[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012104934A1 - Scroll expander, and refrigeration cycle with the scroll expander - Google Patents

Scroll expander, and refrigeration cycle with the scroll expander Download PDF

Info

Publication number
WO2012104934A1
WO2012104934A1 PCT/JP2011/003628 JP2011003628W WO2012104934A1 WO 2012104934 A1 WO2012104934 A1 WO 2012104934A1 JP 2011003628 W JP2011003628 W JP 2011003628W WO 2012104934 A1 WO2012104934 A1 WO 2012104934A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
sub
expansion
compression
compression mechanism
Prior art date
Application number
PCT/JP2011/003628
Other languages
French (fr)
Japanese (ja)
Inventor
下地 美保子
角田 昌之
英彰 永田
石園 文彦
関屋 慎
利秀 幸田
加賀 邦彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2012104934A1 publication Critical patent/WO2012104934A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/001Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/06Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Definitions

  • the present invention relates to a scroll expander that expands a refrigerant and recovers power, and a refrigeration cycle apparatus including the scroll expander, and in particular, an expansion mechanism on one side with two orbiting scrolls back to back.
  • the present invention relates to a scroll expander having a compression mechanism on the other side and a refrigeration cycle apparatus including the scroll expander.
  • the compression chamber is formed by combining the orbiting scroll having the first and second spiral teeth on both sides of the base plate, and the first and second scroll teeth of the orbiting scroll and the first fixed scroll.
  • An expansion chamber is formed by combining a compression mechanism having a suction port in the outer peripheral portion and a discharge port in the central portion and the second spiral teeth of the orbiting scroll and the spiral teeth of the second fixed scroll. And an expansion mechanism provided with a discharge port on the outer peripheral portion thereof, and a device for reducing the thrust force acting on the orbiting scroll has been proposed (for example, see Patent Document 1).
  • JP 2009-52752 pages 3 to 4, FIGS. 1 and 3
  • JP 2006-284086 pages 5 to 11 and FIG. 1
  • the present invention has been made to solve the above-described problems, and suppresses heat leakage from the compression mechanism side to the expansion mechanism side while reducing the thrust force, and highly efficient scroll expansion under a wide range of operating conditions. It aims at obtaining the refrigerating-cycle apparatus provided with the machine and this scroll expander.
  • the scroll expander forms an expansion chamber by a first swing scroll and a first fixed scroll, expands a refrigerant sucked into the expansion chamber and recovers power, and the first swing scroll.
  • a sub-compression chamber is formed by the second orbiting scroll and the second fixed scroll that are integrated with the moving scroll, and the refrigerant sucked into the sub-compression chamber is compressed using the power recovered by the expansion mechanism.
  • a scroll expander having a sub-compression mechanism, the expansion mechanism, and a sealed container that accommodates the sub-compression mechanism, and a liquid injection port capable of injecting liquid refrigerant from outside the sealed container into the sub-compression chamber. It is provided in the second fixed scroll.
  • a refrigeration cycle apparatus includes the scroll expander, a main compressor, a gas cooler, a throttle device, and an evaporator, and the sub-compression mechanism is disposed on the discharge side of the main compressor.
  • the expansion mechanism is connected between the gas cooler and the evaporator so that the expansion devices are arranged in parallel.
  • a refrigeration cycle apparatus includes the scroll expander, a main compressor, a gas cooler, a throttling device, and an evaporator, and the sub-compression mechanism is connected to the main compressor.
  • the expansion mechanism is connected to the suction side, and the expansion mechanism is connected to the downstream side of the expansion device.
  • the liquid injection pipe communicating with the condenser outlet is connected to the liquid injection port communicating with the sub compression chamber, it is possible to reduce the thrust load acting on the orbiting scroll.
  • the compressed gas is cooled by the liquid injection into the sub compression chamber, and heat leakage from the sub compression mechanism side to the expansion mechanism side via the base plate of the orbiting scroll can be suppressed.
  • FIG. 1 It is a schematic longitudinal cross-sectional view which shows the structure of the scroll expander which concerns on Embodiment 1 of this invention. They are the top view (a) and sectional drawing (b) of the fixed scroll of the sub compression mechanism shown in FIG. It is the top view (a) and sectional drawing (b) of the rear flange of the expansion mechanism shown in FIG. It is a circuit diagram which shows typically the basic composition of the refrigerating-cycle apparatus using the scroll expander which concerns on Embodiment 1 of this invention. It is a schematic sectional drawing which shows typically the expansion mechanism and subcompression mechanism of the scroll expander which concern on Embodiment 1 of this invention.
  • FIG. 1 is a schematic longitudinal sectional view showing a configuration of a scroll expander 1 according to Embodiment 1 of the present invention.
  • 2 is a top view (a) and a cross-sectional view (b) of the fixed scroll 61 of the sub-compression mechanism 6 shown in FIG. 3 is a top view (a) and a sectional view (b) of the rear flange 90 shown in FIG.
  • FIG. 1 Based on FIG. 1, the structure and effect
  • the relationship of the size of each component may be different from the actual one.
  • the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification.
  • the cross-sectional view of FIG. 2B represents the AA cross-section of FIG.
  • a scroll expander 1 according to Embodiment 1 of the present invention includes a scroll-type expansion mechanism and a compression mechanism in a sealed container 10, expands a refrigerant by the expansion mechanism, recovers power generated at that time,
  • the refrigerant has a function of compressing the refrigerant by the compression mechanism using the expansion power.
  • the scroll expander 1 includes an expansion mechanism 5 and a sub compression mechanism 6.
  • the expansion mechanism 5 and the sub compression mechanism 6 are accommodated in a sealed container 10 that is a pressure container.
  • the expansion mechanism 5 is installed below the sealed container 10
  • the sub-compression mechanism 6 is installed above the sealed container 10, that is, above the expansion mechanism 5.
  • the expansion mechanism 5 includes a fixed scroll 51 (first fixed scroll) having spiral teeth 51c formed on a base plate 51a, and an orbiting scroll 52 (first swing scroll) having spiral teeth 52c formed on a base plate 52a. ).
  • the fixed scroll 51 is disposed on the lower side
  • the swing scroll 52 is disposed on the upper side.
  • the spiral teeth 51c of the fixed scroll 51 are erected as spiral protrusions on one surface of the base plate 51a.
  • the spiral teeth 52c of the swing scroll 52 are erected as spiral protrusions on one surface of the base plate 52a.
  • the spiral teeth 51c of the fixed scroll 51 and the spiral teeth 52c of the swing scroll 52 are arranged so as to mesh with each other.
  • an expansion chamber 5a whose volume changes relatively is formed. Note that a through hole through which a shaft 8 (described later) passes is formed in substantially the center of the fixed scroll 51 and the swing scroll 52.
  • the sub-compression mechanism 6 includes a fixed scroll 61 (second fixed scroll) having spiral teeth 61c formed on a base plate 61a, and an orbiting scroll 62 (second swinging) having spiral teeth 62c formed on a base plate 62a.
  • Scroll As shown in FIG. 1, the fixed scroll 61 is disposed on the upper side, the orbiting scroll 62 is disposed on the lower side, and the upper side of the orbiting scroll 52.
  • the spiral teeth 61c of the fixed scroll 61 are erected as spiral protrusions on one surface of the base plate 61a. Further, the spiral teeth 62c of the swing scroll 62 are erected as spiral protrusions on one surface of the base plate 62a.
  • the spiral teeth 61c of the fixed scroll 61 and the spiral teeth 62c of the swing scroll 62 are arranged so as to be engaged with each other.
  • a sub-compression chamber 6a whose volume changes relatively is formed. Note that a through hole through which a shaft 8 to be described later passes is formed at substantially the center of the fixed scroll 61 and the swing scroll 62.
  • the base plate 61a of the fixed scroll 61 has a bearing portion 61b in which the periphery of a through hole through which a shaft 8 described later passes, that is, a substantially central portion protrudes to the back surface (upper side surface of the paper surface) (FIG. 2B). reference). And the bearing part 61b is included and fitted in the through-hole 96 provided in the approximate center part of the rear flange 90 (refer FIG. 3). That is, the fixed scroll 61 is configured such that the base plate 61 a and the rear flange 90 are combined so that the bearing portion 61 b is included and fitted in the through hole 96.
  • a cooling groove (cooling space) 91 having, for example, a flat ring shape is provided on the upper surface of the base plate 61a of the fixed scroll 61 on the outer peripheral surface side of the bearing portion 61b.
  • the cooling groove 91 is formed as a notch groove.
  • the orbiting scroll 52 of the expansion mechanism 5 and the orbiting scroll 62 of the sub-compression mechanism 6 are configured integrally by sharing a back-to-back structure or a base plate.
  • Through holes are formed in the central portions of the fixed scroll 51 and the swing scroll 52 of the expansion mechanism 5 and the fixed scroll 61 and the swing scroll 62 of the sub-compression mechanism 6, and the shaft 8 passes through these through holes. It is provided as follows.
  • the shaft 8 is rotatably supported at both ends by a bearing portion 51 b and a bearing portion 61 b formed at the center of each of the fixed scroll 51 of the expansion mechanism 5 and the fixed scroll 61 of the sub-compression mechanism 6.
  • a crank portion 8b for eccentrically driving the orbiting scroll 52 and the orbiting scroll 62 is provided at the center of the orbiting scroll 52 and the orbiting scroll 62.
  • the rocking scroll 52 and the rocking scroll 62 can swing.
  • the expansion mechanism 5 is connected to an expansion suction pipe 13 that sucks the refrigerant and an expansion discharge pipe 15 that discharges the expanded refrigerant.
  • the expansion suction pipe 13 is installed on the side surface of the sealed container 10, for example, on the outer peripheral side of the expansion mechanism 5, and the central side of the expansion mechanism 5 via the expansion suction port 51 d provided on the base plate 51 a of the fixed scroll 51. Is communicated with the expansion chamber 5a.
  • the expansion / suction port 51d is formed so as to penetrate the inside of the base plate 51a of the fixed scroll 51.
  • the expansion / discharge pipe 15 is installed on the side surface of the hermetic container 10, for example, on the outer peripheral side of the sub-compression mechanism 6, and the expansion / contraction mechanism 5 is swung via an expansion / discharge port 51 e provided on the base plate 61 a of the fixed scroll 61.
  • the moving scroll 52 and the orbiting scroll motion space 71 which is a pressure space formed on the outer peripheral side of the orbiting scroll 62 of the sub compression mechanism 6 are communicated.
  • the expansion / discharge port 51e is formed so as to penetrate the inside of the base plate 61a of the fixed scroll 61.
  • the refrigerant sucked into the expandable material 5a on the center side of the expansion mechanism 5 through the expansion suction pipe 13 and the expansion suction port 51d and expanded and depressurized by the expansion mechanism 5 is an expansion chamber located at the outermost peripheral portion of the expansion mechanism 5.
  • 5a is discharged into the orbiting scroll motion space 71 and further discharged from the expansion / discharge pipe 15 through the expansion / discharge port 51e.
  • the orbiting scroll movement space 71 is provided, for example, on the outer peripheral portion of the base plate 61a of the fixed scroll 61 of the sub-compression mechanism 6 and the annular convex portion 51f provided on the outer peripheral portion of the base plate 51a of the fixed scroll 51 of the expansion mechanism 5.
  • the sub-compression mechanism 6 is connected to a sub-compression suction pipe 12 that sucks the refrigerant and a sub-compression discharge pipe 14 that discharges the compressed refrigerant.
  • the sub-compression suction pipe 12 is installed, for example, on the side surface of the hermetic container 10, and the outer periphery of the sub-compression mechanism 6 via a sub-compression suction port 61 d provided on the base plate 61 a of the fixed scroll 61 of the sub-compression mechanism 6. It communicates with the sub compression chamber 6a in the section.
  • the sub-compression suction port 61d is formed so as to penetrate the base plate 61a of the fixed scroll 61.
  • the sub-compression discharge pipe 14 is installed on the upper side surface of the sealed container 10, for example.
  • the sub compression discharge pipe 14 communicates with an upper space 70 in the sealed container 10 formed above the fixed scroll 61 of the sub compression mechanism 6.
  • a sub-compression discharge port 61 e for discharging the compressed refrigerant to the upper space 70 is formed on the base plate 61 a of the fixed scroll 61 of the sub-compression mechanism 6.
  • the discharge valve 30 is provided at the tip of the sub-compression discharge port 61e on the upper space 70 side. The discharge valve 30 is opened and closed to communicate / block the sub-compression discharge port 61e and the upper space 70.
  • the refrigerant sucked into the sub compression chamber 6a on the outer peripheral side of the sub compression mechanism 6 via the sub compression suction pipe 12 and the sub compression suction port 61d and compressed and pressurized by the sub compression mechanism 6 is the center of the sub compression mechanism 6. From the sub-compression chamber 6a in the section, it is discharged to the upper space 70 through the sub-compression discharge port 61e, and further discharged to the outside through the sub-compression discharge pipe 14.
  • a tip seal groove (not shown) is formed on the tip surface of the spiral tooth 61c and the spiral tooth 62c of the sub-compression mechanism 6, and a chip seal 21 for partitioning the sub-compression chamber 6a is attached to the tip seal groove. Further, tip seal grooves (see FIG. 5) are also formed on the tip surfaces of the spiral teeth 51c and the spiral teeth 52c of the expansion mechanism 5, and a chip seal 22 for partitioning the expansion chamber 5a is attached to the chip seal grooves.
  • an annular outer peripheral seal groove (not shown) is formed on the outer peripheral side of the spiral tooth 61 c on the surface of the fixed scroll 61 facing the swing scroll 52, and the swing scroll is formed in the outer peripheral seal groove.
  • An outer peripheral seal 23 for sealing the sliding contact surface between 62 and the fixed scroll 61 is attached.
  • An Oldham ring 7 is provided between the fixed scroll 61 and the orbiting scroll 62 of the sub-compression mechanism 6 so as to restrict the rotation motion of the orbiting scroll 52 and the orbiting scroll 62 and enable the revolving motion. Yes.
  • a balance weight 9a and a balance weight 9b are attached to both ends of the shaft 8. ing.
  • a lower space 72 for storing lubricating oil 80 such as refrigerating machine oil is formed inside the sealed container 10.
  • An oil supply pump 81 for pumping up the lubricating oil 80 is attached to the lower end portion of the shaft 8.
  • the shaft 8 has an oil supply hole 8c extending so as to penetrate in the axial direction, a lateral oil supply hole 8d that communicates with the oil supply hole 8c and opens at one end toward the side surface of the bearing portion 61b of the fixed scroll 61, and an oil supply hole A gas vent hole 8e that communicates with the other end of 8d and extends so as to penetrate the center of the shaft 8 to the upper end is provided.
  • oil return holes 17 are formed through the annular protrusions 61f provided on the outer periphery of the fixed scroll 61 and the annular protrusions 51f provided on the outer periphery of the fixed scroll 51, respectively.
  • the oil return hole 17 allows the upper space 70 and the lower space 72 to communicate with each other.
  • the oil return hole 17 is provided so as not to pass through the orbiting scroll motion space 71.
  • the oil return hole 17 is also formed in the rear flange 90.
  • the lubricating oil 80 pumped up by the oil supply pump 81 rises through the oil supply hole 8 c and is supplied from the lateral oil supply hole 8 d to the bearing portion 61 b of the fixed scroll 61 of the sub compression mechanism 6, and below the fixed scroll 61.
  • the gas containing the lubricating oil 80 flows out to the upper space 70 through the gas vent hole 8 e and flows into the lower space 72 through the oil return hole 17.
  • the liquid injection pipe 18 communicates with the cooling groove 91 formed in the base plate 61a of the fixed scroll 61 described above.
  • the fixed scroll 61 has a rear flange 90 in which a through hole 96 for containing and fitting the bearing portion 61b is formed.
  • the rear flange 90 has a cooling groove 91 and a liquid injection pipe.
  • a communication hole 95 serving as an injection flow path that communicates with 18 is formed through (see FIGS. 1 and 3).
  • the rear flange 90 is installed so that the cooling groove 91 formed in the upper surface (back surface) of the base plate 61a may be covered.
  • the liquid injection pipe 18 is for injecting high-pressure liquid refrigerant from the circuit side into the sub compression chamber 6a through the communication hole 95, the cooling groove 91 and the liquid injection port 93. That is, the liquid injection pipe 18 is connected to the cooling groove 91 via the communication hole 95.
  • the liquid injection port 93 is formed through the base plate 61a of the fixed scroll 61, and allows the cooling groove 91 and the sub compression chamber 6a to communicate with each other. The reason why the two liquid injection ports 93 are provided is to allow the liquid refrigerant to flow into the two sub compression chambers 6a formed symmetrically.
  • an inner peripheral seal 92a and an outer peripheral seal 92b are provided between the upper surface of the base plate 61a and the lower surface of the rear flange 90.
  • the inner peripheral seal 92a and the outer peripheral seal 92b are preferably installed in seal housing grooves 102a and 102b formed in a ring shape on the upper surface of the base plate 61a.
  • the cooling groove 91 and the seal accommodation groove 102 are shown as an example on the upper surface of the base plate 61a, they are formed on the lower surface of the rear flange 90. Needless to say.
  • the expansion mechanism 5 power is generated by expansion of the high-pressure refrigerant sucked from the expansion suction pipe 13 in the expansion chamber 5 a formed by the spiral teeth 51 c of the fixed scroll 51 and the spiral teeth 52 c of the swing scroll 52. appear.
  • the refrigerant expanded and depressurized in the expansion chamber 5a is once discharged into the orbiting scroll motion space 71, and then discharged from the expansion discharge pipe 15 to the outside of the sealed container 10 through the expansion discharge port 51e.
  • the power generated in the expansion mechanism 5 is transmitted to the sub-compression mechanism 6 through the shaft 8. That is, the oscillating scroll 62 of the sub compression mechanism 6 is rotated by the power generated by the expansion mechanism 5. Then, in the sub compression chamber 6a formed by the spiral teeth 61c of the fixed scroll 61 and the spiral teeth 62c of the swing scroll 62, the refrigerant sucked from the sub compression suction pipe 12 is compressed and pressurized. The refrigerant whose pressure has been increased in the sub compression chamber 6a is discharged from the sub compression discharge port 61e through the discharge valve 30 to the upper space 70 in the sealed container 10 and then passes through the sub compression discharge pipe 14 and then the sealed container. 10 is discharged outside.
  • FIG. 4 is a circuit diagram schematically showing a basic configuration of the refrigeration cycle apparatus 100 using the scroll expander 1.
  • the refrigeration cycle apparatus 100 can perform a cooling operation or a heating operation by circulating a refrigerant.
  • a refrigerant whose high pressure side is supercritical, such as carbon dioxide, is used.
  • the refrigeration cycle apparatus 100 is mounted with a main compressor 11, a gas cooler (heat radiator) 2, an expansion valve 3 and an evaporator 4 connected by piping.
  • the main compression mechanism 11a driven by the electric mechanism 11b of the main compressor 11 is connected to the front stage (upstream side) of the sub-compression mechanism 6 driven by the expansion mechanism 5 of the scroll expander 1, and the main compression mechanism 11a
  • An evaporator 4 for heating the refrigerant is connected to the previous stage (upstream side). That is, the sub compression mechanism 6 of the scroll expander 1 is connected to the discharge side of the main compression mechanism 11 a of the main compressor 11.
  • a gas cooler 2 for cooling the refrigerant is connected to the rear stage (downstream side) of the sub-compression mechanism 6, and the expansion mechanism 5 of the scroll expander 1 and the expansion are connected to the rear stage (downstream side) of the gas cooler 2.
  • the valve 3 (throttle device) is connected in parallel.
  • the sub-compression mechanism 6 of the scroll expander 1 may be connected to the suction side of the main compression mechanism 11a of the main compressor 11.
  • the main compressor 11 includes a main compression mechanism 11a and an electric mechanism 11b, and sucks refrigerant and compresses the refrigerant to a high temperature / high pressure state.
  • the gas cooler 2 performs heat exchange between air and a refrigerant that are forcibly supplied from a blower such as a fan (not shown).
  • the expansion valve 3 expands the refrigerant by depressurizing it, and may be configured with a valve whose opening degree can be variably controlled, such as an electronic expansion valve.
  • the evaporator 4 performs heat exchange between air and a refrigerant that are forcibly supplied from a blower such as a fan (not shown).
  • the operation of the refrigeration cycle apparatus 100 will be described.
  • the main compression mechanism 11a of the main compressor 11 is driven by the electric mechanism 11b, the pressure of the refrigerant is increased by the main compression mechanism 11a.
  • the pressurized refrigerant is discharged from the main compressor 11, flows into the sub compression mechanism 6 of the scroll expander 1, and is further pressurized by the sub compression mechanism 6.
  • the refrigerant whose pressure has been increased by the sub compression mechanism 6 is discharged from the sub compression mechanism 6 and flows into the gas cooler 2.
  • the refrigerant that has flowed into the gas cooler 2 is cooled by the gas cooler 2, and then a part of the refrigerant is sent to the expansion mechanism 5 of the scroll expander 1, where it is decompressed and decompressed.
  • the remaining refrigerant cooled by the gas cooler 2 is sent to the expansion valve 3 and decompressed and decompressed.
  • the expansion valve 3 is provided in parallel with the expansion mechanism 5 of the scroll expander 1 in order to adjust the flow rate passing through the expansion mechanism 5 and ensure the differential pressure at the time of activation.
  • the refrigerant expands in an isentropic manner, whereby expansion power is transmitted from the expansion mechanism 5 to the sub-compression mechanism 6 through the shaft 8 and is used as sub-compression work.
  • the refrigerant expanded by the expansion mechanism 5 is heated by the evaporator 4 and then returns to the main compression mechanism 11a of the main compressor 11 again.
  • FIG. 5 is a schematic cross-sectional view schematically showing the expansion mechanism 5 and the sub-compression mechanism 6 of the scroll expander 1. Based on FIG. 5, the pressure acting on the orbiting scroll 52 and the orbiting scroll 62 will be described. The arrows shown in FIG. 5 represent the distribution of axial differential pressure acting on the orbiting scroll 52 and the orbiting scroll 62 with the low pressure Pl as a reference. Further, Ph indicates a high pressure, Pm indicates an intermediate pressure, and Pl indicates a low pressure. In FIG. 1, the tip seal is not shown in the expansion mechanism 5, but the tip seal is also provided in the expansion mechanism 5 as shown in FIG. 5.
  • the expansion mechanism 5 is responsible for the expansion process from the high pressure Ph to the low pressure Pl
  • the sub-compression mechanism 6 is responsible for the compression process from the intermediate pressure Pm to the high pressure Ph. Therefore, in the orbiting scroll 52 and the orbiting scroll 62, the high pressure Ph acts on both the central expansion chamber 5a and the central sub-compression chamber 6a, and the low pressure Pl is applied to the outer expansion chamber 5a.
  • the intermediate pressure Pm acts on the sub compression chamber 6a at the outer peripheral portion.
  • the refrigerant compressed by the sub-compression mechanism 6 is discharged from the sub-compression discharge port 61e through the discharge valve 30 to the upper space 70 in the sealed container 10 and then to the outside of the sealed container 10.
  • the lower space 72 has the same compressed pressure as the upper space 70 through the oil return hole 17 that does not pass through the orbiting scroll motion space 71.
  • the oil return hole 17 includes the rear flange 90, the annular convex portion 61f provided on the outer peripheral portion of the base plate 61a of the fixed scroll 61, and the annular convex portion provided on the outer peripheral portion of the base plate 51a of the fixed scroll 51.
  • a penetrating hole 51f is formed.
  • the refrigerant expanded by the expansion mechanism 5 is opened to the orbiting scroll motion space 71 and discharged to the outside of the sealed container 10 through the expansion discharge pipe 15.
  • the outer peripheral portion of the sub-compression mechanism 6 that becomes the intermediate pressure Pm and the orbiting scroll motion space 71 is sealed by the outer peripheral seal 23, and the inside of the orbiting scroll motion space 71 is the pressure after expansion.
  • the differential pressure at the center of the orbiting scroll 52 and the orbiting scroll 62 is equal to Ph ⁇ Pl on both the expansion mechanism 5 side and the sub-compression mechanism 6 side. However, the differential pressure at the outer peripheral portions of the orbiting scroll 52 and the orbiting scroll 62 is 0 on the expansion mechanism 5 side and Pm ⁇ Pl on the sub compression mechanism 6 side.
  • the orbiting scroll 52 and the orbiting scroll 62 are integrated with screws or the like, and the thrust load F acting on the orbiting scroll 52 and the orbiting scroll 62 is obtained by integrating this differential pressure.
  • the thrust load F acting on the orbiting scroll 52 and the orbiting scroll 62 can be adjusted so as not to become excessive by adjusting the diameter and the cross-sectional diameter of the outer peripheral seal 23 provided in the sub-compression mechanism 6. Is possible.
  • FIG. 6 is a Mollier diagram showing changes in the state quantity of the refrigerant in the refrigeration cycle apparatus 100 using the scroll expander 1.
  • the vertical axis represents pressure P
  • the horizontal axis represents enthalpy h
  • the broken line represents an isotherm.
  • the refrigerant cooled from the point d to the point c by exchanging heat with the gas cooler 2 is, for example, from the point c to the point b ′ in a decompression mechanism using a throttle such as the expansion valve 3. It expands enthalpyly.
  • the expansion mechanism 5 expands the refrigerant from point c to point b by expanding in an isentropic manner. Therefore, it is possible to recover the expansion power by the difference hb'-hb between the enthalpy hb 'at the point b' and the enthalpy hb at the point b.
  • the scroll expander 1 After being expanded by the scroll expander 1, the refrigerant gas that is heat-exchanged by the evaporator 4 and heated from the point b to the point a is compressed by the main compression mechanism 11 a of the main compressor 11 from the point a to the point d ′. After that, the sub-compression mechanism 6 of the scroll expander 1 is compressed from the point d ′ to the point d.
  • the main compression mechanism 11a of the main compressor 11 bears a part of the compression process of the refrigeration cycle, and the sub-compression mechanism 6 of the scroll expander 1 stores the remaining part of the compression process. Is responsible.
  • the compression power corresponding to the enthalpy difference hd ⁇ hd ′ in the sub-compression mechanism 6 is provided by the recovery power corresponding to hb′ ⁇ hb.
  • the temperatures of point b, point c, point d, and point d 'in FIG. 6 are Tb, Tc, Td, and Td', respectively, Tb ⁇ Tc ⁇ Td ' ⁇ Td. That is, the expansion mechanism 5 is distributed from low temperature Tc to Tb, and the sub-compression mechanism 6 is distributed from high temperature Td 'to Td. Since the scroll expander 1 integrates the sub-compression mechanism 6 and the expansion mechanism 5 back to back, the base plate 52a of the orbiting scroll 52 and the orbiting scroll are caused by the temperature difference between the sub-compression mechanism 6 and the expansion mechanism 5. Heat leakage occurs through the base plate 62a of 62. Further, even when the refrigerant gas after expansion passes through the expansion discharge port 51 e provided in the fixed scroll 61, a heat leak occurs due to a temperature difference with the base plate 61 a of the fixed scroll 61.
  • FIG. 7 is a Mollier diagram showing the refrigerant state quantity change in the refrigeration cycle apparatus 100 when the amount of heat leak from the sub-compression mechanism 6 to the expansion mechanism 5 is large.
  • a cooling groove 91 connected to the liquid injection pipe 18 is provided between the fixed scroll 61 of the sub compression mechanism 6 and the rear flange 90, and the cooling groove 91 communicates with the sub compression chamber 6a.
  • a liquid injection port 93 is provided. The liquid refrigerant flowing in from the liquid injection pipe 18 is injected into the sub compression chamber 6a after passing through the cooling groove 91 provided on the back surface (upper surface) of the fixed scroll. Therefore, the liquid refrigerant is evaporated in the sub compression chamber 6a.
  • the fixed scroll 61 is cooled by the liquid refrigerant in the cooling groove 91.
  • the heat leak via the expansion discharge port 51e provided on the outer peripheral portion of the fixed scroll 61 can be reduced, and the liquid refrigerant remains little even if a large amount of liquid refrigerant is introduced. Since compression is less likely to occur, the cooling amount itself can be increased, and further heat leakage can be reduced.
  • the inner peripheral seal 92a and the outer peripheral seal 92b are provided around the cooling groove 91.
  • the sub-compressed discharge gas is cooled.
  • the efficiency of the sub-compressor is not affected and the liquid injection flow path is partitioned. Accordingly, the cost can be reduced by omitting the inner peripheral seal 92a and the outer peripheral seal 92b.
  • the sub-compression discharge temperature is lowered, the inlet / outlet enthalpy difference of the gas cooler 2 is reduced, but the heating capacity is not lowered because the refrigerant circulation amount is increased by the liquid injection.
  • the amount of heat leak from the sub-compression mechanism 6 to the expansion mechanism 5 is the back-to-back configuration capable of reducing the thrust load F acting on the orbiting scroll 52 and the orbiting scroll 62. Therefore, it is possible to obtain a high-performance scroll expander with a small reduction in capacity under a wide range of operating conditions. Moreover, according to the refrigerating cycle apparatus 100, since the scroll expander 1 is provided, an operation with high cycle efficiency can be realized.
  • the configuration is shown in which the shaft 8 passes through the center of the rocking scroll 52 and the rocking scroll 62 and is supported by both ends, and the rocking motion is performed.
  • An external drive configuration in which the shaft 8 is provided outside the 62 may be employed. With such an external drive configuration, the cooling groove 91 can be provided in the central portion where the temperature difference is large, so that the amount of cooling can be further increased, and heat leakage can be suppressed.
  • FIG. FIG. 8 is a top view (a) and a cross-sectional view (b) of the fixed scroll 61A of the sub-compression mechanism 6 of the scroll expander according to Embodiment 2 of the present invention.
  • the scroll expander according to the second embodiment is an integrated scroll type expander and compressor similar to the scroll expander 1 according to the first embodiment, and the expansion power generated when the refrigerant expands. It has a function of collecting and compressing the refrigerant using the recovered expansion power.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
  • the cooling groove 91 is formed so as to have a ring shape, but in the scroll expander according to the second embodiment, not only the cooling groove 91 is formed so as to have a ring shape.
  • a partition wall 94 is provided for each liquid injection port 93 to partition the inside of the cooling groove 91.
  • the injection pipes 18 (specifically, the communication holes 95) are located away from the respective liquid injection ports 93, that is, in the vicinity of the partition walls 94 of the partitioned cooling grooves 91.
  • a plurality of are provided. Thereby, as shown by the arrows in the figure, the liquid refrigerant flows without drifting in the plane of the cooling groove 91 of the fixed scroll 61 and the heat transfer surface can be made larger, so that the cooling effect can be further improved.
  • the shaft 8 passes through the center of the rocking scroll 52 and the rocking scroll 62 and is supported by both ends so as to swing.
  • an external drive configuration in which the shaft 8 is provided outside the rocking scroll 52 and the rocking scroll 62 may be employed.
  • the cooling groove 91 can be provided in the central portion where the temperature difference is large, so that the amount of cooling can be further increased, and heat leakage can be suppressed.
  • the scroll expander according to the second embodiment can be applied to the refrigeration cycle apparatus 100 described in the first embodiment.
  • FIG. 9 is a circuit diagram schematically showing a basic configuration of a refrigeration cycle apparatus 100A according to Embodiment 3 of the present invention. Similar to the refrigeration cycle apparatus 100, the refrigeration cycle apparatus 100A can perform a cooling operation or a heating operation by circulating a refrigerant. As the refrigerant used in the refrigeration cycle apparatus 100A, it is assumed that a refrigerant whose high pressure side is supercritical, such as carbon dioxide, is used. The refrigeration cycle apparatus 100A is equipped with the scroll expander according to the first embodiment or the second embodiment.
  • the sub-compression mechanism 6 of the scroll expander 1 is shown as an example connected in series to the discharge side of the main compression mechanism 11a of the main compressor 11, but in the refrigeration cycle apparatus 100A, As shown in FIG. 9, the sub compression mechanism 6 and the second compressor 24 are provided in parallel on the discharge side of the main compression mechanism 11a. Also in this configuration, the temperature difference between the sub-compression mechanism 6 and the expansion mechanism 5 is large, and it is possible to realize a reduction in heat leak as in the first embodiment. With such a configuration, the second compressor 24 absorbs the change in flow rate under operating conditions that deviate from the design point of the scroll expander 1, whereby flow rate matching can be achieved, and waste of expansion power can be suppressed. Efficient operation can be realized.
  • FIG. 10 is a circuit diagram schematically showing a basic configuration of a refrigeration cycle apparatus 100B according to Embodiment 4 of the present invention. Similar to the refrigeration cycle apparatus 100 and the refrigeration cycle apparatus 100A, the refrigeration cycle apparatus 100B can perform a cooling operation or a heating operation by circulating a refrigerant. As the refrigerant used in the refrigeration cycle apparatus 100B, it is assumed that a refrigerant whose high pressure side is supercritical, such as carbon dioxide, is used. The refrigeration cycle apparatus 100B is equipped with the scroll expander according to the first embodiment or the second embodiment.
  • the state in which the scroll expander 1 is arranged on the higher stage side of the main compressor 11 is shown as an example.
  • the refrigeration cycle apparatus 100B as shown in FIG. It is provided on the lower stage side in parallel with the compression mechanism 11a.
  • the amount of pressure increase is determined by the balance between the recovered power from the expansion mechanism 5 and the flow rate branched to the sub-compressor side, and may increase to a high pressure depending on the operating conditions.
  • the same effect as in the third embodiment can be obtained.
  • Embodiments 1 to 4 described above the case where carbon dioxide is used as the refrigerant has been described as an example.
  • the type of refrigerant is not limited to carbon dioxide.
  • As a refrigerant in a supercritical state for example, there is a mixed refrigerant composed of carbon dioxide and ether (for example, dimethyl ether, hydrofluoroether, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A scroll expander (1) has a liquid injection port (93) provided at a stationary scroll (61) which is a second stationary scroll, the liquid injection port (93) being capable of injecting a liquid refrigerant, which is supplied from the outside of a hermetically closed container (10), into a sub-compression chamber (6a).

Description

スクロール膨張機及びこのスクロール膨張機を備えた冷凍サイクル装置Scroll expander and refrigeration cycle apparatus provided with the scroll expander
 本発明は、冷媒を膨張させて動力を回収するスクロール膨張機及びこのスクロール膨張機を備えた冷凍サイクル装置に関し、特に2つに分割された揺動スクロールを背面合わせにして一方に膨張機構を、他方に圧縮機構を有するスクロール膨張機及びこのスクロール膨張機を備えた冷凍サイクル装置に関するものである。 The present invention relates to a scroll expander that expands a refrigerant and recovers power, and a refrigeration cycle apparatus including the scroll expander, and in particular, an expansion mechanism on one side with two orbiting scrolls back to back. The present invention relates to a scroll expander having a compression mechanism on the other side and a refrigeration cycle apparatus including the scroll expander.
 従来から、冷媒の膨張時に発生する動力を回収し、その動力を用いて冷媒の圧縮に利用するようにしたスクロール膨張機が開示されている。そのようなものとして、台板の両面に第1渦巻歯及び第2渦巻歯を有する揺動スクロールと、揺動スクロールの第1渦巻歯と第1固定スクロールの渦巻歯とを組み合わせて圧縮室を形成し、外周部に吸入口を、中央部に吐出口を設けた圧縮機構と、揺動スクロールの第2渦巻歯と第2固定スクロールの渦巻歯とを組み合わせて膨張室を形成し、中央部に吸入口を、外周部に吐出口を設けた膨張機構とを備え、揺動スクロールに作用するスラスト力の軽減を図るようにしたものが提案されている(たとえば、特許文献1参照)。 Conventionally, there has been disclosed a scroll expander that recovers power generated during expansion of a refrigerant and uses the power to compress the refrigerant. As such, the compression chamber is formed by combining the orbiting scroll having the first and second spiral teeth on both sides of the base plate, and the first and second scroll teeth of the orbiting scroll and the first fixed scroll. An expansion chamber is formed by combining a compression mechanism having a suction port in the outer peripheral portion and a discharge port in the central portion and the second spiral teeth of the orbiting scroll and the spiral teeth of the second fixed scroll. And an expansion mechanism provided with a discharge port on the outer peripheral portion thereof, and a device for reducing the thrust force acting on the orbiting scroll has been proposed (for example, see Patent Document 1).
 また、圧縮機構と膨張機構とをモーターに対して一軸に直結した膨張機において、凝縮器出口で分岐させた液冷媒を圧縮機構の中間圧部にインジェクションし、暖房能力の向上や吐出ガス過熱度の調整を図るようにしたものが提案されている(たとえば、特許文献2参照)。 Also, in an expander in which the compression mechanism and expansion mechanism are directly connected to the motor, liquid refrigerant branched at the outlet of the condenser is injected into the intermediate pressure part of the compression mechanism to improve heating capacity and discharge gas superheat There has been proposed one that can be adjusted (see, for example, Patent Document 2).
 さらに、圧縮機構と膨張機構とをモーターに対して一軸に直結した膨張機(圧縮膨張ユニット)において、膨張機構の下流側に設けた気液分離器で分離された冷媒ガスを圧縮機構の圧縮途中にインジェクションする回路を設け、膨張機構には全量の冷媒を流し、膨張動力を無駄にバイパスすることなく膨張機構側と圧縮機構側との流量バランスを図るようにしたものが提案されている(例えば、特許文献3参照)。 Further, in an expander (compression expansion unit) in which the compression mechanism and the expansion mechanism are directly connected to the motor in one axis, the refrigerant gas separated by the gas-liquid separator provided on the downstream side of the expansion mechanism is compressed in the compression mechanism. There has been proposed a circuit in which a circuit for injecting is provided, and the entire amount of refrigerant is allowed to flow through the expansion mechanism so that the flow rate balance between the expansion mechanism side and the compression mechanism side is achieved without wastefully bypassing expansion power (for example, And Patent Document 3).
特開平03-59355号公報(第4頁~第5頁、第1図、第2図)Japanese Unexamined Patent Publication No. 03-59355 (pages 4 to 5, FIGS. 1 and 2) 特開2009-52752(第3頁~第4頁、第1図、第3図)JP 2009-52752 (pages 3 to 4, FIGS. 1 and 3) 特開2006-284086(第5頁~第11頁、第1図)JP 2006-284086 (pages 5 to 11 and FIG. 1)
 特許文献1に記載されているような、2つの揺動スクロールを背面合わせにして一方に膨張機構を、他方に圧縮機構を有し、膨張機構と圧縮機構とを一体化したスクロール膨張機においては、揺動スクロールが駆動手段によって公転すると、圧縮機構側では外周部の吸入口から流入した低温低圧の流体が高温高圧まで圧縮され、中央部の吐出口から吐出される。一方、膨張機構側では圧縮機を経て熱交換器で冷却され、中央部の吸入口から流入した低温高圧の流体が、低温低圧まで膨張され、外周部の吐出口から吐出される。このようなスクロール膨張機では、圧縮機構の中央部が高温、膨張機構の中央部が低温になると、揺動スクロールの台板を経由して圧縮機構側から膨張機構側に熱リークが生じ、冷凍能力が低下してしまうという課題があった。 In a scroll expander in which two swinging scrolls are back-to-back as described in Patent Document 1 and an expansion mechanism is provided on one side and a compression mechanism is provided on the other side, and the expansion mechanism and the compression mechanism are integrated. When the orbiting scroll is revolved by the driving means, the low-temperature and low-pressure fluid flowing in from the suction port on the outer peripheral portion is compressed to high temperature and high pressure on the compression mechanism side and discharged from the discharge port in the center. On the other hand, on the expansion mechanism side, the low-temperature and high-pressure fluid cooled by the heat exchanger through the compressor and flowing in from the suction port in the central part is expanded to low temperature and low pressure and discharged from the discharge port in the outer peripheral part. In such a scroll expander, when the central portion of the compression mechanism is hot and the central portion of the expansion mechanism is cold, a heat leak occurs from the compression mechanism side to the expansion mechanism side via the base plate of the orbiting scroll. There was a problem that the ability would decrease.
 また、特許文献2や特許文献3に記載されているような、圧縮機構と膨張機構とをモーターに対して一軸に直結した膨張機においては、圧縮機構側から膨張機構側への熱リークは小さいものの、揺動スクロールに作用するスラスト力を軽減できず、揺動スクロールの支持部の信頼性が低下してしまうという課題があった。 Further, in an expander in which the compression mechanism and the expansion mechanism are directly connected to the motor as described in Patent Document 2 and Patent Document 3, heat leakage from the compression mechanism side to the expansion mechanism side is small. However, there is a problem that the thrust force acting on the orbiting scroll cannot be reduced, and the reliability of the supporting portion of the orbiting scroll is lowered.
 本発明は、上述のような課題を解決するためになされたものであり、スラスト力を軽減しながら圧縮機構側から膨張機構側への熱リークを抑制し、広い運転条件で高効率なスクロール膨張機及びこのスクロール膨張機を備えた冷凍サイクル装置を得ることを目的としている。 The present invention has been made to solve the above-described problems, and suppresses heat leakage from the compression mechanism side to the expansion mechanism side while reducing the thrust force, and highly efficient scroll expansion under a wide range of operating conditions. It aims at obtaining the refrigerating-cycle apparatus provided with the machine and this scroll expander.
 本発明に係るスクロール膨張機は、第1揺動スクロールと第1固定スクロールとで膨張室を形成し、前記膨張室に吸入した冷媒を膨張させて動力を回収する膨張機構と、前記第1揺動スクロールと一体的に構成された第2揺動スクロールと第2固定スクロールとでサブ圧縮室を形成し、前記サブ圧縮室に吸入した冷媒を前記膨張機構で回収した動力を利用して圧縮するサブ圧縮機構と、前記膨張機構及び前記サブ圧縮機構を収容する密閉容器と、を有するスクロール膨張機であって、前記密閉容器外からの液冷媒を前記サブ圧縮室にインジェクション可能な液インジェクションポートを前記第2固定スクロールに設けていることを特徴とする。 The scroll expander according to the present invention forms an expansion chamber by a first swing scroll and a first fixed scroll, expands a refrigerant sucked into the expansion chamber and recovers power, and the first swing scroll. A sub-compression chamber is formed by the second orbiting scroll and the second fixed scroll that are integrated with the moving scroll, and the refrigerant sucked into the sub-compression chamber is compressed using the power recovered by the expansion mechanism. A scroll expander having a sub-compression mechanism, the expansion mechanism, and a sealed container that accommodates the sub-compression mechanism, and a liquid injection port capable of injecting liquid refrigerant from outside the sealed container into the sub-compression chamber. It is provided in the second fixed scroll.
 本発明に係る冷凍サイクル装置は、上記のスクロール膨張機と、主圧縮機と、ガスクーラーと、絞り装置と、蒸発器と、を有し、前記サブ圧縮機構を、前記主圧縮機の吐出側に接続し、前記膨張機構を、前記絞り装置を並列となるように前記ガスクーラーと前記蒸発器との間に接続したことを特徴とする。
 また、本発明に係る冷凍サイクル装置は、上記のスクロール膨張機と、主圧縮機と、ガスクーラーと、絞り装置と、蒸発器と、を有し、前記サブ圧縮機構を、前記主圧縮機の吸入側に接続し、前記膨張機構を、前記絞り装置の下流側に接続したことを特徴とする。
A refrigeration cycle apparatus according to the present invention includes the scroll expander, a main compressor, a gas cooler, a throttle device, and an evaporator, and the sub-compression mechanism is disposed on the discharge side of the main compressor. The expansion mechanism is connected between the gas cooler and the evaporator so that the expansion devices are arranged in parallel.
Further, a refrigeration cycle apparatus according to the present invention includes the scroll expander, a main compressor, a gas cooler, a throttling device, and an evaporator, and the sub-compression mechanism is connected to the main compressor. The expansion mechanism is connected to the suction side, and the expansion mechanism is connected to the downstream side of the expansion device.
 本発明に係るスクロール膨張機によれば、凝縮器出口と連通する液インジェクション管がサブ圧縮室に連通する液インジェクションポートに連結されるので、揺動スクロールに作用するスラスト荷重の低減を可能にしつつ、サブ圧縮室への液インジェクションによって圧縮ガスが冷却され、揺動スクロールの台板を経由したサブ圧縮機構側から膨張機構側への熱リークが抑制できる。 According to the scroll expander of the present invention, since the liquid injection pipe communicating with the condenser outlet is connected to the liquid injection port communicating with the sub compression chamber, it is possible to reduce the thrust load acting on the orbiting scroll. The compressed gas is cooled by the liquid injection into the sub compression chamber, and heat leakage from the sub compression mechanism side to the expansion mechanism side via the base plate of the orbiting scroll can be suppressed.
 本発明に係る冷凍サイクル装置によれば、上記のスクロール膨張機を備えているので、サイクル効率のよい運転が実現できる。 According to the refrigeration cycle apparatus according to the present invention, since the scroll expander is provided, an operation with high cycle efficiency can be realized.
本発明の実施の形態1に係るスクロール膨張機の構成を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the structure of the scroll expander which concerns on Embodiment 1 of this invention. 図1に示すサブ圧縮機構の固定スクロールの上面図(a)と断面図(b)である。They are the top view (a) and sectional drawing (b) of the fixed scroll of the sub compression mechanism shown in FIG. 図1に示す膨張機構のリアフランジの上面図(a)と断面図(b)である。It is the top view (a) and sectional drawing (b) of the rear flange of the expansion mechanism shown in FIG. 本発明の実施の形態1に係るスクロール膨張機を用いた冷凍サイクル装置の基本構成を模式的に示す回路図である。It is a circuit diagram which shows typically the basic composition of the refrigerating-cycle apparatus using the scroll expander which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール膨張機の膨張機構及びサブ圧縮機構を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically the expansion mechanism and subcompression mechanism of the scroll expander which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール膨張機を用いた冷凍サイクル装置における冷媒の状態量変化を示すモリエル線図である。It is a Mollier diagram which shows the state quantity change of the refrigerant | coolant in the refrigerating-cycle apparatus using the scroll expander which concerns on Embodiment 1 of this invention. サブ圧縮機構から膨張機構への熱リークが大きいときの冷凍サイクル装置における冷媒の状態量変化を示すモリエル線図である。It is a Mollier diagram which shows the state quantity change of the refrigerant | coolant in the refrigerating-cycle apparatus when the heat leak from a sub compression mechanism to an expansion mechanism is large. 本発明の実施の形態2に係るスクロール膨張機のサブ圧縮機構の固定スクロールの上面図(a)と断面図(b)である。It is the top view (a) and sectional drawing (b) of the fixed scroll of the sub compression mechanism of the scroll expander concerning Embodiment 2 of the present invention. 本発明の実施の形態3に係る冷凍サイクル装置の基本構成を模式的に示す回路図である。It is a circuit diagram which shows typically the basic composition of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置の基本構成を模式的に示す回路図である。It is a circuit diagram which shows typically the basic composition of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention. 本発明の別の実施の形態に係るスクロール膨張機の構成を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the structure of the scroll expander which concerns on another embodiment of this invention.
 以下、本発明に係るスクロール膨張機の実施の形態について図面に基づいて説明する。 Hereinafter, embodiments of the scroll expander according to the present invention will be described with reference to the drawings.
実施の形態1.
 図1は、本発明の実施の形態1に係るスクロール膨張機1の構成を示す概略縦断面図である。図2は、図1に示すサブ圧縮機構6の固定スクロール61の上面図(a)と断面図(b)である。図3は、図1に示すリアフランジ90の上面図(a)と断面図(b)である。図1に基づいて、スクロール膨張機1の構成及び作用について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、図2(b)の断面図は図2(a)のA-A断面を表している。
Embodiment 1 FIG.
FIG. 1 is a schematic longitudinal sectional view showing a configuration of a scroll expander 1 according to Embodiment 1 of the present invention. 2 is a top view (a) and a cross-sectional view (b) of the fixed scroll 61 of the sub-compression mechanism 6 shown in FIG. 3 is a top view (a) and a sectional view (b) of the rear flange 90 shown in FIG. Based on FIG. 1, the structure and effect | action of the scroll expander 1 are demonstrated. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Further, the cross-sectional view of FIG. 2B represents the AA cross-section of FIG.
 本発明の実施の形態1に係るスクロール膨張機1は、密閉容器10内にスクロール型の膨張機構と圧縮機構とを備え、膨張機構で冷媒を膨張させ、その時に発生する動力を回収し、回収した膨張動力を利用して圧縮機構で冷媒を圧縮する機能を有するものである。このスクロール膨張機1は、図1に示すように、膨張機構5と、サブ圧縮機構6と、を備えている。膨張機構5及びサブ圧縮機構6は、圧力容器である密閉容器10内に収容されている。なお、図1に示すように、膨張機構5は密閉容器10内の下方に設置されており、サブ圧縮機構6は密閉容器10内の上方、つまり膨張機構5の上方に設置されている。 A scroll expander 1 according to Embodiment 1 of the present invention includes a scroll-type expansion mechanism and a compression mechanism in a sealed container 10, expands a refrigerant by the expansion mechanism, recovers power generated at that time, The refrigerant has a function of compressing the refrigerant by the compression mechanism using the expansion power. As shown in FIG. 1, the scroll expander 1 includes an expansion mechanism 5 and a sub compression mechanism 6. The expansion mechanism 5 and the sub compression mechanism 6 are accommodated in a sealed container 10 that is a pressure container. As shown in FIG. 1, the expansion mechanism 5 is installed below the sealed container 10, and the sub-compression mechanism 6 is installed above the sealed container 10, that is, above the expansion mechanism 5.
 膨張機構5は、台板51a上に渦巻歯51cが形成された固定スクロール51(第1固定スクロール)と、台板52a上に渦巻歯52cが形成された揺動スクロール52(第1揺動スクロール)とを有している。図1に示すように、固定スクロール51は下側に、揺動スクロール52は上側に配置されている。固定スクロール51の渦巻歯51cは、台板51aの一方の面に渦巻状突起として立設されている。揺動スクロール52の渦巻歯52cは、台板52aの一方の面に渦巻状突起として立設されている。 The expansion mechanism 5 includes a fixed scroll 51 (first fixed scroll) having spiral teeth 51c formed on a base plate 51a, and an orbiting scroll 52 (first swing scroll) having spiral teeth 52c formed on a base plate 52a. ). As shown in FIG. 1, the fixed scroll 51 is disposed on the lower side, and the swing scroll 52 is disposed on the upper side. The spiral teeth 51c of the fixed scroll 51 are erected as spiral protrusions on one surface of the base plate 51a. The spiral teeth 52c of the swing scroll 52 are erected as spiral protrusions on one surface of the base plate 52a.
 そして、固定スクロール51の渦巻歯51cと揺動スクロール52の渦巻歯52cとは、互いに咬合するように配置されている。固定スクロール51の渦巻歯51cと揺動スクロール52の渦巻歯52cとが互いに咬合するように配置されることによって、相対的に容積が変化する膨張室5aが形成される。なお、固定スクロール51及び揺動スクロール52の略中央部には、後述する軸8を貫通させる貫通穴がそれぞれ形成されている。 The spiral teeth 51c of the fixed scroll 51 and the spiral teeth 52c of the swing scroll 52 are arranged so as to mesh with each other. By disposing the spiral teeth 51c of the fixed scroll 51 and the spiral teeth 52c of the orbiting scroll 52 so as to mesh with each other, an expansion chamber 5a whose volume changes relatively is formed. Note that a through hole through which a shaft 8 (described later) passes is formed in substantially the center of the fixed scroll 51 and the swing scroll 52.
 サブ圧縮機構6は、台板61a上に渦巻歯61cが形成された固定スクロール61(第2固定スクロール)と、台板62a上に渦巻歯62cが形成された揺動スクロール62(第2揺動スクロール)とを有している。図1に示すように、固定スクロール61は上側に、揺動スクロール62は下側で、かつ、揺動スクロール52の上側に配置されている。固定スクロール61の渦巻歯61cは、台板61aの一方の面に渦巻状突起として立設されている。また、揺動スクロール62の渦巻歯62cは、台板62aの一方の面に渦巻状突起として立設されている。 The sub-compression mechanism 6 includes a fixed scroll 61 (second fixed scroll) having spiral teeth 61c formed on a base plate 61a, and an orbiting scroll 62 (second swinging) having spiral teeth 62c formed on a base plate 62a. Scroll). As shown in FIG. 1, the fixed scroll 61 is disposed on the upper side, the orbiting scroll 62 is disposed on the lower side, and the upper side of the orbiting scroll 52. The spiral teeth 61c of the fixed scroll 61 are erected as spiral protrusions on one surface of the base plate 61a. Further, the spiral teeth 62c of the swing scroll 62 are erected as spiral protrusions on one surface of the base plate 62a.
 そして、固定スクロール61の渦巻歯61cと揺動スクロール62の渦巻歯62cとは、互いに咬合するように配置されている。固定スクロール61の渦巻歯61cと揺動スクロール62の渦巻歯62cとが互いに咬合するように配置されることによって、相対的に容積が変化するサブ圧縮室6aが形成される。なお、固定スクロール61及び揺動スクロール62の略中央部には、後述する軸8を貫通させる貫通穴がそれぞれ形成されている。 The spiral teeth 61c of the fixed scroll 61 and the spiral teeth 62c of the swing scroll 62 are arranged so as to be engaged with each other. By arranging the spiral teeth 61c of the fixed scroll 61 and the spiral teeth 62c of the orbiting scroll 62 to mesh with each other, a sub-compression chamber 6a whose volume changes relatively is formed. Note that a through hole through which a shaft 8 to be described later passes is formed at substantially the center of the fixed scroll 61 and the swing scroll 62.
 固定スクロール61の台板61aは、後述する軸8を貫通させる貫通穴の周辺、つまり略中央部を背面(紙面上側面)に突出させた軸受部61bを有している(図2(b)参照)。そして、軸受部61bをリアフランジ90の略中央部に設けた貫通穴96に内包・嵌合させるようになっている(図3参照)。すなわち、固定スクロール61は、台板61aとリアフランジ90とは、軸受部61bが貫通穴96に内包・嵌合されるように組み合わされて構成されている。また、固定スクロール61の台板61aにおける軸受部61bの外周面側の上面には、たとえば平面リング状となる冷却溝(冷却空間)91を設けている。この冷却溝91は、切欠溝として形成されている。 The base plate 61a of the fixed scroll 61 has a bearing portion 61b in which the periphery of a through hole through which a shaft 8 described later passes, that is, a substantially central portion protrudes to the back surface (upper side surface of the paper surface) (FIG. 2B). reference). And the bearing part 61b is included and fitted in the through-hole 96 provided in the approximate center part of the rear flange 90 (refer FIG. 3). That is, the fixed scroll 61 is configured such that the base plate 61 a and the rear flange 90 are combined so that the bearing portion 61 b is included and fitted in the through hole 96. Further, a cooling groove (cooling space) 91 having, for example, a flat ring shape is provided on the upper surface of the base plate 61a of the fixed scroll 61 on the outer peripheral surface side of the bearing portion 61b. The cooling groove 91 is formed as a notch groove.
 ここで、膨張機構5の揺動スクロール52と、サブ圧縮機構6の揺動スクロール62とは、背面合わせ構造または台板を共有して一体的に構成されている。 Here, the orbiting scroll 52 of the expansion mechanism 5 and the orbiting scroll 62 of the sub-compression mechanism 6 are configured integrally by sharing a back-to-back structure or a base plate.
 膨張機構5の固定スクロール51及び揺動スクロール52、サブ圧縮機構6の固定スクロール61及び揺動スクロール62の各中央部には貫通穴が形成されており、これらの貫通穴に軸8が貫通するように設けられている。この軸8は、膨張機構5の固定スクロール51及びサブ圧縮機構6の固定スクロール61それぞれの中央部に形成された軸受部51b、軸受部61bによって、回転自由に両持ち支持されている。また、揺動スクロール52、揺動スクロール62の中央部には、揺動スクロール52、揺動スクロール62を偏心駆動するクランク部8b(揺動軸)が設けられ、軸8の回転動作に伴って揺動スクロール52、揺動スクロール62が揺動運動できるようになっている。 Through holes are formed in the central portions of the fixed scroll 51 and the swing scroll 52 of the expansion mechanism 5 and the fixed scroll 61 and the swing scroll 62 of the sub-compression mechanism 6, and the shaft 8 passes through these through holes. It is provided as follows. The shaft 8 is rotatably supported at both ends by a bearing portion 51 b and a bearing portion 61 b formed at the center of each of the fixed scroll 51 of the expansion mechanism 5 and the fixed scroll 61 of the sub-compression mechanism 6. In addition, a crank portion 8b (oscillating shaft) for eccentrically driving the orbiting scroll 52 and the orbiting scroll 62 is provided at the center of the orbiting scroll 52 and the orbiting scroll 62. The rocking scroll 52 and the rocking scroll 62 can swing.
 膨張機構5には、冷媒を吸入する膨張吸入管13と、膨張した冷媒を吐出する膨張吐出管15とが接続されている。膨張吸入管13は、たとえば膨張機構5の外周側において、密閉容器10の側面に設置されており、固定スクロール51の台板51aに設けられた膨張吸入ポート51dを介して膨張機構5の中央側における膨張室5aに連通している。なお、膨張吸入ポート51dは、固定スクロール51の台板51aの内部を貫通するように形成されている。 The expansion mechanism 5 is connected to an expansion suction pipe 13 that sucks the refrigerant and an expansion discharge pipe 15 that discharges the expanded refrigerant. The expansion suction pipe 13 is installed on the side surface of the sealed container 10, for example, on the outer peripheral side of the expansion mechanism 5, and the central side of the expansion mechanism 5 via the expansion suction port 51 d provided on the base plate 51 a of the fixed scroll 51. Is communicated with the expansion chamber 5a. The expansion / suction port 51d is formed so as to penetrate the inside of the base plate 51a of the fixed scroll 51.
 膨張吐出管15は、たとえばサブ圧縮機構6の外周側において、密閉容器10の側面に設置されており、固定スクロール61の台板61aに設けられた膨張吐出ポート51eを介して膨張機構5の揺動スクロール52及びサブ圧縮機構6の揺動スクロール62の外周側に形成された圧力空間となる揺動スクロール運動空間71に連通している。なお、膨張吐出ポート51eは、固定スクロール61の台板61aの内部を貫通するように形成されている。 The expansion / discharge pipe 15 is installed on the side surface of the hermetic container 10, for example, on the outer peripheral side of the sub-compression mechanism 6, and the expansion / contraction mechanism 5 is swung via an expansion / discharge port 51 e provided on the base plate 61 a of the fixed scroll 61. The moving scroll 52 and the orbiting scroll motion space 71 which is a pressure space formed on the outer peripheral side of the orbiting scroll 62 of the sub compression mechanism 6 are communicated. The expansion / discharge port 51e is formed so as to penetrate the inside of the base plate 61a of the fixed scroll 61.
 よって、膨張吸入管13及び膨張吸入ポート51dを介し膨張機構5の中央側の膨張質5aに吸入され、膨張機構5で膨張減圧された冷媒は、膨張機構5の最外周部に位置する膨張室5aから揺動スクロール運動空間71に吐出され、さらに膨張吐出ポート51eを経て、膨張吐出管15から外部に吐出される。揺動スクロール運動空間71は、たとえば膨張機構5の固定スクロール51の台板51aの外周部に設けられた環状凸部51fと、サブ圧縮機構6の固定スクロール61の台板61aの外周部に設けられた環状凸部61fとを突き合わせ、この突き合わされた環状凸部51f及び環状凸部61fの内壁と、膨張機構5の揺動スクロール52の台板52a及びサブ圧縮機構6の揺動スクロール62の台板62aとで囲んで形成するとよい。 Therefore, the refrigerant sucked into the expandable material 5a on the center side of the expansion mechanism 5 through the expansion suction pipe 13 and the expansion suction port 51d and expanded and depressurized by the expansion mechanism 5 is an expansion chamber located at the outermost peripheral portion of the expansion mechanism 5. 5a is discharged into the orbiting scroll motion space 71 and further discharged from the expansion / discharge pipe 15 through the expansion / discharge port 51e. The orbiting scroll movement space 71 is provided, for example, on the outer peripheral portion of the base plate 61a of the fixed scroll 61 of the sub-compression mechanism 6 and the annular convex portion 51f provided on the outer peripheral portion of the base plate 51a of the fixed scroll 51 of the expansion mechanism 5. And the inner wall of the annular convex portion 51f and the annular convex portion 61f, the base plate 52a of the swing scroll 52 of the expansion mechanism 5, and the swing scroll 62 of the sub compression mechanism 6. It may be formed by surrounding with the base plate 62a.
 サブ圧縮機構6には、冷媒を吸入するサブ圧縮吸入管12と、圧縮された冷媒を吐出するサブ圧縮吐出管14とが接続されている。サブ圧縮吸入管12は、たとえば密閉容器10の側面に設置されており、さらにサブ圧縮機構6の固定スクロール61の台板61aに設けられたサブ圧縮吸入ポート61dを介してサブ圧縮機構6の外周部におけるサブ圧縮室6aに連通している。なお、サブ圧縮吸入ポート61dは、固定スクロール61の台板61aに貫通するように形成されている。 The sub-compression mechanism 6 is connected to a sub-compression suction pipe 12 that sucks the refrigerant and a sub-compression discharge pipe 14 that discharges the compressed refrigerant. The sub-compression suction pipe 12 is installed, for example, on the side surface of the hermetic container 10, and the outer periphery of the sub-compression mechanism 6 via a sub-compression suction port 61 d provided on the base plate 61 a of the fixed scroll 61 of the sub-compression mechanism 6. It communicates with the sub compression chamber 6a in the section. The sub-compression suction port 61d is formed so as to penetrate the base plate 61a of the fixed scroll 61.
 サブ圧縮吐出管14は、たとえば密閉容器10の上部側面に設置されている。このサブ圧縮吐出管14は、サブ圧縮機構6の固定スクロール61より上方に形成された密閉容器10内の上部空間70に連通している。また、サブ圧縮機構6の固定スクロール61の台板61aには、圧縮された冷媒を上部空間70に吐出するためのサブ圧縮吐出ポート61eが形成されている。さらに、サブ圧縮吐出ポート61eの上部空間70側の先端部には吐出弁30が設けられている。この吐出弁30は、開閉することでサブ圧縮吐出ポート61eと上部空間70とを連通・遮断するようになっている。 The sub-compression discharge pipe 14 is installed on the upper side surface of the sealed container 10, for example. The sub compression discharge pipe 14 communicates with an upper space 70 in the sealed container 10 formed above the fixed scroll 61 of the sub compression mechanism 6. Further, a sub-compression discharge port 61 e for discharging the compressed refrigerant to the upper space 70 is formed on the base plate 61 a of the fixed scroll 61 of the sub-compression mechanism 6. Further, the discharge valve 30 is provided at the tip of the sub-compression discharge port 61e on the upper space 70 side. The discharge valve 30 is opened and closed to communicate / block the sub-compression discharge port 61e and the upper space 70.
 よって、サブ圧縮吸入管12及びサブ圧縮吸入ポート61dを介してサブ圧縮機構6の外周側のサブ圧縮室6aに吸入され、サブ圧縮機構6で圧縮昇圧された冷媒は、サブ圧縮機構6の中央部におけるサブ圧縮室6aからサブ圧縮吐出ポート61eを経て、上部空間70に吐出され、さらにサブ圧縮吐出管14を経て外部に吐出される。 Therefore, the refrigerant sucked into the sub compression chamber 6a on the outer peripheral side of the sub compression mechanism 6 via the sub compression suction pipe 12 and the sub compression suction port 61d and compressed and pressurized by the sub compression mechanism 6 is the center of the sub compression mechanism 6. From the sub-compression chamber 6a in the section, it is discharged to the upper space 70 through the sub-compression discharge port 61e, and further discharged to the outside through the sub-compression discharge pipe 14.
 サブ圧縮機構6の渦巻歯61c、渦巻歯62cの先端面にはチップシール溝(図示省略)が形成され、このチップシール溝にサブ圧縮室6aを仕切るチップシール21が装着されている。また、膨張機構5の渦巻歯51c、渦巻歯52cの先端面にもチップシール溝(図5参照)が形成され、このチップシール溝に膨張室5aを仕切るチップシール22が装着されている。サブ圧縮機構6においては、固定スクロール61における揺動スクロール52に対向する面であって渦巻歯61cの外周側に環状の外周シール溝(図示省略)が形成され、この外周シール溝に揺動スクロール62と固定スクロール61との摺接面をシールする外周シール23が装着されている。 A tip seal groove (not shown) is formed on the tip surface of the spiral tooth 61c and the spiral tooth 62c of the sub-compression mechanism 6, and a chip seal 21 for partitioning the sub-compression chamber 6a is attached to the tip seal groove. Further, tip seal grooves (see FIG. 5) are also formed on the tip surfaces of the spiral teeth 51c and the spiral teeth 52c of the expansion mechanism 5, and a chip seal 22 for partitioning the expansion chamber 5a is attached to the chip seal grooves. In the sub compression mechanism 6, an annular outer peripheral seal groove (not shown) is formed on the outer peripheral side of the spiral tooth 61 c on the surface of the fixed scroll 61 facing the swing scroll 52, and the swing scroll is formed in the outer peripheral seal groove. An outer peripheral seal 23 for sealing the sliding contact surface between 62 and the fixed scroll 61 is attached.
 サブ圧縮機構6の固定スクロール61と揺動スクロール62との間には、揺動スクロール52及び揺動スクロール62の自転運動を規制し、公転運動を可能とするためのオルダムリング7が設けられている。また、揺動スクロール52、揺動スクロール62が公転運動(揺動運動)することによって発生する遠心力を相殺するために、軸8の両端部には、バランスウェイト9a、バランスウェイト9bが取り付けられている。 An Oldham ring 7 is provided between the fixed scroll 61 and the orbiting scroll 62 of the sub-compression mechanism 6 so as to restrict the rotation motion of the orbiting scroll 52 and the orbiting scroll 62 and enable the revolving motion. Yes. In order to cancel the centrifugal force generated by the revolving motion (oscillating motion) of the swing scroll 52 and the swing scroll 62, a balance weight 9a and a balance weight 9b are attached to both ends of the shaft 8. ing.
 また、密閉容器10の内部には、冷凍機油等の潤滑油80を貯留する下部空間72が形成されている。そして、軸8の下端部には、潤滑油80を汲み上げるための給油ポンプ81が取り付けられている。軸8には、軸長方向に貫通するように延びる給油孔8cと、給油孔8cに連通し固定スクロール61の軸受部61bの側面に向けて一端が開口する横向きの給油孔8dと、給油孔8dの他端に連通し、軸8の中心部を上端まで貫通するように延びるガス抜き孔8eとが設けられている。 In addition, a lower space 72 for storing lubricating oil 80 such as refrigerating machine oil is formed inside the sealed container 10. An oil supply pump 81 for pumping up the lubricating oil 80 is attached to the lower end portion of the shaft 8. The shaft 8 has an oil supply hole 8c extending so as to penetrate in the axial direction, a lateral oil supply hole 8d that communicates with the oil supply hole 8c and opens at one end toward the side surface of the bearing portion 61b of the fixed scroll 61, and an oil supply hole A gas vent hole 8e that communicates with the other end of 8d and extends so as to penetrate the center of the shaft 8 to the upper end is provided.
 さらに、固定スクロール61の外周部に設けた環状凸部61f及び固定スクロール51の外周部に設けた環状凸部51fには、それぞれ油戻し孔17が貫通形成されている。この油戻し孔17は、上部空間70と下部空間72とを連通させている。なお、油戻し孔17は、揺動スクロール運動空間71を経由しないように設けられている。環状凸部61f及び環状凸部51fのそれぞれに油戻し孔17を形成することにより、上部空間70と下部空間72とが連通することになり、上部空間70から下部空間72に油を戻すことが可能な構成となっている。なお、図示はしていないが、リアフランジ90にも油戻し孔17が形成されている。 Further, oil return holes 17 are formed through the annular protrusions 61f provided on the outer periphery of the fixed scroll 61 and the annular protrusions 51f provided on the outer periphery of the fixed scroll 51, respectively. The oil return hole 17 allows the upper space 70 and the lower space 72 to communicate with each other. The oil return hole 17 is provided so as not to pass through the orbiting scroll motion space 71. By forming the oil return hole 17 in each of the annular convex portion 61f and the annular convex portion 51f, the upper space 70 and the lower space 72 communicate with each other, and oil can be returned from the upper space 70 to the lower space 72. It has a possible configuration. Although not shown, the oil return hole 17 is also formed in the rear flange 90.
 よって、給油ポンプ81で汲み上げられた潤滑油80は、給油孔8cを上昇して横向きの給油孔8dからサブ圧縮機構6の固定スクロール61の軸受部61bに供給されるとともに、固定スクロール61の下方に設けられている揺動スクロール62及び揺動スクロール52の偏心軸受部62b、固定スクロール51の軸受部51bにも順次流下して供給されることになる。そして、潤滑油80を含有するガスが、ガス抜き孔8eを通って上部空間70へ流出し、油戻し孔17を経由して下部空間72へ流入する。 Therefore, the lubricating oil 80 pumped up by the oil supply pump 81 rises through the oil supply hole 8 c and is supplied from the lateral oil supply hole 8 d to the bearing portion 61 b of the fixed scroll 61 of the sub compression mechanism 6, and below the fixed scroll 61. Are supplied to the orbiting scroll 62 and the eccentric bearing portion 62b of the orbiting scroll 52 and the bearing portion 51b of the fixed scroll 51 sequentially. The gas containing the lubricating oil 80 flows out to the upper space 70 through the gas vent hole 8 e and flows into the lower space 72 through the oil return hole 17.
 上述した固定スクロール61の台板61aに形成した冷却溝91には液インジェクション管18が連通している。また、固定スクロール61は、軸受部61bを内包・嵌合させる貫通穴96が形成されたリアフランジ90を有しており、リアフランジ90には貫通穴96の他に冷却溝91と液インジェクション管18とを連通させるインジェクション流路となる連通穴95が貫通形成されている(図1、図3参照)。そして、リアフランジ90は、台板61aの上面(背面)に形成された冷却溝91を覆うように設置している。 The liquid injection pipe 18 communicates with the cooling groove 91 formed in the base plate 61a of the fixed scroll 61 described above. The fixed scroll 61 has a rear flange 90 in which a through hole 96 for containing and fitting the bearing portion 61b is formed. In addition to the through hole 96, the rear flange 90 has a cooling groove 91 and a liquid injection pipe. A communication hole 95 serving as an injection flow path that communicates with 18 is formed through (see FIGS. 1 and 3). And the rear flange 90 is installed so that the cooling groove 91 formed in the upper surface (back surface) of the base plate 61a may be covered.
 液インジェクション管18は、回路側から高圧の液冷媒を連通穴95、冷却溝91及び液インジェクションポート93を介してサブ圧縮室6aにインジェクションするものである。つまり、液インジェクション管18は、連通穴95を介して冷却溝91に連結している。液インジェクションポート93は、固定スクロール61の台板61aに貫通形成され、冷却溝91とサブ圧縮室6aとを連通させるものである。なお、液インジェクションポート93を2箇所設けているのは、対称に形成される2つのサブ圧縮室6a内に液冷媒を流入させるためである。 The liquid injection pipe 18 is for injecting high-pressure liquid refrigerant from the circuit side into the sub compression chamber 6a through the communication hole 95, the cooling groove 91 and the liquid injection port 93. That is, the liquid injection pipe 18 is connected to the cooling groove 91 via the communication hole 95. The liquid injection port 93 is formed through the base plate 61a of the fixed scroll 61, and allows the cooling groove 91 and the sub compression chamber 6a to communicate with each other. The reason why the two liquid injection ports 93 are provided is to allow the liquid refrigerant to flow into the two sub compression chambers 6a formed symmetrically.
 また、冷却溝91と上部空間70とを区画するために、台板61aの上面とリアフランジ90の下面との間には内周シール92a及び外周シール92bを設けている。内周シール92a及び外周シール92bは、台板61aの上面にリング状に形成されたシール収容溝102a及び102bに設置するとよい。なお、冷却溝91及びシール収容溝102(シール収容溝102a、シール収容溝102b)を台板61aの上面に形成した場合を例に示しているが、リアフランジ90の下面に形成するようにしてもよいことは言うまでもない。 Further, in order to partition the cooling groove 91 and the upper space 70, an inner peripheral seal 92a and an outer peripheral seal 92b are provided between the upper surface of the base plate 61a and the lower surface of the rear flange 90. The inner peripheral seal 92a and the outer peripheral seal 92b are preferably installed in seal housing grooves 102a and 102b formed in a ring shape on the upper surface of the base plate 61a. Although the cooling groove 91 and the seal accommodation groove 102 (the seal accommodation groove 102a and the seal accommodation groove 102b) are shown as an example on the upper surface of the base plate 61a, they are formed on the lower surface of the rear flange 90. Needless to say.
 次に、実施の形態1に係るスクロール膨張機1の動作について説明する。
 膨張機構5においては、固定スクロール51の渦巻歯51cと揺動スクロール52の渦巻歯52cとで形成される膨張室5a内で、膨張吸入管13から吸入した高圧の冷媒が膨張することによって動力が発生する。膨張室5a内で膨張減圧した冷媒は、一旦揺動スクロール運動空間71に吐出された後、膨張吐出ポート51eを経て、膨張吐出管15から密閉容器10外へ吐出される。
Next, the operation of the scroll expander 1 according to Embodiment 1 will be described.
In the expansion mechanism 5, power is generated by expansion of the high-pressure refrigerant sucked from the expansion suction pipe 13 in the expansion chamber 5 a formed by the spiral teeth 51 c of the fixed scroll 51 and the spiral teeth 52 c of the swing scroll 52. appear. The refrigerant expanded and depressurized in the expansion chamber 5a is once discharged into the orbiting scroll motion space 71, and then discharged from the expansion discharge pipe 15 to the outside of the sealed container 10 through the expansion discharge port 51e.
 膨張機構5で発生した動力は軸8を介してサブ圧縮機構6に伝達される。つまり、膨張機構5で発生した動力によって、サブ圧縮機構6の揺動スクロール62が回転される。そうすると、固定スクロール61の渦巻歯61cと揺動スクロール62の渦巻歯62cとで形成されるサブ圧縮室6a内で、サブ圧縮吸入管12から吸入した冷媒が圧縮昇圧される。サブ圧縮室6a内で圧縮昇圧された冷媒は、サブ圧縮吐出ポート61eから吐出弁30を経て、一旦密閉容器10内の上部空間70に吐出された後、サブ圧縮吐出管14を通って密閉容器10外へ吐出される。 The power generated in the expansion mechanism 5 is transmitted to the sub-compression mechanism 6 through the shaft 8. That is, the oscillating scroll 62 of the sub compression mechanism 6 is rotated by the power generated by the expansion mechanism 5. Then, in the sub compression chamber 6a formed by the spiral teeth 61c of the fixed scroll 61 and the spiral teeth 62c of the swing scroll 62, the refrigerant sucked from the sub compression suction pipe 12 is compressed and pressurized. The refrigerant whose pressure has been increased in the sub compression chamber 6a is discharged from the sub compression discharge port 61e through the discharge valve 30 to the upper space 70 in the sealed container 10 and then passes through the sub compression discharge pipe 14 and then the sealed container. 10 is discharged outside.
 ここで、実施の形態1に係るスクロール膨張機1を用いた冷凍サイクル装置100について説明する。図4は、スクロール膨張機1を用いた冷凍サイクル装置100の基本構成を模式的に示す回路図である。この冷凍サイクル装置100は、冷媒を循環させることで冷房運転または暖房運転を実行できるものである。この冷凍サイクル装置100に用いられる冷媒としては、二酸化炭素のような高圧側が超臨界となる冷媒を用いることを想定している。 Here, the refrigeration cycle apparatus 100 using the scroll expander 1 according to Embodiment 1 will be described. FIG. 4 is a circuit diagram schematically showing a basic configuration of the refrigeration cycle apparatus 100 using the scroll expander 1. The refrigeration cycle apparatus 100 can perform a cooling operation or a heating operation by circulating a refrigerant. As the refrigerant used in the refrigeration cycle apparatus 100, it is assumed that a refrigerant whose high pressure side is supercritical, such as carbon dioxide, is used.
 冷凍サイクル装置100は、スクロール膨張機1の他に、主圧縮機11、ガスクーラー(放熱器)2、膨張弁3及び蒸発器4が配管接続されて搭載されている。スクロール膨張機1の膨張機構5が駆動するサブ圧縮機構6の前段(上流側)には、主圧縮機11の電動機構11bが駆動する主圧縮機構11aが接続されており、主圧縮機構11aの前段(上流側)には、冷媒を加熱する蒸発器4が接続されている。すなわち、スクロール膨張機1のサブ圧縮機構6が主圧縮機11の主圧縮機構11aの吐出側に接続されている。 In addition to the scroll expander 1, the refrigeration cycle apparatus 100 is mounted with a main compressor 11, a gas cooler (heat radiator) 2, an expansion valve 3 and an evaporator 4 connected by piping. The main compression mechanism 11a driven by the electric mechanism 11b of the main compressor 11 is connected to the front stage (upstream side) of the sub-compression mechanism 6 driven by the expansion mechanism 5 of the scroll expander 1, and the main compression mechanism 11a An evaporator 4 for heating the refrigerant is connected to the previous stage (upstream side). That is, the sub compression mechanism 6 of the scroll expander 1 is connected to the discharge side of the main compression mechanism 11 a of the main compressor 11.
 一方、サブ圧縮機構6の後段(下流側)には、冷媒を冷却するガスクーラー2が接続されており、ガスクーラー2の後段(下流側)には、スクロール膨張機1の膨張機構5と膨張弁3(絞り装置)とが並列となるように接続されている。なお、図示は省略するが、スクロール膨張機1のサブ圧縮機構6を主圧縮機11の主圧縮機構11aの吸入側に接続してもよい。 On the other hand, a gas cooler 2 for cooling the refrigerant is connected to the rear stage (downstream side) of the sub-compression mechanism 6, and the expansion mechanism 5 of the scroll expander 1 and the expansion are connected to the rear stage (downstream side) of the gas cooler 2. The valve 3 (throttle device) is connected in parallel. Although not shown, the sub-compression mechanism 6 of the scroll expander 1 may be connected to the suction side of the main compression mechanism 11a of the main compressor 11.
 主圧縮機11は、主圧縮機構11a及び電動機構11bを有し、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機などで構成するとよい。ガスクーラー2は、図示省略のファン等の送風機から強制的に供給される空気と冷媒との間で熱交換を行なうものである。膨張弁3は、冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。蒸発器4は、図示省略のファン等の送風機から強制的に供給される空気と冷媒との間で熱交換を行なうものである。 The main compressor 11 includes a main compression mechanism 11a and an electric mechanism 11b, and sucks refrigerant and compresses the refrigerant to a high temperature / high pressure state. Configure. The gas cooler 2 performs heat exchange between air and a refrigerant that are forcibly supplied from a blower such as a fan (not shown). The expansion valve 3 expands the refrigerant by depressurizing it, and may be configured with a valve whose opening degree can be variably controlled, such as an electronic expansion valve. The evaporator 4 performs heat exchange between air and a refrigerant that are forcibly supplied from a blower such as a fan (not shown).
 冷凍サイクル装置100の動作を説明する。
 主圧縮機11の主圧縮機構11aが電動機構11bによって駆動されると、主圧縮機構11aで冷媒が昇圧される。昇圧された冷媒は、主圧縮機11から吐出され、スクロール膨張機1のサブ圧縮機構6に流入し、サブ圧縮機構6によって、さらに昇圧される。サブ圧縮機構6で昇圧された冷媒は、サブ圧縮機構6から吐出され、ガスクーラー2に流入する。ガスクーラー2に流入した冷媒は、ガスクーラー2で冷却された後、その一部がスクロール膨張機1の膨張機構5に送られ、膨張減圧される。
The operation of the refrigeration cycle apparatus 100 will be described.
When the main compression mechanism 11a of the main compressor 11 is driven by the electric mechanism 11b, the pressure of the refrigerant is increased by the main compression mechanism 11a. The pressurized refrigerant is discharged from the main compressor 11, flows into the sub compression mechanism 6 of the scroll expander 1, and is further pressurized by the sub compression mechanism 6. The refrigerant whose pressure has been increased by the sub compression mechanism 6 is discharged from the sub compression mechanism 6 and flows into the gas cooler 2. The refrigerant that has flowed into the gas cooler 2 is cooled by the gas cooler 2, and then a part of the refrigerant is sent to the expansion mechanism 5 of the scroll expander 1, where it is decompressed and decompressed.
 一方、ガスクーラー2で冷却された残りの冷媒は、膨張弁3に送られ、膨張減圧される。膨張弁3は、膨張機構5を通過する流量の調整及び起動時における差圧の確保のため、スクロール膨張機1の膨張機構5と並列となるように設けられている。膨張機構5において、冷媒が等エントロピー的に膨張することによって、軸8を介して膨張機構5からサブ圧縮機構6に膨張動力が伝えられ、サブ圧縮仕事として用いられる。膨張機構5で膨張した冷媒は、蒸発器4で加熱された後、再び主圧縮機11の主圧縮機構11aに戻る。 On the other hand, the remaining refrigerant cooled by the gas cooler 2 is sent to the expansion valve 3 and decompressed and decompressed. The expansion valve 3 is provided in parallel with the expansion mechanism 5 of the scroll expander 1 in order to adjust the flow rate passing through the expansion mechanism 5 and ensure the differential pressure at the time of activation. In the expansion mechanism 5, the refrigerant expands in an isentropic manner, whereby expansion power is transmitted from the expansion mechanism 5 to the sub-compression mechanism 6 through the shaft 8 and is used as sub-compression work. The refrigerant expanded by the expansion mechanism 5 is heated by the evaporator 4 and then returns to the main compression mechanism 11a of the main compressor 11 again.
 図5は、スクロール膨張機1の膨張機構5及びサブ圧縮機構6を模式的に示す概略断面図である。図5に基づいて、揺動スクロール52、揺動スクロール62に作用する圧力について説明する。図5に示す矢印は、低圧Plを基準として揺動スクロール52、揺動スクロール62に作用する軸方向差圧力の分布を表している。また、Phが高圧を、Pmが中間圧を、Plが低圧を、それぞれ示している。図1では、膨張機構5にチップシールを図示していないが、図5に示すように膨張機構5にもチップシールが設けられている。 FIG. 5 is a schematic cross-sectional view schematically showing the expansion mechanism 5 and the sub-compression mechanism 6 of the scroll expander 1. Based on FIG. 5, the pressure acting on the orbiting scroll 52 and the orbiting scroll 62 will be described. The arrows shown in FIG. 5 represent the distribution of axial differential pressure acting on the orbiting scroll 52 and the orbiting scroll 62 with the low pressure Pl as a reference. Further, Ph indicates a high pressure, Pm indicates an intermediate pressure, and Pl indicates a low pressure. In FIG. 1, the tip seal is not shown in the expansion mechanism 5, but the tip seal is also provided in the expansion mechanism 5 as shown in FIG. 5.
 スクロール膨張機1においては、膨張機構5は高圧Phから低圧Plまでの膨張過程を担い、サブ圧縮機構6は中間圧Pmから高圧Phまでの圧縮過程を担う。このため、揺動スクロール52、揺動スクロール62においては、中央部の膨張室5a及び中央部のサブ圧縮室6aの双方に高圧Phが作用し、外周部の膨張室5aには低圧Plが、外周部のサブ圧縮室6aには中間圧Pmが作用することになる。 In the scroll expander 1, the expansion mechanism 5 is responsible for the expansion process from the high pressure Ph to the low pressure Pl, and the sub-compression mechanism 6 is responsible for the compression process from the intermediate pressure Pm to the high pressure Ph. Therefore, in the orbiting scroll 52 and the orbiting scroll 62, the high pressure Ph acts on both the central expansion chamber 5a and the central sub-compression chamber 6a, and the low pressure Pl is applied to the outer expansion chamber 5a. The intermediate pressure Pm acts on the sub compression chamber 6a at the outer peripheral portion.
 サブ圧縮機構6で圧縮された冷媒は、サブ圧縮吐出ポート61eから吐出弁30を経て、密閉容器10内の上部空間70に吐出された後、密閉容器10の外部へ吐出される。そして、下部空間72は、揺動スクロール運動空間71を経由しない油戻し孔17を通じて上部空間70と同じ圧縮後の圧力となる。なお、上述したが、油戻し孔17は、リアフランジ90、固定スクロール61の台板61aの外周部に設けた環状凸部61f及び固定スクロール51の台板51aの外周部に設けた環状凸部51fに貫通形成されている。 The refrigerant compressed by the sub-compression mechanism 6 is discharged from the sub-compression discharge port 61e through the discharge valve 30 to the upper space 70 in the sealed container 10 and then to the outside of the sealed container 10. The lower space 72 has the same compressed pressure as the upper space 70 through the oil return hole 17 that does not pass through the orbiting scroll motion space 71. As described above, the oil return hole 17 includes the rear flange 90, the annular convex portion 61f provided on the outer peripheral portion of the base plate 61a of the fixed scroll 61, and the annular convex portion provided on the outer peripheral portion of the base plate 51a of the fixed scroll 51. A penetrating hole 51f is formed.
 一方、膨張機構5で膨張された冷媒は、揺動スクロール運動空間71に開放され、膨張吐出管15を経て、密閉容器10の外部へ吐出される。揺動スクロール運動空間71と中間圧Pmとなるサブ圧縮機構6の外周部は、外周シール23によってシールされており、揺動スクロール運動空間71内は膨張後の圧力となっている。 On the other hand, the refrigerant expanded by the expansion mechanism 5 is opened to the orbiting scroll motion space 71 and discharged to the outside of the sealed container 10 through the expansion discharge pipe 15. The outer peripheral portion of the sub-compression mechanism 6 that becomes the intermediate pressure Pm and the orbiting scroll motion space 71 is sealed by the outer peripheral seal 23, and the inside of the orbiting scroll motion space 71 is the pressure after expansion.
 揺動スクロール52、揺動スクロール62の中央部の差圧力は、膨張機構5側もサブ圧縮機構6側もPh-Plで等しい。しかしながら、揺動スクロール52、揺動スクロール62の外周部の差圧力は、膨張機構5側では0となり、サブ圧縮機構6側ではPm-Plとなる。揺動スクロール52、揺動スクロール62はネジ等で一体化されており、揺動スクロール52、揺動スクロール62に作用するスラスト荷重Fは、この差圧力を積分して求められる。サブ圧縮機構6に設けられた外周シール23の直径及び断面径の大きさを調整することで、揺動スクロール52、揺動スクロール62に作用するスラスト荷重Fが過大とならないように調整することが可能である。 The differential pressure at the center of the orbiting scroll 52 and the orbiting scroll 62 is equal to Ph−Pl on both the expansion mechanism 5 side and the sub-compression mechanism 6 side. However, the differential pressure at the outer peripheral portions of the orbiting scroll 52 and the orbiting scroll 62 is 0 on the expansion mechanism 5 side and Pm−Pl on the sub compression mechanism 6 side. The orbiting scroll 52 and the orbiting scroll 62 are integrated with screws or the like, and the thrust load F acting on the orbiting scroll 52 and the orbiting scroll 62 is obtained by integrating this differential pressure. The thrust load F acting on the orbiting scroll 52 and the orbiting scroll 62 can be adjusted so as not to become excessive by adjusting the diameter and the cross-sectional diameter of the outer peripheral seal 23 provided in the sub-compression mechanism 6. Is possible.
 図6は、スクロール膨張機1を用いた冷凍サイクル装置100における冷媒の状態量変化を示すモリエル線図である。図6において、縦軸は圧力Pを、横軸はエンタルピーhを、破線は等温線を、それぞれ表している。 FIG. 6 is a Mollier diagram showing changes in the state quantity of the refrigerant in the refrigeration cycle apparatus 100 using the scroll expander 1. In FIG. 6, the vertical axis represents pressure P, the horizontal axis represents enthalpy h, and the broken line represents an isotherm.
 図6に示すように、ガスクーラー2で熱交換することによって、点dから点cまで冷却された冷媒は、膨張弁3のような絞りによる減圧機構では点c→点b’のように等エンタルピー的に膨張する。これに対して、膨張機構5では、等エントロピー的に膨張することによって点cから点bのように冷媒を膨張する。このため、点b’でのエンタルピーhb’と点bでのエンタルピーhbの差hb’-hb分だけ、膨張動力として回収することが可能となる。スクロール膨張機1で膨張された後、蒸発器4で熱交換され、点bから点aまで加熱された冷媒ガスは、主圧縮機11の主圧縮機構11aで点aから点d’まで圧縮された後、スクロール膨張機1のサブ圧縮機構6で点d’から点dまで圧縮される。 As shown in FIG. 6, the refrigerant cooled from the point d to the point c by exchanging heat with the gas cooler 2 is, for example, from the point c to the point b ′ in a decompression mechanism using a throttle such as the expansion valve 3. It expands enthalpyly. On the other hand, the expansion mechanism 5 expands the refrigerant from point c to point b by expanding in an isentropic manner. Therefore, it is possible to recover the expansion power by the difference hb'-hb between the enthalpy hb 'at the point b' and the enthalpy hb at the point b. After being expanded by the scroll expander 1, the refrigerant gas that is heat-exchanged by the evaporator 4 and heated from the point b to the point a is compressed by the main compression mechanism 11 a of the main compressor 11 from the point a to the point d ′. After that, the sub-compression mechanism 6 of the scroll expander 1 is compressed from the point d ′ to the point d.
 上記のように、冷凍サイクル装置100においては、主圧縮機11の主圧縮機構11aで冷凍サイクルの圧縮過程の一部を担い、スクロール膨張機1のサブ圧縮機構6で圧縮過程の残りの一部を担っている。サブ圧縮機構6におけるエンタルピー差hd-hd’分の圧縮動力は、hb’-hb分の回収動力によって賄われることになる。 As described above, in the refrigeration cycle apparatus 100, the main compression mechanism 11a of the main compressor 11 bears a part of the compression process of the refrigeration cycle, and the sub-compression mechanism 6 of the scroll expander 1 stores the remaining part of the compression process. Is responsible. The compression power corresponding to the enthalpy difference hd−hd ′ in the sub-compression mechanism 6 is provided by the recovery power corresponding to hb′−hb.
 ここで、図6中の点b、点c、点d、点d’の温度をそれぞれTb、Tc、Td、Td’とすると、Tb<Tc<Td’<Tdとなる。すなわち、膨張機構5は低温のTcからTbに分布し、サブ圧縮機構6は高温のTd’からTdに分布している。スクロール膨張機1は、サブ圧縮機構6と膨張機構5とを背面合わせで一体化しているため、サブ圧縮機構6から膨張機構5の温度差によって、揺動スクロール52の台板52a、揺動スクロール62の台板62aを通って熱リークが生じる。また、膨張後の冷媒ガスが固定スクロール61内に設けた膨張吐出ポート51eを通過する際にも固定スクロール61の台板61aとの温度差によって熱リークが生じる。 Here, assuming that the temperatures of point b, point c, point d, and point d 'in FIG. 6 are Tb, Tc, Td, and Td', respectively, Tb <Tc <Td '<Td. That is, the expansion mechanism 5 is distributed from low temperature Tc to Tb, and the sub-compression mechanism 6 is distributed from high temperature Td 'to Td. Since the scroll expander 1 integrates the sub-compression mechanism 6 and the expansion mechanism 5 back to back, the base plate 52a of the orbiting scroll 52 and the orbiting scroll are caused by the temperature difference between the sub-compression mechanism 6 and the expansion mechanism 5. Heat leakage occurs through the base plate 62a of 62. Further, even when the refrigerant gas after expansion passes through the expansion discharge port 51 e provided in the fixed scroll 61, a heat leak occurs due to a temperature difference with the base plate 61 a of the fixed scroll 61.
 図7は、サブ圧縮機構6から膨張機構5への熱リーク量が大きいときの冷凍サイクル装置100における冷媒の状態量変化を示すモリエル線図である。 FIG. 7 is a Mollier diagram showing the refrigerant state quantity change in the refrigeration cycle apparatus 100 when the amount of heat leak from the sub-compression mechanism 6 to the expansion mechanism 5 is large.
 図7に示すように、熱リークによって膨張機構5の温度が上昇すると、膨張機構5の吐出点が点bから点bbに移動し、サブ圧縮機構6の吐出点が点dから点ddへ移動する。すなわち、熱リークが小さいときに比べて、蒸発器4のエンタルピー差やガスクーラー2のエンタルピー差が縮小し、冷房能力や暖房能力が低下する。 As shown in FIG. 7, when the temperature of the expansion mechanism 5 rises due to heat leak, the discharge point of the expansion mechanism 5 moves from the point b to the point bb, and the discharge point of the sub compression mechanism 6 moves from the point d to the point dd. To do. That is, the enthalpy difference of the evaporator 4 and the enthalpy difference of the gas cooler 2 are reduced compared to when the heat leak is small, and the cooling capacity and the heating capacity are reduced.
 そこで、スクロール膨張機1では、サブ圧縮機構6の固定スクロール61とリアフランジ90との間に液インジェクション管18に接続する冷却溝91を設け、さらに冷却溝91にはサブ圧縮室6aに連通する液インジェクションポート93を設けている。液インジェクション管18から流入した液冷媒は固定スクロール背面(上面)に設けた冷却溝91を経由してからサブ圧縮室6a内にインジェクションされるので、サブ圧縮室6a内での液冷媒の蒸発による冷却だけでなく、冷却溝91内で液冷媒による固定スクロール61の冷却が行なわれる。 Therefore, in the scroll expander 1, a cooling groove 91 connected to the liquid injection pipe 18 is provided between the fixed scroll 61 of the sub compression mechanism 6 and the rear flange 90, and the cooling groove 91 communicates with the sub compression chamber 6a. A liquid injection port 93 is provided. The liquid refrigerant flowing in from the liquid injection pipe 18 is injected into the sub compression chamber 6a after passing through the cooling groove 91 provided on the back surface (upper surface) of the fixed scroll. Therefore, the liquid refrigerant is evaporated in the sub compression chamber 6a. In addition to cooling, the fixed scroll 61 is cooled by the liquid refrigerant in the cooling groove 91.
 したがって、スクロール膨張機1によれば、固定スクロール61の外周部に設けた膨張吐出ポート51eを経由した熱リークを低減できとともに、液冷媒を多量に流入させても液冷媒の残留が少なく、液圧縮を生じにくくするので、冷却量そのものを大きくでき、さらに熱リークの低減が図れる。 Therefore, according to the scroll expander 1, the heat leak via the expansion discharge port 51e provided on the outer peripheral portion of the fixed scroll 61 can be reduced, and the liquid refrigerant remains little even if a large amount of liquid refrigerant is introduced. Since compression is less likely to occur, the cooling amount itself can be increased, and further heat leakage can be reduced.
 なお、冷却溝91の周囲に内周シール92aと外周シール92bを設けているが、本実施の形態1では、仮に液冷媒が下流側の上部空間70に漏れたとしてもサブ圧縮吐出ガスを冷却することになるので、サブ圧縮機の効率への影響はなく、液インジェクション流路を区画する程度のものである。よって、内周シール92a及び外周シール92bを省略することでコストダウンが図れる効果がある。また、サブ圧縮吐出温度が下がるため、ガスクーラー2の出入口エンタルピー差は縮小するが、冷媒循環量が液インジェクションによって増加するので暖房能力が低下することはない。 The inner peripheral seal 92a and the outer peripheral seal 92b are provided around the cooling groove 91. However, in the first embodiment, even if the liquid refrigerant leaks into the upper space 70 on the downstream side, the sub-compressed discharge gas is cooled. As a result, the efficiency of the sub-compressor is not affected and the liquid injection flow path is partitioned. Accordingly, the cost can be reduced by omitting the inner peripheral seal 92a and the outer peripheral seal 92b. Further, since the sub-compression discharge temperature is lowered, the inlet / outlet enthalpy difference of the gas cooler 2 is reduced, but the heating capacity is not lowered because the refrigerant circulation amount is increased by the liquid injection.
 以上のような構成によれば、揺動スクロール52、揺動スクロール62に作用するスラスト荷重Fの低減が可能な背面合わせの構成でありながら、サブ圧縮機構6から膨張機構5への熱リーク量を抑制できるので、広い運転条件で能力低下の小さい高性能なスクロール膨張機を得ることができる。また、冷凍サイクル装置100によれば、スクロール膨張機1を備えているので、サイクル効率のよい運転を実現することができる。 According to the above configuration, the amount of heat leak from the sub-compression mechanism 6 to the expansion mechanism 5 is the back-to-back configuration capable of reducing the thrust load F acting on the orbiting scroll 52 and the orbiting scroll 62. Therefore, it is possible to obtain a high-performance scroll expander with a small reduction in capacity under a wide range of operating conditions. Moreover, according to the refrigerating cycle apparatus 100, since the scroll expander 1 is provided, an operation with high cycle efficiency can be realized.
 なお、実施の形態1では、揺動スクロール52、揺動スクロール62の中心部を軸8が貫通し、両持ち支持されて揺動運動する構成を示したが、揺動スクロール52、揺動スクロール62の外部に軸8を設ける外部駆動構成としてもよい。このような外部駆動構成とすれば、温度差の大きい中心部に冷却溝91を設けることができるので、さらに冷却量を増大でき、熱リークを抑制できる効果がある。 In the first embodiment, the configuration is shown in which the shaft 8 passes through the center of the rocking scroll 52 and the rocking scroll 62 and is supported by both ends, and the rocking motion is performed. An external drive configuration in which the shaft 8 is provided outside the 62 may be employed. With such an external drive configuration, the cooling groove 91 can be provided in the central portion where the temperature difference is large, so that the amount of cooling can be further increased, and heat leakage can be suppressed.
実施の形態2.
 図8は、本発明の実施の形態2に係るスクロール膨張機のサブ圧縮機構6の固定スクロール61Aの上面図(a)と断面図(b)である。図8に基づいて、実施の形態2に係るスクロール膨張機のサブ圧縮機構6の固定スクロール61Aについて説明する。この実施の形態2に係るスクロール膨張機は、実施の形態1に係るスクロール膨張機1と同様にスクロール型の膨張機及び圧縮機を一体としたものであり、冷媒の膨張時に発生する膨張動力を回収し、回収した膨張動力を用いて冷媒を圧縮する機能を有しているものである。なお、実施の形態2では、実施の形態1と同一部分には同一符号を付し、実施の形態1との相違点を中心に説明するものとする。
Embodiment 2. FIG.
FIG. 8 is a top view (a) and a cross-sectional view (b) of the fixed scroll 61A of the sub-compression mechanism 6 of the scroll expander according to Embodiment 2 of the present invention. Based on FIG. 8, the fixed scroll 61A of the sub compression mechanism 6 of the scroll expander according to the second embodiment will be described. The scroll expander according to the second embodiment is an integrated scroll type expander and compressor similar to the scroll expander 1 according to the first embodiment, and the expansion power generated when the refrigerant expands. It has a function of collecting and compressing the refrigerant using the recovered expansion power. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
 実施の形態1に係るスクロール膨張機1ではリング状となるように冷却溝91を形成したが、実施の形態2に係るスクロール膨張機ではリング状となるように冷却溝91を形成するだけでなく、液インジェクションポート93ごとに隔壁94を設けて冷却溝91内を区画するようにしている。加えて、実施の形態2に係るスクロール膨張機では、それぞれの液インジェクションポート93から離れた位置、つまり区画された冷却溝91の隔壁94のそれぞれの近傍にインジェクション管18(詳しくは連通穴95)を複数設けるようにしている。これにより、図中の矢印で示すように液冷媒が固定スクロール61の冷却溝91の面内で偏流することなく流れ、伝熱面を大きくとれるので、冷却効果を更に向上できる。 In the scroll expander 1 according to the first embodiment, the cooling groove 91 is formed so as to have a ring shape, but in the scroll expander according to the second embodiment, not only the cooling groove 91 is formed so as to have a ring shape. A partition wall 94 is provided for each liquid injection port 93 to partition the inside of the cooling groove 91. In addition, in the scroll expander according to the second embodiment, the injection pipes 18 (specifically, the communication holes 95) are located away from the respective liquid injection ports 93, that is, in the vicinity of the partition walls 94 of the partitioned cooling grooves 91. A plurality of are provided. Thereby, as shown by the arrows in the figure, the liquid refrigerant flows without drifting in the plane of the cooling groove 91 of the fixed scroll 61 and the heat transfer surface can be made larger, so that the cooling effect can be further improved.
 なお、実施の形態2では、実施の形態1と同様に、揺動スクロール52、揺動スクロール62の中心部を軸8が貫通し、両持ち支持されて揺動運動する構成を想定して説明したが、揺動スクロール52、揺動スクロール62の外部に軸8を設ける外部駆動構成としてもよい。このような外部駆動構成とすれば、温度差の大きい中心部に冷却溝91を設けることができるので、さらに冷却量を増大でき、熱リークを抑制できる効果がある。また、実施の形態2に係るスクロール膨張機を実施の形態1で説明した冷凍サイクル装置100に適用可能であることは言うまでもない。 In the second embodiment, as in the first embodiment, it is assumed that the shaft 8 passes through the center of the rocking scroll 52 and the rocking scroll 62 and is supported by both ends so as to swing. However, an external drive configuration in which the shaft 8 is provided outside the rocking scroll 52 and the rocking scroll 62 may be employed. With such an external drive configuration, the cooling groove 91 can be provided in the central portion where the temperature difference is large, so that the amount of cooling can be further increased, and heat leakage can be suppressed. Needless to say, the scroll expander according to the second embodiment can be applied to the refrigeration cycle apparatus 100 described in the first embodiment.
実施の形態3.
 図9は、本発明の実施の形態3に係る冷凍サイクル装置100Aの基本構成を模式的に示す回路図である。この冷凍サイクル装置100Aは、冷凍サイクル装置100と同様に、冷媒を循環させることで冷房運転または暖房運転を実行できるものである。この冷凍サイクル装置100Aに用いられる冷媒としては、二酸化炭素のような高圧側が超臨界となる冷媒を用いることを想定している。また、冷凍サイクル装置100Aには、実施の形態1又は実施の形態2に係るスクロール膨張機が搭載されている。
Embodiment 3 FIG.
FIG. 9 is a circuit diagram schematically showing a basic configuration of a refrigeration cycle apparatus 100A according to Embodiment 3 of the present invention. Similar to the refrigeration cycle apparatus 100, the refrigeration cycle apparatus 100A can perform a cooling operation or a heating operation by circulating a refrigerant. As the refrigerant used in the refrigeration cycle apparatus 100A, it is assumed that a refrigerant whose high pressure side is supercritical, such as carbon dioxide, is used. The refrigeration cycle apparatus 100A is equipped with the scroll expander according to the first embodiment or the second embodiment.
 上述した冷凍サイクル装置100では、スクロール膨張機1のサブ圧縮機構6が主圧縮機11の主圧縮機構11aの吐出側に直列に接続されている状態を例に示したが、冷凍サイクル装置100Aでは、図9に示すように主圧縮機構11aの吐出側にサブ圧縮機構6と第2圧縮機24とを並列に設けるようにしている。この構成においても、サブ圧縮機構6と膨張機構5の温度差が大きく、実施の形態1と同様に熱リークの低減を実現することができる。このような構成とすれば、スクロール膨張機1の設計点からずれた運転条件における流量変化分を第2圧縮機24が吸収することで流量のマッチングが図れ、膨張動力の無駄を抑制でき、更に効率よい運転が実現可能になる。 In the refrigeration cycle apparatus 100 described above, the sub-compression mechanism 6 of the scroll expander 1 is shown as an example connected in series to the discharge side of the main compression mechanism 11a of the main compressor 11, but in the refrigeration cycle apparatus 100A, As shown in FIG. 9, the sub compression mechanism 6 and the second compressor 24 are provided in parallel on the discharge side of the main compression mechanism 11a. Also in this configuration, the temperature difference between the sub-compression mechanism 6 and the expansion mechanism 5 is large, and it is possible to realize a reduction in heat leak as in the first embodiment. With such a configuration, the second compressor 24 absorbs the change in flow rate under operating conditions that deviate from the design point of the scroll expander 1, whereby flow rate matching can be achieved, and waste of expansion power can be suppressed. Efficient operation can be realized.
実施の形態4.
 図10は、本発明の実施の形態4に係る冷凍サイクル装置100Bの基本構成を模式的に示す回路図である。この冷凍サイクル装置100Bは、冷凍サイクル装置100及び冷凍サイクル装置100Aと同様に、冷媒を循環させることで冷房運転または暖房運転を実行できるものである。この冷凍サイクル装置100Bに用いられる冷媒としては、二酸化炭素のような高圧側が超臨界となる冷媒を用いることを想定している。また、冷凍サイクル装置100Bには、実施の形態1又は実施の形態2に係るスクロール膨張機が搭載されている。
Embodiment 4 FIG.
FIG. 10 is a circuit diagram schematically showing a basic configuration of a refrigeration cycle apparatus 100B according to Embodiment 4 of the present invention. Similar to the refrigeration cycle apparatus 100 and the refrigeration cycle apparatus 100A, the refrigeration cycle apparatus 100B can perform a cooling operation or a heating operation by circulating a refrigerant. As the refrigerant used in the refrigeration cycle apparatus 100B, it is assumed that a refrigerant whose high pressure side is supercritical, such as carbon dioxide, is used. The refrigeration cycle apparatus 100B is equipped with the scroll expander according to the first embodiment or the second embodiment.
 上述した冷凍サイクル装置100及び冷凍サイクル装置100Aでは、スクロール膨張機1を主圧縮機11の高段側に配置する状態を例に示したが、冷凍サイクル装置100Bでは、図10に示すように主圧縮機構11aと並列に低段側に設けるようにしている。スクロール膨張機1を主圧縮機構11aと並列に低段側に配置した場合は、通常低い温度範囲で動作するため熱リークの影響は小さい。しかしながら、この実施例では、膨張機構5からの回収動力とサブ圧縮機側に分岐した流量とのバランスで昇圧量が決まり、運転条件によっては高圧まで上昇する場合があり、そのような条件に対して実施の形態3と同様の効果が得られる。 In the refrigeration cycle apparatus 100 and the refrigeration cycle apparatus 100A described above, the state in which the scroll expander 1 is arranged on the higher stage side of the main compressor 11 is shown as an example. In the refrigeration cycle apparatus 100B, as shown in FIG. It is provided on the lower stage side in parallel with the compression mechanism 11a. When the scroll expander 1 is arranged on the low stage side in parallel with the main compression mechanism 11a, the effect of heat leak is small because it normally operates in a low temperature range. However, in this embodiment, the amount of pressure increase is determined by the balance between the recovered power from the expansion mechanism 5 and the flow rate branched to the sub-compressor side, and may increase to a high pressure depending on the operating conditions. Thus, the same effect as in the third embodiment can be obtained.
 以上、実施の形態1~4では、固定スクロール61の台板61aに冷却溝91を設けた場合を例に説明したが、図11に示すように冷却溝91を設けずに液インジェクション管18から液インジェクションポート93を介してサブ圧縮室6aに直接インジェクションしてもよい。このようにスクロール膨張機1を構成すれば、実施の形態1~4で説明したものに比べ、部品点数を更に削減できるという効果がある。 As described above, in the first to fourth embodiments, the case where the cooling groove 91 is provided in the base plate 61a of the fixed scroll 61 has been described as an example. However, as shown in FIG. You may inject directly into the sub compression chamber 6a via the liquid injection port 93. FIG. If the scroll expander 1 is configured in this way, there is an effect that the number of parts can be further reduced as compared with those described in the first to fourth embodiments.
 なお、上記実施の形態1~4では、冷媒に二酸化炭素を使用した場合を例に説明したが、冷媒の種類を二酸化炭素に限定するものではない。超臨界状態となる冷媒としては、たとえば二酸化炭素とエーテル(たとえば、ジメチルエーテルやハイドロフルオロエーテル等)とから構成される混合冷媒等がある。 In Embodiments 1 to 4 described above, the case where carbon dioxide is used as the refrigerant has been described as an example. However, the type of refrigerant is not limited to carbon dioxide. As a refrigerant in a supercritical state, for example, there is a mixed refrigerant composed of carbon dioxide and ether (for example, dimethyl ether, hydrofluoroether, etc.).
 1 スクロール膨張機、2 ガスクーラー、3 膨張弁、4 蒸発器、5 膨張機構、5a 膨張室、6 サブ圧縮機構、6a サブ圧縮室、7 オルダムリング、8 軸、8b クランク部、8c 給油孔、8d 給油孔、8e ガス抜き孔、9a バランスウェイト、9b バランスウェイト、10 密閉容器、11 主圧縮機、11a 主圧縮機構、11b 電動機構、12 サブ圧縮吸入管、13 膨張吸入管、14 サブ圧縮吐出管、15 膨張吐出管、17 油戻し孔、18 液インジェクション管、21 チップシール、22 チップシール、23 外周シール、24 第2圧縮機、30 吐出弁、51 固定スクロール、51a 台板、51b 軸受部、51c 渦巻歯、51d 膨張吸入ポート、51e 膨張吐出ポート、51f 環状凸部、52 揺動スクロール、52a 台板、52c 渦巻歯、61 固定スクロール、61A 固定スクロール、61a 台板、61b 軸受部、61c 渦巻歯、61d サブ圧縮吸入ポート、61e サブ圧縮吐出ポート、61f 環状凸部、62 揺動スクロール、62a 台板、62b 偏心軸受部、62c 渦巻歯、70 上部空間、71 揺動スクロール運動空間、72 下部空間、80 潤滑油、81 給油ポンプ、90 リアフランジ、91 冷却溝、92a 内周シール、92b 外周シール、93 液インジェクションポート、94 隔壁、95 連通穴、96 貫通穴、100 冷凍サイクル装置、100A 冷凍サイクル装置、100B 冷凍サイクル装置、102a シール収容溝、102b シール収容溝。 1 scroll expander, 2 gas cooler, 3 expansion valve, 4 evaporator, 5 expansion mechanism, 5a expansion chamber, 6 sub compression mechanism, 6a sub compression chamber, 7 Oldham ring, 8 shaft, 8b crank part, 8c oiling hole, 8d oil supply hole, 8e gas vent hole, 9a balance weight, 9b balance weight, 10 sealed container, 11 main compressor, 11a main compression mechanism, 11b electric mechanism, 12 sub compression suction pipe, 13 expansion suction pipe, 14 sub compression discharge Pipe, 15 expansion discharge pipe, 17 oil return hole, 18 liquid injection pipe, 21 tip seal, 22 tip seal, 23 outer peripheral seal, 24 second compressor, 30 discharge valve, 51 fixed scroll, 51a base plate, 51b bearing part , 51c spiral teeth, 51d expansion suction port, 51e expansion discharge port , 51f annular convex part, 52 swing scroll, 52a base plate, 52c spiral tooth, 61 fixed scroll, 61A fixed scroll, 61a base plate, 61b bearing part, 61c spiral tooth, 61d sub compression suction port, 61e sub compression discharge port , 61f annular convex part, 62 rocking scroll, 62a base plate, 62b eccentric bearing part, 62c spiral tooth, 70 upper space, 71 rocking scroll motion space, 72 lower space, 80 lubricating oil, 81 oil pump, 90 rear flange 91 cooling groove, 92a inner peripheral seal, 92b outer peripheral seal, 93 liquid injection port, 94 partition wall, 95 communication hole, 96 through hole, 100 refrigeration cycle apparatus, 100A refrigeration cycle apparatus, 100B refrigeration cycle apparatus, 102a seal housing groove, 102b Seal housing groove.

Claims (9)

  1.  第1揺動スクロールと第1固定スクロールとで膨張室を形成し、前記膨張室に吸入した冷媒を膨張させて動力を回収する膨張機構と、
     前記第1揺動スクロールと一体的に構成された第2揺動スクロールと第2固定スクロールとでサブ圧縮室を形成し、前記サブ圧縮室に吸入した冷媒を前記膨張機構で回収した動力を利用して圧縮するサブ圧縮機構と、
     前記膨張機構及び前記サブ圧縮機構を収容する密閉容器と、を有するスクロール膨張機であって、
     前記密閉容器外からの液冷媒を前記サブ圧縮室にインジェクション可能な液インジェクションポートを前記第2固定スクロールに設けている
     ことを特徴とするスクロール膨張機。
    An expansion mechanism that forms an expansion chamber with the first swing scroll and the first fixed scroll, and expands the refrigerant sucked into the expansion chamber to recover power;
    A sub-compression chamber is formed by the second orbiting scroll and the second fixed scroll that are integrally formed with the first orbiting scroll, and the power collected by the expansion mechanism is used for the refrigerant sucked into the sub-compression chamber. A sub-compression mechanism for compressing
    A scroll expander having a closed container that houses the expansion mechanism and the sub-compression mechanism,
    A scroll expander characterized in that a liquid injection port capable of injecting liquid refrigerant from outside the sealed container into the sub compression chamber is provided in the second fixed scroll.
  2.  前記第2固定スクロールの前記第2揺動スクロールとは反対側面にリアフランジを配し、
     前記第2の固定スクロールと前記リアフランジとの間に冷却空間を形成し、
     前記密閉容器外からの液冷媒を前記冷却空間に導く液インジェクション流路を前記リアフランジ内に設け、
     前記液インジェクションポートを前記冷却空間を介して前記インジェクション流路に連通させている
     ことを特徴とする請求項1に記載のスクロール膨張機。
    A rear flange is disposed on the side surface of the second fixed scroll opposite to the second orbiting scroll;
    Forming a cooling space between the second fixed scroll and the rear flange;
    A liquid injection flow path for guiding the liquid refrigerant from outside the sealed container to the cooling space is provided in the rear flange,
    The scroll expander according to claim 1, wherein the liquid injection port is communicated with the injection flow path through the cooling space.
  3.  前記冷却空間は、
     前記第2固定スクロールの上面もしくは前記リアフランジの下面に形成した切欠溝である
     ことを特徴とする請求項2に記載のスクロール膨張機。
    The cooling space is
    The scroll expander according to claim 2, wherein the scroll expander is a notch groove formed in an upper surface of the second fixed scroll or a lower surface of the rear flange.
  4.  前記冷却空間と前記密閉容器内の空間とを仕切るシール部材を前記冷却空間の周囲に設けている
     ことを特徴とする請求項2又は3に記載のスクロール膨張機。
    The scroll expander according to claim 2 or 3, wherein a seal member that partitions the cooling space and the space in the sealed container is provided around the cooling space.
  5.  前記液インジェクションポートを複数設け、
     前記冷却空間に隔壁を設け、この冷却空間を前記液インジェクションポート毎に区画し、
     区画された前記冷却空間毎に前記液インジェクション流路を設けている
     ことを特徴とする請求項1~4のいずれか一項に記載のスクロール膨張機。
    A plurality of the liquid injection ports are provided,
    A partition is provided in the cooling space, and the cooling space is partitioned for each liquid injection port.
    The scroll expander according to any one of claims 1 to 4, wherein the liquid injection flow path is provided for each of the partitioned cooling spaces.
  6.  1つの冷却風路に連通している前記液インジェクションポート及び前記インジェクション流路のうち、
     前記液インジェクションポートを、前記冷却空間を構成している前記隔壁のうちの一方の近傍に設け、
     前記インジェクション流路を、前記冷却空間を構成している前記隔壁のうちの他方の近傍に設けている
     ことを特徴とする請求項5に記載のスクロール膨張機。
    Of the liquid injection port and the injection flow path communicating with one cooling air path,
    The liquid injection port is provided in the vicinity of one of the partition walls constituting the cooling space,
    The scroll expander according to claim 5, wherein the injection flow path is provided in the vicinity of the other of the partition walls constituting the cooling space.
  7.  請求項1~6のいずれか一項に記載のスクロール膨張機と、主圧縮機と、ガスクーラーと、絞り装置と、蒸発器と、を有し、
     前記サブ圧縮機構を、前記主圧縮機の吐出側に接続し、
     前記膨張機構を、前記絞り装置を並列となるように前記ガスクーラーと前記蒸発器との間に接続した
     ことを特徴とする冷凍サイクル装置。
    The scroll expander according to any one of claims 1 to 6, a main compressor, a gas cooler, a throttling device, and an evaporator,
    Connecting the sub-compression mechanism to the discharge side of the main compressor;
    The refrigeration cycle apparatus, wherein the expansion mechanism is connected between the gas cooler and the evaporator so that the expansion devices are arranged in parallel.
  8.  前記サブ圧縮機構と並列となるように前記主圧縮機の吐出側に第2圧縮機を設けた
     ことを特徴とする請求項7に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to claim 7, wherein a second compressor is provided on the discharge side of the main compressor so as to be in parallel with the sub-compression mechanism.
  9.  請求項1~6のいずれか一項に記載のスクロール膨張機と、主圧縮機と、ガスクーラーと、絞り装置と、蒸発器と、を有し、
     前記サブ圧縮機構を、前記主圧縮機の吸入側に接続し、
     前記膨張機構を、前記絞り装置の下流側に接続した
     ことを特徴とする冷凍サイクル装置。
    The scroll expander according to any one of claims 1 to 6, a main compressor, a gas cooler, a throttling device, and an evaporator,
    Connecting the sub-compression mechanism to the suction side of the main compressor;
    The refrigeration cycle apparatus, wherein the expansion mechanism is connected to a downstream side of the expansion device.
PCT/JP2011/003628 2011-02-04 2011-06-24 Scroll expander, and refrigeration cycle with the scroll expander WO2012104934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-022573 2011-02-04
JP2011022573A JP2014077353A (en) 2011-02-04 2011-02-04 Scroll expander and refrigeration cycle device equipped with the scroll expander

Publications (1)

Publication Number Publication Date
WO2012104934A1 true WO2012104934A1 (en) 2012-08-09

Family

ID=46602182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003628 WO2012104934A1 (en) 2011-02-04 2011-06-24 Scroll expander, and refrigeration cycle with the scroll expander

Country Status (2)

Country Link
JP (1) JP2014077353A (en)
WO (1) WO2012104934A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140053544A1 (en) * 2012-08-23 2014-02-27 University of Ontario Heat engine system for power and heat production
WO2016199281A1 (en) * 2015-06-11 2016-12-15 三菱電機株式会社 Scroll compressor and refrigeration cycle device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169691A (en) * 1985-01-23 1986-07-31 Hitachi Ltd Sealed type scroll compressor for refrigerator
JPH07103152A (en) * 1993-09-30 1995-04-18 Toshiba Corp Scroll compressor
JP2006342755A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Scroll compressor and refrigerating apparatus
WO2007023599A1 (en) * 2005-08-26 2007-03-01 Mitsubishi Electric Corporation Refrigerating air conditioner
US20070183915A1 (en) * 2005-07-29 2007-08-09 Huaming Guo Compressor with fluid injection system
WO2008146709A1 (en) * 2007-05-25 2008-12-04 Mitsubishi Electric Corporation Refrigeration cycle device
WO2010140324A1 (en) * 2009-06-02 2010-12-09 三菱電機株式会社 Refrigerating cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169691A (en) * 1985-01-23 1986-07-31 Hitachi Ltd Sealed type scroll compressor for refrigerator
JPH07103152A (en) * 1993-09-30 1995-04-18 Toshiba Corp Scroll compressor
JP2006342755A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Scroll compressor and refrigerating apparatus
US20070183915A1 (en) * 2005-07-29 2007-08-09 Huaming Guo Compressor with fluid injection system
WO2007023599A1 (en) * 2005-08-26 2007-03-01 Mitsubishi Electric Corporation Refrigerating air conditioner
WO2008146709A1 (en) * 2007-05-25 2008-12-04 Mitsubishi Electric Corporation Refrigeration cycle device
WO2010140324A1 (en) * 2009-06-02 2010-12-09 三菱電機株式会社 Refrigerating cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140053544A1 (en) * 2012-08-23 2014-02-27 University of Ontario Heat engine system for power and heat production
WO2016199281A1 (en) * 2015-06-11 2016-12-15 三菱電機株式会社 Scroll compressor and refrigeration cycle device
JPWO2016199281A1 (en) * 2015-06-11 2017-12-07 三菱電機株式会社 Scroll compressor and refrigeration cycle apparatus
CN107614878A (en) * 2015-06-11 2018-01-19 三菱电机株式会社 Screw compressor and refrigerating circulatory device

Also Published As

Publication number Publication date
JP2014077353A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
EP2055956B1 (en) Multistage compressor
US8109116B2 (en) Dual compressor air conditioning system with oil level regulation
US8074471B2 (en) Refrigeration cycle apparatus and fluid machine used for the same
US7438539B2 (en) Hermetic type scroll compressor and refrigerating and air-conditioning apparatus
JP4837094B2 (en) Refrigeration cycle apparatus and fluid machine used therefor
KR100840048B1 (en) Displacement fluid machine
WO2009098872A1 (en) Fluid machine
US8245531B2 (en) Fluid machine and refrigeration cycle apparatus having the same
JP4607221B2 (en) Scroll expander
KR100725893B1 (en) Scroll-type fluid machine
JP4555231B2 (en) Scroll expander
JP2012093017A (en) Refrigerating cycle device
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
JP2012127565A (en) Refrigeration cycle device
WO2012104934A1 (en) Scroll expander, and refrigeration cycle with the scroll expander
JP2009270529A (en) Positive displacement fluid machine
WO2011083510A1 (en) Refrigeration cycling device and expander installed in same
JP4626635B2 (en) Fluid machinery
JP2002250292A (en) Closed type rotary compressor and refrigeration/air- conditioning device
JP5627366B2 (en) Scroll expander and refrigeration cycle apparatus
JP2010096417A (en) Scroll expansion device and refrigerating cycle device including the same
JP4888222B2 (en) Fluid machine and refrigeration cycle apparatus including the same
JP2007205651A (en) Refrigerating system and vehicular air conditioner
JPWO2011161953A1 (en) Refrigeration cycle equipment
KR20200122774A (en) Air Conditioning System applying expander

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP