[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012102172A1 - Power measuring device, power measuring method, and recording medium - Google Patents

Power measuring device, power measuring method, and recording medium Download PDF

Info

Publication number
WO2012102172A1
WO2012102172A1 PCT/JP2012/051105 JP2012051105W WO2012102172A1 WO 2012102172 A1 WO2012102172 A1 WO 2012102172A1 JP 2012051105 W JP2012051105 W JP 2012051105W WO 2012102172 A1 WO2012102172 A1 WO 2012102172A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
cross point
voltage
power
negative
Prior art date
Application number
PCT/JP2012/051105
Other languages
French (fr)
Japanese (ja)
Inventor
和生 石田
Original Assignee
Necシステムテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necシステムテクノロジー株式会社 filed Critical Necシステムテクノロジー株式会社
Publication of WO2012102172A1 publication Critical patent/WO2012102172A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique

Definitions

  • the present invention relates to a power measurement device, a power measurement method, and a recording medium.
  • the measurement of the power consumed by the electrical equipment connected to the alternating current power source is generally a current that changes with time, for example, an electronic power meter as described in Patent Literature 1, 4 or 5 It is done by measuring the voltage and calculating the instantaneous power from there. Therefore, the power meter needs both the current measurement circuit and the voltage measurement circuit connected to the AC power supply line.
  • the instantaneous power fluctuates according to the phase of the voltage, so the power meter generally calculates power by averaging over one cycle of the power supply voltage.
  • the power meter needs to know the time of one cycle of the power supply voltage. For example, in the electronic watt-hour meter of patent document 1, one cycle of AC voltage is detected by the zero crossing of AC voltage.
  • the electric energy measurement device of Patent Document 3 voltage measurement of the electric device to be measured is performed in advance, and the phase difference with a predetermined reference AC power supply is stored in the power meter. At the time of power measurement, the voltage measurement circuit is omitted from the power meter by calculating the power from the voltage obtained by shifting the voltage of the reference AC power supply by the stored phase difference and the measured current, thereby reducing the circuit size. There is. Further, in the power monitoring system of Patent Document 2, the power factor is measured and stored in advance in units of breakers. At the time of power measurement, the voltage measurement circuit is omitted from the power meter and the circuit scale is reduced by calculating the power from the measured current, the rated voltage determined for each breaker, and the stored power factor. ing.
  • Patent Document 6 describes that an induction voltage signal detected by a coil is integrated to obtain an instantaneous value of the current.
  • induced voltage signals are integrated by a plurality of integrating means having different initial values by predetermined values, and switching is performed in order from the large initial value integrating means at predetermined time intervals and output. , Convert the offset component into a periodic waveform having a period N times that of the signal to be measured.
  • Patent Document 7 describes that a power failure is determined when the period of inversion of H and L of a zero cross signal of a voltage waveform deviates from a normal range.
  • JP 2000-338148 A JP, 2008-089436, A JP, 2009-168586, A JP, 2009-222433, A JP, 2009-288218, A JP, 2010-008340, A JP, 2010-237120, A
  • the power meter generally requires both a current measurement circuit and a voltage measurement circuit connected to an AC power supply line, which causes a problem that the circuit scale becomes large.
  • the power meters of Patent Document 2 and Patent Document 3 both calculate the power based on the phase difference and the power factor measured in advance, so when the electric device to be measured is changed or the same device is used, Also, there is a problem that the power can not be calculated correctly when there is a change in the power factor due to a change in the operating state. Furthermore, in the case of the power meter of Patent Document 3, if there is a change in the reference AC power supply, the voltage generated due to the phase shift will also change therefrom, so that the power can not be calculated correctly. There is.
  • the present invention has been made in view of the above-described circumstances, and while reducing the circuit scale of the voltage measurement device, a power measurement device, a power measurement method, and a recording that can follow changes in the electrical device to be measured and load fluctuations. It aims to provide a medium.
  • the power measurement device is A cross point detection means for detecting a positive cross point at which the voltage of the electrical device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electrical equipment crosses the reference potential from positive to negative;
  • Current measurement means for measuring an instantaneous current value of the electric device;
  • Voltage value generating means for generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
  • the instantaneous voltage value generated by the voltage value generation means is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, Power calculation means for calculating a value; And the like.
  • a power measurement method is A power measurement method performed by a device for measuring the power of an electrical device, the method comprising: A cross point detection step of detecting a positive cross point at which the voltage of the electric device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electric device crosses the reference potential from positive to negative; A current measurement step of measuring an instantaneous current value of the electric device; A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point; The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value; And the like.
  • a computer readable recording medium is Detecting a positive cross point at which the voltage of the electrical device crosses the reference potential from negative to positive, or a negative point at which the voltage crosses the reference potential from positive to negative; A current measurement step of measuring an instantaneous current value of the electric device; A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point; The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value; And a program for executing the program.
  • a power measurement device capable of following changes in an electrical device to be measured and load fluctuations while reducing the circuit scale of the voltage measurement device.
  • FIG. 2 is a diagram showing an example of a configuration for performing zero crossing detection according to the first embodiment. It is a figure explaining an example of operation which detects a zero crossing point from a voltage waveform, and computes electric power.
  • 5 is a flowchart illustrating an example of an operation of power measurement according to the first embodiment. It is a figure explaining an example of operation which generates a voltage waveform concerning Embodiment 2 of the present invention.
  • 15 is a flowchart illustrating an example of an operation of power measurement according to the second embodiment. It is a block diagram which shows the structural example of the electric power measurement apparatus which concerns on Embodiment 3 of this invention. 15 is a flowchart illustrating an example of the operation of changing the peak value according to the third embodiment. It is a block diagram showing an example of the hardware constitutions of the electric power measurement device concerning an embodiment of the invention.
  • FIG. 1 is a block diagram showing a configuration example of a power measurement apparatus according to Embodiment 1 of the present invention.
  • the power measurement device is connected to a power line between the AC power supply 1 and the electric device 2.
  • the power measurement device 10 includes a zero cross detection unit 11, a voltage value generation unit 12, a current measurement unit 13, a power calculation unit 15, and an output unit 16.
  • the zero cross detection unit 11 is connected to each of the power lines.
  • the zero cross detection unit 11 detects a positive cross point at which the voltage of the power line crosses the reference potential (typically, the neutral potential 0 V) from negative to positive, or a negative cross point at which the voltage of the power line crosses the reference potential from positive to negative.
  • the reference potential typically, the neutral potential 0 V
  • the voltage value generation unit 12 holds data of a sine wave having a predetermined peak value.
  • the voltage value generation unit 12 applies the reference point of the held sine wave to the adjacent positive cross point (or negative cross point) detected by the zero cross point detection unit, adjusts the time axis of the sine wave, Generate a wave voltage waveform (calculation formula).
  • the reference potential for zero cross detection is the neutral potential 0 V
  • the reference point of the sine wave is a point of 0 radian and 2 ⁇ radians (or ⁇ radians).
  • the current measuring unit 13 measures the current flowing through the power line.
  • the current measuring unit 13 detects a magnetic field generated by the current flowing through the power line by the current sensor 14 and measures the current.
  • the current measurement unit 13 can be realized, for example, using a clamp-type current sensor or a shunt resistor.
  • the voltage value generation unit 12 generates a voltage value (instantaneous voltage value) at that time point from the zero cross point and the generated sine wave according to the current measurement timing, and supplies the voltage value to the power calculation unit 15.
  • the power calculation unit 15 multiplies the instantaneous current value measured by the current measurement unit 13 by the instantaneous voltage value supplied from the voltage value generation unit 12 to calculate an instantaneous power value.
  • the power calculation unit 15 calculates the power value by averaging the instantaneous power values over one period of the voltage. One cycle of voltage is given by the time between two adjacent positive crossing points (or negative crossing points).
  • the power calculation unit 15 sends the calculated power value to the output unit 16.
  • the output unit 16 transmits the power value to another display device, a storage device, or the like. Alternatively, the output unit 16 may include a display device, and the output unit 16 may display the power value.
  • FIG. 2 is a diagram illustrating an example of a configuration for performing zero crossing detection according to the first embodiment.
  • the zero cross detection unit 11 can be realized by combining a comparator 31 and a rising edge detection circuit 32, which are generally known electronic circuits.
  • the connection in FIG. 2 detects a positive cross point
  • the negative cross point is detected by replacing the line connecting the power line to the comparator 31.
  • the zero cross detection unit 11 detects a positive cross point or a negative cross point without detecting a voltage.
  • FIG. 3 is a diagram for explaining an example of the operation of detecting the zero crossing point from the voltage waveform and calculating the power.
  • the voltage waveform of the AC power supply 1 is, for example, a sine waveform as shown in the voltage waveform 401 of FIG. 3.
  • the output of the comparator 31 is positive in the section in which the voltage takes a positive value.
  • the output of the comparator 31 is negative in the section where the voltage has a negative value in the voltage waveform 401 (the comparator output 402 in FIG. 3).
  • the output of the comparator 31 (comparator output 402) is given as an input to the rising edge detection circuit 32, a pulse is output at the rising edge of the comparator output waveform (edge detection output 403 in FIG. 3).
  • the pulse of the edge detection output 403 output by the above operation corresponds to the moment when the voltage of the AC power supply 1 (line connected to the + terminal of the comparator 31) changes from a negative value to a positive value.
  • the positive cross point is detected by the pulse of the edge detection output 403.
  • the interval between adjacent pulses is the period T of the voltage waveform.
  • a voltage waveform such as the voltage waveform 401 of FIG. 3 can be generated by adjusting the time axis by aligning the pulse of the edge detection output 403 with the reference point of the sine wave having a predetermined peak value.
  • the predetermined peak value is a value preset according to the voltage of the AC power supply.
  • the power measurement apparatus 10 may generate a voltage waveform (calculation formula) approximating the voltage waveform 401 of the AC power supply from a positive cross point or a negative cross point and a sine wave of a predetermined peak value. it can.
  • the current measuring unit 13 detects an induced magnetic field generated by a current, for example, at a predetermined sampling cycle, and generates a current value.
  • a current for example, the current has a waveform as shown by the second stage current 406 from the bottom of FIG. In practice, discrete values of the sampling period are detected.
  • the voltage value generation unit 12 generates, as an instantaneous voltage value, the value of the voltage waveform at a time corresponding to the time from the positive cross point (or negative cross point) to the sampling according to the sampling cycle of the current measurement unit 13 .
  • the voltage value generator 12 calculates the instantaneous voltage value V according to the equation shown in Equation 1.
  • V 0 the effective value of the pre-power measuring device 10 to set the AC power supply 1 voltage (hereinafter, referred to as the effective voltage), for example, a value such as 100 V.
  • ⁇ t is a sampling period
  • n is a sampling number from the positive cross point
  • T is a period of the AC voltage.
  • the nominal voltage of the AC power supply is given by the effective value of the voltage, and thus is expressed by the effective value V 0 according to the convention according to the formula 1. This is substantially equivalent to the provision of a predetermined peak value.
  • the effective voltage may be converted to a peak value, or may be set in advance as the peak value.
  • the power calculation unit 15 calculates and integrates instantaneous electric energy from the measured instantaneous current value and the calculated instantaneous voltage value. Specifically, for example, when the measured current value is I and the calculated voltage is V, the instantaneous power amount can be calculated by V ⁇ I ⁇ ⁇ t.
  • a power waveform 407 is schematically shown at the bottom of FIG. Power waveform 407 in FIG. 3 corresponds to voltage waveform 401 and current 406 above it.
  • the instantaneous power amount is represented by a value obtained by adding a sign to the area of the rectangular area of the height of the value of the power waveform at that time with the width of the sampling period ⁇ t.
  • the power calculation unit 15 divides the integrated one cycle of electric energy by the period T to calculate an average power for one period.
  • the power calculating unit 15 sends the calculated average power to the output unit 16 as the value of the power of the cycle.
  • the voltage and waveform of the power supply are stable, and the voltage is mainly determined by the distribution path.
  • the factors that determine the power of the electrical device are dominated by the phase difference between the current and the voltage and the current waveform.
  • the voltage changes beyond the error range when there is a power failure, an instantaneous voltage drop, or an electrical leakage or lightning when a load above the specified level (large current consumption) is connected to the distribution system. If a large current flows in the distribution system, it is cut off by the circuit breaker that protects that system. Therefore, in normal use of the electric device, if the phase difference between the current and the voltage and the current waveform are measured, the power can be measured within the error range of the voltage. When connecting electrical devices, it is more accurate to set the peak value from which the power supply voltage is measured and the voltage waveform is calculated.
  • a single-phase two-wire AC power supply has been described as an AC power supply. Even in the case of the single-phase three-wire system or the three-phase three-wire AC power supply, the power measurement apparatus 10 according to the first embodiment can perform power measurement in the same procedure.
  • FIG. 4 is a flowchart showing an example of the power measurement operation according to the first embodiment.
  • the zero cross detection unit 11 detects the rising edge of the comparator output as described above and detects the first positive cross point of the voltage waveform of the AC power supply 1 (the positive cross point 404 in FIG. Hereinafter, the first positive cross point is described (step S10).
  • the zero cross detection unit 11 detects the next positive cross point (the positive cross point 405 in FIG. 3; hereinafter, referred to as a second positive cross point) by the same operation procedure as step 201 (step S11).
  • the first positive cross point and the second positive cross point are adjacent to each other, and the interval is a period T.
  • the voltage value generation unit 12 calculates an elapsed time (period T) between the detected first and second positive cross points (step S12).
  • the voltage value generation unit 12 adjusts the time axis of the sine wave having a predetermined peak value to the positive cross point and the period T to generate a voltage waveform (calculation formula) of the sine wave (step S13).
  • the power calculation unit 15 initializes the periodic power amount to 0 (step S14). Then, the zero cross detection unit 11 detects the next zero cross point according to the same operation procedure as in step 201 (step S15). Thereafter, while the cycle T elapses from the detection time of the positive cross point, the power measurement apparatus 10 repeats the processing from step S16 to step S19 in FIG. 4 at constant time intervals (hereinafter referred to as ⁇ t).
  • the current measurement unit 13 measures the current value I as described above (step S16).
  • the power calculation unit 15 calculates the voltage value V according to the equation 1 using the calculated period T and the time interval ⁇ t (step S17).
  • the power calculating unit 15 calculates an instantaneous power amount from the current value measured in step S16 and the voltage value calculated in step S17, and integrates the instantaneous power amount into the periodic power amount (step S18).
  • the processing from S16 to step S18 described above is repeated until one cycle is completed while increasing the loop counter n (step S19; NO).
  • step S19 When the process of one cycle is completed (step S19; YES), the power calculation unit 15 divides the cycle power amount by the cycle T to calculate the average power of one cycle, and transmits the calculation result to the output unit 16 (step S20).
  • the power measuring apparatus 10 After the processing described above is completed, the power measuring apparatus 10 returns to step S14 again, and repeats the processing from the initial setting of the periodic power amount.
  • the power calculation unit 15 resets the loop counter n to zero.
  • Embodiment 1 demonstrated the case where the zero crossing detection part 11 detected the positive crossing point from which the voltage waveform of AC power supply 1 changes from a negative value to a positive value.
  • the power measurement apparatus 10 may detect a negative cross point at which the voltage changes from a positive value to a negative value.
  • both the positive cross point and the negative cross point may be detected.
  • the number of repetitions of the loop performing the processes of step S16 to step S19 is determined in a period of one cycle of the voltage waveform.
  • a period of N cycles N is 1 or more It may be determined in integer values
  • M seconds M is a positive real number value.
  • the output unit 16 may not only display the received average power as it is, but also may display it as an accumulated amount of power.
  • the amount of electric power may be converted to the electricity bill or the amount of CO 2 emission and displayed according to a known calculation formula.
  • the cycle T is dynamically calculated at the time of power measurement in the processes of steps S10 to S12 of FIG. 4, the power measurement of the present embodiment is performed in advance similarly to the effective voltage V 0. It may be set in the apparatus 10.
  • the cycle T is used every time the power calculation processing is performed a fixed number of times, or at fixed time intervals, or The processing from step S10 to step S12 in FIG. 4 may be re-executed at random timing to obtain it again.
  • the power measurement device 10 is configured to calculate power using a zero cross detection circuit having a smaller scale than the voltage measurement circuit instead of the voltage measurement circuit. Has the effect of being able to be smaller.
  • the phase difference between the current and the voltage can be accurately grasped even if there is a change in the electrical device to be measured or a load fluctuation. There is also an effect that correct power can be calculated.
  • the power measurement apparatus 10 detects both the positive cross point and the negative cross point. Then, an instantaneous voltage value is generated by adjusting the time axis and the DC voltage component in accordance with the interval between the positive cross point and the negative cross point of a sine wave having a predetermined peak value.
  • FIG. 5 is a diagram for explaining an example of an operation of generating a voltage waveform according to the second embodiment of the present invention.
  • the zero cross point detection unit detects both the positive cross point and the negative cross point.
  • two comparator circuits in FIG. 2 are provided and positive terminals and negative terminals are connected in reverse, one can detect a positive cross point and the other can detect a negative cross point.
  • two rising edge detection circuits 32 are provided, one of which receives the output of the comparator as it is and the other receives the output of the comparator by inverting the output of the other, one of which is a positive cross point and the other of which is a negative cross point. Can be detected.
  • the voltage value generation unit 12 adjusts the time axis and the DC voltage so that the sine wave of a predetermined peak value matches both the positive cross point and the negative cross point. For example, as shown in FIG. 5, when the time from the positive cross point to the next negative cross point differs from the time from the negative cross point to the next positive cross point, first, the adjacent positive cross points (or negative cross points) Adjust the time axis (period T) of the sine wave so that the time between) becomes the period T of the sine wave. Next, the DC component of the voltage is determined so that the positive section of the voltage waveform is equal to the time from the positive crossing point to the next negative crossing point. That is, the sine wave is shifted in the voltage direction (vertical direction in FIG. 5). Then, the phases are adjusted so that the point at which the voltage of the shifted voltage waveform crosses 0 V from negative to positive coincides with the positive cross point.
  • the voltage value generation unit 12 Based on the voltage waveform generated by adjusting a predetermined sine wave as described above, the voltage value generation unit 12 generates a voltage value of the timing according to the timing at which the current measurement unit 13 measures the current. .
  • the current measuring unit 13 measures an instantaneous current value as in the first embodiment. In this case, it is desirable to be able to measure the current including the DC component.
  • the power calculation unit 15 calculates the instantaneous power value from the instantaneous current value and the instantaneous voltage value, and calculates the power by averaging the power value of one cycle of the voltage.
  • the instantaneous power amount may be integrated for one cycle and divided by the cycle T to calculate the power value, as in the embodiment.
  • FIG. 6 is a flowchart illustrating an example of the power measurement operation according to the second embodiment.
  • first, zero cross detection unit 11 detects the rising edge of the comparator output as in the first embodiment, and detects the first positive cross point of the voltage waveform of AC power supply 1 (hereinafter referred to as A positive cross point of 1) is detected (step S21).
  • the zero crossing point detection unit detects the negative crossing point following the positive crossing point as described above (step S22).
  • the zero cross detection unit 11 detects the next positive cross point (hereinafter referred to as a second positive cross point) according to the same operation procedure as step 201 (step S23).
  • the first positive cross point and the second positive cross point are adjacent to each other, and the interval is a period T.
  • the voltage value generation unit 12 calculates an elapsed time (period T) between the detected first and second positive cross points (step S24).
  • the voltage value generation unit 12 adjusts the time axis and the DC voltage component so that the sine wave having a predetermined peak value matches both the positive cross point and the negative cross point, and the voltage waveform of the sine wave (calculation formula) Are generated (step S25).
  • the operations from the initial setting of the periodic power amount in step S26 to the calculation and output of the average power are the same as those in step S14 to step S20 in FIG.
  • the power measurement device 10 of the second embodiment even when the power supply voltage includes a DC component, if the AC voltage is a sine wave, the power can be measured without measuring the voltage.
  • FIG. 7 is a block diagram showing a configuration example of a power measurement device according to Embodiment 3 of the present invention.
  • the third embodiment includes means for changing and setting the peak value of the sine wave.
  • the power measurement apparatus 10 of the third embodiment includes an input unit 17 and a peak value setting unit 18 in addition to the configuration of the first embodiment.
  • the input unit 17 receives an input of the effective voltage or peak value of the AC power supply.
  • the input unit 17 may be configured to be able to input a numerical value using a ten key, or may be configured by a switch for instructing increase or decrease and a display device. Moreover, you may comprise by a display and a touch panel.
  • the peak value setting unit 18 changes the peak value (or effective value) of the sine wave in accordance with the effective voltage or the peak value input at the input unit 17 and stores the value.
  • the voltage value generation unit 12 generates an instantaneous voltage value using the crest value (or effective value) changed and stored by the crest value setting unit 18.
  • the other configuration and operation are the same as in the first or second embodiment.
  • FIG. 8 is a flowchart showing an example of the operation of changing the peak value according to the third embodiment.
  • the input unit 17 waits for input of the peak value (or effective voltage) (step S41, step S42; NO). If there is an input of the peak value (or effective voltage) (step S42; YES), the peak value setting unit 18 adjusts the peak value (or effective value) of the sine wave to the input peak value (or effective voltage). Are changed and stored (step S43). Then, the process returns to the step and repeats from waiting for input.
  • the power supply voltage supplied to electrical equipment changes due to changes in the distribution system, such as replacing the transformer or changing the distance from the transformer or the system connected to the transformer. There is a case.
  • the power measurement device 10 of the third embodiment even if the power supply voltage changes, the peak value of the sine wave generating the instantaneous voltage value can be set accordingly. As a result, the power of the electrical device can be measured more accurately.
  • FIG. 9 is a block diagram showing an example of the hardware configuration of the power measurement device according to the embodiment of the present invention.
  • the power measurement device 10 includes a control unit 21, a main storage unit 22, an external storage unit 23, an operation unit 24, a display unit 25, and an input / output unit 26.
  • the main storage unit 22, the external storage unit 23, the operation unit 24, the display unit 25, and the input / output unit 26 are all connected to the control unit 21 via the internal bus 20.
  • the control unit 21 is configured by a CPU (Central Processing Unit) or the like, and executes processing for measuring power according to a control program 29 stored in the external storage unit 23.
  • a CPU Central Processing Unit
  • the main storage unit 22 comprises a RAM (Random-Access Memory) or the like, loads the control program 29 stored in the external storage unit 23, and is used as a work area of the control unit 21.
  • RAM Random-Access Memory
  • the external storage unit 23 includes non-volatile memory such as a flash memory, a hard disk, a digital versatile disc random access memory (DVD-RAM), and a digital versatile disc rewritable (DVD-RW), and controls the processing of the power measurement apparatus 10
  • non-volatile memory such as a flash memory, a hard disk, a digital versatile disc random access memory (DVD-RAM), and a digital versatile disc rewritable (DVD-RW)
  • a program to be performed by the unit 21 is stored in advance, and data stored by the program is supplied to the control unit 21 according to an instruction of the control unit 21, and the data supplied from the control unit 21 is stored.
  • the operation unit 24 includes a keyboard, a pointing device such as a switch and a touch panel, and an interface device for connecting the keyboard, the switch, the pointing device and the like to the internal bus 20.
  • the operation unit 24 receives an input of a peak value or an effective voltage.
  • the display unit 25 is configured of a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), or the like, and displays a screen for outputting electric power or electric energy. In addition, the peak value or the set value of the effective voltage is displayed.
  • CTR Cathode Ray Tube
  • LCD Liquid Crystal Display
  • the input / output unit 26 is configured of a serial interface or a parallel interface.
  • a power line for detecting the zero cross point, a current sensor 14 and the like are connected to the input / output unit 26.
  • the input / output unit 26 includes a circuit that detects a zero crossing point, such as a comparator 31 and an edge detection circuit.
  • the circuit also includes a circuit that AD converts the output of the current sensor 14.
  • the power measuring device 10 includes a transmitting / receiving unit (not shown) when communicating the measured power and the amount of power to an external device.
  • the transmission / reception unit is configured of a network termination device or a wireless communication device connected to the network, and a serial interface or a LAN (Local Area Network) interface connected to them.
  • the transmission / reception unit connects to an external terminal or server via a network.
  • the control program 29 executes the processing by using the control unit 21, the main storage unit 22, the external storage unit 23, the operation unit 24, the display unit 25, the input / output unit 26 and the like as resources.
  • the main part to perform the power measurement process which consists of control unit 21, main storage unit 22, external storage unit 23, operation unit 24, display unit 25, input / output unit 26 and internal bus 20, is a dedicated system Regardless, it can be realized using an ordinary computer system.
  • a computer program for executing the above-mentioned operation is stored in a computer readable recording medium (flexible disc, CD-ROM, DVD-ROM, etc.) and distributed, and the computer program is installed in the computer.
  • the power measurement apparatus 10 may be configured to execute the above process.
  • the computer program may be stored in a storage device of a server on a communication network such as the Internet, and the power measurement apparatus 10 may be configured by downloading or the like by a normal computer system.
  • the function of the power measurement apparatus 10 is realized by sharing the OS (operating system) and the application program or by the cooperation of the OS and the application program, only the application program part is stored in the recording medium or storage device. You may
  • the computer program may be posted on a bulletin board (BBS, Bulletin Board System) on a communication network, and the computer program may be distributed via the network. Then, the computer program may be activated and executed in the same manner as other application programs under the control of the OS so that the above-described processing can be executed.
  • BSS bulletin Board System
  • a cross point detection means for detecting a positive cross point at which the voltage of the electrical device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electrical equipment crosses the reference potential from positive to negative;
  • Current measurement means for measuring an instantaneous current value of the electric device;
  • Voltage value generating means for generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
  • the instantaneous voltage value generated by the voltage value generation means is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point,
  • Power calculation means for calculating a value;
  • a power measuring device comprising:
  • the cross point detection means detects the positive cross point and the negative cross point;
  • the voltage value generating means generates an instantaneous voltage value by adjusting a time axis and a DC voltage component in accordance with an interval between the positive cross point and the negative cross point, with a sine wave of the predetermined peak value.
  • the power measurement device according to claim 1 or 2, characterized in that the cross point detection means comprises a comparator and an edge detection circuit.
  • the power measuring apparatus according to any one of appendices 1 to 3, further comprising: an electric energy calculating means for calculating an electric energy of the electric device from the electric power value calculated by the electric power calculating means.
  • a power measurement method performed by a device for measuring the power of an electrical device comprising: A cross point detection step of detecting a positive cross point at which the voltage of the electric device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electric device crosses the reference potential from positive to negative; A current measurement step of measuring an instantaneous current value of the electric device; A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point; The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value; A method of measuring power.
  • a current measurement step of measuring an instantaneous current value of the electric device A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point; The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value; A computer readable storage medium storing a program for executing the program.
  • the present invention can be applied to the field of realizing a power measuring device capable of following changes in a measurement object or load fluctuation while reducing the circuit scale of a voltage measuring unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

A zero-crossing detection unit (11) detects a positive crossing point at which the voltage of an electric device crosses a reference voltage level from negative to positive or a negative crossing point at which the voltage of the electric device crosses the reference voltage level from positive to negative. A current measuring unit (13) measures the instantaneous current value of the electric device. A voltage value generation unit (12) applies a reference point of a sine wave having a predetermined crest value to the positive crossing point or the negative crossing point and generates an instantaneous voltage value from the sine wave, the time axis of which has been adjusted. A power calculation unit (15) multiplies the instantaneous voltage value generated in the voltage value generation unit (12) and the instantaneous current value at the same point of time and averages the multiplied value over the time between the adjacent positive crossing points or negative crossing points to calculate a power value.

Description

電力計測装置、電力計測方法および記録媒体Electric power measuring device, electric power measuring method and recording medium
 本発明は、電力計測装置、電力計測方法および記録媒体に関する。 The present invention relates to a power measurement device, a power measurement method, and a recording medium.
 交流電源に接続される電気機器で消費される電力の計測は、一般的には、例えば特許文献1、4または5に挙げられているような電子式電力計のように、時間とともに変化する電流、電圧を計測し、そこから瞬時電力を計算することで行われる。このため、電力計には、交流電源ラインに接続する電流計測回路と電圧計測回路の双方が必要である。 The measurement of the power consumed by the electrical equipment connected to the alternating current power source is generally a current that changes with time, for example, an electronic power meter as described in Patent Literature 1, 4 or 5 It is done by measuring the voltage and calculating the instantaneous power from there. Therefore, the power meter needs both the current measurement circuit and the voltage measurement circuit connected to the AC power supply line.
 交流電源に接続される電気機器では、瞬間の電力は電圧の位相に従って変動するので、一般に電力計は電源電圧の1周期にわたって平均して電力を算出する。電源電圧の周期程度の短時間で電力を計測する場合には、電力計は電源電圧の1周期の時間を知る必要がある。例えば、特許文献1の電子式電力計では、交流電圧の一周期分を交流電圧のゼロクロスにより検出する。 In an electric device connected to an AC power supply, the instantaneous power fluctuates according to the phase of the voltage, so the power meter generally calculates power by averaging over one cycle of the power supply voltage. When measuring power in a short time of about the cycle of the power supply voltage, the power meter needs to know the time of one cycle of the power supply voltage. For example, in the electronic watt-hour meter of patent document 1, one cycle of AC voltage is detected by the zero crossing of AC voltage.
 特許文献3の電力量計測装置では、予め計測対象となる電気機器の電圧計測を行い、所定の基準交流電源との位相差を電力計内に記憶しておく。電力計測時には、基準交流電源の電圧を記憶された位相差分だけシフトさせた電圧と、計測した電流とから電力を算出することで、電力計内から電圧計測回路を省き、回路規模を削減している。また、特許文献2の電力監視システムでは、予め、ブレーカー単位で力率を計測、記憶しておく。電力計測時には、計測した電流と、ブレーカー毎に決められている定格電圧、および、記憶された力率とから電力を算出することで、電力計内から電圧計測回路を省き、回路規模を削減している。 In the electric energy measurement device of Patent Document 3, voltage measurement of the electric device to be measured is performed in advance, and the phase difference with a predetermined reference AC power supply is stored in the power meter. At the time of power measurement, the voltage measurement circuit is omitted from the power meter by calculating the power from the voltage obtained by shifting the voltage of the reference AC power supply by the stored phase difference and the measured current, thereby reducing the circuit size. There is. Further, in the power monitoring system of Patent Document 2, the power factor is measured and stored in advance in units of breakers. At the time of power measurement, the voltage measurement circuit is omitted from the power meter and the circuit scale is reduced by calculating the power from the measured current, the rated voltage determined for each breaker, and the stored power factor. ing.
 なお、電流を計測する方法として、例えば特許文献6に、コイルで検知した誘導電圧信号を積分して電流の瞬時値を求めることが記載されている。特許文献6のコイル用電流センサ回路では、所定値ずつ異なる初期値をもつ複数の積分手段により誘導電圧信号を積分し、所定時間毎に大きな初期値の積分手段から順に切り換えて出力を行うことにより、オフセット成分を被計測信号のN倍の周期をもつ周期的な波形に変換する。その他、特許文献7には、電圧波形のゼロクロス信号のH、Lの反転の周期が正常範囲から外れたときに停電と判断することが記載されている。 As a method of measuring a current, for example, Patent Document 6 describes that an induction voltage signal detected by a coil is integrated to obtain an instantaneous value of the current. In the coil current sensor circuit of Patent Document 6, induced voltage signals are integrated by a plurality of integrating means having different initial values by predetermined values, and switching is performed in order from the large initial value integrating means at predetermined time intervals and output. , Convert the offset component into a periodic waveform having a period N times that of the signal to be measured. In addition, Patent Document 7 describes that a power failure is determined when the period of inversion of H and L of a zero cross signal of a voltage waveform deviates from a normal range.
特開2000-338148号公報JP 2000-338148 A 特開2008-089436号公報JP, 2008-089436, A 特開2009-168586号公報JP, 2009-168586, A 特開2009-222433号公報JP, 2009-222433, A 特開2009-288218号公報JP, 2009-288218, A 特開2010-008340号公報JP, 2010-008340, A 特開2010-237120号公報JP, 2010-237120, A
 特許文献1または5のように、電力計には一般的に、交流電源ラインに接続する電流計測回路と電圧計測回路の双方が必要となり、回路規模が大きくなるという問題がある。 As described in Patent Documents 1 and 5, the power meter generally requires both a current measurement circuit and a voltage measurement circuit connected to an AC power supply line, which causes a problem that the circuit scale becomes large.
 特許文献2または特許文献3の電力計は、どちらも、予め計測した位相差や力率に基づいて電力を計算するため、計測対象の電気機器が変更された場合、もしくは、同一機器であっても、動作状態が変わることにより力率に変化があった場合に正しく電力を算出することができなくなるという問題点がある。さらに、特許文献3の電力計の場合は、基準交流電源に変動があった場合、そこから位相シフトにより生成する電圧も変動することになるため、正しく電力を算出することができなくなるという問題点がある。 The power meters of Patent Document 2 and Patent Document 3 both calculate the power based on the phase difference and the power factor measured in advance, so when the electric device to be measured is changed or the same device is used, Also, there is a problem that the power can not be calculated correctly when there is a change in the power factor due to a change in the operating state. Furthermore, in the case of the power meter of Patent Document 3, if there is a change in the reference AC power supply, the voltage generated due to the phase shift will also change therefrom, so that the power can not be calculated correctly. There is.
 本発明は上述のような事情に鑑みてなされたもので、電圧計測装置の回路規模を削減しつつ、計測対象の電気機器の変更や負荷変動に追従可能な電力計測装置、電力計測方法および記録媒体を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and while reducing the circuit scale of the voltage measurement device, a power measurement device, a power measurement method, and a recording that can follow changes in the electrical device to be measured and load fluctuations. It aims to provide a medium.
 本発明の第1の観点に係る電力計測装置は、
 電気機器の電圧が負から正に基準電位を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出するクロス点検出手段と、
 前記電気機器の瞬時電流値を計測する電流計測手段と、
 所定の波高値の正弦波の基準点を前記正クロス点または前記負クロス点にあてはめて、時間軸を調節した正弦波から、瞬時電圧値を生成する電圧値生成手段と、
 前記電圧値生成手段で生成した瞬時電圧値と同時刻の前記瞬時電流値とを乗算し、該乗算した値を隣り合う前記正クロス点または前記負クロス点の間の時間にわたって平均して、電力値を算出する電力算出手段と、
 を備えることを特徴とする。
The power measurement device according to the first aspect of the present invention is
A cross point detection means for detecting a positive cross point at which the voltage of the electrical device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electrical equipment crosses the reference potential from positive to negative;
Current measurement means for measuring an instantaneous current value of the electric device;
Voltage value generating means for generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
The instantaneous voltage value generated by the voltage value generation means is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, Power calculation means for calculating a value;
And the like.
 本発明の第2の観点に係る電力計測方法は、
 電気機器の電力を計測する装置が行う電力計測方法であって、
 前記電気機器の電圧が負から正に基準電位を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出するクロス点検出ステップと、
 前記電気機器の瞬時電流値を計測する電流計測ステップと、
 所定の波高値の正弦波の基準点を前記正クロス点または前記負クロス点にあてはめて、時間軸を調節した正弦波から、瞬時電圧値を生成する電圧値生成ステップと、
 前記電圧値生成ステップで生成した瞬時電圧値と同時刻の前記瞬時電流値とを乗算し、該乗算した値を隣り合う前記正クロス点または前記負クロス点の間の時間にわたって平均して、電力値を算出する電力算出ステップと、
 を備えることを特徴とする。
A power measurement method according to a second aspect of the present invention is
A power measurement method performed by a device for measuring the power of an electrical device, the method comprising:
A cross point detection step of detecting a positive cross point at which the voltage of the electric device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electric device crosses the reference potential from positive to negative;
A current measurement step of measuring an instantaneous current value of the electric device;
A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value;
And the like.
 本発明の第3の観点に係るコンピュータ読み取り可能な記録媒体は、
 コンピュータに
 電気機器の電圧が負から正に基準電位を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出するクロス点検出ステップと、
 前記電気機器の瞬時電流値を計測する電流計測ステップと、
 所定の波高値の正弦波の基準点を前記正クロス点または前記負クロス点にあてはめて、時間軸を調節した正弦波から、瞬時電圧値を生成する電圧値生成ステップと、
 前記電圧値生成ステップで生成した瞬時電圧値と同時刻の前記瞬時電流値とを乗算し、該乗算した値を隣り合う前記正クロス点または前記負クロス点の間の時間にわたって平均して、電力値を算出する電力算出ステップと、
 を実行させるプログラムを記録したことを特徴とする。
A computer readable recording medium according to the third aspect of the present invention is
Detecting a positive cross point at which the voltage of the electrical device crosses the reference potential from negative to positive, or a negative point at which the voltage crosses the reference potential from positive to negative;
A current measurement step of measuring an instantaneous current value of the electric device;
A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value;
And a program for executing the program.
 本発明によれば、電圧計測装置の回路規模を削減しつつ、計測対象の電気機器の変更や負荷変動に追従可能な電力計測装置、電力計測方法および記録媒体を提供することができる。 According to the present invention, it is possible to provide a power measurement device, a power measurement method, and a recording medium capable of following changes in an electrical device to be measured and load fluctuations while reducing the circuit scale of the voltage measurement device.
本発明の実施の形態1に係る電力計測装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the electric power measurement apparatus which concerns on Embodiment 1 of this invention. 実施の形態1のゼロクロス検出を行うための構成の一例を示す図である。FIG. 2 is a diagram showing an example of a configuration for performing zero crossing detection according to the first embodiment. 電圧波形からゼロクロス点を検出し、電力を算出する動作の一例を説明する図である。It is a figure explaining an example of operation which detects a zero crossing point from a voltage waveform, and computes electric power. 実施の形態1の電力計測の動作の一例を示すフローチャートである。5 is a flowchart illustrating an example of an operation of power measurement according to the first embodiment. 本発明の実施の形態2に係る電圧波形を生成する動作の一例を説明する図である。It is a figure explaining an example of operation which generates a voltage waveform concerning Embodiment 2 of the present invention. 実施の形態2の電力計測の動作の一例を示すフローチャートである。15 is a flowchart illustrating an example of an operation of power measurement according to the second embodiment. 本発明の実施の形態3に係る電力計測装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the electric power measurement apparatus which concerns on Embodiment 3 of this invention. 実施の形態3の波高値変更の動作の一例を示すフローチャートである。15 is a flowchart illustrating an example of the operation of changing the peak value according to the third embodiment. 本発明の実施の形態に係る電力計測装置のハードウェア構成の一例を示すブロック図である。It is a block diagram showing an example of the hardware constitutions of the electric power measurement device concerning an embodiment of the invention.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figures, the same or equivalent parts are denoted by the same reference numerals.
 (実施の形態1)
 図1は、本発明の実施の形態1に係る電力計測装置の構成例を示すブロック図である。電力計測装置は、交流電源1と電気機器2の間の電力線に接続される。電力計測装置10は、ゼロクロス検出部11、電圧値生成部12、電流計測部13、電力算出部15および出力部16を備える。
Embodiment 1
FIG. 1 is a block diagram showing a configuration example of a power measurement apparatus according to Embodiment 1 of the present invention. The power measurement device is connected to a power line between the AC power supply 1 and the electric device 2. The power measurement device 10 includes a zero cross detection unit 11, a voltage value generation unit 12, a current measurement unit 13, a power calculation unit 15, and an output unit 16.
 ゼロクロス検出部11は、電力線のそれぞれに接続される。ゼロクロス検出部11は、電力線の電圧が負から正に基準電位(典型的には中立電位0V)を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出する。 The zero cross detection unit 11 is connected to each of the power lines. The zero cross detection unit 11 detects a positive cross point at which the voltage of the power line crosses the reference potential (typically, the neutral potential 0 V) from negative to positive, or a negative cross point at which the voltage of the power line crosses the reference potential from positive to negative.
 電圧値生成部12は、所定の波高値を有する正弦波のデータを保持している。電圧値生成部12は、ゼロクロス点検出部で検出した隣り合う正クロス点(または負クロス点)に、保持している正弦波の基準点をあてはめて、正弦波の時間軸を調節して正弦波の電圧波形(計算式)を生成する。ゼロクロス検出の基準電位が中立電位0Vの場合は、正弦波の基準点は、0ラジアンと2πラジアン(またはπラジアン)の点である。 The voltage value generation unit 12 holds data of a sine wave having a predetermined peak value. The voltage value generation unit 12 applies the reference point of the held sine wave to the adjacent positive cross point (or negative cross point) detected by the zero cross point detection unit, adjusts the time axis of the sine wave, Generate a wave voltage waveform (calculation formula). When the reference potential for zero cross detection is the neutral potential 0 V, the reference point of the sine wave is a point of 0 radian and 2π radians (or π radians).
 一方、電流計測部13は、電力線に流れる電流を計測する。電流計測部13は、例えば、電流センサ14によって電力線を流れる電流で発生する磁界を検出して、電流を計測する。電流計測部13は、例えば、クランプ式の電流センサやシャント抵抗を用いて実現することができる。 On the other hand, the current measuring unit 13 measures the current flowing through the power line. For example, the current measuring unit 13 detects a magnetic field generated by the current flowing through the power line by the current sensor 14 and measures the current. The current measurement unit 13 can be realized, for example, using a clamp-type current sensor or a shunt resistor.
 電圧値生成部12は、ゼロクロス点と生成した正弦波から、電流計測するタイミングに合わせて、その時点の電圧値(瞬時電圧値)を生成して、電力算出部15に供給する。電力算出部15は、電流計測部13で計測された瞬時電流値と、電圧値生成部12から供給される瞬時電圧値を乗じて、瞬時電力値を算出する。 The voltage value generation unit 12 generates a voltage value (instantaneous voltage value) at that time point from the zero cross point and the generated sine wave according to the current measurement timing, and supplies the voltage value to the power calculation unit 15. The power calculation unit 15 multiplies the instantaneous current value measured by the current measurement unit 13 by the instantaneous voltage value supplied from the voltage value generation unit 12 to calculate an instantaneous power value.
 電力算出部15は、瞬時電力値を電圧の1周期にわたって平均して、電力値を算出する。電圧の1周期は、隣り合う2つの正クロス点(または負クロス点)の間の時間で与えられる。電力算出部15は、算出した電力値を出力部16に送る。出力部16は、別の表示装置または記憶装置などに電力値を送信する。あるいは、出力部16が表示装置を備え、出力部16が電力値を表示してもよい。 The power calculation unit 15 calculates the power value by averaging the instantaneous power values over one period of the voltage. One cycle of voltage is given by the time between two adjacent positive crossing points (or negative crossing points). The power calculation unit 15 sends the calculated power value to the output unit 16. The output unit 16 transmits the power value to another display device, a storage device, or the like. Alternatively, the output unit 16 may include a display device, and the output unit 16 may display the power value.
 図2は、実施の形態1のゼロクロス検出を行うための構成の一例を示す図である。ゼロクロス検出部11は、例えば図2に示されるように、一般によく知られた電子回路である、コンパレータ31と立ち上がりエッジ検出回路32を組み合わせて実現することができる。図2の接続が正クロス点を検出する場合、電力線からコンパレータ31に繋ぐ線を入れ替えれば負クロス点を検出することになる。ゼロクロス検出部11は、電圧を検出することなく、正クロス点または負クロス点を検出する。 FIG. 2 is a diagram illustrating an example of a configuration for performing zero crossing detection according to the first embodiment. For example, as shown in FIG. 2, the zero cross detection unit 11 can be realized by combining a comparator 31 and a rising edge detection circuit 32, which are generally known electronic circuits. When the connection in FIG. 2 detects a positive cross point, the negative cross point is detected by replacing the line connecting the power line to the comparator 31. The zero cross detection unit 11 detects a positive cross point or a negative cross point without detecting a voltage.
 図3は、電圧波形からゼロクロス点を検出し、電力を算出する動作の一例を説明する図である。交流電源1の電圧波形は、例えば、図3の電圧波形401に示されるような正弦波形をしている。電圧波形401を図2のコンパレータ31に入力として与えると、電圧波形401において、電圧が正の値をとっている区間については、コンパレータ31の出力は正である。電圧波形401で電圧が負の値をとっている区間については、コンパレータ31の出力は負となる(図3のコンパレータ出力402)。 FIG. 3 is a diagram for explaining an example of the operation of detecting the zero crossing point from the voltage waveform and calculating the power. The voltage waveform of the AC power supply 1 is, for example, a sine waveform as shown in the voltage waveform 401 of FIG. 3. When the voltage waveform 401 is given to the comparator 31 of FIG. 2 as an input, in the voltage waveform 401, the output of the comparator 31 is positive in the section in which the voltage takes a positive value. The output of the comparator 31 is negative in the section where the voltage has a negative value in the voltage waveform 401 (the comparator output 402 in FIG. 3).
 次に、コンパレータ31の出力(コンパレータ出力402)を立ち上がりエッジ検出回路32の入力として与えると、コンパレータ出力波形の立ち上がりエッジの部分でパルスが出力される(図3のエッジ検出出力403)。以上のような動作によって出力されるエッジ検出出力403のパルスは、交流電源1(コンパレータ31の+端子に接続される線)の電圧が負の値から正の値に変わる瞬間に対応している。図2の構成では、正クロス点をエッジ検出出力403のパルスで検出する。隣り合うパルスの間隔は、電圧波形の周期Tである。 Next, when the output of the comparator 31 (comparator output 402) is given as an input to the rising edge detection circuit 32, a pulse is output at the rising edge of the comparator output waveform (edge detection output 403 in FIG. 3). The pulse of the edge detection output 403 output by the above operation corresponds to the moment when the voltage of the AC power supply 1 (line connected to the + terminal of the comparator 31) changes from a negative value to a positive value. . In the configuration of FIG. 2, the positive cross point is detected by the pulse of the edge detection output 403. The interval between adjacent pulses is the period T of the voltage waveform.
 エッジ検出出力403のパルスに、所定の波高値の正弦波の基準点を合わせて時間軸を調節すれば、図3の電圧波形401のような電圧波形を生成できる。所定の波高値は交流電源の電圧に合わせて予め設定された値である。電力計測装置10は電圧を計測していないが、正クロス点または負クロス点と所定の波高値の正弦波から、交流電源の電圧波形401に近似する電圧波形(計算式)を生成することができる。 A voltage waveform such as the voltage waveform 401 of FIG. 3 can be generated by adjusting the time axis by aligning the pulse of the edge detection output 403 with the reference point of the sine wave having a predetermined peak value. The predetermined peak value is a value preset according to the voltage of the AC power supply. Although the power measurement apparatus 10 does not measure the voltage, it may generate a voltage waveform (calculation formula) approximating the voltage waveform 401 of the AC power supply from a positive cross point or a negative cross point and a sine wave of a predetermined peak value. it can.
 電流計測部13は、例えば所定のサンプリング周期で電流によって発生する誘導磁界を検出し、電流値を生成する。例えば、電流は、図3の下から2段目の電流406で示すような波形である。実際には、サンプリング周期の離散値で検出される。 The current measuring unit 13 detects an induced magnetic field generated by a current, for example, at a predetermined sampling cycle, and generates a current value. For example, the current has a waveform as shown by the second stage current 406 from the bottom of FIG. In practice, discrete values of the sampling period are detected.
 電圧値生成部12は、電流計測部13のサンプリング周期に合わせて、正クロス点(または負クロス点)からそのサンプリングまでの時間に相当する時点における電圧波形の値を、瞬時電圧値として生成する。電圧値生成部12は、数1に示す式に従い瞬時電圧値Vを計算する。
Figure JPOXMLDOC01-appb-M000001
ここでVは、予め電力計測装置10に設定された交流電源1の電圧の実効値(以下、実効電圧という)で、例えば、100Vといった値となる。Δtはサンプリング周期、nは正クロス点からのサンプリング数、Tは交流電圧の周期である。一般に交流電源の公称電圧は、電圧の実効値で与えられるので、慣例に従って数1のように実効値Vで表している。実質的には所定の波高値が与えられているのと等価である。瞬時電圧値を計算するときに実効電圧(実効値)から波高値に換算してもよいし、予め波高値で設定してもよい。
The voltage value generation unit 12 generates, as an instantaneous voltage value, the value of the voltage waveform at a time corresponding to the time from the positive cross point (or negative cross point) to the sampling according to the sampling cycle of the current measurement unit 13 . The voltage value generator 12 calculates the instantaneous voltage value V according to the equation shown in Equation 1.
Figure JPOXMLDOC01-appb-M000001
Here V 0, the effective value of the pre-power measuring device 10 to set the AC power supply 1 voltage (hereinafter, referred to as the effective voltage), for example, a value such as 100 V. Δt is a sampling period, n is a sampling number from the positive cross point, and T is a period of the AC voltage. In general, the nominal voltage of the AC power supply is given by the effective value of the voltage, and thus is expressed by the effective value V 0 according to the convention according to the formula 1. This is substantially equivalent to the provision of a predetermined peak value. When calculating the instantaneous voltage value, the effective voltage (effective value) may be converted to a peak value, or may be set in advance as the peak value.
 次に、電力算出部15は、計測された瞬時電流値と計算された瞬時電圧値とから、瞬間電力量を計算し積算する。具体的には、例えば、計測された電流値がI、計算された電圧がVの場合は、V×I×Δtで瞬間電力量が算出できる。図3の最下段に、電力波形407を模式的に示す。図3の電力波形407は、その上の電圧波形401と電流406に対応している。瞬間電力量は、サンプリング周期Δtの幅で、そのときの電力波形の値の高さの矩形の領域の面積に符号をつけた値で表される。 Next, the power calculation unit 15 calculates and integrates instantaneous electric energy from the measured instantaneous current value and the calculated instantaneous voltage value. Specifically, for example, when the measured current value is I and the calculated voltage is V, the instantaneous power amount can be calculated by V × I × Δt. A power waveform 407 is schematically shown at the bottom of FIG. Power waveform 407 in FIG. 3 corresponds to voltage waveform 401 and current 406 above it. The instantaneous power amount is represented by a value obtained by adding a sign to the area of the rectangular area of the height of the value of the power waveform at that time with the width of the sampling period Δt.
 電力算出部15は、電源電圧の1周期分の瞬間電力量を積算すると、積算した1周期の電力量を周期Tで除して、1周期の平均電力を計算する。電力算出部15は、計算した平均電力を、その周期の電力の値として、出力部16に送る。 When the instantaneous power amount for one cycle of the power supply voltage is integrated, the power calculation unit 15 divides the integrated one cycle of electric energy by the period T to calculate an average power for one period. The power calculating unit 15 sends the calculated average power to the output unit 16 as the value of the power of the cycle.
 一般に、特に商用電力の場合には、電源の電圧と波形は安定しており、電圧は主に配電の経路で決まる。電気機器の電力を決定する因子は、電流と電圧との位相差および電流波形が支配的である。電圧が誤差範囲を超えて変化するのは、停電、瞬時電圧低下、配電系統へ規定以上の負荷(大電流消費)を接続した場合、漏電または落雷などである。配電系統に大電流が流れた場合は、その系統を保護するブレーカーによって遮断される。よって、電気機器の通常の使用では、電流と電圧との位相差および電流波形を計測すれば、電圧の誤差範囲で電力を計測することができる。電気機器を接続するときに、電源電圧を計測して電圧波形を計算する元になる波高値を設定すれば、さらに正確である。 In general, particularly in the case of commercial power, the voltage and waveform of the power supply are stable, and the voltage is mainly determined by the distribution path. The factors that determine the power of the electrical device are dominated by the phase difference between the current and the voltage and the current waveform. The voltage changes beyond the error range when there is a power failure, an instantaneous voltage drop, or an electrical leakage or lightning when a load above the specified level (large current consumption) is connected to the distribution system. If a large current flows in the distribution system, it is cut off by the circuit breaker that protects that system. Therefore, in normal use of the electric device, if the phase difference between the current and the voltage and the current waveform are measured, the power can be measured within the error range of the voltage. When connecting electrical devices, it is more accurate to set the peak value from which the power supply voltage is measured and the voltage waveform is calculated.
 なお、本実施の形態では、交流電源として、単相2線式の交流電源を想定して説明した。本実施の形態1の電力計測装置10は、単相3線式、あるいは、3相3線式の交流電源の場合であっても、同様の手順で電力計測を行うことが可能である。 In the present embodiment, a single-phase two-wire AC power supply has been described as an AC power supply. Even in the case of the single-phase three-wire system or the three-phase three-wire AC power supply, the power measurement apparatus 10 according to the first embodiment can perform power measurement in the same procedure.
 図4は、実施の形態1の電力計測の動作の一例を示すフローチャートである。電力計測装置10は動作を開始すると、まず、ゼロクロス検出部11は、前述のようにコンパレータ出力の立ち上がりエッジ検出で、交流電源1の電圧波形の最初の正クロス点(図3の正クロス点404。以下、第1の正クロス点と記載する)を検出する(ステップS10)。ゼロクロス検出部11は、ステップ201と同様の動作手順により、次の正クロス点(図3の正クロス点405。以下、第2の正クロス点と記載する)の検出を行う(ステップS11)。第1の正クロス点と第2の正クロス点は隣り合っており、その間隔が周期Tである。 FIG. 4 is a flowchart showing an example of the power measurement operation according to the first embodiment. When the power measurement apparatus 10 starts to operate, first, the zero cross detection unit 11 detects the rising edge of the comparator output as described above and detects the first positive cross point of the voltage waveform of the AC power supply 1 (the positive cross point 404 in FIG. Hereinafter, the first positive cross point is described (step S10). The zero cross detection unit 11 detects the next positive cross point (the positive cross point 405 in FIG. 3; hereinafter, referred to as a second positive cross point) by the same operation procedure as step 201 (step S11). The first positive cross point and the second positive cross point are adjacent to each other, and the interval is a period T.
 電圧値生成部12は、検出された第1および第2の正クロス点間の経過時間(周期T)を算出する(ステップS12)。電圧値生成部12は、所定の波高値の正弦波の時間軸を正クロス点と周期Tに合わせて調節して、正弦波の電圧波形(計算式)を生成する(ステップS13)。 The voltage value generation unit 12 calculates an elapsed time (period T) between the detected first and second positive cross points (step S12). The voltage value generation unit 12 adjusts the time axis of the sine wave having a predetermined peak value to the positive cross point and the period T to generate a voltage waveform (calculation formula) of the sine wave (step S13).
 電力算出部15は、周期電力量を0に初期設定する(ステップS14)。そして、ゼロクロス検出部11は、ステップ201と同様の動作手順により、次のゼロクロス点の検出を行う(ステップS15)。以降、電力計測装置10は、正クロス点の検出時刻から周期Tが経過する間に、一定時間間隔(以下の説明ではΔtとする)で、図4のステップS16からステップS19の処理を繰り返す。 The power calculation unit 15 initializes the periodic power amount to 0 (step S14). Then, the zero cross detection unit 11 detects the next zero cross point according to the same operation procedure as in step 201 (step S15). Thereafter, while the cycle T elapses from the detection time of the positive cross point, the power measurement apparatus 10 repeats the processing from step S16 to step S19 in FIG. 4 at constant time intervals (hereinafter referred to as Δt).
 まず、電流計測部13は前述したように電流値Iを計測する(ステップS16)。電力算出部15は、算出した周期T、および、時間間隔Δtを用いて、数1に示す式に従い電圧値Vを計算する(ステップS17)。ここで、nはループカウンタで、電力算出部15が、ステップS16からステップS19までの処理を繰り返し実行する際の回数を保持しており、例えば、最初はn=0で、ステップS16からステップS19までの処理を1回完了する毎にn=1、n=2、...といったように、カウントアップされる。 First, the current measurement unit 13 measures the current value I as described above (step S16). The power calculation unit 15 calculates the voltage value V according to the equation 1 using the calculated period T and the time interval Δt (step S17). Here, n is a loop counter, and holds the number of times when the power calculation unit 15 repeatedly executes the processing from step S16 to step S19. For example, at first, n is 0, and steps S16 to S19 are performed. N = 1, n = 2,. . . And so on, it is counted up.
 次に、電力算出部15は、ステップS16で計測された電流値とステップS17で計算された電圧値とから、瞬間電力量を計算し、周期電力量に積算する(ステップS18)。以上で述べたS16からステップS18までの処理を、ループカウンタnを増やしながら、1周期終了するまで繰り返す(ステップS19;NO)。 Next, the power calculating unit 15 calculates an instantaneous power amount from the current value measured in step S16 and the voltage value calculated in step S17, and integrates the instantaneous power amount into the periodic power amount (step S18). The processing from S16 to step S18 described above is repeated until one cycle is completed while increasing the loop counter n (step S19; NO).
 電力算出部15は、1周期の処理が終了すると(ステップS19;YES)、周期電力量を周期Tで除して1周期の平均電力を算出し、計算結果を出力部16に送信する(ステップS20)。 When the process of one cycle is completed (step S19; YES), the power calculation unit 15 divides the cycle power amount by the cycle T to calculate the average power of one cycle, and transmits the calculation result to the output unit 16 (step S20).
 以上で述べた処理の終了後は、電力計測装置10は、再び、ステップS14に戻り、周期電力量の初期設定から処理を繰り返す。なお、ステップS14に戻る際、電力算出部15は、ループカウンタnを0にリセットする。 After the processing described above is completed, the power measuring apparatus 10 returns to step S14 again, and repeats the processing from the initial setting of the periodic power amount. When returning to step S14, the power calculation unit 15 resets the loop counter n to zero.
 以上、実施の形態1では、ゼロクロス検出部11は、交流電源1の電圧波形が負の値から正の値に変わる正クロス点を検出する場合を説明した。電力計測装置10は、電圧が正の値から負の値に変わる負クロス点を検出してもよい。あるいは、正クロス点と負クロス点の両方を検出するようにしてもよい。 In the above, Embodiment 1 demonstrated the case where the zero crossing detection part 11 detected the positive crossing point from which the voltage waveform of AC power supply 1 changes from a negative value to a positive value. The power measurement apparatus 10 may detect a negative cross point at which the voltage changes from a positive value to a negative value. Alternatively, both the positive cross point and the negative cross point may be detected.
 また、図4のステップS19の処理では、ステップS16からステップS19の処理を行うループの繰り返し回数を、電圧波形の1周期の期間で判定しているが、N周期の期間(Nは1以上の整数値)、あるいは、M秒間(Mは正の実数値)で判定するようにしてもよい。 Further, in the process of step S19 in FIG. 4, the number of repetitions of the loop performing the processes of step S16 to step S19 is determined in a period of one cycle of the voltage waveform. However, a period of N cycles (N is 1 or more It may be determined in integer values) or M seconds (M is a positive real number value).
 また、出力部16は、受け取った平均電力をそのまま表示するだけでなく、累積して電力量として表示してもよい。あるいはさらに、公知の算出式に従って、電力量を電気料金やCO排出量に変換して表示するようにしてもよい。 Further, the output unit 16 may not only display the received average power as it is, but also may display it as an accumulated amount of power. Alternatively, the amount of electric power may be converted to the electricity bill or the amount of CO 2 emission and displayed according to a known calculation formula.
 実施の形態1では、周期Tは図4のステップS10からステップS12の処理で、電力計測時に動的に算出するとしているが、実効電圧Vと同様に、予め、本実施の形態の電力計測装置10内に設定しておいてもよい。 In the first embodiment, although the cycle T is dynamically calculated at the time of power measurement in the processes of steps S10 to S12 of FIG. 4, the power measurement of the present embodiment is performed in advance similarly to the effective voltage V 0. It may be set in the apparatus 10.
 また、実施の形態1では、周期Tを、電力計測開始時に求めた値を以後の処理で使い続けているが、電力算出処理を一定回数実行する毎に、あるいは、一定時間毎に、あるいは、ランダムなタイミングで、図4のステップS10からステップS12の処理を再実行して、求め直すようにしてもよい。 Further, in the first embodiment, although the value obtained at the start of power measurement is continuously used in the subsequent processing, the cycle T is used every time the power calculation processing is performed a fixed number of times, or at fixed time intervals, or The processing from step S10 to step S12 in FIG. 4 may be re-executed at random timing to obtain it again.
 本実施の形態の電力計測装置10は、電圧計測回路の代わりに、電圧計測回路より規模の小さいゼロクロス検出回路を用いて電力を算出するように構成されているため、電力計測装置10の回路規模をより小さくすることができるという効果がある。 The power measurement device 10 according to the present embodiment is configured to calculate power using a zero cross detection circuit having a smaller scale than the voltage measurement circuit instead of the voltage measurement circuit. Has the effect of being able to be smaller.
 さらに、電圧波形のゼロクロス点を検出して電力を算出するように構成されているため、計測対象の電気機器の変更や負荷変動があった場合でも、電流と電圧の位相差を正確に把握し、正しい電力を算出することができるという効果もある。 Furthermore, since the zero cross point of the voltage waveform is detected to calculate the power, the phase difference between the current and the voltage can be accurately grasped even if there is a change in the electrical device to be measured or a load fluctuation. There is also an effect that correct power can be calculated.
 (実施の形態2)
 実施の形態2の電力計測装置10は、正クロス点と負クロス点の両方を検出する。そして、所定の波高値の正弦波を正クロス点と負クロス点の間隔に合わせて時間軸と直流電圧分を調節して、瞬時電圧値を生成する。
Second Embodiment
The power measurement apparatus 10 according to the second embodiment detects both the positive cross point and the negative cross point. Then, an instantaneous voltage value is generated by adjusting the time axis and the DC voltage component in accordance with the interval between the positive cross point and the negative cross point of a sine wave having a predetermined peak value.
 図5は、本発明の実施の形態2に係る電圧波形を生成する動作の一例を説明する図である。実施の形態2の電力計測装置10では、ゼロクロス点検出部は、正クロス点と負クロス点の両方を検出する。例えば、図2のコンパレータ回路を2系統備えて、+端子と-端子を互いに逆に接続すれば、一方は正クロス点、他方は負クロス点を検出できる。あるいは、立ち上がりエッジ検出回路32を2つ備えて、一方にはコンパレータの出力をそのまま入力し、他方にはコンパレータの出力を反転させて入力することによって、一方は正クロス点、他方は負クロス点を検出できる。 FIG. 5 is a diagram for explaining an example of an operation of generating a voltage waveform according to the second embodiment of the present invention. In the power measurement device 10 of the second embodiment, the zero cross point detection unit detects both the positive cross point and the negative cross point. For example, if two comparator circuits in FIG. 2 are provided and positive terminals and negative terminals are connected in reverse, one can detect a positive cross point and the other can detect a negative cross point. Alternatively, two rising edge detection circuits 32 are provided, one of which receives the output of the comparator as it is and the other receives the output of the comparator by inverting the output of the other, one of which is a positive cross point and the other of which is a negative cross point. Can be detected.
 電圧値生成部12は、所定の波高値の正弦波が、正クロス点および負クロス点の両方に合うように、時間軸と直流電圧分を調節する。例えば図5に示すように、正クロス点から次の負クロス点までの時間と、負クロス点から次の正クロス点までの時間が異なる場合、まず、隣り合う正クロス点(または負クロス点)の間の時間が、正弦波の周期Tになるように、正弦波の時間軸(周期T)を調節する。ついで、正クロス点から次の負クロス点までの時間に電圧波形の正の区間が等しくなるように、電圧の直流成分を決める。すなわち、正弦波を電圧方向(図5で上下方向)にシフトする。そして、シフトした電圧波形の電圧が負から正に0Vを横切る点が正クロス点に一致するように、位相を合わせる。 The voltage value generation unit 12 adjusts the time axis and the DC voltage so that the sine wave of a predetermined peak value matches both the positive cross point and the negative cross point. For example, as shown in FIG. 5, when the time from the positive cross point to the next negative cross point differs from the time from the negative cross point to the next positive cross point, first, the adjacent positive cross points (or negative cross points) Adjust the time axis (period T) of the sine wave so that the time between) becomes the period T of the sine wave. Next, the DC component of the voltage is determined so that the positive section of the voltage waveform is equal to the time from the positive crossing point to the next negative crossing point. That is, the sine wave is shifted in the voltage direction (vertical direction in FIG. 5). Then, the phases are adjusted so that the point at which the voltage of the shifted voltage waveform crosses 0 V from negative to positive coincides with the positive cross point.
 電圧値生成部12は、所定の正弦波を上述のように調節して生成した電圧波形をもとに、電流計測部13で電流を計測するタイミングに合わせて、そのタイミングの電圧値を生成する。電流計測部13は実施の形態1と同様に瞬時電流値を計測する。この場合、直流成分も含めて電流を計測できることが望ましい。 Based on the voltage waveform generated by adjusting a predetermined sine wave as described above, the voltage value generation unit 12 generates a voltage value of the timing according to the timing at which the current measurement unit 13 measures the current. . The current measuring unit 13 measures an instantaneous current value as in the first embodiment. In this case, it is desirable to be able to measure the current including the DC component.
 電力算出部15は、実施の形態1と同様に、瞬時電流値と瞬時電圧値から、瞬時電力値を算出し、電圧の1周期の電力値を平均して、電力を算出する。瞬間電力量を1周期分積算して、周期Tで除して、電力値を算出してもよいことは、実施の形態と同様である。 As in the first embodiment, the power calculation unit 15 calculates the instantaneous power value from the instantaneous current value and the instantaneous voltage value, and calculates the power by averaging the power value of one cycle of the voltage. The instantaneous power amount may be integrated for one cycle and divided by the cycle T to calculate the power value, as in the embodiment.
 図6は、実施の形態2の電力計測の動作の一例を示すフローチャートである。実施の形態2の電力計測装置10では、まず、ゼロクロス検出部11は、実施の形態1と同様にコンパレータ出力の立ち上がりエッジ検出で、交流電源1の電圧波形の最初の正クロス点(以下、第1の正クロス点と記載する)を検出する(ステップS21)。ゼロクロス点検出部は、前述のように正クロス点に続く負クロス点を検出する(ステップS22)。ゼロクロス検出部11は、ステップ201と同様の動作手順により、次の正クロス点(以下、第2の正クロス点と記載する)の検出を行う(ステップS23)。第1の正クロス点と第2の正クロス点は隣り合っており、その間隔が周期Tである。 FIG. 6 is a flowchart illustrating an example of the power measurement operation according to the second embodiment. In power measurement apparatus 10 of the second embodiment, first, zero cross detection unit 11 detects the rising edge of the comparator output as in the first embodiment, and detects the first positive cross point of the voltage waveform of AC power supply 1 (hereinafter referred to as A positive cross point of 1) is detected (step S21). The zero crossing point detection unit detects the negative crossing point following the positive crossing point as described above (step S22). The zero cross detection unit 11 detects the next positive cross point (hereinafter referred to as a second positive cross point) according to the same operation procedure as step 201 (step S23). The first positive cross point and the second positive cross point are adjacent to each other, and the interval is a period T.
 電圧値生成部12は、検出された第1および第2の正クロス点間の経過時間(周期T)を算出する(ステップS24)。電圧値生成部12は、所定の波高値の正弦波が、正クロス点および負クロス点の両方に合うように、時間軸と直流電圧分を調節して、正弦波の電圧波形(計算式)を生成する(ステップS25)。以下、ステップS26からステップS32の周期電力量の初期設定から平均電力を算出して出力するまでの動作は、図4のステップS14からステップS20と同様である。 The voltage value generation unit 12 calculates an elapsed time (period T) between the detected first and second positive cross points (step S24). The voltage value generation unit 12 adjusts the time axis and the DC voltage component so that the sine wave having a predetermined peak value matches both the positive cross point and the negative cross point, and the voltage waveform of the sine wave (calculation formula) Are generated (step S25). Hereinafter, the operations from the initial setting of the periodic power amount in step S26 to the calculation and output of the average power are the same as those in step S14 to step S20 in FIG.
 実施の形態2の電力計測装置10によれば、電源電圧に直流成分が含まれる場合でも、交流電圧が正弦波であれば、電圧を計測することなく、電力を計測することができる。 According to the power measurement device 10 of the second embodiment, even when the power supply voltage includes a DC component, if the AC voltage is a sine wave, the power can be measured without measuring the voltage.
 (実施の形態3)
 図7は、本発明の実施の形態3に係る電力計測装置の構成例を示すブロック図である。実施の形態3では、正弦波の波高値を変更設定する手段を備える。実施の形態3の電力計測装置10は、実施の形態1の構成に加えて、入力部17および波高値設定部18を備える。
Third Embodiment
FIG. 7 is a block diagram showing a configuration example of a power measurement device according to Embodiment 3 of the present invention. The third embodiment includes means for changing and setting the peak value of the sine wave. The power measurement apparatus 10 of the third embodiment includes an input unit 17 and a peak value setting unit 18 in addition to the configuration of the first embodiment.
 入力部17は、交流電源の実効電圧または波高値の入力を受け付ける。入力部17は、テンキーで数値を入力できるようにしてもよいし、増減を指示するスイッチと表示装置で構成してもよい。また、ディスプレイとタッチパネルで構成してもよい。 The input unit 17 receives an input of the effective voltage or peak value of the AC power supply. The input unit 17 may be configured to be able to input a numerical value using a ten key, or may be configured by a switch for instructing increase or decrease and a display device. Moreover, you may comprise by a display and a touch panel.
 波高値設定部18は、正弦波の波高値(または実効値)を、入力部17で入力された実効電圧または波高値に合わせて変更し、その値を記憶する。電圧値生成部12は、波高値設定部18で変更して記憶された波高値(または実効値)を用いて、瞬時電圧値を生成する。その他の構成および動作は、実施の形態1または2と同様である。 The peak value setting unit 18 changes the peak value (or effective value) of the sine wave in accordance with the effective voltage or the peak value input at the input unit 17 and stores the value. The voltage value generation unit 12 generates an instantaneous voltage value using the crest value (or effective value) changed and stored by the crest value setting unit 18. The other configuration and operation are the same as in the first or second embodiment.
 図8は、実施の形態3の波高値変更の動作の一例を示すフローチャートである。入力部17は、波高値(または実効電圧)の入力を待ち受ける(ステップS41、ステップS42;NO)。波高値(または実効電圧)の入力があれば(ステップS42;YES)、波高値設定部18は、入力された波高値(または実効電圧)に合わせて、正弦波の波高値(または実効値)を変更して記憶する(ステップS43)。そして、ステップに戻って、入力の待ち受けから繰り返す。 FIG. 8 is a flowchart showing an example of the operation of changing the peak value according to the third embodiment. The input unit 17 waits for input of the peak value (or effective voltage) (step S41, step S42; NO). If there is an input of the peak value (or effective voltage) (step S42; YES), the peak value setting unit 18 adjusts the peak value (or effective value) of the sine wave to the input peak value (or effective voltage). Are changed and stored (step S43). Then, the process returns to the step and repeats from waiting for input.
 一般の電力供給においては、変圧器を交換したり、変圧器からの距離や変圧器に接続される系統を変更したりするなど、配電系統の変化によって、電気機器に供給される電源電圧が変わる場合がある。実施の形態3の電力計測装置10によれば、電源電圧が変わっても、それに合わせて瞬時電圧値を生成する正弦波の波高値を設定できる。その結果、より正確に電気機器の電力を計測できる。 In general power supply, the power supply voltage supplied to electrical equipment changes due to changes in the distribution system, such as replacing the transformer or changing the distance from the transformer or the system connected to the transformer. There is a case. According to the power measurement device 10 of the third embodiment, even if the power supply voltage changes, the peak value of the sine wave generating the instantaneous voltage value can be set accordingly. As a result, the power of the electrical device can be measured more accurately.
 図9は、本発明の実施の形態に係る電力計測装置のハードウェア構成の一例を示すブロック図である。電力計測装置10は、図9に示すように、制御部21、主記憶部22、外部記憶部23、操作部24、表示部25、および入出力部26を備える。主記憶部22、外部記憶部23、操作部24、表示部25、および入出力部26は、いずれも内部バス20を介して制御部21に接続されている。 FIG. 9 is a block diagram showing an example of the hardware configuration of the power measurement device according to the embodiment of the present invention. As shown in FIG. 9, the power measurement device 10 includes a control unit 21, a main storage unit 22, an external storage unit 23, an operation unit 24, a display unit 25, and an input / output unit 26. The main storage unit 22, the external storage unit 23, the operation unit 24, the display unit 25, and the input / output unit 26 are all connected to the control unit 21 via the internal bus 20.
 制御部21は、CPU(Central Processing Unit)等から構成され、外部記憶部23に記憶されている制御プログラム29に従って、電力を計測するための処理を実行する。 The control unit 21 is configured by a CPU (Central Processing Unit) or the like, and executes processing for measuring power according to a control program 29 stored in the external storage unit 23.
 主記憶部22はRAM(Random-Access Memory)等から構成され、外部記憶部23に記憶されている制御プログラム29をロードし、制御部21の作業領域として用いられる。 The main storage unit 22 comprises a RAM (Random-Access Memory) or the like, loads the control program 29 stored in the external storage unit 23, and is used as a work area of the control unit 21.
 外部記憶部23は、フラッシュメモリ、ハードディスク、DVD-RAM(Digital Versatile Disc Random-Access Memory)、DVD-RW(Digital Versatile Disc ReWritable)等の不揮発性メモリから構成され、電力計測装置10の処理を制御部21に行わせるためのプログラムをあらかじめ記憶し、また、制御部21の指示に従って、このプログラムが記憶するデータを制御部21に供給し、制御部21から供給されたデータを記憶する。 The external storage unit 23 includes non-volatile memory such as a flash memory, a hard disk, a digital versatile disc random access memory (DVD-RAM), and a digital versatile disc rewritable (DVD-RW), and controls the processing of the power measurement apparatus 10 A program to be performed by the unit 21 is stored in advance, and data stored by the program is supplied to the control unit 21 according to an instruction of the control unit 21, and the data supplied from the control unit 21 is stored.
 操作部24はキーボード、スイッチおよびタッチパネルなどのポインティングデバイス等と、キーボード、スイッチおよびポインティングデバイス等を内部バス20に接続するインタフェース装置から構成されている。操作部24によって、波高値または実効電圧の入力を受け付ける。 The operation unit 24 includes a keyboard, a pointing device such as a switch and a touch panel, and an interface device for connecting the keyboard, the switch, the pointing device and the like to the internal bus 20. The operation unit 24 receives an input of a peak value or an effective voltage.
 表示部25は、CRT(Cathode Ray Tube)またはLCD(Liquid Crystal Display)などから構成され、電力や電力量を出力する画面を表示する。また、波高値または実効電圧の設定値を表示する。 The display unit 25 is configured of a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), or the like, and displays a screen for outputting electric power or electric energy. In addition, the peak value or the set value of the effective voltage is displayed.
 入出力部26は、シリアルインタフェースまたはパラレルインタフェースから構成されている。入出力部26にゼロクロス点検出のための電力線、および、電流センサ14などが接続される。入出力部26は、ゼロクロス点を検出する回路、例えばコンパレータ31およびエッジ検出回路を含む。また、電流センサ14の出力をAD変換する回路を含む。 The input / output unit 26 is configured of a serial interface or a parallel interface. A power line for detecting the zero cross point, a current sensor 14 and the like are connected to the input / output unit 26. The input / output unit 26 includes a circuit that detects a zero crossing point, such as a comparator 31 and an edge detection circuit. The circuit also includes a circuit that AD converts the output of the current sensor 14.
 電力計測装置10は、外部の装置に計測した電力および電力量を通信する場合、送受信部(図示せず)を備える。送受信部は、ネットワークに接続する網終端装置または無線通信装置、およびそれらと接続するシリアルインタフェースまたはLAN(Local Area Network)インタフェースから構成されている。送受信部は、ネットワークを介して、外部の端末またはサーバなどに接続する。 The power measuring device 10 includes a transmitting / receiving unit (not shown) when communicating the measured power and the amount of power to an external device. The transmission / reception unit is configured of a network termination device or a wireless communication device connected to the network, and a serial interface or a LAN (Local Area Network) interface connected to them. The transmission / reception unit connects to an external terminal or server via a network.
 図1および図7に示す電力計測装置10のゼロクロス検出部11、電圧値生成部12、電流計測部13および電力算出部15、出力部16、入力部17および波高値設定部18の処理は、制御プログラム29が、制御部21、主記憶部22、外部記憶部23、操作部24、表示部25および入出力部26などを資源として用いて処理することによって実行する。 The processing of the zero cross detection unit 11, the voltage value generation unit 12, the current measurement unit 13, the power calculation unit 15, the output unit 16, the input unit 17, and the peak value setting unit 18 of the power measurement device 10 shown in FIGS. The control program 29 executes the processing by using the control unit 21, the main storage unit 22, the external storage unit 23, the operation unit 24, the display unit 25, the input / output unit 26 and the like as resources.
 その他、前記のハードウェア構成やフローチャートは一例であり、任意に変更および修正が可能である。 In addition, the above-described hardware configuration and flowchart are an example, and arbitrary changes and modifications are possible.
 制御部21、主記憶部22、外部記憶部23、操作部24、表示部25、入出力部26および内部バス20などから構成される電力計測処理を行う中心となる部分は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。たとえば、前記の動作を実行するためのコンピュータプログラムを、コンピュータが読み取り可能な記録媒体(フレキシブルディスク、CD-ROM、DVD-ROM等)に格納して配布し、当該コンピュータプログラムをコンピュータにインストールすることにより、前記の処理を実行する電力計測装置10を構成してもよい。また、インターネット等の通信ネットワーク上のサーバが有する記憶装置に当該コンピュータプログラムを格納しておき、通常のコンピュータシステムがダウンロード等することで電力計測装置10を構成してもよい。 The main part to perform the power measurement process, which consists of control unit 21, main storage unit 22, external storage unit 23, operation unit 24, display unit 25, input / output unit 26 and internal bus 20, is a dedicated system Regardless, it can be realized using an ordinary computer system. For example, a computer program for executing the above-mentioned operation is stored in a computer readable recording medium (flexible disc, CD-ROM, DVD-ROM, etc.) and distributed, and the computer program is installed in the computer. The power measurement apparatus 10 may be configured to execute the above process. Alternatively, the computer program may be stored in a storage device of a server on a communication network such as the Internet, and the power measurement apparatus 10 may be configured by downloading or the like by a normal computer system.
 また、電力計測装置10の機能を、OS(オペレーティングシステム)とアプリケーションプログラムの分担、またはOSとアプリケーションプログラムとの協働により実現する場合などには、アプリケーションプログラム部分のみを記録媒体や記憶装置に格納してもよい。 Also, in the case where the function of the power measurement apparatus 10 is realized by sharing the OS (operating system) and the application program or by the cooperation of the OS and the application program, only the application program part is stored in the recording medium or storage device. You may
 また、搬送波にコンピュータプログラムを重畳し、通信ネットワークを介して配信することも可能である。たとえば、通信ネットワーク上の掲示板(BBS, Bulletin Board System)に前記コンピュータプログラムを掲示し、ネットワークを介して前記コンピュータプログラムを配信してもよい。そして、このコンピュータプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、前記の処理を実行できるように構成してもよい。 It is also possible to superimpose a computer program on a carrier wave and deliver it via a communication network. For example, the computer program may be posted on a bulletin board (BBS, Bulletin Board System) on a communication network, and the computer program may be distributed via the network. Then, the computer program may be activated and executed in the same manner as other application programs under the control of the OS so that the above-described processing can be executed.
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments may be described as in the following appendices, but are not limited to the following.
(付記1)
 電気機器の電圧が負から正に基準電位を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出するクロス点検出手段と、
 前記電気機器の瞬時電流値を計測する電流計測手段と、
 所定の波高値の正弦波の基準点を前記正クロス点または前記負クロス点にあてはめて、時間軸を調節した正弦波から、瞬時電圧値を生成する電圧値生成手段と、
 前記電圧値生成手段で生成した瞬時電圧値と同時刻の前記瞬時電流値とを乗算し、該乗算した値を隣り合う前記正クロス点または前記負クロス点の間の時間にわたって平均して、電力値を算出する電力算出手段と、
 を備えることを特徴とする電力計測装置。
(Supplementary Note 1)
A cross point detection means for detecting a positive cross point at which the voltage of the electrical device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electrical equipment crosses the reference potential from positive to negative;
Current measurement means for measuring an instantaneous current value of the electric device;
Voltage value generating means for generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
The instantaneous voltage value generated by the voltage value generation means is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, Power calculation means for calculating a value;
A power measuring device comprising:
(付記2)
 前記クロス点検出手段は、前記正クロス点および前記負クロス点を検出し、
 前記電圧値生成手段は、前記所定の波高値の正弦波を前記正クロス点と前記負クロス点の間隔に合わせて時間軸と直流電圧分を調節して、瞬時電圧値を生成する、
 ことを特徴とする付記1に記載の電力計測装置。
(Supplementary Note 2)
The cross point detection means detects the positive cross point and the negative cross point;
The voltage value generating means generates an instantaneous voltage value by adjusting a time axis and a DC voltage component in accordance with an interval between the positive cross point and the negative cross point, with a sine wave of the predetermined peak value.
The power measurement device according to claim 1, characterized in that
(付記3)
 前記クロス点検出手段は、コンパレータとエッジ検出回路とから構成されることを特徴とする付記1または2に記載の電力計測装置。
(Supplementary Note 3)
The power measurement device according to claim 1 or 2, characterized in that the cross point detection means comprises a comparator and an edge detection circuit.
(付記4)
 前記電力算出手段で算出した電力値から、前記電気機器の電力量を算出する電力量算出手段を備えることを特徴とする付記1ないし3のいずれかに記載の電力計測装置。
(Supplementary Note 4)
The power measuring apparatus according to any one of appendices 1 to 3, further comprising: an electric energy calculating means for calculating an electric energy of the electric device from the electric power value calculated by the electric power calculating means.
(付記5)
 前記正弦波の波高値を入力する入力手段と、
 前記所定の波高値を前記入力手段で入力された波高値に変更する手段を備える、
 ことを特徴とする付記1ないし4のいずれかに記載の電力計測装置。
(Supplementary Note 5)
Input means for inputting the peak value of the sine wave;
Means for changing the predetermined wave height value to the wave height value input by the input means;
The power measurement device according to any one of appendices 1 to 4, characterized in that
(付記6)
 電気機器の電力を計測する装置が行う電力計測方法であって、
 前記電気機器の電圧が負から正に基準電位を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出するクロス点検出ステップと、
 前記電気機器の瞬時電流値を計測する電流計測ステップと、
 所定の波高値の正弦波の基準点を前記正クロス点または前記負クロス点にあてはめて、時間軸を調節した正弦波から、瞬時電圧値を生成する電圧値生成ステップと、
 前記電圧値生成ステップで生成した瞬時電圧値と同時刻の前記瞬時電流値とを乗算し、該乗算した値を隣り合う前記正クロス点または前記負クロス点の間の時間にわたって平均して、電力値を算出する電力算出ステップと、
 を備えることを特徴とする電力計測方法。
(Supplementary Note 6)
A power measurement method performed by a device for measuring the power of an electrical device, the method comprising:
A cross point detection step of detecting a positive cross point at which the voltage of the electric device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electric device crosses the reference potential from positive to negative;
A current measurement step of measuring an instantaneous current value of the electric device;
A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value;
A method of measuring power.
(付記7)
 前記クロス点検出ステップでは、前記正クロス点および前記負クロス点を検出し、
 前記電圧値生成ステップでは、前記所定の波高値の正弦波を前記正クロス点と前記負クロス点の間隔に合わせて時間軸と直流電圧分を調節して、瞬時電圧値を生成する、
 ことを特徴とする付記6に記載の電力計測方法。
(Appendix 7)
In the cross point detection step, the positive cross point and the negative cross point are detected,
In the voltage value generation step, an instantaneous voltage value is generated by adjusting a time axis and a DC voltage component in accordance with the interval between the positive cross point and the negative cross point in the sine wave of the predetermined peak value.
The power measurement method according to claim 6, characterized in that
(付記8)
 前記電力算出ステップで算出した電力値から、前記電気機器の電力量を算出する電力量算出ステップを備えることを特徴とする付記6または7に記載の電力計測方法。
(Supplementary Note 8)
The power measurement method according to claim 6 or 7, further comprising: an electric energy calculation step of calculating an electric energy of the electric device from the electric power value calculated in the electric power calculation step.
(付記9)
 前記正弦波の波高値を入力する入力ステップと、
 前記所定の波高値を前記入力ステップで入力された波高値に変更するステップを備える、
 ことを特徴とする付記6ないし8のいずれかに記載の電力計測方法。
(Appendix 9)
An input step of inputting the peak value of the sine wave;
Changing the predetermined wave height value to the wave height value input in the input step;
The power measurement method according to any one of appendices 6 to 8, characterized in that
(付記10)
 コンピュータに
 電気機器の電圧が負から正に基準電位を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出するクロス点検出ステップと、
 前記電気機器の瞬時電流値を計測する電流計測ステップと、
 所定の波高値の正弦波の基準点を前記正クロス点または前記負クロス点にあてはめて、時間軸を調節した正弦波から、瞬時電圧値を生成する電圧値生成ステップと、
 前記電圧値生成ステップで生成した瞬時電圧値と同時刻の前記瞬時電流値とを乗算し、該乗算した値を隣り合う前記正クロス点または前記負クロス点の間の時間にわたって平均して、電力値を算出する電力算出ステップと、
 を実行させることを特徴とするプログラムを記録したコンピュータ読み取り可能な記録媒体。
(Supplementary Note 10)
Detecting a positive cross point at which the voltage of the electrical device crosses the reference potential from negative to positive, or a negative point at which the voltage crosses the reference potential from positive to negative;
A current measurement step of measuring an instantaneous current value of the electric device;
A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value;
A computer readable storage medium storing a program for executing the program.
 本発明は、発明の広い趣旨、範囲から外れることなく各種の実施形態とその変形が可能である。上記各実施形態は本発明を説明するためのものであり、本発明の範囲を限定することを意図したものではない。本発明の範囲は実施形態よりも、添付した請求項によって示される。請求項の範囲内、および発明の請求項と均等の範囲でなされた各種変形は本発明の範囲に含まれる。 The invention is capable of various embodiments and variations thereof without departing from the broad spirit and scope of the invention. The above embodiments are for explaining the present invention, and are not intended to limit the scope of the present invention. The scope of the present invention is indicated by the attached claims rather than the embodiments. Various modifications made within the scope of the claims, and equivalent to the scope of the claims of the invention are included in the scope of the present invention.
 本発明は、2011年1月25日に出願された日本国特許出願2011-013286号に基づく。本明細書中に日本国特許出願2011-013286号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 The present invention is based on Japanese Patent Application No. 2011-013286 filed on January 25, 2011. The specification, claims, and whole drawings of Japanese Patent Application No. 2011-013286 are incorporated herein by reference.
 本発明は、電圧計測部の回路規模を削減しつつ、計測対象の変更や負荷変動に追従可能な電力計測装置を実現するといった分野に応用することができる。 The present invention can be applied to the field of realizing a power measuring device capable of following changes in a measurement object or load fluctuation while reducing the circuit scale of a voltage measuring unit.
  1 交流電源
  2 電気機器
 10 電力計測装置
 11 ゼロクロス検出部
 12 電圧値生成部
 13 電流計測部
 14 電流センサ
 15 電力算出部
 16 出力部
 17 入力部
 18 波高値設定部
 20 内部バス
 21 制御部
 22 主記憶部
 23 外部記憶部
 24 操作部
 25 表示部
 26 入出力部
 29 制御プログラム
 31 コンパレータ
 32 立ち上がりエッジ検出回路
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Electric equipment 10 Electric power measurement apparatus 11 Zero cross detection part 12 Voltage value generation part 13 Current measurement part 14 Current sensor 15 Electric power calculation part 16 Output part 17 Input part 18 Wave high price setting part 20 Internal bus 21 Control part 22 Main memory Unit 23 External storage unit 24 Operation unit 25 Display unit 26 Input / output unit 29 Control program 31 Comparator 32 Rising edge detection circuit

Claims (10)

  1.  電気機器の電圧が負から正に基準電位を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出するクロス点検出手段と、
     前記電気機器の瞬時電流値を計測する電流計測手段と、
     所定の波高値の正弦波の基準点を前記正クロス点または前記負クロス点にあてはめて、時間軸を調節した正弦波から、瞬時電圧値を生成する電圧値生成手段と、
     前記電圧値生成手段で生成した瞬時電圧値と同時刻の前記瞬時電流値とを乗算し、該乗算した値を隣り合う前記正クロス点または前記負クロス点の間の時間にわたって平均して、電力値を算出する電力算出手段と、
     を備えることを特徴とする電力計測装置。
    A cross point detection means for detecting a positive cross point at which the voltage of the electrical device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electrical equipment crosses the reference potential from positive to negative;
    Current measurement means for measuring an instantaneous current value of the electric device;
    Voltage value generating means for generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
    The instantaneous voltage value generated by the voltage value generation means is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, Power calculation means for calculating a value;
    A power measuring device comprising:
  2.  前記クロス点検出手段は、前記正クロス点および前記負クロス点を検出し、
     前記電圧値生成手段は、前記所定の波高値の正弦波を前記正クロス点と前記負クロス点の間隔に合わせて時間軸と直流電圧分を調節して、瞬時電圧値を生成する、
     ことを特徴とする請求項1に記載の電力計測装置。
    The cross point detection means detects the positive cross point and the negative cross point;
    The voltage value generating means generates an instantaneous voltage value by adjusting a time axis and a DC voltage component in accordance with an interval between the positive cross point and the negative cross point, with a sine wave of the predetermined peak value.
    The power measurement device according to claim 1,
  3.  前記クロス点検出手段は、コンパレータとエッジ検出回路とから構成されることを特徴とする請求項1または2に記載の電力計測装置。 The power measurement apparatus according to claim 1, wherein the cross point detection unit is configured of a comparator and an edge detection circuit.
  4.  前記電力算出手段で算出した電力値から、前記電気機器の電力量を算出する電力量算出手段を備えることを特徴とする請求項1ないし3のいずれか1項に記載の電力計測装置。 The power measurement device according to any one of claims 1 to 3, further comprising: a power amount calculation unit that calculates the power amount of the electric device from the power value calculated by the power calculation unit.
  5.  前記正弦波の波高値を入力する入力手段と、
     前記所定の波高値を前記入力手段で入力された波高値に変更する手段を備える、
     ことを特徴とする請求項1ないし4のいずれか1項に記載の電力計測装置。
    Input means for inputting the peak value of the sine wave;
    Means for changing the predetermined wave height value to the wave height value input by the input means;
    The power measurement device according to any one of claims 1 to 4, characterized in that:
  6.  電気機器の電力を計測する装置が行う電力計測方法であって、
     前記電気機器の電圧が負から正に基準電位を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出するクロス点検出ステップと、
     前記電気機器の瞬時電流値を計測する電流計測ステップと、
     所定の波高値の正弦波の基準点を前記正クロス点または前記負クロス点にあてはめて、時間軸を調節した正弦波から、瞬時電圧値を生成する電圧値生成ステップと、
     前記電圧値生成ステップで生成した瞬時電圧値と同時刻の前記瞬時電流値とを乗算し、該乗算した値を隣り合う前記正クロス点または前記負クロス点の間の時間にわたって平均して、電力値を算出する電力算出ステップと、
     を備えることを特徴とする電力計測方法。
    A power measurement method performed by a device for measuring the power of an electrical device, the method comprising:
    A cross point detection step of detecting a positive cross point at which the voltage of the electric device crosses the reference potential from negative to positive, or a negative cross point at which the voltage of the electric device crosses the reference potential from positive to negative;
    A current measurement step of measuring an instantaneous current value of the electric device;
    A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
    The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value;
    A method of measuring power.
  7.  前記クロス点検出ステップでは、前記正クロス点および前記負クロス点を検出し、
     前記電圧値生成ステップでは、前記所定の波高値の正弦波を前記正クロス点と前記負クロス点の間隔に合わせて時間軸と直流電圧分を調節して、瞬時電圧値を生成する、
     ことを特徴とする請求項6に記載の電力計測方法。
    In the cross point detection step, the positive cross point and the negative cross point are detected,
    In the voltage value generation step, an instantaneous voltage value is generated by adjusting a time axis and a DC voltage component in accordance with the interval between the positive cross point and the negative cross point in the sine wave of the predetermined peak value.
    The power measurement method according to claim 6, characterized in that:
  8.  前記電力算出ステップで算出した電力値から、前記電気機器の電力量を算出する電力量算出ステップを備えることを特徴とする請求項6または7に記載の電力計測方法。 The electric power measurement method according to claim 6 or 7, further comprising: an electric energy calculation step of calculating an electric energy of the electric device from the electric power value calculated in the electric power calculation step.
  9.  前記正弦波の波高値を入力する入力ステップと、
     前記所定の波高値を前記入力ステップで入力された波高値に変更するステップを備える、
     ことを特徴とする請求項6ないし8のいずれか1項に記載の電力計測方法。
    An input step of inputting the peak value of the sine wave;
    Changing the predetermined wave height value to the wave height value input in the input step;
    The power measurement method according to any one of claims 6 to 8, characterized in that:
  10.  コンピュータに
     電気機器の電圧が負から正に基準電位を横切る正クロス点、または、正から負に基準電位を横切る負クロス点を検出するクロス点検出ステップと、
     前記電気機器の瞬時電流値を計測する電流計測ステップと、
     所定の波高値の正弦波の基準点を前記正クロス点または前記負クロス点にあてはめて、時間軸を調節した正弦波から、瞬時電圧値を生成する電圧値生成ステップと、
     前記電圧値生成ステップで生成した瞬時電圧値と同時刻の前記瞬時電流値とを乗算し、該乗算した値を隣り合う前記正クロス点または前記負クロス点の間の時間にわたって平均して、電力値を算出する電力算出ステップと、
     を実行させることを特徴とするプログラムを記録したコンピュータ読み取り可能な記録媒体。
    Detecting a positive cross point at which the voltage of the electrical device crosses the reference potential from negative to positive, or a negative point at which the voltage crosses the reference potential from positive to negative;
    A current measurement step of measuring an instantaneous current value of the electric device;
    A voltage value generation step of generating an instantaneous voltage value from a sine wave whose time axis is adjusted by applying a sine wave reference point of a predetermined peak value to the positive cross point or the negative cross point;
    The instantaneous voltage value generated in the voltage value generation step is multiplied by the instantaneous current value at the same time, and the multiplied value is averaged over the time between the adjacent positive cross point or the negative cross point, A power calculation step to calculate a value;
    A computer readable storage medium storing a program for executing the program.
PCT/JP2012/051105 2011-01-25 2012-01-19 Power measuring device, power measuring method, and recording medium WO2012102172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011013286A JP5489238B2 (en) 2011-01-25 2011-01-25 Power measuring apparatus, power measuring method and program
JP2011-013286 2011-01-25

Publications (1)

Publication Number Publication Date
WO2012102172A1 true WO2012102172A1 (en) 2012-08-02

Family

ID=46580744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051105 WO2012102172A1 (en) 2011-01-25 2012-01-19 Power measuring device, power measuring method, and recording medium

Country Status (2)

Country Link
JP (1) JP5489238B2 (en)
WO (1) WO2012102172A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267254A (en) * 2014-08-13 2015-01-07 如皋市图腾电力科技有限公司 Sine circuit reactive power detection method
WO2016096044A1 (en) * 2014-12-19 2016-06-23 Abb Schweiz Ag Device and method for determining electric power

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198447B2 (en) * 2019-05-31 2023-01-04 ダイキン工業株式会社 Power measuring device and power measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161069A (en) * 1999-12-01 2001-06-12 Hitachi Ltd Controller for power converter
JP2005189012A (en) * 2003-12-25 2005-07-14 Toshiba Corp Power measuring device
JP2007259580A (en) * 2006-03-23 2007-10-04 Osaka Gas Co Ltd Cogeneration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161069A (en) * 1999-12-01 2001-06-12 Hitachi Ltd Controller for power converter
JP2005189012A (en) * 2003-12-25 2005-07-14 Toshiba Corp Power measuring device
JP2007259580A (en) * 2006-03-23 2007-10-04 Osaka Gas Co Ltd Cogeneration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267254A (en) * 2014-08-13 2015-01-07 如皋市图腾电力科技有限公司 Sine circuit reactive power detection method
WO2016096044A1 (en) * 2014-12-19 2016-06-23 Abb Schweiz Ag Device and method for determining electric power

Also Published As

Publication number Publication date
JP2012154743A (en) 2012-08-16
JP5489238B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP6882542B2 (en) Methods and devices for learning phase errors or timing delays within the current transducer and power measuring devices including error correction of the current transducer.
JP5814979B2 (en) Power measurement apparatus, determination method, and program
JP2012132905A (en) Detecting device and method, and program
TW201326833A (en) Electric power monitor device
WO2012102172A1 (en) Power measuring device, power measuring method, and recording medium
EP2833156A1 (en) Power measuring apparatus
WO2005040837A1 (en) Magnetic bridge electric power sensor
EP2728738B1 (en) System and method of detecting a wiring configuration for a controlled field alternator
WO2015159364A1 (en) Circuit breaker
CN112763969B (en) Device and method for detecting field harmonic electric energy metering error
US8319509B1 (en) Testing circuit for an analog to digital converter
JP2012220330A (en) Distributed power generating system
JP5717427B2 (en) Resistance measuring device
JP2007298414A (en) Electric power measuring instrument
JP6757272B2 (en) Power measuring device, power measuring method and power measuring program
JP5773191B2 (en) Detection apparatus and method, and program
JP5880915B2 (en) Detection apparatus and method, and program
JP2008064493A (en) Measuring device
JP3964538B2 (en) Impedance measuring device
JP2011122907A (en) Electronic indicating instrument
JP2004279153A (en) Power meter
JP2017116480A (en) Watthour meter
JP2004138494A (en) Electronic watt-hour meter
JP5379456B2 (en) Electricity meter
WO2013080388A1 (en) Detector, method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738723

Country of ref document: EP

Kind code of ref document: A1