[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012165439A1 - めっきプロセス用プライマー層、配線板用積層板及びその製造方法、多層配線板及びその製造方法 - Google Patents

めっきプロセス用プライマー層、配線板用積層板及びその製造方法、多層配線板及びその製造方法 Download PDF

Info

Publication number
WO2012165439A1
WO2012165439A1 PCT/JP2012/063790 JP2012063790W WO2012165439A1 WO 2012165439 A1 WO2012165439 A1 WO 2012165439A1 JP 2012063790 W JP2012063790 W JP 2012063790W WO 2012165439 A1 WO2012165439 A1 WO 2012165439A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer layer
plating process
support film
wiring board
plating
Prior art date
Application number
PCT/JP2012/063790
Other languages
English (en)
French (fr)
Inventor
藤本 大輔
薫平 山田
信之 小川
村井 曜
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to EP12792865.3A priority Critical patent/EP2716793B1/en
Priority to KR1020137034286A priority patent/KR101730218B1/ko
Priority to US14/123,140 priority patent/US20140151091A1/en
Priority to JP2012540626A priority patent/JP5212578B1/ja
Priority to CN201280026695.XA priority patent/CN103562436B/zh
Publication of WO2012165439A1 publication Critical patent/WO2012165439A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/007Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1043Subsequent to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Definitions

  • the present invention relates to a primer layer for a plating process, a laminated board for a wiring board having the primer layer and a manufacturing method thereof, and a multilayer wiring board having the primer layer and a manufacturing method thereof.
  • a multilayer wiring board is generally manufactured by the following method. That is, first, a material (prepreg) in which a glass cloth is impregnated with an epoxy resin and made into a semi-cured state is laminated with a copper foil on a single-sided or double-sided insulating substrate, and laminated and integrated by hot pressing. Then, a hole called a through hole for interlayer connection is made with a drill. Electroless plating is performed on the inner wall of the through hole and the surface of the copper foil, and if necessary, further electroplating is performed so that the plating layer as a circuit conductor has a required thickness. And a multilayer wiring board is manufactured by removing unnecessary copper.
  • a build-up type multilayer that uses an insulating resin that does not contain glass cloth as an insulating layer instead of a prepreg, and forms a wiring layer while connecting only necessary portions with via holes. Many circuit boards have been used. This build-up type multilayer wiring board is also useful in terms of weight reduction and size reduction.
  • Such a build-up type multilayer wiring board is, for example, laminated with an insulating resin film on an inner circuit board, cured by heating, formed via holes by laser processing, and roughened by alkali permanganate treatment or the like. Perform smear processing. Thereafter, electroless copper plating is performed to form via holes that allow interlayer connection with the second circuit (see Patent Documents 2 to 4).
  • the circuit forming method mainly used in build-up type multilayer wiring boards as described in Patent Documents 2 to 4 is a semi-additive method.
  • this method after electroless copper plating, a circuit is formed only by electro copper plating on a necessary portion, and then an electroless copper plating layer in an unnecessary portion is removed. Since the electroless copper plating layer to be removed is thin, this method is more advantageous for making fine wiring than in the past, and is the mainstream of current fine wiring forming methods.
  • the adhesive force between the resin and the electroless copper plating is ensured by the roughness of the resin surface (anchor effect), and the surface roughness is as large as 0.5 ⁇ m or more in Ra. It was.
  • the conventional method for securing the adhesive force with the electroless copper plating by utilizing a large rough shape (anchor effect) obtained by roughening the surface is a fine method having a thickness of 10 ⁇ m or less.
  • a circuit may be short-circuited or open. Therefore, a multilayer wiring board cannot be manufactured with a high yield.
  • the roughened shape is reduced, the adhesive force with the electroless copper plating is reduced, and defects such as line peeling occur. Therefore, the wiring board material which shows electroless copper plating and high adhesive force on the smooth surface was needed.
  • an insulating film having a two-layer structure of an adhesive layer containing an electroless copper plating catalyst and an insulating resin layer has been proposed for the purpose of ensuring good adhesion between the electroless copper plating and the resin (See Patent Document 5).
  • it is not intended to smooth the roughened surface shape, and is insufficient as a semiconductor package substrate that can cope with the recent miniaturization of wiring.
  • the thickness of the wiring board used is becoming thinner as the electronic parts become thinner.
  • an insulating resin that does not contain glass cloth is used as the insulating layer instead of the prepreg, warping during mounting increases and connection reliability may be reduced.
  • prepregs containing glass cloth have been reviewed again, but there are some problems to be solved such as the need for high-density wiring by the additive method.
  • Patent Document 7 proposes an insulating material for a buildup system using an epoxy resin composition containing an epoxy resin, a curing agent, and a phenolic hydroxyl group-containing polyamide as essential components.
  • an epoxy resin composition containing an epoxy resin, a curing agent, and a phenolic hydroxyl group-containing polyamide as essential components.
  • the peel-up substrate is bent by 90 °, the built-up substrate manufactured using the material has insufficient adhesion between the insulating material and copper.
  • the method of securing the adhesive force with the electroless copper plating by utilizing a large roughened shape (anchor effect) obtained by roughening the surface of the laminated plate or the insulating layer is fine with a thickness of 10 ⁇ m or less. If a simple circuit is formed, a short circuit defect or an open defect occurs, and it cannot be manufactured with a high yield. On the other hand, when the roughened shape is reduced, the adhesive force with the electroless copper plating is reduced, and defects such as line peeling occur.
  • the present invention exhibits a high adhesiveness to electroless copper plating, and can be used for a plating process primer layer capable of responding to higher wiring density of a semiconductor package, a laminated board for a wiring board having the primer layer, and a method for manufacturing the same And it aims at providing the multilayer wiring board which has the said primer layer, and its manufacturing method.
  • the present inventors have found that a primer layer for a plating process formed by using a resin composition containing a predetermined amount of a phenolic hydroxyl group-containing polybutadiene-modified polyamide resin is electroless copper plating. As a result, the present inventors have found that it has high adhesiveness and can cope with high wiring density of semiconductor packages. That is, the present invention is as follows.
  • the primer layer for plating processes which is 5 mass parts or more and less than 25 mass parts with respect to a total of 100 mass parts of a polyfunctional epoxy resin (A) and an epoxy resin hardening
  • Represents an integer of ⁇ 300, and z ⁇ 20 for y 1.
  • R, R ′, and R ′′ are each independently a divalent group derived from an aromatic diamine or an aliphatic diamine, and a plurality of R ′ ′′ are each independently an aromatic dicarboxylic acid, A divalent group derived from an aromatic dicarboxylic acid or an oligomer having carboxyl groups at both ends.
  • a method for producing a laminated board for a wiring board with a primer layer for a plating process wherein the wiring board prepreg is laminated on both sides, and a mirror plate is further laminated on the outside, press-molded, and the support film is removed after molding.
  • Wiring with primer layer for plating process obtained by stacking on both sides of prepreg for wiring board, laminating by heating and pressing with a laminator using heat resistant rubber sheet, heating and curing after lamination, removing support film Laminate for board.
  • Multi-layer wiring board with primer layer for plating process obtained by stacking on prepreg for wiring board, stacking it on both sides of circuit-processed wiring board, and further forming a mirror plate on the outside, press molding, and removing support film after molding .
  • the primer layer for the plating process which shows high adhesiveness with respect to electroless copper plating, and can respond to the high-density wiring of a semiconductor package
  • the multilayer wiring board which has the said primer layer, and its manufacturing method can be provided.
  • the high solder heat resistance which can respond to lead-free-ization can also be exhibited.
  • the primer layer for the plating process of the present invention comprises a polyfunctional epoxy resin (A) (hereinafter sometimes referred to as “(A) component”), an epoxy resin curing agent (B) (hereinafter referred to as “(B) component”). And a phenolic hydroxyl group-containing polybutadiene-modified polyamide resin (C) having a structural unit represented by the following formulas (i), (ii), and (iii) (hereinafter referred to as “component (C)”) And a primer layer resin composition.
  • a component polyfunctional epoxy resin
  • B epoxy resin curing agent
  • component (C) component) a phenolic hydroxyl group-containing polybutadiene-modified polyamide resin having a structural unit represented by the following formulas (i), (ii), and (iii) (hereinafter referred to as “component (C)”
  • component (C) phenolic hydroxyl group-containing polybutadiene-modified polyamide resin
  • Represents an integer of ⁇ 300 ((y + z) / x), and z ⁇ 20 (z / y) for y 1.
  • R, R ′, and R ′′ are each independently a divalent group derived from an aromatic diamine or an aliphatic diamine, and a plurality of R ′ ′′ are each independently an aromatic dicarboxylic acid, A divalent group derived from an aromatic dicarboxylic acid or an oligomer having carboxyl groups at both ends.
  • R, R ′, R ′′ and R ′ ′′ are specifically derived from the diamine raw material and dicarboxylic acid raw material described later.
  • the weight average molecular weight of the phenolic hydroxyl group-containing polybutadiene-modified polyamide resin (C) is preferably 60,000 to 250,000, more preferably 80,000 to 200,000.
  • the primer layer for the plating process of the present invention is a semi-cured state (so-called B-stage state) on a support or a prepreg before being made a part of a layer of a wiring board laminate or multilayer wiring board.
  • “for plating process” means an application for providing a plating layer (preferably an electroless copper plating layer) on the surface of the formed primer layer for plating process.
  • a plating layer preferably an electroless copper plating layer
  • the blending ratio of (C) is 5 parts by mass or more and less than 25 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B).
  • the reason why such an effect is obtained is not necessarily clear, but the following reason can be considered. That is, since the phenolic hydroxyl group-containing polybutadiene-modified polyamide resin (C) can react with the epoxy resin, the resin can be toughened while maintaining good heat resistance of the epoxy resin. Furthermore, since it has many amide groups with high adhesiveness with copper, high adhesive force with plated copper can be obtained. In addition, since the phenolic hydroxyl group-containing polybutadiene-modified polyamide resin contains a phenolic hydroxyl group having good compatibility with the epoxy resin and polybutadiene incompatible with the epoxy resin, the blending ratio thereof is the component (A) and the component (B).
  • a fine sea-island structure can be formed.
  • this sea-island structure it is possible to form a dense shape during the roughening process by utilizing the fact that the amount of roughening between the sea layer and the island layer differs during the roughening process.
  • this shape is fine but uniform, it exhibits a high physical adhesive force due to the anchor effect, and the adhesiveness with the plated copper is remarkably improved.
  • the blending ratio of the component (C) is less than 5 parts by mass, the domain size of the sea-island structure is increased, and thus Ra after the roughening treatment is increased. Further, the toughness of the resin is low, and a finer roughened shape cannot be obtained, resulting in a decrease in adhesive strength with the plated copper.
  • the blending ratio of the component (C) is 25 parts by mass or more, the ratio of the amide group having high adhesiveness with copper is increased, but the domain size of the sea-island structure becomes too small. As a result, the adhesive strength with the electroless plated copper decreases. Moreover, heat resistance falls and the tolerance to the chemical
  • the blending ratio of (C) is 8 parts by mass or more and 25 parts by mass with respect to 100 parts by mass in total of the (A) component and the (B) component. It is preferably less than 10 parts by mass, more preferably less than 10 parts by mass and less than 25 parts by mass, and still more preferably 10 parts by mass and less than 20 parts by mass.
  • the phenolic hydroxyl group-containing polyamide resin and the phenolic hydroxyl group-containing acrylonitrile-butadiene-modified polyamide resin have a better compatibility with the epoxy resin than the phenolic hydroxyl group-containing polybutadiene-modified polyamide resin, so the sea-island structure cannot be confirmed. It becomes too dense, and it is difficult to form a fine shape after the roughening treatment, and the adhesive strength with the plated copper as much as the phenolic hydroxyl group-containing polybutadiene-modified polyamide resin cannot be exhibited.
  • a nitrile group is introduced, the moisture absorption rate is increased, and the insulating property during moisture absorption is also lowered.
  • the adhesiveness with the prepreg of the B stage since the primer layer and the prepreg can react, a strong adhesion can be secured.
  • the resin in the prepreg is transferred to the primer layer, the domain size of the sea-island structure in the primer resin may be uncontrollable and the adhesion between the primer layer and copper may be deteriorated. It is necessary to control the B stage state of the primer layer.
  • the (C) component phenolic hydroxyl group-containing polybutadiene-modified polyamide resin includes, for example, N-methyl diamine and dicarboxylic acid containing phenolic hydroxyl group, dicarboxylic acid not containing phenolic hydroxyl group, and polybutadiene having carboxyl groups at both ends. It is synthesized by polycondensation of a carboxyl group and an amino group in an organic solvent such as -2-pyrrolidone (NMP) in the presence of a phosphite ester and a pyridine derivative as a catalyst.
  • NMP -2-pyrrolidone
  • the diamine (diamine raw material) used for producing the phenolic hydroxyl group-containing polybutadiene-modified polyamide may be an aromatic diamine or an aliphatic diamine.
  • aromatic diamines include diaminobenzene, diaminotoluene, diaminophenol, diaminodimethylbenzene, diaminomesitylene, diaminonitrobenzene, diaminodiazobenzene, diaminonaphthalene, diaminobiphenyl, diaminodimethoxybiphenyl, diaminodiphenyl ether, diaminodimethyldiphenyl ether, methylene Diamine, methylenebis (dimethylaniline), methylenebis (methoxyaniline), methylenebis (dimethoxyaniline), methylenebis (ethylaniline), methylenebis (diethylaniline), methylenebis (ethoxyaniline), m
  • aliphatic diamine examples include ethylenediamine, propanediamine, hydroxypropanediamine, butanediamine, heptanediamine, hexanediamine, diaminodiethylamine, diaminopropylamine, cyclopentanediamine, cyclohexanediamine, azapentanediamine, and triazaundecadiamine. Etc. These aromatic and aliphatic diamines may be used alone or in combination of two or more.
  • the phenolic hydroxyl group-containing dicarboxylic acid used for the production of the phenolic hydroxyl group-containing polybutadiene-modified polyamide includes hydroxyisophthalic acid, hydroxyphthalic acid, hydroxyterephthalic acid, dihydroxyisophthalic acid, dihydroxyterephthalic acid, and the like. It is not limited to these.
  • the dicarboxylic acid not containing a phenolic hydroxyl group (dicarboxylic acid raw material) used for the production of a phenolic hydroxyl group-containing polybutadiene-modified polyamide is an oligomer having a carboxyl group at both ends, either an aromatic dicarboxylic acid or an aliphatic dicarboxylic acid. But it ’s okay.
  • aromatic dicarboxylic acid examples include phthalic acid, isophthalic acid, terephthalic acid, biphenyl dicarboxylic acid, methylene dibenzoic acid, thiodibenzoic acid, carbonyl dibenzoic acid, sulfonylbenzoic acid, and naphthalenedicarboxylic acid.
  • Aliphatic dicarboxylic acids include oxalic acid, malonic acid, methylmalonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, malic acid, tartaric acid, (meth) acryloyloxysuccinic acid, di (meth) acryloyl Examples thereof include oxysuccinic acid, (meth) acryloyloxymalic acid, (meth) acrylamide succinic acid, and (meth) acrylamide malic acid.
  • the polybutadiene having carboxyl groups at both ends is preferably an oligomer having a number average molecular weight of 200 to 10,000, preferably a number average molecular weight of 500 to 5,000.
  • the polyfunctional epoxy resin as component (A) is an epoxy resin having two or more epoxy groups in the molecule, such as a phenol novolac epoxy resin, a cresol novolac epoxy resin, an aralkyl epoxy resin, and the like. It is done. Especially, it is preferable that an aralkyl novolak type epoxy resin or an aralkyl novolak type epoxy resin is included as a polyfunctional type epoxy resin.
  • the aralkyl novolac type epoxy resin is preferably an aralkyl novolac type epoxy resin having a biphenyl structure.
  • the novolac type epoxy resin having a biphenyl structure refers to an aralkyl novolac type epoxy resin containing an aromatic ring of a biphenyl derivative in the molecule.
  • the following formula (1) (wherein p is 1 to 5) An epoxy resin represented by
  • the epoxy resin represented by the above formula (1) may be used in combination.
  • Commercially available products of the resin include NC-3000 (epoxy resin of formula (1) where p is 1.7) and NC-3000-H (p is formula of 2.8) manufactured by Nippon Kayaku Co., Ltd. 1) epoxy resin).
  • the blending amount of the polyfunctional epoxy resin is preferably 20 to 80% by mass and more preferably 40 to 70% by mass in the ratio of the resin composition for the primer layer.
  • the blending amount of the component (A) is 20 to 80% by mass, the adhesive strength with the circuit conductor and the solder heat resistance can be improved.
  • ⁇ (B) component As the epoxy resin curing agent as component (B), various phenol resins, acid anhydrides, amines, hydragits and the like can be used.
  • phenol resin a novolac type phenol resin, a resol type phenol resin, or the like can be used.
  • acid anhydrides phthalic anhydride, benzophenone tetracarboxylic dianhydride, methyl hymic acid, or the like can be used.
  • As the amines dicyandiamide, diaminodiphenylmethane, guanylurea and the like can be used. In order to improve reliability, a novolac type phenol resin is preferable.
  • the compounding amount of the epoxy resin curing agent is preferably 0.5 to 1.5 equivalents relative to the epoxy group. By being 0.5 to 1.5 equivalents relative to the epoxy group, it is possible to prevent a decrease in adhesiveness with the outer layer copper and also prevent a decrease in Tg (glass transition temperature) and insulation.
  • a reaction accelerator can be used as necessary.
  • various imidazoles and BF 3 amine complexes which are latent thermosetting agents can be used.
  • 2-phenylimidazole and 2-ethyl-4-methylimidazole from the viewpoint of storage stability of the primer layer resin composition, handling property of the B-stage (semi-cured) primer layer resin composition, and solder heat resistance
  • the blending amount is preferably 0.1 to 5.0% by mass with respect to the blending amount of the epoxy resin.
  • the primer layer resin composition may contain an inorganic filler (D) having an average primary particle size of 100 nm or less (hereinafter sometimes referred to as “component (D)”).
  • component (D) By containing the component (D), in addition to heat resistance, laser processability can be improved.
  • component (D) will be described.
  • ⁇ (D) component As the inorganic filler as component (D), silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, titanium Examples thereof include barium acid, strontium titanate, calcium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Of these, fumed silica is preferable.
  • the inorganic filler preferably has a specific surface area of 20 m 2 / g or more from the viewpoint of forming fine wiring on the interlayer insulating layer. Further, from the viewpoint of reducing the surface shape after the roughening treatment in the plating process, the average primary particle size is preferably 100 nm or less.
  • the “average primary particle size” here refers to the average particle size of aggregated particles, that is, the average particle size of single particles that are not aggregated, not the secondary particle size.
  • the primary average particle size can be determined by measuring with a laser diffraction particle size distribution meter, for example.
  • the inorganic filler is preferably surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance, and is preferably hydrophobized to improve dispersibility.
  • a surface treatment agent such as a silane coupling agent
  • the content of the component (D) is preferably 10% by mass or less in the primer layer resin composition.
  • the blending amount is 10% by mass or less, a good surface shape after the roughening treatment can be maintained, and deterioration of plating characteristics and interlayer insulation reliability can be prevented.
  • inorganic fillers having an average primary particle size of 100 nm or less include AEROSIL R972 (trade name) and AEROSIL R202 manufactured by Nippon Aerosil Co., Ltd., PL-1 manufactured by Fuso Chemical Co., Ltd. (trade name, specific surface area of 181 m 2 / g). ) And PL-7 (trade name, specific surface area 36 m 2 / g). Only one type of inorganic filler as described above may be used, or two or more types may be used in combination.
  • these inorganic fillers may be used by a known kneading / dispersing method such as a kneader, a ball mill, a bead mill, a three roll, a nanomizer for the purpose of improving dispersibility.
  • a known kneading / dispersing method such as a kneader, a ball mill, a bead mill, a three roll, a nanomizer for the purpose of improving dispersibility.
  • the resin composition for a primer layer in the present invention is obtained by blending the above-described essential components (A) to (C), as well as the component (D) and a thixotropic agent used in ordinary resin compositions. Various additives such as surfactants and coupling agents can be appropriately blended. After sufficiently stirring these, the resin composition for the primer layer can be obtained by allowing to stand until no bubbles are present.
  • the primer layer resin composition of the present invention is preferably mixed in a solvent and diluted or dispersed to form a varnish from the viewpoint of workability.
  • the solvent include methyl ethyl ketone, xylene, toluene, acetone, ethylene glycol monoethyl ether, cyclohexanone, ethyl ethoxypropionate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like. Can be used. These solvents may be used alone or in a mixed system.
  • the ratio of the solvent to the primer layer resin composition may be appropriately adjusted according to the equipment for forming the coating film of the primer layer resin composition, but the solid content of the resin composition excluding the solvent is 8 to 40 mass in the varnish. It is preferable to adjust the amount of the solvent used so that it becomes%.
  • the primer layer for a plating process of the present invention is obtained by applying a resin composition for a primer layer (or a varnish containing it) onto a support film or prepreg and drying at 100 to 230 ° C. for about 1 to 10 minutes. can get.
  • a support film to be used it is premised that an unroughened copper foil that is not roughened, a low-roughened copper foil that has a surface roughness (Ra) of 0.4 ⁇ m or less, or a primer resin is applied to a glossy surface.
  • General copper foil, polyethylene terephthalate film, polyethylene naphthalate film, polyphenylene sulfide film, Teflon (registered trademark) film, polyimide film, aluminum foil and the like are preferable.
  • you may use for these support body films the surface by which the mold release process was carried out in order to make peeling with primer resin easy.
  • the degree of cure can be measured by the reaction rate measured from a differential scanning calorimeter.
  • the reaction rate of the primer layer for the plating process needs to be 50 to 99%.
  • the prepreg is not particularly limited as long as it is for a wiring board.
  • it can be obtained by mixing a multifunctional epoxy resin, an epoxy resin curing agent, a curing accelerator, a solvent and an inorganic filler as required, and impregnating and drying the glass cloth for laminate.
  • Examples of commercially available products include GEA-67N, GEA-679F, and GEA-679GT manufactured by Hitachi Chemical Co., Ltd.
  • the primer layer for plating process of the present invention is applied to a laminated board for a wiring board and a multilayer wiring board as will be described later, the surface thereof is subjected to a roughening treatment.
  • the surface roughness (Ra) of the primer layer after the roughening treatment is preferably 0.4 ⁇ m or less, and more preferably 0.3 ⁇ m or less.
  • the surface roughness (Ra) is 0.4 ⁇ m or less, it is possible to sufficiently cope with the high density of the semiconductor package.
  • the roughening process conditions demonstrated later can be applied to the conditions of a roughening process.
  • the laminate for a wiring board with a primer layer for a first plating process of the present invention is a support film with a primer layer in which the primer layer for a plating process of the present invention is formed on a support film. It is manufactured by stacking on both sides of the wiring board prepreg so as to be on the inner side, further pressing a mirror plate on the outer side, press molding, and removing the support film after molding.
  • the second laminate for a wiring board with a primer layer for a process according to the present invention comprises a support film with a primer layer in which the primer layer for a plating process according to the present invention is formed on a support film. It is manufactured by laminating on both sides of the prepreg for wiring boards so that the inner side is laminated, heating and pressurizing with a laminator using a heat-resistant rubber sheet, heating and curing after lamination, and removing the support film.
  • the heating temperature in press molding is preferably 150 to 240 ° C.
  • the pressure during pressurization is preferably 1.0 to 4.0 MPa.
  • the heating temperature in the laminator using the heat resistant rubber sheet is preferably 80 to 150 ° C.
  • the pressure during pressurization is preferably 0.3 to 20 MPa.
  • the first multilayer wiring board with a primer layer for plating process of the present invention is a support film with a primer layer in which the primer layer for plating process of the present invention is formed on a support film, and the primer layer for plating process is on the inside.
  • Layered on the prepreg for wiring board this is layered on both sides of the circuit-processed wiring board, and the outer panel is stacked on the outside, press-molded, the support film is removed after molding, roughening treatment, electroless plating treatment Then, the circuit is processed and manufactured by sequentially performing resist formation, electroplating, and the like.
  • the second multilayer wiring board with a primer layer for a plating process of the present invention is a support film with a primer layer in which the primer layer for a plating process of the present invention is formed on a support film.
  • the circuit-processed wiring board is, for example, an inner layer substrate on which a first circuit layer (inner layer wiring) is formed, and a known laminated layer used in a normal wiring board as the inner layer substrate.
  • a plate such as glass cloth-epoxy resin, paper-phenol resin, paper-epoxy resin, glass cloth / glass paper-epoxy resin, etc. can be used and is not particularly limited.
  • a BT substrate impregnated with a bismaleimide-triazine resin, a polyimide film substrate using a polyimide film as a base material, and the like can also be used.
  • a method for forming a circuit in addition to the semi-additive method of forming a circuit using the plating process, a copper-clad laminate in which a copper foil is used as a carrier and the carrier copper foil and an insulating substrate are bonded together
  • a known method of manufacturing a wiring board such as a subtractive method in which an unnecessary portion of a copper foil is removed by etching, or an additive method in which a circuit is formed by electroless plating at a required portion of an insulating substrate.
  • the surface of the circuit layer is surface-treated in a state suitable for adhesion, but this method is not particularly limited.
  • a known production such as forming an acicular crystal of copper oxide on the surface of the circuit layer 1 with an alkaline aqueous solution of sodium hypochlorite and reducing the formed acicular crystal of copper oxide by immersion in an aqueous dimethylamine borane solution. The method can be used.
  • an oxidizing roughening liquid such as a chromium / sulfuric acid roughening liquid, an alkaline permanganic acid roughening liquid, a sodium fluoride / chromium / sulfuric acid roughening liquid, or a borofluoric acid roughening liquid should be used.
  • a chromium / sulfuric acid roughening liquid such as a chromium / sulfuric acid roughening liquid, an alkaline permanganic acid roughening liquid, a sodium fluoride / chromium / sulfuric acid roughening liquid, or a borofluoric acid roughening liquid should be used.
  • a oxidizing roughening liquid such as a chromium / sulfuric acid roughening liquid, an alkaline permanganic acid roughening liquid, a sodium fluoride / chromium / sulfuric acid roughening liquid, or a borofluoric acid roughening liquid should be used.
  • an aqueous solution of diethylene glycol monobutyl ether and NaOH is first heated to 70 ° C., and the laminate or multilayer wiring board is immersed for 5 minutes.
  • an aqueous solution of KMnO and NaOH is heated to 80 ° C. and immersed for 10 minutes.
  • a neutralizing solution for example, a stannous chloride (SnCl 2 ) aqueous hydrochloric acid solution at room temperature for 5 minutes.
  • a plating catalyst application treatment for adhering palladium is performed.
  • the plating catalyst treatment is performed by immersing in a palladium chloride plating catalyst solution.
  • an electroless plating treatment is performed in which an electroless plating layer (conductor layer) having a thickness of 0.3 to 1.5 ⁇ m is deposited on the entire surface of the plating process primer layer by dipping in an electroless plating solution.
  • electroplating is performed to form a circuit with a desired thickness at a desired location.
  • the electroless plating solution used for the electroless plating treatment a known electroless plating solution can be used, and there is no particular limitation.
  • the plating resist a known plating resist can be used, and there is no particular limitation.
  • the electroplating treatment can be performed by a known method and is not particularly limited. These platings are preferably copper platings.
  • the outer layer circuit can be formed by etching away the electroless plating layer at unnecessary portions.
  • a multilayer wiring board having a large number of layers can be manufactured by repeating the same process.
  • component biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., trade name: NC-3000H) 10 g
  • component (B) novolac type phenol resin (DIC, trade name: TD-2090)
  • DIC trade name: TD-2090
  • 2-phenylimidazole trade name: 2PZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • fumed silica product name: R972, manufactured by Nippon Aerosil Co., Ltd.
  • solid content concentration about 25% by mass.
  • Example 1 The resin varnish obtained in Preparation Example 1 was subjected to an M surface (roughening surface Ra (Ra)) of an electrolytic copper foil (F0-WS-18, low profile copper foil, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 18 ⁇ m. : 0.2 ⁇ m) using a bar coater, each was coated to a thickness of 5 ⁇ m after drying, and dried at 180 ° C. for 10 minutes to form a primer layer for plating process.
  • Ra roughening surface Ra
  • F0-WS-18 low profile copper foil, manufactured by Furukawa Electric Co., Ltd.
  • an aqueous solution of diethylene glycol monobutyl ether: 200 ml / L, NaOH: 5 g / L was prepared as a swelling liquid, heated to 70 ° C. and immersed for 5 minutes. Processed.
  • an aqueous solution of KMnO 4 : 60 g / L and NaOH: 40 g / L was prepared as a roughening solution, heated to 80 ° C. and immersed for 10 minutes. Subsequently, it was neutralized by immersing in an aqueous solution of a neutralizing solution (SnCl 2 : 30 g / L, HCl: 300 ml / L) at room temperature for 5 minutes.
  • a neutralizing solution SnCl 2 : 30 g / L, HCl: 300 ml / L
  • a circuit layer on a laminate with a primer layer for a plating process In order to form a circuit layer on a laminate with a primer layer for a plating process, first, it is immersed in HS-202B (manufactured by Hitachi Chemical Co., Ltd.), an electroless plating catalyst containing PdCl 2 , for 10 minutes at room temperature. Then, it was washed with water, immersed in a plating solution CUST-201 (manufactured by Hitachi Chemical Co., Ltd.) for electroless copper plating at room temperature for 15 minutes, and further subjected to copper sulfate electrolytic plating. Thereafter, annealing was performed at 180 ° C. for 60 minutes to form a conductor layer having a thickness of 35 ⁇ m.
  • the oxide film on the copper surface is removed by polishing with # 600, followed by forming an etching resist, then etching, and then removing the etching resist. Then, a circuit was formed, and a multilayer wiring board with a primer layer for a plating process was produced.
  • Examples 2 to 4 and Comparative Examples 1 to 3 A laminate with a primer layer for a plating process and a multilayer wiring board with a primer layer for a plating process were prepared in the same manner as in Example 1 except that the resin varnishes B to G obtained in Preparation Examples 2 to 7 were used.
  • Example 5 Other than the electrolytic copper foil of Example 2, a polyethylene terephthalate (PET) film (PET-38X manufactured by Lintec Co., Ltd.) having been subjected to a release treatment was used (the M surface of Example 2 is the release treatment surface of the PET film).
  • PET polyethylene terephthalate
  • the M surface of Example 2 is the release treatment surface of the PET film.
  • a laminate with a primer layer for a plating process and a multilayer wiring board with a primer layer for a plating process were produced.
  • the multilayer wiring board produced as described above was subjected to an adhesive strength with an outer layer circuit, a surface roughness of a primer layer for a plating process, and a 288 ° C. solder heat resistance test as follows. The results are shown in Table 1.
  • a part having a width of 10 mm and a length of 100 mm is formed on a part of the circuit layer of the multilayer wiring board obtained in each of the examples and comparative examples by a copper etching process, and one end thereof is peeled off at the circuit layer / resin interface. And the load when it was peeled off at room temperature at a pulling speed of about 50 mm / min in the vertical direction was measured.
  • the surface roughness Ra was measured using a micromap MN5000 model manufactured by Ryoka System Co., Ltd., on the surface of the insulating resin obtained by etching copper into a part of the circuit layer of the multilayer wiring board obtained in each of the examples and comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Chemically Coating (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Abstract

 多官能型エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、及び所定の構造単位を有するフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(C)を含むプライマー層用樹脂組成物により形成されてなるめっきプロセス用プライマー層であって、(C)成分の配合割合が、(A)成分及び(B)成分の合計100質量部に対して、5質量部以上25質量部未満であるめっきプロセス用プライマー層、当該プライマー層を有する配線板用積層板及びその製造方法、並びに、当該プライマー層を有する多層配線板及びその製造方法である。

Description

めっきプロセス用プライマー層、配線板用積層板及びその製造方法、多層配線板及びその製造方法
 本発明は、めっきプロセス用プライマー層、当該プライマー層を有する配線板用積層板及びその製造方法、並びに、当該プライマー層を有する多層配線板及びその製造方法に関する。
 多層配線板は、下記のような方法により製造されることが一般的であった。すなわち、まず、片面又は両面に内層回路を形成した絶縁基板上に、ガラス布にエポキシ樹脂を含浸し半硬化状態にした材料(プリプレグ)を銅箔と共に重ねて熱プレスにより積層一体化する。その後、ドリルで層間接続用のスルーホールと呼ばれる穴をあける。スルーホール内壁及び銅箔表面に無電解めっきを行い、必要ならば更に電気めっきを行って回路導体としてのめっき層を必要な厚さとする。そして、不要な銅を除去することで、多層配線板を製造する。
 近年、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴い、LSIやチップ部品等の高集積化が進んできた。そして、その形態も多ピン化、小型化へと急速に変化している。このため多層配線板においては、電子部品の実装密度を向上させるために、微細配線化の開発が進められている。配線の微細化には、銅箔と樹脂との間での接着性を高めるために、粗化処理を行うが、その際銅箔の粗さを小さくすることが有効である。これは、銅箔の粗さを小さくすることで不要な銅箔を除去し易くなるからである。このため、粗化処理による粗さの小さいロープロファイル銅箔や粗化処理が施されていない無粗化銅箔に樹脂との接着力を確保するためプライマー樹脂を導入したプライマー付無粗化銅箔を使用することにより対応してきた(特許文献1参照)。
 しかし、かかる対応では除去する銅箔が厚いため、更なる微細配線化を達成するには不十分であった。
 そこで、この微細配線化の要求に対応するために、ガラスクロスを含まない絶縁樹脂をプリプレグの代わりに絶縁層として用い、必要な部分のみビアホールで接続しながら配線層を形成するビルドアップ方式の多層配線板が多く用いられるようになった。このビルドアップ方式の多層配線板は、軽量化や小型化の点でも有用である。
 このようなビルドアップ方式の多層配線板は、例えば、絶縁樹脂フィルムを内層回路板にラミネートし、加熱により硬化させた後、レーザ加工によるビアホール形成し、アルカリ過マンガン酸処理等によって粗化処理とスミア処理とを行う。その後、無電解銅めっきをして、第二の回路と層間接続可能とするビアホールを形成させて製造する(特許文献2~4参照)。
 ここで、特許文献2~4にあるようなビルドアップ方式の多層配線板で主に用いられている回路形成方法はセミアディティブ法である。この方法は、無電解銅めっきの後、必要な部分のみに電気銅めっきで回路形成し、その後不要な部分にある無電解銅めっき層を除去するものである。当該方法は、除去する無電解銅めっき層が薄いため、従来よりも微細配線化に有利であり、現在の微細配線形成方法の主流である。この方法では、樹脂と無電解銅めっきとの接着力は樹脂表面の粗さ(アンカー効果)により確保している状況であり、その表面粗さは、Raで0.5μm以上と大きい状況であった。
 多層配線板においては、近年の半導体パッケージの小型化・高密度化に伴って、さらに回路の微細化が要求されている。このような状況において、表面を粗化して得られる大きな粗化形状(アンカー効果)を利用して無電解銅めっきとの接着力を確保する従来のような方法では、厚さ10μm以下の微細な回路はショート不良やオープン不良が発生することがある。そのため、多層配線板を歩留り良く製造することができない。一方で、粗化形状を小さくすると、無電解銅めっきとの接着力が低下し、ラインが剥離する等の不良が発生する。そのため、平滑な表面で無電解銅めっきと高接着力を示す配線板材料が必要となっていた。
 また、無電解銅めっきと樹脂との良好な接着性を確保することを目的に、無電解銅めっき触媒を含む接着層と絶縁樹脂層との2層化構造の絶縁フィルムも提案されている(特許文献5参照)。しかし、表面の粗化形状を平滑にすることを目的としておらず、近年の配線微細化に対応できる半導体パッケージ用基板としては、不十分であった。
 一方、電子部品の薄型化に伴い、使用される配線板の厚みも薄くなりつつある。その結果、ガラスクロスを含まない絶縁樹脂をプリプレグの代わりに絶縁層として用いた場合に、実装時の反りが大きくなり、接続信頼性を低下させてしまうことがあった。そこで、ガラスクロスを含むプリプレグが再度見直されてきているが、アディティブ法による高密度配線も必要となる等いくつかの解決すべき課題がある。
 このような状況において、配線板用積層板に、アンカー効果に依存しないで無電解銅めっきとの接着力の向上を目的する接着補助層を設ける技術が提案されている(特許文献6参照)。しかし、硬化した積層板に接着剤を塗布して接着層を形成するため、接着層と積層板との界面の接着性を考慮すると、接着層の厚みを10~50μmとする必要があり、薄型化には適していない。
 また、特許文献7では、エポキシ樹脂、硬化剤、フェノール性水酸基含有ポリアミドを必須成分としたエポキシ樹脂組成物を使用したビルドアップ方式用の絶縁材料が提案されている。しかし、当該材料を用いて作製したビルトアップ基板は、90°折り曲げによるピール試験を行った場合、絶縁材料と銅との接着性が不十分であった。
特許第3949676号公報 特許第3290296号公報 特許第3654851号公報 特許第3785749号公報 特開平1-99288号公報 特開2001-123137号公報 特開2001-233945号公報
 上記の通り、半導体パッケージの小型化及び配線の高密度化に伴って、回路の微細化が要求されている。このような状況において、積層板や絶縁層表面を粗化して得られる大きな粗化形状(アンカー効果)を利用して無電解銅めっきとの接着力を確保する方法では、厚さ10μm以下の微細な回路を形成すると、ショート不良やオープン不良が発生してしまい、歩留り良く製造することができない。一方で、粗化形状を小さくすると、無電解銅めっきとの接着力が低下し、ラインが剥離する等の不良が発生する。
 以上から本発明は、無電解銅めっきに対して高い接着性を示し、半導体パッケージの配線高密度化に対応可能なめっきプロセス用プライマー層、当該プライマー層を有する配線板用積層板及びその製造方法、並びに、当該プライマー層を有する多層配線板及びその製造方法を提供することを目的とする。
 本発明者らは上記課題を解決するために研究を進めた結果、フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂を所定量含む樹脂組成物を用いて形成されるめっきプロセス用プライマー層が、無電解銅めっきに対して高い接着性を示し、半導体パッケージの配線高密度化に対応可能であることを見出し、本発明に想到した。すなわち、本発明は下記の通りである。
[1] 多官能型エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、及び下記式(i)、(ii)、及び(iii)で表される構造単位を有するフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(C)を含むプライマー層用樹脂組成物により形成されてなるめっきプロセス用プライマー層であって、前記プライマー層用樹脂組成物におけるフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(C)の配合割合が、多官能型エポキシ樹脂(A)及びエポキシ樹脂硬化剤(B)の合計100質量部に対して、5質量部以上25質量部未満である、めっきプロセス用プライマー層。
Figure JPOXMLDOC01-appb-C000002
 式中、a,b,c,x,y及びzは、それぞれ平均重合度であって、a=2~10,b=0~3、c=3~30、x=1に対しy+z=2~300の整数を示し、さらにy=1に対しz≧20である。R,R’,及びR’’は、それぞれ独立に、芳香族ジアミン又は脂肪族ジアミンに起因する2価の基であり、複数のR’’’は、それぞれ独立に、芳香族ジカルボン酸、脂肪族ジカルボン酸、又は両末端にカルボキシル基を有するオリゴマーに起因する2価の基である。
[2] 厚みが1~10μmである[1]に記載のめっきプロセス用プライマー層。
[3] 前記プライマー層用樹脂組成物に含まれる多官能型エポキシ樹脂(A)がビフェニル構造を有するアラルキル型エポキシ樹脂を含む[1]又は[2]に記載のめっきプロセス用プライマー層。
[4] 前記プライマー層用樹脂組成物が、平均一次粒径100nm以下の無機フィラー(D)を含有する[1]~[3]のいずれかに記載のめっきプロセス用プライマー層。
[5] 前記無機フィラー(D)がヒュームドシリカである[4]に記載のめっきプロセス用プライマー層。
[6] 前記無機フィラー(D)に表面処理が施されている[4]又は[5]に記載のめっきプロセス用プライマー層。
[7] 粗化処理後のめっきプロセス用プライマー層の表面粗さ(Ra)が0.4μm以下である[1]~[6]のいずれかに記載のめっきプロセス用プライマー層。
[8] 支持体フィルム上に[1]~[7]のいずれかに記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に前記支持体フィルムを除去して得ためっきプロセス用プライマー層付き配線板用積層板。
[9] 支持体フィルム上に[1]~[7]のいずれかに記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に前記支持体フィルムを除去するめっきプロセス用プライマー層付き配線板用積層板の製造方法。
[10] 支持体フィルム上に[1]~[7]のいずれかに記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体フィルムを除去して得ためっきプロセス用プライマー層付き配線板用積層板。
[11] 支持体フィルム上に[1]~[7]のいずれかに記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体フィルムを除去するプロセス用プライマー層付き配線板用積層板の製造方法。
[12] 支持体フィルム上に[1]~[7]のいずれかに記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に支持体フィルムを除去して得ためっきプロセス用プライマー層付き多層配線板。
[13] 支持体フィルム上に[1]~[7]のいずれかに記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に支持体フィルムを除去し、粗化処理、無電解めっき処理、及び電気めっき処理を順次施すめっきプロセス用プライマー層付き多層配線板の製造方法。
[14] 支持体フィルム上に[1]~[7]のいずれかに記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体を除去し、粗化処理、無電解めっき処理、及び電気めっき処理を順次施して得ためっきプロセス用プライマー層付き多層配線板。
[15] 支持体フィルム上に[1]~[7]のいずれかに記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体を除去し、粗化処理、無電解めっき処理、及び電気めっき処理を順次施すめっきプロセス用プライマー層付き多層配線板の製造方法。
 本発明によれば、無電解銅めっきに対して高い接着性を示し、半導体パッケージの配線高密度化に対応可能なめっきプロセス用プライマー層、当該プライマー層を有する配線板用積層板及びその製造方法、並びに、当該プライマー層を有する多層配線板及びその製造方法を提供することができる。
 また、鉛フリー化に対応可能な高いはんだ耐熱性をも発揮することができる。
[めっきプロセス用プライマー層]
 本発明のめっきプロセス用プライマー層は、多官能型エポキシ樹脂(A)(以下、「(A)成分」ということがある)、エポキシ樹脂硬化剤(B)(以下、「(B)成分」ということがある)、及び下記式(i)、(ii)、及び(iii)で表される構造単位を有するフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(C)(以下、「(C)成分」ということがある)を含むプライマー層用樹脂組成物により形成されてなる。

Figure JPOXMLDOC01-appb-C000003
 式中、a,b,c,x,y及びzは、それぞれ平均重合度であって、a=2~10,b=0~3、c=3~30、x=1に対しy+z=2~300((y+z)/x)の整数を示し、さらにy=1に対しz≧20(z/y)である。R,R’,及びR’’は、それぞれ独立に、芳香族ジアミン又は脂肪族ジアミンに起因する2価の基であり、複数のR’’’は、それぞれ独立に、芳香族ジカルボン酸、脂肪族ジカルボン酸、又は両末端にカルボキシル基を有するオリゴマーに起因する2価の基である。
 なお、R,R’,R’’及びR’’’は、具体的には、後述するジアミン原料及びジカルボン酸原料に由来するものである。
 また、フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(C)の重量平均分子量は、60,000~250,000であることが好ましく、80,000~200,000であることがより好ましい。
 ここで、本発明のめっきプロセス用プライマー層は、配線板用積層板や多層配線板の層の一部とされる前は、支持体上やプリプレグ上等で半硬化状態(いわゆるBステージ状態)で存在する。また、本発明において、「めっきプロセス用」とは、形成されためっきプロセス用プライマー層の表面に、めっき層(好ましくは無電解銅めっき層)を設けるための用途を意味する。
 以下、成分(A)~(C)について説明する。
<(C)成分>
 プライマー層用樹脂組成物において、(C)の配合割合は、(A)成分及び(B)成分の合計100質量部に対して、5質量部以上25質量部未満となっている。この割合で配合することにより、良好な耐熱性を維持したまま、めっき銅と良好な接着強度が得られる。
 このような効果が得られる理由については、必ずしも明らかではないが次のような理由が考えられる。
 すなわち、(C)成分であるフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂は、エポキシ樹脂と反応可能であるため、エポキシ樹脂の良好な耐熱性を維持したまま、樹脂の強靭化が可能となる。さらに、銅との接着性の高いアミド基を多く有するため、めっき銅との高い接着力が得られる。
 また、フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂が、エポキシ樹脂と相溶性が良いフェノール性水酸基と、エポキシ樹脂と非相容なポリブタジエンを含有するため、その配合割合が(A)成分及び(B)成分の合計100質量部に対して5質量部以上25質量部未満の場合、微細な海島構造を形成することができる。この海島構造の形成により、粗化処理時に海層と島層との粗化量が異なることを利用して、粗化処理時に緻密な形状を形成することが可能となる。この形状は、微細ではあるが、均一であるため、アンカー効果に起因した高い物理的接着力を発現し、めっき銅との接着性が著しく向上する。
 (C)成分の配合割合が5質量部未満の場合、海島構造のドメインサイズが大きくなるため、粗化処理後のRaが大きくなってしまう。また、樹脂の強靭性が低く、さらに緻密な粗化形状が得られず、めっき銅との接着力が低下する。
 一方、(C)成分の配合割合が25質量部以上の場合、銅との接着性が高いアミド基の割合は増えるが、海島構造のドメインサイズが小さくなりすぎること等により、アンカー効果による接着力は低下するため、結果的に無電解めっき銅との接着力は低下する。また、耐熱性が低下したり、粗化工程時の薬液への耐性も低下したりする。
 めっき銅とのより良好な接着性を得ることを考慮して、(C)の配合割合は、(A)成分及び(B)成分の合計100質量部に対して、8質量部以上25質量部未満であることが好ましく、10質量部以上25質量部未満であることがより好ましく、10質量部以上20質量部未満であることがさらに好ましい。
 なお、フェノール性水酸基含有ポリアミド樹脂やフェノール性水酸基含有アクリロニトリル-ブタジエン変性ポリアミド樹脂では、フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂と比較してエポキシ樹脂との相溶性が良好であるため、海島構造が確認できない程度に緻密になりすぎて、粗化処理後に微細な形状を形成することが難しく、フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂ほどのめっき銅との接着力を発揮することができない。
 また、ニトリル基が導入されると吸湿率が高くなり、吸湿時の絶縁性も低下する。Bステージのプリプレグとの接着性としては、プライマー層とプリプレグとが反応可能であるため強固な接着を確保できる。しかし、プリプレグ中の樹脂がプライマー層へ多く移行した場合、プライマー樹脂中の海島構造のドメインサイズが制御できなくなることやプライマー層と銅の密着性を悪化させる可能性があるため、後述するようにプライマー層のBステージ状態を制御することが必要となる。
 (C)成分であるフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂は、例えば、ジアミンとフェノール性水酸基含有のジカルボン酸、フェノール性水酸基を含有しないジカルボン酸、両末端にカルボキシル基を有するポリブタジエンとをN-メチル-2-ピロリドン(NMP)等の有機溶媒中で、触媒として亜リン酸エステルとピリジン誘導体の存在下でカルボキシル基とアミノ基とを重縮合させることにより合成される。
 本発明において、フェノール性水酸基含有ポリブタジエン変性ポリアミドの製造に使用するジアミン(ジアミン原料)としては、芳香族ジアミンでも脂肪族ジアミンでもよい。
 芳香族ジアミンの具体例としては、ジアミノベンゼン、ジアミノトルエン、ジアミノフェノール、ジアミノジメチルベンゼン、ジアミノメシチレン、ジアミノニトロベンゼン、ジアミノジアゾベンゼン、ジアミノナフタレン、ジアミノビフェニル、ジアミノジメトキシビフェニル、ジアミノジフェニルエーテル、ジアミノジメチルジフェニルエーテル、メチレンジアミン、メチレンビス(ジメチルアニリン)、メチレンビス(メトキシアニリン)、メチレンビス(ジメトキシアニリン)、メチレンビス(エチルアニリン)、メチレンビス(ジエチルアニリン)、メチレンビス(エトキシアニリン)、メチレンビス(ジエトキシアニリン)、イソプロピリデンジアニリン、ジアミノベンゾフェノン、ジアミノジメチルベンゾフェノン、ジアミノアントラキノン、ジアミノジフェニルチオエーテル、ジアミノジメチルジフェニルチオエーテル、ジアミノジフェニルスルホン、ジアミノジフェニルスルホキシド、ジアミノフルオレン等が挙げられる。
 脂肪族ジアミンの具体例としては、エチレンジアミン、プロパンジアミン、ヒドロキシプロパンジアミン、ブタンジアミン、ヘプタンジアミン、ヘキサンジアミン、ジアミノジエチルアミン、ジアミノプロピルアミン、シクロペンタンジアミン、シクロヘキサンジアミン、アザペンタンジアミン、トリアザウンデカジアミン等が挙げられる。これら芳香族及び脂肪族ジアミンは、1種のみを用いてもよく、2種以上を混合しても良い。
 本発明において、フェノール性水酸基含有ポリブタジエン変性ポリアミドの製造に使用するフェノール性水酸基含有ジカルボン酸としては、ヒドロキシイソフタル酸、ヒドロキシフタル酸、ヒドロキシテレフタル酸、ジヒドロキシイソフタル酸、ジヒドロキシテレフタル酸等が挙げられるが、これらに限定されるものではない。
 本発明において、フェノール性水酸基含有ポリブタジエン変性ポリアミドの製造に使用するフェノール性水酸基を含有しないジカルボン酸(ジカルボン酸原料)としては、芳香族ジカルボン酸でも脂肪族ジカルボン酸でも両末端にカルボキシル基を有するオリゴマーでも良い。芳香族ジカルボン酸の具体例としては、フタル酸、イソフタル酸、テレフタル酸、ビフェニルジカルボン酸、メチレン二安息香酸、チオ二安息香酸、カルボニル二安息香酸、スルホニル安息香酸、ナフタレンジカルボン酸等が挙げられる。
 脂肪族ジカルボン酸としては、シュウ酸、マロン酸、メチルマロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、りんご酸、酒石酸、(メタ)アクリロイルオキシコハク酸、ジ(メタ)アクリロイルオキシコハク酸、(メタ)アクリロイルオキシりんご酸、(メタ)アクリルアミドコハク酸や、(メタ)アクリルアミドりんご酸等が挙げられる。
 両末端にカルボキシル基を有するポリブタジエンは、数平均分子量200~10000、好ましくは数平均分子量500~5000のオリゴマーが好ましい。
 フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(C)の市販品としては日本化薬株式会社製のBPAM-155が挙げられる。
<(A)成分>
 (A)成分である多官能型エポキシ樹脂とは、分子中に2つ以上のエポキシ基を有するエポキシ樹脂であり、フェノールノボラック型エポキシ樹脂や、クレゾールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂等が挙げられる。なかでも、多官能型エポキシ樹脂として、アラルキルノボラック型エポキシ樹脂、又はアラルキルノボラック型エポキシ樹脂を含むことが好ましい。
 アラルキルノボラック型エポキシ樹脂は、ビフェニル構造を有するアラルキルノボラック型エポキシ樹脂であることが好ましい。ビフェニル構造を有するノボラック型エポキシ樹脂とは、分子中にビフェニル誘導体の芳香族環を含有したアラルキルノボラック型のエポキシ樹脂をいい、例えば、下記式(1)(式中、pは、1~5を示す)で示されるエポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記式(1)で表されるエポキシ樹脂は複数種を組み合せて用いてもよい。
 なお、当該樹脂の市販品としては、日本化薬株式会社製のNC-3000(pが1.7の式(1)のエポキシ樹脂)、NC-3000-H(pが2.8の式(1)のエポキシ樹脂)が挙げられる。
 (A)多官能エポキシ樹脂の配合量は、プライマー層用樹脂組成物中の割合で20~80質量%であることが好ましく、40~70質量%であることがより好ましい。(A)成分の配合量が、20~80質量%であることで、回路導体との接着強度及びはんだ耐熱性を良好な状態にすることができる。
<(B)成分>
 (B)成分であるエポキシ樹脂硬化剤としては、各種フェノール樹脂類、酸無水物類、アミン類、ヒドラジット類等が使用できる。フェノール樹脂類としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等が使用できる。酸無水物類としては、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸等が使用できる。アミン類として、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素等が使用できる。信頼性を向上させるためには、ノボラック型フェノール樹脂であることが好ましい。
 エポキシ樹脂硬化剤の配合量は、エポキシ基に対して0.5~1.5当量であることが好ましい。エポキシ基に対して0.5~1.5当量であることで、外層銅との接着性の低下を防ぎ、かつTg(ガラス転移温度)や絶縁性の低下をも防ぐことができる。
 また、硬化剤の他に、必要に応じて反応促進剤を使用することができる。反応促進剤としては潜在性の熱硬化剤である各種イミダゾール類やBF3アミン錯体が使用できる。プライマー層用樹脂組成物の保存安定性やBステージ状(半硬化状)のプライマー層用樹脂組成物の取り扱い性及びはんだ耐熱性の点から、2-フェニルイミダゾールや2-エチル-4-メチルイミダゾールが好ましく、その配合量はエポキシ樹脂の配合量に対して0.1~5.0質量%であることが好ましい。
 プライマー層用樹脂組成物には、平均一次粒径が100nm以下の無機フィラー(D)(以下、「(D)成分」ということがある)が含有されていてもよい。(D)成分を含有することで、耐熱性に加えて,レーザ加工性を向上させることができる。以下、(D)成分について説明する。
<(D)成分>
 (D)成分である無機フィラーとしては、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。なかでもヒュームドシリカが好ましい。
 無機フィラーは、層間絶縁層上に微細配線を形成する観点から、比表面積が20m2/g以上であることが好ましい。また、めっきプロセスにおける粗化処理後の表面形状を小さくする観点から、平均一次粒径は100nm以下であることが好ましい。
 なお、ここでいう「平均一次粒径」とは、凝集した粒子の平均径、つまり二次粒子径ではなく、凝集していない単体での平均粒子径をいう。当該一次平均粒子径は、例えば、レーザ回折式粒度分布計により測定して求めることができる。
 さらに、無機フィラーは、耐湿性を向上させるためにシランカップリング剤等の表面処理剤で表面処理していることが好ましく、分散性を向上させるために疎水性化処理されていることが好ましい。
 (D)成分の含有量としては、プライマー層用樹脂組成物中10質量%以下であることが好ましい。配合量が10質量%以下であると、粗化処理後の良好な表面形状を維持することができ、めっき特性及び層間の絶縁信頼性の低下を防ぐことができる。
 平均一次粒径が100nm以下の無機フィラーの市販品としては、日本アエロジル株式会社製のAEROSIL R972(商品名)及びAEROSIL R202、扶桑化学社製のPL-1(商品名、比表面積181m2/g)及びPL-7(商品名、比表面積36m2/g)等がある。
 既述のような無機フィラーは、1種類のみでも構わなく、2種類以上を併用しても構わない。
 また、これらの無機フィラーは、分散性を高める目的でニーダー、ボールミル、ビーズミル、3本ロール、ナノマイザー等既知の混練・分散方法により使用に供してもよい。
 本発明におけるプライマー層用樹脂組成物は、既述の(A)~(C)の必須成分を配合して得られる他、(D)成分、通常の樹脂組成物に使用されるチキソ性付与剤、界面活性剤、カップリング剤等の各種添加剤を適宜配合できる。これらを充分に撹拌した後、泡がなくなるまで静置してプライマー層用樹脂組成物を得ることができる。
 本発明におけるプライマー層用樹脂組成物は溶剤中で混合して希釈又は分散させてワニスの形態とすることが作業性の点で好ましい。この溶剤には、メチルエチルケトン、キシレン、トルエン、アセトン、エチレングリコールモノエチルエーテル、シクロヘキサノン、エチルエトキシプロピオネート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等を使用できる。これらの溶剤は、単独あるいは混合系でもよい。
 溶剤のプライマー層用樹脂組成物に対する割合は、プライマー層用樹脂組成物の塗膜形成の設備にあわせて適宜調整すれがよいが、溶剤を除く樹脂組成物の固形分がワニス中8~40質量%となるように溶剤の使用量を調節することが好ましい。
 本発明のめっきプロセス用プライマー層は、プライマー層用樹脂組成物(又はこれを含有するワニス)を支持体フィルムやプリプレグ上に塗布して、100~230℃で1~10分程度乾燥することで得られる。
 使用する支持体フィルムとしては、粗化されていない無粗化銅箔や表面粗さ(Ra)が0.4μm以下である低粗化銅箔、プライマー樹脂を光沢面へ塗布することを前提にして一般銅箔、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリフェニレンサルファイドフィルム、テフロン(登録商標)フィルム、ポリイミドフィルム及びアルミ箔等が好ましい。また、これらの支持体フィルムは、プライマー樹脂との剥離を容易にするために表面が離型処理されたものを用いても良い。
 ここで、本発明のめっきプロセス用プライマー層は、Bステージのプリプレグ等と反応させる場合は、その硬化度を制御することが重要である。硬化度は示差走査熱量計から測定される反応率により測定することができる。具体的には、めっきプロセス用プライマー層の反応率が、50~99%であることが必要である。50%以上とすることで積層・硬化中に接着補助層がプリプレグと混ざってしまうことを防ぐことができる。99%以下とすることで、プリプレグとの界面の接着力が低下して、めっき銅との接着力が低下することを防ぐことができる。
 プリプレグとしては、配線板用であれば特に制限はない。例えば、多官能エポキシ樹脂、エポキシ樹脂硬化剤、硬化促進剤、溶剤と必要に応じて無機フィラーを混合し、積層板用ガラスクロスに含浸・乾燥させて得られる。市販品としては、日立化成工業(株)製GEA-67NやGEA-679F、GEA-679GT等が挙げられる。
 また、本発明のめっきプロセス用プライマー層が後述するような配線板用積層板や多層配線板に適用される場合は、その表面に粗化処理が施される。この粗化処理後のプライマー層の表面粗さ(Ra)は0.4μm以下であることが好ましく、0.3μm以下であることがより好ましい。表面粗さ(Ra)が0.4μm以下であることで、半導体パッケージの高密度化に十分に対応させることができる。
 なお、粗化処理の条件は、後に説明する粗化処理条件を適用できる。
[めっきプロセス用プライマー層付き配線板用積層板及びその製造方法、並びに、めっきプロセス用プライマー層付き多層配線板及びその製造方法]
 本発明の第1のめっきプロセス用プライマー層付き配線板用積層板は、支持体フィルム上に本発明のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に前記支持体フィルムを除去することで製造される。
 また、本発明の第2のプロセス用プライマー層付き配線板用積層板は、支持体フィルム上に本発明のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体フィルムを除去することで製造される。
 本発明において、プレス成型における加熱温度は、150~240℃とすることが好ましい。加圧時の圧力は1.0~4.0MPaとすることが好ましい。また、耐熱性ゴムシートを用いたラミネーターにおける加熱温度は、80~150℃とすることが好ましい。加圧時の圧力は0.3~20MPaとすることが好ましい。
 本発明の第1のめっきプロセス用プライマー層付き多層配線板は、支持体フィルム上に本発明のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に支持体フィルムを除去し、粗化処理、無電解めっき処理、レジスト形成、及び電気めっき処理等を順次施すことで回路加工し、製造される。
 本発明の第2のめっきプロセス用プライマー層付き多層配線板は、支持体フィルム上に本発明のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体を除去し、粗化処理、無電解めっき処理、レジスト形成、及び電気めっき処理等を順次施すことで回路加工し、製造される。
 回路加工した配線板(内層回路板)は、例えば、第一の回路層(内層配線)が表面に形成された内層基板であり、内層基板として、通常の配線板において用いられている公知の積層板、例えば、ガラス布-エポキシ樹脂、紙-フェノール樹脂、紙-エポキシ樹脂、ガラス布・ガラス紙-エポキシ樹脂等が使用でき特に制限はない。また、ビスマレイミド-トリアジン樹脂を含浸させたBT基板、さらにはポリイミドフィルムを基材として用いたポリイミドフィルム基板等も用いることができる。
 回路を形成するための方法については、前記めっきプロセスを使用して回路を形成するセミアディティブ法に加えて,キャリアとして銅箔を使用し、キャリア銅箔と絶縁基板とを張り合わせた銅張り積層板を用い、銅箔の不要な部分をエッチング除去するサブトラクティブ法や、絶縁基板の必要な個所に無電解めっきによって回路を形成するアディティブ法等、公知の配線板の製造方法を用いることができる。
 必要に応じて、回路層の表面を接着性に適した状態に表面処理するがこの手法も、特に制限はない。
 例えば、次亜塩素酸ナトリウムのアルカリ水溶液により回路層1の表面に酸化銅の針状結晶を形成し、形成した酸化銅の針状結晶をジメチルアミンボラン水溶液に浸漬して還元する等公知の製造方法を用いることができる。
 本発明の積層板又は多層配線板のめっきプロセス用プライマー層上にめっき法で回路加工する場合は、まず、粗化処理を行う。この場合の粗化液としては、クロム/硫酸粗化液、アルカリ過マンガン酸粗化液、フッ化ナトリウム/クロム/硫酸粗化液、ホウフッ酸粗化液等の酸化性粗化液を用いることができる。粗化処理としては、例えば、まず膨潤液として、ジエチレングリコールモノブチルエーテルとNaOHとの水溶液を70℃に加温して積層板又は多層配線板を5分間浸漬処理する。次に、粗化液として、KMnOとNaOHとの水溶液を80℃に加温して10分間浸漬処理する。引き続き、中和液、例えば塩化第一錫(SnCl2)の塩酸水溶液に室温で5分間浸漬処理して中和する。
 粗化処理後は、パラジウムを付着させるめっき触媒付与処理を行う。めっき触媒処理は、塩化パラジウム系のめっき触媒液に浸漬して行われる。次に、無電解めっき液に浸漬してめっきプロセス用プライマー層の表面全面に厚さが0.3~1.5μmの無電解めっき層(導体層)を析出させる無電解めっき処理と行う。
 次にめっきレジストを形成した後に,電気めっき処理を行い所望な箇所に所望の厚みの回路を形成する。無電解めっき処理に使用する無電解めっき液は、公知の無電解めっき液を使用することができ特に制限はない。めっきレジストも公知のめっきレジストを使用することができ、特に制限はない。また、電気めっき処理についても公知の方法によることができ特に制限はない。これらのめっきは銅めっきであることが好ましい。さらに不要な箇所の無電解めっき層をエッチング除去して外層回路を形成することができる。
 以下、さらに同様の工程を繰り返して層数の多い多層配線板を製造できる。
 次に実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
[めっきプロセス用プライマー層用樹脂ワニスの調製]
(調製例1)
 (C)成分であるフェノール性水酸基含有ポリブタジエン変性ポリアミド(日本化薬社製、商品名:BPAM-155)0.75gに、N,N-ジメチルアセトアミド(DMAc)を6.75g配合した後、(A)成分であるビフェニルアラルキル型エポキシ樹脂(日本化薬社製、商品名:NC-3000H)10g、(B)成分であるクレゾールノボラック型フェノール樹脂(DIC社製、商品名:KA-1165)4.1g、更に硬化促進剤として2-フェニルイミダゾール(四国化成工業社製、商品名:2PZ)0.1gを添加した後、DMAc及びメチルエチルケトンからなる混合溶剤で希釈し、めっきプロセス用プライマー層用樹脂ワニスA(固形分濃度約25質量%)を得た。
(調製例2)
 (C)成分であるフェノール性水酸基含有ポリブタジエン変性ポリアミド(日本化薬社製、商品名:BPAM-155)1.5gに、N,N-ジメチルアセトアミド(DMAc)を13.5g配合した後、(A)成分であるビフェニルアラルキル型エポキシ樹脂(日本化薬社製、商品名:NC-3000H)10g、(B)成分であるノボラック型フェノール樹脂(DIC社製、商品名:TD-2090)3.6g、硬化促進剤として2-フェニルイミダゾール(四国化成工業社製、商品名:2PZ)0.1gを,ヒュームドシリカ(日本アエロジル社製、商品名:R972)0.9gを添加した後、DMAc及びメチルエチルケトンからなる混合溶剤で希釈した(固形分濃度約25質量%)。その後、分散機(ナノマイザー、商品名、吉田機械興業株式会社製)を用いて、均一なめっきプロセス用プライマー層用樹脂ワニスBを得た。
(調製例3)
 (B)成分であるエポキシ樹脂硬化剤をビスフェノールAノボラック(三菱化学社製 商品名:YLH129)とし、下記表1の配合とした以外は、調製例2と同様にして、めっきプロセス用プライマー層用樹脂ワニスC(固形分濃度約25質量%)を得た。
(調製例4,6)
 (B)成分であるエポキシ樹脂硬化剤をクレゾールノボラック(KA1165)とし、下記表1の配合とした以外は、調製例2と同様にして、めっきプロセス用プライマー層用樹脂ワニスD,F(いずれも固形分濃度約25質量%)を得た。
(調製例5)
 (B)成分であるエポキシ樹脂硬化剤をフェノールノボラック(TD-2090)とし、下記表1の配合とした以外は、調製例2と同様にして、めっきプロセス用プライマー層用樹脂ワニスE(固形分濃度約25質量%)を得た。
(調製例7)
 (C)成分であるフェノール性水酸基含有ポリブタジエン変性ポリアミドの代わりにフェノール性水酸基含有ポリブタジエン-アクリロニトリル変性ポリアミド(日本化薬社製,商品名BPAM-01)を使用し、下記表1の配合とした以外は、調製例2と同様にして、めっきプロセス用プライマー層用樹脂ワニスG(固形分濃度約25質量%)を得た。
Figure JPOXMLDOC01-appb-T000005
(実施例1)
 調製例1で得られた樹脂ワニスを、厚さ18μmの電解銅箔(F0-WS-18、ロープロファイル銅箔、古河電気工業社製)のM面(粗化処理面 表面粗さ(Ra):0.2μm)にそれぞれバーコータを用いて、乾燥後5μmになるように塗布し、180℃で10分間乾燥させてめっきプロセス用プライマー層を形成した。
 配線板用プリプレグ(日立化成工業(株)製、商品名:GEA-679F 0.10mm厚)4枚を重ね、その上下にめっきプロセス用プライマー層を銅箔が外側になるように重ね、さらに鏡板と、クッション紙を重ねて、プレス機を用いて、3.0MPa、180℃で1時間加熱硬化させた。冷却後、銅箔をはく離して、めっきプロセス用プライマー層付き積層板を得た。
 このめっきプロセス用プライマー層付き積層板を化学粗化するために、膨潤液として、ジエチレングリコールモノブチルエーテル:200ml/L、NaOH:5g/Lの水溶液を作製し、70℃に加温して5分間浸漬処理した。次に、粗化液として、KMnO4:60g/L、NaOH:40g/Lの水溶液を作製し、80℃に加温して10分間浸漬処理した。引き続き、中和液(SnCl2:30g/L、HCl:300ml/L)の水溶液に室温で5分間浸漬処理して中和した。
 めっきプロセス用プライマー層付き積層板に回路層を形成するために、まず、PdCl2を含む無電解めっき用触媒であるHS-202B(日立化成工業株式会社製)に、室温-10分間浸漬処理し、水洗し、無電解銅めっき用であるめっき液CUST-201(日立化成工業株式会社製)に室温で15分間浸漬し、さらに硫酸銅電解めっきを行った。その後、アニールを180℃で60分間行い厚さ35μmの導体層を形成した。
 次に、めっき導体の不要な箇所をエッチング除去するために、まず銅表面の酸化皮膜を#600のバフロール研磨で除去した後、エッチングレジストを形成し、次いでエッチングし、その後エッチングレジストを除去して、回路形成を行い、めっきプロセス用プライマー層付き多層配線板を作製した。
(実施例2~4及び比較例1~3)
 調製例2~7で得られた樹脂ワニスB~Gを使用した以外は実施例1と同様にして、めっきプロセス用プライマー層付き積層板、及びめっきプロセス用プライマー層付き多層配線板を作製した。
(実施例5)
 実施例2の電解銅箔の代わりに離型処理済みポリエチレンテレフタレート(PET)フィルム(リンテック社製PET-38X)を用いた(実施例2のM面はPETフィルムの離型処理面となる)以外は、実施例2と同様にして、めっきプロセス用プライマー層付き積層板、及びめっきプロセス用プライマー層付き多層配線板を作製した。
 以上のようにして作製した多層配線板について、外層回路との接着強度、めっきプロセス用プライマー層の表面粗さ、288℃はんだ耐熱性試験を下記の通りにして実施した。その結果を表1に示す。
[外層回路との接着強度]
 各実施例及び比較例で得た多層配線板の回路層の一部に銅のエッチング処理によって、幅10mm、長さ100mmの部分を形成し、この一端を回路層/樹脂界面で剥がしてつかみ具でつかみ、垂直方向に引張り速度約50mm/分、室温中で引き剥がした時の荷重を測定した。
[絶縁樹脂の表面粗さ]
 各実施例及び比較例で得た多層配線板の回路層の一部に銅をエッチング処理によって得た絶縁樹脂表面を菱化システム社製マイクロマップMN5000型を用い、表面粗さRaを測定した。
[288℃はんだ耐熱性]
 各実施例及び比較例で作製した多層配線板を25mm角に切断し、288±2℃に調整したはんだ浴に浮かべ、ふくれが発生するまでの時間を調べた。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

Claims (15)

  1.  多官能型エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、及び下記式(i)、(ii)、及び(iii)で表される構造単位を有するフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(C)を含むプライマー層用樹脂組成物により形成されてなるめっきプロセス用プライマー層であって、
     前記プライマー層用樹脂組成物におけるフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(C)の配合割合が、多官能型エポキシ樹脂(A)及びエポキシ樹脂硬化剤(B)の合計100質量部に対して、5質量部以上25質量部未満である、めっきプロセス用プライマー層。
    Figure JPOXMLDOC01-appb-C000001
    (式中、a,b,c,x,y及びzは、それぞれ平均重合度であって、a=2~10,b=0~3、c=3~30、x=1に対しy+z=2~300の整数を示し、さらにy=1に対しz≧20である。R,R’,及びR’’は、それぞれ独立に、芳香族ジアミン又は脂肪族ジアミンに起因する2価の基であり、複数のR’’’は、それぞれ独立に、芳香族ジカルボン酸、脂肪族ジカルボン酸、又は両末端にカルボキシル基を有するオリゴマーに起因する2価の基である。)
  2.  厚みが1~10μmである請求項1に記載のめっきプロセス用プライマー層。
  3.  前記プライマー層用樹脂組成物に含まれる多官能型エポキシ樹脂(A)がビフェニル構造を有するアラルキル型エポキシ樹脂を含む請求項1又は2に記載のめっきプロセス用プライマー層。
  4.  前記プライマー層用樹脂組成物が、平均一次粒径100nm以下の無機フィラー(D)を含有する請求項1~3のいずれか1項に記載のめっきプロセス用プライマー層。
  5.  前記無機フィラー(D)がヒュームドシリカである請求項4に記載のめっきプロセス用プライマー層。
  6.  前記無機フィラー(D)に表面処理が施されている請求項4又は5に記載のめっきプロセス用プライマー層。
  7.  粗化処理後のめっきプロセス用プライマー層の表面粗さ(Ra)が0.4μm以下である請求項1~6のいずれか1項に記載のめっきプロセス用プライマー層。
  8.  支持体フィルム上に請求項1~7のいずれか1項に記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に前記支持体フィルムを除去して得ためっきプロセス用プライマー層付き配線板用積層板。
  9.  支持体フィルム上に請求項1~7のいずれか1項に記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に前記支持体フィルムを除去するめっきプロセス用プライマー層付き配線板用積層板の製造方法。
  10.  支持体フィルム上に請求項1~7のいずれか1項に記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体フィルムを除去して得ためっきプロセス用プライマー層付き配線板用積層板。
  11.  支持体フィルム上に請求項1~7のいずれか1項に記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグの両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体フィルムを除去するプロセス用プライマー層付き配線板用積層板の製造方法。
  12.  支持体フィルム上に請求項1~7のいずれか1項に記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に支持体フィルムを除去して得ためっきプロセス用プライマー層付き多層配線板。
  13.  支持体フィルム上に請求項1~7のいずれか1項に記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、さらに外側に鏡板を重ねてプレス成型し、成型後に支持体フィルムを除去し、粗化処理、無電解めっき処理、及び電気めっき処理を順次施すめっきプロセス用プライマー層付き多層配線板の製造方法。
  14.  支持体フィルム上に請求項1~7のいずれか1項に記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体を除去し、粗化処理、無電解めっき処理、及び電気めっき処理を順次施して得ためっきプロセス用プライマー層付き多層配線板。
  15.  支持体フィルム上に請求項1~7のいずれか1項に記載のめっきプロセス用プライマー層が形成されたプライマー層付き支持体フィルムを、前記めっきプロセス用プライマー層が内側となるように配線板用プリプレグに重ね、これを回路加工した配線板の両面に重ね、耐熱性ゴムシートを用いたラミネーターで加熱及び加圧して積層し、積層後に加熱して硬化させ、支持体を除去し、粗化処理、無電解めっき処理、及び電気めっき処理を順次施すめっきプロセス用プライマー層付き多層配線板の製造方法。
PCT/JP2012/063790 2011-05-31 2012-05-29 めっきプロセス用プライマー層、配線板用積層板及びその製造方法、多層配線板及びその製造方法 WO2012165439A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12792865.3A EP2716793B1 (en) 2011-05-31 2012-05-29 Primer layer for plating process, laminate for circuit board and production method for same, and multilayer circuit board and production method for same
KR1020137034286A KR101730218B1 (ko) 2011-05-31 2012-05-29 도금 공정용 프라이머층, 배선판용 적층판 및 그의 제조 방법, 다층 배선판 및 그의 제조 방법
US14/123,140 US20140151091A1 (en) 2011-05-31 2012-05-29 Primer layer for plating process, laminate for circuit board and production method for same, and multilayer circuit board and production method for same
JP2012540626A JP5212578B1 (ja) 2011-05-31 2012-05-29 めっきプロセス用プライマー層、配線板用積層板及びその製造方法、多層配線板及びその製造方法
CN201280026695.XA CN103562436B (zh) 2011-05-31 2012-05-29 镀敷工艺用底涂层、布线板用层叠板及其制造方法、多层布线板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-122794 2011-05-31
JP2011122794 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012165439A1 true WO2012165439A1 (ja) 2012-12-06

Family

ID=47259293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063790 WO2012165439A1 (ja) 2011-05-31 2012-05-29 めっきプロセス用プライマー層、配線板用積層板及びその製造方法、多層配線板及びその製造方法

Country Status (7)

Country Link
US (1) US20140151091A1 (ja)
EP (1) EP2716793B1 (ja)
JP (2) JP5212578B1 (ja)
KR (1) KR101730218B1 (ja)
CN (1) CN103562436B (ja)
TW (1) TWI528873B (ja)
WO (1) WO2012165439A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098099A1 (ja) * 2012-12-18 2014-06-26 日立化成株式会社 積層体、積層板、プリント配線板、積層体の製造方法、及び積層板の製造方法
JP2014120687A (ja) * 2012-12-18 2014-06-30 Hitachi Chemical Co Ltd 積層板、多層積層板、プリント配線板、多層プリント配線板及び積層板の製造方法
JP2014187357A (ja) * 2013-02-20 2014-10-02 Hitachi Chemical Co Ltd 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP2014187358A (ja) * 2013-02-20 2014-10-02 Hitachi Chemical Co Ltd 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP2014185330A (ja) * 2013-02-20 2014-10-02 Hitachi Chemical Co Ltd 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP6386157B1 (ja) * 2017-12-19 2018-09-05 日本ペイント・インダストリアルコ−ティングス株式会社 プライマー組成物、プライマー塗膜及びその形成方法、並びに塗膜の形成方法
JPWO2020171004A1 (ja) * 2019-02-21 2020-08-27

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087885A1 (ja) * 2013-12-09 2015-06-18 日立化成株式会社 接着層付き離型ポリイミドフィルム、接着層付き離型ポリイミドフィルム付き積層板、積層板、接着層付き離型ポリイミドフィルム付き単層又は多層配線板、及び多層配線板の製造方法
US10544305B2 (en) * 2015-01-16 2020-01-28 Hitachi Chemical Company, Ltd. Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board, and method for producing same
US20160374210A1 (en) * 2015-02-16 2016-12-22 Intel Corporation Microelectronic build-up layers and methods of forming the same
KR20170025021A (ko) * 2015-08-27 2017-03-08 삼성전기주식회사 인쇄회로기판 제조용 수지 부착 동박 및 이를 이용한 인쇄회로기판의 제조방법
CN107278053A (zh) * 2016-04-08 2017-10-20 东莞市斯坦得电子材料有限公司 用于印制线路板导通孔金属化前导通孔壁环氧树脂的膨松软化工艺
TWI655263B (zh) 2017-12-27 2019-04-01 台燿科技股份有限公司 黏著劑組合物及其應用
JP2019157027A (ja) * 2018-03-15 2019-09-19 日立化成株式会社 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP6923763B1 (ja) * 2019-11-26 2021-08-25 昭和電工株式会社 複合積層体及び接合体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199288A (ja) 1987-10-13 1989-04-18 Hitachi Chem Co Ltd 多層印刷配線板の製造法
JP2001123137A (ja) 1999-10-27 2001-05-08 Hitachi Chem Co Ltd アディティブ法プリント配線板用接着剤
JP2001233945A (ja) 2000-02-24 2001-08-28 Nippon Kayaku Co Ltd 無電解メッキ可能な高耐熱性エポキシ樹脂組成物、それを用いたビルドアップ用絶縁材料並びにビルドアップ基板
JP3290296B2 (ja) 1994-05-13 2002-06-10 太陽インキ製造株式会社 多層プリント配線板及びその製造方法
JP3654851B2 (ja) 2001-05-11 2005-06-02 太陽インキ製造株式会社 熱硬化性樹脂組成物並びに該組成物を用いた多層プリント配線板及びその製造方法
JP3785749B2 (ja) 1997-04-17 2006-06-14 味の素株式会社 エポキシ樹脂組成物並びに該組成物を用いた多層プリント配線板の製造法
JP3949676B2 (ja) 2003-07-22 2007-07-25 三井金属鉱業株式会社 極薄接着剤層付銅箔及びその極薄接着剤層付銅箔の製造方法
WO2008072630A1 (ja) * 2006-12-13 2008-06-19 Nipponkayaku Kabushikikaisha ポリアミド樹脂、並びにそれを用いるエポキシ樹脂組成物及びその用途
JP2011086729A (ja) * 2009-10-14 2011-04-28 Hitachi Chem Co Ltd 配線板用積層板及びその製造方法、プライマー層用樹脂フィルム、多層配線板及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080693A (ja) * 2000-06-28 2002-03-19 Nippon Kayaku Co Ltd エポキシ樹脂組成物及びその硬化物
AU2002355051A1 (en) * 2001-11-30 2003-06-10 Ajinomoto Co., Inc. Method of laminating circuit board and method of forming insulation layer, multilayer printed wiring board and production method therefor and adhesion film for multilayer printed wiring board
JP4725704B2 (ja) 2003-05-27 2011-07-13 味の素株式会社 多層プリント配線板の層間絶縁用樹脂組成物、接着フィルム及びプリプレグ
KR20080066882A (ko) * 2004-06-23 2008-07-16 히다치 가세고교 가부시끼가이샤 인쇄 배선판용 프리프레그, 금속박장 적층판 및 인쇄배선판, 및 다층 인쇄 배선판의 제조 방법
JP2009155354A (ja) 2006-03-30 2009-07-16 Ajinomoto Co Inc 絶縁層用樹脂組成物
US20070231581A1 (en) * 2006-04-03 2007-10-04 Pui-Yan Lin Epoxy with low coefficient of thermal expansion
CN101432134B (zh) * 2006-04-25 2014-01-22 日立化成工业株式会社 带粘接层的导体箔、贴有导体的层叠板、印制线路板及多层线路板
MY149431A (en) * 2008-03-26 2013-08-30 Sumitomo Bakelite Co Resin sheet with copper foil, multilayer printed wiring board, method for manufacturing multilayer printed wiring board and semiconductor device
KR101148225B1 (ko) * 2008-09-01 2012-05-21 세키스이가가쿠 고교가부시키가이샤 적층체의 제조 방법
US20110205721A1 (en) * 2008-10-29 2011-08-25 Tadasuke Endo Resin composition, resin sheet, prepreg, laminate, multilayer printed wiring board, and semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199288A (ja) 1987-10-13 1989-04-18 Hitachi Chem Co Ltd 多層印刷配線板の製造法
JP3290296B2 (ja) 1994-05-13 2002-06-10 太陽インキ製造株式会社 多層プリント配線板及びその製造方法
JP3785749B2 (ja) 1997-04-17 2006-06-14 味の素株式会社 エポキシ樹脂組成物並びに該組成物を用いた多層プリント配線板の製造法
JP2001123137A (ja) 1999-10-27 2001-05-08 Hitachi Chem Co Ltd アディティブ法プリント配線板用接着剤
JP2001233945A (ja) 2000-02-24 2001-08-28 Nippon Kayaku Co Ltd 無電解メッキ可能な高耐熱性エポキシ樹脂組成物、それを用いたビルドアップ用絶縁材料並びにビルドアップ基板
JP3654851B2 (ja) 2001-05-11 2005-06-02 太陽インキ製造株式会社 熱硬化性樹脂組成物並びに該組成物を用いた多層プリント配線板及びその製造方法
JP3949676B2 (ja) 2003-07-22 2007-07-25 三井金属鉱業株式会社 極薄接着剤層付銅箔及びその極薄接着剤層付銅箔の製造方法
WO2008072630A1 (ja) * 2006-12-13 2008-06-19 Nipponkayaku Kabushikikaisha ポリアミド樹脂、並びにそれを用いるエポキシ樹脂組成物及びその用途
JP2011086729A (ja) * 2009-10-14 2011-04-28 Hitachi Chem Co Ltd 配線板用積層板及びその製造方法、プライマー層用樹脂フィルム、多層配線板及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716793A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014098099A1 (ja) * 2012-12-18 2017-01-12 日立化成株式会社 積層体、積層板、プリント配線板、積層体の製造方法、及び積層板の製造方法
JP2014120687A (ja) * 2012-12-18 2014-06-30 Hitachi Chemical Co Ltd 積層板、多層積層板、プリント配線板、多層プリント配線板及び積層板の製造方法
TWI618630B (zh) * 2012-12-18 2018-03-21 Hitachi Chemical Co Ltd 積層體、積層板、印刷線路板、積層體的製造方法、及積層板的製造方法
WO2014098099A1 (ja) * 2012-12-18 2014-06-26 日立化成株式会社 積層体、積層板、プリント配線板、積層体の製造方法、及び積層板の製造方法
JP2014187358A (ja) * 2013-02-20 2014-10-02 Hitachi Chemical Co Ltd 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP2014185330A (ja) * 2013-02-20 2014-10-02 Hitachi Chemical Co Ltd 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP2014187357A (ja) * 2013-02-20 2014-10-02 Hitachi Chemical Co Ltd 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP6386157B1 (ja) * 2017-12-19 2018-09-05 日本ペイント・インダストリアルコ−ティングス株式会社 プライマー組成物、プライマー塗膜及びその形成方法、並びに塗膜の形成方法
WO2019123822A1 (ja) * 2017-12-19 2019-06-27 日本ペイント・インダストリアルコーティングス株式会社 プライマー組成物、プライマー塗膜及びその形成方法、並びに塗膜の形成方法
JP2019108483A (ja) * 2017-12-19 2019-07-04 日本ペイント・インダストリアルコ−ティングス株式会社 プライマー組成物、プライマー塗膜及びその形成方法、並びに塗膜の形成方法
JPWO2020171004A1 (ja) * 2019-02-21 2020-08-27
WO2020171004A1 (ja) * 2019-02-21 2020-08-27 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JP7533439B2 (ja) 2019-02-21 2024-08-14 株式会社レゾナック 硬化性樹脂組成物及び電子部品装置

Also Published As

Publication number Publication date
EP2716793A1 (en) 2014-04-09
TWI528873B (zh) 2016-04-01
KR101730218B1 (ko) 2017-04-25
JP5212578B1 (ja) 2013-06-19
CN103562436A (zh) 2014-02-05
TW201309113A (zh) 2013-02-16
JP2013163812A (ja) 2013-08-22
US20140151091A1 (en) 2014-06-05
JP5942876B2 (ja) 2016-06-29
EP2716793A4 (en) 2015-05-20
CN103562436B (zh) 2015-10-14
KR20140043906A (ko) 2014-04-11
JPWO2012165439A1 (ja) 2015-02-23
EP2716793B1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP5212578B1 (ja) めっきプロセス用プライマー層、配線板用積層板及びその製造方法、多層配線板及びその製造方法
JP6903915B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP5482083B2 (ja) 配線板用積層板及びその製造方法、プライマー層用樹脂フィルム、多層配線板及びその製造方法
JP5716522B2 (ja) 接着補助層用樹脂組成物
JP6477494B2 (ja) 接着層付き離型ポリイミドフィルム、接着層付き離型ポリイミドフィルム付き積層板、積層板、接着層付き離型ポリイミドフィルム付き単層又は多層配線板、及び多層配線板の製造方法
JP6291742B2 (ja) 樹脂組成物、めっきプロセス用接着補助層、支持体付きめっきプロセス用接着補助層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP2009188163A (ja) 多層プリント配線板用支持体付き絶縁フィルム、多層プリント配線板およびその製造方法
JP2014185330A (ja) 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP6295708B2 (ja) 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
US20120305291A1 (en) Primer layer for plating process, laminate for wiring board and method for manufacture thereof, multilayer wiring board and method for manufacture thereof
JP5803404B2 (ja) めっきプロセス用プライマー層、めっきプロセス用プライマー層付き積層板及びその製造方法、めっきプロセス用プライマー層付き多層配線板及びその製造方法
JP6269506B2 (ja) 積層体、積層板、プリント配線板、積層体の製造方法、及び積層板の製造方法
JP6459182B2 (ja) 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
TWI859246B (zh) 附絕緣性樹脂層之基材、以及使用其之疊層體及疊層體之製造方法
JP2009272533A (ja) 多層プリント配線板用支持体付き絶縁フィルム、多層プリント配線板およびその製造方法
JP6699148B2 (ja) 積層体及びその製造方法、並びに、プリント配線板の製造方法
TW202110617A (zh) 附絕緣性樹脂層之基材、以及使用其之疊層體及疊層體之製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012540626

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137034286

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123140

Country of ref document: US