WO2012164876A1 - 送信器 - Google Patents
送信器 Download PDFInfo
- Publication number
- WO2012164876A1 WO2012164876A1 PCT/JP2012/003373 JP2012003373W WO2012164876A1 WO 2012164876 A1 WO2012164876 A1 WO 2012164876A1 JP 2012003373 W JP2012003373 W JP 2012003373W WO 2012164876 A1 WO2012164876 A1 WO 2012164876A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- direct
- signal
- delay
- converters
- output
- Prior art date
Links
- 230000003111 delayed effect Effects 0.000 claims abstract description 5
- 230000001603 reducing effect Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 28
- 238000013139 quantization Methods 0.000 description 22
- 230000005540 biological transmission Effects 0.000 description 20
- 238000005070 sampling Methods 0.000 description 13
- 101100031387 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) drc-1 gene Proteins 0.000 description 9
- 238000001914 filtration Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 102100025032 Dynein regulatory complex protein 1 Human genes 0.000 description 4
- 101000908373 Homo sapiens Dynein regulatory complex protein 1 Proteins 0.000 description 4
- 101100465868 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) drc-2 gene Proteins 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 102100025018 Dynein regulatory complex subunit 2 Human genes 0.000 description 3
- 101000908413 Homo sapiens Dynein regulatory complex subunit 2 Proteins 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06G—ANALOGUE COMPUTERS
- G06G7/00—Devices in which the computing operation is performed by varying electric or magnetic quantities
- G06G7/12—Arrangements for performing computing operations, e.g. operational amplifiers
- G06G7/14—Arrangements for performing computing operations, e.g. operational amplifiers for addition or subtraction
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03C—MODULATION
- H03C1/00—Amplitude modulation
- H03C1/36—Amplitude modulation by means of semiconductor device having at least three electrodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0475—Circuits with means for limiting noise, interference or distortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0483—Transmitters with multiple parallel paths
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03C—MODULATION
- H03C2200/00—Indexing scheme relating to details of modulators or modulation methods covered by H03C
- H03C2200/0004—Circuit elements of modulators
- H03C2200/0025—Gilbert multipliers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03C—MODULATION
- H03C2200/00—Indexing scheme relating to details of modulators or modulation methods covered by H03C
- H03C2200/0037—Functional aspects of modulators
- H03C2200/0058—Quadrature arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
Definitions
- the present invention relates to a transmitter, and more particularly to a transmitter including a digital / analog converter.
- a portable communication terminal device (hereinafter referred to as a portable terminal in the present specification) that can support a plurality of wireless communication standards and a plurality of frequency bands.
- Supporting a plurality of standards is called multi-mode support, and supporting a plurality of frequency bands is called multi-band support.
- multi-mode support As a configuration related to the transmission of such a multimode / multiband compatible terminal, when a digital baseband signal is converted into an analog signal (digital / analog conversion), the frequency conversion to the RF transmission carrier frequency is also performed as it is.
- Transmitters that directly modulate to the RF frequency are known in recent years. Such a transmitter is described in Patent Document 1, for example.
- an RF frequency conversion circuit having a configuration similar to that of a Gilbert cell mixer is incorporated in a part of a vertically stacked transistor in a current control type digital / analog conversion circuit.
- the digital / analog converter and the RF frequency converter or the RF modulator are formed as independent circuits, and the digital / analog conversion and the RF frequency conversion can be combined and performed simultaneously. .
- the transmitter described in Patent Document 1 includes a digital-to-RF converter (Digital-to-RF-converter), a direct RF converter (Direct RF converter), or a direct RF modulation transmitter (Direct RF converter) configured thereby.
- Modulation Transmitter etc., which is usually required in a conventional transmitter that operates separately, an analog baseband filter circuit between a digital / analog converter and an RF frequency converter can be omitted, etc.
- FIG. 6 is a diagram illustrating the configuration of the direct RF modulation transmitter configured as described above.
- the direct RF modulation transmitter shown in FIG. 6 includes two digital-to-RF converters (DRC) 1, 2, a frequency divider 3, and an output matching circuit 4.
- DRC digital-to-RF converters
- An RF signal for frequency multiplication (hereinafter referred to as a transmission local RF signal) L oin + and a transmission local RF signal L oin ⁇ in which the phase of the transmission local RF signal L oin + is inverted are supplied to the frequency divider 3 from the outside.
- the frequency divider 3 receives the transmission local RF signals L oin + and L oin ⁇ and generates two pairs of differential local signals T xLoI + , T xLoI ⁇ , T xLoQ + , and T xLoQ ⁇ that are 90 degrees out of phase. Output to DRC 1 and 2 respectively.
- the frequency of the transmission local RF signals L oin + and L oin ⁇ is twice the frequency of the target transmission carrier wave.
- the frequency of the differential local signals TxLoI + , TxLoI- , TxLoQ + , TxLoQ- is the frequency of the transmission carrier wave.
- DRC1 and DRC2 have the same configuration.
- the DRC1 and DRC2 are configured as direct RF modulation transmitters by supplying differential local signals T xLoI + , T xLoI- , T xLoQ + , T xLoQ- with the same phase relationship as a so-called IQ quadrature modulator. Is done.
- an I (In-Phase) digital baseband signal (denoted as “IBBData” in the figure) is input to DRC1.
- a Q (Quadrature) digital baseband signal (denoted as “QBBData” in the figure) is input to the DRC 2.
- the sampling clock signal CLK BB is input to the DRCs 1 and 2.
- Each of the DRCs 1 and 2 is a signal conversion circuit having a function in which a digital / analog conversion function and a frequency multiplication function for frequency-converting a baseband signal into an RF signal are integrated. With such a function, the DRC 1 outputs an output differential signal from the clock signal CLK BB , the I digital baseband signal, and the differential local signal.
- the DRC 2 outputs an output differential signal from the clock signal CLK BB , the Q digital baseband signal, and the differential local signal.
- the output differential signals output from the DRCs 1 and 2 are added and output as a carrier wave through the output matching circuit 4 and the power amplifier 5 (denoted as “PA” in the figure) of the next stage.
- the output matching circuit 4 is composed of passive elements such as capacitors and inductor elements, and has a band-pass type gain characteristic with the frequency of the transmission carrier wave as the center frequency.
- DRC 1 and 2 output current, and the addition of the output differential signal output by DRC 1 and the output differential signal output by DRC 2 is performed. Is realized by directly coupling the signal paths.
- FIG. 7 is a circuit showing the configuration of DRC1 and DRC2 described in Patent Document 1 described above.
- the DRC 1 and DRC 2 include a block that processes a signal on the LSB (Least Significant Bit) side and a block that processes a signal on the MSB (Most Significant Bit) side.
- the block on the LSB side includes current sources 200, 201,... 20k in which unit cells are binary weighted, local signal switches 220, 221,... 22k arranged in a Gilbert cell type, and data signal switches 240, 241. ... 24k.
- the MSB (MostificSignificant Bit) side block includes the current source 210 weighted to the same value, the local signal switch 230 arranged in the Gilbert cell type, and the data signal switch 250 in parallel for the necessary bits. It has the structure connected to. With such a configuration, the direct RF modulation transmitter described in Patent Document 1 can simultaneously perform digital / analog conversion and frequency multiplication. In the example shown in FIG. 7, the current output of all the cells is voltage-converted by an external load provided outside the DRC.
- FIG. 8 is a diagram for explaining a general operation of a circuit called a digital / RF converter or a direct RF converter.
- a circuit called a digital / RF converter or a direct RF converter.
- an RF signal and a digital baseband signal are input, and the RF signal is modulated by the digital baseband signal and output.
- the modulated signal outputs a signal obtained by inverting the phase of the transmission carrier wave at the timing when the digital baseband signal is switched.
- the noise of the output signal directly output from the RF modulation transmitter will be described.
- the main factors that determine the noise floor near the carrier wave of the output signal are thermal noise and flicker noise generated from internal elements, and quantization noise generated in the digital / analog conversion process.
- an analog filter can be installed immediately after digital / analog conversion. For this reason, the quantization noise is hardly included in the signal after frequency conversion.
- Equation (1) shows the amount of quantization noise generated by digital / analog conversion when a normal digital / analog converter outputs a full-scale desired wave signal. Equation (1) is the amount of noise when the desired wave signal level is used as a reference, B is the number of bits, and fs is the sampling frequency.
- Equation (2) indicates the amount of quantization noise when the digital / analog converted signal is frequency-multiplied and frequency-converted to a high frequency when the DRC shown in FIG. Show. It can be seen from equations (1) and (2) that an increase in the number of bits B or an increase in the sampling frequency fs is necessary to reduce noise. Considering the realization of low quantization noise in a CMOS (Complementary Metal Oxide Semiconductor) circuit, it is necessary to make the sampling frequency the maximum frequency that can be realized, and to compensate for the shortage of noise reduction by increasing the number of bits.
- CMOS Complementary Metal Oxide Semiconductor
- the current sources 200 to 20 k and 210 occupy most of the area of the DRC 1 and 2.
- the areas of the current sources 200 to 20k and 210 are determined by the accuracy of current variation calculated from the number of bits of the input digital signal and the required linearity (distortion characteristics).
- the number of bits of the input digital signal and the required linearity depend on the quantization noise level targeted by the direct RF modulation transmitter.
- Equation (3) The relative variation of the current output from the MOS transistor is shown in Equation (3).
- ⁇ I / I is the standard deviation of the relative variation in current.
- a ⁇ and A VT are parameters of variation depending on the semiconductor process, V GS is the voltage between the gate and source of the MOS transistor, V t is the threshold voltage of the MOS transistor, W is the channel width of the MOS transistor, and L is the MOS transistor's channel width. Indicates the channel length.
- the RF transmitter for wireless communication devices generally does not require a uniform value for the noise of the output RF signal.
- the belt is mixed.
- W-CDMA which is a cellular phone standard
- FDD FrequencyuDivision Duplex
- an object of the present invention is to provide a transmitter that has low noise and can avoid an increase in circuit area.
- a transmitter of one embodiment of the present invention includes a plurality of direct RF converters (for example, DRCs 302a to 302n and 306a to 306m illustrated in FIG. 1) connected in parallel, and the plurality of direct RF converters.
- a plurality of delay circuits for example, the delay circuits 304a to 304n and 307a to 307m shown in FIG. 1) for delaying a digital baseband input signal (for example, IBBData and QBBData shown in FIG. 1) input to the RF converter;
- An adder for example, the output matching circuit 305 shown in FIG.
- the plurality of delay circuits may be connected to the plurality of direct RF converters on a one-to-one basis in the above-described invention.
- the plurality of direct RF converters includes a first block including the N direct RF converters, and the M direct RF converters.
- the second RF block included in the first block receives the first RF signal together with the in-phase digital baseband input signal, and the first RF signal is received by the in-phase digital baseband input signal.
- the direct RF converter included in the second block inputs a second RF signal whose phase is 90 degrees different from the first RF signal together with an orthogonal digital baseband input signal,
- the second RF signal is modulated by the quadrature digital baseband input signal and output as a second output signal, and the adder is included in the first block.
- the second output signal may be added.
- the transmitter of one embodiment of the present invention is the delay control circuit (for example, the delay shown in FIG. 1) that sets the delay amount of the digital baseband input signal for each of the plurality of delay circuits.
- a control circuit 309) may be further included.
- the delay control circuit is connected to the N direct RF converters included in the first block. A delay amount for delaying the digital baseband signal is set, and each of the delay circuits connected to the M direct RF converters included in the second block has a delay amount for delaying the orthogonal digital baseband signal. You may make it set.
- the delay control circuit includes The i-th direct RF converter (i is a natural number of 1 or more and N or less) of the direct RF converter included in the first block, and the i-th above direct RF converter included in the second block The same delay amount may be set directly in the RF converter.
- the delay circuit may delay the digital baseband input signal by multiplying the period of the signal rate of the digital baseband input signal by an integral multiple according to the delay amount.
- a digital signal may be generated.
- the delay circuit may include a number of flip-flop circuits equal to the integer (for example, flip-flop circuits 501a to 501k shown in FIG. 3).
- the transmitter according to the above aspect can set a notch frequency, which will be described later, to an arbitrary frequency by using a plurality of direct RF converters with input signal delay functions in parallel. It becomes possible to carry out for a necessary frequency band. For this reason, when such a transmitter is realized by a semiconductor integrated circuit, the demand for increasing the number of bits with respect to quantization noise is eased, and the number of bits for digital / analog conversion can be reduced as compared with the conventional one. Can be planned. From the above, according to the present invention, it is possible to provide a direct RF modulation transmitter that has low noise and can avoid an increase in circuit area.
- FIG. 1 is a circuit diagram of a direct RF modulation transmitter of one embodiment of the present invention.
- FIG. It is a figure for demonstrating the input data input into DDRC shown in FIG.
- FIG. 3 is a diagram for explaining a configuration of a delay circuit shown in FIG. 2. It is the figure which showed the equivalent functional characteristic of one Embodiment of this invention. It is the figure which illustrated the gain characteristic which the quantization noise of one Embodiment of this invention receives. It is the figure which illustrated the structure of the direct RF modulation
- FIG. 1 is a circuit diagram of a direct RF modulation transmitter which is a transmitter of this embodiment.
- the direct RF modulation transmitter of this embodiment is an IQ orthogonal modulation type (CARTESIAN type) direct RF modulation transmitter.
- the direct RF modulation transmitter of this embodiment includes N direct RF converters (Direct RF Convert or hereinafter referred to as “DRC”) 302a to 302n to which an I digital baseband signal is input, and a Q digital baseband.
- DRCs 306a to 306m to which signals are input.
- the DRCs 302a to 302n constitute a DRC first block
- the DRCs 306a to 306m constitute a DRC second block.
- Each of the DRCs 302a to 302n is connected to a corresponding delay circuit 304a to 304n (a delay circuit having the same a, b,. (Convert or: hereinafter referred to as “DDRC”) 301a to 301n.
- the DRCs 306a to 306m are connected to the corresponding delay circuits 307a to 307m (the delay circuits having the same a, b,.
- the direct RF modulation transmitter of the present embodiment receives the transmission local RF signals L oin + and L oin ⁇ , a pair of differential local signals T xLoI + and T xLoI ⁇ that are 90 degrees out of phase with each other, and the other pair.
- Delay control for controlling the amount of delay of input data input to the 1 ⁇ 2 divider 303 for generating the differential local signals T xLoQ + and T xLoQ ⁇ , the output matching circuit 305, the N DDRCs 301, and the M DDRCs 308.
- the output matching circuit 305 is composed of passive elements such as capacitors and inductor elements, and is a circuit having a band-pass gain characteristic with the frequency of the transmission carrier wave as the center frequency.
- DRCs 302a to 302n and DRCs 306a to 306m output current, and output differential signals output from DRCs 302a to 302n and DRCs 306a to 306m output
- the addition with the output differential signal is realized by directly coupling the signal paths, the addition may be performed by the output matching circuit 305.
- the delay control circuit 309 can independently set the delay amounts of the input data of the DDRCs 301a to 301n and the DDRCs 308a to 308m.
- the input data delay amounts of DDRCs 301a to 301n are D1, D2,... DN, respectively, and the input data delay amounts of DDRCs 308a to 308m are D1, D2,.
- FIG. 2 is a diagram for describing input data input to the DDRC shown in FIG. 1 (referred to as DDRC 301a in FIG. 2).
- the I digital baseband signal is delayed by the delay control signal output from the delay control circuit 309 shown in FIG. 1, and then input to the DRC 302a.
- the DDRC301b ⁇ 301n shown in FIG. 1 similar to the configuration shown in FIG. 2, I the digital baseband signal, the sampling clock signal CLK BB, the delay control signal is input, delayed I digital baseband signal Are input to the corresponding DRCs. Further, the Q digital baseband signal, the sampling clock signal CLK BB and the delay control signal are input to the DDRRCs 308a to 308m shown in FIG. 1, and the delayed Q digital baseband signal is input to the corresponding DRC.
- FIG. 3 is a diagram for explaining the configuration of delay circuit 304a shown in FIG.
- the delay circuits 304a to 304n and the delay circuits 307a to 307m are all configured similarly.
- the delay circuit 304a includes k flip-flop circuits 501a to 501k and a multiplexer 502 that has k + 1 input terminals and is selectively controlled by a delay control signal output from the delay control circuit 309. Assuming that one clock of the sampling clock CLK BB is T clkbb , the delay circuit 304a delays the delay amount from 0 to k ⁇ T clkbb by a time T clkbb interval, that is, an I digital baseband signal of any sampling clock CLK BB . It is possible to delay by an integer (0 to k) times.
- the delay amounts of the input data of DDRCs 301a to 301n shown in FIG. 1 are set as follows, for example, by the delay control signal output from the delay control circuit 309.
- “a” is an arbitrary natural number.
- D1 0
- D2 T clkbb ⁇ a
- D3 2 ⁇ T clkbb ⁇ a
- DN (N ⁇ 1) ⁇ T clkbb ⁇ a
- the delay amounts of the input data of the DDRCs 308a to 308m shown in FIG. 1 are set as follows by the delay control signal output from the delay control circuit 309, for example.
- “a” is an arbitrary natural number.
- D1 0
- D2 T clkbb ⁇ a
- D3 2 ⁇ T clkbb ⁇ a
- DM (M ⁇ 1) ⁇ T clkbb ⁇ a
- quantization noise generated by the direct RF modulation transmitter shown in FIG. 1 will be described.
- the quantization noise generated by the digital / analog conversion in the DDRRCs 301a to 301n shown in FIG. 1 is expressed by the following equation (4) starting from the transmission carrier frequency at the higher frequency side than the transmission carrier frequency in the output of the direct RF modulation transmitter. Receive the indicated filtering effect. On the lower frequency side than the transmission carrier frequency, a filtering effect is applied to the low frequency side by turning back the transmission characteristic on the high frequency side starting from the transmission carrier frequency.
- Equation (4) expresses this filtering effect using a Z function with the sampling clock frequency fs as a reference.
- the delays applied to the N DDRRCs are 0, T clkbb ⁇ a, 2 ⁇ T clkbb ⁇ a,..., N ⁇ T clkbb ⁇ a for the first to Nth DDRRCs, respectively.
- f off is a detuning frequency from the transmission carrier frequency.
- the filtering effect is expressed by the equation (4) when the frequency of the differential local signals T xLoI + , T xLoI ⁇ , T xLoQ + , T xLoQ ⁇ is zero in the direct RF modulation transmitter shown in FIG.
- the explanation becomes easy and clear when considered as a thought model.
- the DRCs 302a to 302n and the DRCs 306a to 306m are simple digital / analog converters that do not perform frequency conversion.
- the digital / analog conversion is an equivalent conversion of gain 1.
- the vertical axis in FIG. 5 indicates the gain of the direct RF modulation transmitter, and the horizontal axis indicates the frequency of the signal.
- the frequency at which the gain shown on the vertical axis is minimized is generally called a notch frequency.
- the quantization noise calculated from the number of bits of digital / analog conversion is largely filtered, so that low quantization noise can be realized.
- the notch frequency can be arbitrarily set by a combination of the number N of DDRC stages and the sampling frequency fs.
- the number of bits for digital / analog conversion required for each DRC can be suppressed by adjusting the notch frequency for a frequency band in which low noise is required in wireless communication.
- the number N of DRCs 302a to 302n is the same as the number M of DRCs 306a to 306m (for convenience of explanation, it is assumed that there are N DRCs 302a to 302n and DRCs 306a to 306m.
- the delay control circuit 309 sets the same amount of delay for the i-th DRC (i is a number between 1 and N) of the DRCs 302a to 302n and the i-th DRC of the DRCs 306a to 306m.
- the filtering characteristics of the filtering received by the quantization noise generated by the digital / analog conversion of the I digital baseband signal and the quantization noise generated by the digital / analog conversion of the Q digital baseband signal are the same.
- a low-noise transmitter can be realized with a smaller area than in the above-described example in which a conventional direct modulation RF transmitter is simply increased in number of bits.
- the entire noise floor cannot be reduced.
- the communication system is strongly required to reduce noise in a predetermined frequency band. For this reason, if the sampling frequency is adjusted using Equation (4) according to the frequency band in which noise reduction is required, the number N of DRCs can be suppressed to a relatively small number.
- the transmitter of the present invention is suitable for small devices such as mobile phones because it has low noise and can reduce the circuit scale.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Transmitters (AREA)
- Amplitude Modulation (AREA)
Abstract
Description
このようなマルチモード/マルチバンド対応端末の送信に係る構成として、デジタルベースバンド信号をアナログ信号に変換(デジタル/アナログ変換)する際に、そのままRF送信キャリア周波数への周波数変換も行い、デジタルからRF周波数に直接に変調する送信器が近年知られている。このような送信器は、例えば、特許文献1に記載されている。
図6は、上記した構成の直接RF変調送信器の構成を例示した図である。図6に示した直接RF変調送信器は、2つのデジタル/RF変換器(Digital-to-RF-converter:DRC)1、2と、2分周器3と、出力整合回路4とから構成される。
以下に示す式(1)は通常のデジタル/アナログ変換器がフルスケールの希望波信号を出力したとき、デジタル/アナログ変換で発生する量子化雑音量を示している。式(1)は希望波信号レベルを基準としたときのノイズ量であり、Bはビット数、fsはサンプリング周波数を示している。
本発明は、上記の点に鑑み、低ノイズであって、かつ、回路面積が増大することを回避することができる送信器を提供することを目的とする。
また、本発明の一態様の送信器は、上記した発明において、上記複数の直接RF変換器が、N個の上記直接RF変換器を含む第1ブロックと、M個の上記直接RF変換器を含む第2ブロックと、を含み、上記第1ブロックに含まれる上記直接RF変換器が、同相デジタルベースバンド入力信号と共に第1RF信号を入力し、上記同相デジタルベースバンド入力信号によって上記第1RF信号を変調して第1出力信号として出力し、上記第2ブロックに含まれる上記直接RF変換器が、直交デジタルベースバンド入力信号と共に上記第1RF信号と位相が90度相違する第2RF信号を入力し、上記直交デジタルベースバンド入力信号によって上記第2RF信号を変調して第2出力信号として出力し、上記加算部が、上記第1ブロックに含まれるN個(Nは自然数)の上記直接RF変換器のそれぞれから出力される上記第1出力信号と、上記第2ブロックに含まれるM個(Mは自然数)の上記直接RF変換器のそれぞれから出力される上記第2出力信号と、を加算するようにしてもよい。
また、本発明の一態様の送信器は、上記した発明において、上記遅延制御回路が、上記第1ブロックに含まれる上記N個の直接RF変換器と接続された上記遅延回路の各々が上記同相デジタルベースバンド信号を遅延させる遅延量を設定し、上記第2ブロックに含まれる上記M個の直接RF変換器と接続された上記遅延回路の各々が上記直交デジタルベースバンド信号を遅延させる遅延量を設定するようにしてもよい。
また、本発明の送信器は、上記遅延回路が、上記整数に等しい数のフリップフロップ回路(例えば図3に示したフリップフロップ回路501a~501k)を含むようにしてもよい。
そのため、このような送信器を半導体集積回路で実現した場合、量子化ノイズに対する上述ビット数の増加要求が緩和され、デジタル/アナログ変換のビット数を従来に比べ少なくできるため、面積の小型化を図ることができる。
以上のことから、本発明によれば、低ノイズであって、かつ、回路面積が増大することを回避することができる直接RF変調送信器を提供することができる。
[回路構成]
図1は、本実施形態の送信器である直接RF変調送信器の回路図である。本実施形態の直接RF変調送信器は、IQ直交変調方式型(CARTESIAN型)の直接RF変調送信器である。本実施形態の直接RF変調送信器は、Iデジタルベースバンド信号が入力されるN個の直接RF変換器(Direct RF Convert or:以下、「DRC」と記す)302a~302nと、Qデジタルベースバンド信号が入力されるM個のDRC306a~306mと、を含んでいる。
DRC302a~302nは、各々対応する遅延回路304a~304n(数字の後に付されたa、b、…nが同じ遅延回路)と接続されて入力信号遅延機能付直接RF変換器(Delay-attached Direct RF Convert or:以下、「DDRC」と記す)301a~301nを構成する。また、DRC306a~306mは、各々対応する遅延回路307a~307m(数字の後に付されたa、b、…nが同じ遅延回路)と接続されてDDRC308a~308mを構成する。
D1=0
D2=Tclkbb×a
D3=2×Tclkbb×a・・・、
DN=(N-1)×Tclkbb×a
D1=0
D2=Tclkbb×a
D3=2×Tclkbb×a・・・、
DM=(M-1)×Tclkbb×a
次に、図1に示した直接RF変調送信器で発生する量子化ノイズについて説明する。図1に示したDDRC301a~301nにおけるデジタル/アナログ変換で発生した量子化ノイズは、直接RF変調送信器の出力において、送信キャリア周波数より高周波側では送信キャリア周波数を起点として下記の式(4)に示したフィルタリング効果を受ける。また、送信キャリア周波数よりも低周波側では、送信キャリア周波数を起点として高周波側の伝達特性を折り返した低周波側へのフィルタリング効果を受ける。
フィルタリング効果が式(4)によって表されることは、図1に示した直接RF変調送信器において差動ローカル信号TxLoI+、TxLoI-、TxLoQ+、TxLoQ-の周波数がゼロである場合を思考モデル的に考えると説明が容易かつ明瞭になる。この場合、DRC302a~302n、DRC306a~306mは周波数変換を行わない単純なデジタル/アナログ変換器となる。デジタル/アナログ変換はゲイン1の等価変換であり、Iデジタルベースバンド信号に注目すると、図4のように、Z変換の伝達関数を用いて表される等価的機能特性を考えることができる。これは一般的に良く知られたFIR(Finite impulse response:有限インパルス応答)フィルタであり、このことから直接RF変調送信器においても量子化ノイズが式(4)に示した抑圧をうけることが分かる。
また、図1に示した直接RF変調送信器において、DRC302a~302nの個数NとDRC306a~306mの個数Mとが同じ(説明の便宜上、DRC302a~302nとDRC306a~306mとがいずれもN個とする)であって、DRC302a~302nのi番目(iは1以上、N以下の数)のDRCと、DRC306a~306mのi番目のDRCとに対し、遅延制御回路309が同じ遅延量を設定するものとする。
次に、従来のDRCを用いた直接RF変調器回路の電流源全体の面積と、本発明を適用したDRC及び遅延制御回路から構成される直接RF変調器の電流源全体の面積とを具体的な数値を用いて比較する。
従来の直接変調RF送信器における10ビットDRCの電流源全体の面積をS0とする。量子化ノイズの低減のため仮に1ビットだけ分ビット数を増やした場合、その電流源全体の面積は4倍の4×S0となる。2ビット分だけビット数を増やした場合、その電流源全体の面積は16倍の16×S0となる。これらによるノイズ低減効果は、前記した式(2)より、それぞれ6dB、12dBとなる。
302a~302n、306a~306m DRC
303 2分周器
304a~304n、307a~307m 遅延回路
305 出力整合回路
309 遅延制御回路
501a~501k フリップフロップ回路
502 マルチプレクサ
Claims (8)
- 並列に接続された複数の直接RF変換器と、
前記複数の直接RF変換器に入力されるデジタルベースバンド入力信号を遅延させる複数の遅延回路と、
前記複数の直接RF変換器から出力される各出力信号を加算する加算部と、
を含み、
前記直接RF変換器は、
前記デジタルベースバンド入力信号と共にRF信号を入力し、前記デジタルベースバンド入力信号によって前記RF信号を変調し、前記出力信号として出力することを特徴とする送信器。 - 前記複数の遅延回路は、前記複数の直接RF変換器と一対一に接続されることを特徴とする請求項1に記載の送信器。
- 前記複数の直接RF変換器が、N個の前記直接RF変換器を含む第1ブロックと、
M個の前記直接RF変換器を含む第2ブロックと、を含み、
前記第1ブロックに含まれる前記直接RF変換器は、
同相デジタルベースバンド入力信号と共に第1RF信号を入力し、前記同相デジタルベースバンド入力信号によって前記第1RF信号を変調して第1出力信号として出力し、
前記第2ブロックに含まれる前記直接RF変換器は、
直交デジタルベースバンド入力信号と共に前記第1RF信号と位相が90度相違する第2RF信号を入力し、前記直交デジタルベースバンド入力信号によって前記第2RF信号を変調して第2出力信号として出力し、
前記加算部は、
前記第1ブロックに含まれるN個(Nは自然数)の前記直接RF変換器のそれぞれから出力される前記第1出力信号と、前記第2ブロックに含まれるM個(Mは自然数)の前記直接RF変換器のそれぞれから出力される前記第2出力信号と、を加算することを特徴とする請求項1に記載の送信器。 - 前記複数の遅延回路の各々に対し、前記デジタルベースバンド入力信号の遅延量を設定する遅延制御回路をさらに含むことを特徴とする請求項1に記載の送信器。
- 前記遅延制御回路は、
前記第1ブロックに含まれる前記N個の直接RF変換器と接続された前記遅延回路の各々が前記同相デジタルベースバンド信号を遅延させる遅延量を設定し、
前記第2ブロックに含まれる前記M個の直接RF変換器と接続された前記遅延回路の各々が前記直交デジタルベースバンド信号を遅延させる遅延量を設定することを特徴とする請求項4に記載の送信器。 - 前記第1ブロックと前記第2ブロックとがいずれも前記N個の直接RF変換器を含み(M=N)、
前記遅延制御回路は、前記第1ブロックに含まれる前記直接RF変換器のi番目(iは1以上、N以下の自然数)の前記直接RF変換器と、前記第2ブロックに含まれる前記直接RF変換器のi番目の前記直接RF変換器とに、同じ遅延量を設定することを特徴とする請求項5記載の送信器。 - 前記遅延回路は、
前記デジタルベースバンド入力信号を、該デジタルベースバンド入力信号の信号レートの周期を遅延量に応じた整数倍遅延させた遅延デジタル信号を生成することを特徴とする請求項1から6のいずれか1項に記載の送信器。 - 前記遅延回路は、前記整数に等しい数のフリップフロップ回路を含むことを特徴とする請求項7に記載の送信器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/805,847 US8929480B2 (en) | 2011-06-03 | 2012-05-23 | Transmitter |
JP2012534475A JP5416281B2 (ja) | 2011-06-03 | 2012-05-23 | 送信器 |
EP12793290.3A EP2571175A4 (en) | 2011-06-03 | 2012-05-23 | TRANSMITTER |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-125815 | 2011-06-03 | ||
JP2011125815 | 2011-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012164876A1 true WO2012164876A1 (ja) | 2012-12-06 |
Family
ID=47258753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/003373 WO2012164876A1 (ja) | 2011-06-03 | 2012-05-23 | 送信器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8929480B2 (ja) |
EP (1) | EP2571175A4 (ja) |
JP (1) | JP5416281B2 (ja) |
WO (1) | WO2012164876A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014049929A (ja) * | 2012-08-31 | 2014-03-17 | Asahi Kasei Electronics Co Ltd | 送信器 |
US10284202B1 (en) | 2018-04-02 | 2019-05-07 | Raytheon Company | Generating analog output from a field programmable gate array by combining scaled digital outputs |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014136437A1 (ja) * | 2013-03-07 | 2014-09-12 | 日本電気株式会社 | 無線送信装置および無線送信方法 |
EP2905894B1 (en) * | 2014-02-06 | 2017-05-17 | IMEC vzw | A modulation circuit for a radio device and a method thereof |
KR102268110B1 (ko) * | 2014-08-05 | 2021-06-22 | 삼성전자주식회사 | 데이터를 변조하는 방법 및 장치 및 기록 매체 |
KR102155060B1 (ko) * | 2014-10-24 | 2020-09-11 | 에스케이하이닉스 주식회사 | 멀티 레벨 메모리 소자 및 그의 데이터 센싱 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10304001A (ja) * | 1997-02-27 | 1998-11-13 | Matsushita Electric Ind Co Ltd | 変調器及び変調方法 |
US20050111573A1 (en) | 2003-11-20 | 2005-05-26 | Nokia Corporation | RF transmitter using digital-to-RF conversion |
JP2010245962A (ja) * | 2009-04-08 | 2010-10-28 | Toshiba Corp | 変調装置及び変調方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7110739B2 (en) * | 2003-04-10 | 2006-09-19 | Powerwave Technologies, Inc. | Multi-transmitter communication system employing anti-phase pilot signals |
JP2005115654A (ja) | 2003-10-08 | 2005-04-28 | Sony Corp | 情報処理装置および方法、プログラム格納媒体、並びにプログラム |
US7421037B2 (en) * | 2003-11-20 | 2008-09-02 | Nokia Corporation | Reconfigurable transmitter with direct digital to RF modulator |
US8254865B2 (en) * | 2006-04-07 | 2012-08-28 | Belair Networks | System and method for frequency offsetting of information communicated in MIMO-based wireless networks |
JP4640454B2 (ja) * | 2008-06-24 | 2011-03-02 | ソニー株式会社 | 変調回路、変調方法、プログラム、および通信装置 |
US8542773B2 (en) | 2009-12-18 | 2013-09-24 | Electronics And Telecommunications Research Institute | Digital RF converter, digital RF modulator and transmitter including the same |
US8385469B2 (en) * | 2010-01-20 | 2013-02-26 | Panasonic Corporation | High-efficiency all-digital transmitter |
US8767845B2 (en) * | 2010-03-02 | 2014-07-01 | The Aerospace Corporation | Increased capacity communication links with spectrum sharing |
US20130003881A1 (en) * | 2011-06-30 | 2013-01-03 | Imec | Radio Frequency Modulators |
-
2012
- 2012-05-23 WO PCT/JP2012/003373 patent/WO2012164876A1/ja active Application Filing
- 2012-05-23 EP EP12793290.3A patent/EP2571175A4/en not_active Withdrawn
- 2012-05-23 JP JP2012534475A patent/JP5416281B2/ja not_active Expired - Fee Related
- 2012-05-23 US US13/805,847 patent/US8929480B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10304001A (ja) * | 1997-02-27 | 1998-11-13 | Matsushita Electric Ind Co Ltd | 変調器及び変調方法 |
US20050111573A1 (en) | 2003-11-20 | 2005-05-26 | Nokia Corporation | RF transmitter using digital-to-RF conversion |
JP2010245962A (ja) * | 2009-04-08 | 2010-10-28 | Toshiba Corp | 変調装置及び変調方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2571175A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014049929A (ja) * | 2012-08-31 | 2014-03-17 | Asahi Kasei Electronics Co Ltd | 送信器 |
US10284202B1 (en) | 2018-04-02 | 2019-05-07 | Raytheon Company | Generating analog output from a field programmable gate array by combining scaled digital outputs |
US10707874B2 (en) | 2018-04-02 | 2020-07-07 | Raytheon Company | Generating analog output from a field programmable gate array by combining scaled digital outputs |
Also Published As
Publication number | Publication date |
---|---|
EP2571175A1 (en) | 2013-03-20 |
US8929480B2 (en) | 2015-01-06 |
US20130093495A1 (en) | 2013-04-18 |
EP2571175A4 (en) | 2014-02-19 |
JP5416281B2 (ja) | 2014-02-12 |
JPWO2012164876A1 (ja) | 2015-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Eloranta et al. | A Multimode Transmitter in 0.13$\mu\hbox {m} $ CMOS Using Direct-Digital RF Modulator | |
EP1925094B1 (en) | Multi-band radio frequency modulator | |
JP5416281B2 (ja) | 送信器 | |
JP6542263B2 (ja) | 低グリッチノイズのセグメント型dac用のハイブリッドr−2r構造 | |
US9735734B2 (en) | Re-configurable passive mixer for wireless receivers | |
JP2008509575A (ja) | ディジタル帯域通過シグマ・デルタ変調器を含む全ディジタル送信機 | |
Ba et al. | A 1.3 nJ/b IEEE 802.11 ah fully-digital polar transmitter for IoT applications | |
US7755524B2 (en) | Method for performing a digital to analog conversion of a digital signal, and corresponding electronic device | |
US11271576B1 (en) | Digital-to-analog converter (DAC) with common-mode correction | |
US8964860B2 (en) | Digital modulator | |
EP1994640A1 (en) | A wireless receiver circuit with merged adc and filter | |
US7345612B2 (en) | Digital-to-radio frequency conversion device, chip set, transmitter, user terminal and data processing method | |
US9077573B2 (en) | Very compact/linear software defined transmitter with digital modulator | |
US20200144977A1 (en) | Wideband signal buffer | |
US10511322B1 (en) | High-speed digital transmitter for wireless communication systems | |
US10666286B1 (en) | Partitioned delta-sigma modulator for high-speed applications | |
US9742360B2 (en) | Efficient smart wideband linear hybrid CMOS RF power amplifier | |
US7414555B1 (en) | Interleaved ADC and folded mixer for WLAN devices | |
JP5584180B2 (ja) | 直接rf変調送信器のサンプリングクロック周波数設定方法 | |
Eloranta et al. | Direct-digital RF-modulator: a multi-function architecture for a system-independent radio transmitter | |
JP2014049929A (ja) | 送信器 | |
US20240171182A1 (en) | Multi-phase clock generator circuit | |
JP2007096795A (ja) | 電力制御回路および無線通信装置 | |
Chen | Reconfigurable Software-Defined Radio—System Analyses, Architecture Designs, and Circuit Implementations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012534475 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012793290 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13805847 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12793290 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |