較試験を行った。すなわち、図1に示す第2小脱塩室D-2におけるバイポーラ膜の有無または配置個所が異なる4つの脱イオン水製造装置を用意した。
 図3(a)に示すように、当該脱イオン水製造装置(実施例1)の第2小脱塩室D-2には、バイポーラ膜4aが配置されている。さらに、バイポーラ膜4aは、そのアニオン交換膜2がアニオン交換体(アニオン交換体層)と対向する向きで配置されている。すなわち、当該脱イオン水製造装置は、本実施形態に係る脱イオン水製造装置と同一の脱塩室を備えている。
 図3(b)に示すように、当該脱イオン水製造装置(比較例1)の第2小脱塩室D-2には、バイポーラ膜は配置されていない。
 図3(c)に示すように、当該脱イオン水製造装置(比較例2)の第2小脱塩室D-2には、第1のバイポーラ膜4aおよび第2のバイポーラ膜4bがそれぞれ配置されている。さらに、第1のバイポーラ膜4aは、そのアニオン交換膜2がアニオン交換体(アニオン交換体層)と対向する向きで配置され、第2のバイポーラ膜4bは、そのカチオン交換膜3がカチオン交換体(カチオン交換体層)と対向する向きで配置されている。
 図3(d)に示すように、当該脱イオン水製造装置(比較例3)の第2小脱塩室D-2には、図3(c)に示す第2のバイポーラ膜4bのみが配置されている。
 今回の比較試験において、実施例1および各比較例に共通する仕様、通水流量、供給水等の条件は以下のとおりである。なお、CERはカチオン交換体(カチオン交換樹脂)、AERはアニオン交換体(アニオン交換樹脂)の略である。
・陰極室:寸法100×300×4mm AER充填
・陽極室:寸法100×300×4mm CER充填
・第1小脱塩室:寸法100×300×8mm AER充填
・第2小脱塩室:寸法100×300×8mm AER/CER充填(積層)
・濃縮室:寸法100×300×4mm AER充填
・脱塩室流量:50L/h
・濃縮室流量:5L/h
・電極室流量:10L/h
・電極室、脱塩室、濃縮室供給水:二段RO透過水5±1μS/cm
・印加電流値:3A
 以上の条件の下で実施例1および比較例1~3に係る脱イオン水製造装置をそれぞれ200時間連続運転し、運転開始時と運転開始から200時間後の運転電圧、処理水の水質および処理水中のシリカ濃度を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施形態2)
 以下、図面を参照して、本発明の電気式脱イオン水製造装置の実施形態の他例について説明する。もっとも、本実施形態に係る脱イオン水製造装置は、陰極室と陽極室との間に複数の脱塩処理部が設けられている点を除いて、実施形態1に係る脱イオン水製造装置と共通の構成を有する。そこで、実施形態1に係る脱イオン水製造装置と異なる構成についてのみ以下に説明し、共通する構成についての説明は適宜省略する。
 図4は、本実施形態に係る脱イオン水製造装置の概略構成図である。図4に示す脱イオン水製造装置では、陰極室E1と陽極室E2との間に2つの脱塩処理部が設けられている。2つの脱塩処理部のうち、相対的に陰極側に位置する第1の脱塩処理部は、脱塩室D1と、脱塩室D1の両隣に配置された一対の濃縮室C1、C2から構成されている。一方、相対的に陽極側に位置する第2の脱塩処理部は、脱塩室D2と、脱塩室D2の両隣に配置された一対の濃縮室C1、C3から構成されている。
 以下の説明では、第1の脱塩処理部を構成している脱塩室D1を「陰極側脱塩室D1」、第2の脱塩処理部を構成している脱塩室D2を「陽極側脱塩室D2」と呼んで区別する。また、濃縮室C1を「第1の濃縮室C1」、濃縮室C2を「第2の濃縮室C2」、濃縮室C3を「第3の濃縮室C3」と呼んで区別する。もっとも、かかる区別は説明の便宜上の区別に過ぎない。
 さらに、陰極側脱塩室D1および陽極側脱塩室D2は、それぞれ二つの小脱塩室に仕切られている。以下の説明では、陰極側脱塩室D1を構成している二つの小脱塩室のうち、第1の濃縮室C1と隣接している小脱塩室を「陰極側第1小脱塩室D1-1」、第2の濃縮室C2と隣接している小脱塩室を「陰極側第2小脱塩室D1-2」と呼ぶ。また、陽極側脱塩室D2を構成している二つの小脱塩室のうち、第3の濃縮室C3と隣接している小脱塩室を「陽極側第1小脱塩室D2-1」、第1の濃縮室C1と隣接している小脱塩室を「陽極側第2小脱塩室D2-2」と呼ぶ。かかる区別も説明の便宜上の区別であることは勿論である。
 各室の配列状況を陰極室E1の側から順に説明すると、次の通りである。すなわち、陰極室E1は、第1のアニオン交換膜a1を介して第2の濃縮室C2に隣接し、第2の濃縮室C2は、第1のカチオン交換膜c1を介して陰極側第2小脱塩室D1-2と隣接している。陰極側第2小脱塩室D1-2は、第2のアニオン交換膜a2を介して陰極側第1小脱塩室D1-1と隣接し、陰極側第1小脱塩室D1-1は、第3のアニオン交換膜a3を介して第1の濃縮室C1と隣接している。第1の濃縮室C1は、第2のカチオン交換膜c2を介して陽極側第2小脱塩室D2-2と隣接し、陽極側第2小脱塩室D2-2は、第4のアニオン交換膜a4を介して陽極側第1小脱塩室D2-1と隣接している。陽極側第1小脱塩室D2-1は、第5のアニオン交換膜a5を介して第3の濃縮室C3と隣接し、第3の濃縮室C3は、第3のカチオン交換膜c3を介して陽極室E2と隣接している。
 第1~第3の濃縮室C1~C3は、陰極側脱塩室D1または陽極側脱塩室D2から排出されるアニオン成分またはカチオン成分を取り込み、それらを系外に放出するために設けられている。各濃縮室C1~C3には、スケールの発生を抑制すべくアニオン交換体が単床形態で充填されている。
 陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1には、それぞれアニオン交換体が単床形態で充填されている。また、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2には、それぞれアニオン交換体およびカチオン交換体が複床形態で充填されている。なお、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2におけるアニオン交換体およびカチオン交換体の具体的な充填形態は実施形態1において説明した通りである。また、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2には、バイポーラ膜4aがそれぞれ配置されている。バイポーラ膜4aの具体的な位置や向きは実施形態1において説明した通りである。
 次に、図4に示す脱イオン水製造装置における被処理水および濃縮水の主な流れについて概説する。被処理水は、陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1にそれぞれ並列的に供給され、これら小脱塩室を通過する。陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1を通過した被処理水は、これら小脱塩室外で一度合流した後に分流されて、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2にそれぞれ並列的に供給され、これら小脱塩室を通過した後に系外に排出される。一方、濃縮水は、第1~第3の濃縮室C1~C3にそれぞれ並列的に供給され、これら濃縮室を通過して系外に排出される。
 上記のように被処理水および濃縮水を流すためにいくつかの流路U1~U3、L1~L2が設けられている。図4において脱イオン水製造装置の上方に示されている流路U1は、その一端が被処理水の供給側に接続され、他端側は途中で分岐されて、陰極側第1小脱塩室D1-1と陽極側第1小脱塩室D2-1とにそれぞれ接続されている。脱イオン水製造装置の下方に示されている流路L1は、陰極側第1小脱塩室D1-1と陽極側第1小脱塩室D2-1とにそれぞれ接続され、途中で合流した後に分岐されて、陰極側第2小脱塩室D1-2と陽極側第2小脱塩室D2-2とにそれぞれ接続されている。脱イオン水製造装置の上方に示されている流路U2は、陰極側第2小脱塩室D1-2と陽極側第2小脱塩室D2-2とにそれぞれ接続され、途中で合流して被処理水の排出側に接続されている。
 図4において脱イオン水製造装置の上方に示されている流路U3は、その一端が濃縮水の供給側に接続され、他端側は途中で分岐されて、第1の濃縮室C1、第2の濃縮室C2および第3の濃縮室C3にそれぞれ接続されている。脱イオン水製造装置の下方に示されている流路L2は、第1の濃縮室C1、第2の濃縮室C2および第3の濃縮室C3にそれぞれ接続され、途中で合流した後に濃縮水の排出側に接続されている。
 次に、上記構成を有する脱イオン水製造装置の動作および作用について説明する。第1~第3の濃縮室C1~C3には、流路U3から濃縮水が供給され、流路L2から排出される。また、陰極室E1および陽極室E2には、図示しない流路から電極水が供給され、図示しない流路から電極水が排出される。さらに、陽極、陰極の間に所定の直流電圧が印加される。
 以上の状態の下で、流路U1から陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1に被処理水が並列的に供給される。供給された被処理水のアニオン成分(Cl、CO 2-、HCO 、SiO等)は、被処理水が第1小脱塩室D1-1、D2-1を通過する過程で捕捉される。そして、陰極側第1小脱塩室D1-1において捕捉されたアニオン成分は、陰極側第1小脱塩室D1-1と第3のアニオン交換膜a3を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。一方、陽極側第1小脱塩室D2-1において捕捉されたアニオン成分は、陽極側第1小脱塩室D2-1と第5のアニオン交換膜a5を介して隣接する第3の濃縮室C3へ移動し、該第3の濃縮室C3を通水する濃縮水と共に系外に排出される。
 次に、陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1を通過した被処理水は、流路L1を介して陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2に供給される。ここで、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2には、カチオン交換体層とアニオン交換体層とがこの順で積層されていることは既述の通りである。よって、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2にそれぞれ供給された被処理水は、まずカチオン交換体層を通過し、その後にアニオン交換体層を通過する。その際、カチオン交換体層を通過する過程で、被処理水中のカチオン成分(Na、Ca2+、Mg2+等)が捕捉される。具体的には、陰極側第2小脱塩室D1-2内のカチオン交換体において捕捉されたカチオン成分は、陰極側第2小脱塩室D1-2と第1のカチオン交換膜c1を介して隣接する第2の濃縮室C2へ移動し、該第2の濃縮室C2を通水する濃縮水と共に系外に排出される。一方、陽極側第2小脱塩室D2-2内のカチオン交換体において捕捉されたカチオン成分は、陽極側第2小脱塩室D2-2と第2のカチオン交換膜c2を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。
 さらに、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2においてカチオン交換体層を通過した被処理水は、次段のアニオン交換体層を通過する過程で、アニオン成分(Cl、CO 2-、HCO 、SiO等)が再度捕捉される。具体的には、陰極側第2小脱塩室D1-2のアニオン交換体において捕捉されたアニオン成分は、陰極側第2小脱塩室D1-2と中間イオン交換膜a2を介して隣接する陰極側第1小脱塩室D1-1へ移動する。陰極側第1小脱塩室D1-1へ移動したアニオン成分は、陰極側第1小脱塩室D1-1と第3のアニオン交換膜a3を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。一方、陽極側第2小脱塩室D2-2のアニオン交換体において捕捉されたアニオン成分は、陽極側第2小脱塩室D2-2と中間イオン交換膜a4を介して隣接する陽極側第1小脱塩室D2-1へ移動する。陽極側第1小脱塩室D2-1へ移動したアニオン成分は、陽極側第1小脱塩室D2-1と第5のアニオン交換膜a5を介して隣接する第3の濃縮室C3へ移動し、該第3の濃縮室C3を通水する濃縮水と共に系外に排出される。
 以上が本実施形態に係る脱イオン水製造装置における脱イオン処理の流れである。しかし、本実施形態に係る脱イオン水製造装置のように、脱塩室が複数設けられている場合には、特定の濃縮室における炭酸やシリカの濃度が他の濃縮室におけるそれに比べて高くなる。例えば、本実施形態に係る脱イオン水製造装置においては、図4に示す脱塩室D1に隣接している第1の濃縮室C1には、該濃縮室C1に供給される濃縮水に含まれている炭酸やシリカに加え、陰極側脱塩室D1から炭酸やシリカが移動してくる。また、図4に示す脱塩室D2に隣接している第3の濃縮室C3には、該濃縮室C3に供給される濃縮水に含まれている炭酸やシリカに加え、陽極側脱塩室D2から炭酸やシリカが移動してくる。隣接する脱塩室から濃縮室へ炭酸やシリカが移動してくる原理は実施形態1において説明した通りである。よって、第1の濃縮室C1、第3の濃縮室C3では、他の濃縮室C2に比べて炭酸やシリカの濃度が高くなり、隣接するカチオン交換膜を通過する量も増大する。特に、濃縮室C1は陽極側脱塩室D2と隣接しており、かかる炭酸やシリカの陽極側脱塩室D2への移動(被処理水への拡散)が問題となる。
 しかし、本実施形態に係る構成によれば、第1の濃縮室C1から陽極側第2小脱塩室D2-2へ移動した炭酸やシリカは、該脱塩室D2-2に充填されているアニオン交換体によって捕捉され、陽極側第1小脱塩室D2-1を介して第3の濃縮室C3に移動し、系外に排出される。従って、第1の濃縮室C1から陽極側第2小脱塩室D2-2へ移動した炭酸やシリカが被処理水に拡散することはない。
 なお、本実施形態においても、被処理水が最初に供給される陰極側第1小脱塩室D1-1及び陽極側第1小脱塩室D2-1にはアニオン交換体が充填されている。また、陰極側第1小脱塩室D1-1及び陽極側第1小脱塩室D2-1を通過した被処理水が供給される陰極側第2小脱塩室D1-2及び陽極側第2小脱塩室D2-2には、カチオン交換体とアニオン交換体とがこの順で積層されている。すなわち、被処理水は、最初にアニオン交換体を通過し、次いでカチオン交換体を通過し、その後にアニオン交換体を再度通過する。よって、実施形態1で説明したのと同様の原理により、被処理水の純度がより一層向上する。
 さらに、陰極側第2小脱塩室D1-2及び陽極側第2小脱塩室D2-2には、バイポーラ膜4aがそれぞれ配置されている。よって、実施形態1において説明したのと同様の原理により、低電圧、高電流密度での運転が可能となる。加えて、積極的な電流の偏流(分配)によって、アニオン成分およびカチオン成分を十分に除去することができる。
 (実施形態3)
 次に、図5を参照して本発明の脱イオン水製造装置の実施形態の他例について説明する。もっとも、本実施形態に係る脱イオン水製造装置の基本構成は、実施形態2に係る脱イオン水製造装置と共通である。そこで、実施形態2に係る脱イオン水製造装置との相違点についてのみ以下に説明し、共通点についての説明は省略する。
 図5に示すように、本実施形態に係る脱イオン水製造装置では、陰極室E1と第2の濃縮室C2との間に、副脱塩室S1が設けられている。副脱塩室S1は、第6のアニオン交換膜a6を介して陰極室E1と隣接し、第1のアニオン交換膜c1を介して第2の濃縮室C2と隣接し、室内にはアニオン交換体が単床形態で充填されている。
 本実施形態に係る脱イオン水製造装置では、流路U1から陰極側第1小脱塩室D1-1、陽極側第1小脱塩室D2-1および副脱塩室S1に被処理水が並列的に供給される。副脱塩室S1に供給された被処理水は、該副脱塩室S1を通過する過程でアニオン成分(Cl、CO 2-、HCO 、SiO等)が捕捉される。捕捉されたアニオン成分は、副脱塩室S1と第1のアニオン交換膜a1を介して隣接する第2の濃縮室C2へ移動し、該第2の濃縮室C2を通水する濃縮水と共に系外に排出される。一方、副脱塩室S1を通過した被処理水は、陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1を通過した被処理水と合流した後に、陰極側第2小脱塩室D1-2または陽極側第2小脱塩室D2-2に供給される。これ以後の被処理水の流れやイオンの動きは実施形態1や実施形態2において説明した通りなので説明は省略する。
 ここで、脱イオン水製造装置においては、被処理水に含まれているマグネシウムイオンやカルシウムイオンなどの硬度成分が脱塩室から濃縮室へ移動する。これら硬度成分は、イオン交換膜の表面においてCO 2-やOHなどのイオンと反応し、炭酸カルシウム、水酸化マグネシウムなどがスケールとして析出する。このようなスケールの析出は、pHが高い部分で発生し易く、脱イオン水製造装置では、陰極室の陰極表面やアニオン交換膜面などの局所的にpHが高い部分でスケールの発生がしばしば見られる。こうした問題を解決するためには、スケール発生箇所のpHを下げることが有効であり、炭酸などのアニオン成分を供給できればその効果が得られる。このため、脱塩室から隣接する濃縮室へアニオン成分を供給し、スケールの発生を抑制することが可能である。
 ここで図4を参照する。実施形態2に係る脱イオン水製造装置では、第1の濃縮室C1へは主に陰極側脱塩室D1から、第3の濃縮室C3へは主に陽極側脱塩室D2から、それぞれアニオン成分が供給される。よって、第3のアニオン交換膜a3や第5のアニオン交換膜a5の膜面上におけるスケールの発生は抑制される。しかし、最も陰極室側に位置している第2の濃縮室C2へのアニオン成分の供給量は、第1の濃縮室C1および第3の濃縮室C3への供給量に比べて少ない。すなわち、第3のアニオン交換膜a3や第5のアニオン交換膜a5の膜面上に比べて、第1のアニオン交換膜a1の膜面上はスケールが発生し易い状況にある。
 一方、陰極室E1と第2の濃縮室C2との間に、アニオン交換体が充填された副脱塩室S1が設けられている本実施形態の脱イオン水製造装置では、副脱塩室S1から第2の濃縮室C2へアニオン成分が供給される。よって、第1のアニオン交換膜a1の膜面上における局所的なpHの上昇が抑制され、スケールの発生も抑制される。
 さらに、副脱塩室S1に充填されているアニオン交換体は陰極室E1で生成されたOHにより再生される。従って、本実施形態に係る脱イオン水製造装置では、陰極室E1で発生し、従来は利用されることなく捨てられていたOHがイオン交換体の再生に有効利用される。
 加えて、陰極室E1におけるOHの生成効率は高いため、電位が低くても十分な量のOHが副脱塩室S1に移動する。このため、電極間の印加電圧を抑え、脱イオン水製造装置の運転費用を低減することができる。また、本実施形態では、副脱塩室S1が新たな脱塩室として追加されているが、それに伴い新たな濃縮室を追加する必要がない。つまり、相対的に濃縮室の数を減らすことができる。これは装置サイズ及び装置コストを抑えるだけでなく、印加電圧及び運転費用の低減にもつながる。
 なお、本実施形態では、陰極室と陽極室との間に2つの脱塩処理部が設けられた例について説明したが、脱塩処理部は1つでも3つ以上であってもよい。例えば、図1に示す陰極室E1と第2の濃縮室C2との間に上記構成の副脱塩室を設けることもできる。
 本発明の脱イオン水製造装置に用いられるアニオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。アニオン交換体の種類としては、弱塩基性アニオン交換体、強塩基性アニオン交換体等が挙げられる。また、カチオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。カチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられる。
 1 枠体
 2 アニオン交換膜
 3 カチオン交換膜
 4a 第1のバイポーラ膜
 4b 第2のバイポーラ膜
 E1 陰極室
 E2 陽極室
 C1 第1の濃縮室
 C2 第2の濃縮室
 C3 第3の濃縮室
 D 脱塩室
 D-1 第1小脱塩室
 D-2 第2小脱塩室
 D1 陰極側脱塩室
 D1-1 陰極側第1小脱塩室
 D1-2 陰極側第2小脱塩室
 D2 陽極側脱塩室
 D2-1 陽極側第1小脱塩室
 D2-2 陽極側第2小脱塩室
 a1~a6 アニオン交換膜
 c1~c3 カチオン交換膜
 A アニオン交換体層
 C カチオン交換体層
 U1~U3、L1~L2 流路

Claims (6)

  1.  対向する陰極室と陽極室との間に少なくとも1つの脱塩処理部が設けられた電気式脱イオン水製造装置であって、
     前記脱塩処理部は、脱塩室と、該脱塩室の両隣に設けられるとともに、アニオン交換体が充填された一対の濃縮室とから構成され、
     前記脱塩室は、イオン交換膜によって、前記一対の濃縮室の一方に隣接する第1小脱塩室と、前記一対の濃縮室の他方に隣接する第2小脱塩室とに仕切られ、
     前記第1小脱塩室には、アニオン交換体が充填され、
     前記第2小脱塩室には、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体とカチオン交換体とが充填され、
     前記第2小脱塩室に充填されている前記アニオン交換体の陰極側には、バイポーラ膜がそのアニオン交換膜面が前記アニオン交換体と対向する向きで配置されている、電気式脱イオン水製造装置。
  2.  前記第2小脱塩室と該第2小脱塩室の陰極側に設けられた濃縮室との間を仕切るイオン交換膜の上に前記バイポーラ膜が重ねて配置されている、請求項1に記載の電気式脱イオン水製造装置。
  3.  前記第2小脱塩室と該第2小脱塩室の陰極側に設けられた濃縮室との間を仕切るイオン交換膜の一部が前記バイポーラ膜とされている、請求項1に記載の電気式脱イオン水製造装置。
  4.  前記第1小脱塩室には、アニオン交換体の層が一層形成され、
     前記第2小脱塩室には、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体の層とカチオン交換体の層とが少なくとも一層ずつ積層されている、請求項1乃至請求項3のいずれか1項に記載の電気式脱イオン水製造装置。
  5.  前記第2小脱塩室への被処理水の流入方向と、前記濃縮室への濃縮水の流入方向とが逆向きとなるように流路が形成されている、請求項1乃至請求項4のいずれか1項に記載の電気式脱イオン水製造装置。
  6.  前記陰極室と前記第2小脱塩室に隣接している前記濃縮室との間に、アニオン交換体が充填された副脱塩室がさらに設けられている、請求項1乃至請求項5のいずれか1項に記載の電気式脱イオン水製造装置。
PCT/JP2012/052239 2011-02-08 2012-02-01 電気式脱イオン水製造装置 WO2012108310A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137022779A KR101526093B1 (ko) 2011-02-08 2012-02-01 전기식 탈이온수 제조 장치
CN201280008026.XA CN103370281B (zh) 2011-02-08 2012-02-01 用于制备去离子水的电去离子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-024958 2011-02-08
JP2011024958A JP5695926B2 (ja) 2011-02-08 2011-02-08 電気式脱イオン水製造装置

Publications (1)

Publication Number Publication Date
WO2012108310A1 true WO2012108310A1 (ja) 2012-08-16

Family

ID=46638526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052239 WO2012108310A1 (ja) 2011-02-08 2012-02-01 電気式脱イオン水製造装置

Country Status (6)

Country Link
JP (1) JP5695926B2 (ja)
KR (1) KR101526093B1 (ja)
CN (1) CN103370281B (ja)
MY (1) MY166655A (ja)
TW (1) TWI517896B (ja)
WO (1) WO2012108310A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018818A1 (ja) * 2011-08-04 2013-02-07 オルガノ株式会社 電気式脱イオン水製造装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034736B2 (ja) * 2013-04-01 2016-11-30 オルガノ株式会社 電気式脱イオン水製造装置
JP6514851B2 (ja) * 2014-04-09 2019-05-15 オルガノ株式会社 脱イオン水製造装置
GB201602484D0 (en) * 2016-02-11 2016-03-30 Fujifilm Mfg Europe Bv Desalination
JP6532554B1 (ja) * 2018-01-19 2019-06-19 オルガノ株式会社 電気式脱イオン水製造装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151911A (ja) * 1987-12-10 1989-06-14 Tokuyama Soda Co Ltd 電気透析槽
JPH0471683A (ja) * 1990-07-10 1992-03-06 Yukio Nakagawa 電極での放電イオンの代替法と、塩水の淡化濃縮並びに純水製造への応用
JP2003326271A (ja) * 2002-05-13 2003-11-18 Ebara Corp 電気再生式脱塩装置
JP2005052766A (ja) * 2003-08-06 2005-03-03 Nippon Rensui Co Ltd 電気再生式純水製造装置
JP2009208046A (ja) * 2008-03-06 2009-09-17 Japan Organo Co Ltd 電気式脱イオン水製造装置
JP2009539578A (ja) * 2006-06-02 2009-11-19 ゼネラル・エレクトリック・カンパニイ 電気脱イオンシステムにおける電流分布をシフトする方法及び装置
JP2009297670A (ja) * 2008-06-16 2009-12-24 Japan Organo Co Ltd 電気式脱イオン水製造装置
JP2010264360A (ja) * 2009-05-13 2010-11-25 Japan Organo Co Ltd 脱イオンモジュール及び電気式脱イオン水製造装置
WO2011152226A1 (ja) * 2010-06-03 2011-12-08 オルガノ株式会社 電気式脱イオン水製造装置
WO2011152227A1 (ja) * 2010-06-03 2011-12-08 オルガノ株式会社 電気式脱イオン水製造装置
JP2011251266A (ja) * 2010-06-03 2011-12-15 Japan Organo Co Ltd 電気式脱イオン水製造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2152791Y (zh) * 1993-05-18 1994-01-12 陈正林 微型电子水处理器
KR100409416B1 (ko) * 1996-06-03 2005-06-13 오르가노 코포레이션 전기탈이온법에의한탈이온수의제조법
JP3864891B2 (ja) * 2002-07-01 2007-01-10 栗田工業株式会社 電気式脱イオン装置
JP3681124B1 (ja) * 2004-02-09 2005-08-10 日立マクセル株式会社 純水生成装置または軟水生成装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151911A (ja) * 1987-12-10 1989-06-14 Tokuyama Soda Co Ltd 電気透析槽
JPH0471683A (ja) * 1990-07-10 1992-03-06 Yukio Nakagawa 電極での放電イオンの代替法と、塩水の淡化濃縮並びに純水製造への応用
JP2003326271A (ja) * 2002-05-13 2003-11-18 Ebara Corp 電気再生式脱塩装置
JP2005052766A (ja) * 2003-08-06 2005-03-03 Nippon Rensui Co Ltd 電気再生式純水製造装置
JP2009539578A (ja) * 2006-06-02 2009-11-19 ゼネラル・エレクトリック・カンパニイ 電気脱イオンシステムにおける電流分布をシフトする方法及び装置
JP2009208046A (ja) * 2008-03-06 2009-09-17 Japan Organo Co Ltd 電気式脱イオン水製造装置
JP2009297670A (ja) * 2008-06-16 2009-12-24 Japan Organo Co Ltd 電気式脱イオン水製造装置
JP2010264360A (ja) * 2009-05-13 2010-11-25 Japan Organo Co Ltd 脱イオンモジュール及び電気式脱イオン水製造装置
WO2011152226A1 (ja) * 2010-06-03 2011-12-08 オルガノ株式会社 電気式脱イオン水製造装置
WO2011152227A1 (ja) * 2010-06-03 2011-12-08 オルガノ株式会社 電気式脱イオン水製造装置
JP2011251266A (ja) * 2010-06-03 2011-12-15 Japan Organo Co Ltd 電気式脱イオン水製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018818A1 (ja) * 2011-08-04 2013-02-07 オルガノ株式会社 電気式脱イオン水製造装置
US9896357B2 (en) 2011-08-04 2018-02-20 Organo Corporation Electrodeionization apparatus for producing deionized water

Also Published As

Publication number Publication date
CN103370281A (zh) 2013-10-23
CN103370281B (zh) 2015-12-09
TW201249527A (en) 2012-12-16
JP2012161758A (ja) 2012-08-30
TWI517896B (zh) 2016-01-21
JP5695926B2 (ja) 2015-04-08
KR101526093B1 (ko) 2015-06-04
KR20130119977A (ko) 2013-11-01
MY166655A (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP5719842B2 (ja) 電気式脱イオン水製造装置
JP5695926B2 (ja) 電気式脱イオン水製造装置
JP5295927B2 (ja) 電気式脱イオン水製造装置
JP5145305B2 (ja) 電気式脱イオン水製造装置
JP5489867B2 (ja) 電気式脱イオン水製造装置
JP5385457B2 (ja) 電気式脱イオン水製造装置
JP5114307B2 (ja) 電気式脱イオン水製造装置
JP5379025B2 (ja) 電気式脱イオン水製造装置
JP5415966B2 (ja) 電気式脱イオン水製造装置および脱イオン水製造方法
JP5661930B2 (ja) 電気式脱イオン水製造装置
TWI749260B (zh) 電去離子水製造裝置
JP5689032B2 (ja) 電気式脱イオン水製造装置
JP5689031B2 (ja) 電気式脱イオン水製造装置
JP5719707B2 (ja) 電気式脱イオン水製造装置
JP5693396B2 (ja) 電気式脱イオン水製造装置
JP6034736B2 (ja) 電気式脱イオン水製造装置
JP6181510B2 (ja) 純水製造装置
JP2013013830A (ja) 電気式脱イオン水製造装置および脱イオン水製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280008026.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004343

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20137022779

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12745182

Country of ref document: EP

Kind code of ref document: A1