[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012108055A1 - 単結晶基板製造方法および内部改質層形成単結晶部材 - Google Patents

単結晶基板製造方法および内部改質層形成単結晶部材 Download PDF

Info

Publication number
WO2012108055A1
WO2012108055A1 PCT/JP2011/052950 JP2011052950W WO2012108055A1 WO 2012108055 A1 WO2012108055 A1 WO 2012108055A1 JP 2011052950 W JP2011052950 W JP 2011052950W WO 2012108055 A1 WO2012108055 A1 WO 2012108055A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
modified layer
layer
crystal member
laser
Prior art date
Application number
PCT/JP2011/052950
Other languages
English (en)
French (fr)
Inventor
国司 洋介
鈴木 秀樹
利香 松尾
順一 池野
Original Assignee
信越ポリマー株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社, 国立大学法人埼玉大学 filed Critical 信越ポリマー株式会社
Priority to JP2012556741A priority Critical patent/JP5875122B2/ja
Priority to PCT/JP2011/052950 priority patent/WO2012108055A1/ja
Priority to KR1020137021348A priority patent/KR20130103624A/ko
Publication of WO2012108055A1 publication Critical patent/WO2012108055A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams

Definitions

  • the present invention relates to a single crystal substrate manufacturing method and an internal modified layer forming single crystal member, and more particularly, to a single crystal substrate manufacturing method and an internal modified layer forming single crystal member for cutting a single crystal substrate thinly and stably.
  • a semiconductor wafer represented by a single crystal silicon (Si) wafer a cylindrical ingot solidified from a silicon melt melted in a quartz crucible is cut into blocks of an appropriate length. Then, the peripheral edge is ground to a target diameter, and then the block-shaped ingot is sliced into a wafer shape with a wire saw to manufacture a semiconductor wafer.
  • Si single crystal silicon
  • the semiconductor wafer manufactured in this way is subjected to various processes such as circuit pattern formation in the previous process in order and used in the subsequent process.
  • the back surface is back-grinded and thinned. Accordingly, the thickness is adjusted to about 750 ⁇ m to 100 ⁇ m or less, for example, about 75 ⁇ m or 50 ⁇ m.
  • a conventional semiconductor wafer is manufactured as described above, and an ingot is cut with a wire saw, and a cutting allowance larger than the thickness of the wire saw is required for cutting, so a thin semiconductor wafer with a thickness of 0.1 mm or less It is very difficult to manufacture the product, and the product rate is not improved.
  • SiC silicon carbide
  • SiC silicon carbide
  • ingots can be easily formed with a wire saw because of its higher hardness than Si.
  • the condensing point of the laser beam is aligned with the inside of the ingot with the condensing lens, and the ingot is relatively scanned with the laser beam to form a planar modified layer by multiphoton absorption inside the ingot.
  • a substrate manufacturing method and a substrate manufacturing apparatus are disclosed in which a part of the ingot is peeled off using the modified layer as a peeling surface.
  • Patent Document 1 discloses a technique of using a multiphoton absorption of a laser beam to form a modified layer inside a silicon ingot and peeling the wafer from the silicon ingot using an electrostatic chuck.
  • a glass plate is attached to the objective lens of NA0.8, a laser beam is irradiated toward the silicon wafer for solar cells, and a modified layer is formed inside the silicon wafer.
  • a technique for fixing an acrylic resin plate with an instantaneous adhesive and peeling it is disclosed.
  • Patent Document 3 discloses, in particular, paragraphs 0003 to 0005, 0057, and 0058, a technique for dicing by forming a microcavity by condensing laser light inside a silicon wafer and causing multiphoton absorption. .
  • Patent Document 1 it is not easy to uniformly peel off a large area substrate (silicon substrate).
  • Patent Document 3 is a technique related to dicing for cutting a silicon wafer into individual chips, and it is not easy to apply this to manufacturing a thin plate-like wafer from a single crystal ingot such as silicon.
  • an object of the present invention is to provide a single crystal substrate manufacturing method and an internal modified layer forming single crystal member capable of easily manufacturing a relatively large and thin single crystal substrate.
  • a laser focusing unit is disposed in a non-contact manner on a single crystal member, and the laser beam is irradiated on the surface of the single crystal member by the laser focusing unit.
  • the step of irradiating and condensing the laser light inside the single crystal member, and the laser condensing means and the single crystal member are relatively moved to form a polycrystalline portion inside the single crystal member.
  • Forming a two-dimensional modified layer, and forming a single crystal substrate by separating the single crystal layer separated by the modified layer from the modified layer A manufacturing method is provided.
  • the laser beam irradiated from the outside of the single crystal member and condensed inside the single crystal member is constituted by an aggregate of polycrystalline portions parallel to the irradiation axis of the laser beam.
  • An internal modified layer forming single crystal member comprising a two-dimensional modified layer to be formed and a single crystal layer adjacent to the modified layer is provided.
  • FIG. 3 is a schematic cross-sectional view showing that a polycrystalline portion is formed inside a single crystal member by laser light irradiation in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view for explaining that the single crystal layer is peeled from the modified layer by bonding a metal substrate to the upper and lower surfaces of the internal modified layer forming single crystal member in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view for explaining that the single crystal layer is peeled from the modified layer by bonding a metal substrate to the upper and lower surfaces of the internal modified layer forming single crystal member in the first embodiment.
  • the typical perspective sectional view explaining the modification of a 1st embodiment The optical microscope photograph which shows the example of the peeling surface of a single crystal layer in 1st Embodiment.
  • FIG. 1 The optical microscope photograph of the cleaved surface of a silicon wafer in Example 1 of Test Example 1.
  • FIG. 3 an optical micrograph showing the grain size of polycrystalline grains of the modified layer.
  • Test Example 3 an optical micrograph showing the grain size of polycrystalline grains of the modified layer.
  • Test Example 3 an optical micrograph showing the grain size of polycrystalline grains of the modified layer.
  • XRD X-ray diffraction
  • Test Example 5 an optical micrograph and a spectrum diagram of a cross section of an internal modified layer-forming single crystal member.
  • FIG. 1 is a schematic bird's-eye view for explaining that laser light is condensed in the air by the laser condensing means in this embodiment
  • FIG. 2 is a single crystal member by the laser condensing means in this embodiment. It is a typical bird's-eye view explaining that the laser beam was condensed inside.
  • FIG. 3 is a schematic cross-sectional structure illustrating the single crystal substrate manufacturing method and the internal modified layer forming single crystal member 11 according to the present embodiment.
  • FIG. 4 is a schematic cross-sectional view showing that the polycrystalline portion 12p is formed inside the single crystal member by laser light irradiation.
  • FIG. 5 is a schematic perspective sectional view showing that the modified layer 12 formed by condensing the laser beam is exposed on the side wall of the internal modified layer forming single crystal member 11.
  • the single crystal substrate manufacturing method includes a step of disposing the condensing lens 15 on the single crystal member 10 as a laser condensing unit (laser condensing unit) in a non-contact manner, The step of irradiating the surface of the member 10 with the laser beam B and condensing the laser beam B inside the single crystal member 10, and the relative movement of the condenser lens 15 and the single crystal member 10, In addition, the step of forming a two-dimensional modified layer 12 composed of a polycrystalline portion, and the separation of the single crystal layer 10u divided by the modified layer 12 from the modified layer 12, FIG. Forming a single crystal substrate 10s as shown.
  • FIG. 7 is a schematic cross-sectional view for explaining that the single crystal layer 10 u is peeled from the modified layer 12.
  • the single crystal layer 10u is described as being peeled from the interface 11u with the modified layer 12.
  • the present invention is not limited to peeling from the interface 11u, and peeling is performed within the modified layer 12. It may be made to occur.
  • the condensing lens 15 is configured to correct aberration due to the refractive index of the single crystal member 10. Specifically, as shown in FIG. 1, in the present embodiment, the condensing lens 15 is configured such that when the condensing lens 15 condenses in the air, the laser light that has reached the outer peripheral portion E of the condensing lens 15 is condensed. The laser beam is corrected so as to be condensed on the condensing lens side with respect to the laser light reaching the central portion M. That is, when the light is condensed, the condensing point EP of the laser light reaching the outer peripheral portion E of the condensing lens 15 is condensed compared to the condensing point MP of the laser light reaching the central portion M of the condensing lens 15. The correction is made so that the position is close to the lens 15.
  • the condensing lens 15 includes a first lens 16 that condenses in the air, and a second lens 18 disposed between the first lens 16 and the single crystal member 10. .
  • Both the first lens 16 and the second lens 18 are lenses capable of condensing laser light in a conical shape.
  • the depth (interval) D from the surface 10t (irradiated side surface) of the single crystal member 10 on the side irradiated with the laser beam B to the modified layer 12 is mainly set to the first lens 16 and the surface 10t. It is the structure adjusted with the distance L1. Further, the thickness T of the modified layer 12 is adjusted mainly by the distance L2 between the second lens 18 and the surface 10t.
  • aberration correction in the air is mainly performed by the first lens 16, and aberration correction in the single crystal member 10 is mainly performed by the second lens 18.
  • the distances L1 and L2 are set.
  • the first lens 16 in addition to a spherical or aspherical single lens, a combination lens can be used to correct various aberrations and ensure a working distance, and the NA is 0.3 to 0.7. It is preferable.
  • the NA of the condensing lens 15 in the air defined by the light and its condensing point EP is preferably 0.3 to 0.85, and more preferably 0.5 to 0.85.
  • the thickness of the modified layer 12 is not necessary, it is possible to dispose only one lens instead of the first lens 16 and the second lens 18. In that case, it is preferable to have a structure capable of correcting aberrations in the single crystal member.
  • the size of the single crystal member 10 is not particularly limited, it is preferable that the surface 10t irradiated with the laser beam B is flattened in advance, for example, made of a thick silicon wafer of ⁇ 300 mm.
  • the laser beam B is irradiated not on the peripheral surface of the single crystal member 10 but on the surface 10t from the irradiation device (not shown) through the condenser lens 15.
  • the laser beam B is composed of, for example, a pulse laser beam having a pulse width of 1 ⁇ s or less, and a wavelength of 900 nm or more, preferably 1000 nm or more is selected.
  • a YAG laser or the like is suitable. Used for.
  • a laser oscillator may be disposed above the condensing lens 15 to emit light toward the condensing lens 15, or a reflecting mirror may be disposed above the condensing lens 15 to irradiate laser light toward the reflecting mirror. And you may make it the form reflected toward the condensing lens 15 with a reflective mirror.
  • the laser beam B preferably has a wavelength of light transmittance of 1 to 80% when the single crystal substrate 10 is irradiated to a single crystal substrate having a thickness of 0.625 mm.
  • a single crystal substrate of silicon since laser light having a wavelength of 800 nm or less has a large absorption, only the surface is processed and the internal modified layer 12 cannot be formed.
  • a wavelength of 900 nm or more, preferably 1000 nm or more is selected.
  • a CO 2 laser with a wavelength of 10.64 ⁇ m has a light transmittance that is too high, so that it is difficult to process a single crystal substrate. Therefore, a YAG fundamental wave laser is preferably used.
  • the reason why the wavelength of the laser beam B is preferably 900 nm or more is that if the wavelength is 900 nm or more, the laser beam B is improved in the transmittance of the single crystal substrate made of silicon, and the modified layer 12 is reliably provided inside the single crystal substrate. It is because it can form. Laser light B is applied to the peripheral portion of the surface of the single crystal substrate or from the central portion of the surface of the single crystal substrate toward the peripheral portion.
  • Modified layer formation process As a process of forming the modified layer 12 in the single crystal member 10 by relatively moving the condenser lens 15 and the single crystal member 10, for example, the single crystal member 10 is placed on an XY stage (not shown). The single crystal member 10 is held by a vacuum chuck or an electrostatic chuck.
  • the condenser lens 15 and the single crystal member 10 are moved to the surface of the single crystal member 10 on the side where the condenser lens 15 is disposed.
  • the laser beam B condensed inside the single crystal member 10 causes a large number of rod-shaped parallel to the irradiation axis BC of the laser beam B.
  • a polycrystalline portion 12p is formed.
  • the aggregate of the polycrystalline portions 12p is the modified layer 12 described above. As a result of the formation of the modified layer 12, the internal modified layer forming single crystal member 11 is manufactured.
  • This internal modified layer forming single crystal member 11 includes a modified layer 12 formed inside the single crystal member, a single crystal layer 10u on the upper side of the modified layer 12 (that is, the irradiated side of the laser beam B), A single crystal portion 10d is provided below the material layer 12.
  • the single crystal layer 10 u and the single crystal portion 10 d are formed by dividing the single crystal member 10 by the modified layer 12.
  • laser beam deflecting means such as a galvanometer mirror or a polygon mirror may be used, and laser light scanning within the irradiation area of the condenser lens 15 may be used in combination.
  • the laser beam B is focused on the surface 10t on the irradiated side of the single crystal member 10, that is, the surface 10t of the single crystal layer 10u. A mark indicating the region is attached, and then the single crystal member 10 is cut (cleaved) based on this mark, and the peripheral portion of the modified layer 12 is exposed and the single crystal layer 10u is peeled off as described later. May be performed.
  • the modified layer 12 formed by such irradiation a large number of polycrystalline portions 12p parallel to the irradiation axis BC of the laser beam B are formed.
  • the cross section of the modified layer 12 is etched and observed with a microscope or the like, the polycrystalline portion 12p parallel to the irradiation axis BC of the laser beam B is formed side by side as shown in FIG. easily confirmed.
  • the dimensions, density, and the like of the formed polycrystalline portion 12p are preferably set in consideration of the material of the single crystal member 10 and the like from the viewpoint of easily peeling the single crystal layer 10u from the modified layer 12.
  • the internal modified layer forming single crystal member 11 is cleaved so as to cross the region to be processed by the laser beam B, that is, the modified layer 12, and a cleavage plane (for example, FIGS. 3 and 5).
  • 14a to d) may be etched and observed with a scanning electron microscope or a confocal microscope.
  • a single crystal member for example, a silicon wafer
  • the Y stage feed may be linearly processed inside the member at intervals of 6 to 50 ⁇ m, cleaved so as to cross this, and the cleaved surface may be etched and observed for easy confirmation.
  • the modified layer 12 and the single crystal layer 10u are separated.
  • the modified layer 12 is exposed on the side wall of the internal modified layer forming single crystal member 11.
  • cleavage is performed along a predetermined crystal plane of the single crystal portion 10d and the single crystal layer 10u.
  • FIG. 5 a structure in which the modified layer 12 is sandwiched between the single crystal layer 10u and the single crystal portion 10d is obtained.
  • the surface 10t of the single crystal layer 10u is a surface on the side irradiated with the laser beam B.
  • the exposure work is omitted. It is possible.
  • metal substrates 28u and 28d are bonded to the upper and lower surfaces of the internal modified layer forming single crystal member 11, respectively. That is, the metal substrate 28u is bonded to the surface 10t of the single crystal layer 10u with the adhesive 34u, and the metal substrate 28d is bonded to the surface 10b of the single crystal portion 10d with the adhesive 34d.
  • Oxide layers 29u and 29d are formed on the surfaces of the metal substrates 28u and 28d, respectively.
  • the oxide layer 29u is bonded to the surface 10t
  • the oxide layer 29d is bonded to the surface 10b.
  • a SUS peeling auxiliary plate is used as the metal substrates 28u and 28d.
  • the adhesive an adhesive that is used in a normal semiconductor manufacturing process and is used as a so-called wax for fixing a commercially available silicon ingot is used.
  • the adhesive bonded with this adhesive is immersed in water, the adhesive strength of the adhesive is reduced, so that the adhesive and the adherend (single crystal layer 10u) can be easily separated.
  • the metal substrate 28u is attached to the surface 10t of the single crystal layer 10u with a temporary fixing adhesive, and the metal substrate 28u is lined and peeled by applying a force.
  • the adhesive strength of the temporary fixing adhesive only needs to be stronger than the force necessary for peeling at the interface 11u between the modified layer 12 and the single crystal layer 10u.
  • the size and density of the formed polycrystalline portion 12p may be adjusted.
  • the temporary fixing adhesive for example, an adhesive made of an acrylic two-component monomer component that cures using metal ions as a reaction initiator is used.
  • the uncured monomer and the cured reaction product are water-insoluble, it is possible to prevent the peeling surface 10f (for example, the peeling surface of the silicon wafer) of the single crystal layer 10u exposed when peeling in water from being contaminated. .
  • the coating thickness of the temporary fixing adhesive is preferably 0.1 to 1 mm, more preferably 0.15 to 0.35 mm before curing. If the application thickness of the temporary fixing adhesive is excessively large, it takes a long time to be completely cured, and cohesive failure of the temporary fixing adhesive is likely to occur when the single crystal member (silicon wafer) is cleaved. . Moreover, when application
  • the application thickness of the temporary fixing adhesive may be controlled by using a method of fixing the metal substrates 28u and 28d to be bonded to an arbitrary height, but simply using a shim plate. Can do.
  • the necessary parallelism may be obtained using one or more auxiliary plates.
  • the metal substrates 28u and 28d are bonded to the upper and lower surfaces of the internal modified layer-forming single crystal member 11 with a temporary fixing adhesive, they may be bonded one by one or may be bonded simultaneously on both sides.
  • the metal substrate is bonded to one side and the adhesive is cured, and then the metal substrate is bonded to the other side.
  • the surface to which the temporary fixing adhesive is applied may be the upper surface or the lower surface of the internal modified layer forming single crystal member 11.
  • a resin film not containing metal ions may be used as the cover layer.
  • machining such as a punch hole for fixing the apparatus may be performed.
  • the metal substrate to be bonded undergoes a peeling process in water, it is preferable to form a passive layer for the purpose of suppressing contamination of the silicon wafer, and an oxide layer (oxide film) formed for the purpose of reducing the takt time for peeling in water. A thinner layer is preferred.
  • the surface of the metal surface is easily obtained by removing the oxide layer on the metal surface by a mechanical or chemical method and providing an anchor effect.
  • a mechanical or chemical method include acid cleaning using chemicals and degreasing treatment.
  • Specific examples of the mechanical method include sand blasting and shot blasting.
  • the method of damaging the surface of a metal substrate with sand paper is the simplest, and the particle size is preferably # 80 to 2000. Considering the surface damage of the substrate made, # 150 to 800 is more preferable.
  • the method for applying the forces Fu and Fd is not particularly limited.
  • the side wall of the internal modified layer forming single crystal member 11 is etched to form grooves 36 in the modified layer 12, and as shown in FIG.
  • the forces Fu and Fd may be generated by press-fitting (for example, a cutter blade).
  • an upward force component Fu and a downward force component Fd may be generated by applying a force F from the angular direction to the internal modified layer forming single crystal member 11.
  • the peeling surface 10f of the single crystal substrate 10s obtained in this way is a rough surface as shown in FIG. 11, for example.
  • FIG. 11 is an optical micrograph of the peeling surface 10f of the single crystal substrate 10s.
  • a surface 10H cleaved in the crystal orientation plane is also generated in part and is shown.
  • the energy of the laser beam B can be concentrated on the thin thickness portion in the single crystal member 10 with the condenser lens 15 having a large NA. Therefore, the internal modified layer forming single crystal member 11 in which the modified layer (working region) 12 having a small thickness T (length along the irradiation axis BC of the laser beam B) is formed in the single crystal member 10 is manufactured. be able to. Then, it is easy to manufacture the thin single crystal substrate 10 s by peeling the single crystal layer 10 u from the modified layer 12. Further, such a thin single crystal substrate 10s can be easily manufactured in a relatively short time. In addition, since the number of single crystal substrates 10 s can be obtained from the single crystal member 10 by suppressing the thickness of the modified layer 12, the product rate can be improved.
  • the modified layer 12 an aggregate of polycrystalline portions 12p parallel to the irradiation axis BC of the laser beam B is formed. Thereby, peeling of the modified layer 12 and the single crystal layer 10 is easy.
  • the peeling surface 10f is roughened by peeling from the interface 11u on the laser light irradiated side of the interfaces 11u and 11d.
  • a roughened peeling surface 10f as a surface to be irradiated with sunlight, it is possible to improve the light collection efficiency when applied to a solar cell.
  • the single crystal substrate 10s is obtained by bonding and peeling the metal substrate 28u having the oxide layer 29u on the surface to the surface of the single crystal layer 10u. Therefore, an adhesive used in a normal semiconductor manufacturing process can be used for bonding to a metal substrate, and a cyanoacrylate adhesive having a strong adhesive force used when bonding an acrylic plate must be used. That's it. Moreover, since the adhesive strength of the adhesive is greatly reduced by being immersed in water after peeling, the single crystal substrate 10s can be easily separated from the metal substrate 28u.
  • the metal substrates 28u and 28d are respectively attached to the upper and lower surfaces of the internal modified layer forming single crystal member 11, and the metal substrates 28u and 28d are peeled by applying force to the single crystal substrate. Although it has been described by forming 10 s, it may be removed by removing the modified layer 12 by etching.
  • the single crystal member 10 is not limited to a silicon wafer, but an ingot of a silicon wafer, an ingot of single crystal sapphire, SiC, or a wafer cut from the ingot, or another crystal (GaN, GaAs, InP) on this surface. Etc.) can be applied. Further, the plane orientation of the single crystal member 10 is not limited to (100), and other plane orientations can be used.
  • Example 1 The inventor prepared a single-crystal silicon wafer 10 (thickness: 625 ⁇ m) that was mirror-polished as the single-crystal member 10.
  • the silicon wafer 10 is placed on an XY stage, and the second plano-convex lens is used as the second lens 18 at a distance of 0.34 mm from the surface 10t on the laser beam irradiated side of the silicon wafer 10. 18 was placed.
  • the second plano-convex lens 18 is a lens having a radius of curvature of 7.8 mm, a thickness of 3.8 mm, and a refractive index of 1.58.
  • a first plano-convex lens 16 having an NA of 0.55 is disposed as the first lens 16.
  • the modified layer 12 is formed inside the silicon wafer 10 by irradiating the laser beam B having a wavelength of 1064 nm, a repetition frequency of 100 kHz, a pulse width of 60 seconds, and an output of 1 W, and passing through the first plano-convex lens 16 and the second plano-convex lens 18. did.
  • the depth D from the silicon wafer surface 10t to the processing region, that is, the depth D to the modified layer 12 was controlled by adjusting the mutual position of the first plano-convex lens 16 and the silicon wafer surface 10t.
  • the thickness T of the modified layer 12 was controlled by adjusting the mutual position of the second plano-convex lens 18 and the silicon wafer surface 10t.
  • the laser beam B is irradiated while being moved at a constant speed of 15 mm on the X stage, then sent 1 ⁇ m on the Y stage, and this is repeated to repeat the laser beam in an area of 15 mm ⁇ 15 mm.
  • the modified layer 12 was formed by performing internal irradiation. As a result, the internal modified layer forming single crystal member 11 having the single crystal layer 10u on the upper side of the modified layer 12 (that is, the irradiated side of the laser beam B) and the single crystal part 10d on the lower side of the modified layer 12 is obtained.
  • the single crystal layer 10 u and the single crystal portion 10 d are formed by dividing the silicon wafer 10 by the modified layer 12.
  • the silicon wafer 10 was cleaved so as to cross the modified layer 12, the cleaved surface was etched, and observed with an optical microscope (scanning electron microscope). An optical micrograph of the cleaved surface observed is shown in FIG. It was confirmed that polycrystalline layers 12p having a width of less than 1 ⁇ m are arranged in the modified layer 12.
  • the modified layer 12 was formed by changing the above-described implementation conditions only by sending the Y stage at 10 ⁇ m instead of 1 ⁇ m.
  • the silicon wafer 10 was cleaved and etched so as to cross the modified layer 12, and the cleaved surface was observed with an optical microscope (scanning electron microscope). An optical micrograph of the observed cleavage plane is shown in FIG. It was confirmed that polycrystalline layers 12p having a width of less than 10 ⁇ m are arranged in the modified layer 12.
  • Example 3 after irradiating the laser beam as in Example 2, the laser beam was repeatedly irradiated while being moved at a constant speed on the Y stage after being fed by 10 ⁇ m on the X stage. That is, the laser beam was irradiated in a lattice shape.
  • the silicon wafer 10 was cleaved and etched so as to cross the modified layer 12, and the cleaved surface was observed with an optical microscope (scanning electron microscope). It was confirmed more clearly than in Example 2 that polycrystalline portions 12p having a width of less than 10 ⁇ m were arranged in the modified layer 12.
  • Example 2 ⁇ Test Example 2>
  • the inventor uses the same silicon wafer as the silicon wafer 10 used in Test Example 1 and forms the internal modified layer-forming single crystal member 11 formed by forming the modified layer 12 under the conditions of Example 1.
  • the single crystal layer 10u was peeled off using the metal substrates 28u and 28d to obtain a single crystal substrate 10s.
  • the peeling surface 10f of the single crystal substrate 10s was observed with a laser confocal microscope, the measurement diagram shown in FIG. 14 was obtained, and it was confirmed that irregularities having a particle size of 50 to 100 ⁇ m were formed on the peeling surface 10f.
  • the horizontal axis is the unevenness dimension ( ⁇ m display), and the vertical axis is the surface roughness (% display).
  • the present inventor measured the state of the modified layer 12 by observing transmitted light with an infrared microscope while sequentially changing the position in the depth direction after the modified layer 12 was peeled from the single crystal layer 10u. Infrared micrographs obtained by the measurement are shown in FIGS. 15 shows the state of polycrystalline grains on the peeling surface of the modified layer 12 on the single crystal layer 10u side, FIG. 16 shows the state of polycrystalline grains at a slightly deeper position, and FIG. 17 shows a deeper position. The state of polycrystal grains at.
  • the particle diameter became coarser in the depth direction from the irradiated side of the laser beam.
  • ⁇ Test Example 4> The inventor irradiates a single crystal silicon wafer with laser light to form the modified layer 12 in the silicon wafer. And about this modified layer 12, the measurement by X-ray diffraction (XRD) was performed and crystallinity evaluation was performed. The figure obtained by the measurement is shown in FIG. As can be seen from FIG. 18, it was confirmed that single crystal silicon was polycrystallized. Accordingly, it has been found that the melting and solidification process is caused by the irradiation of the laser beam.
  • XRD X-ray diffraction
  • Example 5 The present inventor prepared a single crystal silicon wafer 10 (thickness: 625 ⁇ m) having a mirror polished surface on both sides as the single crystal member 10.
  • this silicon wafer 10 was placed on an XY stage and irradiated with a pulsed laser beam having a wavelength of 1064 nm to form a modified layer 12 having a square shape in a plan view with a side of 5 mm.
  • the silicon wafer (internally modified layer-forming single crystal member) was cleaved to expose the cross section of the modified layer 12, and this cross section was observed with a scanning electron microscope.
  • the thickness of the modified layer 12 was 30 ⁇ m.
  • FIG. 20 is a schematic bird's-eye view of the single-crystal member internal processing apparatus used for explaining the single-crystal substrate manufacturing method and the internal modified layer-forming single crystal member according to this embodiment.
  • the single crystal member internal processing apparatus 69 used in this embodiment includes a rotary stage 70 that holds the single crystal member 10 placed on the upper surface side, and a rotary stage control means 72 that controls the number of rotations of the rotary stage 70. Substrate rotating means 74 is provided.
  • the single crystal member internal processing device 69 includes a laser light source 76, a condensing lens 15, and a focal position adjusting tool (not shown) that adjusts the distance from the condensing lens 15 to the rotary stage 70. 80.
  • the single crystal member internal processing apparatus 1 includes an X-direction moving stage 84 that relatively moves the rotary stage 70 and the condenser lens 15 between the rotary shaft 70c of the rotary stage 70 and the outer periphery of the rotary stage 70, and A Y-direction moving stage 86 is provided.
  • the single crystal member internal processing apparatus 69 is used to place the single crystal member 10 on the rotary stage 70, and while rotating the single crystal member 10 at a constant speed on the rotary stage 70, Similarly, the laser beam B is irradiated, and then the rotary stage 70 is moved by the X direction moving stage 84 and the Y direction moving stage 86, and the irradiation position of the laser light B is set at a predetermined interval (1 ⁇ m,
  • the two-dimensional modified layer can be formed inside the single crystal member 10 by repeating irradiation after being sent at 5 ⁇ m, 10 ⁇ m, etc.
  • the polycrystalline portion generated by condensing the laser beam is located on this circle. Then, after the irradiation position of the laser beam B is sent at a predetermined interval in the radial direction of the rotary stage 70, the polycrystalline portion can be positioned concentrically by repeating the irradiation. Then, such an internal modified layer-forming single crystal member can be manufactured, and a single crystal substrate can be manufactured by peeling in the same manner as in the first embodiment.
  • a plurality of square-shaped single crystal members may be arranged on the rotary stage 70 symmetrically with respect to the rotary shaft 70c with an interval.
  • the polycrystal part by condensing of the laser beam B can be arrange
  • the thinly cut single crystal substrate can be applied to a solar cell as long as it is a Si substrate, and a sapphire substrate such as a GaN-based semiconductor device.
  • a solar cell as long as it is a Si substrate, and a sapphire substrate such as a GaN-based semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Laser Beam Processing (AREA)

Abstract

 比較的大きくて薄い単結晶基板を容易に製造することができる単結晶基板製造方法および内部改質層形成単結晶部材を提供することを課題とする。単結晶部材上に非接触にレーザ集光手段を配置する工程と、レーザ集光手段により単結晶部材の表面(10t)にレーザ光を照射して単結晶部材の内部にレーザ光を集光する工程と、レーザ集光手段と単結晶部材とを相対的に移動させて、単結晶部材の内部に、レーザ光の照射軸と平行な多結晶部で構成される2次元状の改質層(12)を形成する工程と、改質層(12)により分断されてなる単結晶層(10u)を改質層(12)との界面から剥離することで単結晶基板(10s)を形成する工程とを行う。

Description

単結晶基板製造方法および内部改質層形成単結晶部材
 本発明は、単結晶基板製造方法および内部改質層形成単結晶部材に関し、特に、単結晶基板を薄く安定して切り出す単結晶基板製造方法および内部改質層形成単結晶部材に関する。
 従来、単結晶のシリコン(Si)ウェハに代表される半導体ウェハを製造する場合には、石英るつぼ内に溶融されたシリコン融液から凝固した円柱形のインゴットを適切な長さのブロックに切断して、その周縁部を目標の直径になるよう研削し、その後、ブロック化されたインゴットをワイヤソーによりウェハ形にスライスして半導体ウェハを製造するようにしている。
 このようにして製造された半導体ウェハは、前工程で回路パターンの形成等、各種の処理が順次施されて後工程に供され、この後工程で裏面がバックグラインド処理されて薄片化が図られることにより、厚さが約750μmから100μm以下、例えば75μmや50μm程度に調整される。
 従来における半導体ウェハは、以上のように製造され、インゴットがワイヤソーにより切断され、しかも、切断の際にワイヤソーの太さ以上の切り代が必要となるので、厚さ0.1mm以下の薄い半導体ウェハを製造することが非常に困難であり、製品率も向上しないという問題がある。
 また近年、次世代の半導体として、硬度が大きく、熱伝導率も高いシリコンカーバイド(SiC)が注目されているが、SiCの場合には、Siよりも硬度が大きい関係上、インゴットをワイヤソーにより容易にスライスすることができず、また、バックグラインドによる基板の薄層化も容易ではない。
 一方、集光レンズでレーザ光の集光点をインゴットの内部に合わせ、そのレーザ光でインゴットを相対的に走査することにより、インゴットの内部に多光子吸収による面状の改質層を形成し、この改質層を剥離面としてインゴットの一部を基板として剥離する基板製造方法および基板製造装置が開示されている。
 例えば特許文献1には、レーザ光の多光子吸収を利用し、シリコンインゴット内部に改質層を形成しシリコンインゴットから静電チャックを利用してウェハを剥離する技術が開示されている。
 また、特許文献2では、NA0.8の対物レンズにガラス板を取り付けて、太陽電池用のシリコンウェハに向けてレーザ光を照射することで、シリコンウェハ内部に改質層を形成し、これをアクリル樹脂の板に瞬間接着剤で固定して剥離する技術が開示されている。
 また、特許文献3では、特に段落0003~0005、0057、0058に、シリコンウェハ内部にレーザ光を集光し多光子吸収を起こさせることで微小空洞を形成しダイシングを行う技術が開示されている。
 しかしながら、特許文献1の技術では、大面積の基板(シリコン基板)を均一に剥離することは容易でない。
 また、特許文献2の技術では、ウェハを剥離するには強力なシアノアクリレート系接着剤でアクリル樹脂板にウェハを固定する必要があり、剥離したウェハとアクリル樹脂板との分離が容易でない。さらに、NA0.5~0.8のレンズでシリコン内部に改質領域を形成すると、改質層の厚みが100μ以上となって必要な厚みよりも大きくなるので、ロスが大きい。ここで、レーザ光を集光する対物レンズのNA(開口数)を小さくすることで改質層の厚みを小さくすることが考えられるが、基板表面でのレーザ光のスポット径が小さくなってしまう。このため、浅い深度に改質層を形成しようとすると、基板表面までが加工されてしまうという別の問題が発生する。
 また、特許文献3の技術は、シリコンウェハを個片のチップに切り分けるダイシングに関する技術であり、これをシリコンなどの単結晶インゴットから薄板状のウェハを製造することに応用するのは容易ではない。
特開2005‐277136号公報 特開2010‐188385号公報 特開2005‐57257号公報
 本発明は、上記課題に鑑み、比較的大きくて薄い単結晶基板を容易に製造することができる単結晶基板製造方法および内部改質層形成単結晶部材を提供することを課題とする。
 上記課題を解決するための本発明の一態様によれば、単結晶部材上に非接触にレーザ集光手段を配置する工程と、前記レーザ集光手段により、前記単結晶部材表面にレーザ光を照射して前記単結晶部材内部に前記レーザ光を集光する工程と、前記レーザ集光手段と前記単結晶部材とを相対的に移動させて、前記単結晶部材内部に、多結晶部で構成される2次元状の改質層を形成する工程と、前記改質層により分断されてなる単結晶層を前記改質層から剥離することで単結晶基板を形成する工程とを有する単結晶基板製造方法が提供れる。
 本発明の他の態様によれば、単結晶部材の外部から照射され該単結晶部材の内部に集光されたレーザ光によって、前記レーザ光の照射軸と平行な多結晶部の集合体で構成される2次元状の改質層と、前記改質層に隣接する単結晶層とを備える内部改質層形成単結晶部材が提供される。
 本発明によれば、比較的大きくて薄い単結晶基板を容易に製造することができる単結晶基板製造方法および内部改質層形成単結晶部材を提供することができる。
第1実施形態に係る単結晶基板製造方法を説明する模式的鳥瞰図。 第1実施形態に係る単結晶基板製造方法を説明する模式的鳥瞰図。 第1実施形態に係る単結晶基板製造方法および内部改質層形成単結晶部材を説明する模式的斜視断面図。 第1実施形態で、レーザ光の照射により単結晶部材内部に多結晶部が形成されていることを示す模式的断面図。 第1実施形態で、内部改質層形成単結晶部材の側壁に改質層を露出させたことの模式的斜視断面図。 第1実施形態で、内部改質層形成単結晶部材の上下面に金属製基板を接着させて改質層から単結晶層を剥離させることを説明する模式的断面図。 第1実施形態で、内部改質層形成単結晶部材の上下面に金属製基板を接着させて改質層から単結晶層を剥離させることを説明する模式的断面図。 第1実施形態の変形例を説明する模式的断面図。 第1実施形態の変形例を説明する模式的断面図。 第1実施形態の変形例を説明する模式的斜視断面図。 第1実施形態で、単結晶層の剥離面の例を示す光学顕微鏡写真。 試験例1の実施例1で、シリコンウェハのへき開面の光学顕微鏡写真。 試験例1の実施例2で、シリコンウェハのへき開面の光学顕微鏡写真。 試験例2で、単結晶基板の剥離面の凹凸寸法と表面粗さとの関係を示す図。 試験例3で、改質層の多結晶粒の粒径を示す光学顕微鏡写真。 試験例3で、改質層の多結晶粒の粒径を示す光学顕微鏡写真。 試験例3で、改質層の多結晶粒の粒径を示す光学顕微鏡写真。 試験例4で、X線回折(XRD)による測定結果を示す図。 試験例5で、内部改質層形成単結晶部材の断面の光学顕微鏡写真およびスペクトル図。 第2実施形態に係る単結晶基板製造方法および内部改質層形成単結晶部材を説明する上で用いる単結晶部材内部加工装置の模式的鳥瞰図。
 以下、添付図面を参照して、本発明の実施の形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。従って、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の実施の形態は、請求の範囲において、種々の変更を加えることができる。
 なお、第2実施形態では、すでに説明したものと同様の構成要素には同じ符号を付してその説明を省略する。
 [第1実施形態]
 まず、第1実施形態について説明する。図1は、本実施形態で、レーザ集光手段により空気中でレーザ光を集光したことを説明する模式的鳥瞰図であり、図2は、本実施形態で、レーザ集光手段により単結晶部材内部にレーザ光を集光したことを説明する模式的鳥瞰図である。図3は、本実施形態に係る単結晶基板製造方法および内部改質層形成単結晶部材11を説明する模式的断面構造である。図4は、レーザ光の照射により単結晶部材内部に多結晶部12pが形成されていることを示す模式的断面図である。図5は、内部改質層形成単結晶部材11の側壁に、レーザ光の集光によって形成された改質層12を露出させたことを示す模式的斜視断面図である。
 本実施形態に係る単結晶基板製造方法は、レーザ集光手段(レーザ集光部)として集光レンズ15を単結晶部材10上に非接触に配置する工程と、集光レンズ15により、単結晶部材10表面にレーザ光Bを照射して単結晶部材10内部にレーザ光Bを集光する工程と、集光レンズ15と単結晶部材10とを相対的に移動させて、単結晶部材10内部に、多結晶部で構成される2次元状の改質層12を形成する工程と、改質層12により分断されてなる単結晶層10uを改質層12から剥離することで、図7に示すような単結晶基板10sを形成する工程と、を有する。ここで、図7は、改質層12から単結晶層10uを剥離させたことを説明する模式的断面図である。なお、以下の説明では、単結晶層10uを改質層12との界面11uから剥離させることで説明するが、本発明は界面11uから剥離させることに限られず、改質層12内で剥離が生じるようにしてもよい。
 集光レンズ15は、単結晶部材10の屈折率に起因する収差を補正する構成になっている。具体的には、図1に示すように、本実施形態では、集光レンズ15は、空気中で集光した際に、集光レンズ15の外周部Eに到達したレーザ光が集光レンズ15の中央部Mに到達したレーザ光よりも集光レンズ側で集光するように補正する構成になっている。すなわち、集光した際、集光レンズ15の外周部Eに到達したレーザ光の集光点EPが、集光レンズ15の中央部Mに到達したレーザ光の集光点MPに比べ、集光レンズ15に近い位置となるように補正する構成になっている。
 詳細に説明すると、集光レンズ15は、空気中で集光する第1レンズ16と、この第1レンズ16と単結晶部材10との間に配置される第2レンズ18と、で構成される。第1レンズ16および第2レンズ18は、何れもレーザ光を円錐状に集光できるレンズとされている。そして、レーザ光Bが照射される側の単結晶部材10の表面10t(被照射側の表面)から改質層12までの深さ(間隔)Dを、主に第1レンズ16とこの表面10tとの距離L1で調整する構成になっている。さらに、改質層12の厚みTを、主に第2レンズ18とこの表面10tとの距離L2で調整する構成になっている。従って、主に第1レンズ16で空気中での収差補正を行い、主に第2レンズ18で単結晶部材10内での収差補正を行うことになる。本実施形態では、表面10tから所定の深さDの位置に、厚みTが60μm未満の改質層12が形成されるように、第1レンズ16、第2レンズ18の焦点距離、および、上記の距離L1、L2を設定しておく。
 第1レンズ16としては、球面または非球面の単レンズのほか、各種の収差補正や作動距離を確保するために組レンズを用いることが可能であり、NAが0.3~0.7であることが好ましい。第2レンズ18としては、第1レンズ16よりも小さなNAのレンズで、例えば曲率半径が3~5mm程度の凸ガラスレンズが、簡便に使用する観点で好ましい。
 そして、レーザ光Bの照射によって単結晶部材10の表面10tにダメージを与えることなく単結晶部材10の内部に改質層12を形成する観点で、集光レンズ15の外周部Eに到達したレーザ光とその集光点EPで定義される空気中の集光レンズ15のNAは、0.3~0.85にすることが好ましく、0.5~0.85にすることがさらに好ましい。
 なお、改質層12の厚みの調整が不要である場合、第1レンズ16および第2レンズ18に代えて、1枚のレンズのみを配置することも可能である。その場合には、単結晶部材内での収差補正をできる構造にしておくことが好ましい。
 単結晶部材10のサイズは、特に限定されるものではないが、例えばφ300mmの厚いシリコンウェハからなり、レーザ光Bが照射される表面10tが予め平坦化されていることが好ましい。
 レーザ光Bは、単結晶部材10の周面ではなく、上記の表面10tに照射装置(図示省略)から集光レンズ15を介して照射される。このレーザ光Bは、単結晶部材10がシリコンの場合には、例えばパルス幅が1μs以下のパルスレーザ光からなり、900nm以上の波長、好ましくは1000nm以上の波長が選択され、YAGレーザ等が好適に使用される。
 集光レンズ15に上方からレーザ光を入光する形態については特にこだわらない。集光レンズ15の上方にレーザ発振器を配置して集光レンズ15に向けて発光する形態としてもよいし、集光レンズ15の上方に反射ミラーを配置しレーザ光をこの反射ミラーに向けて照射して反射ミラーで集光レンズ15に向けて反射する形態にしてもよい。
 このレーザ光Bは、単結晶部材10として厚み0.625mmの単結晶基板に照射したときの光線透過率が1~80%の波長であることが望ましい。例えば、単結晶部材10としてシリコンの単結晶基板を用いた場合、波長が800nm以下のレーザ光では吸収が大きいため、表面のみが加工され、内部の改質層12を形成することができないため、900nm以上の波長、好ましくは、1000nm以上の波長が選択される。また、波長10.64μmのCO2レーザでは、光線透過率が高すぎるため、単結晶基板の加工をすることが困難なため、YAG基本波のレーザなどが好適に使用される。
 レーザ光Bの波長が900nm以上が好ましい理由は、波長が900nm以上であれば、シリコンからなる単結晶基板に対するレーザ光Bの透過性を向上させ、単結晶基板内部に改質層12を確実に形成することができるからである。レーザ光Bは、単結晶基板表面の周縁部に照射され、あるいは単結晶基板の表面の中心部から周縁部方向に照射される。
 (改質層の形成工程)
 集光レンズ15と単結晶部材10とを相対的に移動させて単結晶部材10内部に改質層12を形成する工程としては、例えば、単結晶部材10をXYステージ(図示せず)上に載置し、真空チャック、静電チャックなどでこの単結晶部材10を保持する。
 そして、XYステージで単結晶部材10をX方向やY方向に移動させることで、集光レンズ15と単結晶部材10とを、単結晶部材10の集光レンズ15が配置されている側の表面10tと平行な方向に相対的に移動させながらレーザ光Bを照射することで、単結晶部材10の内部に集光したレーザ光Bによって、レーザ光Bの照射軸BCと平行な棒状の多数の多結晶部12pが形成される。この多結晶部12pの集合体が上述の改質層12である。この改質層12が形成された結果、内部改質層形成単結晶部材11が製造される。この内部改質層形成単結晶部材11は、単結晶部材内部に形成された改質層12と、改質層12の上側(すなわちレーザ光Bの被照射側)に単結晶層10uと、改質層12の下側に単結晶部10dと、を有する。単結晶層10uおよび単結晶部10dは、改質層12によって単結晶部材10が分断されたことにより形成されたものである。
 なお、ステージの移動速度を抑えるために、ガルバノミラーやポリゴンミラーなどのレーザービーム偏向手段を用い、集光レンズ15の照射エリア内でレーザ光をスキャンすることを併用してもよい。また、このような内部照射を行って改質層12の形成の終了後、単結晶部材10の被照射側の表面10t、すなわち単結晶層10uの表面10tにレーザ光Bの焦点を合わせ、照射領域を示すマークを付け、その後、このマークを基準に単結晶部材10を切断(割断)して、後述するように、改質層12の周縁部を露出させた上で単結晶層10uの剥離を行ってもよい。
 このような照射によって形成された改質層12では、レーザ光Bの照射軸BCに平行な多数の多結晶部12pが形成されている。例えば、改質層12の断面をエッチングして顕微鏡などで観察することによって、図4に示すように、レーザ光Bの照射軸BCに平行な多結晶部12pが並んで形成されていることが容易に確認される。形成する多結晶部12pの寸法、密度などは、改質層12から単結晶層10uを剥離し易くする観点で、単結晶部材10の材質などを考慮して設定することが好ましい。
 なお、多結晶部12pを確認するには、レーザ光Bによる加工領域すなわち改質層12を横断するように内部改質層形成単結晶部材11をへき開し、へき開面(例えば図3、図5の14a~d)をエッチングして走査電子顕微鏡もしくは共焦点顕微鏡で観察することで確認してもよいが、同一の材質の単結晶部材(例えばシリコンウェハ)に対し、同一の照射条件で、例えばYステージの送りを6~50μm間隔で部材内部に線状の加工を行い、これを横断する形でへき開し、へき開面をエッチングして観察することで、容易に確認してもよい。
 (剥離工程)
 この後、改質層12と単結晶層10uとの剥離を行う。本実施形態では、まず、内部改質層形成単結晶部材11の側壁に改質層12を露出させる。露出させるには、例えば、単結晶部10d、単結晶層10uの所定の結晶面に沿ってへき開する。この結果、図5に示すように、単結晶層10uと単結晶部10dとによって改質層12が挟まれた構造のものが得られる。なお、単結晶層10uの表面10tはレーザ光Bの被照射側の面である。
 改質層12が既に露出している場合や、改質層12の周縁と内部改質層形成単結晶部材11の側壁との距離が十分に短い場合には、この露出をさせる作業を省略することが可能である。
 その後、図6に示すように、内部改質層形成単結晶部材11の上下面に、それぞれ、金属製基板28u、28dを接着する。すなわち、単結晶層10uの表面10tに金属製基板28uを接着剤34uで接着し、単結晶部10dの表面10bに金属製基板28dを接着剤34dで接着する。金属製基板28u、28dには、それぞれ、表面に酸化層29u、29dが形成されている。本実施形態では、酸化層29uを表面10tに、酸化層29dを表面10bに接着する。金属製基板28u、28dとしては、例えば、SUS製の剥離用補助板を用いる。接着剤としては、通常の半導体製造プロセスで使用される接着剤であって、市販のシリコンインゴット固定用の所謂ワックスとして使用される接着剤を用いる。この接着剤で接着させたものを水に浸けると接着剤の接着力が低下するので、接着剤と被接着物(単結晶層10u)とを容易に分離させることができる。
 この接着では、まず、金属製基板28uを単結晶層10uの表面10tに仮固定用接着剤で貼り付け、金属製基板28uを裏打ちし力を加えることで剥離する。
 仮固定用接着剤の接着強度は、改質層12と単結晶層10uとの界面11uで剥離するのに必要な力よりも強ければよい。仮固定用接着剤の接着強度に応じ、形成する多結晶部12pの寸法、密度を調整してもよい。
 仮固定用接着剤としては、例えば、金属イオンを反応開始剤として硬化するアクリル系2液モノマー成分からなる接着剤を用いる。この場合、未硬化モノマーおよび硬化反応物が非水溶性であると、水中で剥離した際に露出した単結晶層10uの剥離面10f(例えばシリコンウェハの剥離面)が汚染されることを防止できる。
 仮固定用接着剤の塗布厚みは、硬化前で0.1~1mmが好ましく、0.15~0.35mmがより好ましい。仮固定用接着剤の塗布厚みが過度に大きい場合、完全硬化となるまでに長時間を必要とする上、単結晶部材(シリコンウェハ)の割断時に仮固定用接着剤の凝集破壊が起こりやすくなる。また、塗布厚みが過度に小さい場合、割断した単結晶部材の水中剥離に長時間を必要とする。
 仮固定用接着剤の塗布厚みの制御は、接着する金属製基板28u、28dを任意の高さに固定する方法を用いることで行ってもよいが、簡易的にはシムプレートを用いて行うことができる。
 接着した際に金属製基板28uと金属製基板28dとの平行度が十分に得られない場合には、1枚以上の補助板を使用して必要な平行度を得てもよい。
 また、金属製基板28u、28dを仮固定用接着剤で内部改質層形成単結晶部材11の上下面に接着する際、片面ずつ接着してもよいし、両面同時に接着してもよい。
 厳密に塗布厚みを制御したい場合には、一方の片面に金属製基板を接着させて接着剤が硬化した後、もう一方の片面に金属製基板を接着することが好ましい。このように片面ずつ接着する場合、仮固定用接着剤を塗布する面が内部改質層形成単結晶部材11の上面であっても下面であってもよい。その際、単結晶部材10の非接着面に接着剤が付着して硬化することを抑制するために、金属イオンを含まない樹脂フィルムをカバーレイヤーとして用いてもよい。
 金属製基板としては、平行度および平坦度が得られるのであれば、装置固定用の抜き穴等の機械加工を行っていても構わない。接着する金属製基板は水中での剥離工程を経るため、シリコンウェハのコンタミ抑制目的では不動態層を形成するものであることが好ましく、水中剥離のタクトタイム短縮目的では形成する酸化層(酸化皮膜層)が薄い方が好ましい。
 内部加工シリコンウェハ割断後に水中剥離を行うため、接着前の金属製基板については、通常行われる金属の脱脂処理を行うことが好ましい。
 仮固定用接着剤と金属製基板との接着力を高めるには、機械的または化学的方法で金属表面の酸化層を落として活性な金属面を出すとともに、アンカー効果を得やすい表面構造にするのが好ましい。上記の化学的方法とは、具体的には薬品を用いた酸洗浄や脱脂処理などがある。上記の機械的方法とは、具体的にはサンドブラスト、ショットブラストなどが挙げられるが、サンドペーパーで金属製基板の表面を傷つける方法が最も簡便であり、その粒度は#80~2000が好ましく、金属製基板の表面ダメージを考慮すると#150~800がより好ましい。
 金属製基板の接着後、図6に示したように、金属製基板28uに上方向の力Fuを、金属製基板28dに下方向の力Fdをそれぞれ加える。ここで、改質層12と単結晶部10dとの界面11dよりも、改質層12と単結晶層10uとの界面11uのほうが剥離しやすい。このため、力Fu、Fdによって、図7に示すように、改質層12と単結晶層10uとの界面11uで剥離する。この剥離によって、単結晶層10uを改質層12から剥離してなる薄い単結晶基板10sを得る。
 力Fu、Fdを加える手法は特に限定しない。例えば、図8に示すように、内部改質層形成単結晶部材11の側壁をエッチングして改質層12に溝36を形成し、図9に示すように、この溝36に楔状圧入材30(例えばカッター刃)を圧入することで力Fu、Fdを発生させてもよい。また、図10に示すように、内部改質層形成単結晶部材11に角方向から力Fを加えて、上方向の力成分Fuと下方向の力成分Fdとを発生させてもよい。
 このようにして得られた単結晶基板10sの剥離面10fは、例えば図11に示すように、粗面である。ここで図11は、単結晶基板10sの剥離面10fの光学顕微鏡写真である。なお、図11では、写真画像を判りやすくするために、結晶方位面でへき開した面10Hも一部に生じさせて写している。
 以上説明したように、本実施形態により、大きなNAの集光レンズ15で、単結晶部材10内の薄い厚み部分にレーザ光Bによるエネルギーを集中させることができる。従って、単結晶部材10内に、厚みT(レーザ光Bの照射軸BCに沿った長さ)が小さい改質層(加工領域)12を形成した内部改質層形成単結晶部材11を製造することができる。そして、改質層12から単結晶層10uを剥離することで薄い単結晶基板10sを製造することが容易である。また、このような薄い単結晶基板10sを比較的短時間で容易に製造することができる。しかも、改質層12の厚みを抑えることで単結晶部材10から多数枚の単結晶基板10sが得られるので、製品率を向上させることができる。
 また、改質層12として、レーザ光Bの照射軸BCと平行な多結晶部12pの集合体を形成している。これにより、改質層12と単結晶層10との剥離が容易である。
 さらに、改質層12から剥離させる際、界面11u、11dのうち、レーザ光の被照射側の界面11uから剥離させて剥離面10fを粗面としている。このような粗面化された剥離面10fを太陽光の被照射面として使用することで、太陽電池に適用する場合の太陽光の集光効率を高めることができる。
 また、単結晶基板10sを形成する工程では、表面に酸化層29uを有する金属製基板28uを単結晶層10uの表面に接着して剥離させることで単結晶基板10sを得ている。従って、金属製基板との接着に、通常の半導体製造プロセスで使用される接着剤を用いることができ、アクリル板を接着させる際に用いる強力な接着力を有するシアノアクリレート系接着剤を用いなくて済む。しかも、剥離した後、水に浸けることで接着剤の接着力が大きく低減して剥がれ易くなるので、金属製基板28uから単結晶基板10sを容易に分離させることができる。
 なお、本実施形態では、金属製基板28u、28dを内部改質層形成単結晶部材11の上下面にそれぞれ貼り付けて、金属製基板28u、28dに力を加えて剥離することで単結晶基板10sを形成することで説明したが、エッチングにより改質層12を除去することで剥離してもよい。
 また、単結晶部材10はシリコンウェハに限定されるものではなく、シリコンウェハのインゴット、単結晶のサファイア、SiCなどのインゴットやこれから切り出したウェハ、あるいはこの表面に他の結晶(GaN、GaAs、InPなど)を成長させたエピタキシャルウェハなどを適用可能である。また、単結晶部材10の面方位は(100)に限らず、他の面方位とすることも可能である。
 <試験例1>
 本発明者は、単結晶部材10として鏡面研磨した単結晶のシリコンウェハ10(厚み625μm)を準備した。そして、実施例1として、このシリコンウェハ10をXYステージに載置し、シリコンウェハ10のレーザ光の被照射側の表面10tからの0.34mmの距離に、第2レンズ18として第2平凸レンズ18を配置した。この第2平凸レンズ18は、曲率半径7.8mm、厚み3.8mm、屈折率1.58のレンズである。また、第1レンズ16としてNAが0.55の第1平凸レンズ16を配置した。
 そして、波長1064nm、繰り返し周波数100kHz、パルス幅60秒、出力1Wのレーザ光Bを照射し、第1平凸レンズ16、第2平凸レンズ18を通過させてシリコンウェハ10内部に改質層12を形成した。シリコンウェハ表面10tから加工領域までの深さD、つまり改質層12までの深さDは、第1平凸レンズ16とシリコンウェハ表面10tとの相互位置を調整することで制御した。改質層12の厚みTは第2平凸レンズ18とシリコンウェハ表面10tとの相互位置を調整することで制御した。
 改質層12を形成する際には、Xステージで等速で15mm移動させながらレーザ光Bを照射し、次いでYステージで1μm送った後これを繰り返すことで15mm×15mmのエリアにレーザ光の内部照射を行うことで改質層12を形成した。この結果、改質層12の上側(すなわちレーザ光Bの被照射側)に単結晶層10uと、改質層12の下側に単結晶部10dとを有する内部改質層形成単結晶部材11が製造された。本実施形態では、単結晶層10u、単結晶部10dは、改質層12によってシリコンウェハ10が分断されたことにより形成されたものである。
 この後、改質層12を横断するようにシリコンウェハ10をへき開してへき開面をエッチングし、光学顕微鏡(走査電子顕微鏡)で観察した。観察されたへき開面の光学顕微鏡写真を図12に示す。改質層12には1μm弱の幅の多結晶部12pが並んでいることが確認された。
 また、実施例2として、上記実施条件のうち、Yステージで1μmではなく10μmで送ることのみ条件を変えて改質層12を形成した。そして、同様にして、改質層12を横断するようにシリコンウェハ10をへき開してエッチングし、へき開面を光学顕微鏡(走査電子顕微鏡)で観察した。観察されたへき開面の光学顕微鏡写真を図13に示す。改質層12には10μm弱の幅の多結晶部12pが並んでいることが確認された。
 また、実施例3として、実施例2のようにレーザ光を照射した後、Xステージで10μm送った後にYステージで等速で移動させながらレーザ光を照射することを繰り返した。すなわち、格子状にレーザ光を照射した。そして同様にして、改質層12を横断するようにシリコンウェハ10をへき開してエッチングし、へき開面を光学顕微鏡(走査電子顕微鏡)で観察した。改質層12には10μm弱の幅の多結晶部12pが並んでいることが、実施例2よりもさらにはっきりと確認された。
 <試験例2>
 また、本発明者は、試験例1で用いたシリコンウェハ10と同様のシリコンウェハを用い、実施例1の実施条件で改質層12を形成してなる内部改質層形成単結晶部材11を製造した。そして、金属製基板28u、28dを用いて単結晶層10uを剥離し、単結晶基板10sを得た。この単結晶基板10sの剥離面10fをレーザ共焦点顕微鏡で観察したところ、図14に示す計測図が得られ、粒径50~100μmの凹凸が剥離面10fに形成されていることが確認された。ここで、図14では、横軸が凹凸寸法(μm表示)であり、縦軸が表面粗さ(%表示)である。
 <試験例3>
 本発明者は、改質層12を単結晶層10uから剥離させた後、改質層12の状態を、深さ方向位置を順次変えて赤外線顕微鏡による透過光観察により測定した。測定で得られた赤外線顕微鏡写真を図15~図17に示す。図15は改質層12の単結晶層10u側の剥離面の多結晶粒の状態を示し、図16はそれよりもやや深い位置での多結晶粒の状態を示し、図17はさらに深い位置での多結晶粒の状態を示す。
 図15~図17から判るように、レーザ光の被照射側から深さ方向にいくに従い、粒径が粗くなっていた。
 <試験例4>
 本発明者は、単結晶のシリコンウェハにレーザ光を照射して上記の改質層12をシリコンウェハ内部に形成した。そして、この改質層12について、X線回折(XRD)による測定を行って結晶性評価を行った。測定で得られた図を図18に示す。図18から判るように、単結晶シリコンが多結晶化していることが確認された。従って、レーザ光の照射によって溶融、固化のプロセスが生じていることが判明した。
 <試験例5>
 本発明者は、単結晶部材10として両面を鏡面研磨した単結晶のシリコンウェハ10(厚み625μm)を準備した。そして、実施例4として、このシリコンウェハ10をXYステージに載置し、波長1064nmのパルスレーザ光を照射し、一辺が5mmの平面視正方形状の改質層12を形成した。そして、このシリコンウェハ(内部改質層形成単結晶部材)をへき開することで改質層12の断面を露出させ、この断面を走査型電子顕微鏡で観察した。改質層12の厚みは30μmであった。
 次いで、この断面のラマン分光スペクトルを測定した。測定で得られたスペクトル図を図19に示す。改質層12に相当する部分でスペクトルの半値幅が大きく変動しており、多結晶となっていることが確認された。
 [第2実施形態]
 次に、第2実施形態について説明する。図20は、本実施形態に係る単結晶基板製造方法および内部改質層形成単結晶部材を説明する上で用いる単結晶部材内部加工装置の模式的鳥瞰図である。
 本実施形態で用いる単結晶部材内部加工装置69は、上面側に載置された単結晶部材10を保持する回転ステージ70と、回転ステージ70の回転数を制御する回転ステージ制御手段72とを有する基板回転手段74を備えている。そして、単結晶部材内部加工装置69は、レーザ光源76と、集光レンズ15と、集光レンズ15から回転ステージ70までの距離を調整する焦点位置調整具(図示せず)とを有する照射装置80を備えている。さらに、単結晶部材内部加工装置1は、回転ステージ70の回転軸70cと回転ステージ70の外周との間で、回転ステージ70と集光レンズ15とを相対的に移動させるX方向移動ステージ84およびY方向移動ステージ86を備えている。
 本実施形態では、この単結晶部材内部加工装置69を用い、回転ステージ70に単結晶部材10を載置し、回転ステージ70で単結晶部材10を等速で回転させつつ、第1実施形態と同様にしてレーザ光Bを照射し、次いでX方向移動ステージ84やY方向移動ステージ86で回転ステージ70を移動させて、レーザ光Bの照射位置を回転ステージ70の半径方向に所定間隔(1μm、5μm、10μmなど)で送った後、照射を繰り返すことで、単結晶部材10の内部に2次元状の改質層を形成することができる。
 本実施形態では、レーザ光Bの集光点の移動方向が円状となるので、レーザ光の集光によって発生する多結晶部がこの円上に位置している。そして、レーザ光Bの照射位置を回転ステージ70の半径方向に所定間隔で送った後、照射を繰り返すことで、多結晶部を同心円状に位置させることができる。そして、このような内部改質層形成単結晶部材を製造し、第1実施形態と同様にして剥離により単結晶基板を製造することができる。
 なお、例えば正方形状の単結晶部材を、回転ステージ70上に、回転軸70cに対して対称に、間隔を置いて複数配置してもよい。これにより、レーザ光Bの集光による多結晶部を、円を部分的に構成する円弧上に配置することができる。
 本発明により薄い単結晶基板を効率良く形成することができることから、薄く切り出された単結晶基板は、Si基板であれば、太陽電池に応用可能であり、また、GaN系半導体デバイスなどのサファイア基板などであれば、発光ダイオード、レーザダイオードなどに応用可能であり、SiCなどであれば、SiC系パワーデバイスなどに応用可能であり、透明エレクトロニクス分野、照明分野、ハイブリッド/電気自動車分野など幅広い分野において適用可能である。
10 単結晶部材、シリコンウェハ
10u 単結晶層
10d 単結晶部
10s 単結晶基板
10t 表面
10b 表面
10f 剥離面
11 内部改質層形成単結晶部材
11u 界面
12 改質層
12p 多結晶部
15 集光レンズ(レーザ集光手段)
28u 金属製基板
29u 酸化層
B レーザ光
BC 照射軸

Claims (7)

  1.  単結晶部材上に非接触にレーザ集光手段を配置する工程と、
     前記レーザ集光手段により、前記単結晶部材表面にレーザ光を照射して前記単結晶部材内部に前記レーザ光を集光する工程と、
     前記レーザ集光手段と前記単結晶部材とを相対的に移動させて、前記単結晶部材内部に、多結晶部で構成される2次元状の改質層を形成する工程と、
     前記改質層により分断されてなる単結晶層を前記改質層から剥離することで単結晶基板を形成する工程と
     を有することを特徴とする、単結晶基板製造方法。
  2.  前記多結晶部が、前記レーザ光の照射軸と平行な棒状に形成されていることを特徴とする請求項1に記載の単結晶基板製造方法。
  3.  前記剥離によって形成された剥離面が粗面であることを特徴とする請求項2に記載の単結晶基板製造方法。
  4.  前記単結晶部材の屈折率に起因する収差の補正機能を前記レーザ集光手段に持たせて前記集光を行うことを特徴とする請求項3に記載の単結晶基板製造方法。
  5.  前記単結晶基板を形成する工程では、表面に酸化層を有する金属製基板を前記単結晶層の表面に接着して剥離することを特徴とする請求項4に記載の単結晶基板製造方法。
  6.  前記単結晶基板を形成する工程では、前記改質層の両面側のうち前記レーザ光を照射する側の界面から剥離することを特徴とする請求項1に記載の単結晶基板製造方法。
  7.  単結晶部材の外部から照射され該単結晶部材の内部に集光されたレーザ光によって、前記レーザ光の照射軸と平行な多結晶部の集合体で構成される2次元状の改質層と、前記改質層に隣接する単結晶層と、
     を備えることを特徴とする内部改質層形成単結晶部材。
PCT/JP2011/052950 2011-02-10 2011-02-10 単結晶基板製造方法および内部改質層形成単結晶部材 WO2012108055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012556741A JP5875122B2 (ja) 2011-02-10 2011-02-10 単結晶基板製造方法および内部改質層形成単結晶部材
PCT/JP2011/052950 WO2012108055A1 (ja) 2011-02-10 2011-02-10 単結晶基板製造方法および内部改質層形成単結晶部材
KR1020137021348A KR20130103624A (ko) 2011-02-10 2011-02-10 단결정 기판 제조 방법 및 내부 개질층 형성 단결정 부재

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052950 WO2012108055A1 (ja) 2011-02-10 2011-02-10 単結晶基板製造方法および内部改質層形成単結晶部材

Publications (1)

Publication Number Publication Date
WO2012108055A1 true WO2012108055A1 (ja) 2012-08-16

Family

ID=46638293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052950 WO2012108055A1 (ja) 2011-02-10 2011-02-10 単結晶基板製造方法および内部改質層形成単結晶部材

Country Status (3)

Country Link
JP (1) JP5875122B2 (ja)
KR (1) KR20130103624A (ja)
WO (1) WO2012108055A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169363A (ja) * 2011-02-10 2012-09-06 Saitama Univ 基板加工方法
JP2014161908A (ja) * 2013-02-28 2014-09-08 Saitama Univ 内部加工層形成方法、内部加工層形成部材、および、表面3次元構造部材
JP2015032771A (ja) * 2013-08-06 2015-02-16 株式会社ディスコ ウェーハの製造方法
JP2016043401A (ja) * 2014-08-26 2016-04-04 信越ポリマー株式会社 基板加工方法及び基板
KR20170008163A (ko) * 2015-07-13 2017-01-23 가부시기가이샤 디스코 다결정 SiC 웨이퍼의 생성 방법
JP2020141009A (ja) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 基板材料およびレーザ加工方法
JP2020160210A (ja) * 2019-03-26 2020-10-01 ウシオ電機株式会社 微細穴光学素子の製造方法および改質装置
DE102014215187B4 (de) 2013-08-02 2024-02-29 Disco Corporation Verfahren zum Bearbeiten eines geschichteten Wafers

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399914B2 (ja) * 2014-12-04 2018-10-03 株式会社ディスコ ウエーハの生成方法
JP6358940B2 (ja) * 2014-12-04 2018-07-18 株式会社ディスコ ウエーハの生成方法
JP6358941B2 (ja) * 2014-12-04 2018-07-18 株式会社ディスコ ウエーハの生成方法
JP6399913B2 (ja) * 2014-12-04 2018-10-03 株式会社ディスコ ウエーハの生成方法
JP6391471B2 (ja) * 2015-01-06 2018-09-19 株式会社ディスコ ウエーハの生成方法
JP6395613B2 (ja) * 2015-01-06 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6395633B2 (ja) * 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6395632B2 (ja) * 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6395634B2 (ja) * 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6429715B2 (ja) * 2015-04-06 2018-11-28 株式会社ディスコ ウエーハの生成方法
JP6425606B2 (ja) * 2015-04-06 2018-11-21 株式会社ディスコ ウエーハの生成方法
JP6472333B2 (ja) * 2015-06-02 2019-02-20 株式会社ディスコ ウエーハの生成方法
JP6482389B2 (ja) * 2015-06-02 2019-03-13 株式会社ディスコ ウエーハの生成方法
JP6478821B2 (ja) * 2015-06-05 2019-03-06 株式会社ディスコ ウエーハの生成方法
JP6562819B2 (ja) * 2015-11-12 2019-08-21 株式会社ディスコ SiC基板の分離方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331077A (ja) * 1996-06-10 1997-12-22 Ion Kogaku Kenkyusho:Kk 太陽電池およびその製造方法
JP2005294325A (ja) * 2004-03-31 2005-10-20 Sharp Corp 基板製造方法及び基板製造装置
JP2007142000A (ja) * 2005-11-16 2007-06-07 Denso Corp レーザ加工装置およびレーザ加工方法
JP2009226457A (ja) * 2008-03-24 2009-10-08 Laser System:Kk レーザ加工方法
JP2011003624A (ja) * 2009-06-17 2011-01-06 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法及びその装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064997A1 (en) * 2008-12-05 2010-06-10 Agency For Science, Technology And Research A wafer cutting method and a system thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331077A (ja) * 1996-06-10 1997-12-22 Ion Kogaku Kenkyusho:Kk 太陽電池およびその製造方法
JP2005294325A (ja) * 2004-03-31 2005-10-20 Sharp Corp 基板製造方法及び基板製造装置
JP2007142000A (ja) * 2005-11-16 2007-06-07 Denso Corp レーザ加工装置およびレーザ加工方法
JP2009226457A (ja) * 2008-03-24 2009-10-08 Laser System:Kk レーザ加工方法
JP2011003624A (ja) * 2009-06-17 2011-01-06 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法及びその装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169363A (ja) * 2011-02-10 2012-09-06 Saitama Univ 基板加工方法
JP2014161908A (ja) * 2013-02-28 2014-09-08 Saitama Univ 内部加工層形成方法、内部加工層形成部材、および、表面3次元構造部材
DE102014215187B4 (de) 2013-08-02 2024-02-29 Disco Corporation Verfahren zum Bearbeiten eines geschichteten Wafers
JP2015032771A (ja) * 2013-08-06 2015-02-16 株式会社ディスコ ウェーハの製造方法
JP2016043401A (ja) * 2014-08-26 2016-04-04 信越ポリマー株式会社 基板加工方法及び基板
KR20170008163A (ko) * 2015-07-13 2017-01-23 가부시기가이샤 디스코 다결정 SiC 웨이퍼의 생성 방법
KR102346916B1 (ko) 2015-07-13 2022-01-04 가부시기가이샤 디스코 다결정 SiC 웨이퍼의 생성 방법
JP2020141009A (ja) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 基板材料およびレーザ加工方法
JP2020160210A (ja) * 2019-03-26 2020-10-01 ウシオ電機株式会社 微細穴光学素子の製造方法および改質装置
JP7196718B2 (ja) 2019-03-26 2022-12-27 ウシオ電機株式会社 微細穴光学素子の製造方法および改質装置

Also Published As

Publication number Publication date
JPWO2012108055A1 (ja) 2014-07-03
JP5875122B2 (ja) 2016-03-02
KR20130103624A (ko) 2013-09-23

Similar Documents

Publication Publication Date Title
JP5875122B2 (ja) 単結晶基板製造方法および内部改質層形成単結晶部材
JP6004338B2 (ja) 単結晶基板製造方法および内部改質層形成単結晶部材
JP5875121B2 (ja) 単結晶基板の製造方法および内部改質層形成単結晶部材の製造方法
JP5843393B2 (ja) 単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法
JP6004339B2 (ja) 内部応力層形成単結晶部材および単結晶基板製造方法
JP4908652B2 (ja) 切断起点領域が形成された基板
TWI524960B (zh) 基板及基板加工方法
TWI321828B (en) Manufacturing method of a semiconductor device
JP5509448B2 (ja) 基板スライス方法
JP6032789B2 (ja) 単結晶加工部材の製造方法、および、単結晶基板の製造方法
JP2014019120A (ja) 内部加工層形成単結晶部材の製造方法
JP2015119076A (ja) 内部加工層形成単結晶部材およびその製造方法
JP5561666B2 (ja) 基板スライス方法
JP6531885B2 (ja) 内部加工層形成単結晶部材およびその製造方法
JP2005277136A (ja) 基板製造方法および基板製造装置
JP2012169363A (ja) 基板加工方法
JP6202696B2 (ja) 単結晶基板製造方法
JP2005294656A (ja) 基板製造方法及び基板製造装置
JP6202695B2 (ja) 単結晶基板製造方法
JP2012169361A (ja) 基板加工方法及び基板
JP6265522B2 (ja) 表面3次元構造部材の製造方法
US10373855B2 (en) Method for processing a wafer and method for processing a carrier
JP2006024782A (ja) 基板製造方法、および基板製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137021348

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11858057

Country of ref document: EP

Kind code of ref document: A1