[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012173074A2 - 回転する試料テーブルを備える恒温装置 - Google Patents

回転する試料テーブルを備える恒温装置 Download PDF

Info

Publication number
WO2012173074A2
WO2012173074A2 PCT/JP2012/064875 JP2012064875W WO2012173074A2 WO 2012173074 A2 WO2012173074 A2 WO 2012173074A2 JP 2012064875 W JP2012064875 W JP 2012064875W WO 2012173074 A2 WO2012173074 A2 WO 2012173074A2
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
plate
base plate
temperature
sample
Prior art date
Application number
PCT/JP2012/064875
Other languages
English (en)
French (fr)
Other versions
WO2012173074A3 (ja
Inventor
早水 慎
Original Assignee
ローツェ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローツェ株式会社 filed Critical ローツェ株式会社
Priority to CN201280028011.XA priority Critical patent/CN103597065B/zh
Priority to KR1020137033049A priority patent/KR101541760B1/ko
Priority to EP12800827.3A priority patent/EP2722385B1/en
Priority to JP2013520537A priority patent/JP5788983B2/ja
Priority to US14/126,392 priority patent/US9364082B2/en
Publication of WO2012173074A2 publication Critical patent/WO2012173074A2/ja
Publication of WO2012173074A3 publication Critical patent/WO2012173074A3/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B49/00Revolving cabinets or racks; Cabinets or racks with revolving parts
    • A47B49/004Cabinets with compartments provided with trays revolving on a vertical axis
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B81/00Cabinets or racks specially adapted for other particular purposes, e.g. for storing guns or skis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/03Pressure vessels, or vacuum vessels, having closure members or seals specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/10Apparatus for enzymology or microbiology rotatably mounted
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/16Sterilization
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/108Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)

Definitions

  • the present invention relates to a thermostatic apparatus capable of automatically carrying in and out a container in which a specimen to be tested is kept at least at a constant temperature.
  • Thermostatic devices are widely used as devices for storing specimens used for culture and testing of microorganisms and cells.
  • the thermostat is a thermostatic chamber that contains a large number of samples to be cultured and tested, and is equipped with means for maintaining environmental conditions such as temperature, humidity, and carbon dioxide concentration.
  • the room is maintained at a high humidity environment of about 37 ° C. and a humidity of 90% or more.
  • culture and testing are carried out continuously for a long time, it is necessary to periodically inspect and analyze the state of each sample, and if necessary, replace the medium containing waste products with a new one. There is.
  • thermostats can be used for the next cells or microorganisms when the next culture or test is performed, if there are germs in the air or cells or microorganisms used in the previous culture or test. Therefore, an operation called “sterilization” is required to remove germs before the start of culture or test in the temperature-controlled room.
  • Conventional thermostats with an automatic conveyance function employ a sterilization method of irradiating ultraviolet rays or a sterilization method of wiping with a chemical solution.
  • the constant temperature apparatus 1 with an automatic conveyance function disclosed in Patent Document 1 includes a sample table in which a plurality of sample shelves for storing containers for storing samples to be cultured or tested are detachably arranged inside a temperature-controlled room.
  • a plurality of driven magnets attached to the sample table and a plurality of driving magnets arranged at positions corresponding to the driven magnets outside the temperature-controlled room are magnetically coupled to each other to be applied from the driving source to the driving magnets.
  • a method is used in which a rotating magnetic field is generated by the generated driving force and transmitted to a driven magnet that is magnetically coupled to the rotating magnetic field.
  • Ball casters and wheels are attached to the lower surface of the sample table at regular intervals.
  • the sample table is supported by the ball casters and wheels and can be rotated to a desired position.
  • a transfer robot having lifting / lowering means for loading / unloading a container containing a sample is provided outside the temperature-controlled room.
  • the sample table is rotated to an accessible position of the transfer robot, and a desired table is rotated.
  • the transport robot can access a desired shelf of the sample shelf.
  • the hydrogen peroxide gas cannot sufficiently sterilize the germs present in the water inside the lubricant. If germs remain in the culture chamber after sterilization, the germs contaminate the sample during the next culture, and it becomes impossible to obtain good culture results. And the location which is corroded and the residue of miscellaneous bacteria is estimated to exist in each bearing since the rolling elements which support a sample table are disperse
  • thermostatic device with an automatic conveyance function that is resistant to the corrosive action of hydrogen peroxide and has a structure in which a lubricant serving as a hotbed of various bacteria is not exposed to the atmosphere in the cabinet.
  • the present invention has been created by paying attention to the above-mentioned problems and effectively solving this problem, and rotating the rotating magnetic field in the vertical axis direction in a closed space of a thermostatic device in which a strong corrosive chemical is used.
  • a bearing having the center of the rotating shaft is provided at a position coincident with the center, and the bearing is concentrated at one place, and is detachable from the thermostat.
  • the thermostatic device of the present invention has a closed space surrounded by a wall inside, and a constant temperature chamber composed of a wall surrounding the closed space, A rotating magnetic field generating means for applying a rotating magnetic field having a center of rotation in the vertical axis direction to the closed space through the floor surface from below the floor surface of the bottom portion, and detachably disposed in the closed space of the temperature-controlled room.
  • a base plate, the base plate having a bearing having the center of the rotating shaft at a position coincident with the center of rotation in the vertical axis direction, and the rotating shaft above the bearing is a container containing a sample.
  • the sample plate rotatably supported by the base plate via the bearing follows the rotating magnetic field disposed below the temperature-controlled room floor, and the magnetically coupled driven magnet rotates.
  • the sample plate can be rotated.
  • An apparatus that generates a rotating magnetic field can be disposed outside the temperature-controlled room, and even if the temperature-controlled room is filled with a hydrogen peroxide atmosphere, it is not corroded by an oxidizing action.
  • an axial load bearing made of metal such as stainless steel, ceramic or resin can be used as the bearing.
  • PTFE polytetrafluoroethylene
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • a ring-shaped seal packing having a lip.
  • the environment in which the bearings are arranged is that the sample plate, magnet plate, base plate, rotating shaft, and ring-shaped seal packing attached to each of the sample plate and magnet plate are in contact with the base plate over the entire circumference. Therefore, since it is cut off from the high humidity atmosphere inside the temperature-controlled room and the hydrogen peroxide gas atmosphere, it becomes possible to use a bearing made of a material that requires a lubricant.
  • a gas may be introduced.
  • corrosive gases such as water vapor and hydrogen peroxide do not leak by introducing a gas such as clean air into the space formed by the base plate, the rotating shaft, and the ring seal packing to maintain a positive pressure.
  • Axial load bearings are anticorrosive and allow the sample table to rotate for a long time in a temperature-controlled room.
  • a hole communicating with this space is made in the base plate, and a tube coupled to this hole is installed.
  • another hole is formed in the base plate as an exhaust port and exhausted to the outside of the temperature-controlled room with a tube.
  • the clean air filtered with the filter of 0.1 micrometer or less, dry air, a carbon dioxide gas, nitrogen etc. can be used.
  • the material of the ring-shaped seal packing is an oxidation-resistant flexible polymer such as fluoro rubber, vinyl acetate ethylene resin, hydrogenated nitrile rubber, ethylene propylene rubber, acrylic rubber.
  • fluoro rubber vinyl acetate ethylene resin
  • hydrogenated nitrile rubber ethylene propylene rubber
  • acrylic rubber acrylic rubber
  • dry heat sterilization that maintains the inside of the temperature-controlled room in an environment of 130 ° C. or higher can be performed in addition to sterilization with a sterilization gas such as hydrogen peroxide gas.
  • the base plate includes a seal plate in which a surface to be in contact with the lip is processed at a position where the lip of the ring-shaped seal packing contacts.
  • the material of the seal plate is preferably a fluorine resin such as polytetrafluoroethylene or a silicone resin having a low frictional resistance. Further, when the seal plate is made of metal, it is preferable to perform surface coating with fluorine having a low frictional resistance.
  • the sample plate may be provided with a resin pad at a portion in contact with the temperature-controlled room floor. Moreover, if the sample plate is screwed to the temperature-controlled room floor via a bracket, the temperature-controlled room floor will not be damaged, and the sample table can be easily removed from the temperature-controlled room floor by removing the screw. be able to. Thereby, the wiping operation after sterilization can be easily performed.
  • the resin pad uses a member such as polyethersulfone, polyetheretherketone resin, silicone resin, polytetrafluoroethylene, etc.
  • a member such as polyethersulfone, polyetheretherketone resin, silicone resin, polytetrafluoroethylene, etc.
  • fluorine such as polytetrafluoroethylene having heat resistance and low frictional resistance. It is preferable to use a base resin or a silicone resin.
  • a base plate with a bearing can be removed from the inside of a temperature-controlled room by arrange
  • the structure for sealing from corrosive chemicals can be facilitated.
  • a sealing structure it is desirable to use a ring-shaped seal packing. Durability can be improved by providing a ring-shaped seal packing, and in addition, the durability is remarkably improved by introducing clean air into the axial load-bearing part. Even after sterilization with strong sterilization gas, the sample table can operate stably.
  • hydrogen peroxide can be used for sterilization, the time during which culture is stopped can be shortened compared to dry heat sterilization and other sterilization methods, and even when the present invention is applied to an automatic incubator or the like. Production efficiency can be improved.
  • FIG. 1 is a perspective view showing a conventional thermostatic device with an automatic conveyance function.
  • FIG. 2 is a cross-sectional view showing the periphery of a sample table of a conventional thermostatic device with an automatic conveyance function.
  • FIG. 3 is an exploded view showing the sample table of the first embodiment.
  • FIG. 4 is a cross-sectional view when the sample table of the first embodiment is arranged in a thermostatic device.
  • FIG. 5 is a sectional view showing the periphery of the seal packing in the sample table of the second embodiment.
  • FIG. 6 is a sectional view of a universal caster provided in the sample table.
  • FIG. 7 shows a sample table.
  • FIG. 3 is an exploded view showing main members constituting the sample table 10 of the present embodiment
  • FIG. 4 is a cross-sectional view showing a state in which the respective members are assembled.
  • the temperature-controlled room 5 has a closed space surrounded by a wall inside, and the bottom wall of the wall surrounding the closed space is a floor surface 5a.
  • a base plate 13 as a base member is fixed to the floor surface 5a of the temperature-controlled room 5 at four locations by a fixing bracket 14. Further, in order to receive the load from above, the base plate 13 is supported at four locations by the support block 15, and the support block 15 and the base plate 13 are fixed by hexagon bolts.
  • a resin pad 16 is attached to a portion of the support block 15 that contacts the floor surface 5a.
  • the screw which fastens and fixes each member of the sample table 10 of this invention it is preferable to use a hexagon bolt without a hollow rather than what has a hollow in the top part like a cross-headed bolt and a hexagon socket head bolt. This is to make the hydrogen peroxide gas reach every corner of the sample table 10 and to facilitate the wiping operation after sterilization.
  • the material used for the pad 16 is preferably resistant to hydrogen peroxide, and more preferably heat resistant, since it can withstand dry heat sterilization.
  • Two kinds of circular holes having different diameters are formed concentrically at the center of the base plate 13.
  • the hole formed on the lower side of the base plate 13 has a smaller diameter, and the upper side has a larger diameter.
  • This upper hole has a diameter that allows the outer ring of the ring-shaped bearing 17 to be fitted in a close contact state, and the bearing 17 is in contact with the upper hole bottom and is supported in the vertical direction at the upper hole depth position.
  • a cylindrical rotary shaft 18 is fitted into the inner ring of the bearing 17 in a close contact state from above.
  • the rotating shaft 18 has a flange portion larger than the inner ring diameter of the bearing 17 at the upper side, and this flange portion is in contact with the upper side of the inner ring of the bearing 17 and is supported in the vertical direction. With the above configuration, the rotating shaft 18 is supported by the base plate 13 via the bearing 17 so as to be rotatable.
  • a circular sample plate 19 is bolted to the upper surface of the rotary shaft 18 concentrically with the rotary shaft 18.
  • a pin 20 for positioning the sample shelf 3 is fixed at a position corresponding to the bottom of the sample shelf 3.
  • a magnet plate 21 in which the driven magnet 6 is arranged in a circular shape is bolted concentrically with the rotating shaft 18 from below, and the sample plate 19, the rotating shaft 18, and the magnet plate. 21 is supported to be rotatable integrally with the base plate 13.
  • the driven magnet 6 arranged on the magnet plate 21 and the plurality of driving magnets 7 arranged outside the temperature-controlled room 5 and at positions corresponding to the driven magnet 6 are magnetically coupled.
  • the driving force applied from the source 8 to the driving magnet 7 is transmitted to the driven magnet 6, and as a result, the sample plate 19 can be rotated.
  • a member such as the base plate 13, the fixing bracket 14, the support block 15, the sample plate 19, and the magnet plate 21 is exposed to a hydrogen peroxide gas atmosphere such as resin such as vinyl chloride or polyketone to prevent oxidation by hydrogen peroxide.
  • a metal such as stainless steel, aluminum whose surface has been subjected to an antioxidant treatment, or iron can be used.
  • the constant temperature device 1 is maintained in an environment where the humidity inside the constant temperature chamber 5 is normally 90% or higher and the inside temperature is 37 degrees during the culture operation. Is very important.
  • the bearing 17 used in the present embodiment includes a structure such as a sample plate 19, a rotating shaft 18, and a magnet plate 21, a plurality of sample shelves 3 disposed on the sample plate 19, and a plurality of samples accommodated in the sample shelves 3.
  • a structure such as a sample plate 19, a rotating shaft 18, and a magnet plate 21, a plurality of sample shelves 3 disposed on the sample plate 19, and a plurality of samples accommodated in the sample shelves 3.
  • the strength of the container 2 such as the container 2 is required, and in addition to the load of the above members, the magnetism of the drive magnet 7 and the driven magnet 6 is also supported so that it can rotate smoothly. I need.
  • the bearing 17 is composed of an outer ring and an inner ring, a rolling element disposed between the outer ring and an inner ring, and a cage that holds the rolling element, and is widely used for smoothly rotating the shaft.
  • Many metal objects such as stainless steel and iron are used.
  • grease is often applied and filled as a lubricant around the rolling elements.
  • the metal becomes rusted due to the oxidizing action of the hydrogen peroxide gas.
  • grease is applied and filled inside, a very small amount of moisture contained in the grease or moisture that has penetrated into the inside of the grease from the high-humidity environment inside the cabinet becomes a hotbed for various bacteria.
  • the sample table 10 of the present invention uses a bearing 17 that does not require a lubricant.
  • resin bearings such as PTFE (polytetrafluoroethylene), PEEK (polyetheretherketone), and PPS (polyphenylene sulfide), zirconia, silicon carbide, silicon nitride It is preferable to use a ceramic bearing manufactured from the like.
  • FIG. 5 shows another embodiment.
  • a hole 45 communicating with the space 25 is formed in the base plate 13, clean air is sent through the tube 46, and the space 25 is discharged to the outside of the temperature-controlled room through the exhaust port 47 and the check valve 48 while maintaining a positive pressure.
  • the bearing 17 used in this embodiment is preferably an axial load bearing such as a deep groove ball bearing, an angular ball bearing, or a cross roller bearing because a large load is applied in the direction of the rotation center line of the bearing 17.
  • a thrust ball bearing or a thrust roller bearing with higher strength against the load in the direction of the rotation center line. is there.
  • the sample table 10 of the present invention is provided with seal members at two locations in the vertical direction of the bearing 17.
  • the seal member includes a ring-shaped seal packing 22 and a seal plate 23 disposed at a position where the seal packing 22 abuts.
  • the ring-shaped seal packing 22 is fixed in close contact with the lower cylindrical protrusions formed on the sample plate 19 and the magnet plate 21 that are rotating members, and is integrated with the sample plate 19 and the magnet plate 21. Rotate.
  • the seal packing 22 used in this embodiment is a ring-shaped member having a substantially square cross-sectional shape, and a lip 24 projecting in a bowl shape from the ring portion is formed integrally on the outer peripheral side. Yes.
  • the lip 24 is formed so as to protrude in the height direction and the outer circumferential direction from the ring-shaped main body having a substantially square cross section, and is formed in a tapered shape that becomes thinner toward the tip.
  • the tip portion of the lip 24 is in contact with the seal plate 23 over the entire circumference, thereby isolating the space in which the bearing 17 is disposed from the high-temperature and high-humidity atmosphere.
  • the material of the seal packing 22 is preferably a material having excellent heat resistance and chemical resistance such as fluorine rubber, acrylic rubber, hydrogenated nitrile rubber, silicone resin, vinyl acetate ethylene resin, ethylene propylene rubber, and flexibility. Further, since the seal packing 22 is in contact with the seal plate 23 fixed to the base plate 13 over the entire circumference and rotates integrally with the sample plate 19 and the magnet plate 21, it has high wear resistance and friction resistance. Fluoro rubber, which is a material with a low content, is particularly desirable.
  • the seal plate 23 is a ring-shaped member that is fixed at two locations on the base plate 13 facing the sample plate 19 and the magnet plate 21, and is arranged concentrically with the base plate 13.
  • the method of fixing the seal plate 23 to the sample plate 19 may be bolted or bonded, but the seal plate 23 also plays a role of holding down the outer ring of the bearing 17, so that bolting is considered in consideration of replacement work of the bearing 17. It is desirable to do.
  • sealing is further improved if a packing is sandwiched between the seal plate 23 and the base plate 13.
  • the lip 24 of the packing 22 fixed to the magnet plate is brought into contact with the base plate or the seal plate 23.
  • the direction of the lip of the ring-shaped seal packing is not limited to the above, and may be either up and down or inside and outside. That is, the upper packing 22 is fixed to the upper surface of the base plate 13 and the lip 24 is brought into contact with the lower protrusion of the rotating sample plate 19, and the lower packing 22 is fixed to the lower surface of the base plate 13 and the magnet plate 21 rotating the lip. You may make it contact
  • the material of the seal plate 23 it is preferable to use various metals such as stainless steel and aluminum, and fluorine resin and silicone resin such as polytetrafluoroethylene having low frictional resistance.
  • a metal member in addition to preventing the surface from being oxidized, it rotates with the lip 24 of the seal packing 22 in contact with it. Therefore, it is preferable to perform a surface coating treatment with fluorine having a low frictional resistance. Further, the surface that contacts the lip 24 needs to be flat so that the lip 24 can contact the seal plate 23 over the entire circumference.
  • FIG. 5 is an enlarged view of the periphery of the seal packing 22 of the sample table 10 of the present invention shown in FIG.
  • the space 25 in FIG. 5 is sealed with members such as the base plate 13, the sample plate 19, the magnet plate 21, the rotating shaft 18, the seal packing 22, and the seal plate 23, and is isolated from the outside.
  • members such as the base plate 13, the sample plate 19, the magnet plate 21, the rotating shaft 18, the seal packing 22, and the seal plate 23, and is isolated from the outside.
  • the bearing 17 is not affected by the hydrogen peroxide gas.
  • it will be isolated from an atmosphere of 90% or higher humidity which is a normal culture environment.
  • a hole 45 communicating with the space 25 can be opened in the base plate, and a gas such as clean air or dry air can be introduced into the space.
  • the magnet plate 21 on which the driven magnet 6 is placed will be described.
  • the magnet plate 21 has a disk shape, and a plurality of driven magnets 6 are concentrically arranged on the side facing the temperature-controlled room floor 5a.
  • the method for fixing the driven magnet 6 to the magnet plate 21 may be an adhesive, a screw, or the like, or the material of the magnet plate 21 may be iron and fixed by the magnetic attractive force of the driven magnet 6.
  • the iron magnet plate 21 is provided with recesses having a size corresponding to the driven magnets 6 on the concentric circles by the number of the driven magnets 6, and the driven magnets 6 are fitted into the recesses to be fixed by magnetic attraction force. Yes.
  • the magnet plate 21 and the driven magnet 6 are preferably subjected to nickel plating resistant to hydrogen peroxide as a surface treatment for preventing oxidation. In addition to nickel plating, it is possible to coat the driven magnet 6 with a resin or paint resistant to hydrogen peroxide or to seal it with a resin.
  • the magnet plate 21 is attached to the bottom surface of the rotating shaft 18 rotatably supported on the base plate 13 via the bearing 17 so that the surface on which the driven magnet 6 is disposed faces the floor surface 5a of the temperature-controlled room 5.
  • the driven magnet 6 is magnetically coupled to a plurality of drive magnets 7 arranged at positions corresponding to the driven magnets 6 outside the temperature-controlled room 5, so that the rotational force applied to the drive magnet 7 from the drive source 8 is obtained.
  • the magnet plate 21, the rotating shaft 18, and the sample plate 19 are integrally rotated by being transmitted to the driven magnet 6.
  • the sample table 10 is used in the thermostatic apparatus 1 having an automatic conveyance function capable of automatically conveying a plurality of containers 2 stored in a plurality of sample shelves 3 placed on a sample plate 19. Since it is installed and used, it is necessary to accurately detect the position in the rotational direction so that the transfer robot 12 can access the target container 2. Therefore, in the sample table 10 of the present embodiment, the magnet 27 serving as an object for the Hall sensor 26 for detecting the rotational position provided in the thermostatic device 1 to detect the rotational position of the sample table 10 has the bracket 28. Is attached through.
  • the Hall sensor 26 is a sensor that uses the Hall effect. The Hall sensor 26 converts the magnetic field generated by the magnet 27 into an electrical signal and outputs it.
  • the Hall sensor 26 passes through a shield such as the floor surface 5a of the temperature-controlled room 5. This is a sensor that can detect the magnetic field of the magnet 27 that is the object. If the timing detected by the hall sensor 26 and the rotational position of the motor as the drive source 8 are stored, the target sample shelf 3 can be moved to a position accessible by the transport robot 12.
  • the sample table 10 of this embodiment is installed in the temperature-controlled room 5 by the pad 16 attached to the bottom surface of the support block 15 coming into contact with the temperature-controlled room floor surface 5a, and can be accurately positioned by screwing the fixing bracket 14. Fixing is performed.
  • the screw 29 for fixing the fixing bracket 14 is preferably a hexagonal bolt without a recess or a knurled screw for the purpose of suppressing residual bacteria.
  • the cap nut 30 is welded to the floor surface 5a of the temperature-controlled room 5 so that the atmosphere inside the temperature-controlled room 5 is not leaked to the outside. Further, by adding a washer 31 having a sealing structure to the screw 29 to be fixed, it is possible to further improve the sealing performance.
  • seal packing was applied to the periphery of metal parts such as the ball casters of Patent Document 1 and bearings that rotatably support heat-resistant resin wheels so that they were not exposed to corrosive chemicals.
  • metal parts such as the ball casters of Patent Document 1 and bearings that rotatably support heat-resistant resin wheels so that they were not exposed to corrosive chemicals.
  • FIGS. 6 and 7 An example will be described with reference to FIGS. 6 and 7 as a comparative example of the present invention.
  • a plurality of free casters 32 are provided on the bottom surface of the sample plate 19 as a mechanism for rotating the sample plate 19.
  • 6A is a sectional view showing the structure of the universal caster 32
  • FIG. 6B is a side view.
  • the universal caster 32 includes a bearing 33 that holds the caster main body so as to be able to turn in a horizontal plane, and a bearing 35 that is inserted into the wheel 34 and smoothly rotates the wheel 34. Further, in order to protect the two bearings 33 and 35 from the external atmosphere, ring-shaped seal packings 36 and 37 having the same form as that described in the second embodiment are provided.
  • the bearing 35 having the outer ring fixed to the wheel 34 has a shaft 39 having both ends fixed to the support blocks 38a and 38b inserted into the inner ring. Further, a collar 41 having a slightly smaller outer shape than the inner ring is inserted into the shaft 39 on the left and right sides of the bearing 35, and the collar 34 and the support blocks 38a and 38b are fixed in contact with each other. It has a structure that can be rotated. Low cylindrical protrusions are formed on the sides of the support blocks 38a and 38b facing the bearings 35, and the seal packings 36 are fixed to the low cylindrical protrusions in close contact with each other. The tip of the lip portion of the seal packing 36 is in contact with the wheel 34 over the entire circumference. With this configuration, a sealed space is formed around the periphery of the bearing 35 and is a space isolated from the external atmosphere. .
  • the upper surfaces of the support blocks 38a and 38b are fixed to the caster block 42.
  • the caster block 42 has a quadrangular shape to which the support blocks 38a and 38b can be fixed.
  • a low cylindrical projection is formed above the caster block 42.
  • the seal packing 37 is in close contact with the low cylindrical projection. It is fixed.
  • a circular depression substantially the same as the diameter of the outer ring of the bearing 33 is formed in the low cylindrical protrusion, and the bearing 33 sinks about half of the entire height in the depression. Has been inserted.
  • the inner ring of the bearing 33 is inserted into a cylindrical protrusion formed near the center of the bottom surface of the base block 43.
  • the base block 43 has an upper surface fixed to the sample plate 19 and a bottom surface formed with a cylindrical protrusion near the center.
  • the protrusion has a diameter that allows the inner ring of the bearing 33 to be inserted in close contact. And has a slightly lower height than the bearing 33.
  • the base portion of the cylindrical projection forms a minute collar-shaped projection having a diameter slightly larger than the diameter of the cylindrical projection, and when the bearing 33 is inserted, the inner ring comes into contact with the minute projection. As a result, the outer ring can freely rotate.
  • a bank is formed on the outer peripheral side of the bearing 33 of the base block 43 so as to surround the bearing 33.
  • the lip portion of the seal packing 37 described above is in contact with the bank portion over the entire circumference, and with this configuration, a sealed space is formed around the periphery where the bearing 33 is disposed, and the space is isolated from the external atmosphere. ing.
  • the wheel 34 is rotatably supported by the support blocks 38a and 38b via the bearing 35, and the support blocks 38a and 38b rotate together with the caster block 42 to the base block 43 via the bearing 33.
  • the free caster 32 and the sample table 40 are movable in all directions within a horizontal plane.
  • the universal caster 32 of the present embodiment is disposed at a position where the rotation center axis of the wheel 34 and the rotation center axis of the caster block 42 are offset. For this reason, the wheel 34 can always rotate in the traveling direction, and can perform a smooth rotational motion with little friction.
  • the seal packings 36 and 37 that protect the bearings 33 and 35 from the external atmosphere are provided.
  • the bearings 33 and 35 are made of ceramic or resin as in the previous embodiment. It is also possible that the seal packings 36 and 37 are not provided.
  • FIG. 7A is a view of the sample plate 19 of this example as viewed from below
  • FIG. 7B is a front view.
  • four free casters 32 are provided on a concentric circle centered on the center position of the circular sample plate 19, and are arranged at equal positions.
  • the trajectory of the wheels 34 is not made one, so that the temperature-controlled room floor The influence of friction on the surface 5a can be dispersed.
  • the magnet plate 21 to which the driven magnet 6 is fixed is concentrically attached to the sample plate 19 via a fixed block 44.
  • the fixed block 44 is a member having such a height dimension that the driven magnet 6 is located at a position several millimeters away from the temperature-controlled room floor surface 5a, and four fixed blocks 44 are arranged in this embodiment.
  • the sample plate 19 is provided with a magnet 27 as an object of the Hall sensor 26 that detects the rotational position.
  • the members constituting the sample table 40 are preferably made of a material that can withstand a hydrogen peroxide atmosphere or a high humidity atmosphere.
  • a metal such as iron or iron
  • the base block 43 rotates while the lip portion of the seal packing 37 is in contact with the base block 43, it is preferable to perform a surface coat treatment with fluorine having a low frictional resistance.
  • the surface that contacts the lip portion needs to be flat so that the lip portion can contact the base block 43 over the entire circumference.
  • the material of the wheel 35 with which the lip portion of the seal packing 36 abuts over the entire circumference supports the entire load of the sample table 40 and moves while rotating on the circumferential track while contacting the constant temperature floor 5a. Therefore, it is necessary to use a material with high strength and low frictional resistance. Furthermore, it is necessary to withstand a hydrogen peroxide atmosphere or a high humidity atmosphere as described above.
  • the material of the wheel 35 is preferably an engineering plastic material such as polyimide resin (PI), PEEK material, or PPS material.
  • PI polyimide resin
  • PEEK material PES material
  • many of these engineering plastic materials have high heat resistance, and can be applied to sterilization methods other than hydrogen peroxide sterilization, for example, sterilization methods such as dry heat sterilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

 乾熱滅菌作業時の高温雰囲気や、過酸化水素ガスなどの酸化性の強い滅菌ガス雰囲気内に設置されても、長時間にわたって安定した動作ができる自動搬送機構を備えた恒温装置を提供する。培養室内において試料を載置し回転動作する試料テーブル10の駆動部を培養室外部に配置し、駆動部からの駆動力を磁気結合により伝達させる。さらに、試料テーブル10が備えるベースプレート13の上下に、リップ24の形成されたリング状シールパッキン22を配置し、ベースプレート13のリップ24の当接する部分には全周にわたってシールプレート23を配置することで、高温雰囲気及び酸化性の強い庫内雰囲気から軸受17や駆動部分を隔離し、高温や滅菌ガスによる故障を防止する。

Description

回転する試料テーブルを備える恒温装置
 本発明は、少なくとも温度を一定に保ち、試験の対象となる検体を入れた容器を自動で搬入・搬出することができる恒温装置に関するものである。
 微生物や細胞などの培養や試験に用いられる検体を保管する装置として、恒温装置が広く利用されている。恒温装置は培養や試験の対象となる多数の試料を収納する恒温室に温度や湿度、二酸化炭素濃度等の環境条件を維持する手段を備えたものであり、特に培養を行う場合には、恒温室内は温度約37℃で湿度90%以上といった高湿度環境が維持されている。また、培養や試験は長時間継続して行われるので、その過程においては、定期的に各試料の状態を検査・分析し、必要であれば老廃物の混入した培地を新しいものに交換する必要がある。
 そこで、記憶手段や演算手段並びに搬送手段を備え自動化された恒温装置が現在まで多数考案されている。これらは、試料の入った容器の出し入れ、検査・分析工程への受け渡し、試料の状態管理等を自動で行う機能を備えたもので、これらの装置により、長期間にわたる培養・試験を効率よく行うことが可能となった。
 また、こういった恒温装置は、空気中の雑菌、以前行った培養或いは試験で使用した細胞や微生物が恒温室内に残留していると、次に培養或いは試験をする際に目的の細胞や微生物に悪影響を及ぼすので、恒温室内に対して培養或いは試験の開始前に雑菌を除去する滅菌と呼ばれる作業が必要となる。従来の自動搬送機能付き恒温装置では、紫外線を照射する滅菌方法や、薬液で拭き取る滅菌方法が採用されていた。しかし、近年では、恒温室内にモータや電子部品を配置しない工夫を施した自動搬送機能付き恒温装置が登場して、恒温室内を130℃以上の高温環境に維持して雑菌を死滅させる乾熱滅菌と呼ばれる滅菌方法が利用できるようになった。
WO2010/001873号公報
 この特許文献1で開示された自動搬送機能付き恒温装置1は、培養或いは試験を行う試料を収容した容器を収納する試料棚を複数載置した試料テーブルを恒温室の内部に着脱自在に配置していて、この試料テーブルに取り付けられた複数の従動マグネットと、恒温室の外部の従動マグネットに対応する位置に配置された複数の駆動マグネットとを磁気結合することで、駆動源から駆動マグネットに与えられた駆動力により、回転磁界を発生させ、これに磁気結合する従動マグネットに伝達する方法を採用している。この試料テーブルの下面にはボールキャスターや車輪が一定間隔で取り付けられていて、このボールキャスターや車輪に支持されて試料テーブルは所望の位置までの回転移動が可能となっている。また、恒温室の外部には試料を収容した容器を搬入・搬出するための昇降手段を有する搬送ロボットが備えられていて、この搬送ロボットのアクセス可能な位置まで試料テーブルを回転動作させ、所望の試料棚の、所望の棚段に搬送ロボットがアクセスできる構造となっている。
 上記構造にすることで、恒温室内部にはモータや電気部品といった高温及び/又は多湿の環境に弱い部品を配置することがなくなるので、恒温室内を高温に維持する乾熱滅菌を行うことが可能となり、さらに恒温室内を湿度90パーセント以上の環境に維持する培養環境であっても、故障のない安定した動作が可能となっている。
 しかしながら、近年、乾熱滅菌に代わり、加熱し気化させることで得られた過酸化水素蒸気を恒温室内に充満させて殺菌を行う過酸化水素滅菌と呼ばれる滅菌方法が多く採用され始めている。これは、培養庫内に過酸化水素蒸気を充満させ、過酸化水素の殺菌力によって雑菌を死滅させる滅菌方法であり、乾熱滅菌法では恒温室内の加熱開始から培養可能な室内温度に戻るまで数時間を必要とした滅菌時間が、過酸化水素滅菌では約1時間程度の短期間で終了でき、培養終了から次の培養開始までの休止時間を飛躍的に短縮させる滅菌方法である。
 しかし、従来の自動搬送機能付き恒温装置では、上記の過酸化水素滅菌を行うのは難しい。なぜならば、過酸化水素は強い腐食性を有するため、庫内に配置された鉄やアルミといった構造物を腐食させてしまうからである。特に可動部材については、腐食予防のための表面処理を施していても、長時間の動作によりその処理表面が削られ、露出した金属面が腐食してしまうのである。さらに、恒温室内に配置されている転動体として複数個所で試料テーブルを支持しているボールキャスターや、耐熱樹脂製の車輪を回転可能に支持する軸受といった金属製部品には、摩擦や磨耗を防ぐための潤滑剤が使用されている。この潤滑剤に含まれる微量な水分や、高湿度環境から潤滑剤内部に浸透した水分が雑菌の温床となってしまう。過酸化水素のガスは、これら潤滑剤内部の水分中に存在する雑菌については十分に滅菌することができない。滅菌後に培養庫内に雑菌が残留していると、次の培養の際に、雑菌が試料を汚染してしまい、良好な培養結果を得ることはできなくなってしまう。そして、腐食される箇所や雑菌の残留が予測される箇所は、試料テーブルを支持する転動体が複数個所に分散しているため、それぞれの軸受けに存在することになる。
 そこで、過酸化水素の腐食作用に耐性があり、雑菌の温床となる潤滑剤が庫内雰囲気に曝露されない構造の自動搬送機能付き恒温装置が強く求められている。
 本発明は、上記問題点に着目し、これを有効に解決すべく創出されたものであって、強い腐食性薬剤が使用される恒温装置の閉空間内に、回転磁界の鉛直軸方向の回転中心に一致した位置に回転シャフトの中心を有する軸受けを設けて1箇所に集約し、かつこれを恒温装置から着脱自在にしている。
 すなわち、上記問題点を解決するために、本発明の恒温装置は、周囲が壁で囲われた閉空間を内部に有し、当該閉空間を囲う壁からなる恒温室と、前記壁のうちの底部分の床面の下側から、鉛直軸方向の回転中心を有する回転磁界を、当該閉空間に当該床面を通して与える回転磁界発生手段と、前記恒温室の閉空間内に着脱自在に配置されたベースプレートとを有し、前記ベースプレートは、前記鉛直軸方向の回転中心に一致した位置に回転シャフトの中心を有する軸受けを具備し、前記軸受けの上側の前記回転シャフトには、試料を収容した容器を収納する試料棚を搭載する試料プレートが連結され、前記軸受けの下側の前記回転シャフトには、前記複数の従動マグネットを備えたマグネットプレートが連結され、前記従動マグネットは前記恒温室の壁面を透過した回転磁界と磁気結合して、前記回転磁界に従って前記回転シャフトを回転させることを特徴としている。
 上記構成により、恒温室内に於いて、ベースプレートに軸受を介して回転自在に支持された試料プレートが、恒温室床の下方に配置された回転磁界に追従して、磁気結合した従動マグネットが回転することで、試料プレートを回転させることが可能となる。回転磁界を発生する装置を恒温室外に配置することが可能となり、恒温室内が過酸化水素雰囲気で満たされても、酸化作用によって腐食することはなくなる。ここで、軸受はステンレス等の金属製、若しくは、セラミックや樹脂製の耐アキシアル荷重軸受が使用できる。特に、潤滑剤を使用する必要のないPTFE(ポリテトラフルオロエチレン)やPEEK(ポリエーテルエーテルケトン)、PPS(ポリフェニレンサルファイド)等の樹脂製軸受や、ジルコニアや炭化ケイ素、窒化ケイ素等から製造されるセラミック軸受を用いるのが好ましい。
 さらに、好ましくは、前記軸受を外気から隔離するように、ベースプレートと前記試料プレート及び/又は回転シャフトとの間に、及び、前記ベースプレートと前記従動マグネットを固定するプレート又は前記回転シャフトとの間に、リップを有するリング状シールパッキンを備える。
 上記構成により、軸受が配置される環境は、試料プレート、マグネットプレート、ベースプレート、回転シャフト、及び、試料プレートとマグネットプレートのそれぞれに取り付けられたリング状のシールパッキンがベースプレートに全周にわたって接触しているので、恒温室内部の高湿度雰囲気や、過酸化水素ガス雰囲気から遮断されることとなるので、潤滑剤の必要な素材からなる軸受を使用することが可能となる。
 さらに、前記リング状シールパッキンと前記試料プレート及び/又は前記回転シャフトと前記軸受との間の空間に、且つ、前記ベースプレートと前記従動マグネットを固定するプレート及び/又は前記回転シャフトとの間の空間に、気体を導入してもよい。
 上記構成により、ベースプレートと回転シャフトとリング状シールパッキンとがなす空間に清浄空気などの気体を導入して陽圧を保つことによって、水蒸気や過酸化水素などの腐食性ガスが漏洩しないので、耐アキシアル荷重軸受は防食され、恒温室内での試料テーブルの長時間にわたる回転動作が可能となる。この空間に気体を導入するにあたって、ベースプレートにこの空間に通じる孔をあけ、この孔に結合したチューブを設置する。また、別の孔をベースプレートに開けて排気口とし、チューブで恒温室外部に排気するのが好ましい。前記気体としては、0.1μm以下のフィルターでろ過した清浄空気、乾燥空気、炭酸ガス、窒素などを用いることができる。
 さらに、リング状シールパッキンの素材は、フッ素ゴム、酢酸ビニルエチレン樹脂、水素化ニトリルゴム、エチレンプロピレンゴム、アクリルゴムなど耐酸化性柔軟高分子であるのが望ましい。中でも、リング状シールパッキンの素材をフッ素ゴムとした場合、過酸化水素ガスなどの滅菌ガスによる滅菌以外に、恒温室内部を130℃以上の環境に維持する乾熱滅菌を行えるので好ましい。また、ベースプレートは、前記リング状シールパッキンのリップが接触する位置に、リップの接触する表面が平滑に処理されたシールプレートを備えるのが望ましい。
 また、シールプレートを備えることで前記リップが接触する部分と接触しない部分を別部品とすることが可能となり、ベースプレートの製造コストを下げることができる。なお、シールプレートの素材は、摩擦抵抗の少ないポリテトラフルオロエチレンといったフッ素系樹脂やシリコーン樹脂とするのが好ましい。また、シールプレートの素材を金属とする場合、摩擦抵抗の少ないフッ素による表面コート処理を施すのが好ましい。
 さらに、試料プレートは、前記恒温室床面と接触する部分に、樹脂製のパッドを備えていてもよい。また、試料プレートは、前記恒温室床面にブラケットを介してネジ止めすれば、恒温室床面を傷付けることがなくなり、さらに、ネジを取り外すことにより、試料テーブルを恒温室床面から簡単に取り外すことができる。これにより、滅菌後の拭き取り作業を簡単に行えるものとなる。
 なお、前記樹脂製のパッドは、ポリエーテルスルホン、ポリエーテルエーテルケトン樹脂、シリコーン樹脂、ポリテトラフルオロエチレンなどの部材を用いるが、中でも耐熱性があり摩擦抵抗の少ないポリテトラフルオロエチレンのようなフッ素系樹脂やシリコーン樹脂とするのが好ましい。
 本発明によれば、恒温室の壁に囲われた閉空間の中に、軸受けを有するベースプレートを着脱可能に配置することにより、恒温室内から軸受け共々ベースプレートを取り外すことができる。磁気結合の磁気ギャップとなる床面は、その表面に回転を伝達するための構造物を有しないため、ベースプレートを取り外した際には、滅菌後の拭き取り作業を簡単に行うことができる。一方、軸受けは回転磁界の回転中心にあって、試料テーブルの荷重を集中的に支持するため、試料棚を乗せた試料プレートの回転はスムースとなる。また、軸受けは1箇所に集中しており、分散していないため、腐食性の薬剤からシールする構造を容易化できる。
 シールする構造としては、リング状シールパッキンを用いるのが望ましい。リング状シールパッキンを備えることにより耐久性を向上させることができ、加えて、耐アキシアル荷重軸受部分に清浄空気を導入することにより耐久性を著しく向上させて、過酸化水素に代表される酸化性の強い滅菌ガスによる滅菌処理を行った後でも、試料テーブルは安定した動作を行うことができるようになる。また、滅菌に過酸化水素を利用できるため、乾熱滅菌や他の滅菌方法に比べて、培養を停止している時間を短縮することができ、本発明を自動インキュベータなどに適用する場合にも生産効率を向上させることができる。
図1は従来の自動搬送機能付き恒温装置を示した斜視図である。 図2は従来の自動搬送機能付き恒温装置の試料テーブル周辺を示した断面図である。 図3は第1の実施例の試料テーブルを示した分解図である。 図4は第1の実施例の試料テーブルを恒温装置に配置した際の断面図である。 図5は第2の実施例の試料テーブルにおけるシールパッキン周辺を示した断面図である。 図6は試料テーブルが備える自在式キャスターの断面図である。 図7は試料テーブルを示した図である。
 以下に、本発明の実施の形態を図面に従って説明する。図3は本実施例の試料テーブル10を構成する主要な部材を示した分解図であり、図4は各部材が組み付けられた状態の断面図である。恒温室5は、その内部に周囲が壁で囲われた閉空間を有し、この閉空間を囲う壁のうちの底部分の壁が床面5aになっている。本発明の試料テーブル10は、ベース部材であるベースプレート13が固定ブラケット14によって、恒温室5の床面5aに4箇所で固定されている。さらに、上方からの荷重を受け止めるために、ベースプレート13は支持ブロック15によって4箇所で支持され、支持ブロック15とベースプレート13とは六角ボルトで固定されている。支持ブロック15の床面5aに当接する部分には、樹脂製のパッド16が取り付けられている。なお、本発明の試料テーブル10の各部材を締結固定するネジは十字穴付ボルトや六角穴付ボルトのような頂部に窪みを有するものよりも、窪みのない六角ボルトを使用するのが好ましい。これは、過酸化水素ガスが試料テーブル10の隅々まで行き届くようにするためと、滅菌後の拭き取り作業を容易にするためである。また、パッド16に使用される素材は、過酸化水素に対し耐性のあるものが好ましく、さらに耐熱性の高い物であれば、乾熱滅菌にも耐えることができるので、より好ましい。
 ベースプレート13の中央部には2種類の異なる直径を有する円形の穴が同心軸状に形成されている。その穴はベースプレート13の下側に形成された穴の方が直径は小さく、上側の方が直径は大きいものとなっている。この上側の穴はリング状の軸受17の外輪が密着状態で嵌入可能な直径を有し、軸受17は上側の穴底部に当接して上側の穴深さ位置で上下方向に支持されている。軸受17の内輪には、円柱状の回転シャフト18が上方から密着状態で嵌入されている。回転シャフト18は、上方に軸受17の内輪直径よりも大きい鍔部を有し、この鍔部が軸受17の内輪の上辺に当接して上下方向に支持されることとなっている。上記構成により、回転シャフト18は、軸受17を介して回転自在にベースプレート13に支持されることとなる。
 回転シャフト18の上面には、円形の試料プレート19が回転シャフト18に対し同心軸状にボルト留めされている。試料プレート19の試料棚3が載置される面には、試料棚3の位置決めをするためのピン20が試料棚3の底部に対応する位置に固定されている。さらに、回転シャフト18の底面には、従動マグネット6を円状に配置したマグネットプレート21が回転シャフト18に対し同心軸状に下方からボルト留めされていて、試料プレート19と回転シャフト18及びマグネットプレート21は、ベースプレート13に対し一体的に回転自在に支持されることとなる。駆動源8は駆動マグネット7に駆動力を与えると、床面5aの下側から床面5aを透過して回転磁界が恒温室5内に至る。この回転磁界の回転中心は、回転シャフト18の回転中心に一致している。駆動マグネット7と従動マグネット6との間の磁気ギャップ空間に、床面5aが両者に物理的に接触しないように配置される。
 この構造により、マグネットプレート21に配置された従動マグネット6と、恒温室5の外部であって、従動マグネット6に対応する位置に配置された複数の駆動マグネット7とが磁気結合することとなり、駆動源8から駆動マグネット7に与えられた駆動力を従動マグネット6に伝達し、ひいては、試料プレート19を回転動作させることが可能となっている。また、ベースプレート13や固定ブラケット14、支持ブロック15、試料プレート19、マグネットプレート21といった過酸化水素ガス雰囲気に晒される部材には、過酸化水素による酸化を防止するために塩化ビニールやポリケトンといった樹脂、若しくは、ステンレスや、表面に酸化防止処理を施したアルミ、鉄といった金属を使用することができる。また、過酸化水素による酸化作用以外にも、恒温装置1が培養運転中、恒温室5内部は通常湿度90%以上、庫内温度37度の環境に維持されるので、各部材の防錆処理は非常に重要なものとなる。
 本実施例で使用される軸受17は、試料プレート19、回転シャフト18、マグネットプレート21といった構造物及び、試料プレート19上に配置される複数の試料棚3、試料棚3に収容される複数の容器2といった部材全ての荷重を支持する強度が必要となる上に、上記部材の荷重に加えて、駆動マグネット7と従動マグネット6の磁気による吸着力も支持した上で円滑に回転するだけの強度を必要とする。
 軸受17は、外輪と内輪と、その間に配置された転動体と、その転動体を保持する保持器とから構成され、軸を円滑に回転させるために広く用いられていて、一般的には、ステンレスや鉄といった金属製のものが多く使われている。さらに、円滑に回転させる目的から、転動体の周囲に潤滑剤としてグリスが塗布、充填されることが多い。こういった軸受は過酸化水素ガス雰囲気中に晒されると、過酸化水素ガスの酸化作用によって金属が錆付き使用できなくなってしまう。さらに、内部にグリスが塗布、充填されている場合、グリスに含まれる微量の水分や、庫内の高湿度環境からグリス内部に浸透した水分が雑菌の温床となってしまう。このグリス内の水分中に存在する雑菌は、過酸化水素ガスによる殺菌でも死滅させることはできない。さらに、軸受17内部をシール部材によって外部と隔離させたものも存在するが、シール性能が十分ではない。また、培養中の湿度90%以上の雰囲気に長時間晒されているだけで、軸受17が錆を発生させてしまうこともある。そこで、本発明の試料テーブル10では、潤滑剤を必要としない軸受17を使用する。特に、耐荷重や過酸化水素に対する耐性を考慮して、PTFE(ポリテトラフルオロエチレン)やPEEK(ポリエーテルエーテルケトン)、PPS(ポリフェニレンサルファイド)等の樹脂製軸受や、ジルコニアや炭化ケイ素、窒化ケイ素等から製造されるセラミック軸受を用いるのが好ましい。
 さらに、金属製の軸受を使用する実施例では、以下のシール構造とすることで、過酸化水素ガス雰囲気や高湿度雰囲気から軸受17を保護している。また、図5にその他の実施例を示す。ベースプレート13に空間25に通じる孔45を開け、チューブ46を通して清浄空気を送り、空間25内を陽圧に保ちながら排気口47、逆止弁48を通して恒温室の外部に排出する。なお、本実施例に用いられる軸受17には、軸受17の回転中心線方向に大きな荷重が掛かることから、深溝玉軸受やアンギュラ玉軸受、クロスローラ式軸受といった耐アキシアル荷重軸受が好ましい。さらに、ベースプレート13や回転シャフト18の軸受17と当接する部分の形状を変更することで、回転中心線方向の荷重に対しより強度の高いスラスト玉軸受やスラストころ軸受を使用することも十分可能である。
 軸受17を庫内雰囲気から保護するために、本発明の試料テーブル10には、軸受17の上下方向二箇所にシール部材が設けられている。シール部材はリング状のシールパッキン22と、そのシールパッキン22が当接する位置に配置されたシールプレート23とからなる。リング状のシールパッキン22は、回動する部材である試料プレート19とマグネットプレート21にそれぞれ形成された低い円柱状の突起部分に密着して固定されていて、試料プレート19とマグネットプレート21と共に一体的に回動する。また、本実施例に使用されるシールパッキン22は断面形状が略四角形のリング状の部材で、外周側には、リング部分から全周にわたって鍔状に張り出したリップ24が一体的に形成されている。リップ24は断面略四角形のリング状本体よりも高さ方向及び外周方向に張り出すように形成されていて、先端に行くにつれて薄くなるテーパー状に形成されている。このリップ24の先端部分が全周にわたってシールプレート23に接触することで軸受17の配置された空間を高温多湿の庫内雰囲気から隔離している。
 シールパッキン22の素材は、フッ素ゴム、アクリルゴムや水素化ニトリルゴム、シリコーン樹脂、酢酸ビニルエチレン樹脂、エチレンプロピレンゴムといった耐熱性や耐薬品性に優れ、柔軟性を有する素材が望ましい。また、シールパッキン22はリップ24が全周にわたってベースプレート13に固定されたシールプレート23に当接し、かつ試料プレート19及びマグネットプレート21と一体的に回転することから、耐摩耗性が高く、摩擦抵抗の少ない素材であるフッ素ゴムが特に望ましい。
 次に本実施例で使用されるシールパッキン22のリップ24と当接するシールプレート23について説明する。シールプレート23はベースプレート13上の、試料プレート19及びマグネットプレート21に面する面の二箇所にそれぞれ固定されているリング状の部材であり、ベースプレート13と同心軸状に配置されている。シールプレート23の試料プレート19への固定方法は、ボルト留めでもよいし接着でもよいが、シールプレート23は軸受17の外輪を押さえ留める役割も果たしているので、軸受17の交換作業を考慮するとボルト留めするのが望ましい。さらに、シールプレート23とベースプレート13とを隙間なく固定する目的から、シールプレート23とベースプレート13の間にパッキンを挟めば、より密閉性は向上する。同様に、マグネットプレートに固定したパッキン22のリップ24をベースプレート又はシールプレート23に当接させる。尚、リング状シールパッキンのリップの向きは、上記に限らず、上下又は内外いずれでもよい。即ち、上部パッキン22をベースプレート13上面に固定してそのリップ24を回転する試料プレート19の下部突起部に当接させ、下部パッキン22をベースプレート13下面に固定してそのリップを回転するマグネットプレート21の上部突起部に当接させてもよい。
 シールプレート23の素材としては、ステンレス材やアルミ材といった各種金属や、さらには摩擦抵抗の少ないポリテトラフルオロエチレンといったフッ素系樹脂やシリコーン樹脂を用いるのが好ましい。金属部材を用いる場合には、表面の酸化防止に加え、シールパッキン22のリップ24が当接したまま回転動作することから、摩擦抵抗の少ないフッ素による表面コート処理を施すのが好ましい。さらに、リップ24が全周にわたってシールプレート23に接触できるように、リップ24に当接する面は平坦であることが必要となる。
 図5は、図4に示した本発明の試料テーブル10の、シールパッキン22周辺を拡大した図である。上記構成により、図5において空間25は、ベースプレート13、試料プレート19、マグネットプレート21、回転シャフト18、シールパッキン22、シールプレート23といった部材で密閉され、外部から隔離されたものとなっているので、恒温室5内部を過酸化水素ガス雰囲気にしたとしても、軸受17は過酸化水素ガスの影響を受けることはない。さらに、通常の培養環境である湿度90%以上の雰囲気からも隔離されることとなる。さらに、空間25を非腐食性の雰囲気にするために、ベースプレートにこの空間25に通じる孔45を開け、清浄空気や乾燥空気などの気体をこの空間に導入することができる。
 次に、従動マグネット6を載置するマグネットプレート21について説明する。マグネットプレート21は円盤状で、恒温室床面5aに面する側には、従動マグネット6が同心円上に複数配置されている。従動マグネット6のマグネットプレート21への固定方法は、接着剤やネジ等によるものでもよいし、マグネットプレート21の素材を鉄にして従動マグネット6の磁気吸引力による固定としてもよい。本実施例では、鉄製のマグネットプレート21に、従動マグネット6に対応する大きさの窪みを従動マグネット6の数だけ同心円上に設け、その窪みに各従動マグネット6を嵌め込み、磁気吸引力による固定としている。これにより、万が一従動マグネット6を破損した場合でも、容易に交換部品と取り替えることができる。さらに、マグネットプレート21を鉄製とすることで、従動マグネット6が持つ磁力線を拡散させない効果がある。また、マグネットプレート21と従動マグネット6は、酸化防止の表面処理として過酸化水素に対し耐性のあるニッケルメッキを施すのが好ましい。なお、ニッケルメッキ以外にも過酸化水素に耐性のある樹脂や塗料で従動マグネット6をコーティングしたり、樹脂で密閉したりすることも十分可能である。
 マグネットプレート21はベースプレート13に軸受17を介して回転可能に支持された回転シャフト18の底面に、従動マグネット6を配置した面が恒温室5の床面5aに向くように取り付けられている。ここで、従動マグネット6が恒温室5の外部の従動マグネット6に対応する位置に配置された複数の駆動マグネット7と磁気結合することで、駆動源8から駆動マグネット7に与えられた回転力が従動マグネット6に伝達され、マグネットプレート21、回転シャフト18、試料プレート19が一体的に回転することとなる。
 本実施例の試料テーブル10は、試料プレート19上に載置された複数の試料棚3に収納された複数の容器2を、自動で搬送することができる自動搬送機能を備えた恒温装置1に設置して使用されることから、目的の容器2に搬送ロボット12がアクセスできるように回転方向の位置を正確に検出される必要がある。そこで、本実施例の試料テーブル10には、恒温装置1に備えられた回転位置検出のためのホールセンサ26が試料テーブル10の回転位置を検出するための目的物となるマグネット27がブラケット28を介して取り付けられている。ホールセンサ26はホール効果を利用したセンサで、マグネット27が発生する磁界を電気信号に変換し出力するもので、磁界を検出することから、恒温室5の床面5aといった遮蔽物を透過して目的物であるマグネット27の磁界を検出することができるセンサである。このホールセンサ26の検出したタイミングと駆動源8であるモータの回転位置を記憶しておけば、目的の試料棚3を搬送ロボット12がアクセスできる位置に移動させることが可能となる。
 本実施例の試料テーブル10は支持ブロック15底面に取り付けられたパッド16が恒温室床面5aに当接することで恒温室5内に設置され、固定ブラケット14をネジ留めすることで正確な位置決めと固定が行われる。固定ブラケット14を固定するネジ29は、前述のとおり雑菌の残留を抑制する目的から窪みのない六角ボルトや、ローレットネジとするのが好ましい。さらに、恒温室5の床面5aには袋ナット30を溶接することで、恒温室5内部の雰囲気を外部に漏らすことがなくなる。さらに、固定するネジ29にシール構造を備えたワッシャ31を付加することで、より密閉性を高めることが可能となる。
 次に、特許文献1のボールキャスターや、耐熱樹脂製の車輪を回転可能に支持する軸受といった金属製部品の周囲に対して、シールパッキンを適用して、腐食性の薬剤に晒されないようにした例を、本発明の比較例として図6、図7を参照して説明する。本例における試料テーブル40では、試料プレート19を回転させる機構として試料プレート19の底面に自在式キャスター32を複数備えることとしている。図6Aはこの自在式キャスター32の構造を示す断面図であり、図6Bは側面図である。自在式キャスター32には、キャスター本体を水平面内で旋回可能に保持している軸受33と、車輪34に挿入され、車輪34を円滑に回転させるための軸受35の2つが備えられている。さらに、2つの軸受33、35それぞれを外部雰囲気から保護するために、第2の実施例で説明したものと同様の形態であるリング状のシールパッキン36、37が備えられている。
 外輪を車輪34に固定された軸受35は、支持ブロック38a、38bに両端を固定されたシャフト39を内輪に挿入されている。さらに、軸受35の左右には、内輪よりも外形が若干小さいカラー41がシャフト39に挿入されていて、このカラー41と支持ブロック38a、38bが当接して固定されることで、車輪34は円滑に回転できる構造となっている。支持ブロック38a、38bの軸受35に対面する側には、低い円柱状の突起が形成されていて、この低い円柱状の突起部分に密着状態でシールパッキン36がそれぞれ固定されている。シールパッキン36のリップ部分先端は全周にわたって車輪34に接触していて、この構成によって軸受35が配置されている周辺は密閉された空間が形成され、外部雰囲気から隔離された空間となっている。
 支持ブロック38a、38bは、上面をキャスターブロック42に固定されている。キャスターブロック42は支持ブロック38a、38bが固定できる四角形の形状をしていて、上方には、低い円柱状の突起が形成されていて、この低い円柱状の突起部分に密着状態でシールパッキン37が固定されている。さらに、この低い円柱状の突起部分には、軸受33の外輪の直径とほぼ同一の円形の窪みが形成されていて、この窪み部分に軸受33が全体の高さの半分程度が沈み込むように挿入されている。軸受33の内輪はベースブロック43の底面中央付近に形成された円柱状の突起部分に挿入されている。ベースブロック43は上面を試料プレート19に固定されていて、底面は、中央付近に円柱状の突起部分が形成されていて、この突起部分は軸受33の内輪が密着状態で挿入できる程度の直径を有していて、軸受33よりも若干低い高さを有している。さらに、この円柱状の突起の根本部分は円柱状突起の直径よりも若干大きい直径のカラー状の微小な突起を形成していて、軸受33を挿入した場合、この微小な突起に内輪が当接することとなり、外輪は自由に回転することができる。
 ベースブロック43の軸受33よりも外周側には、軸受33を取り囲むように土手が形成されている。この土手部分に前述したシールパッキン37のリップ部分が全周にわたって接触していて、この構成によって軸受33が配置されている周辺は密閉された空間が形成され、外部雰囲気から隔離された空間となっている。上記説明した構成により、車輪34は軸受35を介して支持ブロック38a、38bに回転自在に支持され、その支持ブロック38a、38bはキャスターブロック42とともに一体的にベースブロック43に軸受33を介して回転自在に保持されることとなり、自在キャスター32と試料テーブル40は水平面内のあらゆる方向に移動可能となっている。さらに、本実施例の自在式キャスター32は、車輪34の回転中心軸とキャスターブロック42の回転中心軸がオフセットした位置に配置されている。このため、車輪34は常に進行方向に向かった回転動作が可能となり、摩擦の少ない円滑な回転運動を行うことができる。なお、本実施例では、軸受33、35を外部雰囲気から保護するシールパッキン36、37を備えるものとしているが、軸受33、35を前の実施例と同様にセラミック製若しくは樹脂製とすることで、シールパッキン36、37を備えないものとすることも十分可能である。
 次に、自在式キャスター32を備えた試料プレート19について、図7を参照し、詳しく説明する。図7Aは本例の試料プレート19を下から見た図であり、図7Bは、正面図である。本実施例では、自在式キャスター32を円形の試料プレート19の中心位置を中心とした同心円上に4個、等配位置に備えたものとなっているが、3個以上であればその数に限定はない。さらに、全ての自在式キャスター32は試料プレート19の中心位置から同じ距離に配置される必要はなく、位置をずらして配置することにより、車輪34の軌跡を一つにしないことで、恒温室床面5aの摩擦による影響を分散することができる。
 自在式キャスター32が配置された内側には、従動マグネット6を固定したマグネットプレート21が固定ブロック44を介して試料プレート19に対し同心円状に取り付けられている。固定ブロック44は、従動マグネット6が恒温室床面5aから数ミリ程度離間した位置になるような高さ寸法を有する部材で、本実施例では、4個配置されている。さらに、第1の実施例と同様に、回転位置を検出するホールセンサ26の目的物としてのマグネット27を試料プレート19に備えている。
 この構成により、本例の試料テーブル40を恒温室床面5aの所定の位置に配置することで、従動マグネット6が恒温室5の外部の従動マグネット6に対応する位置に配置された複数の駆動マグネット7と磁気結合することとなり、駆動源8から駆動マグネット7に与えられた回転力が従動マグネット6に伝達され、マグネットプレート21、及び試料プレート19が一体的に回転することが可能となる。なお、図7Aでは、矢印に示した方向が試料プレート19の回転方向とした場合、自在式キャスター32が備える車輪34の回転軸は、自在式キャスター32の水平面内での旋回軸に対し後方に位置することとなる。こうすることによって、試料プレート19の安定した回転動作が可能になっている。
 本例の試料テーブル40に於いても、第1の実施例と同様、試料テーブル40を構成する部材は、過酸化水素雰囲気や高湿度雰囲気に耐えられる素材を使用することが好ましく、さらに、アルミや鉄といった金属を使用する場合には表面に上記雰囲気に耐えることのできる表面処理を施すことが必要となる。さらに、ベースブロック43については、シールパッキン37のリップ部分が当接したまま回転動作することから、摩擦抵抗の少ないフッ素による表面コート処理を施すのが好ましい。さらに、リップ部分が全周にわたってベースブロック43に接触できるように、リップ部分に当接する面は平坦であることが必要である。
 また、シールパッキン36のリップ部分が全周にわたって当接する車輪35の素材については、試料テーブル40の全荷重を支持し、且つ恒温室床面5aに接触し円周軌道を回転動作しながら移動していることから、高強度で摩擦抵抗の少ない素材である必要がある。さらに、前述のように過酸化水素雰囲気や高湿度雰囲気に耐えられる必要がある。上記理由から、車輪35の素材はポリイミド樹脂(PI)やPEEK材、PPS材といったエンジニアリングプラスチック材が好適である。さらに、こういったエンジニアリングプラスチック材は耐熱性の高いものが多く、過酸化水素滅菌以外の滅菌方法、例えば乾熱滅菌といった滅菌方法にも適用することが可能となる。
1   恒温装置
2   容器
3   試料棚
4   試料テーブル(先行技術)
5   恒温室
5a  恒温室床面
6   従動マグネット
7   駆動マグネット
8   駆動源
9   ボールキャスター
10  試料テーブル(第1の実施例)
11  昇降手段
12  搬送ロボット
13  ベースプレート
14  固定ブラケット
15  支持ブロック
16  パッド
17  軸受
18  回転シャフト
19  試料プレート
20  ピン
21  マグネットプレート
22  シールパッキン
23  シールプレート
24  リップ
25  空間
26  ホールセンサ
27  マグネット
28  ブラケット
29  ネジ
30  袋ナット
31  シール構造を備えたワッシャ
32  自在式キャスター
33  軸受
34  車輪
35  軸受
36  シールパッキン
37  シールパッキン
38a 支持ブロック
38b 支持ブロック
39  シャフト
40  試料テーブル(第3の実施例)
41  カラー
42  キャスターブロック
43  ベースブロック
44  固定ブロック
45  清浄空気導入孔
46  チューブ
47  排気孔
48  逆止弁

Claims (10)

  1. 周囲が壁で囲われた閉空間を内部に有し、当該閉空間を囲う壁からなる恒温室と、
    前記壁のうち底部分の床面の下側から、鉛直軸方向の回転中心を有する回転磁界を、当該閉空間に当該床面を通して与える回転磁界発生手段と、
    前記恒温室の閉空間内に着脱自在に配置されたベースプレートとを有し、
    前記ベースプレートは、
    前記鉛直軸方向の回転中心に一致した位置に回転シャフトの中心を有する軸受けを具備し、
    前記軸受けの上側の前記回転シャフトには、試料を収容した容器を収納する試料棚を搭載する試料プレートが連結され、
    前記軸受けの下側の前記回転シャフトには、複数の従動マグネットを備えたマグネットプレートが連結され、前記従動マグネットは前記恒温室の壁面を透過した回転磁界と磁気結合して、前記回転磁界に従って前記回転シャフトを回転させることを特徴とする恒温装置。
  2. 前記回転磁界発生手段は、前記回転中心に回転するハウジングユニットと、当該ハウジングユニットに相互の配置位置を規定された状態で実装された複数の駆動マグネットとを有することを特徴とする請求項1に記載の恒温装置。
  3. リップを有するリング状シールパッキンが前記軸受けの上下に夫々備えられ、前記ベースプレートと前記試料プレートの間、及び従動マグネットをマグネットプレートとの間において前記軸受けを前記閉空間の雰囲気から隔離することを特徴とする請求項1に記載の恒温装置。
  4. 前記リング状シールパッキンの素材は、フッ素ゴムである、ことを特徴とする請求項3に記載の恒温装置。
  5. 前記ベースプレートは、前記リング状シールパッキンの前記リップが接触する位置に、前記リップが接触する表面が平滑に処理されたシールプレートを備えることを特徴とする請求項3に記載の恒温装置。
  6. 前記ベースプレートは、前記恒温室床面と接触する部分に、耐熱樹脂製のパッドを備えていることを特徴とする請求項3に記載の恒温装置。
  7. 前記ベースプレートは、前記恒温室床面にブラケットを介してネジ留めされることを特徴とする請求項1に記載の恒温装置。
  8. 前記ベースプレートには、
    前記閉空間の外部と前記リング状シールパッキンによって隔離された前記中心軸周囲の空間とが連通可能な流路が形成され、
    前記中心軸周囲の空間には気体が前記閉空間の外部から導入されることを特徴とする請求項3に記載の恒温装置。
  9. 前記中心軸周囲の空間に導入する前記気体は、清浄空気であることを特徴とする請求項8に記載の恒温装置。
  10. 前記中心軸周囲の空間に導入する前記気体は、窒素ガスであることを特徴とする請求項8に記載の恒温装置。
PCT/JP2012/064875 2011-06-14 2012-06-11 回転する試料テーブルを備える恒温装置 WO2012173074A2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280028011.XA CN103597065B (zh) 2011-06-14 2012-06-11 具有旋转试样台的恒温装置
KR1020137033049A KR101541760B1 (ko) 2011-06-14 2012-06-11 회전하는 시료 테이블을 구비하는 항온 장치
EP12800827.3A EP2722385B1 (en) 2011-06-14 2012-06-11 Constant-temperature device provided with rotating specimen table
JP2013520537A JP5788983B2 (ja) 2011-06-14 2012-06-11 回転する試料テーブルを備える恒温装置
US14/126,392 US9364082B2 (en) 2011-06-14 2012-06-11 Constant-temperature device provided with rotating specimen table

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011131824 2011-06-14
JP2011-131824 2011-06-14

Publications (2)

Publication Number Publication Date
WO2012173074A2 true WO2012173074A2 (ja) 2012-12-20
WO2012173074A3 WO2012173074A3 (ja) 2013-02-07

Family

ID=47357559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064875 WO2012173074A2 (ja) 2011-06-14 2012-06-11 回転する試料テーブルを備える恒温装置

Country Status (6)

Country Link
US (1) US9364082B2 (ja)
EP (1) EP2722385B1 (ja)
JP (1) JP5788983B2 (ja)
KR (1) KR101541760B1 (ja)
CN (1) CN103597065B (ja)
WO (1) WO2012173074A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141136A1 (en) * 2013-03-13 2014-09-18 Association For The Advancement Of Tissue Engineering And Cell Based Technologies And Therapies - A4Tec Rotational dual chamber bioreactor: methods and uses thereof
JPWO2016125863A1 (ja) * 2015-02-05 2017-11-16 オリンパス株式会社 細胞培養装置
WO2020144968A1 (ja) * 2019-01-11 2020-07-16 ローツェライフサイエンス株式会社 ガス滅菌に対応可能な駆動機構
US10927338B2 (en) * 2014-08-14 2021-02-23 Ika-Werke Gmbh & Co. Kg Insert shelf and incubator
CN112517101A (zh) * 2020-12-21 2021-03-19 吉林大学第一医院 一种用于细胞实验的工作台
CN113373989A (zh) * 2021-06-04 2021-09-10 吉林建筑大学 一种地基注浆膨胀试验仪
JP2022516326A (ja) * 2019-01-04 2022-02-25 オリバイオテク・リミテッド 細胞処理ユニット、細胞処理システム、およびそれを使用する方法
CN115445674A (zh) * 2022-08-24 2022-12-09 芜湖大捷离合器有限公司 一种高低温湿热试验箱

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6304181B2 (ja) * 2015-09-09 2018-04-04 トヨタ自動車株式会社 ガス検出装置
CN106883989A (zh) * 2015-12-16 2017-06-23 爱术特有限公司 植物组织培养体无菌培养容器及包括它的家用无菌培养装置
EP3389838B1 (en) * 2016-01-19 2023-10-04 Novartis AG Cell bag rotator
CA3051051A1 (en) * 2016-06-08 2017-12-14 The Regents Of The University Of California Method and device for processing tissues and cells
CN105952905B (zh) * 2016-06-27 2018-11-23 九江精密测试技术研究所 一种温箱转台轴系密封设计
RU179338U1 (ru) * 2016-12-13 2018-05-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого" Полка вращающаяся демонстрационная
JP6990908B2 (ja) * 2017-08-25 2022-02-03 株式会社日立ハイテクサイエンス 恒温装置、及びそれを備えた分析装置
CN108784992B (zh) * 2018-04-17 2020-02-28 李连平 一种兽医站带有台面消毒功能的手术台
CN109012495B (zh) * 2018-09-20 2024-03-15 西安力创材料检测技术有限公司 一种在反应釜内高温高压条件下动态监测变形指数的装置
CN110331082A (zh) * 2019-07-25 2019-10-15 黄淮学院 一种厌氧微生物分离装置
CN110604623B (zh) * 2019-09-18 2024-06-04 台州市中心医院(台州学院附属医院) 一种内镜存储装置及方法
CN111135893A (zh) * 2019-12-13 2020-05-12 黑龙江省恒生干细胞工程有限公司 一种新型冰浴盒
KR102312175B1 (ko) * 2020-03-31 2021-10-13 주식회사 플렉스로직 비중 자동 측정기
CN111812320B (zh) * 2020-07-28 2023-04-25 山东圣剑医学研究有限公司 一种全自动免疫分析装置的检测试剂盒
CN112293979A (zh) * 2020-10-31 2021-02-02 夏雷 一种具有防护功能的基础医学标本储存装置
US11980145B2 (en) * 2020-11-17 2024-05-14 Haier Us Appliance Solutions, Inc. Drive assembly for rotating a grow tower in an indoor garden center
CN112985929A (zh) * 2021-03-09 2021-06-18 浙江大学 一种智能全自动连续单颗粒采样装置
CN113322155B (zh) * 2021-05-31 2022-07-22 济南千麦医学检验有限公司 幽门螺旋杆菌用培养箱
CN114574334B (zh) * 2022-04-07 2022-12-27 山东省食品药品审评查验中心 一种基于旋转摇匀的微生物培养设备
CN118376847A (zh) * 2023-12-13 2024-07-23 深圳东昇射频技术有限公司 极限温度下辐射杂散测试装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1687149A (en) * 1927-08-10 1928-10-09 Louis S Shauer Refrigerator revolving receptacle
US1732113A (en) * 1928-06-05 1929-10-15 Peter C A Van Der Meer Turntable
US1941906A (en) * 1933-06-23 1934-01-02 Samuel I Cohen Refrigerator
US2279558A (en) * 1940-09-20 1942-04-14 Leonard F Clerc Refrigeration device
US2556854A (en) * 1949-10-29 1951-06-12 Standard Oil Dev Co Magnetic coupling drive for highpressure stirred reactors
US2638558A (en) * 1951-09-01 1953-05-12 Fmc Corp Magnetic power transmission
US2768316A (en) * 1952-01-21 1956-10-23 Neiss Oskar Permanent magnetic couplings
US2968248A (en) * 1957-12-16 1961-01-17 Gen Motors Corp Magnetic drive impeller pump
US2951447A (en) * 1958-07-31 1960-09-06 Gen Motors Corp Impeller pumps with magnentic drives
US3299819A (en) * 1964-12-07 1967-01-24 Flo Mac Inc Magnetic drive
US3304990A (en) * 1965-02-15 1967-02-21 Univ Tennessee Res Corp Explosion proof centrifugal evaporator with magnetic drive
US3601372A (en) * 1969-05-20 1971-08-24 New Brunswick Scientific Co Incubator shaker apparatus
US3572981A (en) * 1969-07-01 1971-03-30 Greenlee Bros & Co Hermetically sealed pump
US4266914A (en) * 1979-03-12 1981-05-12 Dickinson David G Magnetic drive laboratory pump
US4304532A (en) * 1979-12-17 1981-12-08 Mccoy Lee A Pump having magnetic drive
US4312752A (en) * 1980-03-19 1982-01-26 Malik Richard J Aquarium filter apparatus
US4635894A (en) * 1985-06-17 1987-01-13 Fournier Accessory Furniture, Inc. Multi-purpose furniture swivel assembly
US5324540A (en) * 1992-08-17 1994-06-28 Tokyo Electron Limited System and method for supporting and rotating substrates in a process chamber
US5470744A (en) * 1994-04-14 1995-11-28 Astle; Thomas W. Bioassay incubator for use with robotic arms
US5775665A (en) * 1996-09-25 1998-07-07 Peerless Industries Security mounting assembly
JP3799876B2 (ja) * 1999-06-23 2006-07-19 松下電器産業株式会社 インキュベータ
EP1414576A4 (en) * 2001-07-18 2007-07-18 Irm Llc EXTREMELY PRODUCING INCUBATION DEVICES
JP4004310B2 (ja) * 2002-02-22 2007-11-07 三洋電機株式会社 培養装置
US7314341B2 (en) * 2003-01-10 2008-01-01 Liconic Ag Automatic storage device and climate controlled cabinet with such a device
CN100422583C (zh) * 2003-04-24 2008-10-01 松下电器产业株式会社 流体轴承装置及磁盘旋转装置
EP1657552A1 (en) * 2004-11-12 2006-05-17 The Automation Partnership (Cambridge) Limited Vessel loading/unloading
EP1861721B1 (en) * 2005-03-10 2017-05-03 Gen-Probe Incorporated Systems and methods to perform assays for detecting or quantifying analytes within samples
US20060270027A1 (en) * 2005-05-27 2006-11-30 Irm Llc High throughput incubation devices and systems
JP5731825B2 (ja) * 2008-07-01 2015-06-10 ローツェ株式会社 恒温装置
KR101232675B1 (ko) * 2008-07-01 2013-02-13 로제 가부시키가이샤 항온 장치
JP2010148418A (ja) 2008-12-25 2010-07-08 Is Technology Japan Kk 恒温装置
US8282268B2 (en) * 2009-02-24 2012-10-09 Island Oasis Frozen Cocktail Co., Inc. Magnetic drive for food processing apparatus
CN201437086U (zh) * 2009-06-19 2010-04-14 江苏出入境检验检疫局工业产品检测中心 挥发性物质释放舱舱内风速控制装置
US8925346B2 (en) * 2012-02-07 2015-01-06 Thermo Fisher Scientific (Asheville) Llc High performance freezer having cylindrical cabinet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2722385A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10125343B2 (en) 2013-03-13 2018-11-13 Association For The Advancement Of Tissue Engineering And Cell Based Technologies And Therapies—A4Tec Rotational dual chamber bioreactor: methods and uses thereof
WO2014141136A1 (en) * 2013-03-13 2014-09-18 Association For The Advancement Of Tissue Engineering And Cell Based Technologies And Therapies - A4Tec Rotational dual chamber bioreactor: methods and uses thereof
US10927338B2 (en) * 2014-08-14 2021-02-23 Ika-Werke Gmbh & Co. Kg Insert shelf and incubator
JPWO2016125863A1 (ja) * 2015-02-05 2017-11-16 オリンパス株式会社 細胞培養装置
JP2022516326A (ja) * 2019-01-04 2022-02-25 オリバイオテク・リミテッド 細胞処理ユニット、細胞処理システム、およびそれを使用する方法
JP7366935B2 (ja) 2019-01-11 2023-10-23 ローツェライフサイエンス株式会社 ガス滅菌に対応可能な駆動機構
WO2020144968A1 (ja) * 2019-01-11 2020-07-16 ローツェライフサイエンス株式会社 ガス滅菌に対応可能な駆動機構
JPWO2020144968A1 (ja) * 2019-01-11 2021-11-25 ローツェライフサイエンス株式会社 ガス滅菌に対応可能な駆動機構
CN112517101A (zh) * 2020-12-21 2021-03-19 吉林大学第一医院 一种用于细胞实验的工作台
CN113373989A (zh) * 2021-06-04 2021-09-10 吉林建筑大学 一种地基注浆膨胀试验仪
CN113373989B (zh) * 2021-06-04 2022-09-27 吉林建筑大学 一种地基注浆膨胀试验仪
CN115445674A (zh) * 2022-08-24 2022-12-09 芜湖大捷离合器有限公司 一种高低温湿热试验箱
CN115445674B (zh) * 2022-08-24 2023-07-14 芜湖大捷离合器有限公司 一种高低温湿热试验箱

Also Published As

Publication number Publication date
US9364082B2 (en) 2016-06-14
US20140117824A1 (en) 2014-05-01
KR101541760B1 (ko) 2015-08-04
KR20140021025A (ko) 2014-02-19
EP2722385B1 (en) 2017-05-31
CN103597065B (zh) 2016-08-17
EP2722385A4 (en) 2015-03-18
JPWO2012173074A1 (ja) 2015-02-23
JP5788983B2 (ja) 2015-10-07
EP2722385A2 (en) 2014-04-23
CN103597065A (zh) 2014-02-19
WO2012173074A3 (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5788983B2 (ja) 回転する試料テーブルを備える恒温装置
JP5143737B2 (ja) 磁気シール組立体
CN102046771B (zh) 恒温装置
US9243714B2 (en) Sealing system and retractable assembly including such
US20120127825A1 (en) Mechanical seal device and processing apparatus
JP2015129586A (ja) ころがり軸受
US10710821B2 (en) Conveyance system
KR20150079485A (ko) 웨이퍼-형상 물체들의 표면들을 처리하기 위한 장치
US20220170820A1 (en) Rolling bearing test device, and method for testing rolling bearing
US20070076522A1 (en) Mixing apparatus and method with ceramic impeller bearings
US20170137765A1 (en) Sealed container and conveyance system
JP5151492B2 (ja) ロータリージョイント
US9945485B2 (en) Seal assembly for a sterile environment
US9574610B2 (en) Bearing assembly with outboard bearing support cartridge
KR20150106546A (ko) 종형 열처리 장치
JP2022500608A (ja) Rfidセンサ一体型メカニカルシール
CN101809345A (zh) 密封装置
Moerman Hygienic design of closed equipment for the processing of liquid food
CN216064683U (zh) 一种切削液紫外线消毒装置的清洁装置
JPH11287371A (ja) ロータリジョイント
EP4058413A1 (en) A head for a reactor for biofilm formation, reactor for biofilm formation, reactor for biofilm inactivation and removal from the adhesion surface, and related process for biofilm formation and process for biofilm inactivation and removal from the adhesion surface
JP4933745B2 (ja) 培養顕微鏡
Keller et al. Cleanroom suitability qualification of a six axis robot system for sterile pharmaceutical manufacturing: Holistic approach
KR101312430B1 (ko) 실링수단의 교체를 용이하게 할 수 있는 기밀유지 수중모터
JP2012077772A (ja) 攪拌装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800827

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013520537

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137033049

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012800827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14126392

Country of ref document: US

Ref document number: 2012800827

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE