[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012176612A1 - 車輪の超音波探傷方法 - Google Patents

車輪の超音波探傷方法 Download PDF

Info

Publication number
WO2012176612A1
WO2012176612A1 PCT/JP2012/064433 JP2012064433W WO2012176612A1 WO 2012176612 A1 WO2012176612 A1 WO 2012176612A1 JP 2012064433 W JP2012064433 W JP 2012064433W WO 2012176612 A1 WO2012176612 A1 WO 2012176612A1
Authority
WO
WIPO (PCT)
Prior art keywords
flaw
wheel
flange
array probe
echo
Prior art date
Application number
PCT/JP2012/064433
Other languages
English (en)
French (fr)
Inventor
仁 村越
高橋 健太
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to ES12802416.3T priority Critical patent/ES2657550T3/es
Priority to CA2839662A priority patent/CA2839662C/en
Priority to AU2012274664A priority patent/AU2012274664B2/en
Priority to CN201280040501.1A priority patent/CN103765205B/zh
Priority to EP12802416.3A priority patent/EP2728346B1/en
Priority to US14/128,649 priority patent/US9341598B2/en
Priority to JP2013521518A priority patent/JP5601603B2/ja
Publication of WO2012176612A1 publication Critical patent/WO2012176612A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2638Complex surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2696Wheels, Gears, Bearings

Definitions

  • the present invention relates to an ultrasonic flaw detection method in which an ultrasonic wave is transmitted to a rim surface on a flange side of a wheel by an array probe to detect a rim portion.
  • the present invention relates to an ultrasonic flaw detection method that lowers the intensity of the shape echo of the surface skin of the flange side rim surface so that flaw echo can be identified.
  • an ultrasonic flaw detection method for detecting flaws by transmitting ultrasonic waves from a flange-side rim surface by an array probe in which transducers are arranged in a straight line is used to detect flaws in a rim portion of a wheel such as a railway wheel. It is known (in this specification, a side surface on the side where a flange is formed in two side surfaces perpendicular to the wheel axis in the rim portion is referred to as a flange-side rim surface). In this method, the array probe is disposed to face the flange-side rim surface, and ultrasonic flaw detection is performed while rotating the wheel in the circumferential direction.
  • the area of the ultrasonic wave incident on the surface of the wheel (hereinafter also referred to as the incident region) is widened when viewed from the axial direction.
  • the angle formed by the transducer arrangement direction (hereinafter also referred to as the longitudinal direction) of the array probe and the radial direction of the wheel is set to 0 °.
  • an echo due to the shape of the surface skin roughness of the flange side rim surface (hereinafter referred to as the surface skin shape echo) is received by the array probe.
  • the present invention has been made to solve such a problem of the prior art, in an ultrasonic flaw detection method in which ultrasonic waves are transmitted to a flange side rim surface of a wheel by an array probe and flaw detection is performed on the rim portion. It is an object of the present invention to provide an ultrasonic flaw detection method for reducing the intensity of the shape echo of the surface skin of the flange side rim surface so that the flaw echo can be identified.
  • the surface skin on the flange side rim surface of the wheel is composed of a large number of fine cutting traces by a cutting tool blade during surface processing, and the cutting traces are formed in a circumferential shape around the wheel axis. Since the angle formed by the transducer arrangement direction of the array probe and the radial direction of the wheel when viewed from the axial direction (hereinafter, this angle is also referred to as the probe arrangement angle) is 0 °, the radial direction of the wheel The ultrasonic wave transmitted from the array probe is reflected by a cutting trace perpendicular to the radial direction of the wheel and returns to the array probe as a surface skin shape echo.
  • the surface skin of the flange side rim surface is simply abbreviated as surface skin.
  • the present invention has been completed based on the results of the above-mentioned investigation by the present inventors. That is, in order to solve the above-mentioned problem, the present invention provides an ultrasonic flaw detection method in which an ultrasonic wave is transmitted to the flange-side rim surface of a wheel by an array probe and flaw detection is performed on the rim portion.
  • the angle between the transducer array direction of the array probe and the radial direction of the wheel when viewed from the axial direction of the wheel is set to 20 to 60 ° with the transducer surface facing the flange-side rim surface.
  • an ultrasonic flaw detection method characterized by flaw detection.
  • the angle formed by the transducer arrangement direction of the array probe and the radial direction of the wheel when viewed from the axial direction of the wheel that is, the probe arrangement angle is set to 20 ° or more.
  • the shape echo of the surface skin on the side rim surface is difficult to return to the array probe. Accordingly, the intensity of the surface skin shape echo is likely to be lower than that of the flaw echo, and the flaw echo near the flange side rim surface can be easily identified from the surface skin shape echo.
  • the probe arrangement angle is set to 60 ° or less, the area of the incident region when flaw detection is performed while rotating the wheel is 1 ⁇ 2 or more compared to when the probe arrangement angle is 0 °. , Not so small. Therefore, by setting the probe arrangement angle to 20 to 60 °, it is possible to perform flaw detection by reducing the intensity of the shape echo on the surface skin.
  • Some wheels have a ring groove for soundproofing.
  • the ring groove is formed over the entire circumference in the circumferential direction from the inner surface of the rim portion toward the radially outer side.
  • the probe arrangement angle is 0 °
  • the ultrasonic wave transmitted to the inner side in the radial direction of the wheel is reflected by a ring groove perpendicular to the radial direction of the wheel, and the array probe. Therefore, it is difficult to distinguish the flaw echo from the vicinity of the ring groove from the shape echo of the ring groove.
  • the ring groove shape echoes are less likely to return to the array probe, and the ring groove shape echo intensity is likely to be lower than the scratch echoes. I understood. Thereby, it becomes easy to distinguish the flaw echo from the ring groove vicinity from the shape echo of the ring groove. Therefore, in order to detect flaws in two different areas near the surface skin and the ring groove, the intensity of the shape echoes on the surface skin and the ring groove can be increased by setting the probe placement angle to 20-60 °. The scratches can be detected with high accuracy by using a single array probe.
  • the probe arrangement angle is 0 °
  • the shape echo of the throat surface interposed between the surface of the flange portion and the tread surface (the surface where the rim portion is in contact with the rail) is easy to return to the array probe. It is difficult to distinguish flaw echoes from the vicinity of the throat surface from shape echoes on the throat surface. So, by tilting the probe placement angle so that the shape echo of the throat surface does not return to the array probe, we examined whether flaw echo from the vicinity of the throat surface could be identified from the shape echo of the throat surface. It was found that the probe placement angle should be 40-60 °.
  • the probe arrangement angle is set to 40 to 60 ° in order to detect flaws in two different regions near the flange side rim surface and near the throat surface.
  • the probe arrangement angle is set to 40 to 60 ° in order to detect flaws in three different areas near the flange-side rim surface, the ring groove, and the throat surface.
  • the surface skin of the flange side rim surface can be identified so that flaw echoes can be identified.
  • the intensity of the shape echo can be lowered.
  • FIG. 1 is a radial cross-sectional view of an example of a wheel to which an ultrasonic flaw detection method according to an embodiment of the present invention is applied.
  • FIG. 2 is a diagram for explaining an example of an ultrasonic flaw detection apparatus used in the ultrasonic flaw detection method.
  • FIG. 2A is a configuration diagram of an ultrasonic flaw detector
  • FIG. 2B is a configuration diagram of an array probe included in the ultrasonic flaw detector.
  • FIG. 3 is a perspective view showing the arrangement position of the array probe in the conventional ultrasonic flaw detection method.
  • FIG. 4 shows a B-scope when flaw detection is performed with the probe arrangement angle set to 0 °. 4A is a photograph of the B scope, and FIG.
  • FIG. 4B is a schematic diagram of the B scope.
  • FIG. 5 is a diagram illustrating a propagation path of ultrasonic waves transmitted to the flange-side rim surface.
  • FIG. 5A is a radial sectional view showing a propagation path viewed from the circumferential direction of the wheel
  • FIG. 5B is a plan view showing the propagation path viewed from the axial direction of the wheel.
  • FIG. 6 is a perspective view showing the arrangement position of the array probe in the ultrasonic flaw detection method according to the embodiment of the present invention.
  • FIG. 7 is a plan view showing a propagation path viewed from the axial direction of the wheel.
  • FIG. 8 is a diagram comparing the intensity of shape echoes on the surface skin, ring groove and throat surface when the probe arrangement angle is changed with the intensity of flaw echoes on artificial flaws provided on the rim.
  • FIG. 1 is a radial cross-sectional view of a wheel showing an example of a wheel to which the ultrasonic flaw detection method according to the present embodiment is applied.
  • the wheel 1 is a railway wheel and includes a central boss portion 11 and a peripheral rim portion 12.
  • the rim portion 12 includes a flange portion 13 protruding to the outer peripheral side and a tread surface 14 in contact with the rail over the entire outer periphery.
  • a portion interposed between the surface of the flange portion 13 and the tread surface 14 is referred to as a throat surface 15.
  • the side surface on the side where the flange portion 13 is formed among the two side surfaces perpendicular to the axis of the wheel 1 is referred to as a flange-side rim surface 16.
  • FIG. 1 shows the wheel 1 having the ring groove 17 as an example.
  • the ring groove 17 is formed over the entire circumference in the circumferential direction from the inner surface of the rim portion 12 toward the radially outer side.
  • FIG. 2 is a diagram for explaining an example of an ultrasonic flaw detection apparatus used in the ultrasonic flaw detection method according to the present embodiment.
  • FIG. 2A is a configuration diagram of an ultrasonic flaw detector
  • FIG. 2B is a configuration diagram of an array probe included in the ultrasonic flaw detector.
  • the ultrasonic flaw detector 2 includes an array probe 3 disposed to face the flange side rim surface 16 of the wheel 1. Also, an array flaw detector 4 that transmits a transmission / reception control signal to the array probe 3 and amplifies a signal received from the array probe 3, and various parameter settings for the array flaw detector 4 are performed.
  • a personal computer 5 having a function of receiving a signal from the array flaw detector 4 and creating an image of an A scope, a B scope, etc., and a control panel 7 for giving a rotation signal or the like to a rotation drive unit 6 to be described later And.
  • the wheel 1 having a horizontal axis is supported from the lower side, and the rotation drive unit 6 that rotates the wheel 1 to perform the flaw detection on the entire circumference of the rim 12 and the wheel 1 and the array probe 3 are submerged.
  • the array probe 3 includes a plurality of transducers 32 arranged in a straight line, and the surface of the array probe 3 to which ultrasonic waves are transmitted from the transducer 32 is referred to as a transducer surface 31.
  • the transducer surface 31 of the array probe 3 is disposed so as to face the flange-side rim surface 16, and the tank 1 and the array probe 3 are immersed in the tank 8 as a contact medium. Add water. Oil or the like can also be used as the contact medium.
  • the flaw detection conditions such as the intensity and scanning speed of ultrasonic waves transmitted from the array probe 3 are set in the personal computer 5, and the flaw detection conditions are converted into transmission / reception control signals by the array flaw detector 4 and transmitted to the array probe 3. Is done.
  • the array probe 3 transmits ultrasonic waves to the rim portion 12 from the flange side rim surface 16 and transmits a signal corresponding to the echo received from the rim portion 12 to the array flaw detector 4.
  • the array flaw detector 4 amplifies the signal received from the array probe 3 and transmits it to the personal computer 5, and the personal computer 5 displays images of the A scope, B scope, and the like. Further, a rotation signal is transmitted from the personal computer 5 to the rotation drive unit 6 via the control panel 7 to rotate the wheel 1. In this way, the rim portion 12 is flaw-detected in the circumferential direction.
  • Transmission / reception of ultrasonic waves from the array probe 3 is performed by, for example, linear scanning (in linear scanning, several transducers 32 constituting the array probe 3 are set as one transmission unit, and ultrasonic waves are transmitted in one transmission unit. Is transmitted so that the ultrasonic waves from each transducer 32 are parallel to each other, or the transmission timing of each transducer 32 is shifted to concentrate the ultrasonic waves from each transducer 32 at one point.
  • the array probe 3 is controlled by the transmission / reception control signal from the array flaw detector 4 so that the transmission units are sequentially shifted along the arrangement direction of the transducers 32.
  • a method of parallel scanning of ultrasonic waves) and steering scan is a transmission unit of several transducers 32 constituting the array probe 3 and transmits ultrasonic waves in the transmission unit.
  • the ultrasonic waves from each transducer 32 are transmitted in parallel with each other, or the transmission timing of each transducer 32 is shifted to concentrate the ultrasonic waves from each transducer 32 at one point. In this state, scanning is performed by changing the emission angle.
  • the ultrasonic flaw detection method is characterized by the arrangement position of the array probe 3, and the arrangement position of the array probe 3 will be described.
  • the transducer arrangement direction (longitudinal direction) of the array probe 3 when viewed from the axial direction is generally set so that an area through which an incident region passes when a flaw is detected by rotating a wheel is increased.
  • the angle formed by the radial direction of the wheel (probe arrangement angle) was set to 0 °.
  • FIG. 3 is a perspective view showing the arrangement position of the array probe in the conventional ultrasonic flaw detection method. In FIG. 3, only a part of the wheel 1 is shown. The incident region extends in the radial direction.
  • FIG. 4 shows the B scope when flaw detection is performed with the probe arrangement angle set to 0 °.
  • 4A is a photograph of the B scope
  • FIG. 4B is a schematic diagram of the B scope.
  • the horizontal axis represents the ultrasonic wave propagation time
  • the vertical axis represents the ultrasonic wave scanning position. That is, the horizontal axis indicates the depth position from the flange-side rim surface 16, and the vertical axis indicates the radial position on the flange-side rim surface 16.
  • the shape of the rim portion is indicated by a solid line.
  • the rim portion 12 that images the B scope is provided with an artificial scratch having a flat bottom hole of 1 mm ⁇ perpendicularly toward the flange side rim surface 16 from the rim surface opposite to the flange side rim surface 16.
  • the distance from the flange side rim surface 16 to the tip of the artificial flaw is 50 mm, and the echo (flaw echo) at the tip of the artificial flaw is detected by the B scope.
  • a surface echo appears in the vicinity of the flange-side rim surface 16.
  • a shape echo of the surface skin appears from the flange side rim surface 16 to a position deeper than the surface echo.
  • a shape echo of the ring groove 17 appears at a position deeper than the ring groove 17 and a position deeper than the ring groove 17, and a shape echo of the throat surface 15 appears near the throat surface 15. If the artificial flaw is provided at a location where the shape echo of the ring groove 17 and the throat surface 15 appears, the strength of the flaw echo of the artificial flaw is compared with the strength of the shape echo of the ring groove 17 and the throat surface 15. In the case of equal or less, detection of the artificial flaw is difficult.
  • FIG. 5 is a diagram illustrating a propagation path of the ultrasonic wave transmitted to the flange-side rim surface 16.
  • FIG. 5A is a radial sectional view showing a propagation path viewed from the circumferential direction of the wheel 1
  • FIG. 5B is a plan view showing the propagation path viewed from the axial direction of the wheel 1.
  • the surface skin of the flange side rim surface 16 of the wheel is composed of a large number of fine cutting traces by a cutting tool blade during surface processing, and the cutting traces are formed in a circle around the wheel axis.
  • the ultrasonic wave U1 transmitted obliquely from the transducer 32 toward the radially inner side with respect to the entire flange-side rim surface 16 is reflected radially inward if the flange-side rim surface 16 is flat.
  • the flange side rim surface 16 has a large number of cut trace irregularities in the radial direction. Accordingly, a part of the ultrasonic wave is reflected by the flange-side rim surface 16 and returned to the vibrator 32 when viewed from the circumferential direction of the wheel 1.
  • a part of the ultrasonic wave U2 transmitted obliquely from the vibrator 32 toward the outer side in the radial direction with respect to the entire flange-side rim surface 16 is also seen on the flange-side rim surface 16 when viewed from the circumferential direction of the wheel 1. Reflected and returned to the vibrator 32.
  • the propagation path seen from the axial direction of the wheel 1 will be described with reference to FIG. In FIG. 5B, only a few cutting traces are drawn for convenience. Since the probe arrangement angle is 0 °, the ultrasonic wave U3 from the vibrator 32 is reflected perpendicularly to the cutting trace and returns to the vibrator 32. If the flange-side rim surface 16 has irregularities in the circumferential direction, the flange-side rim surface 16 is dispersed and reflected in the circumferential direction by the flange-side rim surface 16, but the flange-side rim surface 16 is circumferentially formed by a cutting tool blade during surface processing. Since it is a cut surface of a smooth surface, many ultrasonic waves return to the vibrator 32 when viewed from the axial direction of the wheel 1.
  • a part of the ultrasonic waves transmitted from the array probe 3 returns to the array probe 3 when viewed from both the circumferential direction and the axial direction of the wheel 1. Therefore, a part of the ultrasonic wave transmitted from the array probe 3 is reflected on the surface skin and returns to the array probe 3 and appears on the B scope as a shape echo of the surface skin.
  • the surface skin shape echoes returning to the array probe 3 in this way are not echoes of ultrasonic waves transmitted / received from the transducer 32 in a direction substantially perpendicular to the entire flange-side rim surface 16 but obliquely.
  • the surface echo of the flange side rim surface 16 (the surface echo of the flange side rim surface 16 is formed by the ultrasonic waves transmitted and received in a direction substantially perpendicular to the entire flange side rim surface 16. ) Has a longer propagation time than Therefore, in the B scope, the shape echo of the surface skin appears up to a position deeper than the surface echo of the flange-side rim surface 16. For this reason, it becomes difficult to detect a flaw at the position of the B scope where the surface skin shape echo appears.
  • the probe arrangement angle is 0 °
  • the ultrasonic waves U4 and U5 from the transducer 32 are reflected perpendicularly to the throat surface 15 and the ring groove 17 as shown in FIG. Come back. Therefore, shape echoes of the throat surface 15 and the ring groove 17 appear in the B scope. For this reason, it becomes difficult to detect a flaw at the position of the B scope where the shape echoes of the throat surface 15 and the ring groove 17 appear.
  • FIG. 6 is a perspective view showing the arrangement position of the array probe.
  • the wheel 1 shows only a part.
  • the incident area is oblique to the radial direction.
  • FIG. 7 is a plan view showing the propagation path of the ultrasonic wave as viewed from the axial direction of the wheel 1.
  • the propagation path of the ultrasonic wave seen from the circumferential direction of the wheel 1 when the probe arrangement angle is larger than 0 ° is the same as that when the probe arrangement angle is 0 °, and FIG.
  • the ultrasonic wave transmitted from the transducer 32 toward the radially inner side and the radially outer side is reflected by the flange-side rim surface 16 and returns to the transducer 32.
  • the ultrasonic wave U7 transmitted from the transducer 32 toward the outside in the radial direction is difficult to return to the transducer 32 after being reflected by the cutting trace.
  • the probe arrangement angle is larger than 0 °, the ultrasonic wave U8 transmitted from the transducer 32 toward the throat surface 15 is difficult to return to the transducer 32 after being reflected by the throat surface 15. Similarly, the ultrasonic wave U9 transmitted from the vibrator 32 toward the ring groove 17 is difficult to return to the vibrator 32 after being reflected by the ring groove 17.
  • FIG. 8 is a diagram comparing the strength of the shape echoes of the surface skin, the ring groove 17 and the throat surface 15 with the strength of the flaw echoes of the artificial flaw provided on the rim portion 12 when the probe arrangement angle is changed. It is.
  • the array probe 3 used had 128 transducers, a transducer pitch of 1 mm, a simultaneous excitation number of 24, and an array probe length of 128 mm. Moreover, the width
  • the artificial flaw is an artificial flaw having a flat bottom hole of 1 mm ⁇ perpendicularly from the rim surface opposite to the flange-side rim surface 16 toward the flange-side rim surface 16.
  • the flange side rim surface 16 was provided at a position of 50 mm.
  • the sensitivity of the transducer 32 was adjusted so that the intensity of the flaw echo of the artificial flaw was the same at any probe arrangement angle.
  • A, surface skin, and ring groove when the surface skin of the flange side rim surface 16, the strength of the shape echoes from the ring groove 17 and the throat surface 15 are sufficiently lower than the strength of the flaw echo of the artificial flaw. No.
  • the probe placement angle may be set as follows. Although four types of array probes 3 having different widths were used, all of the array probes 3 had the same result.
  • the probe arrangement angle is preferably 20 to 45 °, more preferably 30 to 45 °.
  • the probe arrangement angle is preferably 20 to 45 °, more preferably 30 to 45 °.
  • the probe arrangement angle is preferably 40 to 45 °, more preferably 45 °.
  • FIG. 8 does not show the result at a probe arrangement angle larger than 45 °, but at the probe arrangement angle larger than 45 ° and smaller than 90 °, the shape from the surface skin, the ring groove 17 and the throat surface 15 is not shown.
  • the intensity of the echo was sufficiently lower than that of the artificial flaw.
  • the probe arrangement angle is set to 60 ° or less so that the area through which the incident region passes becomes 1 ⁇ 2 or more compared to when the probe arrangement angle is 0 °.
  • the probe arrangement angle may be 70 ° or less or 80 ° or less.
  • the probe arrangement angle is set to 20 to 60 °. More preferably, the probe arrangement angle is set to 30 to 60 °. This makes it difficult for surface skin shape echoes to return to the array probe. Therefore, the intensity of the shape echo of the surface skin is lower than that of the flaw echo from the artificial flaw, and the flaw echo from the vicinity of the flange side rim surface 16 can be easily identified from the shape echo of the surface skin.
  • the probe arrangement angle is set to 20 to 60 °. More preferably, the probe arrangement angle is set to 30 to 60 °. As a result, the intensity of the shape echo of the ring groove 17 becomes lower than that of the flaw echo from the artificial flaw. Thereby, it becomes easy to distinguish the flaw echo from the ring groove 17 vicinity from the shape echo of the ring groove 17. Accordingly, in order to detect flaws in two different areas near the surface skin and near the ring groove 17, the shape echoes of the surface skin and the ring groove 17 can be detected only by setting the probe arrangement angle to 20 to 60 °. The intensity can be lowered, and a single array probe can detect flaws with high accuracy.
  • the probe arrangement angle is set to 40 to 60 °. More preferably, the probe arrangement angle is set to 45 to 60 °. As a result, the intensity of the shape echo of the throat surface 15 is lower than that of the flaw echo from the artificial flaw. Thereby, it becomes easy to identify the flaw echo from the vicinity of the throat surface 15 from the shape echo of the throat surface 15. Therefore, in a wheel having no ring groove 17, the probe arrangement angle is set to 40 to 60 ° in order to detect flaws in two different regions near the flange-side rim surface 16 and the throat surface 15.
  • the intensity of the shape echoes on the surface skin and the throat surface 15 can be reduced, and the flaws can be detected with high precision by one array probe.
  • the probe arrangement angle is set to 40 to 60 °. As long as it is set to 1, the intensity of the shape echoes of the surface skin of the flange side rim surface 16, the ring groove 17 and the throat surface 15 can be lowered, and the flaws can be detected with high precision by one array probe.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】アレイ探触子による車輪のフランジ側リム面の超音波探傷方法において、きずエコーを識別できるようにフランジ側リム面の表面肌の形状エコーの強度を低くする超音波探傷方法を提供する。 【解決手段】超音波探傷方法に用いる超音波探傷装置は、車輪1のフランジ側リム面16に対向して配置されるアレイ探触子3を備えている。また、アレイ探触子3への送受信制御信号を送信する等の機能を奏するアレイ探傷器と、アレイ探傷器に対する各種パラメータ設定を行ったり、アレイ探傷器からの信号を受信してAスコープ、Bスコープ等の画像を作成する等の機能を奏するパーソナルコンピュータとを備えている。探傷するときには、振動子面をフランジ側リム面16に対向させてアレイ探触子3を配置する。このとき、軸方向から見たときのアレイ探触子3の振動子配列方向と車輪1の径方向とが成す角度を20~60°にして探傷する。

Description

車輪の超音波探傷方法
 本発明は、アレイ探触子によって車輪のフランジ側リム面に超音波を送信し、リム部を探傷する超音波探傷方法に関する。特に、きずエコーを識別できるようにフランジ側リム面の表面肌の形状エコーの強度を低くする超音波探傷方法に関する。
 従来から、鉄道車輪等の車輪のリム部のきずを検出するのに、振動子を直線状に配列したアレイ探触子によってフランジ側リム面から超音波を送信して探傷する超音波探傷方法が知られている(本明細書では、リム部において、車輪の軸に垂直な二つの側面の内でフランジが形成されている側の側面をフランジ側リム面という)。この方法においては、アレイ探触子をフランジ側リム面に対向させて配置し、車輪を周方向に回転させながら超音波探傷する。このとき、一般的に、車輪を回転させて探傷するときに、超音波が車輪の表面に入射する領域(以下、入射領域ともいう)の面積が広くなるように、軸方向から見たときのアレイ探触子の振動子配列方向(以下、長手方向ともいう)と車輪の径方向とが成す角度を0°にしている。
 しかしながら、この超音波探傷においては、フランジ側リム面の表面肌の粗さ等の形状によるエコー(以下、表面肌の形状エコーという)がアレイ探触子に受信されるので、フランジ側リム面の近傍にきずが有っても、そのきずエコーの強度が表面肌の形状エコーの強度と同等以下の場合には、きずを検出し難い。従って、フランジ側リム面の表面肌の形状エコーの強度を低くすることが望まれる。
 また、アレイ探触子による超音波探傷において、探傷を行う領域以外の領域の形状エコーがアレイ探触子に戻らないように、被探傷物への超音波の入射角度を決定する方法が知られている(例えば、特許文献1参照)。しかしながら、このような方法によっても、アレイ探触子の振動子面が対向している被探傷物の表面肌からの形状エコーの強度を低くすることはできない。
日本国特開2007-93311号公報
 本発明は、斯かる従来技術の問題を解決するためになされたものであり、アレイ探触子によって車輪のフランジ側リム面に超音波を送信し、リム部を探傷する超音波探傷方法において、きずエコーを識別できるようにフランジ側リム面の表面肌の形状エコーの強度を低くする超音波探傷方法を提供することを課題とする。
 前記課題を解決するために本発明者が鋭意検討したところ、次の知見を得た。
 車輪のフランジ側リム面の表面肌は、表面加工時のバイトの刃による細かい多数の切削跡から成り、切削跡は車輪の軸を中心として円周状に形成されている。そして、軸方向から見たときのアレイ探触子の振動子配列方向と車輪の径方向とが成す角度(以下、この角度を探触子配置角度ともいう)が0°なので、車輪の径方向に送信されたアレイ探触子からの超音波が、車輪の径方向と垂直に交差する切削跡で反射して表面肌の形状エコーとしてアレイ探触子に戻ってくる。そのために、フランジ側リム面の近傍からのきずエコーをフランジ側リム面の表面肌(以下、フランジ側リム面の表面肌を単に表面肌とも略す)の形状エコーから識別するのが難しい。
 そこで、切削跡の形状エコーがアレイ探触子に戻ってこない程度に探触子配置角度を傾けることにより、フランジ側リム面の近傍からのきずエコーを表面肌の形状エコーから識別できないかを検討したところ、そのように識別できる探触子配置角度を見い出した。
 本発明は、上記の本発明者の検討結果に基づき完成されたものである。すなわち、前記課題を解決するため、本発明は、アレイ探触子によって車輪のフランジ側リム面に超音波を送信し、リム部を探傷する超音波探傷方法であって、前記アレイ探触子の振動子面を前記フランジ側リム面に対向させ、前記車輪の軸方向から見たときの該アレイ探触子の振動子配列方向と該車輪の径方向とが成す角度を20~60°にして探傷することを特徴とする超音波探傷方法を提供する。
 本発明によれば、車輪の軸方向から見たときのアレイ探触子の振動子配列方向と車輪の径方向とが成す角度、つまり探触子配置角度を20°以上にしているので、フランジ側リム面の表面肌の形状エコーがアレイ探触子の方に戻り難くなる。従って、表面肌の形状エコーの強度がきずエコーと比べて低くなり易くなり、フランジ側リム面の近傍のきずエコーを表面肌の形状エコーから識別し易くなる。
 また、探触子配置角度を60°以下にしているので、車輪を回転させながら探傷するときの入射領域の面積が、探触子配置角度が0°のときと比べて1/2以上になり、それ程小さくならない。
従って、探触子配置角度を20~60°にすることにより、表面肌の形状エコーの強度を低くして探傷を行うことができる。
 また、車輪には、防音のためのリング溝を有するものがある。リング溝は、リム部の内側面から径方向外側に向けて周方向全周に亘って形成されている。
 そのような車輪において、探触子配置角度が0°であると、車輪の径方向内側に送信された超音波が、車輪の径方向と垂直に交差するリング溝で反射してアレイ探触子に戻り易いので、リング溝近傍からのきずエコーをリング溝の形状エコーから識別し難い。
 しかしながら、探触子配置角度を20~60°にすると、リング溝の形状エコーがアレイ探触子の方に戻り難くなるので、リング溝の形状エコーの強度がきずエコーと比べて低くなり易いことが分かった。これにより、リング溝近傍からのきずエコーをリング溝の形状エコーから識別し易くなる。
 従って、表面肌近傍及びリング溝近傍の二つの異なる領域のきずを検出するのに、探触子配置角度を20~60°に設定しさえすれば、表面肌及びリング溝の形状エコーの強度を低くし、1個のアレイ探触子によってきずを精度良く検出することができる。
 また、探触子配置角度が0°であると、フランジ部の表面と踏面(リム部がレールと接する面)との間に介在するスロート面の形状エコーがアレイ探触子に戻り易いので、スロート面近傍からのきずエコーをスロート面の形状エコーから識別するのが難しい。そこで、探触子配置角度をスロート面の形状エコーがアレイ探触子に戻ってこない程度に傾けることにより、スロート面近傍からのきずエコーをスロート面の形状エコーから識別できないかを検討したところ、探触子配置角度を40~60°にすれば良いことを見い出した。
 従って、リング溝を有さない車輪においては、フランジ側リム面近傍及びスロート面近傍の二つの異なる領域のきずを検出するのに、探触子配置角度を40~60°に設定しさえすれば、フランジ側リム面の表面肌及びスロート面の形状エコーの強度を低くし、1個のアレイ探触子によってきずを精度良く検出することができる。
 また、リング溝を有する車輪においては、フランジ側リム面近傍、リング溝近傍及びスロート面近傍の三つの異なる領域のきずを検出するのに、探触子配置角度を40~60°に設定しさえすれば、フランジ側リム面の表面肌、リング溝及びスロート面の形状エコーの強度を低くし、1個のアレイ探触子によってきずを精度良く検出することができる。
 本発明によれば、アレイ探触子によって車輪のフランジ側リム面に超音波を送信し、リム部を探傷する超音波探傷方法において、きずエコーを識別できるようにフランジ側リム面の表面肌の形状エコーの強度を低くすることができる。
図1は、本発明の実施形態に係る超音波探傷方法が適用される車輪の一例を示す車輪の径方向断面図である。 図2は、同超音波探傷方法に用いる超音波探傷装置の一例を説明する図である。図2(a)は、超音波探傷装置の構成図であり、図2(b)は、超音波探傷装置が備えるアレイ探触子の構成図である。 図3は、従来の超音波探傷方法における、アレイ探触子の配置位置を示す斜視図である。 図4は、探触子配置角度を0°にして探傷したときのBスコープである。図4(a)は、Bスコープの写真であり、図4(b)は、Bスコープの模式図である。 図5は、フランジ側リム面に送信された超音波の伝搬経路を示す図である。図5(a)は、車輪の周方向から見た伝搬経路を示す径方向断面図であり、図5(b)は、車輪の軸方向から見た伝搬経路を示す平面図である。 図6は、本発明の実施形態に係る超音波探傷方法におけるアレイ探触子の配置位置を示す斜視図である。 図7は、車輪の軸方向から見た伝搬経路を示す平面図である。 図8は、探触子配置角度を変化させたときの、表面肌、リング溝及びスロート面の形状エコーの強度を、リム部に設けた人工きずのきずエコーの強度と比較した図である。
 以下、添付図面を適宜参照しつつ、本発明の実施形態に係る超音波探傷方法について説明する。本実施形態に係る超音波探傷方法では、車輪のフランジ側リム面に超音波を送信し、リム部の探傷を行う。
 図1は、本実施形態に係る超音波探傷方法が適用される車輪の一例を示す車輪の径方向断面図である。
 車輪1は鉄道車輪であり、中心のボス部11と、周辺のリム部12とを備える。リム部12は、外周側に突出したフランジ部13とレールに接する踏面14とを外周全周に亘って具備している。本明細書では、フランジ部13の表面と踏面14との間に介在する箇所をスロート面15という。また、リム部12において、車輪1の軸に垂直な二つの側面の内でフランジ部13が形成されている側の側面をフランジ側リム面16という。
 車輪1には、防音のためのリング溝17を有するものと有さないものとがあるが、図1は、例としてリング溝17を有する車輪1を示している。リング溝17は、リム部12の内側面から径方向外側に向けて周方向全周に亘って形成されている。
 図2は、本実施形態に係る超音波探傷方法に用いる超音波探傷装置の一例を説明する図である。図2(a)は、超音波探傷装置の構成図であり、図2(b)は、超音波探傷装置が備えるアレイ探触子の構成図である。
 超音波探傷装置2は、車輪1のフランジ側リム面16に対向して配置されるアレイ探触子3を備えている。また、アレイ探触子3への送受信制御信号を送信すると共にアレイ探触子3から受信した信号を増幅する等の機能を奏するアレイ探傷器4と、アレイ探傷器4に対する各種パラメータ設定を行ったり、アレイ探傷器4からの信号を受信してAスコープ、Bスコープ等の画像を作成する等の機能を奏するパーソナルコンピュータ5と、後述する回転駆動部6に回転信号等を与えるための制御盤7とを備えている。
 また、軸の方向を水平にされた車輪1を下側から支え、リム部12全周の探傷を行うべく車輪1を回転させる回転駆動部6と、車輪1及びアレイ探触子3を水浸させるための槽8とを備えている。アレイ探触子3は、直線状に配列された複数の振動子32を具備しており、振動子32から超音波が送信させるアレイ探触子3の面を振動子面31という。
 次に、以上に説明した超音波探傷装置2を用いた超音波探傷方法の一例について説明する。
 超音波探傷するときには、アレイ探触子3の振動子面31をフランジ側リム面16に対向するように配置し、車輪1とアレイ探触子3とが浸漬するように槽8に接触媒質として水を入れる。接触媒質としては油等を用いることも可能である。パーソナルコンピュータ5に、アレイ探触子3から送信する超音波の強度や走査速度等の探傷条件を設定し、探傷条件はアレイ探傷器4によって送受信制御信号に変換されてアレイ探触子3に送信される。アレイ探触子3は、リム部12にフランジ側リム面16から超音波を送信し、リム部12から受信したエコーに応じた信号をアレイ探傷器4に送信する。アレイ探傷器4は、アレイ探触子3から受信した信号を増幅等してパーソナルコンピュータ5に送信し、パーソナルコンピュータ5は、Aスコープ、Bスコープ等の画像を表示する。また、パーソナルコンピュータ5から制御盤7を介して回転駆動部6に回転信号を送信し、車輪1を回転させる。このようにして、リム部12の探傷を周方向に行う。
 アレイ探触子3からの超音波の送受信は、例えば、リニアスキャン(リニアスキャンとは、アレイ探触子3を構成する幾つかの振動子32を1送信単位とし、該1送信単位で超音波を送信するときに、各振動子32からの超音波が互いに平行になるように送信したり、各振動子32のそれぞれの送信のタイミングをずらして各振動子32からの超音波を一点に集中させて送信する。そして、その状態で、振動子32の配列方向に沿って、順次送信単位をずらせていくようにアレイ探傷器4からの送受信制御信号によってアレイ探触子3を制御することにより、超音波を平行走査する方法)やステアリングスキャン(ステアリングスキャンとは、アレイ探触子3を構成する幾つかの振動子32を1送信単位とし、該1送信単位で超音波を送信するときに、各振動子32からの超音波が互いに平行になるように送信したり、各振動子32のそれぞれの送信のタイミングをずらして各振動子32からの超音波を一点に集中させて送信する。そして、その状態で、出射角を変えていくことにより走査する方法)によって行う。
 本発明に係る超音波探傷方法は、アレイ探触子3の配置位置に特徴を有しており、アレイ探触子3の配置位置について説明する。従来は、一般的に、車輪を回転させて探傷するときに入射領域が通過する面積が広くなるように、軸方向から見たときのアレイ探触子3の振動子配列方向(長手方向)と車輪の径方向とが成す角度(探触子配置角度)を0°にしていた。
 図3は、従来の超音波探傷方法における、アレイ探触子の配置位置を示す斜視図である。図3では、車輪1は一部のみを示している。
 入射領域が径方向に延びている。
 このように、探触子配置角度を0°にして探傷したときのBスコープを図4に示す。図4(a)は、Bスコープの写真であり、図4(b)は、Bスコープの模式図である。いずれの図も横軸が超音波の伝搬時間であって、縦軸が超音波の走査位置である。つまり、横軸がフランジ側リム面16からの深さ位置を示し、縦軸がフランジ側リム面16での径方向の位置を示す。なお、図4において、リム部の形状を実線で示している。
 このBスコープを撮像したリム部12には、フランジ側リム面16の反対側のリム面から、フランジ側リム面16に向けて垂直に1mmφの平底穴の人工キズを設けている。フランジ側リム面16から人工きずの先端までの距離は50mmであり、人工きずの先端のエコー(きずエコー)がBスコープで検出されている。
 Bスコープでは、フランジ側リム面16の近傍に表面エコーが現れている。そして、フランジ側リム面16から、表面エコーよりも更に深い位置にかけて表面肌の形状エコーが現れている。この表面肌の形状エコーが現れている箇所に前記人工きずの先端を設けていたとすると、該人工きずのきずエコーの強度が表面肌の形状エコーの強度と比べて同等以下の場合には、該人工きずの検出は困難である。
 また、リング溝17の位置及びリング溝17より深い位置にリング溝17の形状エコーが現れ、スロート面15の近傍にスロート面15の形状エコーが現れている。このリング溝17とスロート面15の形状エコーが現れている箇所に前記人工きずを設けていたとすると、該人工きずのきずエコーの強度がリング溝17とスロート面15の形状エコーの強度と比べて同等以下の場合には、該人工きずの検出は困難である。
 図5は、フランジ側リム面16に送信された超音波の伝搬経路を示す図である。図5(a)は、車輪1の周方向から見た伝搬経路を示す径方向断面図であり、図5(b)は、車輪1の軸方向から見た伝搬経路を示す平面図である。
 最初に、車輪1の周方向から見た伝搬経路を、図5(a)を参照して説明する。
 車輪のフランジ側リム面16の表面肌は、表面加工時のバイトの刃による細かい多数の切削跡から成り、切削跡は車輪の軸を中心として円周状に形成されている。
 振動子32から、径方向内側に向けて、フランジ側リム面16全体に対して斜めに送信された超音波U1は、フランジ側リム面16がフラットであれば、径方向内側に反射される。しかし、フランジ側リム面16は、径方向に多数の切削跡の凹凸を有している。従って、超音波の一部は、車輪1の周方向から見るとフランジ側リム面16で反射して振動子32に戻る。また、振動子32から、径方向外側に向けて、フランジ側リム面16全体に対して斜めに送信された超音波U2の一部も、車輪1の周方向から見るとフランジ側リム面16で反射して振動子32に戻る。
 次に、車輪1の軸方向から見た伝搬経路を、図5(b)を参照して説明する。なお、図5(b)では、便宜上、切削跡を数本しか描いていない。
 探触子配置角度が0°なので、振動子32からの超音波U3が切削跡と垂直に反射し、振動子32に戻ってくる。フランジ側リム面16が周方向に凹凸を有していれば、フランジ側リム面16で周方向に分散して反射するが、フランジ側リム面16は表面加工時のバイトの刃によって周方向に滑らかな面の切削跡になっているので、車輪1の軸方向から見ると多くの超音波が振動子32に戻ってくる。
 このように、アレイ探触子3から送信された超音波の一部が、車輪1の周方向及び軸方向の両方から見たときにアレイ探触子3に戻る。従って、アレイ探触子3から送信された超音波の一部は、表面肌に反射してアレイ探触子3に戻り、表面肌の形状エコーとしてBスコープに現れる。
 このようにしてアレイ探触子3に戻ってくる表面肌の形状エコーは、振動子32からフランジ側リム面16全体に対して略垂直な方向に送受信された超音波によるエコーでなく、斜めに送受信された超音波によるエコーなので、フランジ側リム面16の表面エコー(フランジ側リム面16の表面エコーはフランジ側リム面16全体に対して略垂直な方向に送受信された超音波によって形成される)よりも伝搬時間が長くなる。従って、Bスコープにおいて、表面肌の形状エコーは、フランジ側リム面16の表面エコーよりも深い位置にまで現れる。このために、表面肌の形状エコーが現れているBスコープの位置に在るきずの検出が困難になる。
 また、探触子配置角度が0°なので、図5(b)に示すように、振動子32からの超音波U4、U5がスロート面15及びリング溝17と垂直に反射し、振動子32に戻ってくる。従って、スロート面15とリング溝17の形状エコーがBスコープに現れる。このために、スロート面15とリング溝17の形状エコーが現れているBスコープの位置に在るきずの検出が困難になる。
 本実施形態では、探触子配置角度を0°よりも大きくして超音波探傷する。
 図6は、アレイ探触子の配置位置を示す斜視図である。車輪1は一部のみを示している。入射領域が径方向と斜めになっている。また、図7は、車輪1の軸方向から見た超音波の伝搬経路を示す平面図である。
 探触子配置角度を0°よりも大きくした場合の車輪1の周方向から見た超音波の伝搬経路は、探触子配置角度が0°の場合と同様であり、図5(a)を用いて説明したのと同様に、振動子32から、径方向内側及び径方向外側に向けて送信された超音波の一部は、フランジ側リム面16で反射して振動子32に戻る。
 車輪1の軸方向から見た超音波の伝搬経路では、図7に示すように、探触子配置角度が0°よりも大きいので、振動子32から径方向内側に向けて送信された超音波U6は、切削跡で反射した後に、振動子32に戻り難くなる。また、振動子32から径方向外側に向けて送信された超音波U7も、切削跡で反射した後に、振動子32に戻り難くなる。
 また、探触子配置角度が0°よりも大きいので、振動子32からスロート面15に向けて送信された超音波U8は、スロート面15で反射した後に、振動子32に戻り難くなる。同様に、振動子32からリング溝17に向けて送信された超音波U9は、リング溝17で反射した後に、振動子32に戻り難くなる。
 図8は、探触子配置角度を変化させたときの、表面肌、リング溝17及びスロート面15の形状エコーの強度を、リム部12に設けた人工きずのきずエコーの強度と比較した図である。
 用いたアレイ探触子3は、振動子数が128個、振動子のピッチが1mm、同時励振数が24、アレイ探触子の長さが128mmであった。また、アレイ探触子の幅は、7mm、9mm、11mm、12.5mmの4種類であった。
 人工きずは、図4に示すBスコープと同様に、フランジ側リム面16の反対側のリム面からフランジ側リム面16に向けて垂直に1mmφの平底穴の人工きずを、人工きずの先端がフランジ側リム面16から50mmの位置になるように設けた。
 いずれの探触子配置角度においても、人工きずのきずエコーの強度が同一になるように振動子32の感度を調整した。
 図8では、フランジ側リム面16の表面肌、リング溝17及びスロート面15からの形状エコーのそれぞれの強度が人工きずのきずエコーの強度よりも充分に低い場合をA、表面肌、リング溝17及びスロート面15からの形状エコーのそれぞれの強度が人工きずのきずエコーの強度よりも低く、人工きずとの強度の差が小さいが、人工きずのきずエコーを識別できる場合をB、表面肌、リング溝17及びスロート面15からの形状エコーのそれぞれの強度が人工きずのきずエコーの強度と同等以上の場合をCとして表わした。
 フランジ側リム面16の表面肌、リング溝17及びスロート面15の形状エコーの強度を、人工きずのきずエコーの強度よりも低くするには、次のような探触子配置角度にするとよい。なお、幅の異なる4種類のアレイ探触子3を用いたが、いずれのアレイ探触子3も同様の結果だった。
 表面肌の形状エコーの強度を人工きずのきずエコーの強度よりも低くするには、探触子配置角度は20~45°がよく、更に好ましくは30~45°がよい。
 リング溝17の形状エコーの強度を人工きずのきずエコーの強度よりも低くするには、探触子配置角度は20~45°がよく、更に好ましくは30~45°がよい。
 スロート面15の形状エコーの強度を人工きずのきずエコーの強度よりも低くするには、探触子配置角度は40~45°がよく、更に好ましくは45°がよい。
 図8では、45°より大きい探触子配置角度での結果を示していないが、45°より大きく90°より小さい探触子配置角度では、表面肌、リング溝17及びスロート面15からの形状エコーの強度は、人工きずのきずエコーの強度よりも充分に低かった。
 しかしながら、探触子配置角度を大きくすると、車輪を回転させて探傷するときに入射領域が通過する面積が小さくなる。従って、入射領域が通過する面積が、探触子配置角度が0°のときと比べて1/2以上になるように、探触子配置角度を60°以下にする。ただし、入射領域が通過する面積が小さくても良い場合には、探触子配置角度を70°以下や80°以下にしてもよい。
 従って、フランジ側リム面16の表面肌の形状エコーの強度を低くして超音波探傷するには、探触子配置角度を20~60°にする。更に好ましくは、探触子配置角度を30~60°にする。このことにより、表面肌の形状エコーがアレイ探触子の方に戻り難くなる。従って、表面肌の形状エコーの強度が人工きずからのきずエコーと比べて低くなり、フランジ側リム面16の近傍からのきずエコーを表面肌の形状エコーから識別し易くなる。
 また、車輪1がリング溝17を有している場合にも、探触子配置角度を20~60°にする。更に好ましくは、探触子配置角度を30~60°にする。このことにより、リング溝17の形状エコーの強度が人工きずからのきずエコーと比べて低くなる。これにより、リング溝17近傍からのきずエコーをリング溝17の形状エコーから識別し易くなる。
 従って、表面肌近傍及びリング溝17近傍の二つの異なる領域のきずを検出するのに、探触子配置角度を20~60°に設定しさえすれば、表面肌及びリング溝17の形状エコーの強度を低くし、1個のアレイ探触子によってきずを精度良く検出することができる。
 また、スロート面15の形状エコーの強度を低くして超音波探傷するには、探触子配置角度を40~60°にする。更に好ましくは、探触子配置角度を45~60°にする。このことにより、スロート面15の形状エコーの強度が人工きずからのきずエコーと比べて低くなる。これにより、スロート面15近傍からのきずエコーをスロート面15の形状エコーから識別し易くなる。
 従って、リング溝17を有さない車輪においては、フランジ側リム面16近傍及びスロート面15近傍の二つの異なる領域のきずを検出するのに、探触子配置角度を40~60°に設定しさえすれば、表面肌及びスロート面15の形状エコーの強度を低くし、1個のアレイ探触子によってきずを精度良く検出することができる。
 また、リング溝17を有する車輪においては、フランジ側リム面16近傍、リング溝17近傍及びスロート面15近傍の三つの異なる領域のきずを検出するのに、探触子配置角度を40~60°に設定しさえすれば、フランジ側リム面16の表面肌、リング溝17及びスロート面15の形状エコーの強度を低くし、1個のアレイ探触子によってきずを精度良く検出することができる。
 なお、本発明は、上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。
1・・・車輪
16・・・フランジ側リム面
3・・・アレイ探触子
31・・・振動子面

Claims (2)

  1.  アレイ探触子によって車輪のフランジ側リム面に超音波を送信し、リム部を探傷する超音波探傷方法であって、
     前記アレイ探触子の振動子面を前記フランジ側リム面に対向させ、前記車輪の軸方向から見たときの該アレイ探触子の振動子配列方向と該車輪の径方向とが成す角度を20~60°にして探傷することを特徴とする超音波探傷方法。
  2.  前記角度を40~60°にすることを特徴とする請求項1に記載の超音波探傷方法。
PCT/JP2012/064433 2011-06-22 2012-06-05 車輪の超音波探傷方法 WO2012176612A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES12802416.3T ES2657550T3 (es) 2011-06-22 2012-06-05 Método de detección por ultrasonidos de defectos en rueda de vehículo
CA2839662A CA2839662C (en) 2011-06-22 2012-06-05 Ultrasonic testing method of wheel
AU2012274664A AU2012274664B2 (en) 2011-06-22 2012-06-05 Ultrasonic testing method of wheel.
CN201280040501.1A CN103765205B (zh) 2011-06-22 2012-06-05 车轮的超声波探伤方法
EP12802416.3A EP2728346B1 (en) 2011-06-22 2012-06-05 Vehicle wheel ultrasonic flaw detection method
US14/128,649 US9341598B2 (en) 2011-06-22 2012-06-05 Ultrasonic testing method of wheel
JP2013521518A JP5601603B2 (ja) 2011-06-22 2012-06-05 車輪の超音波探傷方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011138534 2011-06-22
JP2011-138534 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012176612A1 true WO2012176612A1 (ja) 2012-12-27

Family

ID=47422452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064433 WO2012176612A1 (ja) 2011-06-22 2012-06-05 車輪の超音波探傷方法

Country Status (8)

Country Link
US (1) US9341598B2 (ja)
EP (1) EP2728346B1 (ja)
JP (1) JP5601603B2 (ja)
CN (1) CN103765205B (ja)
AU (1) AU2012274664B2 (ja)
CA (1) CA2839662C (ja)
ES (1) ES2657550T3 (ja)
WO (1) WO2012176612A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158336A (zh) * 2015-10-09 2015-12-16 中国石油天然气第一建设公司 一种多功能超声相控阵管道环焊缝检测设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664652B2 (en) * 2014-10-30 2017-05-30 The Boeing Company Non-destructive ultrasonic inspection apparatus, systems, and methods
CN105092702B (zh) * 2015-07-31 2019-03-22 中车大同电力机车有限公司 超声波检测样轴方法及装置
CN105606708B (zh) * 2015-11-10 2019-04-09 南京拓控信息科技有限公司 一种列车车轮便携式探伤系统的检测方法
CN105675721A (zh) * 2016-01-29 2016-06-15 上海应用技术学院 一种超声成像检测装置及系统
CN108469470B (zh) * 2017-12-11 2024-03-29 马鞍山钢铁股份有限公司 一种火车车轮自动线超声波探伤用样轮
JP6797853B2 (ja) * 2018-03-14 2020-12-09 株式会社東芝 検知システム、ホイール及び検知方法
CN109725064A (zh) * 2019-03-01 2019-05-07 北京双河理声自动化检测技术有限公司 一种轮辋超声检测装置及检测方法
US11280765B2 (en) * 2020-03-31 2022-03-22 Baker Hughes Oilfield Operations Llc Methods and devices for ultrasonic nondestructive testing devices
CN112964792B (zh) * 2021-02-01 2024-06-25 太原重工轨道交通设备有限公司 用于车轮轮缘的超声波检测校准试块及检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004709A (ja) * 2001-06-22 2003-01-08 Sumitomo Metal Ind Ltd 車輪の超音波検査方法及び装置
JP2005207811A (ja) * 2004-01-21 2005-08-04 Denso Corp 形状変化検出装置
JP2007093311A (ja) 2005-09-28 2007-04-12 Jfe Steel Kk 超音波探傷方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2144545B (en) * 1983-08-04 1986-12-03 British Gas Corp A wheel probe
US4898034A (en) * 1988-08-23 1990-02-06 The United States Of America As Represented By The Department Of Energy High temperature ultrasonic testing of materials for internal flaws
US5497662A (en) * 1993-09-07 1996-03-12 General Electric Company Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
JP3808513B2 (ja) 1994-03-01 2006-08-16 株式会社東芝 超音波探傷方法及び装置
DE59905207D1 (de) * 1998-07-22 2003-05-28 Fraunhofer Ges Forschung Ultraschall-prüfeinrichtung
US7017414B2 (en) * 2003-07-30 2006-03-28 General Electric Company Ultrasonic inspection method and system therefor
CN101639463B (zh) * 2009-09-03 2011-01-19 北京主导时代科技有限公司 一种基于相控阵探头的机车车辆车轮缺陷检测装置
CN201548525U (zh) * 2009-09-14 2010-08-11 成都主导科技有限责任公司 一种列车车轮轮辐缺陷的超声波检测设备
CN201697897U (zh) * 2010-06-10 2011-01-05 北京新联铁科技发展有限公司 轨道车辆不落轮超声波车轮自动探伤机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004709A (ja) * 2001-06-22 2003-01-08 Sumitomo Metal Ind Ltd 車輪の超音波検査方法及び装置
JP2005207811A (ja) * 2004-01-21 2005-08-04 Denso Corp 形状変化検出装置
JP2007093311A (ja) 2005-09-28 2007-04-12 Jfe Steel Kk 超音波探傷方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728346A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158336A (zh) * 2015-10-09 2015-12-16 中国石油天然气第一建设公司 一种多功能超声相控阵管道环焊缝检测设备
CN105158336B (zh) * 2015-10-09 2017-12-22 中国石油天然气第一建设有限公司 一种多功能超声相控阵管道环焊缝检测设备

Also Published As

Publication number Publication date
CN103765205A (zh) 2014-04-30
AU2012274664A1 (en) 2014-01-30
CN103765205B (zh) 2016-04-20
US9341598B2 (en) 2016-05-17
CA2839662A1 (en) 2012-12-27
AU2012274664B2 (en) 2015-03-05
EP2728346A1 (en) 2014-05-07
EP2728346A4 (en) 2015-03-18
ES2657550T3 (es) 2018-03-05
JPWO2012176612A1 (ja) 2015-02-23
US20140224024A1 (en) 2014-08-14
EP2728346B1 (en) 2017-10-25
CA2839662C (en) 2016-08-16
JP5601603B2 (ja) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5601603B2 (ja) 車輪の超音波探傷方法
WO2007058391A1 (ja) 管体の超音波探傷装置および超音波探傷方法
US8161818B2 (en) Device for detecting a flaw in a component
CN101666781B (zh) 一种机车车辆车轮轮辐缺陷超声波检测装置
CN113939735B (zh) 超声波探伤方法、超声波探伤装置、以及钢材制造方法
US9921186B2 (en) Method and device for the non-destructive inspection of a rotationally symmetric workpiece having sections with difference diameters
CN201548525U (zh) 一种列车车轮轮辐缺陷的超声波检测设备
JP5325394B2 (ja) 軸部材の超音波探傷方法、超音波探傷装置および超音波探傷システム
WO2020250379A1 (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備列、鋼材の製造方法、及び鋼材の品質保証方法
JP6992678B2 (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備列、鋼材の製造方法、及び鋼材の品質保証方法
KR20160137559A (ko) 휠 세트의 차축 및 각각의 초음파 검사 방법
US11519880B2 (en) Non-destructive testing for tubular product having a complex shape
JP2007198822A (ja) 車輪用軸受外輪の転走面焼入れ深さ測定方法
JP4690167B2 (ja) 溶接部溶け込み深さ探査方法及び溶接部溶け込み深さ探査装置
JP2009058238A (ja) 欠陥検査方法および装置
JP5810873B2 (ja) 超音波探傷方法
RU2394235C1 (ru) Способ ультразвукового контроля сварных соединений труб малого диаметра
JP6733650B2 (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備列、及び鋼材の製造方法
JP6513771B2 (ja) 丸棒材の超音波探傷装置
JP2016090245A (ja) 超音波探傷装置
JP2011214891A (ja) アレイ超音波探傷装置
JP4943016B2 (ja) 超音波による焼入深さ測定方法および測定装置
JP2003322642A (ja) 板波超音波探傷方法及びその装置
JP2012198104A (ja) 超音波探傷装置及び超音波探傷方法
JPH05332996A (ja) 鋼管の表面欠陥検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280040501.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521518

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2839662

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012802416

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012802416

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012274664

Country of ref document: AU

Date of ref document: 20120605

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14128649

Country of ref document: US