[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012176526A1 - 立体画像処理装置、立体画像処理方法、及びプログラム - Google Patents

立体画像処理装置、立体画像処理方法、及びプログラム Download PDF

Info

Publication number
WO2012176526A1
WO2012176526A1 PCT/JP2012/058933 JP2012058933W WO2012176526A1 WO 2012176526 A1 WO2012176526 A1 WO 2012176526A1 JP 2012058933 W JP2012058933 W JP 2012058933W WO 2012176526 A1 WO2012176526 A1 WO 2012176526A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
viewpoint
viewpoint image
display
stereoscopic
Prior art date
Application number
PCT/JP2012/058933
Other languages
English (en)
French (fr)
Inventor
郁子 椿
幹生 瀬戸
永雄 服部
久雄 熊井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2013521490A priority Critical patent/JP5931062B2/ja
Priority to US14/126,156 priority patent/US20140092222A1/en
Publication of WO2012176526A1 publication Critical patent/WO2012176526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation

Definitions

  • the present invention relates to a stereoscopic image processing apparatus, a stereoscopic image processing method, and a computer-readable program for performing processing for displaying a stereoscopic image from a plurality of viewpoint images.
  • the multi-viewpoint stereoscopic image display device performs stereoscopic display using a plurality of images having parallax. Each of the plurality of images is called a viewpoint image.
  • stereoscopic display is performed using a left-eye image and a right-eye image.
  • the left-eye image and the right-eye image can be referred to as viewpoint images, respectively.
  • a method of photographing a stereoscopic image a method of photographing with a multi-lens camera in which a plurality of cameras are arranged on the left and right is known.
  • a viewpoint image When an image photographed by each camera of a multi-lens camera is displayed as a viewpoint image on a stereoscopic image display device, a stereoscopic image is observed.
  • the parallax is a lateral shift of the coordinates of the subject between the viewpoint images, and varies depending on the distance between the subject and the camera. However, there may be a shift between viewpoint images not only in the horizontal direction but also in the vertical direction.
  • Patent Document 2 discloses a display device that corrects luminance.
  • the degree of blur may be various differences such as the degree of blur between the viewpoint images.
  • the degree of the difference is not always uniform in the image, and in many cases, differs depending on the region.
  • the present invention has been made in view of the above situation, and even when there is a difference other than parallax between viewpoint images, the difference is reduced without calculating the degree of the difference, and the observer can It is an object of the present invention to provide a stereoscopic image processing apparatus, a stereoscopic image processing method, and a computer-readable program that can display an image that can be easily viewed stereoscopically.
  • a first technical means of the present invention is a stereoscopic image processing apparatus, wherein a reference viewpoint image selection unit that selects one of a plurality of viewpoint images as a reference viewpoint image, and the reference viewpoint A parallax calculation unit that calculates a parallax map between the image and the remaining viewpoint image, and an image generation unit that generates a new remaining viewpoint image corresponding to at least the remaining viewpoint image from the parallax map and the reference viewpoint image; And a display control unit that displays a stereoscopic image having at least the new remaining viewpoint image as a display element.
  • the display control unit displays a stereoscopic image having the reference viewpoint image and the new remaining viewpoint image as display elements. is there.
  • the image generation unit further generates a new viewpoint image corresponding to the reference viewpoint image from the parallax map and the reference viewpoint image, and the display control unit Is characterized in that a stereoscopic image having the new viewpoint image and the new remaining viewpoint image as display elements is displayed.
  • the reference viewpoint image selection unit selects the reference viewpoint image using image feature amounts of the plurality of viewpoint images. It is a feature.
  • the fifth technical means is the fourth technical means characterized in that one of the image feature values is a contrast.
  • the sixth technical means is the fourth technical means characterized in that one of the image feature amounts is a sharpness.
  • Seventh technical means is characterized in that, in the fourth technical means, one of the image feature amounts is the number of skin color pixels in the peripheral portion of the image.
  • the reference viewpoint image selection unit selects a viewpoint image of a predetermined viewpoint as the reference viewpoint image. It is.
  • each of the plurality of viewpoint images is a frame image constituting a moving image
  • the stereoscopic image processing device includes a scene change detection unit.
  • the reference viewpoint image selection unit selects a viewpoint image at the same viewpoint as the previous frame image as the reference viewpoint image when the scene change detection unit detects that the scene change is not a scene change. It is what.
  • the image generation unit in any one of the first to ninth technical means, the image generation unit generates a parallax when generating the new remaining viewpoint image from the parallax map and the reference viewpoint image. It is characterized by performing the adjustment.
  • the image generation unit is configured to determine whether the viewpoint of the new remaining viewpoint image is different from the parallax map and the reference viewpoint image.
  • a viewpoint image of a new viewpoint having a new viewpoint is further generated, and the display control unit displays a stereoscopic image including the viewpoint image of the new viewpoint as a display element.
  • the reference viewpoint image selection unit selects one of a plurality of viewpoint images as a reference viewpoint image
  • the parallax calculation unit includes the reference viewpoint image and the remaining A step of calculating a parallax map with the viewpoint image, a step of generating a new remaining viewpoint image corresponding to at least the remaining viewpoint image from the parallax map and the reference viewpoint image, and a display And a step of displaying a stereoscopic image having at least the new remaining viewpoint image as a display element.
  • the thirteenth technical means includes a step of causing the computer to select one of a plurality of viewpoint images as a reference viewpoint image, and a step of calculating a parallax map between the reference viewpoint image and the remaining viewpoint images. Generating a new remaining viewpoint image corresponding to at least the remaining viewpoint image from the parallax map and the reference viewpoint image, and displaying a stereoscopic image using at least the new remaining viewpoint image as a display element And a program for executing the steps.
  • the difference is reduced without calculating the degree of the difference, and a stereoscopic image with good image quality and easy for a viewer to stereoscopically view is obtained. Can be displayed.
  • FIG. 1 is a block diagram illustrating a schematic configuration example of a stereoscopic image display device according to a first embodiment of the present invention. It is a flowchart for demonstrating the process example of the image generation part in the three-dimensional image display apparatus of FIG. It is a figure for demonstrating the process example of the reference
  • FIG. 1 is a block diagram showing a schematic configuration example of a stereoscopic image display apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining a processing example of the image generation unit in the stereoscopic image display apparatus of FIG. 1, and is a diagram for explaining a procedure of the image generation unit according to the first embodiment.
  • the stereoscopic image display apparatus 1 of the present embodiment includes an input unit 11, a reference viewpoint image selection unit 12, a parallax calculation unit 13, an image generation unit 14, an image interpolation unit 15, And a display unit 16.
  • the display unit 16 includes a display device and a display control unit that performs control for outputting a stereoscopic image to the display device.
  • the input unit 11 inputs a plurality of viewpoint images as input images to the reference viewpoint image selection unit 12.
  • the input unit 11 can be acquired by photographing with a camera, can be acquired by receiving a broadcast wave of digital broadcast and subjected to processing such as demodulation, acquired from an external server or the like via a network, What is necessary is just to comprise so that a several viewpoint image can be input by any acquisition method among acquiring from a memory
  • the reference viewpoint image selection unit 12 selects one of a plurality of viewpoint images as a reference viewpoint image.
  • an input image input through the input unit 11 includes a left-eye image and a right-eye image
  • a plurality of viewpoint images are a left-eye image and a right-eye image
  • the reference viewpoint image selection unit 12 selects one of the left-eye image and the right-eye image as the reference viewpoint image, and the other as another viewpoint image. Decide.
  • the reference viewpoint image is selected based on the contrast of the image.
  • the contrast C of each of the left-eye image and the right-eye image is calculated by the equation (1).
  • C (Imax ⁇ Imin) / (Imax + Imin) (1)
  • Imax and Imin are the maximum value and the minimum value of the luminance of the pixel in the image, respectively. Then, the image with the larger contrast C is determined as the reference viewpoint image, and the image with the smaller contrast C is set as another viewpoint image. If the left eye image and the right eye image have the same value of contrast C, one of the predetermined images is set as a reference viewpoint image, and the other is determined as another viewpoint image. By this processing, it is possible to select a viewpoint image with better image quality as a reference viewpoint image.
  • the reference viewpoint image is input to each of the parallax calculation unit 13, the image generation unit 14, and the display unit 16, and the different viewpoint image is input only to the parallax calculation unit 13.
  • an image having a higher image sharpness is selected.
  • the sharpness is defined by, for example, a sum of absolute values of the difference between adjacent pixels in the horizontal direction and the difference between adjacent pixels in the vertical direction in the luminance value.
  • a plurality of image feature amounts such as contrast and sharpness may be combined.
  • the combination is performed by, for example, a linear sum of a plurality of feature amounts.
  • the reference viewpoint image selection unit 12 may select a reference viewpoint image using image feature amounts of a plurality of viewpoint images.
  • an image of a predetermined viewpoint may be selected as the reference viewpoint image. You may select as an image. By fixing the viewpoint image to be selected, the processing amount can be reduced.
  • the parallax calculation unit 13 calculates a parallax map between the reference viewpoint image and the remaining viewpoint images, that is, a parallax map of each different viewpoint image with respect to the reference viewpoint image in this example.
  • the parallax map describes the difference value of the coordinate in the horizontal direction (horizontal direction) from the corresponding point in the reference viewpoint image in each pixel of the different viewpoint image.
  • Various methods using block matching, dynamic programming, graph cut, etc. are known as the parallax map calculation method, and any of them can be used.
  • the parallax map is calculated by a robust method.
  • the image generation unit 14 generates a new remaining viewpoint image corresponding to at least the remaining viewpoint image from the reference viewpoint image and the parallax map. That is, by reconstructing another viewpoint image from the reference viewpoint image and the parallax map, new remaining viewpoint images (different viewpoint images for display) are generated.
  • the reconstruction method for each pixel of the reference viewpoint image, the parallax value of the coordinate is read from the parallax map, and the pixel value is copied to the pixel whose coordinates are moved by the parallax value in the different viewpoint image for display. This process is performed for all the pixels of the reference viewpoint image.
  • the pixel value of the pixel having the maximum parallax value in the protruding direction is used based on the z buffer method.
  • FIG. 2 is an example when the left-eye image is selected as the reference viewpoint image.
  • (X, y) indicates the coordinates in the image.
  • the processing is performed in each row, and y is constant.
  • F, G, and D indicate a reference viewpoint image, a separate viewpoint image for display, and a parallax map, respectively.
  • Z is an array for holding the parallax value of each pixel of the different viewpoint image for display during the process, and is called a z buffer.
  • W is the number of pixels in the horizontal direction of the image.
  • step S1 the z buffer is initialized with the initial value MIN.
  • the parallax value is a positive value in the projection direction and a negative value in the depth direction
  • MIN is a value smaller than the minimum parallax value calculated by the parallax calculation unit 13.
  • step S2 the parallax value of the parallax map is compared with the z buffer value of the pixel whose coordinates are moved by the parallax value, and it is determined whether or not the parallax value is larger than the z buffer value.
  • the process proceeds to step S3, and the pixel value of the reference viewpoint image is assigned to the separate viewpoint image for display. Also, the z buffer value is updated.
  • step S4 if the current coordinate is the rightmost pixel, the process ends. If not, the process proceeds to step S5, moves to the right adjacent pixel, and returns to step S2. If the parallax value is equal to or smaller than the z buffer value in step S2, the process proceeds to step S4 without passing through step S3. Perform these steps on every line. Since reconstruction is performed by moving the coordinates only in the horizontal direction by the parallax value, it is possible to generate a separate viewpoint image for display that has no difference other than the parallax from the reference viewpoint image.
  • the image interpolation unit 15 performs an interpolation process on pixels for which no pixel value has been assigned by the image generation unit 14 and assigns pixel values to the different viewpoint images for display generated by the image generation unit 14. Interpolation processing is performed using the average value of the pixel values of the pixel to which the pixel value is not assigned on the left side of the pixel to which the nearest pixel value is assigned and the pixel on the right side of the pixel to which the nearest pixel value is assigned.
  • This interpolation process is not limited to a method using an average value, and may be another method such as a filter process. As described above, by including the image interpolation unit 15, it is possible to always determine the pixel value by performing interpolation processing on a pixel to which no pixel value is assigned in the generated different viewpoint image.
  • the display control unit in the display unit 16 causes the display device to display a stereoscopic image having at least the new remaining viewpoint image (another viewpoint image for display) as a display element.
  • the reference viewpoint image is used as it is. That is, the display control unit in the display unit 16 displays on the display device a stereoscopic image having the reference viewpoint image and the new remaining viewpoint image as display elements.
  • the display unit 16 includes the display control unit and the display device as described above, but will be described below simply as processing in the display unit 16, including descriptions in other embodiments.
  • the reference viewpoint image and one separate viewpoint image for display are input to the display unit 16 to perform the two-viewpoint stereoscopic display.
  • the reference viewpoint image is displayed as the left eye image
  • the separate viewpoint image for display is displayed as the right eye image.
  • the reference viewpoint image is displayed as the right eye image
  • the separate viewpoint image for display is displayed as the left eye image.
  • the stereoscopic image display apparatus of the present embodiment by reconstructing the other viewpoint image from one viewpoint image, differences (vertical shift, color shift, etc.) other than the parallax are generated between the viewpoint images.
  • the difference can be reduced without calculating the degree of the difference, and a stereoscopic image with good image quality and easy for the observer to stereoscopically view can be displayed.
  • the difference can be reduced.
  • reconstructing an image with high contrast and sharpness as a reference a stereoscopic image with high contrast and sharpness can be displayed.
  • FIG. 3 is a diagram for explaining a processing example of the reference viewpoint image selection unit in the stereoscopic image display device according to the second embodiment of the present invention.
  • FIG. 1 A schematic configuration example of the stereoscopic image display apparatus in the second embodiment is shown in FIG. 1 as in the first embodiment, but the processing method in the reference viewpoint image selection unit 12 is different.
  • the processing method in the reference viewpoint image selection unit 12 is different.
  • an image shot with a finger on the lens is detected, and a viewpoint image with a smaller area where the finger is applied is selected as a reference viewpoint image.
  • the reference viewpoint image selection unit 12 first converts pixel values of pixels located in a region having a certain width from the left and right ends and the upper and lower ends of each of the left-eye image and the right-eye image into the HSV color space. Next, a pixel having an H value in a predetermined range is regarded as skin color, and the number of skin color pixels is counted for each image. Then, in both the left-eye image and the right-eye image, if the number of skin color pixels is equal to or less than a predetermined threshold, it is determined that the lens is not touched at the time of shooting, and the reference viewpoint is determined in the same manner as in the first embodiment Select an image. When the number of skin color pixels is larger than a predetermined threshold in any of the images, the image with the smaller number of skin color pixels is selected as the reference viewpoint image, and the other is determined as another viewpoint image.
  • Image P L shown in FIG. 3, the image P R are each captured image for left eye in a state where the lens took a finger is an example of a right-eye image.
  • Left eye image P L, the right eye image P R, the black portion 33a, 34a and hatched portions 33b, 34b denotes a region 33, 34 of the finger reflected in the image, in this example, the left eye image P L finger is reflected in the left end and the right lower corner of the right eye image P R.
  • Left eye image P L, the hatched portion in the right eye image P R 31 is a region having a constant width between the left and right ends of the upper and lower ends for use in skin color pixel number detection.
  • the black portions 33a and 34a are regions counted in the number of skin color pixels. In this example, the right eye image P R left eye image P L number skin color pixels than (the number of pixels black portion) is small, the left eye image P L is selected to the reference viewpoint image.
  • a plurality of image feature amounts such as contrast and sharpness are combined. It may be used.
  • the combination is performed by, for example, a linear sum of a plurality of feature amounts.
  • the viewpoint image with the smaller area where the finger is applied is used as the reference viewpoint image. Therefore, it is possible to display a stereoscopic image with a small area where a finger is applied.
  • FIG. 4 is a block diagram illustrating a schematic configuration example of a stereoscopic image display apparatus according to the third embodiment of the present invention.
  • the input image is limited to a moving image, that is, each of the plurality of viewpoint images is a frame image constituting the moving image.
  • the stereoscopic image display device 4 includes an input unit 11, a scene change detection unit 17, a storage unit 18, a reference viewpoint image selection unit 19, a parallax calculation unit 13, and an image.
  • a generation unit 14, an image interpolation unit 15, and a display unit 16 are included. Components having the same numbers as those in the first embodiment have the same contents, and thus description thereof is omitted.
  • each frame of the input image input through the input unit 11 is a two-viewpoint type, it is composed of a left-eye image and a right-eye image and is input to the scene change detection unit 17.
  • the scene change detection unit 17 detects whether or not a scene change has occurred by comparing with the previous frame image held in the storage unit 18.
  • the scene change detection is performed, for example, by comparing between luminance histogram frames. First, the luminance value of each pixel is calculated for the input frame input through the input unit 11, and a histogram of a predetermined class is created. Next, a luminance histogram is similarly created for the previous frame image read from the storage unit 18.
  • the scene change detection unit 17 may detect a scene change from a moving image (sequential frame image) about one viewpoint, but detects a scene change from moving images (sequential frame images) about a plurality of viewpoints. May be.
  • a scene change signal may be detected by embedding a scene change signal in at least one viewpoint moving image and detecting the signal.
  • the reference viewpoint image selection unit 19 changes the processing contents depending on whether or not a scene change is detected by the scene change detection unit 17.
  • the reference viewpoint image is selected by the same process as the reference viewpoint image selection unit 12 of the first embodiment (or the second embodiment). If it is not a scene change, a viewpoint image having the same viewpoint as the viewpoint selected as the reference viewpoint image in the previous frame is selected as the reference viewpoint image. That is, when the left-eye image is selected as the reference viewpoint image in the previous frame image, the left-eye image of the current frame input image is output as the reference viewpoint image to the parallax calculation unit 13, the image generation unit 14, and the display unit 16. The right-eye image is output to the parallax calculation unit 13 as another viewpoint image.
  • the stereoscopic image display device of the present embodiment when an input image is a moving image, scene change detection is performed, and an image at the same viewpoint as the previous frame is reconstructed as a reference viewpoint image in a frame that is not a scene change. Therefore, fluctuations between frames of the display image can be suppressed.
  • FIG. 5 is a block diagram showing a schematic configuration example of a stereoscopic image display apparatus according to the fourth embodiment of the present invention.
  • the fourth embodiment reduces the difference other than the parallax between the viewpoint images in the first to third embodiments, and also adjusts the parallax.
  • the stereoscopic image display device 5 in the present embodiment is obtained by adding a parallax distribution conversion unit 20 to the stereoscopic image display device 1 of FIG. 1.
  • a schematic configuration example in which the parallax distribution conversion unit 20 is added to the stereoscopic image display device 4 of FIG. 4 may be adopted.
  • the image generation unit 14 in the present embodiment adjusts the parallax when generating the new remaining viewpoint image from the parallax map and the reference viewpoint image.
  • this parallax adjustment part is separated from the image generation unit 14 and illustrated as a parallax distribution conversion unit 20.
  • the parallax distribution conversion unit 20 converts the value of the input parallax map calculated by the parallax calculation unit 13 and outputs the converted parallax map to the image generation unit 14.
  • the conversion method is performed by the following equation (2), for example.
  • p (x, y) and q (x, y) are an input parallax map and a converted parallax map, respectively, and a and b are constants.
  • q (x, y) a ⁇ p (x, y) + b (2)
  • the parallax can be adjusted in consideration of the fact that the distance between the image reproduced by the stereoscopic image display device and the observer is proportional to the reciprocal of the parallax.
  • the image generation unit 14 uses the post-conversion parallax map and the reference viewpoint image created by the parallax distribution conversion unit 20 for display in the same manner as in the first embodiment (or the second and third embodiments). Another viewpoint image is generated.
  • the stereoscopic image display device of the present embodiment it is possible to display a stereoscopic image in which the difference between viewpoint images is reduced and the parallax range is adjusted.
  • the fifth embodiment relates to a stereoscopic image display apparatus capable of displaying images with reduced differences between viewpoint images in the case of multi-view stereoscopic display.
  • a schematic configuration example of the stereoscopic image display apparatus in the present embodiment is shown in FIG. 1 as in the first embodiment, but the input image input through the input unit 11 is a multi-viewpoint image of three or more.
  • N be the number of viewpoints constituting this input multi-viewpoint image.
  • the number of viewpoints constituting the multi-view image for display that is, the number of multi-view images for display is also N.
  • the reference viewpoint image selection unit 12 selects one of the N viewpoint images as a reference viewpoint image, and determines the remaining N ⁇ 1 images as different viewpoint images. This selection is performed based on the contrast of the image, for example. First, the contrast C of each viewpoint image is calculated by equation (1). Then, the image with the maximum contrast C is determined as a reference viewpoint image, and the remaining viewpoint images are determined as different viewpoint images. The reference viewpoint image is input to each of the parallax calculation unit 13, the image generation unit 14, and the display unit 16, and N ⁇ 1 different viewpoint images are input only to the parallax calculation unit 13. Although only an example based on the contrast of the image has been described for this selection, the same applies to other factors such as sharpness.
  • the parallax calculation unit 13 calculates a parallax map of the reference viewpoint image compared with each different viewpoint image.
  • the parallax map calculation is performed by a method similar to the method described in the first embodiment, and N ⁇ 1 parallax maps are output to the image generation unit 14.
  • the image generation unit 14 generates N ⁇ 1 different display viewpoint images from the reference viewpoint image and each parallax map. Each display-specific viewpoint image is generated in the same manner as in the first embodiment. For each pixel of the reference viewpoint image, the parallax value of the coordinate is read from the parallax map, and the coordinate is moved by the parallax value. The pixel value is copied to the pixel of the viewpoint image.
  • the image interpolation unit 15 performs an interpolation process on the pixels to which no pixel value has been assigned, and assigns pixel values to the N ⁇ 1 different viewpoint images for display generated by the image generation unit 14. This interpolation processing is performed by the same method as in the first embodiment.
  • the display unit 16 receives the reference viewpoint image and N-1 different viewpoint images for display, and performs multi-viewpoint stereoscopic display. A total of N viewpoint images are arranged and displayed in an appropriate order.
  • the stereoscopic image display device of the present embodiment when three or more multi-viewpoint stereoscopic displays are performed, the remaining viewpoint images can be reconstructed from one viewpoint image (reference viewpoint image). A stereoscopic image with reduced difference can be displayed.
  • FIG. 6 is a block diagram showing a schematic configuration example of a stereoscopic image display apparatus according to the sixth embodiment of the present invention.
  • FIG. 7 is a flowchart for explaining a processing example of the image generation unit in the stereoscopic image display apparatus of FIG. 6, and is a diagram for explaining a procedure of the image generation unit according to the sixth embodiment.
  • the stereoscopic image display device 6 includes an input unit 11, a reference viewpoint image selection unit 12, a parallax calculation unit 13, an image generation unit 21, an image interpolation unit 22, and a display. Part 16. Components having the same numbers as those in the first embodiment have the same contents, and thus description thereof is omitted.
  • the display unit 16 has been described as displaying a stereoscopic image having the reference viewpoint image and the new remaining viewpoint image as display elements.
  • the stereoscopic image of the sixth embodiment is used.
  • the image generation unit 21 generates a new viewpoint image for the reference viewpoint image, and uses the new viewpoint image as one of the display elements of the stereoscopic image instead of the existing reference viewpoint image.
  • the image generation unit 21 in the present embodiment further generates a new viewpoint image corresponding to the reference viewpoint image from the parallax map and the reference viewpoint image.
  • the image generation unit 21 generates a reference viewpoint image for display and another viewpoint image for display from the reference viewpoint image and the parallax map calculated by the parallax calculation unit 13, and outputs them to the image interpolation unit 22.
  • new viewpoint images corresponding to all the plurality of input viewpoint images are generated for display.
  • FIG. 7 shows an example when the left-eye image is selected as the reference viewpoint image.
  • (x, y) indicates the coordinates in the image, but FIG. 7 shows processing in each row, and y is constant.
  • F, Ga, Gb, and D indicate a reference viewpoint image, a display reference viewpoint image, a display-specific viewpoint image, and a parallax map, respectively.
  • Z and W are the numbers of pixels in the horizontal direction of the z buffer and the image, respectively, as in FIG. Steps S11, S14, and S15 have the same contents as steps S1, S4, and S5 of FIG.
  • step S12 the parallax value of the parallax map is compared with the z buffer value of the pixel whose coordinates have been moved by half the parallax value, and it is determined whether or not the parallax value is greater than the z buffer value.
  • the process proceeds to step S13, and the pixel value of the reference viewpoint image F is assigned to the reference viewpoint image Ga for display and the separate viewpoint image Gb for display.
  • the reference viewpoint image Ga for display and the separate viewpoint image for display Gb are assigned to coordinates that are moved in the opposite direction by half the parallax value from the coordinates (x, y).
  • step S14 when the parallax value is equal to or less than the value of the z buffer, the process proceeds to step S14 without passing through step S13.
  • the image interpolation unit 22 performs an interpolation process on pixels for which no pixel value is assigned to the reference viewpoint image for display and the separate viewpoint image for display generated by the image generation unit 21, and assigns pixel values.
  • the same processing as that of the image interpolation unit 15 of the first embodiment is performed on each of the display reference viewpoint image and the display-specific viewpoint image.
  • the display reference viewpoint image in which the pixel values are assigned to all the pixels by interpolation and the display-specific viewpoint image are input to the display unit 16.
  • the reference viewpoint image for display and the separate viewpoint image for display are created by moving the image generating unit 21 in the opposite direction by the same distance, so that the number of pixels to be interpolated is the same. Since the interpolation process may cause deterioration such as blurring, if only one viewpoint image is blurred, it can be a cause of a decrease in image quality and ease of stereoscopic viewing. According to this embodiment, by aligning the number of interpolation pixels between viewpoint images, the degree of image quality degradation due to interpolation can be suppressed to the same degree between viewpoint images.
  • the display unit 16 generates a stereoscopic image using the new viewpoint image based on the reference viewpoint image and the new remaining viewpoint image based on another viewpoint image generated as described above as display elements. Is displayed.
  • the above-described second to fifth embodiments can be applied. Configurations and application examples other than the point of using the reference viewpoint image as it is in the display in the first embodiment, for example, the reference viewpoint image The selection method and the like can be similarly applied.
  • the parallax adjustment described in the fourth embodiment may be executed when a new viewpoint image corresponding to the reference viewpoint image is generated. It is also possible to adjust the new viewpoint image and the new remaining viewpoint images so that, for example, the width between the maximum value and the minimum value of parallax is reduced as a whole. Of course, it is possible to adopt an adjustment that does not change only the reference viewpoint image during adjustment.
  • the stereoscopic image display device of the present embodiment it is possible to reduce the difference in image quality between viewpoint pixels by generating both viewpoint images from one viewpoint image, and employ interpolation. In this case, it is possible to reduce the difference between the deteriorated viewpoint images caused by the interpolation.
  • FIG. 8 is a flowchart for explaining a processing example of the image generation unit in the stereoscopic image display apparatus according to the seventh embodiment of the present invention.
  • the stereoscopic image display device is processed so that the number of viewpoint images (multi-viewpoint images for display) used for display on the display unit is larger than the number of viewpoint images input from the input unit.
  • the number of viewpoints constituting the input multi-viewpoint image that is, the number of viewpoint images input through the input unit is M ( ⁇ 2)
  • the number of viewpoints constituting the display multi-viewpoint image that is, display Let N ( ⁇ 3) be the number of multi-viewpoint images.
  • M N.
  • the image generation unit 14 generates a viewpoint image having a new viewpoint different from the viewpoints of the new remaining viewpoint images (hereinafter referred to as a viewpoint image of a new viewpoint) from the parallax map and the reference viewpoint image.
  • the display unit 16 displays a stereoscopic image including the viewpoint image of the new viewpoint as a display element, that is, a stereoscopic image including the viewpoint image of the new viewpoint as a display element.
  • the input unit 11, the reference viewpoint image selection unit 12, and the parallax calculation unit 13 perform processing in the same manner as in the first embodiment. That is, the reference viewpoint image selection unit 12 receives an input image composed of the left-eye image and the right-eye image through the input unit 11 and selects the reference viewpoint image.
  • the parallax calculation unit 13 calculates a parallax map for viewpoint images other than the reference viewpoint image.
  • the image generation unit 14 generates N ⁇ 1 different viewpoint images for display from the reference viewpoint image and one parallax map calculated by the parallax calculation unit 13, and outputs the N ⁇ 1 different viewpoint images for display to the image interpolation unit 15.
  • FIG. 8 is an example when the left-eye image is selected as the reference viewpoint image.
  • (x, y) indicates the coordinates in the image, but FIG. 8 shows processing in each row, and y is constant.
  • F, G k , and D respectively indicate a reference viewpoint image, a kth display-specific viewpoint image, and a parallax map.
  • k is processed for each of 1 to N-1.
  • Z and W are the numbers of pixels in the horizontal direction of the z buffer and the image, respectively, as in FIG.
  • step S22 the parallax value of the parallax map is compared with the z buffer value of the pixel whose coordinates are moved by k / (N ⁇ 1) times that parallax value, and k / (N ⁇ 1) times the parallax value. Is greater than the value in the z-buffer. If k / (N ⁇ 1) times the parallax value is larger than the value in the z buffer, the process proceeds to step S23, and the pixel value of the reference viewpoint image F is assigned to the kth display-specific viewpoint image Gk. However, it is assigned to a coordinate moved from the coordinate (x, y) by k / (N ⁇ 1) times the parallax value.
  • step S24 when k / (N ⁇ 1) times the parallax value is equal to or smaller than the value of the z buffer, the process proceeds to step S24 without passing through step S23.
  • one viewpoint image for display can be created. Furthermore, by performing the above-described processing for all k from 1 to N ⁇ 1, N ⁇ 1 different viewpoint images for display can be created.
  • the N ⁇ 1 different viewpoint images for display generated are the M ⁇ 1 (in this example, one) new remaining viewpoint images corresponding to the remaining viewpoint images, and the NM (this one) In the example, it is composed of N-2 new viewpoint images.
  • the image interpolation unit 15 performs an interpolation process on the pixels to which no pixel value has been assigned, and assigns pixel values to the N ⁇ 1 different viewpoint images for display generated by the image generation unit 14. This performs the same processing as the image interpolation unit 15 of the first embodiment for each.
  • the N-1 display-specific viewpoint images and reference viewpoint images in which pixel values are assigned to all the pixels by interpolation are used as inputs to the display unit 16.
  • the number M of input images is 3 or more as in the fifth embodiment, one M image is obtained from the reference viewpoint image and the M ⁇ 1 parallax maps calculated by the parallax calculation unit 13 as described above.
  • (N-1) / (M-1) different viewpoint images for display are generated for each parallax map, and finally one reference viewpoint image and N-1 different viewpoint images for display are displayed as display elements.
  • stereoscopic image display may be performed.
  • M ⁇ 3 the same number of display-specific viewpoint images (in this example, (N ⁇ 1) / (M ⁇ 1)) is generated for all parallax maps. It is not necessary to generate different viewpoint images for display for each parallax map.
  • the explanation about M ⁇ 3 is based on the premise that the viewpoint interval between the different viewpoint images for display is a constant angle. It is sufficient to perform processing according to the above.
  • viewpoint image of the new viewpoint can be said to be an image for interpolating the viewpoint.
  • interpolation interpolation is used as a method for generating another viewpoint image for display including the viewpoint image of the new viewpoint for interpolating the viewpoint.
  • Extrapolation interpolation may be applied in this process. By applying extrapolation, stereoscopic display with a wider viewpoint than the input image is possible, and the same effect as when parallax is widened when the parallax adjustment described as the fourth embodiment is employed.
  • viewpoint image generation processing in the present embodiment is not only applicable to the first and fifth embodiments as described above, but also to the second to sixth embodiments. Applicable.
  • a new viewpoint image is generated from a reference viewpoint image as in the sixth embodiment
  • M 2
  • the generated N different viewpoint images for display are selected as reference viewpoint images.
  • M ⁇ 1 that is, one
  • NM that is, N -2 new viewpoint images.
  • a total of N different viewpoint images for display can be generated by having uniform viewpoints (constant angle viewpoints). Can be displayed as a display element.
  • the present embodiment even when processing is performed so that the number of input viewpoint images and the number of viewpoint images used for display are different, the number required for display from one viewpoint image (reference viewpoint image). By generating this viewpoint image, it is possible to display a stereoscopic image in which differences other than parallax are reduced.
  • the stereoscopic image display apparatus according to the first to seventh embodiments of the present invention has been described above.
  • the present invention also adopts a form as a stereoscopic image processing apparatus in which the display device is removed from such a stereoscopic image display apparatus.
  • the display device itself that displays a stereoscopic image may be mounted on the main body of the stereoscopic image processing apparatus according to the present invention or may be connected to the outside.
  • Such a stereoscopic image processing apparatus can be incorporated into other video output devices such as various recorders and various recording media reproducing apparatuses in addition to being incorporated into a television apparatus and a monitor apparatus.
  • the part corresponding to the stereoscopic image processing apparatus according to the present invention (that is, the display device included in the display unit 16 is excluded).
  • the component can be realized by hardware such as a microprocessor (or DSP: Digital Signal Processor), a memory, a bus, an interface, and a peripheral device, and software that can be executed on the hardware.
  • Part or all of the hardware can be mounted as an integrated circuit / IC (Integrated Circuit) chip set, and in this case, the software may be stored in the memory.
  • all the components of the present invention may be configured by hardware, and in that case as well, part or all of the hardware can be mounted as an integrated circuit / IC chip set. .
  • the stereoscopic image processing apparatus is simply a CPU (Central Processing Unit), a RAM (Random Access Memory) as a work area, a ROM (Read Only Memory) or an EEPROM (storage area for a control program). It can also be configured with a storage device such as Electrically (Erasable Programmable ROM).
  • the control program includes a later-described stereoscopic image processing program for executing the processing according to the present invention.
  • This stereoscopic image processing program can be incorporated in the PC as application software for displaying a stereoscopic image, and the PC can function as a stereoscopic image processing apparatus.
  • the stereoscopic image processing apparatus has been mainly described.
  • the present invention has a form as a stereoscopic image processing method as exemplified in the flow of control in the stereoscopic image display apparatus including the stereoscopic image processing apparatus. It can be taken.
  • a reference viewpoint image selection unit selects one of a plurality of viewpoint images as a reference viewpoint image
  • a disparity calculation unit includes a disparity map between the reference viewpoint image and the remaining viewpoint images.
  • Other application examples are as described for the stereoscopic image processing apparatus.
  • the present invention may also take the form of a stereoscopic image processing program for causing the computer to execute the stereoscopic image processing method. That is, the stereoscopic image processing program causes the computer to select one of a plurality of viewpoint images as a reference viewpoint image, to calculate a disparity map between the reference viewpoint image and the remaining viewpoint images, Generating a new remaining viewpoint image corresponding to at least the remaining viewpoint image from the map and the reference viewpoint image, and displaying a stereoscopic image having at least the new remaining viewpoint image as a display element.
  • This is a program to be executed.
  • Other application examples are as described for the stereoscopic image display device.
  • the computer is not limited to a general-purpose PC, and various forms of computers such as a microcomputer and a programmable general-purpose integrated circuit / chip set can be applied.
  • this program is not limited to be distributed via a portable recording medium, but can also be distributed via a network such as the Internet or via a broadcast wave.
  • Receiving via a network refers to receiving a program recorded in a storage device of an external server.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 視点画像間に視差以外の差異がある場合にも、その差異の程度の算出を行わずに差異を低減させ、観察者が立体視し易い画像を表示することができる立体画像処理装置を提供する。立体画像表示装置(1)は、複数の視点画像の中の1枚を基準視点画像として選択する基準視点画像選択部(12)と、基準視点画像と残りの視点画像との視差マップを算出する視差算出部(13)と、視差マップと基準視点画像から、少なくとも上記残りの視点画像に対応する新たな残りの視点画像を生成する画像生成部(14)と、少なくとも上記新たな残りの視点画像を表示要素とする立体画像を表示する表示部(16)と、を備える。

Description

立体画像処理装置、立体画像処理方法、及びプログラム
 本発明は、複数の視点画像から立体画像を表示するための処理を行う立体画像処理装置、立体画像処理方法、及びコンピュータ読み取り可能なプログラムに関するものである。
 多視点式の立体画像表示装置は、互いに視差を有する複数枚の画像を用いて立体表示を行う。この複数枚の画像をそれぞれ視点画像と呼ぶ。二視点式の立体画像表示装置では、左目用画像と右目用画像を用いて立体表示を行うが、この場合も左目用画像と右目用画像をそれぞれ視点画像と呼ぶことができる。
 従来、立体画像を撮影する方法としては、複数台のカメラを左右に並べた多眼式カメラによって撮影する方法が知られている。多眼式カメラの各カメラで撮影された画像をそれぞれ視点画像として立体画像表示装置で表示すると立体画像が観察される。視差は、視点画像間での被写体の座標の横方向のずれであり、被写体とカメラとの距離に応じて異なる。しかし、横方向のみでなく、縦方向にも視点画像間でずれが生じている場合がある。これは、カメラの位置や光軸の縦方向のずれ、光軸の周りの回転方向のずれなどが要因となって生じる。また、交差法撮影のように光軸が平行でない場合、エピポーラ線の傾きが視点画像間で異なるため、縦方向に領域によって程度の異なるずれが生じる。さらに、輝度や色についても、視点画像間でずれが生じている場合がある。ずれが生じる要因として、カメラ間の特性の差異や、被写体の持つ光の反射の異方性が挙げられる。
 このような視点間で差異のある立体画像を表示装置に表示させると、画質や立体視の容易さが低下することが知られており、特許文献1では、画像間の位置ずれや回転ずれを調整する立体画像補正方法について開示されている。また、特許文献2では、輝度を補正する表示装置について開示されている。
 さらに、各視点画像間では、ぼけの程度など、様々な差異が生じている場合がある。いずれの差異においても、差異の程度は画像内で一様であるとは限らず、多くの場合、領域によって異なる。
特開2002-77947号公報 特開2011-59658号公報
 しかしながら、特許文献1,2に記載の技術をはじめとする従来の表示方法においては、ずれの程度に応じて補正を行うため、様々なずれの程度を正確に算出する必要があった。そして、ずれの程度の算出に誤差が生じると補正を正しく行うことができず、誤差が大きい場合は、逆にずれを大きくしてしまう可能性がある。特に、様々なずれが同時に生じている場合、画素ごとのずれの程度を正確に算出することは困難である。
 本発明は、上述のような実情に鑑みてなされたものであり、視点画像間に視差以外の差異がある場合にも、その差異の程度の算出を行わずに差異を低減させ、観察者が立体視し易い画像を表示させることができる立体画像処理装置、立体画像処理方法、及びコンピュータ読み取り可能なプログラムを提供することを、その目的とする。
 上記課題を解決するために、本発明の第1の技術手段は、立体画像処理装置において、複数の視点画像の中の1枚を基準視点画像として選択する基準視点画像選択部と、前記基準視点画像と残りの視点画像との視差マップを算出する視差算出部と、前記視差マップと前記基準視点画像から、少なくとも前記残りの視点画像に対応する新たな残りの視点画像を生成する画像生成部と、少なくとも前記新たな残りの視点画像を表示要素とする立体画像を表示させる表示制御部と、を備えたことを特徴としたものである。
 第2の技術手段は、第1の技術手段において、前記表示制御部は、前記基準視点画像と前記新たな残りの視点画像とを表示要素とする立体画像を表示させることを特徴としたものである。
 第3の技術手段は、第1の技術手段において、前記画像生成部は、前記視差マップと前記基準視点画像から、前記基準視点画像に対応する新たな視点画像をさらに生成し、前記表示制御部は、前記新たな視点画像と前記新たな残りの視点画像とを表示要素とする立体画像を表示させることを特徴としたものである。
 第4の技術手段は、第1~第3のいずれか1の技術手段において、前記基準視点画像選択部は、前記複数の視点画像の画像特徴量を用いて前記基準視点画像を選択することを特徴としたものである。
 第5の技術手段は、第4の技術手段において、前記画像特徴量の1つがコントラストであることを特徴としたものである。
 第6の技術手段は、第4の技術手段において、前記画像特徴量の1つが鮮鋭度であることを特徴としたものである。
 第7の技術手段は、第4の技術手段において、前記画像特徴量の1つが画像周辺部の肌色画素数であることを特徴としたものである。
 第8の技術手段は、第1~第3のいずれか1の技術手段において、前記基準視点画像選択部は、予め定めた視点の視点画像を前記基準視点画像として選択することを特徴としたものである。
 第9の技術手段は、第1~第8のいずれか1の技術手段において、前記複数の視点画像のそれぞれは、動画を構成するフレーム画像であり、前記立体画像処理装置は、シーンチェンジ検出部をさらに備え、前記基準視点画像選択部は、前記シーンチェンジ検出部でシーンチェンジでないと検出された場合には、前のフレーム画像と同じ視点の視点画像を前記基準視点画像として選択することを特徴としたものである。
 第10の技術手段は、第1~第9のいずれか1の技術手段において、前記画像生成部は、前記視差マップと前記基準視点画像から前記新たな残りの視点画像を生成する際に、視差の調整を行うことを特徴としたものである。
 第11の技術手段は、第1~第10のいずれか1の技術手段において、前記画像生成部は、前記視差マップと前記基準視点画像から、前記新たな残りの視点画像の視点とは異なる新たな視点をもつ新視点の視点画像をさらに生成し、前記表示制御部は、前記新視点の視点画像も表示要素として含む立体画像を表示させることを特徴としたものである。
 第12の技術手段は、立体画像処理方法において、基準視点画像選択部が、複数の視点画像の中の1枚を基準視点画像として選択するステップと、視差算出部が、前記基準視点画像と残りの視点画像との視差マップを算出するステップと、画像生成部が、前記視差マップと前記基準視点画像から、少なくとも前記残りの視点画像に対応する新たな残りの視点画像を生成するステップと、表示制御部が、少なくとも前記新たな残りの視点画像を表示要素とする立体画像を表示させるステップと、を有することを特徴としたものである。
 第13の技術手段は、プログラムにおいて、コンピュータに、複数の視点画像の中の1枚を基準視点画像として選択するステップと、前記基準視点画像と残りの視点画像との視差マップを算出するステップと、前記視差マップと前記基準視点画像から、少なくとも前記残りの視点画像に対応する新たな残りの視点画像を生成するステップと、少なくとも前記新たな残りの視点画像を表示要素とする立体画像を表示させるステップと、を実行させるためのプログラムであることを特徴としたものである。
 本発明によれば、視点画像間に視差以外の差異がある場合にも、その差異の程度の算出を行わずに差異を低減させ、画質が良好でかつ観察者が立体視し易い立体画像を表示させることができる。
本発明の第1の実施形態に係る立体画像表示装置の概略構成例を示すブロック図である。 図1の立体画像表示装置における画像生成部の処理例を説明するためのフロー図である。 本発明の第2の実施形態に係る立体画像表示装置における基準視点画像選択部の処理例を説明するための図である。 本発明の第3の実施形態に係る立体画像表示装置の概略構成例を示すブロック図である。 本発明の第4の実施形態に係る立体画像表示装置の概略構成例を示すブロック図である。 本発明の第6の実施形態に係る立体画像表示装置の概略構成例を示すブロック図である。 図6の立体画像表示装置における画像生成部の処理例を説明するためのフロー図である。 本発明の第7の実施形態に係る立体画像表示装置における画像生成部の処理例を説明するためのフロー図である。
 以下、添付図面を参照しながら本発明の様々な実施形態について詳細に説明する。図面において同じ機能を有する部分については同じ符号を付し、繰り返しの説明は省略する。
 (第1の実施形態)
 図1及び図2を参照しながら、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態に係る立体画像表示装置の概略構成例を示すブロック図である。また、図2は、図1の立体画像表示装置における画像生成部の処理例を説明するためのフロー図で、第1の実施形態に係る画像生成部の手順を説明するための図である。
 図1で示したように、本実施形態の立体画像表示装置1は、入力部11と、基準視点画像選択部12と、視差算出部13と、画像生成部14と、画像補間部15と、表示部16とを有している。表示部16は、表示デバイスと、その表示デバイスに立体画像を出力するための制御を行う表示制御部とで構成される。
 入力部11は、複数の視点画像を入力画像として基準視点画像選択部12に入力する。入力部11は、例えばカメラで撮影することで取得すること、デジタル放送の放送波を受信して復調等の処理を施して取得すること、ネットワークを介して外部サーバ等から取得すること、ローカルの記憶装置や可搬記録媒体から取得することなどのうち、いずれかの取得方法で複数の視点画像を入力可能に構成しておけばよい。また、これらのうち複数の取得方法で入力可能に構成してもよい。
 基準視点画像選択部12は、複数の視点画像の中の1枚を基準視点画像として選択する。以下、入力部11を通して入力される入力画像が左目用画像と右目用画像から構成される例、つまり複数の視点画像が左目用画像と右目用画像である例を挙げて説明する。この例では、左目用画像と右目用画像とを用いているため、基準視点画像選択部12では、左目用画像か右目用画像の一方を基準視点画像として選択し、もう一方を別視点画像と決める。
 基準視点画像の選択は画像のコントラストによって行う。まず、左目用画像と右目用画像の各々のコントラストCを式(1)により算出する。
  C=(Imax-Imin)/(Imax+Imin) ・・・(1)
 ただし、Imax、Iminはそれぞれ画像における画素の輝度の最大値、最小値である。そして、コントラストCが大きい方の画像を基準視点画像と決定し、コントラストCの小さい方の画像を別視点画像とする。左目用画像と右目用画像でコントラストCの値が同じ場合は、予め定めた一方の画像を基準視点画像とし、もう一方を別視点画像と決める。この処理により、画質の良い方の視点画像を基準視点画像として選択することができる。基準視点画像は、視差算出部13、画像生成部14、表示部16のそれぞれに入力し、別視点画像は視差算出部13にのみ入力する。
 基準視点画像選択部12において基準視点画像を選択する他の方法として、画像の鮮鋭度の大きい方の画像を選択する。鮮鋭度は、例えば、輝度値における横方向の隣接画素間差分と縦方向の隣接画素間差分の絶対値和を画像全体で合計したもので定義する。また、コントラストと鮮鋭度などの複数の画像特徴量を組み合わせてもよい。組み合わせ方は、例えば複数の特徴量の線形和によって行う。組み合わせによって、視聴したときに感じる画質をさらに精度良く考慮して基準視点画像を選択することができる。このように、基準視点画像選択部12は、複数の視点画像の画像特徴量を用いて基準視点画像を選択するようにしてもよいが、他の方法として、予め定めた視点の画像を基準視点画像として選択してもよい。選択する視点画像を固定することによって、処理量を削減することができる。
 視差算出部13では、基準視点画像と残りの視点画像との視差マップ、つまりこの例では基準視点画像に対するそれぞれの別視点画像の視差マップを算出する。視差マップは、別視点画像の各画素において、基準視点画像内の対応点との間の横方向(水平方向)の座標の差分値を記したものである。視差マップ算出方法には、ブロックマッチング、動的計画法、グラフカットなどを用いた様々な手法が知られており、いずれを用いてもよいが、縦方向のずれや輝度や色などの差異に頑健な手法によって視差マップを算出する。
 画像生成部14では、基準視点画像と視差マップから、少なくとも上記残りの視点画像に対応する新たな残りの視点画像を生成する。つまり、基準視点画像と視差マップから、別視点画像を再構成することによって、新たな残りの視点画像(表示用別視点画像)を生成する。再構成方法は、基準視点画像の各画素について、その座標の視差値を視差マップから読み取り、表示用別視点画像において、視差値分だけ座標を移動させた画素に画素値をコピーする。この処理を基準視点画像の全ての画素について行うが、同一の画素に複数の画素値が割り当てられる場合は、zバッファ法に基づき、視差値が飛び出し方向に最大の画素の画素値を用いる。
 図2を参照しながら、画像生成部14における再構成方法の手順を説明する。図2は、左目用画像を基準視点画像と選択した場合の例である。(x,y)は画像内の座標を示すが、図2では各行での処理であり、yは一定である。F、G、Dはそれぞれ基準視点画像、表示用別視点画像、視差マップを示している。Zは、処理の過程において表示用別視点画像の各画素の視差値を保持するための配列であり、zバッファと呼ぶ。Wは画像の横方向の画素数である。
 まず、ステップS1において、zバッファを初期値MINで初期化する。視差値は飛出し方向の場合に正値、奥行き方向の場合に負値をとるものとし、MINは、視差算出部13で算出した視差の最小値よりも小さい値とする。さらに、以降のステップで左端画素から順に処理を行うために、xに0を入力する。ステップS2において、視差マップの視差値と、その視差値分だけ座標を移動させた画素のzバッファの値を比較し、視差値がzバッファの値より大きいか否かを判定する。視差値がzバッファの値よりも大きい場合は、ステップS3に進み、表示用別視点画像に基準視点画像の画素値を割り当てる。また、zバッファの値を更新する。
 次にステップS4において、現在の座標が右端画素だった場合は終了し、そうでない場合はステップS5に進み、右隣りの画素へ移動してステップS2に戻る。ステップS2において、視差値がzバッファの値以下の場合は、ステップS3を通らずにステップS4へ進む。これらの手順を全ての行で行う。視差値分だけ座標を横方向にのみ移動させて再構成するため、基準視点画像との間に視差以外の差異がない表示用別視点画像を生成することができる。
 画像補間部15は、画像生成部14で生成された表示用別視点画像について、画像生成部14で画素値が割り当てられなかった画素について補間処理を行い、画素値を割り当てる。補間処理は、画素値未割当の画素について、その左側で最も近傍の画素値割当済の画素と、その右側で最も近傍の画素値割当済の画素との画素値の平均値を用いて行う。この補間処理は、平均値を用いる方法に限らず、フィルタ処理などの他の方法であってもよい。このように、画像補間部15を備えることで、生成した別視点画像において画素値が割り当てられてない画素に対して補間処理を行うようにすれば常に画素値を決定することができる。
 表示部16における表示制御部は、少なくとも上記新たな残りの視点画像(表示用別視点画像)を表示要素とする立体画像を、表示デバイスに表示させる。本実施形態では、基準視点画像はそのまま用いる。すなわち、表示部16における表示制御部が、基準視点画像と上記新たな残りの視点画像とを表示要素とする立体画像を、表示デバイスに表示させるものとする。表示部16は、上述のように表示制御部と表示デバイスとでなるが、他の実施形態での説明も含め、以下では単に表示部16での処理として説明する。
 そして、ここでは二視点式の立体表示を例にしているので、表示部16には、基準視点画像と1つの表示用別視点画像が入力され、二視点式立体表示を行う。基準視点画像選択部12において左目用画像が基準視点画像として選択された場合は、基準視点画像を左目用画像、表示用別視点画像を右目用画像として表示する。基準視点画像選択部12において右目用画像が基準視点画像として選択された場合は、基準視点画像を右目用画像、表示用別視点画像を左目用画像として表示する。
 上述のとおり、本実施形態の立体画像表示装置によれば、一方の視点画像からもう一方の視点画像を再構成することで、視点画像間に視差以外の差異(縦ずれや色ずれなど)がある場合にも、その差異の程度の算出を行わずに差異を低減させ、画質が良好でかつ観察者が立体視し易い立体画像を表示させることができる。例えば二眼レンズで撮影して入力した画像において右目と左目用の受光素子の器差や劣化度合が異なっても、その差異を低減させることができる。また、コントラストや鮮鋭度の高い画像を基準として再構成することで、コントラストや鮮鋭度の高い立体画像を表示することができる。
 (第2の実施形態)
 図3を参照しながら、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態に係る立体画像表示装置における基準視点画像選択部の処理例を説明するための図である。
 第2の実施形態における立体画像表示装置の概略構成例は、第1の実施形態と同様に図1で示されるが、基準視点画像選択部12における処理の方法が異なる。本実施形態では、レンズに指がかかった状態で撮影された画像を検出し、指がかかっている領域が少ない方の視点画像を基準視点画像に選択する。
 基準視点画像選択部12において、まず、左目用画像と右目用画像のそれぞれについて、画像の左右端と上下端から一定幅の領域に位置する画素の画素値をHSV色空間に変換する。次に、H値が予め定めた範囲の大きさをとる画素を肌色とみなし、各々の画像について肌色の画素数をカウントする。そして、左目用画像と右目用画像の両方において、肌色画素数が予め定めた閾値以下の場合は、撮影時にレンズに指がかかっていないと判断し、第1の実施形態と同じ方法で基準視点画像を選択する。いずれかの画像において肌色画素数が予め定めた閾値より大きい場合は、肌色画素数が少ない方の画像を基準視点画像として選択し、もう一方を別視点画像と決める。
 図3に示す画像P、画像Pはそれぞれ、レンズに指がかかった状態で撮影された左目用画像、右目用画像の例である。左目用画像P、右目用画像Pにおいて、黒色部分33a,34aとハッチング部分33b,34bは画像に写った指の領域33,34を示しており、この例では、左目用画像Pの左端部と右目用画像Pの右下隅部に指が写っている。左目用画像P、右目用画像Pにおいて斜線部分31は、肌色画素数検出に用いるための左右端と上下端から一定幅の領域である。黒色部分33a,34aは、肌色画素数にカウントされた領域である。この例では、右目用画像Pよりも左目用画像Pの肌色画素数(黒色部分の画素数)が少ないため、左目用画像Pが基準視点画像に選択される。
 また、このようにして、基準視点画像選択部12で用いる画像特徴量の1つとして画像周辺部の肌色画素数を採用する場合にも、コントラストと鮮鋭度などの複数の画像特徴量を組み合わせて用いてもよい。組み合わせ方は、例えば複数の特徴量の線形和によって行う。最も単純には、肌色画素数の差が所定数以上の場合には、他の画像特徴量を鑑みずに肌色画素数が少ない方を基準視点画像として選択し、所定数より少ない場合には、他の画像特徴量から基準視点画像を選択してもよい。
 上述のとおり、本実施形態の立体画像表示装置によれば、レンズに指がかかった状態で撮影された画像を表示する場合に、指がかかっている領域が少ない方の視点画像を基準視点画像として再構成するため、指がかかっている領域が少ない立体画像を表示することができる。
 (第3の実施形態)
 図4を参照しながら、本発明の第3の実施形態について説明する。図4は、本発明の第3の実施形態に係る立体画像表示装置の概略構成例を示すブロック図である。第3の実施形態では、入力画像が動画の場合に限ったもの、つまり複数の視点画像のそれぞれは動画を構成するフレーム画像であるものとする。
 図4に示すように、本実施形態における立体画像表示装置4は、入力部11と、シーンチェンジ検出部17と、記憶部18と、基準視点画像選択部19と、視差算出部13と、画像生成部14と、画像補間部15と、表示部16とを有している。第1の実施形態と同じ番号のものは、同じ内容であるため説明を省略する。
 入力部11を通して入力される入力画像の各フレームは、二視点式を例にしているため、左目用画像と右目用画像から構成され、シーンチェンジ検出部17に入力される。シーンチェンジ検出部17では、記憶部18に保持されている前フレーム画像と比較し、シーンチェンジが生じているかどうかを検出する。シーンチェンジ検出は、例えば、輝度ヒストグラムのフレーム間の比較によって行う。まず、入力部11を通して入力された入力フレームについて、各画素の輝度値を算出し、予め定めた階級のヒストグラムを作成する。次に、記憶部18から読み出した前フレーム画像について同様に輝度ヒストグラムを作成する。そして、2つのヒストグラムの度数について階級ごとに差分をとり、その絶対値和を求める。絶対値和が予め定めた閾値以上であった場合はシーンチェンジと判断し、基準視点画像選択部19に通知する。また、記憶部18に保持する前フレーム画像を入力フレーム画像によって更新する。
 また、シーンチェンジ検出部17は、1の視点についての動画(シーケンシャルなフレーム画像)からシーンチェンジを検出してもよいが、複数の視点についての動画(シーケンシャルなフレーム画像)からシーンチェンジを検出してもよい。他の検出方法としては、シーンチェンジの信号を少なくとも1つの視点の動画に埋め込むようにしておき、その信号を検出するなどによって、シーンチェンジを検出してもよい。
 基準視点画像選択部19では、シーンチェンジ検出部17においてシーンチェンジが検出されたか否かで処理の内容を変える。シーンチェンジの場合は、第1の実施形態(又は第2の実施形態)の基準視点画像選択部12と同様の処理によって基準視点画像を選択する。シーンチェンジでない場合は、前フレームで基準視点画像に選択された視点と同じ視点の視点画像を基準視点画像と選択する。つまり、前のフレーム画像で左目用画像が基準視点画像に選択された場合は、現フレーム入力画像の左目用画像を基準視点画像として視差算出部13、画像生成部14、表示部16に出力し、右目用画像を別視点画像として視差算出部13に出力する。
 上述のとおり、本実施形態の立体画像表示装置によれば、入力画像が動画の場合において、シーンチェンジ検出を行い、シーンチェンジでないフレームでは前のフレームと同じ視点の画像を基準視点画像として再構成するため、表示画像のフレーム間でのゆらぎを抑制することができる。
 (第4の実施形態)
 図5を参照しながら、本発明の第4の実施形態について説明する。図5は、本発明の第4の実施形態に係る立体画像表示装置の概略構成例を示すブロック図である。
 第4の実施形態は、第1~第3の実施形態において、視点画像間の視差以外の差異を低減させると同時に、視差の調整も行うものである。図5で示すように、本実施形態における立体画像表示装置5は、図1の立体画像表示装置1に視差分布変換部20を追加したものである。ただし、本実施形態では、第3の実施形態への適用が可能であるため、図4の立体画像表示装置4に視差分布変換部20を追加した概略構成例を採用してもよい。
 本実施形態における画像生成部14は、視差マップと基準視点画像から上記新たな残りの視点画像を生成する際に、視差の調整を行う。図5では、この視差調整の部分を画像生成部14から分離して視差分布変換部20として図示している。視差分布変換部20では、視差算出部13で算出された入力視差マップの値を変換して、変換後視差マップを画像生成部14に出力する。変換方法は、例えば次式(2)によって行う。ただし、p(x,y)、q(x、y)はそれぞれ入力視差マップ、変換後視差マップであり、a、bは定数である。
  q(x,y)=a・p(x,y)+b         ・・・(2)
 この式によって、画像に含まれる視差の範囲を調節することができる。
 また、変換方法の他の例として、例えば次式(3)によって行ってもよい。
  1/q(x,y)=a・(1/p(x,y))+b   ・・・(3)
 この式によると、立体画像表示装置によって再生される像と観察者間の距離が視差の逆数に比例することを考慮して、視差の調整を行うことができる。
 画像生成部14では、視差分布変換部20で作成した変換後視差マップと基準視点画像を用いて、第1の実施形態(又は、第2や第3の実施形態)と同様の方法で表示用別視点画像を生成する。
 上述のとおり、本実施形態の立体画像表示装置によれば、視点画像間の差異を低減し、さらに視差の範囲を調整した立体画像を表示することができる。
 (第5の実施形態)
 図1を再度参照しながら、本発明の第5の実施形態について説明する。第5の実施形態は、多視点式立体表示の場合に、視点画像間の差異を低減して表示することができる立体画像表示装置に関する。本実施形態における立体画像表示装置の概略構成例は、第1の実施形態と同様に図1で示されるが、入力部11を通して入力される入力画像が3以上の多視点画像である。この入力多視点画像を構成する視点数をNとする。本実施形態では表示用の多視点画像を構成する視点数、つまり表示用の多視点画像の枚数もNとなる。
 基準視点画像選択部12では、N枚の視点画像の中から1枚を基準視点画像として選択し、残りのN-1枚を別視点画像と決める。この選択は、例えば画像のコントラストに基づいて行う。まず、各視点画像のコントラストCを式(1)により算出する。そして、コントラストCが最大の画像を基準視点画像と決定し、残りの視点画像を別視点画像と決める。基準視点画像は、視差算出部13、画像生成部14、表示部16のそれぞれに入力し、N-1枚の別視点画像は視差算出部13にのみ入力する。この選択について、画像のコントラストに基づく例のみ説明したが、鮮鋭度等の他の要素に基づいても同様である。
 視差算出部13では、各々の別視点画像と比較した基準視点画像の視差マップを算出する。視差マップ算出は第1の実施形態で説明した方法と同様の方法で行い、N-1枚の視差マップを画像生成部14に出力する。
 画像生成部14では、基準視点画像と各視差マップからN-1枚の表示用別視点画像を生成する。各々の表示用別視点画像の生成は第1の実施形態と同様に、基準視点画像の各画素について、その座標の視差値を視差マップから読み取り、視差値分だけ座標を移動させた表示用別視点画像の画素に画素値をコピーする。
 画像補間部15では、画像生成部14で生成されたN-1枚の表示用別視点画像について、画素値が割り当てられなかった画素について補間処理を行い、画素値を割り当てる。この補間処理は、第1の実施形態と同様の方法で行う。
 表示部16では、基準視点画像とN-1枚の表示用別視点画像が入力され、多視点式立体表示を行う。合計N枚の視点画像は、適切な順序に配置して表示する。
 上述のとおり、本実施形態の立体画像表示装置によれば、3以上の多視点式立体表示を行う際に、一枚の視点画像(基準視点画像)から残りの視点画像を再構成することで、差異を低減した立体画像を表示することができる。
 (第6の実施形態)
 図6及び図7を参照しながら、本発明の第6の実施形態について説明する。図6は、本発明の第6の実施形態に係る立体画像表示装置の概略構成例を示すブロック図である。また、図7は、図6の立体画像表示装置における画像生成部の処理例を説明するためのフロー図で、第6の実施形態に係る画像生成部の手順を説明するための図である。
 図6で示すように、本実施形態における立体画像表示装置6は、入力部11と、基準視点画像選択部12と、視差算出部13と、画像生成部21と、画像補間部22と、表示部16とを有している。第1の実施形態と同じ番号のものは、同じ内容であるため説明を省略する。
 第1~第5の実施形態では、表示部16が、基準視点画像と新たな残りの視点画像とを表示要素とする立体画像を表示するものとして説明したが、第6の実施形態の立体画像表示装置6では、画像生成部21が基準視点画像についても新たな視点画像を生成するようにし、既存の基準視点画像の代わりにその新たな視点画像を立体画像の表示要素の一つにする。
 そのため、本実施形態における画像生成部21は、視差マップと基準視点画像から、基準視点画像に対応する新たな視点画像をさらに生成するものとする。つまり、画像生成部21では、基準視点画像と視差算出部13で算出された視差マップから、表示用基準視点画像と表示用別視点画像を生成し、画像補間部22に出力する。これにより、入力された全ての複数の視点画像に対応する新たな視点画像が表示用に生成されることになる。
 図7を参照しながら、画像生成部21における生成方法の手順を説明する。図7は、左目用画像を基準視点画像と選択した場合の例である。図2と同様、(x,y)は画像内の座標を示すが、図7は各行での処理であり、yは一定である。F、Ga、Gb、Dはそれぞれ基準視点画像、表示用基準視点画像、表示用別視点画像、視差マップを示している。Z、Wはそれぞれ図2と同様、zバッファと画像の横方向の画素数である。ステップS11,S14,S15については、それぞれ図2のステップS1,S4,S5と同じ内容であり、その説明を省略する。
 ステップS12において、視差マップの視差値と、その視差値の半分だけ座標を移動させた画素のzバッファの値を比較し、視差値がzバッファの値より大きいか否かを判定する。視差値がzバッファの値よりも大きい場合は、ステップS13に進み、表示用基準視点画像Gaと表示用別視点画像Gbに基準視点画像Fの画素値を割り当てる。ただし、表示用基準視点画像Gaと表示用別視点画像Gbについて、座標(x,y)から視差値の半分の大きさだけそれぞれ逆方向に移動した座標に割り当てる。また、zバッファについて、視差値の半分の大きさだけ移動した座標の値を更新し、ステップS14に進む。ステップS12において、視差値がzバッファの値以下の場合は、ステップS13を通らずにステップS14へ進む。図7の手順を全ての行で行うことで、基準視点画像を逆方向に同じ距離だけずらして表示用基準視点画像と表示用別視点画像を作成することができる。
 画像補間部22では、画像生成部21で生成された表示用基準視点画像と表示用別視点画像について、画素値が割り当てられなかった画素について補間処理を行い、画素値を割り当てる。ここでは、第1の実施形態の画像補間部15と同様の処理を、表示用基準視点画像と表示用別視点画像の各々に対して行っている。補間によって全ての画素に画素値が割り当てられた表示用基準視点画像と表示用別視点画像を、表示部16の入力とする。
 表示用基準視点画像と表示用別視点画像は、画像生成部21で同じ距離だけ逆方向に移動して作られたものであるため、補間される画素数が同じとなる。補間処理は、ぼけなどの劣化を生じさせる場合があるため、片方の視点画像だけにぼけが生じると、画質や立体視の容易さが低下する原因となり得る。本実施形態によれば、補間画素数を視点画像間で揃えることにより、補間による画質の劣化の程度を視点画像間で同程度に抑えることができる。
 表示部16は、以上のようにして生成された、基準視点画像を元にした上記新たな視点画像と別の視点画像を元にした上記新たな残りの視点画像とを表示要素とする立体画像を表示する。
 また、本実施形態では、上述した各実施形態2~5が適用可能であり、第1の実施形態における表示の際に基準視点画像をそのまま用いる点以外の構成や応用例、例えば基準視点画像の選択方法なども同様に適用可能である。なお、第4の実施形態で説明した視差の調整は、基準視点画像に対応する新たな視点画像の生成時にも実行してもよい。この新たな視点画像や新たな残りの視点画像に対して、例えば視差の最大値と最小値の幅を全体的に縮めるように調整を行うこともできる。無論、調整時には基準視点画像だけは変更されないような調整を採用してもよい。
 上述のとおり、本実施形態の立体画像表示装置によれば、一方の視点画像から両方の視点画像を生成することで、視点画素間での画質の差異を低減することが可能で、補間を採用している場合には、補間により生じる劣化の視点画像間での差異を低減することができる。
 (第7の実施形態)
 図8を参照しながら、本発明の第7の実施形態について説明する。図8は、本発明の第7の実施形態に係る立体画像表示装置における画像生成部の処理例を説明するためのフロー図である。
 第7の実施形態に係る立体画像表示装置は、入力部から入力される視点画像の枚数より表示部で表示に用いる視点画像(表示用の多視点画像)の枚数が多くなるように処理される装置である。本実施形態では、入力多視点画像を構成する視点数、つまり入力部を通して入力される視点画像の枚数をM(≧2)とし、表示用の多視点画像を構成する視点数、つまり表示用の多視点画像の枚数をN(≧3)とする。ここで、M<Nである。
 第7の実施形態に係る立体画像表示装置の概略構成は図1で例示でき、以下、図1を併せて参照しながら本実施形態について説明する。本実施形態の主たる特徴として、画像生成部14は、視差マップと基準視点画像から、上記新たな残りの視点画像の視点とは異なる新たな視点をもつ視点画像(以下、新視点の視点画像と言う)をさらに生成する。そして、表示部16は、上記新視点の視点画像も表示要素とするような立体画像、つまり上記新視点の視点画像も表示要素として含む立体画像を表示する。
 以下、第1の実施形態と同様にM=2とし、このような処理を第1の実施形態へ適用する場合について説明する。なお、説明を省略した部分については、基本的に第1の実施形態で説明した内容が適用できる。
 入力部11、基準視点画像選択部12、視差算出部13では、第1の実施形態と同様の方法で処理を行う。つまり、基準視点画像選択部12では、入力部11を通して左目用画像と右目用画像とから構成される入力画像が入力され、基準視点画像が選択される。視差算出部13では、基準視点画像以外の視点画像について視差マップの算出が行われる。
 そして、画像生成部14では、基準視点画像と視差算出部13で算出された1枚の視差マップから、N-1枚の表示用別視点画像を生成し、画像補間部15に出力する。
 図8を参照しながら、画像生成部14における生成方法の手順を説明する。図8は、左目用画像を基準視点画像と選択した場合の例である。図2と同様、(x,y)は画像内の座標を示すが、図8は各行での処理であり、yは一定である。F、Gk、Dはそれぞれ基準視点画像、k枚目の表示用別視点画像、視差マップを示している。ここで、kが1からN-1のそれぞれについて処理を施すことになる。Z、Wはそれぞれ図2と同様、zバッファと画像の横方向の画素数である。
 ステップS22において、視差マップの視差値と、その視差値のk/(N-1)倍だけ座標を移動させた画素のzバッファの値を比較し、視差値のk/(N-1)倍がzバッファの値より大きいか否かを判定する。視差値のk/(N-1)倍がzバッファの値よりも大きい場合は、ステップS23に進み、k枚目の表示用別視点画像Gkに基準視点画像Fの画素値を割り当てる。ただし、座標(x,y)から視差値のk/(N-1)倍だけ移動した座標に割り当てる。また、zバッファについて、視差値のk/(N-1)倍だけ移動した座標の値を更新し、ステップS24に進む。ステップS22において、視差値のk/(N-1)倍がzバッファの値以下の場合は、ステップS23を通らずにステップS24へ進む。
 図8の手順を全ての行で行うことで、1枚の表示用別視点画像を作成することができる。さらに、1からN-1の全てのkについて上述した処理を行うことで、N-1枚の表示用別視点画像を作成できる。生成されるN-1枚の表示用別視点画像は、上記残りの視点画像に対応するM-1枚(この例では1枚)の上記新たな残りの視点画像と、N-M枚(この例ではN-2枚)の新視点の視点画像とで構成されることになる。
 画像補間部15では、画像生成部14で生成されたN-1枚の表示用別視点画像について、画素値が割り当てられなかった画素について補間処理を行い、画素値を割り当てる。これは、各々について第1の実施形態の画像補間部15と同様の処理を行う。補間によって全ての画素に画素値が割り当てられたN-1枚の表示用別視点画像と基準視点画像を、表示部16の入力とする。
 以上、入力画像が2枚の視点画像(M=2)である例を挙げたが、本実施形態は第5の実施形態にも適用できる。第5の実施形態のように入力画像の枚数Mが3以上の場合には、基準視点画像と視差算出部13で算出されたM-1枚の視差マップから、上述したようにして1枚の視差マップにつき(N-1)/(M-1)枚の表示用別視点画像を生成し、最終的に、1枚の基準視点画像とN-1枚の表示用別視点画像とを表示要素として、立体画像表示を行えばよい。
 M=3の場合を例に挙げて表示用別視点画像の生成について説明する。3枚のうち中央の視点をもつ入力視点画像を基準視点画像とする場合には、左側と右側で同様にして(N-1)/(M-1)枚ずつの表示用別視点画像を生成すればよい。一方で、1枚の視差マップDaを算出した入力視点画像Aと基準視点画像Rとの間に、別の視差マップDbを算出した入力視点画像Bが存在した場合、つまり端の視点の入力視点画像を基準視点画像とした場合については、次のように処理すればよい。すなわち、入力視点画像Bから基準視点画像Rまでの間の視点については上述したようにして基準視点画像Rと視差マップDbから(N-1)/(M-1)枚の表示用別視点画像を生成すればよい。そして、画像Aから基準視点画像Rまでの間の視点については、基準視点画像Rと視差マップDaから、画像Aから画像Bまでの間の視点についてのkのみを対象として(N-1)/(M-1)枚の表示用別視点画像を生成すればよい。
 以上、本実施形態においてM≧3についてなした説明は、全ての視差マップについて同じ枚数(この例では(N-1)/(M-1)枚)の表示用別視点画像を生成したが、その必要はなく、各視差マップにつき異なる枚数の表示用別視点画像を生成してもよい。また、本実施形態においてM≧3についてなした説明は、表示用別視点画像間の視点の間隔は一定角であることを前提としたものであるが、一定角でないようにしたい場合には角度に合わせた処理を行えばよい。
 このように、本実施形態では、入力されたM(≧2)枚の視点画像の視点については、必ず表示要素として対応する視点画像が存在し、それに加えて新たな視点を示すための新視点の視点画像も表示要素として存在することになる。新視点の視点画像は視点を補間するための画像と言える。
 また、本実施形態では、視点を補間するための上記新視点の視点画像を含め、表示用別視点画像を生成する方法として内挿補間を使用した例を挙げたが、一部の処理又は全部の処理において外挿補間を適用してもよい。外挿補間を適用することで、入力画像より広い視点の立体表示が可能となり、第4の実施形態として説明した視差の調整を採用した場合において視差を広げた場合と同様の効果が得られる。
 また、本実施形態における視点画像の生成処理は、上述のように第1,第5の実施形態に対して適用可能であるだけでなく、第2~第6の実施形態に対しても同様に適用可能である。
 特に、第6の実施形態のように基準視点画像からも新たな視点画像を生成する場合、M=2とすると、生成される合計N枚の表示用別視点画像は、基準視点画像として選択された視点画像に対応する1枚の上記新たな視点画像と、上記残りの視点画像に対応するM-1枚(つまり1枚)の上記新たな残りの視点画像と、N-M枚(つまりN-2枚)の新視点の視点画像とで構成されることになる。ここで、第5の実施形態も併せて適用してM≧3とした場合でも、均等な視点(一定角の視点)をもつようにすると合計N枚の表示用別視点画像が生成でき、それらを表示要素とする立体画像が表示できる。
 上述のとおり、本実施形態によれば、入力される視点画像と表示に用いる視点画像の枚数が異なるように処理する場合においても、一枚の視点画像(基準視点画像)から表示に必要な枚数の視点画像を生成することにより、視差以外の差異を低減した立体画像を表示することができる。
 (第1~第7の実施形態について)
 以上、本発明の第1~第7の実施形態に係る立体画像表示装置について説明したが、本発明は、このような立体画像表示装置から表示デバイスを取り除いた立体画像処理装置としての形態も採り得る。つまり、立体画像を表示する表示デバイス自体は、本発明に係る立体画像処理装置の本体に搭載されていても、外部に接続されていてもよい。このような立体画像処理装置は、テレビ装置やモニタ装置に組み込む以外にも、各種レコーダや各種記録メディア再生装置などの他の映像出力機器に組み込むこともできる。
 また、図1、図4~図6で例示した立体画像表示装置1,4~6における各部のうち、本発明に係る立体画像処理装置に該当する部分(つまり表示部16が備える表示デバイスを除く構成要素)は、例えばマイクロプロセッサ(又はDSP:Digital Signal Processor)、メモリ、バス、インターフェイス、周辺装置などのハードウェアと、これらのハードウェア上にて実行可能なソフトウェアとにより実現できる。上記ハードウェアの一部又は全部は集積回路/IC(Integrated Circuit)チップセットとして搭載することができ、その場合、上記ソフトウェアは上記メモリに記憶しておければよい。また、本発明の各構成要素の全てをハードウェアで構成してもよく、その場合についても同様に、そのハードウェアの一部又は全部を集積回路/ICチップセットとして搭載することも可能である。
 また、各実施形態に係る立体画像処理装置は単に、CPU(Central Processing Unit)や作業領域としてのRAM(Random Access Memory)や制御用のプログラムの格納領域としてのROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable ROM)等の記憶装置などで構成することもできる。その場合、上記制御用のプログラムは、本発明に係る処理を実行するための後述の立体画像処理プログラムを含むことになる。この立体画像処理プログラムは、PC内に立体画像表示用のアプリケーションソフトとして組み込み、PCを立体画像処理装置として機能させることもできる。
 以上、本発明に係る立体画像処理装置を中心に説明したが、本発明は、この立体画像処理装置を含む立体画像表示装置における制御の流れを例示したように、立体画像処理方法としての形態も採り得る。この立体画像処理方法は、基準視点画像選択部が、複数の視点画像の中の1枚を基準視点画像として選択するステップと、視差算出部が、基準視点画像と残りの視点画像との視差マップを算出するステップと、画像生成部が、視差マップと基準視点画像から、少なくとも上記残りの視点画像に対応する新たな残りの視点画像を生成するステップと、表示制御部が、少なくとも上記新たな残りの視点画像を表示要素とする立体画像を表示させるステップと、を有するものとする。その他の応用例については、立体画像処理装置について説明したとおりである。
 また、本発明は、その立体画像処理方法をコンピュータにより実行させるための立体画像処理プログラムとしての形態も採り得る。つまり、この立体画像処理プログラムは、コンピュータに、複数の視点画像の中の1枚を基準視点画像として選択するステップと、基準視点画像と残りの視点画像との視差マップを算出するステップと、視差マップと基準視点画像から、少なくとも上記残りの視点画像に対応する新たな残りの視点画像を生成するステップと、少なくとも上記新たな残りの視点画像を表示要素とする立体画像を表示させるステップと、を実行させるためのプログラムである。その他の応用例については、立体画像表示装置について説明したとおりである。
 また、その立体画像処理プログラムをコンピュータにより読み取り可能な記録媒体に記録したプログラム記録媒体としての形態についても容易に理解することができる。このコンピュータとしては、上述したように、汎用のPCに限らず、マイクロコンピュータやプログラム可能な汎用の集積回路/チップセットなど、様々な形態のコンピュータが適用できる。また、このプログラムは、可搬の記録媒体を介して流通させるに限らず、インターネット等のネットワークを介して、また放送波を介して流通させることもできる。ネットワークを介して受信するとは、外部サーバの記憶装置などに記録されたプログラムを受信することを指す。
1,4,5,6…立体画像表示装置、11…入力部、12,19…基準視点画像選択部、13…視差算出部、14,21…画像生成部、15,22…画像補間部、16…表示部、17…シーンチェンジ検出部、18…記憶部、20…視差分布変換部。

Claims (13)

  1.  複数の視点画像の中の1枚を基準視点画像として選択する基準視点画像選択部と、
     前記基準視点画像と残りの視点画像との視差マップを算出する視差算出部と、
     前記視差マップと前記基準視点画像から、少なくとも前記残りの視点画像に対応する新たな残りの視点画像を生成する画像生成部と、
     少なくとも前記新たな残りの視点画像を表示要素とする立体画像を表示させる表示制御部と、
    を備えたことを特徴とする立体画像処理装置。
  2.  前記表示制御部は、前記基準視点画像と前記新たな残りの視点画像とを表示要素とする立体画像を表示させることを特徴とする請求項1に記載の立体画像処理装置。
  3.  前記画像生成部は、前記視差マップと前記基準視点画像から、前記基準視点画像に対応する新たな視点画像をさらに生成し、
     前記表示制御部は、前記新たな視点画像と前記新たな残りの視点画像とを表示要素とする立体画像を表示させることを特徴とする請求項1に記載の立体画像処理装置。
  4.  前記基準視点画像選択部は、前記複数の視点画像の画像特徴量を用いて前記基準視点画像を選択することを特徴とする請求項1~3のいずれか1項に記載の立体画像処理装置。
  5.  前記画像特徴量の1つがコントラストであることを特徴とする請求項4に記載の立体画像処理装置。
  6.  前記画像特徴量の1つが鮮鋭度であることを特徴とする請求項4に記載の立体画像処理装置。
  7.  前記画像特徴量の1つが画像周辺部の肌色画素数であることを特徴とする請求項4に記載の立体画像処理装置。
  8.  前記基準視点画像選択部は、予め定めた視点の視点画像を前記基準視点画像として選択することを特徴とする請求項1~3のいずれか1項に記載の立体画像処理装置。
  9.  前記複数の視点画像のそれぞれは、動画を構成するフレーム画像であり、
     前記立体画像処理装置は、シーンチェンジ検出部をさらに備え、
     前記基準視点画像選択部は、前記シーンチェンジ検出部でシーンチェンジでないと検出された場合には、前のフレーム画像と同じ視点の視点画像を前記基準視点画像として選択することを特徴とする請求項1~8のいずれか1項に記載の立体画像処理装置。
  10.  前記画像生成部は、前記視差マップと前記基準視点画像から前記新たな残りの視点画像を生成する際に、視差の調整を行うことを特徴とする請求項1~9のいずれか1項に記載の立体画像処理装置。
  11.  前記画像生成部は、前記視差マップと前記基準視点画像から、前記新たな残りの視点画像の視点とは異なる新たな視点をもつ新視点の視点画像をさらに生成し、
     前記表示制御部は、前記新視点の視点画像も表示要素として含む立体画像を表示させることを特徴とする請求項1~10のいずれか1項に記載の立体画像処理装置。
  12.  基準視点画像選択部が、複数の視点画像の中の1枚を基準視点画像として選択するステップと、
     視差算出部が、前記基準視点画像と残りの視点画像との視差マップを算出するステップと、
     画像生成部が、前記視差マップと前記基準視点画像から、少なくとも前記残りの視点画像に対応する新たな残りの視点画像を生成するステップと、
     表示制御部が、少なくとも前記新たな残りの視点画像を表示要素とする立体画像を表示させるステップと、
    を有することを特徴とする立体画像処理方法。
  13.  コンピュータに、
     複数の視点画像の中の1枚を基準視点画像として選択するステップと、
     前記基準視点画像と残りの視点画像との視差マップを算出するステップと、
     前記視差マップと前記基準視点画像から、少なくとも前記残りの視点画像に対応する新たな残りの視点画像を生成するステップと、
     少なくとも前記新たな残りの視点画像を表示要素とする立体画像を表示させるステップと、
    を実行させるためのプログラム。
PCT/JP2012/058933 2011-06-21 2012-04-02 立体画像処理装置、立体画像処理方法、及びプログラム WO2012176526A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013521490A JP5931062B2 (ja) 2011-06-21 2012-04-02 立体画像処理装置、立体画像処理方法、及びプログラム
US14/126,156 US20140092222A1 (en) 2011-06-21 2012-04-02 Stereoscopic image processing device, stereoscopic image processing method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-137324 2011-06-21
JP2011137324 2011-06-21

Publications (1)

Publication Number Publication Date
WO2012176526A1 true WO2012176526A1 (ja) 2012-12-27

Family

ID=47422373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058933 WO2012176526A1 (ja) 2011-06-21 2012-04-02 立体画像処理装置、立体画像処理方法、及びプログラム

Country Status (3)

Country Link
US (1) US20140092222A1 (ja)
JP (1) JP5931062B2 (ja)
WO (1) WO2012176526A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447934A (zh) * 2011-11-02 2012-05-09 吉林大学 稀疏镜头采集的组合立体图像系统中立体元的合成方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230251A (ja) * 2013-05-27 2014-12-08 ソニー株式会社 画像処理装置、および画像処理方法
EP3422711A1 (en) * 2017-06-29 2019-01-02 Koninklijke Philips N.V. Apparatus and method for generating an image
CN113763472B (zh) * 2021-09-08 2024-03-29 未来科技(襄阳)有限公司 一种视点宽度的确定方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363760A (ja) * 2003-06-03 2004-12-24 Konica Minolta Photo Imaging Inc 画像処理方法、撮像装置、画像処理装置及び画像記録装置
JP2006115246A (ja) * 2004-10-15 2006-04-27 Canon Inc 立体表示のための画像処理プログラム、画像処理装置および立体表示システム
JP2009139995A (ja) * 2007-12-03 2009-06-25 National Institute Of Information & Communication Technology ステレオ画像対における画素のリアルタイムマッチングのための装置及びプログラム
JP2010128820A (ja) * 2008-11-27 2010-06-10 Fujifilm Corp 立体画像処理装置、方法及びプログラム並びに立体撮像装置
JP2011055022A (ja) * 2009-08-31 2011-03-17 Sony Corp 立体画像表示システム、視差変換装置、視差変換方法およびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034733A (ja) * 2005-07-27 2007-02-08 Toshiba Corp 対象物領域検出装置、方法およびプログラム
US20080170126A1 (en) * 2006-05-12 2008-07-17 Nokia Corporation Method and system for image stabilization
JP4881210B2 (ja) * 2007-04-09 2012-02-22 キヤノン株式会社 撮像装置、画像処理装置及びそれらの制御方法
US8077219B2 (en) * 2009-02-12 2011-12-13 Xilinx, Inc. Integrated circuit having a circuit for and method of providing intensity correction for a video
JP4833309B2 (ja) * 2009-03-06 2011-12-07 株式会社東芝 動画像圧縮符号化装置
WO2011014419A1 (en) * 2009-07-31 2011-02-03 3Dmedia Corporation Methods, systems, and computer-readable storage media for creating three-dimensional (3d) images of a scene
US20110304618A1 (en) * 2010-06-14 2011-12-15 Qualcomm Incorporated Calculating disparity for three-dimensional images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363760A (ja) * 2003-06-03 2004-12-24 Konica Minolta Photo Imaging Inc 画像処理方法、撮像装置、画像処理装置及び画像記録装置
JP2006115246A (ja) * 2004-10-15 2006-04-27 Canon Inc 立体表示のための画像処理プログラム、画像処理装置および立体表示システム
JP2009139995A (ja) * 2007-12-03 2009-06-25 National Institute Of Information & Communication Technology ステレオ画像対における画素のリアルタイムマッチングのための装置及びプログラム
JP2010128820A (ja) * 2008-11-27 2010-06-10 Fujifilm Corp 立体画像処理装置、方法及びプログラム並びに立体撮像装置
JP2011055022A (ja) * 2009-08-31 2011-03-17 Sony Corp 立体画像表示システム、視差変換装置、視差変換方法およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447934A (zh) * 2011-11-02 2012-05-09 吉林大学 稀疏镜头采集的组合立体图像系统中立体元的合成方法
CN102447934B (zh) * 2011-11-02 2013-09-04 吉林大学 稀疏镜头采集的组合立体图像系统中立体元的合成方法

Also Published As

Publication number Publication date
JP5931062B2 (ja) 2016-06-08
US20140092222A1 (en) 2014-04-03
JPWO2012176526A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6021541B2 (ja) 画像処理装置及び方法
US10460459B2 (en) Stitching frames into a panoramic frame
US9407896B2 (en) Multi-view synthesis in real-time with fallback to 2D from 3D to reduce flicker in low or unstable stereo-matching image regions
CN102474644B (zh) 立体图像显示系统、视差转换装置、视差转换方法
US9445071B2 (en) Method and apparatus generating multi-view images for three-dimensional display
US9277207B2 (en) Image processing apparatus, image processing method, and program for generating multi-view point image
US8798160B2 (en) Method and apparatus for adjusting parallax in three-dimensional video
US9460545B2 (en) Apparatus and method for generating new viewpoint image
US9451232B2 (en) Representation and coding of multi-view images using tapestry encoding
TWI493505B (zh) 影像處理方法以及影像處理裝置
WO2016172385A1 (en) Methods for full parallax compressed light field synthesis utilizing depth information
KR20110049039A (ko) 능동 부화소 렌더링 방식 고밀도 다시점 영상 표시 시스템 및 방법
US9154762B2 (en) Stereoscopic image system utilizing pixel shifting and interpolation
US8750600B2 (en) Apparatus and method for generating three-dimensional (3D) zoom image of stereo camera
US20150077521A1 (en) Method for smoothing transitions between scenes of a stereo film and controlling or regulating a plurality of 3d cameras
JP6148154B2 (ja) 画像処理装置及び画像処理プログラム
US20150003724A1 (en) Picture processing apparatus, picture processing method, and picture processing program
JP5931062B2 (ja) 立体画像処理装置、立体画像処理方法、及びプログラム
US20140198104A1 (en) Stereoscopic image generating method, stereoscopic image generating device, and display device having same
JP5627498B2 (ja) 立体画像生成装置及び方法
JP2014072809A (ja) 画像生成装置、画像生成方法、画像生成装置用プログラム
KR20110025083A (ko) 입체 영상 시스템에서 입체 영상 디스플레이 장치 및 방법
JP5488482B2 (ja) 奥行き推定データ生成装置、奥行き推定データ生成プログラム及び擬似立体画像表示装置
CN115176459B (zh) 虚拟视点合成方法、电子设备和计算机可读介质
JP5492311B2 (ja) 視点画像生成装置、視点画像生成方法及び立体画像印画装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521490

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14126156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802714

Country of ref document: EP

Kind code of ref document: A1