WO2012167523A1 - 高温循环用铅酸蓄电池 - Google Patents
高温循环用铅酸蓄电池 Download PDFInfo
- Publication number
- WO2012167523A1 WO2012167523A1 PCT/CN2011/079990 CN2011079990W WO2012167523A1 WO 2012167523 A1 WO2012167523 A1 WO 2012167523A1 CN 2011079990 W CN2011079990 W CN 2011079990W WO 2012167523 A1 WO2012167523 A1 WO 2012167523A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- high temperature
- battery
- lead
- cycle
- acid battery
- Prior art date
Links
- 239000002253 acid Substances 0.000 title claims abstract description 18
- 239000004734 Polyphenylene sulfide Substances 0.000 claims abstract description 7
- 229920000069 polyphenylene sulfide Polymers 0.000 claims abstract description 7
- 239000003792 electrolyte Substances 0.000 claims abstract description 6
- 230000006835 compression Effects 0.000 claims abstract description 5
- 238000007906 compression Methods 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 9
- 229920001955 polyphenylene ether Polymers 0.000 claims description 2
- 238000004891 communication Methods 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052939 potassium sulfate Inorganic materials 0.000 abstract description 2
- 239000003779 heat-resistant material Substances 0.000 abstract 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 9
- 230000002238 attenuated effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011149 active material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/28—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a lead-acid battery, in particular to a lead-acid battery for high temperature circulation.
- the valve-regulated sealed lead-acid battery technology has made great progress and has been widely used in the communication industry, playing an important role in the rapid development of the communication industry.
- the state proposes energy conservation and emission reduction in the 12th Five-Year Plan to achieve a low-carbon economy master plan.
- the Ministry of Industry and Information Industry has formulated a green environmental protection plan for energy conservation and emission reduction, and proposed to reduce the air conditioning configuration of the computer room, reduce the frequency of air conditioner use, increase the ambient temperature of the lead-acid battery, and reduce the pressure on the operating cost of the base station.
- the performance of lead-acid batteries cannot meet the requirements. When the ambient temperature is raised from 25 °C to 35 °C, the life expectancy will drop by 50%. Therefore, it is necessary to study new lead-acid storage batteries for high-temperature cycles.
- the object of the present invention is to overcome the defects of the high-temperature performance of the existing lead-acid battery, and to provide a new high-temperature cycle lead-acid with good corrosion resistance, low water loss, high temperature resistance, strong charge acceptance and long deep cycle life. Battery.
- the lead-acid battery for high-temperature cycle includes a pole group composed of a positive electrode plate, a negative electrode plate, and a separator, and an electrolyte solution and a battery case, and the improvement is that a mass percentage of 0.1% is added to the separator- 0.8% high temperature resistant material PPS (polyphenylene sulfide), which maintains good mechanical strength, stiffness and hardness, superior chemical and hydrolysis resistance, good dimensional stability and excellent electrical insulation in high temperature environment. Sex, not easy to decompose, adhere to the surface of the active material of the plate, improve the cycle life of the battery. Adding 1%-1.8% by mass of K2S04 to the electrolyte is beneficial to prevent the dendrite from short-circuiting at high temperatures, resulting in a decrease in battery capacity.
- PPS polyphenylene sulfide
- the battery case is made of high temperature resistant materials such as PPO (polyphenylene ether), PC-ABS (polycarbonate and acrylonitrile-butadiene-styrene copolymer and mixture) to improve the strength and high temperature resistance of the casing and reduce the battery. Loss of water during the cycle helps to extend the service life.
- PPO polyphenylene ether
- PC-ABS polycarbonate and acrylonitrile-butadiene-styrene copolymer and mixture
- the polar group assembly compression ratio is 20% - 35%, which makes the active material of the electrode plate and the diaphragm organically combine to reduce the internal resistance of the battery and delay the battery capacity attenuation.
- Example 1 A high temperature resistant material PPS with a mass percentage of 0.2% is added to the separator, and the mass percentage is added to the electrolyte. Compared with 1.5% K 2 S0 4 , the PPO high temperature resistant material shell is used, and the compression ratio of the pole group assembly is controlled at about 25%. The rest is borrowed from the current lead-acid battery technology to make 15 samples of 2V200AH batteries, calculated in 10 hr capacity. The chemical conversion is internalized into three charge and two release systems. After the battery is off the line, it is allowed to stand for 72 hours. According to the capacity discharge voltage difference of 30mV and the terminal voltage of 10mV, 12 samples are taken from 15 samples and divided into 2 groups (6 in each group).
- the high temperature cycle life and high temperature float life test were performed separately, and the remaining three were tested for charge acceptance. And performance comparison with the batteries produced by the prior art.
- the testing equipment uses the 48V100A battery cycle detector and constant power discharge meter produced by Zhangjiagang Jinfan Power Co., Ltd.
- Three batteries were taken from the sample battery, discharged at a current of 20A for 5 hours, and then placed in a low temperature chamber at 0 °C for 48 hours. The battery was charged in a constant voltage of 2.35V for 2 minutes. After 10 minutes, the maximum charge was measured. The currents are 54A, 55A, 56A, respectively, and the maximum charging current of the prior art battery is generally around 40A. The invention improves the charging acceptance of the battery.
- the assembled battery pack 1 (6 pcs) will be tested for high temperature cycle life.
- the circulation system is: at a temperature of 55 ° C, the battery is discharged to 20A to a final pressure of 5.4v, a constant voltage of 7.05v, a current limit of 20A for 24h, and after standing for 2h, it is a cycle, when the discharge capacity of the whole battery Less than 80% of rated capacity, end of life.
- the capacity is 100% of the initial capacity, there is no attenuation, and when it is cycled to 50 times, it is 96% of the initial capacity, and the capacity is attenuated by 4%.
- the prior art battery is 95% of the initial capacity when it is cycled to 25 times, and the capacity is attenuated by 5% to 50 times, which is 86% of the initial capacity, and the capacity is attenuated by 14%.
- the capacity decay rate of the present invention is significantly reduced, and the cycle performance is significantly improved.
- the cycle life system according to the above-mentioned cycle is cycled until the discharge capacity of the entire battery is less than 80% of the rated capacity, the number of cycles of the sample battery using the technique of the present invention is 255, whereas the number of cycles of the prior art battery is generally only 132. about.
- the assembled battery pack 2 (6 pcs) was kept at 60 ° C ⁇ 2 ° C for high temperature float life test.
- the cycle system is: The battery is continuously charged for 6.30V/cell float voltage for 30d, the battery is taken out, and the 3h rate discharge detection is performed in a 25°C ⁇ 2°C environment, which is 1 cycle until the battery capacity is less than 3h. When the rate is 80% of the rated capacity, The life test is over.
- the floating charge cycle is performed until the 3h rate discharge capacity of the whole battery is less than 80% of the rated capacity, and the sample battery cycle number is 10 times.
- the number of battery cycles in the prior art is generally only about four times.
- the battery having the charge acceptance capability, the high temperature cycle life, and the high temperature float charge life which are produced by the first example of the present invention can be suitably used in a high temperature environment.
- Example 2 Adding 0.5% by mass of high temperature resistant material PPS to the separator, adding 1.0% by mass of K 2 S0 4 to the electrolyte, using PC-ABS high temperature resistant material shell, pole group assembly compression ratio control At around 30%, the rest borrowed the current lead-acid battery technology to produce 15 samples of 2V200AH batteries, calculated in 10 hr capacity, and converted into three-charge two-discharge system. After the battery was off the line, it was allowed to stand for 72 hours. The pressure difference was 30mV and the terminal voltage was 10mV. 12 samples were taken from 15 samples and divided into 2 groups. The high temperature cycle life and high temperature float life test were carried out respectively, and the remaining 3 were tested for charge acceptance. The same effect is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
本发明公开了一种高温循环用铅酸蓄电池,在隔膜中加入了0.1%-0.8%的耐高温材料PPS(聚苯硫醚),在电解液中加入1%-1.8%的K2SO4,壳体采用PPO类、PC-ABS合金类耐高温材料制作,极群装配压縮比为20%-35%。本发明提高了电池的充电接受能力、高温循环寿命,及高温浮充寿命,解决了现有铅酸蓄电池在高温下易失水,循环寿命差的问题,适合通信行业高温环境下使用。
Description
说明书 高温循环用铅酸蓄电池 技术领域
本发明涉及一种铅酸蓄电池, 具体讲是高温循环用铅酸蓄电池。
背景技术
近十年来, 阀控密封铅酸蓄电池技术取得了较大的发展, 在通信行业得到了广泛应 用, 为通信行业的快速发展起重要的支柱作用。 为了实现低碳经济, 实施可持续发展, 国家在十二五计划中提出节能减排, 实现低碳经济总体规划。 工业和信息产业部制订了 节能减排绿环保计划, 提出了减少机房空调配置, 降低空调使用频次, 提高铅酸蓄电池 使用环境温度, 减少基站运转成本压力的要求。 目前, 铅酸蓄电池的性能无法满足要求, 当环境温度从 25°C提高至 35°C, 寿命会下降 50%, 因此研究新型高温循环用铅酸蓄电 池非常必要。
发明内容
本发明的目的是克服现有铅酸蓄电池的高温性能不好的缺陷,提供一种耐腐蚀性好、 失水少、 耐高温、 充电接受能力强、 深循环寿命长的新型高温循环用铅酸蓄电池。
本发明的技术方案和有益效果是: 高温循环用铅酸蓄电池包括由正极板、 负极板、 隔膜组成的极群以及电解液、电池壳,其改进之处是在隔膜中加入质量百分比 0.1%-0.8% 的耐高温材料 PPS (聚苯硫醚), 使隔膜在高温环境保持良好的机械强度、 刚度和硬度、 优越的耐化学腐蚀及耐水解性能, 较好的尺寸稳定性、优良的电绝缘性, 不易产生分解, 粘附在极板活性物质表面, 提高电池的循环使用寿命。 在电解液中加入质量百分比 1%-1.8%的 K2S04, 有利于防止电池在高温下产生枝晶短路, 造成电池容量下降。
电池壳采用耐高温材料, 如 PPO (聚苯醚)、 PC-ABS (聚碳酸酯和丙烯腈 -丁二烯- 苯乙烯共聚物和混合物), 提高壳体的强度和耐高温性能, 减少电池循环过程中的失水, 有利于延长使用寿命。
极群装配压縮比为 20%-35%, 使极板活性物质与隔膜有机结合, 减少电池内阻, 延 缓电池容量衰减。
具体实施方式
下面通过实施例进一步说明本发明及其有益效果。
例一、 在隔膜中加入了质量百分比 0.2%的耐高温材料 PPS, 电解液中加入质量百分
比 1.5%的 K2S04, 采用 PPO耐高温材料壳体, 极群装配压縮比控制在 25%左右, 其余 借用现行铅酸蓄电池工艺技术, 制作样品电池 2V200AH电池 15只, 以 10hr容量计算, 化成采用内化成三充两放制式, 电池下线后, 静置 72小时, 按容量放电压差 30mV、 端 电压 10mV从 15只样品中抽取 12只配成 2组(每组 6只),分别进行高温循环寿命和高 温浮充寿命测试, 其余 3只进行充电接受能力测试。 并与现有技术生产的电池进行性能 对比。检测设备采用张家港金帆电源有限公司生产的 48V100A型蓄电池循环检测仪及恒 功率放电仪。
1、 充电接受能力试验
样品电池中抽取 3只电池, 分别以 20A电流放电 5h, 再放入 0°C的低温室中 48h, 取出在 2min内, 以恒定电压 2.35V充电对蓄电池进行充电, lOmin后,测得最大充电电流 分别为 54A、 55A、 56A , 现有技术的电池最大充电电流一般在 40A左右, 本发明提高 了电池的充电接受能力。
2、 高温循环寿命试验
将配好的电池组 1 (6只), 进行高温循环寿命测试。 循环制式为: 在环境温度 55°C 下, 将蓄电池以 20A放电至终压 5.4v, 恒压 7.05v、 限流 20A充电 24h, 静置 2h后, 为一个循环, 当整组电池的放电容量低于额定容量的 80%, 寿命终止。
( 1 ) 容量衰减速度
电池组 1循环至第 25次时容量为初始容量的 100%, 没有衰减,循环至 50次时为初始容 量的 96%, 容量衰减了 4%。
现有技术的电池循环至 25次时为初始容量的 95%, 容量衰减了 5%循环至 50次时 为初始容量的 86%, 容量衰减了 14%。 由此可见, 本发明的容量衰减速度明显减小, 循 环性能有了明显提高。
(2) 循环寿命次数
按上述制订的循环寿命制式进行循环至整组电池的放电容量低于额定容量的 80% 时, 采用本发明技术的样品电池循环次数为 255次, 而现有技术的电池循环次数一般只 有 132次左右。
3、 高温浮充寿命试验
将配好的电池组 2 (6只), 保持在 60°C ±2°C环境中进行高温浮充寿命测试。 循环 制式为: 对蓄电池以 6.75V/单体浮充电压连续充电 30d, 将蓄电池取出, 在 25°C ±2°C环 境中进行 3h率放电检测, 为 1次循环, 直至蓄电池容量低于 3h率额定容量的 80%时,
寿命试验结束。
按上述制订的高温浮充循环寿命制式进行浮充循环直至整组电池的 3h 率放电容量 低于额定容量的 80%时, 样品电池组循环次数为 10次。 现有技术的电池循环次数一般 只有 4次左右。
从上述试验结果可以说明, 采用本发明例一制作的电池充电接受能力、 高温循环寿 命、 高温浮充寿命明显提高, 能够适应在高温环境下使用。
例二、 在隔膜中加入了质量百分比 0.5%的耐高温材料 PPS, 在电解液中加入质量百 分比 1.0%的 K2S04, 采用 PC-ABS耐高温材料壳体, 极群装配压縮比控制在 30%左右, 其余借用现行铅酸蓄电池技术工艺,制作样品电池 2V200AH电池 15只, 以 10hr容量计 算, 化成采用内化成三充两放制式, 电池下线后, 静置 72小时, 按容量放电压差 30mV、 端电压 10mV从 15只样品中抽取 12只配成 2组, 分别进行高温循环寿命和高温浮充寿 命测试, 其余 3只进行充电接受能力测试。 也得到同样的效果。
Claims
1. 一种高温循环用铅酸蓄电池, 包括极群、 电解液、 电池壳, 其特征是所述极群中的隔 膜含有质量百分比 0.1%〜0.8%的耐高温材料聚苯硫醚, 所述电解液中含有质量百分比 1%〜1.8%的 K2S04, 所述电池壳采用耐高温材料。
2. 按权利要求 1 所述的高温循环用铅酸蓄电池, 其特征是所述电池壳采用耐高温材料聚 苯醚。
3. 按权利要求 1所述的高温循环用铅酸蓄电池, 其特征是所述极群装配压縮比为 20%〜 35%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110155751.7 | 2011-06-10 | ||
CN2011101557517A CN102255060B (zh) | 2011-06-10 | 2011-06-10 | 高温循环用铅酸蓄电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012167523A1 true WO2012167523A1 (zh) | 2012-12-13 |
Family
ID=44982159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/079990 WO2012167523A1 (zh) | 2011-06-10 | 2011-09-22 | 高温循环用铅酸蓄电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102255060B (zh) |
WO (1) | WO2012167523A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117855608A (zh) * | 2024-03-07 | 2024-04-09 | 宁德新能源科技有限公司 | 电解液、二次电池以及电子装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102427136A (zh) * | 2011-12-09 | 2012-04-25 | 江苏双登集团有限公司 | 高温环境下通信用铅酸蓄电池 |
CN102903927A (zh) * | 2012-10-18 | 2013-01-30 | 双登集团股份有限公司 | 深循环阀控铅酸蓄电池 |
CN105226332B (zh) * | 2015-09-30 | 2017-12-01 | 风帆有限责任公司 | 一种控制阀控密封铅酸蓄电池鼓胀变形的方法 |
CN105845991B (zh) * | 2016-05-11 | 2018-06-08 | 双登集团股份有限公司 | 汽车起停用铅碳卷绕蓄电池 |
CN106784432A (zh) * | 2017-02-28 | 2017-05-31 | 卧龙电气集团股份有限公司 | 耐高温铅炭电池 |
CN107732105A (zh) * | 2017-09-27 | 2018-02-23 | 芜湖华力五星电源科技有限公司 | 一种阀控式密封铅酸蓄电池用隔板及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6406813B2 (en) * | 1999-04-02 | 2002-06-18 | Gnb Technologies, Inc. | Lead-acid separators and cells and batteries using such separators |
US6544680B1 (en) * | 1999-06-14 | 2003-04-08 | Kawasaki Steel Corporation | Fuel cell separator, a fuel cell using the fuel cell separator, and a method for making the fuel cell separator |
CN101288189A (zh) * | 2005-08-12 | 2008-10-15 | 科巴西斯有限责任公司 | 具有改善的热导率的电池壳 |
CN101499536A (zh) * | 2008-12-05 | 2009-08-05 | 晋江华威电源有限公司 | 胶体电解液的辅助添加剂 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7976976B2 (en) * | 2007-02-07 | 2011-07-12 | Rosecreek Technologies Inc. | Composite current collector |
CN100524898C (zh) * | 2007-04-18 | 2009-08-05 | 风帆股份有限公司玻璃纤维制品分公司 | 一种铅酸蓄电池隔板及制备方法 |
-
2011
- 2011-06-10 CN CN2011101557517A patent/CN102255060B/zh active Active
- 2011-09-22 WO PCT/CN2011/079990 patent/WO2012167523A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6406813B2 (en) * | 1999-04-02 | 2002-06-18 | Gnb Technologies, Inc. | Lead-acid separators and cells and batteries using such separators |
US6544680B1 (en) * | 1999-06-14 | 2003-04-08 | Kawasaki Steel Corporation | Fuel cell separator, a fuel cell using the fuel cell separator, and a method for making the fuel cell separator |
CN101288189A (zh) * | 2005-08-12 | 2008-10-15 | 科巴西斯有限责任公司 | 具有改善的热导率的电池壳 |
CN101499536A (zh) * | 2008-12-05 | 2009-08-05 | 晋江华威电源有限公司 | 胶体电解液的辅助添加剂 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117855608A (zh) * | 2024-03-07 | 2024-04-09 | 宁德新能源科技有限公司 | 电解液、二次电池以及电子装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102255060B (zh) | 2013-04-24 |
CN102255060A (zh) | 2011-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110518277B (zh) | 固态电解质及其制备方法和包含该固态电解质的固态电池 | |
WO2012167523A1 (zh) | 高温循环用铅酸蓄电池 | |
CN103855431B (zh) | 一种提高锂离子电池循环性能的化成方法 | |
WO2021057483A1 (zh) | 二次电池及含有该二次电池的电池模组、电池包、装置 | |
CN106711437B (zh) | 一种低成本高容量全固态锂离子电池的制备方法 | |
US20180366720A1 (en) | Positive active material and lithium-ion secondary battery | |
CN106099175B (zh) | 一种耐高温高倍率放电的锂离子电池及其制备方法 | |
CN109687028A (zh) | 一种高能量密度锂离子电池及其制作方法 | |
WO2021093265A1 (zh) | 一种电解液和电化学装置 | |
CN113130988A (zh) | 一种电解液及应用的电化学装置 | |
CN113299996A (zh) | 一种三元正极材料与负极硅氧-碳复合负极材料锂离子电池用非水电解液 | |
CN106129335A (zh) | 一种锂电池的正极制备方法 | |
CN108987825A (zh) | 一种耐低温铅蓄电池的制作工艺 | |
CN103531776B (zh) | 高安全性超长寿命的锂离子电池及其正极材料和化成方法 | |
CN107528093A (zh) | 一种磷酸铁锂动力电池的老化工艺 | |
WO2024183283A1 (zh) | 一种二次电池 | |
CN103972447B (zh) | 电化学电源隔膜及其制备方法、电化学电池或电容器 | |
CN102299375B (zh) | 锂离子动力电池及锂离子动力电池的制备方法 | |
CN102280662B (zh) | 一种非水电解液电池 | |
WO2023050769A1 (zh) | 一种锂离子电池及其制备方法 | |
CN108832180A (zh) | 一种锂离子电池电解液及包含该电解液的锂离子电池 | |
CN104744722A (zh) | 多孔自交联型聚合物膜及制备方法、由该膜得到的电解质及其在锂离子电池的应用 | |
CN102299373B (zh) | 锂离子动力电池及其制备方法 | |
CN102324564A (zh) | 一种电解液添加剂及含有该添加剂的锂离子电池 | |
CN106025341A (zh) | 一种快充、快放、长寿锂离子动力电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11867309 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11867309 Country of ref document: EP Kind code of ref document: A1 |