[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012172138A1 - Method for the production of alkali cements from industrial and urban waste glass - Google Patents

Method for the production of alkali cements from industrial and urban waste glass Download PDF

Info

Publication number
WO2012172138A1
WO2012172138A1 PCT/ES2012/070408 ES2012070408W WO2012172138A1 WO 2012172138 A1 WO2012172138 A1 WO 2012172138A1 ES 2012070408 W ES2012070408 W ES 2012070408W WO 2012172138 A1 WO2012172138 A1 WO 2012172138A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkaline
vitreous
solution
silico
residue
Prior art date
Application number
PCT/ES2012/070408
Other languages
Spanish (es)
French (fr)
Inventor
Francisca PUERTAS MAROTO
Juan José TORRES CASTAÑÓN
Celia VARGA FERNÁNDEZ
Manuel Torres
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2012172138A1 publication Critical patent/WO2012172138A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/22Glass ; Devitrified glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/1535Mixtures thereof with other inorganic cementitious materials or other activators with alkali metal containing activators, e.g. sodium hydroxide or waterglass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to the field of construction, and more specifically, to the manufacturing sector of cement, concrete and prefabricated.
  • Portland exceeded 2,000 million tons, which is more than 300 kg per inhabitant of the planet; being the second product, after water, more consumed by man; In addition to being the essential component of the concrete used in construction.
  • the development of these Portland cement concretes has been one of the fundamental pillars in the progress achieved in Western countries during the twentieth century.
  • the manufacture of Portland cement implies an important consumption of thermal and electrical energy, since very high temperatures ( ⁇ 1500 ° C) are required to complete all the chemical reactions that lead to the formation of the Portland cement clinker; as well as the grinding processes of raw materials and final cement components. Due to the improvements introduced in the factories, the specific energy required has been significantly reduced in recent years. Between 1973 and 1988 the specific energy needed to produce clinker decreased from 4750 MJ / t of clinker to 3750 MJ / t. Since then, the specific energy has remained more or less constant. Additionally, the cement industry is also a highly polluting industry, as it exploits natural resources (quarries) and emits a large amount of polluting gases into the atmosphere (CO 2 , SO 2 , NO x ).
  • the CO 2 emissions are associated mainly to the decarbonation of limestone, which is the major constituent of the cement raw material (exceeding 60% of the total emission).
  • the remaining gases Pollutants are emitted during the combustion of fossil fuels used in cement plants.
  • waterglass hydrated alkali silicates
  • One way to improve the economic and ecological balance of alkaline cements would be to find substitutes (total or partial) of these alkaline activators, and in this line the present invention is framed, in which it is demonstrated that urban and industrial vitreous residues can be valid substitutes for these alkaline solutions of "waterglass” as activators in the preparation of alkaline cements. This is because vitreous residues, due to their chemical composition based primarily on S1O 2 (65-75%) and Na 2 Ü (12-15%), are potential
  • NSH Hydrated calcium-sodium silicate
  • vitroceramic composites together with other industrial waste or by-products, such as fly ash and slag, ceramic waste, etc.
  • the sintering takes place between 850-1100 ° C (F.
  • US 6344081 describes a concrete comprising cement and recycled glass particles.
  • US2005 / 0055069 describes a process of producing concrete from recycled glass, where said concrete comprises 25-79% by weight of glass; 8-35% by weight of cement and up to 22% by weight of an inhibitor of the alkali-silicon dioxide reaction.
  • cement manufacturing Conventional Portland One of the lines of research is to obtain new cements that lack clinker. These cements are obtained by mixing amorphous silico-aluminates such as blast furnace slags, fly ash, metacaolin or volcanic rocks, or binary and ternary mixtures of these, with strongly dissolved solutions. alkaline (NaOH, Na 2 C03 or hydrated alkali silicates) (F. Puertas (1995), Building Materials, vol. 45 (239), pp. 53-66). Numerous works have confirmed the good mechanical properties (A.
  • KR 2010037889 describes a cement manufacturing process comprising the use of recycled glass particles and fly ash, as well as an activating agent that can consist of NaOH, where the mixture is subsequently subjected to a curing process.
  • GB 2362643 describes a "green" cement formed from a mixture of pulp ash from paper waste (60-70% weight) and glass waste (30-40% weight).
  • These components can consist of slag vitreous blast furnace, fly ash or other silico-aluminous materials that can be activated alkaline.
  • alkaline solutions of the NaOH and / or NaOH + Na 2 C0 3 type will also be used .
  • the invention relates to a new process for the manufacture of alkaline cements based on the use of new raw materials (vitreous residues).
  • said procedure has the advantage, compared to other processes of the state of the art, of being carried out from an activation system not only chemical, but also mechanical-chemical.
  • Said mechanochemical activation system is especially advantageous, since it is a much more effective system from the point of view of the resistant development of cement and concrete pastes.
  • the present invention is capable of providing obvious economic and ecological advantages associated with the final product, but also related to the recovery or recovery of a waste (urban or industrial vitreous waste) not reusable in conventional glass manufacturing processes.
  • FIG. the sample the results of compressive strength as a function of the vitreous / slag residue ratio blast furnace glass under chemical activation with a NaOH / Na 2 C0 3 solution for 7 days;
  • FIG. Ib shows the results of flexural strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to chemical activation with a NaOH / Na 2 C0 3 solution for 7 days;
  • FIG. shows the results of compressive strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to chemical activation with a solution of NaOH / Na 2 CC> 3 for 90 days;
  • FIG. Id shows the results of flexural strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to chemical activation with a solution of NaOH / Na 2 CC> 3 for 90 days;
  • FIG. 2a shows the results of compressive strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to mechanochemical activation with a solution of NaOH / Na 2 CC> 3 for 7 days;
  • FIG. 2b shows the results of flexural strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to mechanochemical activation with a solution of NaOH / Na 2 CC> 3 for 7 days;
  • FIG. 2c shows the results of compression resistance as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to mechanochemical activation with a solution of NaOH / Na 2 CC> 3 for 90 days;
  • FIG. 2d shows the results of flexural strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to mechanochemical activation with a solution of NaOH / Na 2 CC> 3 for 90 days;
  • FIG. 3 shows the solubility of S1O 2 in White glass water and the effect of the particle size of the glass
  • FIG. 4 shows the results of chemical activation at T at room. Specifically, it shows the solubility of S1O 2 of the four glasses in the three media (3 ⁇ 40, NaOH and NaOH / Na 2 C0 3 );
  • FIG. 5 shows the solubilities in the low glass the conditions of chemical activation with temperature (80 ⁇ 2 ° C) and chemical activation at room temperature (22 ⁇ 2 ° C): FIG 5a in NaOH solution and FIG. 5b in NaOH / Na 2 C0 3 solution.
  • FIG. 6 shows the differences in solubility between the three activation processes for the Topaz and Mixture glasses in the NaOH / Na 2 C0 3 solution.
  • M Material or mixture of materials capable of being activated alkaline (preferably selected from blast furnace slags, fly ash, metacaolin, or any other natural or artificial material of silico-aluminous composition)
  • D Alkaline solution (preferably selected from NaOH or NaOH and Na 2 COs);
  • V Vitreous residue and A: Aggregates.
  • composition of these vitreous residues may vary according to the origin and type of vitreous residue selected, in general, the composition of the vitreous residues may comprise Si0 2 (65-75%), CaO (6- 12%), Na 2 0 (12-15%), A1 2 0 3 (0.5-5%) and Fe 2 0 3 (0.1-3%).
  • said composition may comprise Si0 2 (72.04%), A1 2 0 3 (1.62%), Fe 2 0 3 (0.27%), MgO (3.39%), CaO (8.19%), Na 2 0 ( 12.11%), K 2 0 (2.32%), Ti0 2
  • the process object of the invention is characterized in that it comprises mixing at least one silico-aluminous material capable of being alkaline activated and at least one alkaline activator consisting of at least one vitreous residue selected from urban vitreous residues and vitreous residues industrial, or any of its mixtures, where the percentage by weight of vitreous residue in the alkaline cement is between 20% and 80%, and more preferably between 50% and 80%. Additionally, at least one alkaline solution of pH greater than 13 is added to the mixture, wherein said solution is preferably selected from a solution of NaOH and a solution of NaOH and Na2C03.
  • the mixing and homogenization of the silico-aluminous material capable of being alkalinely activated (M) and of the vitreous residue (V) can be carried out mechanically (for example, by turbo), for at least 2 hours .
  • the process may comprise a previous additional step of treating the vitreous residue (V) with the alkaline solution of pH> 13 at a temperature preferably between 78 and 82 ° C.
  • V vitreous residue
  • M silico-aluminous material capable of being activated alkaline
  • chemical activation thereof can be carried out.
  • equivalent concentration preferably comprised between 3% and 20% Na 2 Ü
  • the temperature at which said curing stage is carried out depends on the nature of the material capable of being alkaline activated, and may vary between room temperature (between 20 ° C and 25 ° C, and more preferably between 20 and 22 ° C) or a higher temperature, preferably between 65 ° C and 85 ° C, and more preferably between 78 ° C and 82 ° C.
  • the first case is preferably carried out when the silico-aluminous material comprises calcium-rich silico-aluminates (for example, blast furnace vitreous slags) and the second, when it comprises calcium-poor silico-aluminates (such as ashes flyers).
  • the mortar preparation of these cements can be carried out, preferably, under equal conditions to those described in the European cement standard EN 197-1.
  • the vitreous residue (V) prior to the preparation of the mixture of the silico-aluminous material capable of being alkaline activated (M) and the vitreous residue (V), can be subjected to a process grinding, preferably in ball mill.
  • the material capable of being alkaline activated (M) is added (preferably, a mixture of silico- aluminates) to form mixtures with the corresponding proportions.
  • the ratio of silico-aluminous material / vitreous residue in said mixtures is between 80/20 and 20/80, and more preferably between 70/30 and 30/70.
  • the process of kneading, compacting and curing the specimens can be carried out under equal conditions to those described in the chemical activation, that is, under equal conditions to those described for the European cement standard EN 197-1.
  • the process may also comprise the addition of siliceous or calcareous aggregates (A), preferably in an A / M ratio between 1/1 and 4/1.
  • A siliceous or calcareous aggregates
  • the use of the cements described for the preparation of the corresponding concretes is a further object of the invention.
  • the Manufacture of these concretes can be carried out following the recommendations of the regulations and prescriptions of each country; in the case of Spain, following EHE-08.
  • an alkaline cement was prepared according to the process object of the invention, as previously described.
  • vitreous residue / vitreous slag mixtures from high kiln (BFS) from 30/70 to 100/0
  • BFS high kiln
  • the 0/100 mixture is the paste without vitreous residue. As can be seen, comparable resistance is obtained when the slag content is 60 or 80%.
  • this residue was subjected to a milling process in a ball mill. This grinding was carried out in such a way that for each gram of waste there were 100 g of balls in the ground, with differentiated granulometry.
  • the grinding times were: 10 min, 2h, 4h and 6h.
  • the blast furnace slag was added to form the mixtures with the corresponding proportions (30/70 to 100/0).
  • the liquid / solid ratio remained constant at 0.4.
  • the process of kneading, compacting and curing the specimens was carried out under equal conditions to those described in the chemical activation. In all cases, the mechanical resistance to bending and compression was determined at 7 and 90 days of curing.
  • vitreous residues were selected: white, green, topaz and unmanaged mixture. These materials were characterized through the FRX technique. Table 3 shows the chemical composition of these glasses when their particle size is less than 45 um.
  • the chemical activation process at T at room temperature consisted of magnetic stirring by means of a magnet at a constant and equal stirring speed for all cases.
  • the solid: liquid ratio was 1: 100.
  • the mechanical-chemical activation process was carried out in a steel ball mill, where the ratio of the size and number of balls to the amount of solid and liquid added is important in the dissolution of the glass. The best results were obtained with 5g of solid in 500mL of solution and with a quantity of lkg balls (with balls of different sizes).
  • the Si content was filtered and analyzed by ICP, in the liquids obtained, in order to determine the percentage of S1O 2 dissolved in the glasses.
  • the equipment used was an inductively coupled plasma atomic emission spectrometer (ICP) of the VARIAN 725-ES brand.
  • Figure 4 shows the solubility of the four glasses in the three media (H20, NaOH and NaOH / Na 2 C03) for a size less than 45 um.
  • Table 4 compares the% of dissolved S1O 2 , for the four glasses, after treatment for 6 hours in water and with the NaOH and NaOH / Na 2 C0 3 solutions.
  • the particle size of the glass is also a relevant factor, the higher solubilities and glass are obtained when the particle size thereof is less than 45 ⁇ .
  • the effect of the nature of the alkaline solution does not appear to be as relevant as in the T solubility tests at ambient.
  • the NaOH / Na 2 CC> 3 mixture solution is the one that behaves somewhat better, dissolving between 5 and 14% more S1O 2 in the Topaz and Mixture glasses, respectively. In this test under temperature values of dissolution percentages around 60% of total S1O 2 were obtained. the glasses.
  • Mechanochemical activation is slightly more effective than chemical activation at room temperature for long stirring times (above 6 hours) (see Figure 6).
  • the highest Si solubility of the glasses, under these activation conditions, was obtained when the alkaline solution was NaOH / Na 2 C03.
  • the particle size of the glass was less than 45 um, it is when the highest solubilities of SIO 2 were obtained.
  • the results obtained through this test allowed to know the amount of silicon that can be dissolved when preparing pasta specimens (ash / slag / kaolin + glass + alkaline activating solution), since these tests are done under a mixer , which is still a mechanochemical activation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The invention relates to a method for the production of alkali cements, characterised in that it comprises mixing an alkaline solution having a pH greater than 13 and selected from an NaOH solution or an NaOH and Na2C03 solution, with at least one alumino-silicate material that can be alkali-activated and at least one waste glass selected from urban waste glass, industrial waste glass or any of the mixtures of same, in which the percentage by weight of waste glass in the alkali cement is between 20% and 80%. The invention also relates to the resulting cement and to the use thereof in the production of concrete and/or prefabricates.

Description

PROCEDIMIENTO PARA LA FABRICACION DE CEMENTOS ALCALINOS A PARTIR DE RESIDUOS VITREOS URBANOS E INDUSTRIALES  PROCEDURE FOR THE MANUFACTURE OF ALKALINE CEMENTS FROM URBAN AND INDUSTRIAL VITREOS WASTE
Campo de la invención  Field of the Invention
La presente invención se refiere al campo de la construcción, y más concretamente, al sector de fabricación de cementos, hormigones y prefabricados.  The present invention relates to the field of construction, and more specifically, to the manufacturing sector of cement, concrete and prefabricated.
Antecedentes de la invención Background of the invention
En el último año (2010) la producción mundial de cemento In the last year (2010) world cement production
Portland superó los 2.000 millones de toneladas, lo que supone más de 300 Kg por habitante del planeta; siendo el segundo producto, después del agua, más consumido por el hombre; además de ser el componente esencial del hormigón utilizado en construcción. El desarrollo de estos hormigones de cemento Portland ha sido uno de los pilares fundamentales en el progreso alcanzado en los países occidentales durante el siglo XX. Portland exceeded 2,000 million tons, which is more than 300 kg per inhabitant of the planet; being the second product, after water, more consumed by man; In addition to being the essential component of the concrete used in construction. The development of these Portland cement concretes has been one of the fundamental pillars in the progress achieved in Western countries during the twentieth century.
La fabricación del cemento Portland implica un importante consumo de energía térmica y eléctrica, ya que se precisan temperaturas muy altas (~1500°C) para que se completen todas las reacciones químicas que conducen a la formación del clinker del cemento Portland; así como los procesos de molienda de las materias primas y de los componentes del cemento final. Debido a las mejoras introducidas en las fábricas, la energía específica requerida se ha visto sensiblemente reducida en los últimos años. Entre 1973 y 1988 la energía específica necesaria para producir clinker disminuyó desde 4750 MJ/t de clinker a 3750 MJ/t. Desde entonces, la energía específica se ha mantenido más o menos constante. Adicionalmente, la industria cementera es también una industria altamente contaminante, ya que explota recursos naturales (canteras) y emite a la atmósfera una gran cantidad de gases contaminantes (CO2, SO2, NOx) . Las emisiones de CO2 están asociadas, fundamentalmente, a la descarbonatación de las calizas, que es el constituyente mayoritario del crudo de cemento (superando el 60% de la emisión total) . Los restantes gases contaminantes son emitidos durante la combustión de los combustibles fósiles utilizados en las plantas cementeras. A nivel mundial, entre el 5-7% de las emisiones de CO2 son debidas al sector cementero. Si el crecimiento de la producción mundial de cemento se mantiene a los ritmos actuales, se estima que en el primer cuarto del siglo XXI las emisiones de CO2 procedentes de la industria cementera podrían alcanzar los 3.500 millones de toneladas, valor similar a la cantidad total que se emite actualmente en Europa (incluyendo transporte, industria de la energía, etc . ) . The manufacture of Portland cement implies an important consumption of thermal and electrical energy, since very high temperatures (~ 1500 ° C) are required to complete all the chemical reactions that lead to the formation of the Portland cement clinker; as well as the grinding processes of raw materials and final cement components. Due to the improvements introduced in the factories, the specific energy required has been significantly reduced in recent years. Between 1973 and 1988 the specific energy needed to produce clinker decreased from 4750 MJ / t of clinker to 3750 MJ / t. Since then, the specific energy has remained more or less constant. Additionally, the cement industry is also a highly polluting industry, as it exploits natural resources (quarries) and emits a large amount of polluting gases into the atmosphere (CO 2 , SO 2 , NO x ). The CO 2 emissions are associated mainly to the decarbonation of limestone, which is the major constituent of the cement raw material (exceeding 60% of the total emission). The remaining gases Pollutants are emitted during the combustion of fossil fuels used in cement plants. Globally, between 5-7% of CO 2 are due to the cement sector. If the growth of world cement production remains at current rates, it is estimated that in the first quarter of the 21st century CO 2 emissions from the cement industry could reach 3.5 billion tons, a value similar to the total amount which is currently broadcast in Europe (including transport, energy industry, etc.).
Por todo ello, el estudio y desarrollo de materiales de construcción alternativos a los cementos Portland tradicionales, en cuya fabricación no se emitan gases contaminantes y se obtenga un apreciable ahorro energético, constituye una línea de investigación de gran interés científico y tecnológico a escala mundial. Dentro de estos materiales alternativos se encuentran aquellos que proceden de la activación alcalina de subproductos industriales tales como las escorias de horno alto y/o las cenizas volantes. Estos cementos se obtienen por la mezcla de dichos residuos y disoluciones alcalinas. Estos nuevos cementos se caracterizan por presentar bajos calores de hidratación, elevadas prestaciones mecánicas, y buena durabilidad frente a diferentes agresivos químicos (medios ácidos, sulfáticos, etc.), y no requerir en su elaboración los elevados consumos energéticos que son inherentes al proceso de fabricación de los cementos Portland.  Therefore, the study and development of alternative construction materials to traditional Portland cements, in whose manufacture no polluting gases are emitted and an appreciable energy saving is obtained, constitutes a research line of great scientific and technological interest worldwide. Among these alternative materials are those that come from the alkaline activation of industrial by-products such as blast furnace slag and / or fly ash. These cements are obtained by mixing said residues and alkaline solutions. These new cements are characterized by low hydration heats, high mechanical performance, and good durability against different aggressive chemicals (acidic, sulphate, etc.), and do not require the high energy consumption that are inherent to the process of elaboration. Portland cement manufacturing.
Sin embargo, los activadores alcalinos que favorecen la formación de materiales con mayores resistencias mecánicas y mejor comportamiento durable son los silicatos alcalinos hidratados (Me20 «mS i02 · ηΗ2θ ; Me= Na o K) , denominados "waterglass", que son materiales sintéticos, obtenidos a través de procesos costosos económicamente y altamente contaminantes. Una vía de mejorar el balance económico y ecológico de los cementos alcalinos sería encontrar sustitutos (totales o parciales) de estos activadores alcalinos, y en esa línea se enmarca la presente invención, en la que se demuestra que residuos vitreos urbanos e industriales pueden ser sustitutos válidos de esas disoluciones alcalinas de "waterglass" como activadores en la preparación de cementos alcalinos. Ello se debe a que los residuos vitreos, debido a su composición química basada fundamentalmente en S1O2 (65-75%) y Na2Ü (12-15%), son potenciales activadores alcalinos de la familia de los "waterglass" . However, the alkaline activators that favor the formation of materials with greater mechanical resistance and better durable behavior are hydrated alkali silicates (Me 2 0 « mS i0 2 · ηΗ 2 θ; Me = Na or K), called" waterglass ", which are synthetic materials, obtained through economically expensive and highly polluting processes. One way to improve the economic and ecological balance of alkaline cements would be to find substitutes (total or partial) of these alkaline activators, and in this line the present invention is framed, in which it is demonstrated that urban and industrial vitreous residues can be valid substitutes for these alkaline solutions of "waterglass" as activators in the preparation of alkaline cements. This is because vitreous residues, due to their chemical composition based primarily on S1O 2 (65-75%) and Na 2 Ü (12-15%), are potential alkaline activators of the "waterglass" family.
Los residuos vitreos urbanos recogidos en las ciudades españolas y europeas no se reciclan al 100%. No se reutiliza entre el 40-60% de los residuos, bien porque estos aparecen recubiertos de otros materiales de tipo cerámico y/o metálico; bien porque son fracciones granulométricas muy finas; por una inadecuada composición química, o por problemas asociados al color del vidrio, etc. Estos rechazos se producen porque esas anomalías pueden alterar los procesos convencionales de fabricación del vidrio. Sin embargo, estos residuos serían idóneos para su incorporación en la composición final de los nuevos cementos alcalinos; posibilitando su reutilización.  Urban vitreous waste collected in Spanish and European cities is not 100% recycled. Between 40-60% of the waste is not reused, either because these are covered with other ceramic and / or metallic materials; well because they are very fine granulometric fractions; due to inadequate chemical composition, or due to problems associated with the color of the glass, etc. These rejections occur because these anomalies can alter the conventional glass manufacturing processes. However, these wastes would be suitable for incorporation into the final composition of the new alkaline cements; enabling its reuse.
La recolección y gestión de residuos de vidrio es una política medioambiental con una implantación cada vez mayor en los países desarrollados. En los Estados Unidos se generan anualmente 12.5 millones de toneladas de residuos vitreos, de los cuales solo se recicla el 20%. En el año 2008, en España se recogieron alrededor de 1 millón de toneladas de vidrio, de las que se reciclaron el 60%. Sin embargo, aunque se tiende a recolectar y clasificar los residuos vitreos urbanos e industriales según su tipo, lo cierto es que estos residuos contienen vidrios con diversas composiciones químicas (vidrio plano, con y sin color, con recubrimientos cerámicos o metálicos, etc.), lo que dificulta su reutilización, cuando están mezclados, en los procesos tecnológicos convencionales. En la Unión Europea entre un 2-6% de los residuos vitreos están en esta forma de mezcla, y en Rusia asciende a un 6-10%.  The collection and management of glass waste is an environmental policy with a growing implementation in developed countries. In the United States, 12.5 million tons of vitreous waste are generated annually, of which only 20% is recycled. In 2008, around 1 million tons of glass were collected in Spain, of which 60% were recycled. However, although it tends to collect and classify urban and industrial vitreous waste according to its type, the truth is that these residues contain glass with various chemical compositions (flat glass, with and without color, with ceramic or metal coatings, etc.) , which hinders its reuse, when mixed, in conventional technological processes. In the European Union between 2-6% of vitreous residues are in this form of mixing, and in Russia it amounts to 6-10%.
Todas las tecnologías existentes de reciclaje de residuos de vidrios mezclados incluyen una operación de triturado. Los fragmentos obtenidos (fracción 1-8 rom) pueden usarse como componentes adicionales (áridos) en la preparación de morteros y hormigones. Sin embargo, esta práctica está limitada ya que en opinión de algunos autores (C.D. Johnston (2000), Journal of Testing and Evaluation, 2All existing mixed glass waste recycling technologies include an operation of crushed The fragments obtained (fraction 1-8 rom) can be used as additional components (aggregates) in the preparation of mortars and concrete. However, this practice is limited because in the opinion of some authors (CD Johnston (2000), Journal of Testing and Evaluation, 2
(85), pp. 344-350) se pueden producir procesos de reacción álcali-sílice que pueden disminuir la estabilidad dimensional del hormigón, afectando muy negativamente a su resistencia y durabilidad. Sin embargo, algunos autores (M. Jin, et al. (2000), ACI Structural Journal, 97 (2), pp . 208- 213) discrepan abiertamente de esta interpretación; e incluso otros investigadores han demostrado que la sustitución de un 20% del cemento por residuos vitreos en la preparación de hormigones induce mejoras en las propiedades mecánicas y en la durabilidad del hormigón (permeabilidad a cloruros y ciclos hielo-deshielo) . En un trabajo muy reciente C. Shi (C. Shi (2009), Journal of Materials in Civil Engineering, 21(10), pp. 529-534) demuestra que la expansión en hormigones con áridos vitreos es debida a la formación de un silicato cálcico-sódico hidratado (N-C-S-H) expansivo alrededor de las partículas del vidrio, procedente de la disolución y precipitación en medio básico de los propios vidrios sódico-cálcicos, y no a la interacción entre las partículas de vidrio y los álcalis del cemento. (85), pp. 344-350) alkali-silica reaction processes can occur that can decrease the dimensional stability of concrete, affecting its strength and durability very negatively. However, some authors (M. Jin, et al. (2000), ACI Structural Journal, 97 (2), pp. 208-213) openly disagree with this interpretation; and even other researchers have shown that the replacement of 20% of the cement with vitreous residues in the preparation of concrete induces improvements in the mechanical properties and durability of the concrete (chloride permeability and ice-thaw cycles). In a very recent work C. Shi (C. Shi (2009), Journal of Materials in Civil Engineering, 21 (10), pp. 529-534) demonstrates that the expansion in concretes with vitreous aggregates is due to the formation of a Hydrated calcium-sodium silicate (NCSH) expansive around the glass particles, from the dissolution and precipitation in basic medium of the sodium-calcium glasses themselves, and not to the interaction between the glass particles and the cement alkalis.
Los residuos vitreos mezclados, en forma de polvo Mixed vitreous waste, in powder form
(difícilmente reutilizables en los procesos de fabricación del vidrio) pueden ser reutilizados en el sector de la construcción, a través de las siguientes aplicaciones: (Hardly reusable in glass manufacturing processes) can be reused in the construction sector, through the following applications:
1. Adiciones puzolánicas en la preparación de cementos Portland (C. Shi, et al. (2005), Cement and Concrete 1. Pozzolanic additions in the preparation of Portland cements (C. Shi, et al. (2005), Cement and Concrete
Research, 35(5), pp . 987-993); Research, 35 (5), pp. 987-993);
2. Preparación de composites vitrocerámicos junto con otros residuos o subproductos industriales, tales como cenizas volantes y escorias, desechos cerámicos, etc. En este caso la sinterización se realiza entre 850-1100°C (F. 2. Preparation of vitroceramic composites together with other industrial waste or by-products, such as fly ash and slag, ceramic waste, etc. In this case the sintering takes place between 850-1100 ° C (F.
Andreola, et al. (2008), Ceramics Internacional 34, pp. 1289-1295) ; Andreola, et al. (2008), Ceramics International 34, pp. 1289-1295);
3. Preparación de composites de matriz polimérica (pavimentos para vehículos y peatones) (W.H. Chester (1992), Utilization of Waste Materials in Civil Engineering Construction, pp . 296-307); 3. Preparation of polymer matrix composites (pavements for vehicles and pedestrians) (WH Chester (1992), Utilization of Waste Materials in Civil Engineering Construction, pp. 296-307);
4. Componente principal para la producción de vidrio espumado en la elaboración de materiales termo- aislantes. Este proceso requiere temperaturas comprendidas entre 630 y 850°C (A.V. Gorokhovski, et al. (2005), Waste Management 25, pp. 733-736);  4. Main component for the production of foamed glass in the production of heat-insulating materials. This process requires temperatures between 630 and 850 ° C (A.V. Gorokhovski, et al. (2005), Waste Management 25, pp. 733-736);
5. Materia prima para sintetizar silicatos de sodio sólidos y/o sílice purificada.  5. Raw material to synthesize solid sodium silicates and / or purified silica.
En la literatura de patentes, US 6344081 describe un hormigón que comprende cemento y partículas de vidrio reciclado. Por otra parte, US2005/0055069 describe un proceso de producción de hormigón a partir de vidrio reciclado, donde dicho hormigón comprende de 25-79% en peso de vidrio; 8-35% en peso de cemento y hasta 22% en peso de un inhibidor de la reacción álcali-dióxido de silicio.  In the patent literature, US 6344081 describes a concrete comprising cement and recycled glass particles. On the other hand, US2005 / 0055069 describes a process of producing concrete from recycled glass, where said concrete comprises 25-79% by weight of glass; 8-35% by weight of cement and up to 22% by weight of an inhibitor of the alkali-silicon dioxide reaction.
Estas aplicaciones tienen en la práctica algunos importantes problemas. Por una parte, las industrias implicadas (cementeras y de preparación de hormigón) deben de cambiar su proceso convencional al introducir nuevas materias primas, y en algunas ocasiones estos cambios no son valorados positivamente (aplicaciones 1 y 3) . Las aplicaciones 2 y 4 implican altos consumos energéticos, lo que incrementa los costos de producción. Además, el proceso de fabricación del vidrio espumado conlleva una importante emisión de CO2 a la atmósfera. These applications have some important problems in practice. On the one hand, the industries involved (cement and concrete preparation) must change their conventional process by introducing new raw materials, and in some cases these changes are not valued positively (applications 1 and 3). Applications 2 and 4 involve high energy consumption, which increases production costs. In addition, the manufacturing process of foamed glass entails an important emission of CO 2 into the atmosphere.
Por otro lado, actualmente existe un gran interés en el sector de la construcción por desarrollar nuevos cementos y materiales de construcción, cuya fabricación implique menores consumos energéticos y menores emisiones de gases contaminantes a la atmósfera (fundamentalmente CO2) , que la fabricación de cemento Portland convencional. Una de las líneas de investigación es obtener nuevos cementos que carecen de clínker. Estos cementos se obtienen por la mezcla de silico-aluminatos amorfos como escorias de horno alto, cenizas volantes, metacaolín o rocas volcánicas, o mezclas binarias y ternarias de estos, con disoluciones fuertemente alcalinas (NaOH, Na2C03 o silicatos alcalinos hidratados) (F. Puertas (1995), Materiales de Construcción, vol. 45 (239), pp . 53-66) . Numerosos trabajos han confirmado las buenas propiedades mecánicas (A. Fernández-Jiménez, F. Puertas, J.G. Palomo (1999), Cement and Concrete Research, vol. 29, pp . 593-604) y durables ( F. Puertas, et al. (2009), Cement and Concrete Composites, vol. 31, pp. 277-On the other hand, there is currently a great interest in the construction sector to develop new cements and construction materials, whose manufacturing implies lower energy consumption and lower emissions of pollutant gases into the atmosphere (mainly CO 2 ), than cement manufacturing Conventional Portland One of the lines of research is to obtain new cements that lack clinker. These cements are obtained by mixing amorphous silico-aluminates such as blast furnace slags, fly ash, metacaolin or volcanic rocks, or binary and ternary mixtures of these, with strongly dissolved solutions. alkaline (NaOH, Na 2 C03 or hydrated alkali silicates) (F. Puertas (1995), Building Materials, vol. 45 (239), pp. 53-66). Numerous works have confirmed the good mechanical properties (A. Fernández-Jiménez, F. Puertas, JG Palomo (1999), Cement and Concrete Research, vol. 29, pp. 593-604) and durable (F. Puertas, et al. (2009), Cement and Concrete Composites, vol. 31, pp. 277-
284) que presentan estos cementos, morteros y hormigones alcalinos, asi como su elevada resistencia térmica (C. Shi (2003), Advances in Cement Research, vol. 15(2), pp. 77-81), siendo en muchos casos superior a la del cemento Portland convencional . 284) that present these cements, mortars and alkaline concretes, as well as their high thermal resistance (C. Shi (2003), Advances in Cement Research, vol. 15 (2), pp. 77-81), being in many cases superior to that of conventional Portland cement.
KR 2010037889 describe un proceso de fabricación de cemento que comprende el empleo de partículas de vidrio reciclado y cenizas volantes, así como un agente activador que puede consistir en NaOH, donde la mezcla es posteriormente sometida a un proceso de curado. Asimismo, GB 2362643 describe un cemento "verde" formado a partir de una mezcla de cenizas de pasta de residuos de papel (60-70% peso) y de residuos de vidrio (30-40% peso) .  KR 2010037889 describes a cement manufacturing process comprising the use of recycled glass particles and fly ash, as well as an activating agent that can consist of NaOH, where the mixture is subsequently subjected to a curing process. Also, GB 2362643 describes a "green" cement formed from a mixture of pulp ash from paper waste (60-70% weight) and glass waste (30-40% weight).
Los estudios realizados sobre estos cementos y hormigones alcalinos (A. Fernández-Jiménez, F. Puertas, J.G. Palomo (1999), Cement and Concrete Research, vol. 29, pp . 593-604) han demostrado que el factor más determinante, desde el punto de vista resistente, es la naturaleza del activador alcalino; siendo las disoluciones de silicato sódico hidratadas ("waterglass") aquellas que confieren al material cementante las mayores resistencias mecánicas. Teniendo en cuenta que los residuos vitreos urbanos son materiales amorfos con una composición química basada en Si02 (65-75%), CaO (6-12%), Na20 (12-15%), A1203 (0.5-5%) y Fe203 (0.1-3%), se podría pensar que estos materiales pudieran ser potenciales activadores alcalinos (de la familia del "waterglass") de escorias vitreas de horno alto y/o cenizas volantes o de otros aluminosilicatos . Studies on these alkaline cements and concretes (A. Fernández-Jiménez, F. Puertas, JG Palomo (1999), Cement and Concrete Research, vol. 29, pp. 593-604) have shown that the most determining factor, since the resistant point of view is the nature of the alkaline activator; being the solutions of hydrated sodium silicate ("waterglass") those that give the cementitious material the greatest mechanical resistance. Taking into account that urban vitreous wastes are amorphous materials with a chemical composition based on Si0 2 (65-75%), CaO (6-12%), Na 2 0 (12-15%), A1 2 0 3 (0.5 -5%) and Fe 2 0 3 (0.1-3%), one might think that these materials could be potential alkaline activators (of the "waterglass" family) of high furnace glass slag and / or fly ash or other aluminosilicates.
Descripción de la invención Description of the invention
Es un primer objeto de la invención un procedimiento para la fabricación de cementos alcalinos a partir de residuos vitreos urbanos e industriales, entre otros componentes. Estos componentes pueden consistir en escorias vitreas de horno alto, cenizas volantes u otros materiales silico-aluminosos susceptibles de ser activados alcalinamente. Además, también se van a emplear disoluciones alcalinas del tipo NaOH y/o NaOH + Na2C03. It is a first object of the invention a process for the manufacture of alkaline cements from urban and industrial vitreous waste, among other components. These components can consist of slag vitreous blast furnace, fly ash or other silico-aluminous materials that can be activated alkaline. In addition, alkaline solutions of the NaOH and / or NaOH + Na 2 C0 3 type will also be used .
Asimismo, es un objeto adicional de la invención el empleo de dichos cementos alcalinos para preparar los correspondientes hormigones.  Likewise, it is a further object of the invention to use said alkaline cements to prepare the corresponding concretes.
De este modo, la invención se refiere a un nuevo procedimiento de la fabricación de cementos alcalinos basado en el empleo de nuevas materias primas (residuos vitreos) . Asimismo, dicho procedimiento presenta la ventaja, frente a otros procesos del estado de la técnica, de llevarse a cabo a partir de un sistema de activación no solo química, sino también mecano-química. Dicho sistema de activación mecano- química es especialmente ventajoso, al tratarse de un sistema mucho más efectivo desde el punto de vista del desarrollo resistente de las pastas de los cementos y hormigones .  Thus, the invention relates to a new process for the manufacture of alkaline cements based on the use of new raw materials (vitreous residues). Likewise, said procedure has the advantage, compared to other processes of the state of the art, of being carried out from an activation system not only chemical, but also mechanical-chemical. Said mechanochemical activation system is especially advantageous, since it is a much more effective system from the point of view of the resistant development of cement and concrete pastes.
Por tanto, como consecuencia del empleo de los residuos vitreos como materia prima del procedimiento, es posible sustituir a las disoluciones de silicato sódico hidratado (denominado "waterglass") utilizadas comúnmente en la técnica; disoluciones que confieren a los cementos y hormigones alcalinos las mayores resistencias, pero que se obtienen a través de procesos costosos energética y ecológicamente. De este modo, la presente invención es capaz de aportar ventajas económicas y ecológicas evidentes asociadas al producto final, pero también relacionadas con la recuperación o valorización de un residuo (residuos vitreos urbanos o industriales) no reutilizables en los procesos convencionales de fabricación de vidrio.  Therefore, as a consequence of the use of vitreous residues as the raw material of the process, it is possible to replace the solutions of hydrated sodium silicate (called "waterglass") commonly used in the art; solutions that give cements and alkaline concrete the greatest resistance, but are obtained through costly and ecologically costly processes. In this way, the present invention is capable of providing obvious economic and ecological advantages associated with the final product, but also related to the recovery or recovery of a waste (urban or industrial vitreous waste) not reusable in conventional glass manufacturing processes.
Breve descripción de las figuras Brief description of the figures
La FIG. la muestra los resultados de resistencia a la compresión en función de la relación residuo vitreo/escoria vitrea de horno alto sometida a activación química con una solución de NaOH/Na2C03 durante 7 días; FIG. the sample the results of compressive strength as a function of the vitreous / slag residue ratio blast furnace glass under chemical activation with a NaOH / Na 2 C0 3 solution for 7 days;
La FIG. Ib muestra los resultados de resistencia a la flexión en función de la relación residuo vitreo/escoria vitrea de horno alto sometida a activación química con una solución de NaOH/Na2C03 durante 7 días; FIG. Ib shows the results of flexural strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to chemical activation with a NaOH / Na 2 C0 3 solution for 7 days;
La FIG. le muestra los resultados de la resistencia a la compresión en función de la relación residuo vitreo/escoria vitrea de horno alto sometida a activación química con una solución de NaOH/Na2CC>3 durante 90 días; FIG. shows the results of compressive strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to chemical activation with a solution of NaOH / Na 2 CC> 3 for 90 days;
La FIG. Id muestra los resultados de resistencia a la flexión en función de la relación residuo vitreo/escoria vitrea de horno alto sometida a activación química con una solución de NaOH/Na2CC>3 durante 90 días; FIG. Id shows the results of flexural strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to chemical activation with a solution of NaOH / Na 2 CC> 3 for 90 days;
La FIG. 2a muestra los resultados de resistencia a la compresión en función de la relación residuo vitreo/escoria vitrea de horno alto sometida a activación mecano-química con una solución de NaOH/Na2CC>3 durante 7 días; FIG. 2a shows the results of compressive strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to mechanochemical activation with a solution of NaOH / Na 2 CC> 3 for 7 days;
La FIG. 2b muestra los resultados de resistencia a la flexión en función de la relación residuo vitreo/escoria vitrea de horno alto sometida a activación mecano-química con una solución de NaOH/Na2CC>3 durante 7 días; FIG. 2b shows the results of flexural strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to mechanochemical activation with a solution of NaOH / Na 2 CC> 3 for 7 days;
La FIG. 2c muestra los resultados de de resistencia a la compresión en función de la relación residuo vitreo/escoria vitrea de horno alto sometida a activación mecano-química con una solución de NaOH/Na2CC>3 durante 90 días; FIG. 2c shows the results of compression resistance as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to mechanochemical activation with a solution of NaOH / Na 2 CC> 3 for 90 days;
La FIG. 2d muestra los resultados de resistencia a la flexión en función de la relación residuo vitreo/escoria vitrea de horno alto sometida a activación mecano-química con una solución de NaOH/Na2CC>3 durante 90 días; FIG. 2d shows the results of flexural strength as a function of the vitreous residue / slag vitreous blast furnace ratio subjected to mechanochemical activation with a solution of NaOH / Na 2 CC> 3 for 90 days;
La FIG. 3 muestra la solubilidad del S1O2 en agua del vidrio Blanco y el efecto del tamaño de la partícula del vidrio ; FIG. 3 shows the solubility of S1O 2 in White glass water and the effect of the particle size of the glass;
La FIG. 4 muestra los resultados de la activación química a Ta ambiente. En concreto, muestra la solubilidad del S1O2 de los cuatro vidrios en los tres medios (¾0, NaOH y NaOH/Na2C03) ; FIG. 4 shows the results of chemical activation at T at room. Specifically, it shows the solubility of S1O 2 of the four glasses in the three media (¾0, NaOH and NaOH / Na 2 C0 3 );
La FIG. 5 muestra las solubilidades en el vidrio bajo las condiciones de activación química con temperatura (80±2°C) y activación química a temperatura ambiente (22 ± 2°C) : La FIG 5a en disolución de NaOH y la FIG . 5b en disolución de NaOH/Na2C03. FIG. 5 shows the solubilities in the low glass the conditions of chemical activation with temperature (80 ± 2 ° C) and chemical activation at room temperature (22 ± 2 ° C): FIG 5a in NaOH solution and FIG. 5b in NaOH / Na 2 C0 3 solution.
La FIG. 6 muestra las diferencias en solubilidad entre los tres procesos de activación para los vidrios Topacio y Mezcla en la disolución de NaOH/Na2C03. FIG. 6 shows the differences in solubility between the three activation processes for the Topaz and Mixture glasses in the NaOH / Na 2 C0 3 solution.
Descripción detallada de la invención Detailed description of the invention
Es por tanto un primer objeto de la invención un procedimiento para la fabricación de cementos alcalinos reutilizando residuos vitreos urbanos y/o industriales en su composición .  It is therefore a first object of the invention a process for the manufacture of alkaline cements by reusing urban and / or industrial vitreous waste in its composition.
Las condiciones de preparación de los cementos se describen a continuación:  Cement preparation conditions are described below:
Se denomina M: Material o mezcla de materiales susceptibles de ser activados alcalinamente (preferentemente seleccionados entre escorias de horno alto, cenizas volantes, metacaolín, o cualquier otro material natural o artificial de composición silico-aluminosa) , D: Disolución alcalina (preferentemente seleccionada entre NaOH o NaOH y Na2COs) ; V: Residuo vitreo y A: Áridos. It is called M: Material or mixture of materials capable of being activated alkaline (preferably selected from blast furnace slags, fly ash, metacaolin, or any other natural or artificial material of silico-aluminous composition), D: Alkaline solution (preferably selected from NaOH or NaOH and Na 2 COs); V: Vitreous residue and A: Aggregates.
Si bien la composición de estos residuos vitreos puede variar según el origen y tipo de residuo vitreo seleccionado, de manera general, la composición de los residuos vitreos puede comprender Si02 (65-75%), CaO (6- 12%), Na20 (12-15%), A1203 (0.5-5%) y Fe203 (0.1-3%). Although the composition of these vitreous residues may vary according to the origin and type of vitreous residue selected, in general, the composition of the vitreous residues may comprise Si0 2 (65-75%), CaO (6- 12%), Na 2 0 (12-15%), A1 2 0 3 (0.5-5%) and Fe 2 0 3 (0.1-3%).
En una realización particular, dicha composición puede comprender Si02 (72.04%), A1203 (1.62%), Fe203 (0.27%), MgO (3.39%), CaO (8.19%), Na20 (12.11%), K20 (2.32%), Ti02 In a particular embodiment, said composition may comprise Si0 2 (72.04%), A1 2 0 3 (1.62%), Fe 2 0 3 (0.27%), MgO (3.39%), CaO (8.19%), Na 2 0 ( 12.11%), K 2 0 (2.32%), Ti0 2
(0.04%), P205 (0.02%), Cr (179 ppm) , Ba (67 ppm) y Pb (6 ppm) . (0.04%), P 2 0 5 (0.02%), Cr (179 ppm), Ba (67 ppm) and Pb (6 ppm).
De este modo, el procedimiento objeto de la invención se caracteriza por que comprende mezclar al menos un material silico-aluminoso susceptible de ser activado alcalinamente y al menos un activador alcalino que consiste en al menos un residuo vitreo seleccionado entre residuos vitreos urbanos y residuos vitreos industriales, o cualquiera de sus mezclas, donde el porcentaje en peso de residuo vitreo en el cemento alcalino se encuentra comprendido entre 20% y 80%, y más preferentemente entre 50% y 80% . Adicionalmente, se añade a la mezcla al menos una disolución alcalina de pH superior a 13, donde dicha disolución es preferentemente seleccionada entre una disolución de NaOH y una disolución de NaOH y Na2C03. Thus, the process object of the invention is characterized in that it comprises mixing at least one silico-aluminous material capable of being alkaline activated and at least one alkaline activator consisting of at least one vitreous residue selected from urban vitreous residues and vitreous residues industrial, or any of its mixtures, where the percentage by weight of vitreous residue in the alkaline cement is between 20% and 80%, and more preferably between 50% and 80%. Additionally, at least one alkaline solution of pH greater than 13 is added to the mixture, wherein said solution is preferably selected from a solution of NaOH and a solution of NaOH and Na2C03.
En una realización particular de la invención, la mezcla y homogenización del material silico-aluminoso susceptible de ser activado alcalinamente (M) y del residuo vitreo (V) puede llevarse a cabo mecánicamente (por ejemplo, mediante túrbula) , durante al menos 2 horas.  In a particular embodiment of the invention, the mixing and homogenization of the silico-aluminous material capable of being alkalinely activated (M) and of the vitreous residue (V) can be carried out mechanically (for example, by turbo), for at least 2 hours .
En otra realización particular de la invención, el proceso puede comprender una etapa adicional previa de tratamiento del residuo vitreo (V) con la disolución alcalina de pH>13 a una temperatura preferentemente comprendida entre 78 y 82°C. En este caso, tras 2 h de interacción, se puede proceder a filtrar y recoger los líquidos, los cuales pueden ser utilizados como líquido de amasado con el material silico-aluminoso susceptible de ser activado alcalinamente (M) . En este caso, los mejores resultados se han obtenido en aquellas realizaciones en las que la disolución alcalina consiste en una disolución de NaOH y Na2CÜ3 y el tamaño de las partículas de vidrio es inferior a 45 um. In another particular embodiment of the invention, the process may comprise a previous additional step of treating the vitreous residue (V) with the alkaline solution of pH> 13 at a temperature preferably between 78 and 82 ° C. In this case, after 2 h of interaction, you can proceed to filter and collect the liquids, which can be used as a kneading liquid with the silico-aluminous material capable of being activated alkaline (M). In this case, the best results have been obtained in those embodiments in which the alkaline solution consists of a solution of NaOH and Na 2 CÜ3 and the size of the glass particles is less than 45 um.
En una realización particular adicional de la invención, una vez homogeneizada la mezcla de la disolución alcalina, con el material susceptible de ser activado alcalinamente y al menos un residuo vitreo, puede procederse a la activación química de la misma. Esta activación química puede llevarse a cabo mediante la adición directa a la mezcla del material silico-aluminoso susceptible de ser activado alcalinamente (M) y del residuo vitreo (V) de al menos una disolución alcalina (D) , preferentemente seleccionada entre una disolución de NaOH (preferentemente una disolución fuertemente básica con un pH superior a 13, y más preferentemente de pH=13.19) y una disolución de NaOH/Na2C03 (de la misma manera, con un pH preferentemente superior a 13, y más preferentemente de pH=13.29) en una concentración equivalente preferentemente comprendida entre 3% y 20% de Na2Ü sobre el 100% del material silico-aluminoso susceptible de ser activado alcalinamente (M) . En cada caso, será preciso determinar la relación liquido/sólido óptima para conseguir el escurrimiento o consistencia adecuada. In a further particular embodiment of the invention, once the mixture of the alkaline solution is homogenized, with the material capable of being alkaline activated and at least one vitreous residue, chemical activation thereof can be carried out. This chemical activation can be carried out by direct addition to the mixture of the silico-aluminous material capable of being alkalinely activated (M) and the vitreous residue (V) of at least one alkaline solution (D), preferably selected from a solution of NaOH (preferably a strongly basic solution with a pH greater than 13, and more preferably pH = 13.19) and a NaOH / Na 2 C03 solution (in the same way, with a pH preferably greater than 13, and more preferably pH = 13.29) in an equivalent concentration preferably comprised between 3% and 20% Na 2 Ü over 100% of the silico-aluminous material capable of being alkaline activated (M). In each case, it will be necessary to determine the optimal liquid / solid ratio to achieve adequate runoff or consistency.
Tras la activación química de la mezcla, puede procederse al curado de la misma. La temperatura a la que se lleva a cabo dicha etapa de curado depende de la naturaleza del material susceptible de ser activado alcalinamente, pudiendo variar entre temperatura ambiente (entre 20°C y 25°C, y más preferentemente entre 20 y 22°C) o una temperatura superior, preferentemente comprendida entre 65°C y 85°C, y más preferentemente comprendida entre 78°C y 82°C. El primer caso se lleva a cabo preferiblemente cuando el material silico-aluminoso comprende silico-aluminatos ricos en calcio (como por ejemplo, escorias vitreas de horno alto) y el segundo, cuando comprende silico-aluminatos pobres en calcio (como por ejemplo, cenizas volantes) . La preparación de los morteros de estos cementos puede llevarse a cabo, preferentemente, en igualdad de condiciones a las descritas en la norma de cementos europea EN 197-1.  After the chemical activation of the mixture, it can proceed to cure it. The temperature at which said curing stage is carried out depends on the nature of the material capable of being alkaline activated, and may vary between room temperature (between 20 ° C and 25 ° C, and more preferably between 20 and 22 ° C) or a higher temperature, preferably between 65 ° C and 85 ° C, and more preferably between 78 ° C and 82 ° C. The first case is preferably carried out when the silico-aluminous material comprises calcium-rich silico-aluminates (for example, blast furnace vitreous slags) and the second, when it comprises calcium-poor silico-aluminates (such as ashes flyers). The mortar preparation of these cements can be carried out, preferably, under equal conditions to those described in the European cement standard EN 197-1.
En otra realización particular de la invención, de manera previa a la preparación de la mezcla del material silico-aluminoso susceptible de ser activado alcalinamente (M) y del residuo vitreo (V) , el residuo vitreo (V) puede ser sometido a un proceso de molienda, preferentemente en molino de bolas. Dicha molienda puede llevarse a cabo de tal manera que por cada gramo de residuo vitreo (V) se añada entre 5 mi y 20 mi de al menos una disolución alcalina (D) , preferentemente seleccionada entre una disolución de NaOH (preferentemente de pH superior a 13, y más preferentemente de pH=13.19) y una disolución de NaOH/Na2C03 (preferentemente de pH superior a 13, y más preferentemente de pH=13.29) en una concentración equivalente preferentemente comprendida entre 3% y 20% de Na20 sobre el 100% del material silico-aluminoso susceptible de ser activado alcalinamente (M) . Los tiempos de molienda pueden variar preferentemente entre 2 y 6 h, hasta alcanzar un tamaño final medio de partícula preferentemente inferior a 90 um. En este caso, por tanto, la activación de la mezcla consiste en una activación mecano-química (a diferencia de la activación química de la realización anterior) . In another particular embodiment of the invention, prior to the preparation of the mixture of the silico-aluminous material capable of being alkaline activated (M) and the vitreous residue (V), the vitreous residue (V) can be subjected to a process grinding, preferably in ball mill. Said milling can be carried out in such a way that for each gram of vitreous residue (V) between 5 ml and 20 ml of at least one alkaline solution (D) is added, preferably selected from a NaOH solution (preferably of pH higher than 13, and more preferably of pH = 13.19) and a solution of NaOH / Na 2 C0 3 (preferably of pH greater than 13, and more preferably of pH = 13.29) in an equivalent concentration preferably comprised between 3% and 20% of Na 2 0 over 100% of the silico-aluminous material capable of being alkaline activated (M). Grinding times can preferably vary between 2 and 6 h, until reaching an average final particle size preferably less than 90 um. In this case, therefore, the activation of the mixture consists of a mechanochemical activation (as opposed to the chemical activation of the previous embodiment).
En esta realización particular de activación mecano- química, una vez obtenida una suspensión residuo vitreo (V) - disolución alcalina (D) , se procede a la adición del material susceptible de ser activado alcalinamente (M) (preferentemente, una mezcla de silico-aluminatos ) para formar las mezclas con las proporciones correspondientes. Como en el caso de la activación química, la relación material silico-aluminoso/residuo vitreo en dichas mezclas se encuentra comprendida entre 80/20 y 20/80, y más preferentemente entre 70/30 y 30/70.  In this particular embodiment of mechanochemical activation, once a vitreous residue suspension (V) - alkaline solution (D) is obtained, the material capable of being alkaline activated (M) is added (preferably, a mixture of silico- aluminates) to form mixtures with the corresponding proportions. As in the case of chemical activation, the ratio of silico-aluminous material / vitreous residue in said mixtures is between 80/20 and 20/80, and more preferably between 70/30 and 30/70.
Se ha demostrado que la activación mecano-química a temperatura ambiente (entre 20°C y 24°C) es ligeramente más efectiva que la activación química a temperatura ambiente para tiempos de agitación largos (por encima de 6 horas) . La mayor solubilidad del Si de los vidrios, en estas condiciones de activación, se obtiene cuando la disolución alcalina es NaOH/Na2C03. Se ha demostrado asimismo que, cuando el tamaño de partícula del vidrio es inferior a 45 μπι, es cuando se obtienen las mayores solubilidades del S1O2. También se ha comprobado que la activación química de los residuos vitreos con temperatura (80 ± 2°C) es la que más solubilidad del vidrio induce. It has been shown that mechanochemical activation at room temperature (between 20 ° C and 24 ° C) is slightly more effective than chemical activation at room temperature for long stirring times (above 6 hours). The highest Si solubility of the glasses, under these activation conditions, is obtained when the alkaline solution is NaOH / Na 2 C03. It has also been shown that, when the particle size of the glass is less than 45 μπι, it is when the greatest solubilities of S1O 2 are obtained . It has also been proven that the chemical activation of vitreous residues with temperature (80 ± 2 ° C) is the one that induces the most solubility of the glass.
Posteriormente, el proceso de amasado, compactación y curado de las probetas puede llevarse a cabo en igualdad de condiciones a las descritas en la activación química, es decir, en igualdad de condiciones a las descritas para la norma de cementos europea EN 197-1.  Subsequently, the process of kneading, compacting and curing the specimens can be carried out under equal conditions to those described in the chemical activation, that is, under equal conditions to those described for the European cement standard EN 197-1.
En una realización particular adicional de la invención, el procedimiento puede comprender asimismo la adición de áridos silíceos o calcáreos (A) , preferentemente en una relación A/M entre 1/1 y 4/1. De este modo, es objeto adicional de la invención el uso de los cementos descritos para la preparación de los correspondientes hormigones. La fabricación de estos hormigones puede llevarse a cabo siguiendo las recomendaciones de los reglamentos y prescripciones de cada país; en el caso de España, siguiendo la EHE-08. In a further particular embodiment of the invention, the process may also comprise the addition of siliceous or calcareous aggregates (A), preferably in an A / M ratio between 1/1 and 4/1. Thus, the use of the cements described for the preparation of the corresponding concretes is a further object of the invention. The Manufacture of these concretes can be carried out following the recommendations of the regulations and prescriptions of each country; in the case of Spain, following EHE-08.
En todos los procesos descritos anteriormente se habrá de tener especial cuidado con el manejo de los residuos vitreos, asi como con el de las disoluciones fuertemente alcalinas . Ejemplos  In all the processes described above, special care must be taken with the management of vitreous residues, as well as with strongly alkaline solutions. Examples
A continuación se recogen una serie de ejemplos a modo ilustrativo y con carácter no limitante de la presente invención :  A series of examples are given below by way of illustration and with no limitation of the present invention:
Ejemplo 1  Example 1
En este primer ejemplo se procedió a preparar un cemento alcalino según el procedimiento objeto de la invención, tal y como ha sido anteriormente descrito.  In this first example, an alkaline cement was prepared according to the process object of the invention, as previously described.
Para ello, se prepararon distintas mezclas residuo vitreo/escoria vitrea de horno alto (BFS) (desde 30/70 hasta 100/0), con la siguiente composición química (en porcentaje en peso) :  For this, different vitreous residue / vitreous slag mixtures from high kiln (BFS) (from 30/70 to 100/0) were prepared, with the following chemical composition (in percentage by weight):
Tabla 1. Composición química de la escoria vitrea de horno alto (BFSTable 1. Chemical composition of vitreous slag from blast furnace (BFS
(% en peso) (% in weigh)
Figure imgf000014_0001
Figure imgf000014_0001
Tabla 2. Composición química residuo vitreo (% en peso)  Table 2. Chemical composition vitreous residue (% by weight)
Figure imgf000014_0002
Figure imgf000014_0002
A continuación, a dichas mezclas se adicionó de manera directa una disolución alcalina NaOH/Na2CC>3 de pH=13.29, en una concentración equivalente al 5% de Na2Ü sobre el 100% de escoria en la mezcla. La relación liquido/sólido se mantuvo constante en 0.4. La preparación de las pastas se realizó manualmente y la pasta obtenida fue vertida en moldes de 1x1x6 cm. Las muestras fueron curadas en una cámara de humedad a 22 ± 2°C y una humedad relativa del 99%. El comportamiento mecánico de las mezclas a 7 y 90 días de curado se muestra en la Fig. 1. Como medio de referencia se utilizó una mezcla de escoria vitrea de horno alto (sin residuo cerámico) activada con la misma disolución activadora a igual concentración, y con iguales condiciones de preparación y curado de las pastas. Then, to these mixtures was added in a manner direct an alkaline solution NaOH / Na2CC> 3 of pH = 13.29, in a concentration equivalent to 5% Na2Ü over 100% slag in the mixture. The liquid / solid ratio remained constant at 0.4. The preparation of the pastes was done manually and the paste obtained was poured into 1x1x6 cm molds. The samples were cured in a humidity chamber at 22 ± 2 ° C and a relative humidity of 99%. The mechanical behavior of the mixtures at 7 and 90 days of curing is shown in Fig. 1. As a reference medium, a mixture of glass furnace slag (without ceramic residue) activated with the same activating solution at the same concentration was used, and with equal conditions of preparation and curing of pasta.
En la Fig. 1, la mezcla 0/100 es la pasta sin residuo vitreo. Como se puede apreciar, se obtienen resistencias comparables cuando el contenido de escoria es del 60 o 80%.  In Fig. 1, the 0/100 mixture is the paste without vitreous residue. As can be seen, comparable resistance is obtained when the slag content is 60 or 80%.
Ejemplo 2 Example 2
En este segundo ejemplo, anteriormente a preparar las mezclas residuo vitreo/escoria vitrea de horno alto, este residuo fue sometido a un proceso de molienda en un molino de bolas. Esta molienda se realizó de tal manera que por cada gramo de residuo había en el molido 100 g de bolas, con granulometría diferenciadas. Además, por cada gramo de residuo vitreo se añadió 10 mi de la disolución alcalina (NaOH/Na2C03 pH=13.29, al 5% Na2Ü por masa de escoria), con igual concentración a la descrita anteriormente. En todos los casos el tamaño de las partículas del residuo vitreo fue siempre inferior a la 45 um. Los tiempos de molienda fueron: 10 min, 2h, 4h y 6h. In this second example, prior to preparing the vitreous residue / vitreous slag mixtures of blast furnace, this residue was subjected to a milling process in a ball mill. This grinding was carried out in such a way that for each gram of waste there were 100 g of balls in the ground, with differentiated granulometry. In addition, for each gram of vitreous residue, 10 ml of the alkaline solution (NaOH / Na 2 C03 pH = 13.29, 5% Na2Ü per slag mass) was added, with the same concentration as described above. In all cases the particle size of the vitreous residue was always less than 45 um. The grinding times were: 10 min, 2h, 4h and 6h.
Con las suspensiones vidrio-disolución alcalina resultantes, a cada tiempo de molienda, añadió la escoria de horno alto para formar las mezclas con las proporciones correspondientes (30/70 hasta 100/0) . La relación líquido/sólido se mantuvo constante en 0.4. Posteriormente, el proceso de amasado, compactacion y curado de las probetas se realizó en igualdad de condiciones a las descritas en la activación química. En todos los casos se determinaron las resistencias mecánicas a flexión y compresión a los 7 y 90 días de curado . With the resulting alkaline glass-solution suspensions, at each grinding time, the blast furnace slag was added to form the mixtures with the corresponding proportions (30/70 to 100/0). The liquid / solid ratio remained constant at 0.4. Subsequently, the process of kneading, compacting and curing the specimens was carried out under equal conditions to those described in the chemical activation. In all cases, the mechanical resistance to bending and compression was determined at 7 and 90 days of curing.
Los resultados evidencian que las mezclas de 50/50 desarrollan mayores resistencias a compresión que las que carecen de residuos vitreos (mezclas 0/100) .  The results show that 50/50 mixtures develop greater compressive strengths than those without vitreous residues (0/100 mixtures).
Ejemplo 3 Example 3
En este ejemplo se seleccionaron cuatro tipos de residuos vitreos diferentes: blanco, verde, topacio y mezcla sin gestionar. Estos materiales se caracterizaron a través de la técnica de FRX. En la Tabla 3 se muestra la composición química de estos vidrios cuando su tamaño de partícula es inferior a 45 um.  In this example, four different types of vitreous residues were selected: white, green, topaz and unmanaged mixture. These materials were characterized through the FRX technique. Table 3 shows the chemical composition of these glasses when their particle size is less than 45 um.
Tabla 3. Composición química de los cuatro vidrios utilizados para un tamaño inferior a 45 um (% en peso) Table 3. Chemical composition of the four glasses used for a size less than 45 um (% by weight)
Figure imgf000016_0001
Figure imgf000016_0001
Para valorar el mecanismo y la cinética de solubilidad de los vidrios en medios fuertemente básicos se han utilizado tres métodos diferentes de activación:  To assess the mechanism and the kinetics of solubility of the glasses in strongly basic media, three different activation methods have been used:
a) Activación química a Ta ambiente (22 ± 2°C); a) Chemical activation at room temperature (22 ± 2 ° C);
b) Activación química a alta Ta (80 ± 2°C); b) Chemical activation at high T at (80 ± 2 ° C);
c) Activación mecano-química (en el molino de bolas a Ta ambiente, 22 ± 2°C) . c) Mechanochemical activation (in the ball mill at room temperature, 22 ± 2 ° C).
Para cada uno de los procesos de activación se han considerado las siguientes variables o condiciones: For each of the activation processes they have Considering the following variables or conditions:
Naturaleza del vidrio: 4 diferentes, naturaleza de la disolución activadora: agua (pH=7, como referencia), una disolución de NaOH (pH=13.6) y una disolución mezcla de NaOH/Na2CC>3 (pH=13.8), siendo la concentración de ambas disoluciones 4 M; tamaño de las partículas del vidrio: 45, 90 y 125 um, y tiempo de agitación: 10 min, 2, 4 y 6 h. Nature of the glass: 4 different, nature of the activating solution: water (pH = 7, as a reference), a solution of NaOH (pH = 13.6) and a mixed solution of NaOH / Na 2 CC> 3 (pH = 13.8), the concentration of both solutions being 4 M; glass particle size: 45, 90 and 125 um, and stirring time: 10 min, 2, 4 and 6 h.
El proceso de activación química a Ta ambiente (22 ± 2°C) consistió en la agitación magnética mediante un imán a una velocidad de agitación constante e igual para todos los casos. La relación sólido : líquido fue de 1:100. The chemical activation process at T at room temperature (22 ± 2 ° C) consisted of magnetic stirring by means of a magnet at a constant and equal stirring speed for all cases. The solid: liquid ratio was 1: 100.
En el proceso de activación química a alta Ta (80 ± 2°C) el sistema utilizado fue idéntico al anterior, con la diferencia de que se aplicó a la agitación química un baño de agua de tal forma que se pudiera alcanzar y mantener la temperatura deseada durante el proceso. In the process of chemical activation at high T at (80 ± 2 ° C) the system used was identical to the previous one, with the difference that a water bath was applied to the chemical agitation so that it could reach and maintain the desired temperature during the process.
El proceso de activación mecano-químico se llevó a cabo en un molino de bolas de acero, en donde la relación del tamaño y número de bolas con la cantidad de sólido y líquido que se añade es importante en la disolución del vidrio. Los mejores resultados se obtuvieron con 5g de sólido en 500mL de disolución y con una cantidad de bolas de lkg (con bolas de diferente tamaño) .  The mechanical-chemical activation process was carried out in a steel ball mill, where the ratio of the size and number of balls to the amount of solid and liquid added is important in the dissolution of the glass. The best results were obtained with 5g of solid in 500mL of solution and with a quantity of lkg balls (with balls of different sizes).
Al cabo de cada uno de los procesos y tiempos se procedió a filtrar y analizar por ICP, en los líquidos obtenidos, el contenido de Si, para poder determinar posteriormente el porcentaje de S1O2 disuelto en los vidrios. El equipo utilizado fue un espectrómetro de emisión atómica de plasma acoplado inductivamente (ICP) de la marca VARIAN 725-ES. After each of the processes and times, the Si content was filtered and analyzed by ICP, in the liquids obtained, in order to determine the percentage of S1O 2 dissolved in the glasses. The equipment used was an inductively coupled plasma atomic emission spectrometer (ICP) of the VARIAN 725-ES brand.
Resultados y discusión Results and Discussion
Activación química a Ta ambiente (22 ± 2°C) Chemical activation at T at room (22 ± 2 ° C)
Todos los vidrios reaccionan con el agua, por lo que hay que considerar un mecanismo de interacción con el agua. En contacto con el medio acuoso lo que ocurre es un intercambio de iones sodio por iones hidronio. Los iones hidronio están presentes en el agua en equilibrio con los iones OH-, por lo que este intercambio es el causante de que el material se vaya disolviendo. Como se puede observar en la Figura 3, a medida que aumenta el tiempo de agitación se incrementa la solubilidad del óxido de silicio del vidrio, independientemente del tamaño de sus partículas. Sin embargo, cuando el tamaño de las partículas de los vidrios es inferior a 45 um, es cuando se obtiene la mayor solubilidad. All glasses react with water, so consider a mechanism for interaction with water. In contact with the aqueous medium, what happens is an exchange of sodium ions for hydronium ions. Hydronium ions are present in water in equilibrium with OH- ions, so This exchange is what causes the material to dissolve. As can be seen in Figure 3, as the agitation time increases, the solubility of the silicon oxide in the glass increases, regardless of the size of its particles. However, when the size of the glass particles is less than 45 um, it is when the greatest solubility is obtained.
Por el contrario, cuando el vidrio está en contacto con una disolución fuertemente alcalina, el mecanismo es diferente y está regido por los grupos OH- de la base. La reacción del vidrio con los grupos OH- produce siempre la ruptura de los enlaces Si-O, con la consiguiente destrucción parcial de la red. Se puede decir que el ataque del vidrio en medio básico es un proceso de despolimerización, en donde se produce la destrucción total de la red y la lenta disolución del vidrio [J.M. Fernández Navarro. "El vidrio". Consejo Superior de Investigaciones Científicas. Sociedad Española de Cerámica y vidrio. Madrid, 2003]. Este proceso induce una mayor solubilidad del vidrio que en medios acuosos .  On the contrary, when the glass is in contact with a strongly alkaline solution, the mechanism is different and is governed by the OH- groups of the base. The reaction of the glass with the OH- groups always causes the rupture of the Si-O bonds, with the consequent partial destruction of the network. It can be said that the attack of glass in basic medium is a depolymerization process, where the total destruction of the network and the slow dissolution of the glass occurs [J.M. Fernandez Navarro "Glass". Superior Council of Scientific Investigations. Spanish Society of Ceramics and glass. Madrid, 2003]. This process induces a greater solubility of the glass than in aqueous media.
En la Figura 4 se muestra la solubilidad de los cuatro vidrios en los tres medios (H20, NaOH y NaOH/Na2C03) para un tamaño inferior a 45 um. En la Tabla 4 se compara el % de S1O2 disuelto, para los cuatro vidrios, tras su tratamiento durante 6 horas en agua y con las disoluciones de NaOH y NaOH/Na2C03. Figure 4 shows the solubility of the four glasses in the three media (H20, NaOH and NaOH / Na 2 C03) for a size less than 45 um. Table 4 compares the% of dissolved S1O 2 , for the four glasses, after treatment for 6 hours in water and with the NaOH and NaOH / Na 2 C0 3 solutions.
Los resultados obtenidos confirman la mayor solubilidad de Si en los medios alcalinos. Con la disolución de NaOH, esa solubilidad es, dependiendo de la naturaleza del vidrio, entre un 16 y un 43% mayor que en agua. Cuando se incrementa ligeramente el pH de la disolución (como es el caso de la disolución mezcla NaOH/Na2C03 con respecto a la de NaOH) , la cantidad de S1O2 extraída aumenta notablemente debido a la destrucción de la red por la rotura de los enlaces Si-O-Si. La diferencia entre ambas disoluciones alcalinas es significativa, obteniéndose una solubilidad entre un 12-53% mayor cuando la disolución empleada es la de NaOH/Na2C03. La mayor solubilidad del vidrio se obtuvo con el vidrio color Topacio (Tabla 4) . The results obtained confirm the greater solubility of Si in alkaline media. With the NaOH solution, this solubility is, depending on the nature of the glass, between 16 and 43% higher than in water. When the pH of the solution is slightly increased (as in the case of the NaOH / Na 2 C03 mixture solution with respect to that of NaOH), the amount of S1O 2 extracted increases markedly due to the destruction of the network due to the breakage of the the Si-O-Si links. The difference between both alkaline solutions is significant, obtaining a solubility between 12-53% higher when the solution used is that of NaOH / Na 2 C03. The Higher solubility of the glass was obtained with the Topaz colored glass (Table 4).
Tabla 4. Solubilidad del Si02 (%) tras 6 horas de agitación en los tres medios (H20, NaOH y NaOH/Na2C03) para un tamaño < 45 um (B=Blanco;Table 4. Solubility of Si0 2 (%) after 6 hours of stirring in the three media (H 2 0, NaOH and NaOH / Na 2 C0 3 ) for a size <45 um (B = White;
V=Verde; T=Topacio; M=Mezcla) V = Green; T = Topaz; M = Mix)
Figure imgf000019_0001
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0002
A partir de los resultados obtenidos en el proceso de activación química, se seleccionaron los residuos vitreos Topacio y Mezcla para los posteriores estudios de activación química a alta temperatura y activación mecano-química. From the results obtained in the chemical activation process, the Topaz and Mixture vitreous residues were selected for subsequent studies of high temperature chemical activation and mechanochemical activation.
Activación química a alta Ta (80 ± 2°C) Chemical activation at high T at (80 ± 2 ° C)
Al igual que en el proceso anterior a Ta ambiente, el tamaño de las partículas de los vidrios es también un factor relevante, y las mayores solubilidades del vidrio se obtienen cuando el tamaño de las partículas del mismo son inferior a 45 μπι. Sin embargo, el efecto de la naturaleza de la disolución alcalina no parece ser tan relevante como en los ensayos de solubilidad a Ta ambiente. A 80±2°C se obtienen valores de S1O2 disuelto muy similares para ambos vidrios y con las dos disoluciones alcalinas (Figura 5) . No obstante, la disolución mezcla NaOH/Na2CC>3 es la que se comporta algo mejor, disolviendo entre un 5 y 14% más de S1O2 en los vidrios Topacio y Mezcla, respectivamente. En este ensayo bajo temperatura se obtuvieron unos valores de porcentajes de disolución en torno al 60% de S1O2 total de los vidrios. Estos resultados ponen en evidencia que la temperatura es una variable muy importante en el proceso de disolución de los vidrios (ver Figura 5) . Comparando para el vidrio Mezcla, la solubilidad de S1O2 a Ta ambiente con la disolución de NaOH/Na2C03 era del 1.7%, mientras que a 80 ± 2°C era del 56%. As in the previous process at room T, the particle size of the glass is also a relevant factor, the higher solubilities and glass are obtained when the particle size thereof is less than 45 μπι. However, the effect of the nature of the alkaline solution does not appear to be as relevant as in the T solubility tests at ambient. At 80 ± 2 ° C, very similar dissolved S1O 2 values are obtained for both glasses and with the two alkaline solutions (Figure 5). However, the NaOH / Na 2 CC> 3 mixture solution is the one that behaves somewhat better, dissolving between 5 and 14% more S1O 2 in the Topaz and Mixture glasses, respectively. In this test under temperature values of dissolution percentages around 60% of total S1O 2 were obtained. the glasses. These results show that temperature is a very important variable in the process of dissolving glasses (see Figure 5). Comparing for the Mixture glass, the solubility of S1O 2 at T at room temperature with the NaOH / Na 2 C03 solution was 1.7%, while at 80 ± 2 ° C it was 56%.
Activación mecano-química (22 ± 2°C) Mechanochemical activation (22 ± 2 ° C)
La activación mecano-química es ligeramente más efectiva que la activación química a temperatura ambiente para tiempos de agitación largos (por encima de 6 horas) (ver Figura 6) . La mayor solubilidad del Si de los vidrios, en estas condiciones de activación, se obtuvo cuando la disolución alcalina era NaOH/Na2C03. Al igual que en los demás ensayos, cuando el tamaño de partícula del vidrio fue inferior a 45 um, es cuando se obtuvieron las mayores solubilidades del SÍO2. Los resultados obtenidos mediante este ensayo permitieron conocer la cantidad de silicio que puede llegar a disolverse a la hora de preparar probetas de pasta (ceniza/escoria/caolín + vidrio + disolución alcalina activadora) , ya que estos ensayos se hacen bajo norma en una amasadora, lo cual no deja de ser una activación mecano- química . Mechanochemical activation is slightly more effective than chemical activation at room temperature for long stirring times (above 6 hours) (see Figure 6). The highest Si solubility of the glasses, under these activation conditions, was obtained when the alkaline solution was NaOH / Na 2 C03. As in the other tests, when the particle size of the glass was less than 45 um, it is when the highest solubilities of SIO 2 were obtained. The results obtained through this test allowed to know the amount of silicon that can be dissolved when preparing pasta specimens (ash / slag / kaolin + glass + alkaline activating solution), since these tests are done under a mixer , which is still a mechanochemical activation.
Los ensayos anteriores muestran que los mejores resultados se obtienen cuando la activación se lleva a cabo con NaOH/NaC03 y la mezcla activada se somete a un tratamiento térmico a una temperatura comprendida entre 78 y 82°C.  The above tests show that the best results are obtained when the activation is carried out with NaOH / NaC03 and the activated mixture is subjected to a heat treatment at a temperature between 78 and 82 ° C.

Claims

Reivindicaciones Claims
1. Procedimiento para la fabricación de cementos alcalinos caracterizado por que comprende mezclar una disolución alcalina de pH superior a 13, donde dicha disolución es seleccionada entre una disolución de NaOH y una disolución de NaOH y Na2CC>3, con al menos un material silico-aluminoso susceptible de ser activado alcalinamente y al menos un residuo vitreo seleccionado entre residuos vitreos urbanos y residuos vitreos industriales, o cualquiera de sus mezclas, donde el porcentaje en peso de residuo vitreo en el cemento alcalino se encuentra comprendido entre 20% y 80%. 1. Process for the manufacture of alkaline cements characterized in that it comprises mixing an alkaline solution of pH greater than 13, where said solution is selected from a solution of NaOH and a solution of NaOH and Na 2 CC> 3, with at least one material silico-aluminous susceptible to be activated alkaline and at least one vitreous residue selected from urban vitreous and industrial vitreous wastes, or any of their mixtures, where the percentage by weight of vitreous residue in alkaline cement is between 20% and 80 %.
2. Procedimiento de acuerdo a la reivindicación 1, donde la disolución alcalina de pH superior a 13 es adicionada de manera directa sobre una mezcla homogénea del material silico-aluminoso y del residuo vitreo, dando lugar a una activación química de la mezcla. 2. Method according to claim 1, wherein the alkaline solution of pH greater than 13 is added directly on a homogeneous mixture of the silico-aluminous material and the vitreous residue, resulting in a chemical activation of the mixture.
3. Procedimiento de acuerdo a la reivindicación 1, caracterizado por que comprende una etapa adicional previa de tratamiento del residuo vitreo con la disolución alcalina a una temperatura preferentemente comprendida entre 78 y 82°C. 3. Method according to claim 1, characterized in that it comprises a previous additional step of treating the vitreous residue with the alkaline solution at a temperature preferably between 78 and 82 ° C.
4. Procedimiento de acuerdo a la reivindicación 3, donde tras 2 h de interacción entre el residuo vitreo y la disolución alcalina, se procede a filtrar y recoger los líquidos del filtrado, siendo dichos líquidos utilizados como líquido de amasado con un material silico-aluminoso seleccionado entre escoria y/o ceniza volante. 4. Method according to claim 3, wherein after 2 h of interaction between the vitreous residue and the alkaline solution, the filtrate is filtered and collected, said liquids being used as a kneading liquid with a silico-aluminous material selected from slag and / or fly ash.
5. Procedimiento de acuerdo a una cualquiera de las reivindicaciones anteriores, donde tras la activación química, se lleva a cabo una etapa de curado de la mezcla. 5. Method according to any one of the preceding claims, wherein after the chemical activation, a curing step of the mixture is carried out.
6. Procedimiento de acuerdo a la reivindicación 5, donde dicho curado se lleva a cabo a temperatura ambiente comprendida entre 20°C y 25°C, o a una temperatura comprendida entre 65°C y 85°C. 6. Method according to claim 5, wherein said curing is carried out at room temperature between 20 ° C and 25 ° C, or at a temperature between 65 ° C and 85 ° C.
7. Procedimiento de acuerdo a la reivindicación 1, donde de manera previa a la mezcla del material silico-aluminoso susceptible de ser activado alcalinamente y del residuo vitreo, se lleva a cabo una etapa de molienda del residuo vitreo con la disolución alcalina de pH superior a 13, seguido de la posterior mezcla del residuo vitreo y la disolución alcalina de pH superior a 13 con el material silico-aluminoso susceptible de ser activado alcalinamente, dando lugar a una activación mecano-química de la mezcla. 7. A method according to claim 1, wherein prior to the mixing of the silico-aluminous material capable of being alkaline activated and of the vitreous residue, a milling step of the vitreous residue with the higher pH alkaline solution is carried out at 13, followed by the subsequent mixing of the vitreous residue and the alkaline solution of pH higher than 13 with the silico-aluminous material capable of being alkaline activated, resulting in a mechanochemical activation of the mixture.
8. Procedimiento de acuerdo a la reivindicación 7, donde por cada gramo de residuo vitreo se añade entre 5 mi y 20 mi de la disolución alcalina de pH superior a 13. 8. The method according to claim 7, wherein for each gram of vitreous residue, between 5 ml and 20 ml of the alkaline solution of pH greater than 13 is added.
9. Procedimiento de acuerdo a la reivindicación 7 u 8, donde la molienda se lleva a cabo durante un tiempo comprendido entre 2 h y 6 h, hasta alcanzar un tamaño final medio de partícula del residuo vitreo inferior a 90 um. 9. A method according to claim 7 or 8, wherein the grinding is carried out for a time between 2 h and 6 h, until an average final particle size of the vitreous residue of less than 90 um is reached.
10. Procedimiento de acuerdo a una cualquiera de las reivindicaciones anteriores, donde la disolución alcalina se emplea en una concentración equivalente entre 3% y 20% de Na2Ü sobre el 100% del material silico-aluminoso susceptible de ser activado alcalinamente. 10. Method according to any one of the preceding claims, wherein the alkaline solution is used in an equivalent concentration between 3% and 20% Na 2 Ü over 100% of the silico-aluminous material capable of being alkaline activated.
11. Procedimiento de acuerdo a una cualquiera de las reivindicaciones anteriores, donde el residuo vitreo comprende, en porcentaje en peso, entre 65% y 75% de S1O2, entre 6% y 12% de CaO, entre 12% y 15% de Na20, entre 0.5% y 5% de AI2O3 y entre 0.1% y 3% de Fe203. 11. Method according to any one of the preceding claims, wherein the vitreous residue comprises, in percentage by weight, between 65% and 75% of S1O 2 , between 6% and 12% of CaO, between 12% and 15% of Na 2 0, between 0.5% and 5% of AI2O3 and between 0.1% and 3% of Fe 2 0 3 .
12. Procedimiento de acuerdo a una cualquiera de las reivindicaciones anteriores, donde el material silico- aluminoso es seleccionado de un grupo que consiste en escorias vitreas de horno alto, cenizas volantes y metacaolín, así como cualquiera de sus combinaciones. 12. Method according to any one of the preceding claims, wherein the silico-aluminous material is selected from a group consisting of vitreous slag from blast furnace, fly ash and metacaolin, as well as any combination thereof.
13. Procedimiento de acuerdo a una cualquiera de las reivindicaciones anteriores, caracterizado por que comprende una etapa posterior de adición de áridos. 13. Method according to any one of the preceding claims, characterized in that it comprises a subsequent step of aggregate addition.
14. Procedimiento, de acuerdo a la reivindicación 13, donde dichos áridos son seleccionados entre áridos silíceos y áridos calcáreos y donde dichos áridos son añadidos en una relación árido/material silico-aluminoso susceptible de ser activado alcalinamente comprendida entre 1/1 y 4/1. 14. Method, according to claim 13, wherein said aggregates are selected from siliceous aggregates and calcareous aggregates and wherein said aggregates are added in an aggregate / silico-aluminous material ratio capable of being alkaline activated between 1/1 and 4 / one.
15. Cemento alcalino obtenible a partir de un procedimiento según una cualquiera de las reivindicaciones anteriores. 15. Alkaline cement obtainable from a process according to any one of the preceding claims.
16. Uso de un cemento alcalino de acuerdo a la reivindicación 15 para la fabricación de hormigón y/o prefabricados . 16. Use of an alkaline cement according to claim 15 for the manufacture of concrete and / or prefabricated.
PCT/ES2012/070408 2011-06-17 2012-05-31 Method for the production of alkali cements from industrial and urban waste glass WO2012172138A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201131023 2011-06-17
ES201131023A ES2394979B1 (en) 2011-06-17 2011-06-17 PROCEDURE FOR THE MANUFACTURE OF ALKALINE CEMENTS FROM URBAN AND INDUSTRIAL VITREOUS WASTE.

Publications (1)

Publication Number Publication Date
WO2012172138A1 true WO2012172138A1 (en) 2012-12-20

Family

ID=47356577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070408 WO2012172138A1 (en) 2011-06-17 2012-05-31 Method for the production of alkali cements from industrial and urban waste glass

Country Status (2)

Country Link
ES (1) ES2394979B1 (en)
WO (1) WO2012172138A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104689664A (en) * 2015-02-17 2015-06-10 厦门美益集团有限公司 Dust wastewater treatment method for green production of premixed concrete
EP3085676A4 (en) * 2013-12-20 2017-09-06 Universidade Estadual de Ponta Grossa Geopolymer cement produced from recycled glass and method for producing same
CN109437614A (en) * 2018-12-29 2019-03-08 中国建筑材料科学研究总院有限公司 The alkali-activated carbonatite cementitious material and preparation method thereof of the low alkali soluble output of room temperature maintenance
CN110040989A (en) * 2019-04-30 2019-07-23 郑州科技学院 A kind of high-performance building cement and preparation method thereof
CN111302709A (en) * 2020-02-28 2020-06-19 中国建筑材料科学研究总院有限公司 Alkali-activated cementing material for 3D printing and printing method thereof
CN113955982A (en) * 2021-11-01 2022-01-21 广东佳纳能源科技有限公司 Alkali-activated jarosite slag cement composite material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2005697C1 (en) * 1991-11-21 1994-01-15 Мартыненко Александр Антонович Binding composition
US20010039902A1 (en) * 2000-02-23 2001-11-15 Hedley Charles W. Materials composed of glass and flyash and methods of making the same
US20020053304A1 (en) * 1999-11-10 2002-05-09 Pelot James E. Concrete composition
AU2007200162A1 (en) * 2006-03-20 2007-10-04 Council Of Scientific & Industrial Research A Process for the Production of Geopolymer Cement from Fly Ash and Granulated Blast Furnace Slag, Geopolymer Cement Made Thereby and Process of Making Products Thereof
KR20100037889A (en) * 2008-10-02 2010-04-12 한국건설기술연구원 Manufacturing method of cement zero concrete using mixed waste glass powder and fly ash as binder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2005697C1 (en) * 1991-11-21 1994-01-15 Мартыненко Александр Антонович Binding composition
US20020053304A1 (en) * 1999-11-10 2002-05-09 Pelot James E. Concrete composition
US20010039902A1 (en) * 2000-02-23 2001-11-15 Hedley Charles W. Materials composed of glass and flyash and methods of making the same
AU2007200162A1 (en) * 2006-03-20 2007-10-04 Council Of Scientific & Industrial Research A Process for the Production of Geopolymer Cement from Fly Ash and Granulated Blast Furnace Slag, Geopolymer Cement Made Thereby and Process of Making Products Thereof
KR20100037889A (en) * 2008-10-02 2010-04-12 한국건설기술연구원 Manufacturing method of cement zero concrete using mixed waste glass powder and fly ash as binder

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199431, Derwent World Patents Index; AN 1994-254046 *
MEYER ET AL.: "USE of Recycled Glass and Fly Ash for Precast Concrete.", JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 1999, pages 89 - 90 *
TAHA ET AL.: "Utilizing Waste Recycled Glass as Sant/Cement Replacement in Concrete.", JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2009, pages 709 - 721 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085676A4 (en) * 2013-12-20 2017-09-06 Universidade Estadual de Ponta Grossa Geopolymer cement produced from recycled glass and method for producing same
CN104689664A (en) * 2015-02-17 2015-06-10 厦门美益集团有限公司 Dust wastewater treatment method for green production of premixed concrete
CN104689664B (en) * 2015-02-17 2017-05-10 厦门美益集团有限公司 Dust wastewater treatment method for green production of premixed concrete
CN109437614A (en) * 2018-12-29 2019-03-08 中国建筑材料科学研究总院有限公司 The alkali-activated carbonatite cementitious material and preparation method thereof of the low alkali soluble output of room temperature maintenance
CN109437614B (en) * 2018-12-29 2021-08-31 中国建筑材料科学研究总院有限公司 Normal-temperature-cured alkali-activated cementing material with low alkali dissolution amount and preparation method thereof
CN110040989A (en) * 2019-04-30 2019-07-23 郑州科技学院 A kind of high-performance building cement and preparation method thereof
CN111302709A (en) * 2020-02-28 2020-06-19 中国建筑材料科学研究总院有限公司 Alkali-activated cementing material for 3D printing and printing method thereof
CN113955982A (en) * 2021-11-01 2022-01-21 广东佳纳能源科技有限公司 Alkali-activated jarosite slag cement composite material and preparation method thereof
CN113955982B (en) * 2021-11-01 2022-11-29 广东佳纳能源科技有限公司 Alkali-activated sodium jarosite slag cement composite material and preparation method thereof

Also Published As

Publication number Publication date
ES2394979B1 (en) 2013-12-16
ES2394979A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
Nwankwo et al. High volume Portland cement replacement: A review
Ahmed et al. Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina waste
Samadi et al. Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars
Liu et al. Microstructure and phase evolution of alkali-activated steel slag during early age
Nadoushan et al. The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers
Madani et al. Geopolymer bricks made from less active waste materials
Hajimohammadi et al. Dissolution behaviour of source materials for synthesis of geopolymer binders: A kinetic approach
Liu et al. The potential use of drinking water sludge ash as supplementary cementitious material in the manufacture of concrete blocks
Shi et al. A review on the use of waste glasses in the production of cement and concrete
Sudharsan et al. Feasibility studies on waste glass powder
ES2778927T3 (en) Ultra high performance geopolymeric composite material for concrete
Maraghechi et al. Utilisation of alkali activated glass powder in binary mixtures with Portland cement, slag, fly ash and hydrated lime
de Gutiérrez et al. Alkali-activated metakaolin mortars using glass waste as fine aggregate: Mechanical and photocatalytic properties
Puertas et al. Reuse of urban and industrial waste glass as a novel activator for alkali-activated slag cement pastes: a case study
Tashima et al. Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure
WO2012172138A1 (en) Method for the production of alkali cements from industrial and urban waste glass
Garg et al. Comprehensive study of fly ash binder developed with fly ash–alpha gypsum plaster–Portland cement
CN113735515B (en) Geopolymer curing material based on fly ash and red mud and preparation method thereof
Sakale et al. Experimental investigation on strength of glass powder replacement by cement in concrete with different dosages
Hamzah et al. Laboratory evaluation of alkali-activated mortars modified with nanosilica from glass bottle wastes
Kasaniya et al. Role of the alkalis of supplementary cementing materials in controlling pore solution chemistry and alkali-silica reaction
Rashad Effect of limestone powder on the properties of alkali-activated materials–A critical overview
Khan Nanosilica/silica fume
Huang et al. Recycling of waste glass and incinerated sewage sludge ash in glass-ceramics
Elhag et al. A critical review on mechanical, durability, and microstructural properties of industrial by-product-based geopolymer composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800152

Country of ref document: EP

Kind code of ref document: A1