[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012102228A1 - Process for production of liquid crystal panel - Google Patents

Process for production of liquid crystal panel Download PDF

Info

Publication number
WO2012102228A1
WO2012102228A1 PCT/JP2012/051316 JP2012051316W WO2012102228A1 WO 2012102228 A1 WO2012102228 A1 WO 2012102228A1 JP 2012051316 W JP2012051316 W JP 2012051316W WO 2012102228 A1 WO2012102228 A1 WO 2012102228A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
gas
crystal panel
seal
Prior art date
Application number
PCT/JP2012/051316
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 仲井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012102228A1 publication Critical patent/WO2012102228A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a method for manufacturing a liquid crystal panel, and more particularly to a method for manufacturing a liquid crystal panel including a step of applying a seal to at least one of a first substrate and a second substrate constituting the liquid crystal panel. It is.
  • the liquid crystal panel is, for example, an active matrix substrate in which driving elements made of thin film transistors and pixel electrodes are formed in a matrix, and a counter substrate on which common electrodes and color filters are formed are bonded together with a seal at intervals of several ⁇ m. Manufactured by filling the gap between the two substrates with a liquid crystal material.
  • liquid crystal dropping method As a method for filling the liquid crystal material, a vacuum injection method and a liquid crystal dropping method are well known.
  • the liquid crystal dropping method is performed as follows.
  • an alignment film for aligning a liquid crystal material in a certain direction is formed on the surfaces of both the active matrix substrate and the counter substrate, and a rubbing process is performed.
  • a predetermined amount of liquid crystal material is dropped onto one of the two substrates and bonded together with high positional accuracy under vacuum to cure the seal.
  • bubbles may be generated inside the cell.
  • a vacuum deaeration process compression process
  • the gas component mainly H 2 O
  • Patent Document 1 discloses a method for manufacturing a liquid crystal panel in which a decompression process is performed on each substrate before the liquid crystal material is dropped onto the substrate.
  • FIG. 10 is a flowchart showing an embodiment of a method of manufacturing a liquid crystal panel disclosed in Patent Document 1.
  • a decompression process is performed on the counter substrate and the active matrix substrate in a decompression process step S113.
  • the counter substrate and the active matrix substrate are placed in an apparatus maintained at a vacuum level of 1 Pa to 100 Pa, and the decompression process is performed. Thereby, the gas component (mainly H 2 O) of the substrate can be removed.
  • liquid crystal is dropped on the active matrix substrate in the liquid crystal dropping step S114.
  • the counter substrate and the active matrix substrate constituting the liquid crystal panel are bonded in a vacuum to form a bonded substrate. Thereafter, the bonded substrate is opened to the atmosphere. Thereby, a bonded substrate board is pressurized by atmospheric pressure.
  • UV (ultraviolet light) is irradiated to the bonded substrate in the light irradiation (photocuring) step S116.
  • UV (ultraviolet light) is irradiated to the bonded substrate in the light irradiation (photocuring) step S116.
  • the photocurable seal containing the photoinitiator applied to the bonded substrate is temporarily cured.
  • the bonded substrate is heat-treated in a heating (thermosetting) step S117.
  • a heating (thermosetting) step S117 By heating, the seal applied to the bonded substrate is fully cured.
  • Patent Document 2 a technique for performing a decompression process before bonding the two substrates is also disclosed in, for example, Patent Document 2.
  • Japanese Patent Publication Japanese Unexamined Patent Publication No. 2007-101638 (published on April 19, 2007)” Japanese Patent Publication “JP 2009-288364 A (published on Dec. 10, 2009)”
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a liquid crystal panel that can reduce the occurrence of poor adhesion due to curing of a seal.
  • a method for manufacturing a liquid crystal panel of the present invention includes: A gas measurement step of measuring a gas amount released from the first substrate when the first substrate out of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state; A seal application step of applying a sealant to the first substrate after the gas measurement step; Including a bonding step of bonding the first substrate coated with the sealing agent and the second substrate, When the gas amount measured in the gas measurement step is larger than a reference value, a depressurization treatment step of placing the first substrate in a depressurized state is performed between the seal coating step and the bonding step, and the gas measurement step When the gas amount measured in step 1 is smaller than a reference value, the pressure reduction process step between the seal application step and the bonding step is omitted.
  • the gas component (mainly H 2 O) of the substrate is removed by subjecting the substrate to which the seal is applied after the application of the sealant to a reduced pressure.
  • the decompression process may exceed a predetermined time due to a line trouble or the like, and in such a case, the sealing agent is excessively cured, resulting in poor bonding of the substrates. There was a problem.
  • the present inventor pays attention to the gas component adsorption amount of the substrate before applying the sealing agent, and if this adsorption amount is small, there are few bubbles generated inside the cell, and the decompression process after applying the sealing agent is omitted. I found something that I could do.
  • the first substrate to which the sealing agent is applied is placed in a reduced pressure state.
  • a gas measurement step for measuring the amount of gas released from the substrate is included.
  • a decompression process step is performed in which the first substrate is placed in a decompressed state between the seal coating step and the bonding step, and the measured gas amount is smaller than the reference value. In some cases, the decompression process between the seal application process and the bonding process is omitted.
  • the “depressurized state” means a state below atmospheric pressure, and preferably 0.1 Pa to 2 Pa. When the pressure is 2 Pa or more, deaeration becomes insufficient, and when the pressure is 0.1 Pa or less, the limit of the pump capacity used for the pressure reduction treatment is exceeded.
  • a method for manufacturing a liquid crystal panel of the present invention includes: A gas measurement step of measuring a gas amount released from the first substrate when the first substrate out of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state; A seal application step of applying a sealant to the first substrate after the gas measurement step; A bonding step of bonding the first substrate coated with the sealant and the second substrate in a reduced pressure state,
  • the gas amount measured in the gas measurement step is larger than the reference value, the decompression period in the bonding step is relatively long, and the gas amount measured in the gas measurement step is smaller than the reference value
  • the method is characterized in that the period of the reduced pressure state in the bonding step is relatively shortened.
  • a gas measurement step for measuring the amount of gas released is included.
  • the gas amount measured in the gas measurement step is larger than the reference value, the period of the reduced pressure state in the bonding step is relatively long, and the gas amount measured in the gas measurement step is larger than the reference value.
  • the period of the reduced pressure state in the bonding step is relatively shortened.
  • the gas generated in the first substrate can be removed by relatively lengthening the period of the reduced pressure state in the bonding process, and the inside of the cell It is possible to prevent the generation of bubbles in Therefore, the decompression process between the seal application process and the bonding process can be omitted, and the occurrence of defective bonding of the substrates due to excessive curing of the sealant due to line troubles or the like can be suppressed.
  • the manufacturing method of the liquid crystal panel of the present invention measures the amount of gas released from the first substrate when the first substrate of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state.
  • a gas measurement step, a seal application step of applying a sealant to the first substrate after the gas measurement step, and a bonding step of bonding the first substrate coated with the sealant and the second substrate together When the gas amount measured in the gas measurement step is larger than a reference value, a depressurization treatment step is performed in which the first substrate is placed in a depressurized state between the seal coating step and the bonding step, and the gas measurement is performed.
  • the pressure reduction process step between the seal application step and the bonding step is omitted.
  • the method for manufacturing a liquid crystal panel according to the present invention also provides an amount of gas released from the first substrate when the first substrate of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state.
  • a gas measuring step for measuring, a seal applying step for applying a sealing agent to the first substrate after the gas measuring step, and a bonding for bonding the first substrate coated with the sealing agent and the second substrate under reduced pressure And when the gas amount measured in the gas measurement step is larger than a reference value, the period of the reduced pressure state in the bonding step is relatively long, and the gas amount measured in the gas measurement step is When it is smaller than the reference value, the period of the reduced pressure state in the bonding step is relatively shortened.
  • FIG. 1 is a perspective view showing a large-size counter substrate and an active matrix substrate according to Embodiment 1 of the present invention. It is a perspective view which shows the opposing board
  • FIG. 5 is a perspective view showing the configuration of the liquid crystal panel in the present embodiment.
  • an active matrix substrate 2 a on which a plurality of TFTs (thin film transistors) are formed and a counter substrate 1 a disposed to face the active matrix substrate 2 a are separated by a main seal 3.
  • the liquid crystal layer is sealed inside the main seal 3 applied between the two substrates.
  • the active matrix substrate 2a although not shown, a plurality of pixels as display unit areas are arranged in a matrix. A TFT is arranged for each pixel.
  • the active matrix substrate 2a is provided with an alignment film on the surface on the liquid crystal layer side (not shown).
  • a color filter, a common electrode, and the like are formed on the counter substrate 1a.
  • the counter substrate 1a is provided with an alignment film on the surface on the liquid crystal layer side.
  • FIG. 6 is a perspective view showing a large-size counter substrate and an active matrix substrate in the present embodiment.
  • the large-size counter substrate is a so-called mother substrate (mother glass) including a plurality of portions to be the counter substrate 1a by being divided later as individual liquid crystal panels.
  • the large-size active matrix substrate is a so-called mother substrate (mother glass) including a plurality of portions that become the active matrix substrate 2a by being divided later as individual liquid crystal panels.
  • each matrix substrate includes only a single counter substrate 1a and active matrix substrate 2a.
  • the large counter substrate 1 is configured to be divided into a plurality of liquid crystal panels 100a having a specific size.
  • a main seal 3 is applied in a frame shape in the vicinity of the outer periphery of the region of each liquid crystal panel 100a.
  • a dummy seal 6 and an outer peripheral seal 7 are applied so as to surround the main seal 3 applied on the counter substrate 1.
  • the dummy seal 6 is a sealant applied around the portion corresponding to the liquid crystal panel 100 a and includes a dummy seal portion 61 and a dummy seal portion 62.
  • the dummy seal portion 61 is applied in a U-shape or L-shape so as to surround the portion where the main seal 3 is applied, and the dummy seal portion 62 crosses over the dummy seal portion 61 applied on the counter substrate 1. It is applied in a frame shape.
  • an outer peripheral seal 7 is applied in a frame shape around the outer periphery of the counter substrate 1 so as to surround the portion where the dummy seal 6 is applied.
  • the outer peripheral seal 7 is a sealing agent for maintaining the degree of vacuum in the substrate surfaces of the counter substrate 1 and the active matrix substrate 2.
  • the dummy seal 6 and the outer peripheral seal 7 are made of a sealant containing a photoinitiator having a component different from that of the main seal 3.
  • the counter substrate 1 and the active matrix substrate 2 are bonded to each other to form a bonded substrate 100.
  • the bonded substrate 100 is divided into a plurality of liquid crystal panels 100a including the main seal 3, whereby a plurality of predetermined sizes are provided.
  • the liquid crystal panel 100a is formed.
  • Liquid crystal panel manufacturing method A method for manufacturing the liquid crystal panel according to the present embodiment will be described below with reference to FIGS. In the present embodiment, a method for manufacturing a liquid crystal panel will be described by giving two examples.
  • FIG. 1 is a flowchart illustrating a method for manufacturing a liquid crystal panel according to the first embodiment.
  • the manufacturing method of the liquid crystal panel according to the present embodiment in which the liquid crystal material is filled by the liquid crystal dropping method first, in the rubbing step S11, the active matrix substrate 2 (see FIG. 6) and the counter substrate 1 ( In FIG. 6), an alignment film is formed and a rubbing process is performed.
  • the post-rubbing cleaning step S12 the counter substrate 1 and the active matrix substrate 2 are cleaned.
  • dust adhered to the counter substrate 1 and the active matrix substrate 2 during the rubbing process is cleaned.
  • the post-rubbing cleaning step S12 can be omitted as necessary.
  • the degassing (degas (heating)) step S13 the gas (gas) and moisture containing organic volatile components on the substrate surfaces of the counter substrate 1 and the active matrix substrate 2 are removed by heating. Note that the deaeration (degas (heating)) step S13 can be omitted as necessary.
  • the gas generation amount measurement step S14 the amount of gas generated on the surface of the counter substrate 1 is measured.
  • FIG. 3A is a diagram showing a gas generation amount measuring step in the method of manufacturing a liquid crystal panel according to the present embodiment
  • FIG. 3B is a manufacturing of the liquid crystal panel according to the present embodiment. It is a flowchart which shows a gas generation amount measuring process in a method.
  • the counter substrate 1 is first evacuated and put into a chamber 10 that maintains a vacuum state, and sufficiently deaerated. To do.
  • the chamber 10 is evacuated by the pump P and kept in a vacuum state.
  • the counter substrate 1 is taken out from the chamber 10 and left in the atmosphere for 10 minutes. At that time, the chamber 10 is kept in a vacuum state.
  • the counter substrate 1 is again put into the chamber 10 that holds the vacuum state, and evacuation is started. At this time, the air is exhausted by the pump P.
  • the pressure in the chamber 10 reaches 1 Pa, the exhaust is stopped and the sealed state is maintained.
  • the gas generated from the counter substrate 1 stops in the chamber 10 and the pressure in the chamber 10 increases.
  • the transition of the pressure increase in the chamber 10 is measured by a pressure gauge G.
  • the composition of the gas in the chamber 10 is analyzed by a quadrupole mass spectrometer Qmass.
  • the composition of the gas in the chamber 10 is analyzed by the quadrupole mass spectrometer Qmass, but may be omitted as necessary.
  • the main seal 3 (see FIG. 6) is applied to each portion of the liquid crystal panel 100a (see FIG. 6) on the surface on the counter substrate 1 side.
  • the main seal 3 is applied on the surface on the counter substrate 1 side in a matrix (matrix) as seen in a plan view.
  • the main seal 3 is applied to the counter substrate 1 using, for example, a screen printing technique or a dispenser drawing technique.
  • the counter substrate 1 coated with the main seal 3 is preheated. Specifically, the counter substrate 1 to which the main seal 3 is applied is preheated at a temperature of 30 ° C. to 200 ° C. and a time of 30 minutes or less. Thereby, defoaming of bubbles contained in the main seal 3 and volatilization of volatile components are promoted. Note that the seal pre-baking step S16 can be omitted as necessary.
  • the dummy seal 6 and the outer periphery seal 7 are applied on the surface of the counter substrate 1 in the dummy seal outer periphery seal application step S17.
  • the pressure of the chamber 10 recorded in the gas generation amount measurement step S14 is 8 Pa (reference value) or more. If it is 8 Pa or less, the decompression process is performed only on the active matrix substrate 2 in the next decompression process step S18.
  • the pressure in the chamber 10 being equal to or lower than the reference value means that the counter substrate 1 is a low hygroscopic substrate, and the H 2 O gas adsorbed on the surface of the counter substrate 1 when the counter substrate 1 is left in the atmosphere. It means not only that the amount is small, but also that the amount of volatile gas discharged from the resin such as the color filter formed on the counter substrate 1 is small. Therefore, it is unlikely that bubbles will be generated in the cell in the subsequent process, and the depressurization process for the deaeration process on the counter substrate 1 can be omitted.
  • the step of forming the color filter and the common electrode on the counter substrate 1 is omitted, but the color filter and the common electrode are formed on the counter substrate 1 before the rubbing step S11. be able to.
  • FIG. 4 shows changes in the pressure in the chamber 10 when measuring the gas generation amounts of the three types of counter substrates 1.
  • the pressure in the chamber 10 when measuring the gas generation amount of each of the three types of counter substrates 1 gradually increases according to the amount of gas generated on the surface of each counter substrate 1. . After 30 minutes, the pressure in the chamber 10 does not exceed 8 Pa for all three types. That is, the amount of gas generated on the surface of any counter substrate 1 is small.
  • Such a substrate can omit the decompression process between the seal coating process and the bonding process in the manufacturing process of the liquid crystal panel.
  • the pressure in the chamber 10 recorded in the gas generation amount measurement step S14 is 8 Pa (reference value) or more, the counter substrate 1 and the active matrix substrate in the decompression processing step S18 performed after the dummy seal outer periphery seal coating step S17. 2 is decompressed. Thereby, gas components (mainly H 2 O) of the counter substrate 1 and the active matrix substrate 2 can be removed.
  • liquid crystal dropping step S19 liquid crystal is dropped inside the main seal 3 applied on the counter substrate 1.
  • the bonded substrate 100 (see FIG. 6) is formed by bonding the counter substrate 1 having portions corresponding to the plurality of liquid crystal panels 100a and the active matrix substrate 2 in a vacuum by the vacuum bonding step S20. To do. Thereafter, the bonded substrate 100 is opened to the atmosphere. Thereby, the bonded substrate 100 is pressurized by the differential pressure between the inner side of the outer peripheral seal 7 where the vacuum is maintained and the outer atmospheric pressure.
  • the bonded substrate 100 is irradiated with UV (ultraviolet rays) in a light irradiation (photocuring) step S21.
  • UV ultraviolet
  • the dummy seal portions 61 and 62 made of a photo-curable sealant containing a photoinitiator applied to the bonded substrate 100 and the outer peripheral seal 7 are cured.
  • the dummy seal portions 61 and 62 and the outer peripheral seal 7 are cured to strengthen the adhesion between the counter substrate 1 and the active matrix substrate 2.
  • the bonded substrate 100 is heated by a heating (thermosetting / liquid crystal isotropic processing) step S22. Since the main seal 3 can be further cured, the adhesion between the counter substrate 1 and the active matrix substrate 2 becomes stronger. At the same time, an isotropic treatment (orientation treatment) of the liquid crystal filled between the counter substrate 1 and the active matrix substrate 2 is performed to align the liquid crystal in a predetermined direction.
  • a heating thermosetting / liquid crystal isotropic processing
  • the bonded substrate board 100 is divided into a plurality of liquid crystal panels 100a including the main seal 3 by a scribe break process S23. Thereby, a plurality of liquid crystal panels 100a having a predetermined size are formed.
  • the cell cleaning of the liquid crystal panel 100a is performed by the cell cleaning step S24.
  • this cell cleaning step S24 cleaning is performed in order to remove glass chips and dust adhering to the surface of the liquid crystal panel 100a by the above-described steps.
  • whether or not the liquid crystal panel 100a is normally manufactured is inspected by panel inspection or the like. If it is determined that the liquid crystal panel 100a is normally manufactured, the liquid crystal panel 100a shown in FIG. 5 is completed.
  • the gas generation amount is measured for the counter substrate 1, and when the measured gas amount is equal to or greater than the reference value, the counter substrate 1 is subjected to a pressure reduction process in the pressure reduction processing step S ⁇ b> 18. When the measured gas amount is equal to or less than the reference value, the decompression process is omitted for the counter substrate 1.
  • Example 2 (Example 2)
  • Example 2 will be described with reference to FIG.
  • FIG. 2 is a flowchart showing a method for manufacturing a liquid crystal panel according to the second embodiment.
  • the pressure in the chamber 10 recorded in the gas generation amount measurement step S14 is 8 Pa (reference value) or more after the dummy seal outer peripheral seal coating step S17 with respect to the counter substrate 1 is 8 Pa (reference value) or less. Judging. If it is 8 Pa or more, the counter substrate 1 and the active matrix substrate 2 are subjected to a decompression process in the next decompression process step S18. If it is 8 Pa or less, only the active matrix substrate 2 is treated in the next decompression process step S18. The decompression process is performed on the counter substrate 1 and the decompression process is omitted.
  • the pressure in the chamber 10 recorded in the gas generation amount measurement step S14 after the liquid crystal dropping step S18 is 8 Pa (reference value) or less. Determine whether. If it is 8 Pa or less, the vacuum bonding step S20A is performed next, and if it is 8 Pa or more, the vacuum bonding step S20B is performed next.
  • the vacuum bonding step S20A and the vacuum bonding step S20B have the same function as the vacuum bonding step S20, and the counter substrate 1 and the active matrix substrate 2 having portions corresponding to the plurality of liquid crystal panels 100a are bonded in vacuum. By bonding, the bonded substrate 100 is formed.
  • the vacuum bonding time A is relatively short, and in the vacuum bonding step S20B, the vacuum bonding time B is relatively long.
  • the counter substrate 1 When the gas generation amount measured with respect to the counter substrate 1 in the gas measurement amount measurement step S14 is larger than the reference value, the counter substrate 1 is relatively long by relatively increasing the period of the reduced pressure state in the vacuum bonding step S20B. Can be removed, and the generation of bubbles inside the cell can be prevented. Therefore, in the manufacturing method shown in FIG. 2, the decompression process between the seal coating process and the bonding process on the counter substrate 1 can be completely omitted, and the sealant is removed due to a line trouble or the like when the decompression process is performed. Generation
  • the pressure in the chamber 10 after 30 minutes is measured by an experiment under a specific environment and the reference value is set to 8 Pa.
  • the reference value is necessary without being limited to this. It can be set appropriately depending on the situation.
  • the reference value may be set according to the surface area or volume of the substrate, for example.
  • the liquid crystal is dropped on the counter substrate 1 in the liquid crystal dropping step S19.
  • the present invention is not limited to this, and the liquid crystal is dropped on the active matrix substrate 2 to perform the vacuum bonding step.
  • the counter substrate 1 and the active matrix substrate 2 may be bonded together in a vacuum by S20 and S20A (S20B).
  • S20 and S20A S20B
  • liquid crystal cannot be dropped on the active matrix substrate 2. This is because the hygroscopicity is different between the portion where the liquid crystal is dropped and the other portions, resulting in unevenness.
  • the active matrix substrate 2 is subjected to the decompression process in the decompression process step S18.
  • the active matrix substrate 2 is also subjected to the gas generation amount measurement, and the active matrix substrate 2 is measured.
  • the decompression process step can be omitted.
  • the problem of poor seal hardening does not occur even when the decompression process is performed.
  • FIG. 7 is a perspective view showing a large-size counter substrate and an active matrix substrate in the present embodiment.
  • the large-size active matrix substrate 2 is configured to be divided into regions of a plurality of liquid crystal panels 100a having a specific size.
  • a main seal 3 is applied in a frame shape in the vicinity of the outer periphery of the area of each liquid crystal panel 100a.
  • a dummy seal 6 and an outer peripheral seal 7 are applied so as to surround the main seal 3 applied on the active matrix substrate 2.
  • the specific shapes of the dummy seal 6 and the outer peripheral seal 7 are the same as the shapes of the dummy seal 6 and the outer peripheral seal 7 shown in FIG.
  • liquid crystal panel manufacturing method Liquid crystal panel manufacturing method
  • a manufacturing method of the liquid crystal panel according to the present embodiment will be described with reference to FIGS.
  • a method for manufacturing a liquid crystal panel will be described by giving two examples.
  • FIG. 8 is a flowchart illustrating the method for manufacturing the liquid crystal panel according to the third embodiment.
  • the post-rubbing cleaning step S32 the counter substrate 1 and the active matrix substrate 2 are cleaned.
  • dust adhering to the counter substrate 1 and the active matrix substrate 2 during the rubbing process is cleaned.
  • the post-rubbing cleaning step S32 can be omitted as necessary.
  • the degassing (degas (heating)) step S33 the gas (gas) and moisture containing organic volatile components on the substrate surfaces of the counter substrate 1 and the active matrix substrate 2 are removed by heating. Note that the degassing (degas (heating)) step S33 can be omitted if necessary.
  • the gas generation amount measurement step S34 as shown in FIG. 3, the amount of gas generated on the surface of the active matrix substrate 2 is measured. Since the specific measurement method is the same as the measurement method in the gas generation amount measurement step S14 shown in FIG. 1, detailed description thereof is omitted here.
  • the transition of the pressure in the chamber 10 is measured, and the pressure in the chamber 10 when 30 minutes have passed is recorded.
  • the main seal 3 (see FIG. 7) is applied to each portion of the liquid crystal panel 100a on the surface on the active matrix substrate 2 side in the main seal application step S35.
  • the main seal 3 is applied on the surface on the active matrix substrate 2 side in a matrix (matrix) as viewed in a plan view.
  • the main seal 3 is applied to the active matrix substrate 2 by using a screen printing technique or a dispenser drawing technique.
  • the active matrix substrate 2 coated with the main seal 3 is preheated. Specifically, the active matrix substrate 2 to which the main seal 3 is applied is preheated at a temperature of 30 ° C. to 200 ° C. and a time of 30 minutes or less. Thereby, defoaming of bubbles contained in the main seal 3 and volatilization of volatile components are promoted. Note that the seal pre-baking step S36 can be omitted as necessary.
  • the dummy seal 6 and the outer periphery seal 7 are applied on the surface of the active matrix substrate 2 in the dummy seal outer periphery seal application step S37.
  • the pressure of the chamber 10 recorded in the gas generation amount measurement step S34 is 8 Pa (reference value) or more. If it is 8 Pa or less, the decompression process is performed only on the counter substrate 1 in the next decompression process step S38.
  • the counter substrate 1 and the active matrix substrate 2 are applied to the counter substrate 1 and the active matrix substrate 2 in the decompression processing step S38 performed after the dummy seal outer periphery seal coating step S37. A decompression process is performed. Thereby, gas components (mainly H 2 O) of the counter substrate 1 and the active matrix substrate 2 can be removed.
  • gas components mainly H 2 O
  • liquid crystal dropping step S39 liquid crystal is dropped inside the main seal 3 applied on the active matrix substrate 2.
  • the bonded substrate 100 is formed by bonding the counter substrate 1 having a portion corresponding to the plurality of liquid crystal panels 100a and the active matrix substrate 2 in a vacuum in the vacuum bonding step S40. Thereafter, the bonded substrate 100 is opened to the atmosphere. Thereby, the bonded substrate 100 is pressurized by the differential pressure between the inner side of the outer peripheral seal 7 where the vacuum is maintained and the outer atmospheric pressure.
  • the decompression process is performed on the active matrix substrate 2 in the decompression process step S38. In the case where the measured gas amount is equal to or less than the reference value, the decompression process is omitted for the active matrix substrate 2.
  • Example 4 Hereinafter, Example 4 is demonstrated based on FIG.
  • FIG. 9 is a flowchart showing a method for manufacturing a liquid crystal panel according to the fourth embodiment.
  • the pressure of the chamber 10 recorded in the gas generation amount measurement step S34 after the dummy seal outer periphery seal coating step S37 is 8 Pa (reference value) or more with respect to the active matrix substrate 2 is less than or equal to 8 Pa (reference value). Determine whether. If the pressure is 8 Pa or more, the active matrix substrate 2 and the counter substrate 1 are subjected to a pressure reduction process in the pressure reduction processing step S38. This pressure reduction process is omitted.
  • the vacuum bonding step S40A is performed next, and if it is 8 Pa or more, the vacuum bonding step S40B is performed next.
  • the vacuum bonding step S40A and the vacuum bonding step S40B have the same function as the vacuum bonding step S40, and the counter substrate 1 and the active matrix substrate 2 having portions corresponding to the plurality of liquid crystal panels 100a are bonded in vacuum. By bonding, the bonded substrate 100 is formed.
  • the vacuum bonding time A is relatively short, and in the vacuum bonding step S40B, the vacuum bonding time B is relatively long.
  • the gas generated in the active matrix substrate 2 is reduced by relatively lengthening the period of the reduced pressure state in the vacuum bonding step S40B. It can be removed and the generation of bubbles inside the cell can be prevented. Therefore, the decompression process between the seal coating process and the bonding process on the active matrix substrate 2 can be completely omitted, and the bonding failure of the substrates due to excessive curing of the sealing agent due to line troubles or the like occurs. Can be suppressed.
  • the pressure in the chamber 10 after 30 minutes is measured by an experiment under a specific environment and the reference value is set to 8 Pa.
  • the reference value is necessary without being limited to this. It can be set appropriately depending on the situation.
  • the liquid crystal is dropped on the active matrix substrate 2 in the liquid crystal dropping step S39.
  • the present invention is not limited to this, and the liquid crystal is dropped on the counter substrate 1 to form the vacuum bonding step S40.
  • the counter substrate 1 and the active matrix substrate 2 may be bonded together in vacuum by S40A (S40B).
  • the counter substrate 1 is subjected to the decompression process in the decompression process step S38.
  • the gas generation amount is also measured for the counter substrate 1, and the measured gas amount is the reference value. In the following cases, it is possible to omit the decompression process.
  • the seal is not formed on the counter substrate 1, the problem of poor seal hardening does not occur even if the decompression process is performed.
  • the gas generation amount measurement process is performed for each substrate.
  • the present invention is not limited to this, and at the stage of determining the manufacturing process for each type of product, It is also possible to measure the amount of gas generated and to design the process by determining the necessity of the decompression process based on the result.
  • the first substrate is placed in a vacuum chamber, then removed from the chamber and left in the atmosphere, and then again, It is characterized by measuring the amount of gas released when placed in a vacuum chamber.
  • the liquid crystal panel manufacturing method of the present invention is characterized in that the gas amount is measured by measuring a pressure in the chamber.
  • the amount of gas generated on the surface of the first substrate can be easily measured by measuring the pressure in the chamber.
  • the reference value is determined by the pressure, and the pressure serving as the reference value is 8 Pa.
  • the first substrate may be a counter substrate and the second substrate may be an active matrix substrate.
  • the first substrate may be an active matrix substrate
  • the second substrate may be a counter substrate
  • the present invention can be used in a method for manufacturing a liquid crystal panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

The purpose of the present invention is to provide a process for producing a liquid crystal panel (100a), whereby it becomes possible to reduce the occurrence of seal curing failure. In a generated gas quantity measurement step (S14), when a counter substrate (1) is allowed to leave in the atmosphere for a predetermined period, the quantity of a gas generated on the surface of the counter substrate (1) is measured, and a pressure-reducing treatment for the counter substrate (1) is eliminated when the quantity of the generated gas is equal to or smaller than a reference value.

Description

液晶パネルの製造方法Manufacturing method of liquid crystal panel
 本発明は、液晶パネルの製造方法に関するものであり、特に、液晶パネルを構成する第1基板または第2基板のうちの少なくともいずれか一方にシールを塗布する工程を備える液晶パネルの製造方法に関するものである。 The present invention relates to a method for manufacturing a liquid crystal panel, and more particularly to a method for manufacturing a liquid crystal panel including a step of applying a seal to at least one of a first substrate and a second substrate constituting the liquid crystal panel. It is.
 液晶パネルは、例えば、薄膜トランジスタからなる駆動素子や画素電極がマトリクス状に形成されたアクティブマトリクス基板と、共通電極やカラーフィルタが形成された対向基板とを数μmの間隔でシールにより貼り合わせ、それら両基板の間隙に液晶材料を充填することにより製造される。 The liquid crystal panel is, for example, an active matrix substrate in which driving elements made of thin film transistors and pixel electrodes are formed in a matrix, and a counter substrate on which common electrodes and color filters are formed are bonded together with a seal at intervals of several μm. Manufactured by filling the gap between the two substrates with a liquid crystal material.
 この液晶材料を充填する方法としては、従来より真空注入法や液晶滴下法がよく知られている。例えば、液晶滴下法は、以下のようにして行われている。 As a method for filling the liquid crystal material, a vacuum injection method and a liquid crystal dropping method are well known. For example, the liquid crystal dropping method is performed as follows.
 まず、アクティブマトリクス基板と対向基板の両基板の表面に液晶材料を一定方向に配向させる配向膜をそれぞれ形成して、ラビング処理を行う。 First, an alignment film for aligning a liquid crystal material in a certain direction is formed on the surfaces of both the active matrix substrate and the counter substrate, and a rubbing process is performed.
 次に、上記両基板の一方に基板同士を接着させるためのシールを塗布する。 Next, a seal for adhering the substrates to each other is applied to one of the two substrates.
 次に、上記両基板の一方に所定量の液晶材料を滴下し、真空下で位置精度よく貼り合わせを行い、シールの硬化を行う。 Next, a predetermined amount of liquid crystal material is dropped onto one of the two substrates and bonded together with high positional accuracy under vacuum to cure the seal.
 ところで、上記両基板を貼り合わせた後に、セルの内部に気泡が発生することがある。この気泡の発生を抑制するために、基板に液晶材料を滴下する前に、各基板に対し真空脱気処理(減圧処理)を行う方法が知られている。これによって、基板のガス成分(主にHO)を取り除くことができる。 By the way, after the two substrates are bonded together, bubbles may be generated inside the cell. In order to suppress the generation of bubbles, a method is known in which a vacuum deaeration process (decompression process) is performed on each substrate before the liquid crystal material is dropped on the substrate. Thereby, the gas component (mainly H 2 O) of the substrate can be removed.
 例えば、特許文献1において、基板に液晶材料を滴下する前に、各基板に対し減圧処理を行う液晶パネルの製造方法が開示されている。 For example, Patent Document 1 discloses a method for manufacturing a liquid crystal panel in which a decompression process is performed on each substrate before the liquid crystal material is dropped onto the substrate.
 図10に基づいて、特許文献1に開示された液晶パネルの製造方法の一実施形態について説明する。図10は、特許文献1において開示された液晶パネルの製造方法の一実施形態を示すフローチャートである。 Based on FIG. 10, an embodiment of a method of manufacturing a liquid crystal panel disclosed in Patent Document 1 will be described. FIG. 10 is a flowchart showing an embodiment of a method of manufacturing a liquid crystal panel disclosed in Patent Document 1.
 図10に示すように、特許文献1に開示された液晶滴下法により液晶材料を充填する液晶パネルの製造方法では、まず、ラビング工程S111において、対向基板およびアクティブマトリクス基板のそれぞれに配向膜を形成して、ラビング処理を行う。 As shown in FIG. 10, in the method of manufacturing a liquid crystal panel filled with a liquid crystal material by the liquid crystal dropping method disclosed in Patent Document 1, first, an alignment film is formed on each of the counter substrate and the active matrix substrate in the rubbing step S111. Then, the rubbing process is performed.
 次に、シール塗布工程S112により、対向基板側の表面上にシールの塗布を行う。 Next, a seal is applied on the surface on the counter substrate side in the seal application step S112.
 次に、減圧処理工程S113により、対向基板およびアクティブマトリクス基板に対して減圧処理を行う。具体的には、対向基板およびアクティブマトリクス基板を1Pa~100Paの真空度に保った装置内に配置して減圧処理を行う。これにより、基板のガス成分(主にHO)を取り除くことができる。 Next, a decompression process is performed on the counter substrate and the active matrix substrate in a decompression process step S113. Specifically, the counter substrate and the active matrix substrate are placed in an apparatus maintained at a vacuum level of 1 Pa to 100 Pa, and the decompression process is performed. Thereby, the gas component (mainly H 2 O) of the substrate can be removed.
 次に、液晶滴下工程S114により、アクティブマトリクス基板に液晶の滴下を行う。 Next, liquid crystal is dropped on the active matrix substrate in the liquid crystal dropping step S114.
 次に、真空貼り合わせ工程S115により、液晶パネルを構成する対向基板とアクティブマトリクス基板とを真空中で貼り合わせることにより、貼り合わせ基板を形成する。この後、貼り合わせ基板を大気開放する。これにより、貼り合わせ基板は、大気圧によって加圧される。 Next, in the vacuum bonding step S115, the counter substrate and the active matrix substrate constituting the liquid crystal panel are bonded in a vacuum to form a bonded substrate. Thereafter, the bonded substrate is opened to the atmosphere. Thereby, a bonded substrate board is pressurized by atmospheric pressure.
 次に、光照射(光硬化)工程S116により、貼り合わせ基板に対して、UV(紫外線)を照射する。UV(紫外線)を照射することにより、貼り合わせ基板に塗布されている光開始剤を含む光硬化性のシールが仮硬化される。 Next, UV (ultraviolet light) is irradiated to the bonded substrate in the light irradiation (photocuring) step S116. By irradiating with UV (ultraviolet light), the photocurable seal containing the photoinitiator applied to the bonded substrate is temporarily cured.
 次に、加熱(熱硬化)工程S117により、貼り合わせ基板の加熱処理を行う。加熱することにより、貼り合わせ基板に塗布されているシールが本硬化される。 Next, the bonded substrate is heat-treated in a heating (thermosetting) step S117. By heating, the seal applied to the bonded substrate is fully cured.
 なお、両基板を貼り合わせる前に減圧処理を行う技術は、上記以外に例えば特許文献2にも開示されている。 In addition to the above, a technique for performing a decompression process before bonding the two substrates is also disclosed in, for example, Patent Document 2.
日本国公開特許公報「特開2007-101638号公報(2007年4月19日公開)」Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2007-101638 (published on April 19, 2007)” 日本国公開特許公報「特開2009-288364号公報(2009年12月10日公開)」Japanese Patent Publication “JP 2009-288364 A (published on Dec. 10, 2009)”
 しかしながら、特許文献1において開示された上述のような液晶パネルの製造方法では、減圧処理工程S113において、ライントラブルによりシールを塗布した対向基板が減圧処理を行う装置内で滞留した場合、シールが装置内で一定温度/一定真空度に保たれているため、ある一定時間を超過するとシールが硬化し、接着不良が発生してしまうという問題が生じる。 However, in the above-described liquid crystal panel manufacturing method disclosed in Patent Document 1, in the decompression processing step S113, when the counter substrate to which the seal is applied due to line trouble stays in the decompression processing apparatus, the seal is installed in the device. Since the temperature is maintained at a constant temperature / a certain degree of vacuum, the seal is cured when a certain time is exceeded, resulting in a problem of poor adhesion.
 本発明は、上記の問題点に鑑みてなされたものであり、シールの硬化による接着不良の発生を低減することが可能となる液晶パネルの製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a liquid crystal panel that can reduce the occurrence of poor adhesion due to curing of a seal.
 上記の課題を解決するために、本発明の液晶パネルの製造方法は、
 液晶パネルを構成する第1基板および第2基板のうちの上記第1基板を減圧状態においたときに、当該第1基板から放出されるガス量を測定するガス測定工程と、
 上記ガス測定工程後に上記第1基板にシール剤を塗布するシール塗布工程と、
 上記シール剤が塗布された第1基板と上記第2基板とを貼り合わせる貼り合わせ工程とを含み、
 上記ガス測定工程において測定したガス量が基準値よりも大きい場合には上記シール塗布工程と上記貼り合わせ工程との間に上記第1基板を減圧状態におく減圧処理工程を行い、上記ガス測定工程において測定したガス量が基準値よりも小さい場合には上記シール塗布工程と上記貼り合わせ工程との間の上記減圧処理工程を省略することを特徴とする。
In order to solve the above-described problems, a method for manufacturing a liquid crystal panel of the present invention includes:
A gas measurement step of measuring a gas amount released from the first substrate when the first substrate out of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state;
A seal application step of applying a sealant to the first substrate after the gas measurement step;
Including a bonding step of bonding the first substrate coated with the sealing agent and the second substrate,
When the gas amount measured in the gas measurement step is larger than a reference value, a depressurization treatment step of placing the first substrate in a depressurized state is performed between the seal coating step and the bonding step, and the gas measurement step When the gas amount measured in step 1 is smaller than a reference value, the pressure reduction process step between the seal application step and the bonding step is omitted.
 上述した背景技術では、シール剤の塗布後にシールの塗布された基板を減圧処理することにより、基板のガス成分(主にHO)を取り除くようにしている。 In the background art described above, the gas component (mainly H 2 O) of the substrate is removed by subjecting the substrate to which the seal is applied after the application of the sealant to a reduced pressure.
 ところが、上記背景技術によれば、ライントラブルなどにより上記減圧処理が所定時間を超過してしまうことがあり、そのような場合にはシール剤が過度に硬化し、基板の貼り合わせ不良を招来するという問題があった。 However, according to the background art, the decompression process may exceed a predetermined time due to a line trouble or the like, and in such a case, the sealing agent is excessively cured, resulting in poor bonding of the substrates. There was a problem.
 これに対し、本発明者は、シール剤塗布前の基板のガス成分吸着量に着目し、この吸着量が小さければセルの内部で発生する気泡が少なく、シール剤塗布後の減圧処理を省略してもよいことを見いだした。 On the other hand, the present inventor pays attention to the gas component adsorption amount of the substrate before applying the sealing agent, and if this adsorption amount is small, there are few bubbles generated inside the cell, and the decompression process after applying the sealing agent is omitted. I found something that I could do.
 そこで、本発明に係る液晶パネルの製造方法では、上記シール剤塗布前の基板のガス成分吸着量を推し量るために、シール剤を塗布すべき第1基板を減圧状態においたときに、当該第1基板から放出されるガス量を測定するガス測定工程が含まれている。そして、測定したガス量が基準値よりも大きい場合にはシール塗布工程と貼り合わせ工程との間に第1基板を減圧状態におく減圧処理工程を行い、測定したガス量が基準値よりも小さい場合にはシール塗布工程と貼り合わせ工程との間の減圧処理工程を省略することとしている。 Therefore, in the method of manufacturing a liquid crystal panel according to the present invention, in order to estimate the gas component adsorption amount of the substrate before applying the sealing agent, the first substrate to which the sealing agent is applied is placed in a reduced pressure state. A gas measurement step for measuring the amount of gas released from the substrate is included. When the measured gas amount is larger than the reference value, a decompression process step is performed in which the first substrate is placed in a decompressed state between the seal coating step and the bonding step, and the measured gas amount is smaller than the reference value. In some cases, the decompression process between the seal application process and the bonding process is omitted.
 これにより、測定したガス量が基準値よりも小さい場合にはシール塗布工程と貼り合わせ工程との間の減圧処理工程を省略しているため、ライントラブルなどによりシール剤が過度に硬化することによる基板の貼り合わせ不良の発生を抑制することができる。 As a result, when the measured gas amount is smaller than the reference value, the depressurization process between the seal application process and the bonding process is omitted, and therefore the sealant is excessively cured due to line trouble or the like. Generation | occurrence | production of the bonding defect of a board | substrate can be suppressed.
 なお、上記「減圧状態」とは、大気圧未満の状態を意味し、望ましくは0.1Pa~2Paである。2Pa以上は脱気が不十分となり、0.1Pa以下は減圧処理に用いられるポンプ能力の限界を超える。 The “depressurized state” means a state below atmospheric pressure, and preferably 0.1 Pa to 2 Pa. When the pressure is 2 Pa or more, deaeration becomes insufficient, and when the pressure is 0.1 Pa or less, the limit of the pump capacity used for the pressure reduction treatment is exceeded.
 上記の課題を解決するために、本発明の液晶パネルの製造方法は、
 液晶パネルを構成する第1基板および第2基板のうちの上記第1基板を減圧状態においたときに、当該第1基板から放出されるガス量を測定するガス測定工程と、
 上記ガス測定工程後に上記第1基板にシール剤を塗布するシール塗布工程と、
 上記シール剤が塗布された第1基板と上記第2基板とを減圧状態で貼り合わせる貼り合わせ工程とを含み、
 上記ガス測定工程において測定したガス量が基準値よりも大きい場合には上記貼り合わせ工程における減圧状態の期間を相対的に長くし、上記ガス測定工程において測定したガス量が基準値よりも小さい場合には上記貼り合わせ工程における減圧状態の期間を相対的に短くすることを特徴とする。
In order to solve the above-described problems, a method for manufacturing a liquid crystal panel of the present invention includes:
A gas measurement step of measuring a gas amount released from the first substrate when the first substrate out of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state;
A seal application step of applying a sealant to the first substrate after the gas measurement step;
A bonding step of bonding the first substrate coated with the sealant and the second substrate in a reduced pressure state,
When the gas amount measured in the gas measurement step is larger than the reference value, the decompression period in the bonding step is relatively long, and the gas amount measured in the gas measurement step is smaller than the reference value The method is characterized in that the period of the reduced pressure state in the bonding step is relatively shortened.
 本発明に係る液晶パネルの製造方法では、上記シール剤塗布前の基板のガス成分吸着量を推し量るために、シール剤を塗布すべき第1基板を減圧状態においたときに、当該第1基板から放出されるガス量を測定するガス測定工程が含まれている。そして、上記ガス測定工程において測定したガス量が基準値よりも大きい場合には上記貼り合わせ工程における減圧状態の期間を相対的に長くし、上記ガス測定工程において測定したガス量が基準値よりも小さい場合には上記貼り合わせ工程における減圧状態の期間を相対的に短くしている。 In the method for manufacturing a liquid crystal panel according to the present invention, when the first substrate to which the sealant is to be applied is placed in a reduced pressure state in order to estimate the gas component adsorption amount of the substrate before the sealant is applied, A gas measurement step for measuring the amount of gas released is included. When the gas amount measured in the gas measurement step is larger than the reference value, the period of the reduced pressure state in the bonding step is relatively long, and the gas amount measured in the gas measurement step is larger than the reference value. When it is small, the period of the reduced pressure state in the bonding step is relatively shortened.
 ガス測定工程において測定したガス量が基準値よりも大きい場合には貼り合わせ工程における減圧状態の期間を相対的に長くすることにより、第1基板で発生したガスを取り除くことができ、セルの内部での気泡の発生を防止することができる。したがって、シール塗布工程と貼り合わせ工程との間の減圧処理工程を省略することができ、ライントラブルなどによりシール剤が過度に硬化することによる基板の貼り合わせ不良の発生を抑制することができる。 When the gas amount measured in the gas measurement process is larger than the reference value, the gas generated in the first substrate can be removed by relatively lengthening the period of the reduced pressure state in the bonding process, and the inside of the cell It is possible to prevent the generation of bubbles in Therefore, the decompression process between the seal application process and the bonding process can be omitted, and the occurrence of defective bonding of the substrates due to excessive curing of the sealant due to line troubles or the like can be suppressed.
 本発明の液晶パネルの製造方法は、液晶パネルを構成する第1基板および第2基板のうちの上記第1基板を減圧状態においたときに、当該第1基板から放出されるガス量を測定するガス測定工程と、上記ガス測定工程後に上記第1基板にシール剤を塗布するシール塗布工程と、上記シール剤が塗布された第1基板と上記第2基板とを貼り合わせる貼り合わせ工程とを含み、上記ガス測定工程において測定したガス量が基準値よりも大きい場合には上記シール塗布工程と上記貼り合わせ工程との間に上記第1基板を減圧状態におく減圧処理工程を行い、上記ガス測定工程において測定したガス量が基準値よりも小さい場合には上記シール塗布工程と上記貼り合わせ工程との間の上記減圧処理工程を省略することを特徴とする。 The manufacturing method of the liquid crystal panel of the present invention measures the amount of gas released from the first substrate when the first substrate of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state. A gas measurement step, a seal application step of applying a sealant to the first substrate after the gas measurement step, and a bonding step of bonding the first substrate coated with the sealant and the second substrate together When the gas amount measured in the gas measurement step is larger than a reference value, a depressurization treatment step is performed in which the first substrate is placed in a depressurized state between the seal coating step and the bonding step, and the gas measurement is performed. When the gas amount measured in the process is smaller than a reference value, the pressure reduction process step between the seal application step and the bonding step is omitted.
 また、本発明の液晶パネルの製造方法は、液晶パネルを構成する第1基板および第2基板のうちの上記第1基板を減圧状態においたときに、当該第1基板から放出されるガス量を測定するガス測定工程と、上記ガス測定工程後に上記第1基板にシール剤を塗布するシール塗布工程と、上記シール剤が塗布された第1基板と上記第2基板とを減圧状態で貼り合わせる貼り合わせ工程とを含み、上記ガス測定工程において測定したガス量が基準値よりも大きい場合には上記貼り合わせ工程における減圧状態の期間を相対的に長くし、上記ガス測定工程において測定したガス量が基準値よりも小さい場合には上記貼り合わせ工程における減圧状態の期間を相対的に短くすることを特徴とする。 The method for manufacturing a liquid crystal panel according to the present invention also provides an amount of gas released from the first substrate when the first substrate of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state. A gas measuring step for measuring, a seal applying step for applying a sealing agent to the first substrate after the gas measuring step, and a bonding for bonding the first substrate coated with the sealing agent and the second substrate under reduced pressure And when the gas amount measured in the gas measurement step is larger than a reference value, the period of the reduced pressure state in the bonding step is relatively long, and the gas amount measured in the gas measurement step is When it is smaller than the reference value, the period of the reduced pressure state in the bonding step is relatively shortened.
 それゆえ、シールの硬化による接着不良の発生を低減することが可能となる液晶パネルの製造方法を提供することができる。 Therefore, it is possible to provide a method for manufacturing a liquid crystal panel that can reduce the occurrence of adhesion failure due to curing of the seal.
本発明の実施の形態1に係る液晶パネルの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the liquid crystal panel which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る液晶パネルの製造方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the manufacturing method of the liquid crystal panel which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るガス発生量測定工程を説明する図である。(a)は、本発明の実施の形態1に係る液晶パネルの製造方法において、ガス発生量測定工程を示す図であり、(b)は、本発明の実施の形態1に係る液晶パネルの製造方法において、ガス発生量測定工程を示すフローチャートである。It is a figure explaining the gas generation amount measuring process which concerns on Embodiment 1 of this invention. (A) is a figure which shows a gas generation amount measurement process in the manufacturing method of the liquid crystal panel which concerns on Embodiment 1 of this invention, (b) is manufacture of the liquid crystal panel which concerns on Embodiment 1 of this invention. It is a flowchart which shows a gas generation amount measuring process in a method. 3種類の基板に対し、図3に示すガス発生量測定工程により、ガス発生量を測定する際におけるチャンバー内圧力の推移を示すグラフである。It is a graph which shows transition of the pressure in a chamber at the time of measuring a gas generation amount with respect to three types of board | substrates by the gas generation amount measurement process shown in FIG. 本発明の実施の形態1に係る液晶パネルを構成を示す斜視図である。It is a perspective view which shows a structure of the liquid crystal panel which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る大版の対向基板およびアクティブマトリクス基板を示す斜視図である。1 is a perspective view showing a large-size counter substrate and an active matrix substrate according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る大版の対向基板およびアクティブマトリクス基板を示す斜視図である。It is a perspective view which shows the opposing board | substrate and active matrix board | substrate of a large plate which concern on Embodiment 2 of this invention. 本発明の実施の形態2に係る液晶パネルの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the liquid crystal panel which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る液晶パネルの製造方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the manufacturing method of the liquid crystal panel which concerns on Embodiment 2 of this invention. 特許文献1において開示された液晶パネルの製造方法の一実施形態を示すフローチャートである。10 is a flowchart showing an embodiment of a method for manufacturing a liquid crystal panel disclosed in Patent Document 1.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 〔実施の形態1〕
 以下、図1~図6に基づいて、実施の形態1について説明する。
[Embodiment 1]
The first embodiment will be described below with reference to FIGS.
 本実施の形態においては、液晶滴下法により液晶材料を充填する液晶パネルの製造方法について説明する。 In this embodiment, a method for manufacturing a liquid crystal panel in which a liquid crystal material is filled by a liquid crystal dropping method will be described.
 (液晶パネルの構成)
 まず、本実施の形態における液晶パネルの構成について、図5~図6に基づいて説明する。
(Configuration of LCD panel)
First, the structure of the liquid crystal panel in this embodiment will be described with reference to FIGS.
 図5は、本実施の形態における液晶パネルの構成を示す斜視図である。 FIG. 5 is a perspective view showing the configuration of the liquid crystal panel in the present embodiment.
 図5に示すように、液晶パネル100aは、複数のTFT(薄膜トランジスタ)が形成されたアクティブマトリクス基板2aと、アクティブマトリクス基板2aに対向して配置された対向基板1aとが、メインシール3により間隔を隔てて貼り合わされ、それら両基板の間に塗布されたメインシール3の内側に液晶層が封入されて構成されている。 As shown in FIG. 5, in the liquid crystal panel 100 a, an active matrix substrate 2 a on which a plurality of TFTs (thin film transistors) are formed and a counter substrate 1 a disposed to face the active matrix substrate 2 a are separated by a main seal 3. The liquid crystal layer is sealed inside the main seal 3 applied between the two substrates.
 アクティブマトリクス基板2aには、図示を省略するが、表示の単位領域である画素が複数マトリクス状に配置されている。そして、各画素毎にTFTが配置されている。また、アクティブマトリクス基板2aは、図示を省略するが、液晶層側の表面に配向膜が設けられている。 In the active matrix substrate 2a, although not shown, a plurality of pixels as display unit areas are arranged in a matrix. A TFT is arranged for each pixel. The active matrix substrate 2a is provided with an alignment film on the surface on the liquid crystal layer side (not shown).
 一方、対向基板1aには、図示を省略するが、カラーフィルタや共通電極等が形成されている。また、図示を省略するが、対向基板1aは、液晶層側の表面に配向膜が設けられている。 On the other hand, although not shown, a color filter, a common electrode, and the like are formed on the counter substrate 1a. Although not shown, the counter substrate 1a is provided with an alignment film on the surface on the liquid crystal layer side.
 図6は、本実施の形態における大版の対向基板およびアクティブマトリクス基板を示す斜視図である。なお、大版の対向基板とは、後に個別の液晶パネルとして分断されることによって対向基板1aとなる部分を複数含んだいわゆるマザー基板(マザーガラス)である。同様に、大版のアクティブマトリクス基板とは、後に個別の液晶パネルとして分断されることによってアクティブマトリクス基板2aとなる部分を複数含んだいわゆるマザー基板(マザーガラス)である。 FIG. 6 is a perspective view showing a large-size counter substrate and an active matrix substrate in the present embodiment. The large-size counter substrate is a so-called mother substrate (mother glass) including a plurality of portions to be the counter substrate 1a by being divided later as individual liquid crystal panels. Similarly, the large-size active matrix substrate is a so-called mother substrate (mother glass) including a plurality of portions that become the active matrix substrate 2a by being divided later as individual liquid crystal panels.
 本実施の形態では、大版の対向基板およびアクティブマトリクス基板にそれぞれ複数の対向基板1aおよびアクティブマトリクス基板2aが含まれる場合を想定して説明するが、本発明は、大版の対向基板およびアクティブマトリクス基板がそれぞれ単一の対向基板1aおよびアクティブマトリクス基板2aしか含まない構成についても適用可能である。 In the present embodiment, a case where a plurality of counter substrates 1a and active matrix substrates 2a are included in the large-size counter substrate and the active matrix substrate, respectively, will be described. The present invention can also be applied to a configuration in which each matrix substrate includes only a single counter substrate 1a and active matrix substrate 2a.
 図6に示すように、大版の対向基板1は、特定のサイズの複数の液晶パネル100aの領域に分断可能に構成されている。 As shown in FIG. 6, the large counter substrate 1 is configured to be divided into a plurality of liquid crystal panels 100a having a specific size.
 対向基板1において、各液晶パネル100aの領域の外周近傍にメインシール3が枠状に塗布されている。また、対向基板1上に塗布したメインシール3を取り囲むようにダミーシール6および外周シール7が塗布されている。このダミーシール6は、液晶パネル100aに対応した部分の周囲に塗布するシール剤であり、ダミーシール部61およびダミーシール部62からなる。ダミーシール部61は、メインシール3を塗布した部分を取り囲むようにU字状またはL字状に塗布され、ダミーシール部62は、対向基板1上に塗布したダミーシール部61上を横切るように枠状に塗布されている。また、ダミーシール6を塗布した部分を取り囲むように対向基板1の外周近傍部分に外周シール7が枠状に塗布されている。外周シール7は、対向基板1およびアクティブマトリクス基板2の基板面内の真空度を保持するためのシール剤である。このダミーシール6および外周シール7は、メインシール3とは成分の異なる光開始剤を含むシール剤からなる。 In the counter substrate 1, a main seal 3 is applied in a frame shape in the vicinity of the outer periphery of the region of each liquid crystal panel 100a. A dummy seal 6 and an outer peripheral seal 7 are applied so as to surround the main seal 3 applied on the counter substrate 1. The dummy seal 6 is a sealant applied around the portion corresponding to the liquid crystal panel 100 a and includes a dummy seal portion 61 and a dummy seal portion 62. The dummy seal portion 61 is applied in a U-shape or L-shape so as to surround the portion where the main seal 3 is applied, and the dummy seal portion 62 crosses over the dummy seal portion 61 applied on the counter substrate 1. It is applied in a frame shape. In addition, an outer peripheral seal 7 is applied in a frame shape around the outer periphery of the counter substrate 1 so as to surround the portion where the dummy seal 6 is applied. The outer peripheral seal 7 is a sealing agent for maintaining the degree of vacuum in the substrate surfaces of the counter substrate 1 and the active matrix substrate 2. The dummy seal 6 and the outer peripheral seal 7 are made of a sealant containing a photoinitiator having a component different from that of the main seal 3.
 この対向基板1とアクティブマトリクス基板2とを貼り合わせて、貼り合わせ基板100が形成され、貼り合わせ基板100をメインシール3を含む複数の液晶パネル100aに分断することにより、所定の大きさの複数の液晶パネル100aが形成される。 The counter substrate 1 and the active matrix substrate 2 are bonded to each other to form a bonded substrate 100. The bonded substrate 100 is divided into a plurality of liquid crystal panels 100a including the main seal 3, whereby a plurality of predetermined sizes are provided. The liquid crystal panel 100a is formed.
 (液晶パネルの製造方法)
 以下、図1~図4に基づいて、本実施の形態に係る液晶パネルの製造方法について説明する。本実施の形態においては、2つの実施例を挙げて、液晶パネルの製造方法について説明する。
(Liquid crystal panel manufacturing method)
A method for manufacturing the liquid crystal panel according to the present embodiment will be described below with reference to FIGS. In the present embodiment, a method for manufacturing a liquid crystal panel will be described by giving two examples.
 (実施例1)
 図1は、実施例1に係る液晶パネルの製造方法を示すフローチャートである。
Example 1
FIG. 1 is a flowchart illustrating a method for manufacturing a liquid crystal panel according to the first embodiment.
 図1に示すように、液晶滴下法により液晶材料を充填する本実施の形態に係る液晶パネルの製造方法では、まず、ラビング工程S11において、アクティブマトリクス基板2(図6参照)および対向基板1(図6参照)に、それぞれ配向膜を形成し、ラビング処理を行う。 As shown in FIG. 1, in the manufacturing method of the liquid crystal panel according to the present embodiment in which the liquid crystal material is filled by the liquid crystal dropping method, first, in the rubbing step S11, the active matrix substrate 2 (see FIG. 6) and the counter substrate 1 ( In FIG. 6), an alignment film is formed and a rubbing process is performed.
 次に、ラビング後洗浄工程S12において、対向基板1およびアクティブマトリクス基板2の洗浄を行う。このラビング後洗浄工程S12により、ラビング処理時に対向基板1およびアクティブマトリクス基板2に付着したゴミなどの洗浄を行う。なお、ラビング後洗浄工程S12は、必要に応じて省略可能である。 Next, in the post-rubbing cleaning step S12, the counter substrate 1 and the active matrix substrate 2 are cleaned. In this post-rubbing cleaning step S12, dust adhered to the counter substrate 1 and the active matrix substrate 2 during the rubbing process is cleaned. The post-rubbing cleaning step S12 can be omitted as necessary.
 次に、脱気(デガス(加熱))工程S13により、対向基板1およびアクティブマトリクス基板2の基板表面の有機性の揮発性成分を含むガス(気体)や水分を加熱により除去する。なお、脱気(デガス(加熱))工程S13は、必要に応じて省略可能である。 Next, in the degassing (degas (heating)) step S13, the gas (gas) and moisture containing organic volatile components on the substrate surfaces of the counter substrate 1 and the active matrix substrate 2 are removed by heating. Note that the deaeration (degas (heating)) step S13 can be omitted as necessary.
 次に、ガス発生量測定工程S14において、対向基板1の表面で発生するガスの量を測定する。 Next, in the gas generation amount measurement step S14, the amount of gas generated on the surface of the counter substrate 1 is measured.
 以下、ガス発生量測定工程S14について具体的に説明する。 Hereinafter, the gas generation amount measurement step S14 will be specifically described.
 (ガス発生量測定工程)
 図3の(a)は、本実施の形態に係る液晶パネルの製造方法において、ガス発生量測定工程を示す図であり、図3の(b)は、本実施の形態に係る液晶パネルの製造方法において、ガス発生量測定工程を示すフローチャートである。
(Gas generation measurement process)
FIG. 3A is a diagram showing a gas generation amount measuring step in the method of manufacturing a liquid crystal panel according to the present embodiment, and FIG. 3B is a manufacturing of the liquid crystal panel according to the present embodiment. It is a flowchart which shows a gas generation amount measuring process in a method.
 図3の(a)および(b)に示すように、ガス発生量測定工程S14においては、まず、対向基板1を、排気して真空状態を保持するチャンバー10に投入して、充分に脱気する。なお、チャンバー10はポンプPにより排気して真空状態を保持する。そして、対向基板1をチャンバー10から取り出して、10分間大気に放置する。その際、チャンバー10は真空状態が保持される。その後、対向基板1を、真空状態を保持するチャンバー10に再投入して、排気を開始する。この際も、ポンプPにより排気する。そして、チャンバー10内の圧力が1Paに到達すると排気を停止し、密閉状態を保持する。これにより、対向基板1から発生したガスはチャンバー10内に止まり、チャンバー内10の圧力が上昇する。このチャンバー10内の圧力の上昇の推移を圧力計Gにより測定する。一方、四重極質量分析計Qmassにより、チャンバー10内のガスの組成を分析する。本実施の形態においては、四重極質量分析計Qmassによりチャンバー10内のガスの組成を分析しているが、必要に応じて省略可能である。 As shown in FIGS. 3A and 3B, in the gas generation amount measurement step S14, first, the counter substrate 1 is first evacuated and put into a chamber 10 that maintains a vacuum state, and sufficiently deaerated. To do. The chamber 10 is evacuated by the pump P and kept in a vacuum state. Then, the counter substrate 1 is taken out from the chamber 10 and left in the atmosphere for 10 minutes. At that time, the chamber 10 is kept in a vacuum state. Thereafter, the counter substrate 1 is again put into the chamber 10 that holds the vacuum state, and evacuation is started. At this time, the air is exhausted by the pump P. When the pressure in the chamber 10 reaches 1 Pa, the exhaust is stopped and the sealed state is maintained. As a result, the gas generated from the counter substrate 1 stops in the chamber 10 and the pressure in the chamber 10 increases. The transition of the pressure increase in the chamber 10 is measured by a pressure gauge G. On the other hand, the composition of the gas in the chamber 10 is analyzed by a quadrupole mass spectrometer Qmass. In the present embodiment, the composition of the gas in the chamber 10 is analyzed by the quadrupole mass spectrometer Qmass, but may be omitted as necessary.
 チャンバー10内圧力の推移を測定し、30分経過した時点での、チャンバー10内圧力を記録する。 Measure the change in the pressure in the chamber 10 and record the pressure in the chamber 10 when 30 minutes have passed.
 次に、メインシール塗布工程S15により、対向基板1側の表面上の複数の液晶パネル100a(図6参照)となる部分毎にメインシール3(図6参照)の塗布を行う。このメインシール3は、対向基板1側の表面上に、平面的に見てマトリクス状(行列状)に塗布する。また、メインシール塗布工程S15では、たとえば、スクリーン印刷技術やディスペンサ描画技術を用いて、対向基板1にメインシール3の塗布を行う。 Next, in the main seal application step S15, the main seal 3 (see FIG. 6) is applied to each portion of the liquid crystal panel 100a (see FIG. 6) on the surface on the counter substrate 1 side. The main seal 3 is applied on the surface on the counter substrate 1 side in a matrix (matrix) as seen in a plan view. In the main seal application step S15, the main seal 3 is applied to the counter substrate 1 using, for example, a screen printing technique or a dispenser drawing technique.
 次に、シールプリベーク工程S16により、メインシール3を塗布した対向基板1の予備加熱処理を行う。具体的には、メインシール3を塗布した対向基板1を30℃以上200℃以下の温度および30分以下の時間予備加熱処理する。これにより、メインシール3に含まれている気泡の脱泡および揮発性成分の揮発が促進される。なお、シールプリベーク工程S16は、必要に応じて省略可能である。 Next, in the seal pre-baking step S16, the counter substrate 1 coated with the main seal 3 is preheated. Specifically, the counter substrate 1 to which the main seal 3 is applied is preheated at a temperature of 30 ° C. to 200 ° C. and a time of 30 minutes or less. Thereby, defoaming of bubbles contained in the main seal 3 and volatilization of volatile components are promoted. Note that the seal pre-baking step S16 can be omitted as necessary.
 次に、ダミーシール外周シール塗布工程S17により、対向基板1の表面上にダミーシール6および外周シール7の塗布を行う。 Next, the dummy seal 6 and the outer periphery seal 7 are applied on the surface of the counter substrate 1 in the dummy seal outer periphery seal application step S17.
 次に、ガス発生量測定工程S14で記録したチャンバー10の圧力が8Pa(基準値)以上であるか以下であるかを判断する。8Pa以下であれば、次の減圧処理工程S18において、アクティブマトリクス基板2のみに対して減圧処理を行う。 Next, it is determined whether the pressure of the chamber 10 recorded in the gas generation amount measurement step S14 is 8 Pa (reference value) or more. If it is 8 Pa or less, the decompression process is performed only on the active matrix substrate 2 in the next decompression process step S18.
 ここで、チャンバー10内圧力が基準値以下であるということは、対向基板1が低吸湿性基板であり、対向基板1を大気に放置した場合、対向基板1の表面に吸着するHOガス量が少ないことを意味するだけではなく、対向基板1に形成されているカラーフィルタなどの樹脂から排出される揮発性ガス量が少ないことも意味する。よって、後の工程でセルの内部に気泡が発生する可能性が低く、対向基板1に対し脱気処理のための減圧処理工程を省略することができる。ここで、図1に示すフローチャートでは、対向基板1上にカラーフィルタや共通電極を形成する工程を省略しているが、ラビング工程S11前に、対向基板1上にカラーフィルタや共通電極を形成することができる。 Here, the pressure in the chamber 10 being equal to or lower than the reference value means that the counter substrate 1 is a low hygroscopic substrate, and the H 2 O gas adsorbed on the surface of the counter substrate 1 when the counter substrate 1 is left in the atmosphere. It means not only that the amount is small, but also that the amount of volatile gas discharged from the resin such as the color filter formed on the counter substrate 1 is small. Therefore, it is unlikely that bubbles will be generated in the cell in the subsequent process, and the depressurization process for the deaeration process on the counter substrate 1 can be omitted. Here, in the flowchart shown in FIG. 1, the step of forming the color filter and the common electrode on the counter substrate 1 is omitted, but the color filter and the common electrode are formed on the counter substrate 1 before the rubbing step S11. be able to.
 図4に、3種類の対向基板1のガス発生量を測定する際における、チャンバー10内圧力の推移を示す。 FIG. 4 shows changes in the pressure in the chamber 10 when measuring the gas generation amounts of the three types of counter substrates 1.
 図4に示すように、3種類の対向基板1のガス発生量をそれぞれ測定する際における、チャンバー10内の圧力は、各対向基板1の表面で発生したガス量に応じて、徐々に上昇する。なお、30分経過後、3種類ともチャンバー10内の圧力が8Paを超えない。すなわち、何れの対向基板1も表面で発生したガス量は少ない。このような基板は、液晶パネルの製造工程でシール塗布工程と貼り合わせ工程との間の減圧処理を省略することができる。 As shown in FIG. 4, the pressure in the chamber 10 when measuring the gas generation amount of each of the three types of counter substrates 1 gradually increases according to the amount of gas generated on the surface of each counter substrate 1. . After 30 minutes, the pressure in the chamber 10 does not exceed 8 Pa for all three types. That is, the amount of gas generated on the surface of any counter substrate 1 is small. Such a substrate can omit the decompression process between the seal coating process and the bonding process in the manufacturing process of the liquid crystal panel.
 一方、ガス発生量測定工程S14で記録したチャンバー10内の圧力が8Pa(基準値)以上であれば、ダミーシール外周シール塗布工程S17後に行われる減圧処理工程S18において、対向基板1およびアクティブマトリクス基板2に対して減圧処理を行う。これによって、対向基板1およびアクティブマトリクス基板2のガス成分(主にHO)を取り除くことができる。 On the other hand, if the pressure in the chamber 10 recorded in the gas generation amount measurement step S14 is 8 Pa (reference value) or more, the counter substrate 1 and the active matrix substrate in the decompression processing step S18 performed after the dummy seal outer periphery seal coating step S17. 2 is decompressed. Thereby, gas components (mainly H 2 O) of the counter substrate 1 and the active matrix substrate 2 can be removed.
 次に、液晶滴下工程S19により、対向基板1上に塗布したメインシール3の内側に液晶の滴下を行う。 Next, in the liquid crystal dropping step S19, liquid crystal is dropped inside the main seal 3 applied on the counter substrate 1.
 次に、真空貼り合わせ工程S20により、複数の液晶パネル100aに対応した部分を有する対向基板1とアクティブマトリクス基板2とを真空中で貼り合わせることにより、貼り合わせ基板100(図6参照)を形成する。この後、貼り合わせ基板100を大気開放する。これにより、貼り合わせ基板100は、真空が保持されている外周シール7の内側と、外側の大気圧との差圧により加圧される。 Next, the bonded substrate 100 (see FIG. 6) is formed by bonding the counter substrate 1 having portions corresponding to the plurality of liquid crystal panels 100a and the active matrix substrate 2 in a vacuum by the vacuum bonding step S20. To do. Thereafter, the bonded substrate 100 is opened to the atmosphere. Thereby, the bonded substrate 100 is pressurized by the differential pressure between the inner side of the outer peripheral seal 7 where the vacuum is maintained and the outer atmospheric pressure.
 次に、光照射(光硬化)工程S21により、貼り合わせ基板100に対して、UV(紫外線)を照射する。UV(紫外線)を照射することにより、貼り合わせ基板100に塗布されている光開始剤を含む光硬化性のシール剤からなるダミーシール部61および62と外周シール7とが硬化される。このダミーシール部61および62と外周シール7とを硬化させることによって対向基板1とアクティブマトリクス基板2との接着を強固にする。 Next, the bonded substrate 100 is irradiated with UV (ultraviolet rays) in a light irradiation (photocuring) step S21. By irradiating with UV (ultraviolet light), the dummy seal portions 61 and 62 made of a photo-curable sealant containing a photoinitiator applied to the bonded substrate 100 and the outer peripheral seal 7 are cured. The dummy seal portions 61 and 62 and the outer peripheral seal 7 are cured to strengthen the adhesion between the counter substrate 1 and the active matrix substrate 2.
 次に、加熱(熱硬化・液晶等方性処理)工程S22により、貼り合わせ基板100の加熱処理を行う。メインシール3をさらに硬化させることができるので、対向基板1とアクティブマトリクス基板2との接着がより強固になる。これと同時に、対向基板1とアクティブマトリクス基板2との間に充填されている液晶の等方性処理(配向処理)が行われ、液晶が所定の方向に配向される。 Next, the bonded substrate 100 is heated by a heating (thermosetting / liquid crystal isotropic processing) step S22. Since the main seal 3 can be further cured, the adhesion between the counter substrate 1 and the active matrix substrate 2 becomes stronger. At the same time, an isotropic treatment (orientation treatment) of the liquid crystal filled between the counter substrate 1 and the active matrix substrate 2 is performed to align the liquid crystal in a predetermined direction.
 次に、スクライブブレイク工程S23により、貼り合わせ基板100をメインシール3を含む複数の液晶パネル100aに分断する。これにより、所定の大きさの複数の液晶パネル100aが形成される。 Next, the bonded substrate board 100 is divided into a plurality of liquid crystal panels 100a including the main seal 3 by a scribe break process S23. Thereby, a plurality of liquid crystal panels 100a having a predetermined size are formed.
 最後に、セル洗浄工程S24により、液晶パネル100aのセル洗浄を行う。このセル洗浄工程S24では、上述した工程により液晶パネル100aの表面などに付着したガラスの切りくずやゴミなどを除くために洗浄が行われる。その後、パネル検査などにより、液晶パネル100aが正常に製造されたか否かを検査し、正常に製造されていると判断された場合は、図5に示した液晶パネル100aが完成される。 Finally, the cell cleaning of the liquid crystal panel 100a is performed by the cell cleaning step S24. In this cell cleaning step S24, cleaning is performed in order to remove glass chips and dust adhering to the surface of the liquid crystal panel 100a by the above-described steps. Thereafter, whether or not the liquid crystal panel 100a is normally manufactured is inspected by panel inspection or the like. If it is determined that the liquid crystal panel 100a is normally manufactured, the liquid crystal panel 100a shown in FIG. 5 is completed.
 本実施例においては、対向基板1に対してガス発生量を測定して、測定したガス量が基準値以上である場合には、減圧処理工程S18において、対向基板1に対して減圧処理を行ない、測定したガス量が基準値以下である場合には対向基板1に対してこの減圧処理を省略することとしている。 In the present embodiment, the gas generation amount is measured for the counter substrate 1, and when the measured gas amount is equal to or greater than the reference value, the counter substrate 1 is subjected to a pressure reduction process in the pressure reduction processing step S <b> 18. When the measured gas amount is equal to or less than the reference value, the decompression process is omitted for the counter substrate 1.
 これにより、測定したガス量が基準値以下である場合には対向基板1に対してこの減圧処理を省略するため、減圧処理を行う際にライントラブルなどによりシール剤が過度に硬化することによる基板の貼り合わせ不良の発生を抑制することができる。 As a result, when the measured gas amount is less than the reference value, this decompression process is omitted for the counter substrate 1, so that the substrate due to excessive curing of the sealing agent due to line trouble or the like when performing the decompression process. Occurrence of poor bonding can be suppressed.
 (実施例2)
 以下、図2に基づいて実施例2について説明する。
(Example 2)
Hereinafter, Example 2 will be described with reference to FIG.
 なお、説明の便宜上、前記実施例1にて説明した図面と同じ機能を有する工程については、同じ符号を付記し、その説明を省略する。 For convenience of explanation, steps having the same functions as those in the drawings described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 図2は、実施例2に係る液晶パネルの製造方法を示すフローチャートである。 FIG. 2 is a flowchart showing a method for manufacturing a liquid crystal panel according to the second embodiment.
 前記実施例1においては、対向基板1に対して、ダミーシール外周シール塗布工程S17後に、ガス発生量測定工程S14で記録したチャンバー10の圧力が8Pa(基準値)以上であるか以下であるかを判断する。8Pa以上であれば、次の減圧処理工程S18において、対向基板1およびアクティブマトリクス基板2に対して減圧処理を行い、8Pa以下であれば、次の減圧処理工程S18において、アクティブマトリクス基板2のみに対して減圧処理を行い、対向基板1に対してこの減圧処理を省略する。 In the first embodiment, whether the pressure in the chamber 10 recorded in the gas generation amount measurement step S14 is 8 Pa (reference value) or more after the dummy seal outer peripheral seal coating step S17 with respect to the counter substrate 1 is 8 Pa (reference value) or less. Judging. If it is 8 Pa or more, the counter substrate 1 and the active matrix substrate 2 are subjected to a decompression process in the next decompression process step S18. If it is 8 Pa or less, only the active matrix substrate 2 is treated in the next decompression process step S18. The decompression process is performed on the counter substrate 1 and the decompression process is omitted.
 これに対し、本実施例においては、図2に示すように、液晶滴下工程S18の後に、ガス発生量測定工程S14で記録したチャンバー10の圧力が8Pa(基準値)以上であるか以下であるかを判断する。8Pa以下であれば、次に真空貼り合わせ工程S20Aを行い、8Pa以上であれば、次に真空貼り合わせ工程S20Bを行う。 On the other hand, in this embodiment, as shown in FIG. 2, the pressure in the chamber 10 recorded in the gas generation amount measurement step S14 after the liquid crystal dropping step S18 is 8 Pa (reference value) or less. Determine whether. If it is 8 Pa or less, the vacuum bonding step S20A is performed next, and if it is 8 Pa or more, the vacuum bonding step S20B is performed next.
 真空貼り合わせ工程S20Aおよび真空貼り合わせ工程S20Bは、真空貼り合わせ工程S20と同じ機能を有し、複数の液晶パネル100aに対応した部分を有する対向基板1とアクティブマトリクス基板2とを真空中で貼り合わせることにより、貼り合わせ基板100を形成する。 The vacuum bonding step S20A and the vacuum bonding step S20B have the same function as the vacuum bonding step S20, and the counter substrate 1 and the active matrix substrate 2 having portions corresponding to the plurality of liquid crystal panels 100a are bonded in vacuum. By bonding, the bonded substrate 100 is formed.
 但し、真空貼り合わせ工程S20Aでは、真空貼り合わせ時間Aが相対的に短く、真空貼り合わせ工程S20Bでは、真空貼り合わせ時間Bが相対的に長い。 However, in the vacuum bonding step S20A, the vacuum bonding time A is relatively short, and in the vacuum bonding step S20B, the vacuum bonding time B is relatively long.
 ガス測定量測定工程S14において対向基板1に対して測定したガス発生量が基準値よりも大きい場合には、真空貼り合わせ工程S20Bにおける減圧状態の期間を相対的に長くすることにより、対向基板1で発生したガスを取り除くことができ、セルの内部での気泡の発生を防止することができる。したがって、図2に示す製造方法では、対向基板1に対する、シール塗布工程と貼り合わせ工程との間の減圧処理を完全に省略することができ、減圧処理を行う際にライントラブルなどによりシール剤が過度に硬化することによる基板の貼り合わせ不良の発生を抑制することができる。 When the gas generation amount measured with respect to the counter substrate 1 in the gas measurement amount measurement step S14 is larger than the reference value, the counter substrate 1 is relatively long by relatively increasing the period of the reduced pressure state in the vacuum bonding step S20B. Can be removed, and the generation of bubbles inside the cell can be prevented. Therefore, in the manufacturing method shown in FIG. 2, the decompression process between the seal coating process and the bonding process on the counter substrate 1 can be completely omitted, and the sealant is removed due to a line trouble or the like when the decompression process is performed. Generation | occurrence | production of the bonding defect of a board | substrate by hardening too much can be suppressed.
 本実施の形態においては、特定の環境下での実験により30分経過時のチャンバー10内圧力測定し、基準値を8Paに設定しているが、これに限定されることなく、基準値は必要に応じて適宜設定することができる。 In this embodiment, the pressure in the chamber 10 after 30 minutes is measured by an experiment under a specific environment and the reference value is set to 8 Pa. However, the reference value is necessary without being limited to this. It can be set appropriately depending on the situation.
 基板から発生するガスの量は、基板の表面積または体積に応じて変化することが考えられる。そのため、上記基準値は、例えば、基板の表面積または体積に応じて設定してもよい。 It is conceivable that the amount of gas generated from the substrate varies depending on the surface area or volume of the substrate. Therefore, the reference value may be set according to the surface area or volume of the substrate, for example.
 また、本実施の形態においては、液晶滴下工程S19において、対向基板1に液晶を滴下しているが、これに限定されることなく、アクティブマトリクス基板2に液晶を滴下して、真空貼り合わせ工程S20・S20A(S20B)により対向基板1とアクティブマトリクス基板2とを真空中で貼り合わせてもよい。但し、アクティブマトリクス基板2に、吸湿性物質が成膜されている場合は、アクティブマトリクス基板2に液晶を滴下することができない。これは、液晶を滴下した箇所と、それ以外の箇所で吸湿性が異なり、ムラとなるためである。 In the present embodiment, the liquid crystal is dropped on the counter substrate 1 in the liquid crystal dropping step S19. However, the present invention is not limited to this, and the liquid crystal is dropped on the active matrix substrate 2 to perform the vacuum bonding step. The counter substrate 1 and the active matrix substrate 2 may be bonded together in a vacuum by S20 and S20A (S20B). However, when a hygroscopic material is formed on the active matrix substrate 2, liquid crystal cannot be dropped on the active matrix substrate 2. This is because the hygroscopicity is different between the portion where the liquid crystal is dropped and the other portions, resulting in unevenness.
 また、本実施の形態においては、アクティブマトリクス基板2に対し、減圧処理工程S18により、減圧処理を行なっているが、アクティブマトリクス基板2に対してもガス発生量測定を行ない、アクティブマトリクス基板2で発生するガス量が基準値以下である場合、減圧処理工程を省略することが可能である。ただし、本実施の形態では、アクティブマトリクス基板2にはシールを形成しないため、減圧処理を行ってもシール硬化不良の問題は生じない。 In this embodiment, the active matrix substrate 2 is subjected to the decompression process in the decompression process step S18. However, the active matrix substrate 2 is also subjected to the gas generation amount measurement, and the active matrix substrate 2 is measured. When the amount of gas generated is less than or equal to the reference value, the decompression process step can be omitted. However, in the present embodiment, since no seal is formed on the active matrix substrate 2, the problem of poor seal hardening does not occur even when the decompression process is performed.
 〔実施の形態2〕
 本発明の液晶パネルの製造方法に関する他の実施形態について、図7~図9に基づいて説明すれば、以下のとおりである。
[Embodiment 2]
Another embodiment of the method for manufacturing a liquid crystal panel according to the present invention will be described below with reference to FIGS.
 なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 For convenience of explanation, members having the same functions as those in the drawings explained in the first embodiment are given the same reference numerals and explanations thereof are omitted.
 上記実施の形態1においては、シールが対向基板1側に塗布された場合を説明したが、本実施の形態においては、シールがアクティブマトリクス基板2側に塗布される場合を説明する。 Although the case where the seal is applied to the counter substrate 1 side has been described in the first embodiment, the case where the seal is applied to the active matrix substrate 2 side will be described in the present embodiment.
 図7は、本実施の形態における大版の対向基板およびアクティブマトリクス基板を示す斜視図である。 FIG. 7 is a perspective view showing a large-size counter substrate and an active matrix substrate in the present embodiment.
 図7に示すように、大版のアクティブマトリクス基板2は、特定のサイズの複数の液晶パネル100aの領域に分断可能に構成されている。 As shown in FIG. 7, the large-size active matrix substrate 2 is configured to be divided into regions of a plurality of liquid crystal panels 100a having a specific size.
 アクティブマトリクス基板2において、各液晶パネル100aの領域の外周近傍にメインシール3が枠状に塗布されている。また、アクティブマトリクス基板2上に塗布したメインシール3を取り囲むようにダミーシール6および外周シール7が塗布されている。このダミーシール6および外周シール7の具体的な形状は、図6に示すダミーシール6および外周シール7の形状と同じであるため、説明は省略する。 In the active matrix substrate 2, a main seal 3 is applied in a frame shape in the vicinity of the outer periphery of the area of each liquid crystal panel 100a. A dummy seal 6 and an outer peripheral seal 7 are applied so as to surround the main seal 3 applied on the active matrix substrate 2. The specific shapes of the dummy seal 6 and the outer peripheral seal 7 are the same as the shapes of the dummy seal 6 and the outer peripheral seal 7 shown in FIG.
 (液晶パネルの製造方法)
 以下、図8、図9に基づいて、本実施の形態に係る液晶パネルの製造方法について説明する。本実施の形態においては、2つの実施例を挙げて、液晶パネルの製造方法について説明する。
(Liquid crystal panel manufacturing method)
Hereinafter, a manufacturing method of the liquid crystal panel according to the present embodiment will be described with reference to FIGS. In the present embodiment, a method for manufacturing a liquid crystal panel will be described by giving two examples.
 (実施例3)
 図8は、実施例3に係る液晶パネルの製造方法を示すフローチャートである。
(Example 3)
FIG. 8 is a flowchart illustrating the method for manufacturing the liquid crystal panel according to the third embodiment.
 図8に示すように、液晶滴下法により液晶材料を充填する本実施の形態に係る液晶パネルの製造方法では、まず、ラビング工程S31において、アクティブマトリクス基板2および対向基板1に、それぞれ配向膜を形成し、ラビング処理を行う。 As shown in FIG. 8, in the manufacturing method of the liquid crystal panel according to the present embodiment in which the liquid crystal material is filled by the liquid crystal dropping method, first, in the rubbing step S31, alignment films are respectively formed on the active matrix substrate 2 and the counter substrate 1. Forming and rubbing.
 次に、ラビング後洗浄工程S32において、対向基板1およびアクティブマトリクス基板2の洗浄を行う。このラビング後洗浄工程S32により、ラビング処理時に対向基板1およびアクティブマトリクス基板2に付着したゴミなどの洗浄を行う。なお、ラビング後洗浄工程S32は、必要に応じて省略可能である。 Next, in the post-rubbing cleaning step S32, the counter substrate 1 and the active matrix substrate 2 are cleaned. In this post-rubbing cleaning step S32, dust adhering to the counter substrate 1 and the active matrix substrate 2 during the rubbing process is cleaned. The post-rubbing cleaning step S32 can be omitted as necessary.
 次に、脱気(デガス(加熱))工程S33により、対向基板1およびアクティブマトリクス基板2の基板表面の有機性の揮発性成分を含むガス(気体)や水分を加熱により除去する。なお、脱気(デガス(加熱))工程S33は、必要に応じて省略可能である。 Next, in the degassing (degas (heating)) step S33, the gas (gas) and moisture containing organic volatile components on the substrate surfaces of the counter substrate 1 and the active matrix substrate 2 are removed by heating. Note that the degassing (degas (heating)) step S33 can be omitted if necessary.
 次に、図3に示すようなガス発生量測定工程S34において、アクティブマトリクス基板2の表面で発生するのガスの量を測定する。具体的な、測定方法は、図1に示すガス発生量測定工程S14の測定方法と同じであるため、ここでは詳細な説明は省略する。 Next, in the gas generation amount measurement step S34 as shown in FIG. 3, the amount of gas generated on the surface of the active matrix substrate 2 is measured. Since the specific measurement method is the same as the measurement method in the gas generation amount measurement step S14 shown in FIG. 1, detailed description thereof is omitted here.
 ガス発生量測定工程S34において、チャンバー10内圧力の推移を測定し、30分経過した時点での、チャンバー10内圧力を記録する。 In the gas generation amount measurement step S34, the transition of the pressure in the chamber 10 is measured, and the pressure in the chamber 10 when 30 minutes have passed is recorded.
 次に、メインシール塗布工程S35により、アクティブマトリクス基板2側の表面上の複数の液晶パネル100aとなる部分毎にメインシール3(図7参照)の塗布を行う。このメインシール3は、アクティブマトリクス基板2側の表面上に、平面的に見てマトリクス状(行列状)に塗布する。また、メインシール塗布工程S35では、たとえば、スクリーン印刷技術やディスペンサ描画技術を用いて、アクティブマトリクス基板2にメインシール3の塗布を行う。 Next, the main seal 3 (see FIG. 7) is applied to each portion of the liquid crystal panel 100a on the surface on the active matrix substrate 2 side in the main seal application step S35. The main seal 3 is applied on the surface on the active matrix substrate 2 side in a matrix (matrix) as viewed in a plan view. In the main seal application step S35, for example, the main seal 3 is applied to the active matrix substrate 2 by using a screen printing technique or a dispenser drawing technique.
 次に、シールプリベーク工程S36により、メインシール3を塗布したアクティブマトリクス基板2の予備加熱処理を行う。具体的には、メインシール3を塗布したアクティブマトリクス基板2を30℃以上200℃以下の温度および30分以下の時間予備加熱処理する。これにより、メインシール3に含まれている気泡の脱泡および揮発性成分の揮発が促進される。なお、シールプリベーク工程S36は、必要に応じて省略可能である。 Next, in the seal pre-baking step S36, the active matrix substrate 2 coated with the main seal 3 is preheated. Specifically, the active matrix substrate 2 to which the main seal 3 is applied is preheated at a temperature of 30 ° C. to 200 ° C. and a time of 30 minutes or less. Thereby, defoaming of bubbles contained in the main seal 3 and volatilization of volatile components are promoted. Note that the seal pre-baking step S36 can be omitted as necessary.
 次に、ダミーシール外周シール塗布工程S37により、アクティブマトリクス基板2の表面上にダミーシール6および外周シール7の塗布を行う。 Next, the dummy seal 6 and the outer periphery seal 7 are applied on the surface of the active matrix substrate 2 in the dummy seal outer periphery seal application step S37.
 次に、ガス発生量測定工程S34で記録したチャンバー10の圧力が8Pa(基準値)以上であるか以下であるかを判断する。8Pa以下であれば、次の減圧処理工程S38において、対向基板1のみに対して減圧処理を行う。 Next, it is determined whether the pressure of the chamber 10 recorded in the gas generation amount measurement step S34 is 8 Pa (reference value) or more. If it is 8 Pa or less, the decompression process is performed only on the counter substrate 1 in the next decompression process step S38.
 一方、ガス発生量測定工程S34で記録したチャンバー10の圧力が8Pa(基準値)を超えると、ダミーシール外周シール塗布工程S37後に行われる減圧処理工程S38において、対向基板1およびアクティブマトリクス基板2に対して減圧処理を行う。これによって、対向基板1およびアクティブマトリクス基板2のガス成分(主にHO)を取り除くことができる。 On the other hand, when the pressure of the chamber 10 recorded in the gas generation amount measuring step S34 exceeds 8 Pa (reference value), the counter substrate 1 and the active matrix substrate 2 are applied to the counter substrate 1 and the active matrix substrate 2 in the decompression processing step S38 performed after the dummy seal outer periphery seal coating step S37. A decompression process is performed. Thereby, gas components (mainly H 2 O) of the counter substrate 1 and the active matrix substrate 2 can be removed.
 次に、液晶滴下工程S39により、アクティブマトリクス基板2上に塗布したメインシール3の内側に液晶の滴下を行う。 Next, in the liquid crystal dropping step S39, liquid crystal is dropped inside the main seal 3 applied on the active matrix substrate 2.
 次に、真空貼り合わせ工程S40により、複数の液晶パネル100aに対応した部分を有する対向基板1とアクティブマトリクス基板2とを真空中で貼り合わせることにより、貼り合わせ基板100を形成する。この後、貼り合わせ基板100を大気開放する。これにより、貼り合わせ基板100は、真空が保持されている外周シール7の内側と、外側の大気圧との差圧により加圧される。 Next, the bonded substrate 100 is formed by bonding the counter substrate 1 having a portion corresponding to the plurality of liquid crystal panels 100a and the active matrix substrate 2 in a vacuum in the vacuum bonding step S40. Thereafter, the bonded substrate 100 is opened to the atmosphere. Thereby, the bonded substrate 100 is pressurized by the differential pressure between the inner side of the outer peripheral seal 7 where the vacuum is maintained and the outer atmospheric pressure.
 以降の工程S41~S44は、図1に示す工程S21~S24と同じであるため、ここでは説明を省略する。 Since the subsequent steps S41 to S44 are the same as the steps S21 to S24 shown in FIG. 1, their description is omitted here.
 本実施例においては、アクティブマトリクス基板2に対してガス発生量を測定して、測定したガス量が基準値以上である場合には、減圧処理工程S38において、アクティブマトリクス基板2に対して減圧処理を行ない、測定したガス量が基準値以下である場合にはアクティブマトリクス基板2に対して減圧処理を省略することとしている。 In this embodiment, when the amount of gas generated is measured for the active matrix substrate 2 and the measured gas amount is equal to or greater than the reference value, the decompression process is performed on the active matrix substrate 2 in the decompression process step S38. In the case where the measured gas amount is equal to or less than the reference value, the decompression process is omitted for the active matrix substrate 2.
 これにより、測定したガス量が基準値以下である場合にはアクティブマトリクス基板2に対してこの減圧処理を省略するため、ライントラブルなどによりシール剤が過度に硬化することによる基板の貼り合わせ不良の発生を抑制することができる。 As a result, when the measured gas amount is equal to or less than the reference value, this decompression process is omitted for the active matrix substrate 2, and therefore the substrate bonding failure due to excessive curing of the sealing agent due to line troubles or the like. Occurrence can be suppressed.
 (実施例4)
 以下、図9に基づいて実施例4について説明する。
Example 4
Hereinafter, Example 4 is demonstrated based on FIG.
 なお、説明の便宜上、前記実施例3にて説明した図面と同じ機能を有する工程については、同じ符号を付記し、その説明を省略する。 For convenience of explanation, steps having the same functions as those in the drawings described in the third embodiment are denoted by the same reference numerals and description thereof is omitted.
 図9は、実施例4に係る液晶パネルの製造方法を示すフローチャートである。 FIG. 9 is a flowchart showing a method for manufacturing a liquid crystal panel according to the fourth embodiment.
 前記実施例3においては、アクティブマトリクス基板2に対して、ダミーシール外周シール塗布工程S37後に、ガス発生量測定工程S34で記録したチャンバー10の圧力が8Pa(基準値)以上であるか以下であるかを判断する。8Pa以上であれば、減圧処理工程S38において、アクティブマトリクス基板2および対向基板1に対して減圧処理を行い、8Pa以下であれば、対向基板1のみに対して減圧処理を行い、アクティブマトリクス基板2に対してこの減圧処理を省略する。 In the third embodiment, the pressure of the chamber 10 recorded in the gas generation amount measurement step S34 after the dummy seal outer periphery seal coating step S37 is 8 Pa (reference value) or more with respect to the active matrix substrate 2 is less than or equal to 8 Pa (reference value). Determine whether. If the pressure is 8 Pa or more, the active matrix substrate 2 and the counter substrate 1 are subjected to a pressure reduction process in the pressure reduction processing step S38. This pressure reduction process is omitted.
 これに対し、本実施例においては、図9に示すように、液晶滴下工程S39後に、ガス発生量測定工程S34で記録したチャンバー10の圧力が8Pa(基準値)以上であるか以下であるかを判断する。 On the other hand, in the present embodiment, as shown in FIG. 9, after the liquid crystal dropping step S39, whether the pressure of the chamber 10 recorded in the gas generation amount measuring step S34 is 8 Pa (reference value) or more or less. Judging.
 8Pa以下であれば、次に真空貼り合わせ工程S40Aを行い、8Pa以上であれば、次に真空貼り合わせ工程S40Bを行う。 If it is 8 Pa or less, the vacuum bonding step S40A is performed next, and if it is 8 Pa or more, the vacuum bonding step S40B is performed next.
 真空貼り合わせ工程S40Aおよび真空貼り合わせ工程S40Bは、真空貼り合わせ工程S40と同じ機能を有し、複数の液晶パネル100aに対応した部分を有する対向基板1とアクティブマトリクス基板2とを真空中で貼り合わせることにより、貼り合わせ基板100を形成する。 The vacuum bonding step S40A and the vacuum bonding step S40B have the same function as the vacuum bonding step S40, and the counter substrate 1 and the active matrix substrate 2 having portions corresponding to the plurality of liquid crystal panels 100a are bonded in vacuum. By bonding, the bonded substrate 100 is formed.
 但し、真空貼り合わせ工程S40Aでは、真空貼り合わせ時間Aが相対的に短く、真空貼り合わせ工程S40Bでは、真空貼り合わせ時間Bが相対的に長い。 However, in the vacuum bonding step S40A, the vacuum bonding time A is relatively short, and in the vacuum bonding step S40B, the vacuum bonding time B is relatively long.
 ガス測定量測定工程S34において測定したガス発生量が基準値よりも大きい場合には、真空貼り合わせ工程S40Bにおける減圧状態の期間を相対的に長くすることにより、アクティブマトリクス基板2で発生したガスを取り除くことができ、セルの内部での気泡の発生を防止することができる。したがって、アクティブマトリクス基板2に対する、シール塗布工程と貼り合わせ工程との間の減圧処理を完全に省略することができ、ライントラブルなどによりシール剤が過度に硬化することによる基板の貼り合わせ不良の発生を抑制することができる。 When the gas generation amount measured in the gas measurement amount measurement step S34 is larger than the reference value, the gas generated in the active matrix substrate 2 is reduced by relatively lengthening the period of the reduced pressure state in the vacuum bonding step S40B. It can be removed and the generation of bubbles inside the cell can be prevented. Therefore, the decompression process between the seal coating process and the bonding process on the active matrix substrate 2 can be completely omitted, and the bonding failure of the substrates due to excessive curing of the sealing agent due to line troubles or the like occurs. Can be suppressed.
 本実施の形態においては、特定の環境下での実験により30分経過時のチャンバー10内圧力測定し、基準値を8Paに設定しているが、これに限定されることなく、基準値は必要に応じて適宜設定することができる。 In this embodiment, the pressure in the chamber 10 after 30 minutes is measured by an experiment under a specific environment and the reference value is set to 8 Pa. However, the reference value is necessary without being limited to this. It can be set appropriately depending on the situation.
 本実施の形態においては、液晶滴下工程S39において、アクティブマトリクス基板2に液晶を滴下しているが、これに限定されることなく、対向基板1に液晶を滴下して、真空貼り合わせ工程S40・S40A(S40B)により対向基板1とアクティブマトリクス基板2とを真空中で貼り合わせてもよい。 In the present embodiment, the liquid crystal is dropped on the active matrix substrate 2 in the liquid crystal dropping step S39. However, the present invention is not limited to this, and the liquid crystal is dropped on the counter substrate 1 to form the vacuum bonding step S40. The counter substrate 1 and the active matrix substrate 2 may be bonded together in vacuum by S40A (S40B).
 また、本実施の形態においては、対向基板1に対し、減圧処理工程S38により、減圧処理を行なっているが、対向基板1に対してもガス発生量測定を行ない、測定したガス量が基準値以下である場合には、減圧処理工程を省略することが可能である。ただし、本実施の形態では、対向基板1にはシールを形成しないため、減圧処理を行ってもシール硬化不良の問題は生じない。 In the present embodiment, the counter substrate 1 is subjected to the decompression process in the decompression process step S38. However, the gas generation amount is also measured for the counter substrate 1, and the measured gas amount is the reference value. In the following cases, it is possible to omit the decompression process. However, in this embodiment, since the seal is not formed on the counter substrate 1, the problem of poor seal hardening does not occur even if the decompression process is performed.
 上記各実施の形態においては、ガス発生量測定工程で各基板に対して実施しているが、これに限定されることなく、製品の種別ごとに製造工程を決定する段階において、サンプルに対してガス発生量の測定を行い、その結果に基づき、減圧処理工程の要否を決定して工程設計をすることも可能である。 In each of the above embodiments, the gas generation amount measurement process is performed for each substrate. However, the present invention is not limited to this, and at the stage of determining the manufacturing process for each type of product, It is also possible to measure the amount of gas generated and to design the process by determining the necessity of the decompression process based on the result.
 また、本発明の液晶パネルの製造方法は、上記ガス測定工程では、上記第1基板を、減圧状態のチャンバー内に置き、その後、上記チャンバーから一旦取り出して大気中へ放置し、その後、再度、減圧状態のチャンバー内に置いたときに放出されるガス量を測定することを特徴とする。 Further, in the method for producing a liquid crystal panel of the present invention, in the gas measurement step, the first substrate is placed in a vacuum chamber, then removed from the chamber and left in the atmosphere, and then again, It is characterized by measuring the amount of gas released when placed in a vacuum chamber.
 上記方法によれば、上記第1基板を大気中で一定時間放置した場合、上記第1基板の表面で発生するガス発生量を測定することが可能となる。 According to the above method, it is possible to measure the amount of gas generated on the surface of the first substrate when the first substrate is left in the atmosphere for a certain period of time.
 また、本発明の液晶パネルの製造方法は、上記ガス量は、上記チャンバー内の圧力を計測することによって測定されることを特徴とする。 The liquid crystal panel manufacturing method of the present invention is characterized in that the gas amount is measured by measuring a pressure in the chamber.
 上記方法によれば、チャンバー内の圧力を計測することにより、簡単に上記第1基板の表面で発生したガス発生量を測定することができる。 According to the above method, the amount of gas generated on the surface of the first substrate can be easily measured by measuring the pressure in the chamber.
 また、上記基準値は、上記圧力で定められており、上記基準値となる上記圧力は、8Paであることを特徴とする。 Further, the reference value is determined by the pressure, and the pressure serving as the reference value is 8 Pa.
 また、本発明の液晶パネルの製造方法では、上記第1基板は、対向基板であって、上記第2基板は、アクティブマトリクス基板であってもよい。 In the liquid crystal panel manufacturing method of the present invention, the first substrate may be a counter substrate and the second substrate may be an active matrix substrate.
 また、本発明の液晶パネルの製造方法では、上記第1基板は、アクティブマトリクス基板であって、上記第2基板は、対向基板であってもよい。 In the liquid crystal panel manufacturing method of the present invention, the first substrate may be an active matrix substrate, and the second substrate may be a counter substrate.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、液晶パネルの製造方法に利用することができる。 The present invention can be used in a method for manufacturing a liquid crystal panel.
 1・1a 対向基板
 2・2a アクティブマトリクス基板
 3    メインシール
 6    ダミーシール
 7    外周シール
 10   チャンバー
 100  貼り合わせ基板
 100a 液晶パネル
1.1a Counter substrate 2.2a Active matrix substrate 3 Main seal 6 Dummy seal 7 Perimeter seal 10 Chamber 100 Bonded substrate 100a Liquid crystal panel

Claims (7)

  1.  液晶パネルを構成する第1基板および第2基板のうちの上記第1基板を減圧状態においたときに、当該第1基板から放出されるガス量を測定するガス測定工程と、
     上記ガス測定工程後に上記第1基板にシール剤を塗布するシール塗布工程と、
     上記シール剤が塗布された第1基板と上記第2基板とを貼り合わせる貼り合わせ工程とを含み、
     上記ガス測定工程において測定したガス量が基準値よりも大きい場合には上記シール塗布工程と上記貼り合わせ工程との間に上記第1基板を減圧状態におく減圧処理工程を行い、上記ガス測定工程において測定したガス量が基準値よりも小さい場合には上記シール塗布工程と上記貼り合わせ工程との間の上記減圧処理工程を省略することを特徴とする液晶パネルの製造方法。
    A gas measurement step of measuring a gas amount released from the first substrate when the first substrate out of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state;
    A seal application step of applying a sealant to the first substrate after the gas measurement step;
    Including a bonding step of bonding the first substrate coated with the sealing agent and the second substrate,
    When the gas amount measured in the gas measurement step is larger than a reference value, a depressurization treatment step of placing the first substrate in a depressurized state is performed between the seal coating step and the bonding step, and the gas measurement step A method for manufacturing a liquid crystal panel, wherein the step of reducing pressure between the seal coating step and the bonding step is omitted when the gas amount measured in step 1 is smaller than a reference value.
  2.  液晶パネルを構成する第1基板および第2基板のうちの上記第1基板を減圧状態においたときに、当該第1基板から放出されるガス量を測定するガス測定工程と、
     上記ガス測定工程後に上記第1基板にシール剤を塗布するシール塗布工程と、
     上記シール剤が塗布された第1基板と上記第2基板とを減圧状態で貼り合わせる貼り合わせ工程とを含み、
     上記ガス測定工程において測定したガス量が基準値よりも大きい場合には上記貼り合わせ工程における減圧状態の期間を相対的に長くし、上記ガス測定工程において測定したガス量が基準値よりも小さい場合には上記貼り合わせ工程における減圧状態の期間を相対的に短くすることを特徴とする液晶パネルの製造方法。
    A gas measurement step of measuring a gas amount released from the first substrate when the first substrate out of the first substrate and the second substrate constituting the liquid crystal panel is in a reduced pressure state;
    A seal application step of applying a sealant to the first substrate after the gas measurement step;
    A bonding step of bonding the first substrate coated with the sealant and the second substrate in a reduced pressure state,
    When the gas amount measured in the gas measurement step is larger than the reference value, the decompression period in the bonding step is relatively long, and the gas amount measured in the gas measurement step is smaller than the reference value A method for manufacturing a liquid crystal panel, characterized in that a period of a reduced pressure state in the bonding step is relatively shortened.
  3.  上記ガス測定工程では、上記第1基板を、減圧状態のチャンバー内に置き、その後、上記チャンバーから一旦取り出して大気中へ放置し、その後、再度、減圧状態のチャンバー内に置いたときに放出されるガス量を測定することを特徴とする請求項1又は2に記載の液晶パネルの製造方法。 In the gas measurement step, the first substrate is placed in a decompressed chamber, then removed from the chamber and left in the atmosphere, and then released again when placed in the decompressed chamber. The method for producing a liquid crystal panel according to claim 1, wherein an amount of gas to be measured is measured.
  4.  上記ガス量は、上記チャンバー内の圧力を計測することによって測定されることを特徴とする請求項3に記載の液晶パネルの製造方法。 4. The method of manufacturing a liquid crystal panel according to claim 3, wherein the gas amount is measured by measuring a pressure in the chamber.
  5.  上記基準値は、上記圧力で定められており、
     上記基準値となる上記圧力は、8Paであることを特徴とする請求項4に記載の液晶パネルの製造方法。
    The reference value is determined by the pressure,
    The method for manufacturing a liquid crystal panel according to claim 4, wherein the pressure serving as the reference value is 8 Pa.
  6.  上記第1基板は、対向基板であって、
     上記第2基板は、アクティブマトリクス基板であることを特徴とする請求項1~5の何れか1項に記載の液晶パネルの製造方法。
    The first substrate is a counter substrate,
    6. The method of manufacturing a liquid crystal panel according to claim 1, wherein the second substrate is an active matrix substrate.
  7.  上記第1基板は、アクティブマトリクス基板であって、
     上記第2基板は、対向基板であることを特徴とする請求項1~5の何れか1項に記載の液晶パネルの製造方法。
    The first substrate is an active matrix substrate,
    6. The method for manufacturing a liquid crystal panel according to claim 1, wherein the second substrate is a counter substrate.
PCT/JP2012/051316 2011-01-28 2012-01-23 Process for production of liquid crystal panel WO2012102228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-016520 2011-01-28
JP2011016520 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012102228A1 true WO2012102228A1 (en) 2012-08-02

Family

ID=46580795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051316 WO2012102228A1 (en) 2011-01-28 2012-01-23 Process for production of liquid crystal panel

Country Status (1)

Country Link
WO (1) WO2012102228A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170830A (en) * 1984-02-15 1985-09-04 Sharp Corp Preparation of liquid crystal display element
JPH05119305A (en) * 1991-10-28 1993-05-18 Sharp Corp Production of liquid crystal display device
JPH11174477A (en) * 1997-12-08 1999-07-02 Matsushita Electric Ind Co Ltd Production of liquid crystal display device
JP2004188407A (en) * 2002-10-15 2004-07-08 Shibaura Mechatronics Corp Assembly method of substrate and assembly apparatus of substrate
JP2006098448A (en) * 2004-09-28 2006-04-13 Seiko Epson Corp Method for manufacturing electrooptic device
JP2006154166A (en) * 2004-11-29 2006-06-15 Seiko Epson Corp Lamination device and method for electrooptical device
JP2007101638A (en) * 2005-09-30 2007-04-19 Sharp Corp Method for manufacturing liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170830A (en) * 1984-02-15 1985-09-04 Sharp Corp Preparation of liquid crystal display element
JPH05119305A (en) * 1991-10-28 1993-05-18 Sharp Corp Production of liquid crystal display device
JPH11174477A (en) * 1997-12-08 1999-07-02 Matsushita Electric Ind Co Ltd Production of liquid crystal display device
JP2004188407A (en) * 2002-10-15 2004-07-08 Shibaura Mechatronics Corp Assembly method of substrate and assembly apparatus of substrate
JP2006098448A (en) * 2004-09-28 2006-04-13 Seiko Epson Corp Method for manufacturing electrooptic device
JP2006154166A (en) * 2004-11-29 2006-06-15 Seiko Epson Corp Lamination device and method for electrooptical device
JP2007101638A (en) * 2005-09-30 2007-04-19 Sharp Corp Method for manufacturing liquid crystal display device

Similar Documents

Publication Publication Date Title
JP5151554B2 (en) Liquid crystal display device and manufacturing method thereof
JP3281362B2 (en) Liquid crystal display panel manufacturing method
JPH11264991A (en) Manufacture of liquid crystal display element
US7929103B2 (en) Display and method of manufacturing display
WO2010058502A1 (en) Liquid crystal display device and method for manufacturing same
US6734943B2 (en) Liquid crystal display panel with sealing member on second partition wall and manufacturing method thereof
WO2012102228A1 (en) Process for production of liquid crystal panel
JP2021026233A (en) Liquid crystal panel manufacturing method and liquid crystal panel manufacturing apparatus
JP2008170673A (en) Device and method for manufacturing liquid crystal display panel
JP2008145755A (en) Method of manufacturing liquid crystal display device
KR20030079429A (en) Liquid Crystal Display Device and Method of manufacturing the same
JP3874286B2 (en) Liquid crystal display panel manufacturing method and liquid crystal display panel member
JP2006349917A (en) Apparatus and method for manufacturing liquid crystal display panel
JP2014119675A (en) Manufacturing method of liquid crystal display device, and mother substrate
JP3798419B2 (en) Manufacturing method of liquid crystal display panel
KR101325218B1 (en) Manufacturing mthod of flexible panel
JP2010139656A (en) Method for manufacturing liquid crystal display
JP2000206544A (en) Liquid crystal display device
JP2000019540A (en) Liquid crystal display device
JP4311248B2 (en) Manufacturing method of liquid crystal display device
JP3732498B2 (en) Manufacturing method of liquid crystal display panel
KR100720444B1 (en) Method for manufacturing liquid crystal display device
JP3794388B2 (en) Cell gap adjusting device and method of manufacturing liquid crystal display device
JP2009282174A (en) Method and device for manufacturing liquid crystal display panel
JP3888104B2 (en) Liquid crystal device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP