[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012164665A1 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
WO2012164665A1
WO2012164665A1 PCT/JP2011/062396 JP2011062396W WO2012164665A1 WO 2012164665 A1 WO2012164665 A1 WO 2012164665A1 JP 2011062396 W JP2011062396 W JP 2011062396W WO 2012164665 A1 WO2012164665 A1 WO 2012164665A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
processing unit
processing
packet
dedicated hardware
Prior art date
Application number
PCT/JP2011/062396
Other languages
French (fr)
Japanese (ja)
Inventor
靖則 伊戸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/062396 priority Critical patent/WO2012164665A1/en
Priority to JP2013517728A priority patent/JPWO2012164665A1/en
Priority to GB1315042.0A priority patent/GB2501660A/en
Priority to KR1020137027212A priority patent/KR20130132650A/en
Priority to CN201180071264.0A priority patent/CN103563308A/en
Publication of WO2012164665A1 publication Critical patent/WO2012164665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation

Definitions

  • the present invention relates to a technique for improving the efficiency of extracting data from received communication packets.
  • the monitoring and control device collects and calculates the amount of electricity (current and voltage) of the power transmission line and bus, and when an abnormality is detected, GIS (Gas Insulated Switch-Gear, gas Insulation switchgear) is controlled to prevent the inflow of abnormal current, thereby suppressing the spread of accidents to the power system.
  • the monitoring and control device is composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a communication interface, and the like, and the CPU performs processing of electric quantity and abnormality detection. .
  • the interval at which the monitoring and control device receives and calculates data is as short as several tens to several hundreds of microseconds.
  • the monitoring and control device receives and receives data with a single data processing means.
  • the processing load of the data processing unit increases, and there is a problem that it is difficult to perform data reception / calculation processing in a short cycle.
  • One of the main objects of the present invention is to solve the above-mentioned problems, which makes it possible to efficiently extract data from received communication packets, and enables packet reception, data extraction and calculation in a short cycle.
  • the main purpose is to.
  • the communication device is A communication device that receives a packet including a plurality of data, It has a dedicated hardware for data extraction processing for extracting data that matches a specific condition from the plurality of data of the received packet.
  • the process of extracting data that matches a specific condition from the received communication packet is made more efficient, packet reception in a short cycle, data extraction and Calculation is possible.
  • FIG. 10 is a diagram illustrating a configuration example of an SV packet according to the second embodiment.
  • the flowchart figure which shows the operation example of the plant monitoring control apparatus which concerns on Embodiment 2.
  • FIG. 6 is a diagram showing the contents stored in a decode programming register according to the second embodiment.
  • Embodiment 1 FIG.
  • a plurality of processing units and a management unit that distributes the processing to each processing unit are provided, and the processing performance is improved by dividing and executing the processing in parallel, and short-period reception / calculation is performed.
  • a plant monitoring control device capable of processing will be described.
  • FIG. 1 shows a configuration example of a plant monitoring control apparatus according to the present embodiment.
  • a plant monitoring control device 10 performs plant monitoring control.
  • the plant monitoring control device 10 is, for example, a protection relay device.
  • the plant monitoring control device 10 is connected to a plurality of data collection devices 19 via a network (process bus) 18.
  • the data collection device 19 collects a value of electric quantity (current value, voltage value) in a predetermined object and sends a communication packet notifying the collected value of electric quantity to the network (process bus) 18.
  • the plant monitoring and control device 10 receives communication packets from a plurality of data collection devices 19 in a short cycle (a cycle of several tens to several hundreds of microseconds), and extracts a target value of electricity from the received communication packets.
  • the plant monitoring control device 10 is an example of a communication device.
  • the process bus transmission / reception unit 11 transmits and receives communication packets to and from the network (process bus) 18.
  • the processing unit A12 performs logical operation processing such as data determination and communication packet generation.
  • the processing unit B13 performs a data extraction process (hereinafter, the data extraction process is also referred to as a decoding process) for extracting specific data from a specific communication packet at high speed.
  • the processing unit C14 performs numerical calculation processing of analog input data such as current value and voltage value at high speed.
  • the management unit 15 performs processing distribution of the processing units A12 to C14.
  • the data holding unit A ⁇ b> 16 stores communication packets received from the network (process bus) 18 by the process bus transmission / reception unit 11.
  • the data holding unit B17 stores the data extracted by the processing unit B13.
  • the processing unit A12 is a general-purpose CPU
  • the processing unit B13 is dedicated hardware specialized for data extraction processing
  • the processing unit C14 is a numerical calculation CPU.
  • the processing unit A12 and the processing unit C14 do not need to be separate parts.
  • the processing unit A12 and the processing unit C14 are configured by using a processor component on which a general-purpose CPU and an FPU (Floating Point number processing Unit) are mounted. It can also be realized by a single LSI (Large Scale Integration).
  • FIG. 2 shows an operation when a received packet from the network (process bus) 18 is a processing target of the processing unit B13.
  • the process bus transmission / reception unit 11 stores the received packet from the network (process bus) 18 in the data holding unit A16 (step 20).
  • the management unit 15 determines the type of the received packet in the data holding unit A16 and determines which of the processing unit A12 and processing unit B13 should process (step 21).
  • the processing unit B13 is dedicated hardware that decodes an SV (Sampled Value) packet that is a communication packet for transmitting and receiving analog input data.
  • the management unit 15 instructs the processing unit B13 to decode the SV packet, and the processing unit B13 performs the decoding process of the SV packet (step 22).
  • the SV packet decoding process is a process of analyzing the structure of the SV packet and extracting data necessary for the current / voltage value calculation performed by the processing unit C14.
  • the processing unit B13 decodes the received packet in the data holding unit A16, extracts necessary data, and stores it in the data holding unit B17.
  • the management unit 15 that has detected the end of the SV packet decoding process activates the current / voltage value calculation of the processing unit C14 (step 23).
  • the processing unit C14 reads the current / voltage value data (the data extracted by the processing unit B13 and stored in the data holding unit B17) in the data holding unit B17, and performs calculations necessary for determining the state of the monitoring control target ( Step 24).
  • the management unit 15 that has detected the end of the current / voltage value calculation process activates the state determination process of the processing unit A12 (step 25).
  • the processing unit A12 determines whether there is an abnormality in the monitoring control target based on the result of step 24. Then, the processing unit A12 performs necessary plant control processing according to the determination result (step 26).
  • FIG. 3 shows an operation when a packet received from the network (process bus) 18 is both a processing target (SV packet) of the processing unit B13 and a non-processing target. Note that the processing at the time of reception of the SV packet is the same as that in steps 20 to 26 described above, and therefore description thereof is omitted here.
  • the management unit 15 determines the type of the received packet in the data holding unit A16, and determines which of the processing unit A12 and the processing unit B13 should process. In this example, it is assumed that a communication packet to be executed by the processing unit A12, for example, operation state data of the data collection device 19 is acquired, and it is determined that the processing unit A12 should process (step 31). The processing unit A12 determines the state of the data collection device 19 (step 32).
  • Embodiment 2 details of the SV (Sampled Value) packet decoding process performed by the processing unit B13 described in the first embodiment will be described.
  • FIG. 4 shows the structure of a communication packet that is transmitted and received by the plant monitoring and control apparatus 10 via the network (process bus) 18.
  • Reference numeral 40 denotes a header part of the communication packet
  • 41 denotes a data part
  • 42 denotes a footer part.
  • 43 is an attribute number of data
  • 44 is a data length
  • 45 is data.
  • the data part 41 stores a plurality of data 43 to 45.
  • the attribute number 43 is an identifier of the data 45.
  • the data 45 indicates the identification number and state data of the data collection device 19, the value of electric quantity (current value, voltage value) collected by the data collection device 19, and the like.
  • the decoding process refers to a process of interpreting the attribute number 43 and the data length 44, extracting necessary data 45, and adding dummy data so as to be suitable for the processing of the processing unit C14.
  • the processing unit C14 is a 32-bit CPU
  • the processing efficiency is best when the data is stored in units of 4 bytes, but actually the data length of the extracted data is a multiple of 4 bytes. Since it is not limited, the processing unit B13 adds dummy data (padding) so that the 4-byte alignment is not lost.
  • Data to be extracted from the SV packet is set in the decode programming register 58 in advance.
  • Data 45 that follows the same attribute number 43 as the attribute number described in the decode programming register 58 is the data to be extracted.
  • the decode programming register 58 is arranged in the processing unit B13, for example.
  • the number of padding is defined for the attribute number.
  • the number of paddings is the number of dummy data added to the extracted data. Since the structure of the communication packet does not change dynamically during operation, the number of paddings in the decode programming register 58 need only be set once when the power is turned on, for example.
  • the processing unit B13 reads the attribute number 43 from the communication packet stored in the data holding unit A16 (step 51).
  • the processing unit B13 compares the read attribute number 43 with the decode programming register 58, and determines whether or not the data following the read attribute number 43 is data to be extracted (step 52). That is, if the read attribute number 43 matches the attribute number described in the decode programming register 58, the processing unit B13 determines that the data following the read attribute number 43 is an extraction target.
  • the processing unit B13 reads the target data from the data holding unit A16 and stores it in the data holding unit B17 (step 53).
  • the processing unit B13 determines whether or not the data stored in the data holding unit B17 requires padding processing (processing for storing dummy values for 32-bit alignment) with reference to the decoding programming register 58. (Step 54). That is, if the number of paddings other than “0” is defined for the attribute number 43 read in step 51 in the decode programming register 58, it is determined that padding is necessary.
  • dummy data for the necessary bytes is stored in the data holding unit B17. For example, if the number of paddings is 2, dummy data for 2 bytes (for example, value “0”) is written to the data holding unit B17 (step 55).
  • the processing unit B13 performs the above steps 51 to 55 for all the data units 41 in FIG. 4 (step 56), and ends the decoding process when the processing for all the data units 41 is completed (step 56). Step 57).
  • the communication packet data portion 41 shown in FIG. 1 (Abstract Syntax Notation 1) is assumed and a hierarchical structure based on Tag (attribute number) + Length (data length) + Value (data) is adopted. Specifically, it has a hierarchical structure shown in FIG. 7 (FIG. 7 is cited from the IEC 61850-9-2 standard). 7 corresponds to the attribute number 43 in FIG. 4 (the portion where 60, 80 to 87, A2, and 30 are shown in FIG. 7). 7 corresponds to the data length 44 shown in FIG. 4. The length shown in FIG. Further, Value in FIG. 7 corresponds to data 45 in FIG.
  • the data 45 associated with the first stage Tag and Length (60 and L) is all the data below the second stage (80, L and Value). Further, the data 45 associated with the fourth stage Tag and Length (A2 and L) is all the data below the fifth stage (30 and L). Data 45 associated with the fifth stage Tag and Length (30 and L) is data in a range covered by ASDU (Application Service Data Unit) 1.
  • ASDU Application Service Data Unit
  • ASDU2 Application Service Data Unit
  • ASDUn Application Service Data Unit
  • the processing unit B13 extracts a value necessary for the processing of the processing unit C14 from the hierarchical structure of FIG.
  • the processing unit B13 analyzes the hierarchical structure of the received SV packet, and extracts data included in ASDU1 to ASDUn.
  • the data included in ASDU1 to ASDUn shows the value of the amount of electricity collected in the monitored plant.
  • the processing unit C14 performs an operation on the value of the electric quantity indicated by the data extracted by the processing unit B13.
  • processing for extracting specific data from a received packet is performed by dedicated hardware different from the CPU for logic operation and the CPU for numerical operation. Therefore, the decoding process is made efficient, and packet reception, data extraction and calculation can be performed in a short cycle.
  • SV packet decoding processing is made efficient, and SV packet reception, data extraction, and computation can be performed in a short cycle.
  • the plant monitoring control apparatus including the following has been described.
  • A a process bus transmission / reception unit that receives the collected current / voltage values in a communication packet;
  • B a processing unit that performs logical operations such as data determination and communication packet generation;
  • C a processing unit that executes a decoding process on a specific communication packet at a high speed;
  • D a processing unit for performing numerical calculation processing of current / voltage values;
  • E a management unit that performs processing distribution to the processing unit;
  • F a data holding unit for storing communication packets received from the process bus;
  • G A data holding unit that stores the decoding result of the communication packet.
  • Embodiments 1 and 2 the communication packet decoding processing unit including the following has been described.
  • A a processing unit for extracting only attribute data necessary for processing;
  • B a processing unit for programming attributes to be extracted;
  • C A processing unit for performing address alignment matching processing.
  • FIG. 8 is a diagram illustrating an example of hardware resources of the plant monitoring control apparatus 10 illustrated in the first and second embodiments.
  • the configuration in FIG. 8 is merely an example of the hardware configuration of the plant monitoring control device 10, and the hardware configuration of the plant monitoring control device 10 is not limited to the configuration described in FIG. There may be.
  • the plant monitoring and control apparatus 10 includes a CPU 911 (also referred to as a central processing unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, and a processor) that executes a program.
  • the CPU 911 is connected to, for example, a ROM (Read Only Memory) 913, a RAM (Random Access Memory) 914, a communication board 915, a display device 901, a keyboard 902, a mouse 903, and a magnetic disk device 920 via a bus 912. Control hardware devices.
  • the CPU 911 corresponds to, for example, the processing unit A12 and the processing unit C14 illustrated in FIG.
  • the CPU 911 may be connected to an FDD 904 (Flexible Disk Drive), a compact disk device 905 (CDD), and a printer device 906.
  • FDD 904 Flexible Disk Drive
  • CDD compact disk device
  • printer device 906 a printer device 906.
  • a storage device such as an SSD (Solid State Drive), an optical disk device, or a memory card (registered trademark) read / write device may be used.
  • the RAM 914 is an example of a volatile memory.
  • the storage media of the ROM 913, the FDD 904, the CDD 905, and the magnetic disk device 920 are an example of a nonvolatile memory. These are examples of the storage device.
  • the data holding unit A16 and the data holding unit B17 illustrated in FIG. 1 are realized by the RAM 914, for example.
  • the process bus transmission / reception unit 11 illustrated in FIG. 1 is realized by the communication board 915, for example.
  • the communication board 915, the keyboard 902, the mouse 903, etc. are examples of input devices.
  • the communication board 915, the display device 901, the printer device 906, and the like are examples of output devices.
  • the communication board 915 is connected to a network (process bus) 18 as shown in FIG.
  • the communication board 915 may be connected to a LAN (Local Area Network), the Internet, a WAN (Wide Area Network), a SAN (Storage Area Network), or the like.
  • LAN Local Area Network
  • WAN Wide Area Network
  • SAN Storage Area Network
  • the dedicated hardware 907 corresponds to the processing unit B13 illustrated in FIG.
  • the dedicated hardware 907 may be a CPU that executes a program for realizing the decoding process shown in FIG. 5, or may be a combination of logic circuits.
  • a program for realizing the decoding process shown in FIG. 5 is included in the program group 923 of the magnetic disk device 920, for example.
  • the magnetic disk device 920 stores an operating system 921 (OS), a window system 922, a program group 923, and a file group 924.
  • the programs in the program group 923 are executed by the CPU 911 using the operating system 921 and the window system 922.
  • the program group 923 includes, for example, a program for realizing the processing of the processing unit A12 and the processing unit C14 and a program for realizing the processing of the management unit 15. Further, as described above, the program group 923 includes a program for realizing the decoding process shown in FIG. 5 when the dedicated hardware 907 is a CPU.
  • the RAM 914 temporarily stores at least part of the operating system 921 program and application programs to be executed by the CPU 911.
  • the RAM 914 stores various data necessary for processing by the CPU 911.
  • the RAM 914 stores the SV packet received from the network (process bus) 18 and the data extracted by the processing unit B13.
  • the ROM 913 stores a BIOS (Basic Input Output System) program
  • the magnetic disk device 920 stores a boot program.
  • BIOS Basic Input Output System
  • the BIOS program in the ROM 913 and the boot program for the magnetic disk device 920 are executed, and the operating system 921 is started by the BIOS program and the boot program.
  • the data and signal values may be recorded on a recording medium such as a flexible disk of the FDD 904, a compact disk of the CDD 905, a magnetic disk of the magnetic disk device 920, other optical disks, mini disks, and DVDs.
  • a recording medium such as a flexible disk of the FDD 904, a compact disk of the CDD 905, a magnetic disk of the magnetic disk device 920, other optical disks, mini disks, and DVDs.
  • Data and signals are transmitted online via a bus 912, signal lines, cables, or other transmission media.
  • process of the plant monitoring control apparatus 10 can be regarded as a data processing method by the steps, procedures, and processes described in the first and second embodiments.
  • 10 plant monitoring control device 11 process bus transmission / reception unit, 12 processing unit A, 13 processing unit B, 14 processing unit C, 15 management unit, 16 data holding unit, 17 data holding unit, 18 network (process bus), 19 data Collection device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

In this plant monitoring control device (10) which receives communication packets including data collected at a plurality of data collection devices (19) from a network (process bus) (18), apart from a processing unit (A12) which performs logic computation processing and a processing unit (C14) which performs arithmetic computation processing, a processing unit (B13) which is dedicated hardware for performing data extraction processing for extracting specific data from received communication packets is provided. The processing unit (B13) performs data extraction processing at high speed, and therefore, it is possible to streamline data extraction processing so that packet reception, data extraction, and computation become possible at short time cycles.

Description

通信装置Communication device
 本発明は、受信した通信パケットからデータを抽出する処理を効率化する技術に関する。 The present invention relates to a technique for improving the efficiency of extracting data from received communication packets.
 例えば、変電所の監視制御においては、監視制御装置(保護リレー装置)が送電線や母線の電気量(電流、電圧)を収集・演算し、異常を検出するとGIS(Gas Insulated Switch-Gear、ガス絶縁開閉装置)を制御し、異常電流の流入を遮断することで、電力系統への事故の波及を抑制する。
 監視制御装置は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、通信インタフェースなどから構成されており、電気量の処理や異常検出はCPUにて処理を実施する。
 また、近年、データ収集装置(マージングユニット)にて送電線や母線の電気量(電流、電圧)を収集し、ネットワーク(プロセスバス)の通信により監視制御装置(保護リレー装置)に電気量を送信する方式が規格化されている。
 なお、本発明に関連する技術として、特許文献1に記載の技術がある。
For example, in substation monitoring and control, the monitoring and control device (protection relay device) collects and calculates the amount of electricity (current and voltage) of the power transmission line and bus, and when an abnormality is detected, GIS (Gas Insulated Switch-Gear, gas Insulation switchgear) is controlled to prevent the inflow of abnormal current, thereby suppressing the spread of accidents to the power system.
The monitoring and control device is composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a communication interface, and the like, and the CPU performs processing of electric quantity and abnormality detection. .
Also, in recent years, the amount of electricity (current and voltage) of power transmission lines and buses is collected by a data collection device (merging unit), and the amount of electricity is sent to the monitoring control device (protection relay device) via network (process bus) communication. The method to do is standardized.
In addition, there exists a technique of patent document 1 as a technique relevant to this invention.
特開平11-341706号公報Japanese Patent Laid-Open No. 11-341706
 監視制御装置がデータ受信・演算する間隔は数10~数100μ秒周期と短く、多数のデータ収集装置がプロセスバス上に配置される場合、監視制御装置において単一のデータ処理手段でデータ受信・演算を行うと、データ処理手段の処理負担が大きくなり、データ受信・演算処理を短周期で実施することが困難であるという課題がある。 The interval at which the monitoring and control device receives and calculates data is as short as several tens to several hundreds of microseconds. When a large number of data collection devices are arranged on the process bus, the monitoring and control device receives and receives data with a single data processing means. When the calculation is performed, the processing load of the data processing unit increases, and there is a problem that it is difficult to perform data reception / calculation processing in a short cycle.
 この発明は、上記のような課題を解決することを主な目的の一つとしており、受信した通信パケットからデータを抽出する処理を効率化し、短周期でのパケット受信、データ抽出及び演算を可能とすることを主な目的とする。 One of the main objects of the present invention is to solve the above-mentioned problems, which makes it possible to efficiently extract data from received communication packets, and enables packet reception, data extraction and calculation in a short cycle. The main purpose is to.
 本発明に係る通信装置は、
 複数のデータが含まれるパケットを受信する通信装置であって、
 受信したパケットの前記複数のデータの中から特定の条件に合致するデータを抽出するデータ抽出処理のための専用ハードウェアを有することを特徴とする。
The communication device according to the present invention is
A communication device that receives a packet including a plurality of data,
It has a dedicated hardware for data extraction processing for extracting data that matches a specific condition from the plurality of data of the received packet.
 本発明によれば、データ抽出処理のための専用ハードウェアを設けたので、受信した通信パケットから特定の条件に合致するデータを抽出する処理を効率化し、短周期でのパケット受信、データ抽出及び演算が可能となる。 According to the present invention, since dedicated hardware for data extraction processing is provided, the process of extracting data that matches a specific condition from the received communication packet is made more efficient, packet reception in a short cycle, data extraction and Calculation is possible.
実施の形態1に係るプラント監視制御装置の構成例を示す図。The figure which shows the structural example of the plant monitoring control apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るプラント監視制御装置の動作例を示す図。The figure which shows the operation example of the plant monitoring control apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るプラント監視制御装置の動作例を示す図。The figure which shows the operation example of the plant monitoring control apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係るSVパケットの構成例を示す図。FIG. 10 is a diagram illustrating a configuration example of an SV packet according to the second embodiment. 実施の形態2に係るプラント監視制御装置の動作例を示すフローチャート図。The flowchart figure which shows the operation example of the plant monitoring control apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係るデコードプログラミングレジスタの記憶内容を示す図。FIG. 6 is a diagram showing the contents stored in a decode programming register according to the second embodiment. IEC61850-9-2規格のパケットの階層構造を示す図。The figure which shows the hierarchical structure of the packet of IEC61850-9-2 standard. 実施の形態1及び2に係るプラント監視制御装置のハードウェア構成例を示す図。The figure which shows the hardware structural example of the plant monitoring control apparatus which concerns on Embodiment 1 and 2. FIG.
 実施の形態1.
 本実施の形態では、複数の処理部と、各処理部への処理振分けを行う管理部を設け、処理の分割・並行実施を行うことにより、処理性能の向上を図り、短周期の受信・演算処理が可能なプラント監視制御装置を説明する。
Embodiment 1 FIG.
In this embodiment, a plurality of processing units and a management unit that distributes the processing to each processing unit are provided, and the processing performance is improved by dividing and executing the processing in parallel, and short-period reception / calculation is performed. A plant monitoring control device capable of processing will be described.
 図1は、本実施の形態に係るプラント監視制御装置の構成例を示す。 FIG. 1 shows a configuration example of a plant monitoring control apparatus according to the present embodiment.
 図1において、プラント監視制御装置10はプラント監視制御を行う。
 プラント監視制御装置10は、例えば、保護リレー装置である。
 プラント監視制御装置10は、ネットワーク(プロセスバス)18を介して複数のデータ収集装置19に接続されている。
 データ収集装置19は、所定の対象物における電気量の値(電流値、電圧値)を収集し、収集した電気量の値を通知する通信パケットをネットワーク(プロセスバス)18に送出する。
 プラント監視制御装置10は、複数の複数のデータ収集装置19から通信パケットを短周期(数10~数100μ秒周期)で受信し、受信した通信パケットから目的とする電気量の値を抽出する。
 なお、プラント監視制御装置10は通信装置の例である。
In FIG. 1, a plant monitoring control device 10 performs plant monitoring control.
The plant monitoring control device 10 is, for example, a protection relay device.
The plant monitoring control device 10 is connected to a plurality of data collection devices 19 via a network (process bus) 18.
The data collection device 19 collects a value of electric quantity (current value, voltage value) in a predetermined object and sends a communication packet notifying the collected value of electric quantity to the network (process bus) 18.
The plant monitoring and control device 10 receives communication packets from a plurality of data collection devices 19 in a short cycle (a cycle of several tens to several hundreds of microseconds), and extracts a target value of electricity from the received communication packets.
The plant monitoring control device 10 is an example of a communication device.
 プラント監視制御装置10において、プロセスバス送受信部11は、ネットワーク(プロセスバス)18との間で通信パケットの送受信を行う。
 処理部A12は、データ判定や通信パケット生成といった論理演算処理を行う。
 処理部B13は、特定の通信パケットから特定のデータを抽出するデータ抽出処理(以下、データ抽出処理をデコード処理ともいう)を高速に行う。
 処理部C14は、電流値や電圧値といったアナログ入力データの数値演算処理を高速に行う。
 管理部15は、処理部A12~処理部C14の処理振分けを行う。
 データ保持部A16は、プロセスバス送受信部11がネットワーク(プロセスバス)18から受信した通信パケットを格納する。
 データ保持部B17は、処理部B13が抽出したデータを格納する。
In the plant monitoring and control apparatus 10, the process bus transmission / reception unit 11 transmits and receives communication packets to and from the network (process bus) 18.
The processing unit A12 performs logical operation processing such as data determination and communication packet generation.
The processing unit B13 performs a data extraction process (hereinafter, the data extraction process is also referred to as a decoding process) for extracting specific data from a specific communication packet at high speed.
The processing unit C14 performs numerical calculation processing of analog input data such as current value and voltage value at high speed.
The management unit 15 performs processing distribution of the processing units A12 to C14.
The data holding unit A <b> 16 stores communication packets received from the network (process bus) 18 by the process bus transmission / reception unit 11.
The data holding unit B17 stores the data extracted by the processing unit B13.
 なお、例えば、処理部A12は汎用CPU、処理部B13はデータ抽出処理に特化した専用ハードウェア、処理部C14は数値演算用CPUである。
 また、処理部A12と処理部C14は、別部品である必要は無く、例えば、汎用CPUとFPU(Floating Point number processing Unit)を搭載したプロセッサ部品を用いることで、処理部A12と処理部C14を1つのLSI(Large Scale Integration)で実現することも可能である。
For example, the processing unit A12 is a general-purpose CPU, the processing unit B13 is dedicated hardware specialized for data extraction processing, and the processing unit C14 is a numerical calculation CPU.
Further, the processing unit A12 and the processing unit C14 do not need to be separate parts. For example, the processing unit A12 and the processing unit C14 are configured by using a processor component on which a general-purpose CPU and an FPU (Floating Point number processing Unit) are mounted. It can also be realized by a single LSI (Large Scale Integration).
 次に動作について、図2、図3を用いて説明する。
 図2は、ネットワーク(プロセスバス)18からの受信パケットが処理部B13の処理対象であった場合の動作を示す。
Next, the operation will be described with reference to FIGS.
FIG. 2 shows an operation when a received packet from the network (process bus) 18 is a processing target of the processing unit B13.
 プロセスバス送受信部11は、ネットワーク(プロセスバス)18からの受信パケットを、データ保持部A16に格納する(ステップ20)。 The process bus transmission / reception unit 11 stores the received packet from the network (process bus) 18 in the data holding unit A16 (step 20).
 管理部15は、データ保持部A16内の受信パケットの種別を判定し、処理部A12、処理部B13のどちらで処理すべきかを判定する(ステップ21)。
 前述したように、処理部B13はアナログ入力データを送受信するための通信パケットであるSV(Sampled Value)パケットのデコード処理を行う専用ハードウェアとする。
The management unit 15 determines the type of the received packet in the data holding unit A16 and determines which of the processing unit A12 and processing unit B13 should process (step 21).
As described above, the processing unit B13 is dedicated hardware that decodes an SV (Sampled Value) packet that is a communication packet for transmitting and receiving analog input data.
 受信パケットの種別がSVパケットであると判定した場合に、管理部15は、処理部B13にSVパケットのデコード処理を指示し、処理部B13がSVパケットのデコード処理を実施する(ステップ22)。
 SVパケットデコード処理は、SVパケットの構造を分析し、処理部C14が行う電流・電圧値演算で必要となるデータを抽出する処理である。
 SVパケットデコード処理において、処理部B13は、データ保持部A16内の受信パケットをデコードし、必要なデータを抽出してデータ保持部B17に格納する。
When determining that the type of the received packet is an SV packet, the management unit 15 instructs the processing unit B13 to decode the SV packet, and the processing unit B13 performs the decoding process of the SV packet (step 22).
The SV packet decoding process is a process of analyzing the structure of the SV packet and extracting data necessary for the current / voltage value calculation performed by the processing unit C14.
In the SV packet decoding process, the processing unit B13 decodes the received packet in the data holding unit A16, extracts necessary data, and stores it in the data holding unit B17.
 SVパケットデコード処理の終了を検知した管理部15は、処理部C14の電流・電圧値演算を起動する(ステップ23)。 The management unit 15 that has detected the end of the SV packet decoding process activates the current / voltage value calculation of the processing unit C14 (step 23).
 処理部C14は、データ保持部B17内の電流・電圧値データ(処理部B13により抽出され、データ保持部B17に格納されたデータ)を読み出し、監視制御対象の状態判定に必要な演算を施す(ステップ24)。 The processing unit C14 reads the current / voltage value data (the data extracted by the processing unit B13 and stored in the data holding unit B17) in the data holding unit B17, and performs calculations necessary for determining the state of the monitoring control target ( Step 24).
 電流・電圧値演算処理の終了を検知した管理部15は、処理部A12の状態判定処理を起動する(ステップ25)。 The management unit 15 that has detected the end of the current / voltage value calculation process activates the state determination process of the processing unit A12 (step 25).
 処理部A12は、ステップ24の結果を基に、監視制御対象の異常有無を判定する。
 そして、処理部A12は、判定結果に応じ、必要なプラント制御処理を実行する(ステップ26)。
The processing unit A12 determines whether there is an abnormality in the monitoring control target based on the result of step 24.
Then, the processing unit A12 performs necessary plant control processing according to the determination result (step 26).
 図3は、ネットワーク(プロセスバス)18からの受信パケットが処理部B13の処理対象(SVパケット)と、非処理対象の両方であった場合の動作を示す。
 なお、SVパケットの受信時の処理は、上記のステップ20~ステップ26と同一のため、ここでは説明を省略する。
FIG. 3 shows an operation when a packet received from the network (process bus) 18 is both a processing target (SV packet) of the processing unit B13 and a non-processing target.
Note that the processing at the time of reception of the SV packet is the same as that in steps 20 to 26 described above, and therefore description thereof is omitted here.
 管理部15は、データ保持部A16内の受信パケットの種別を判定し、処理部A12、処理部B13のどちらで処理すべきかを判定する。
 本例では、処理部A12で実施すべき通信パケット、例えば、データ収集装置19の運転状態データを取得したものとし、処理部A12で処理すべきと判定する(ステップ31)。
 処理部A12は、データ収集装置19の状態判定を実施する(ステップ32)。
The management unit 15 determines the type of the received packet in the data holding unit A16, and determines which of the processing unit A12 and the processing unit B13 should process.
In this example, it is assumed that a communication packet to be executed by the processing unit A12, for example, operation state data of the data collection device 19 is acquired, and it is determined that the processing unit A12 should process (step 31).
The processing unit A12 determines the state of the data collection device 19 (step 32).
 実施の形態2.
 実施の形態2では、実施の形態1で示した処理部B13で実施するSV(Sampled Value)パケットのデコード処理の詳細を説明する。
Embodiment 2. FIG.
In the second embodiment, details of the SV (Sampled Value) packet decoding process performed by the processing unit B13 described in the first embodiment will be described.
 図4は、プラント監視制御装置10がネットワーク(プロセスバス)18で送受信する通信パケットの構造を示したものである。
 40は通信パケットのヘッダ部、41はデータ部、42はフッタ部を示す。
 また、43はデータの属性番号、44はデータ長、45はデータである。
 データ部41には複数データ43~45が格納されている。
 属性番号43は、データ45の識別子である。
 また、データ45には、データ収集装置19の識別番号や状態データ、データ収集装置19で収集された電気量の値(電流値、電圧値)等が示されている。
FIG. 4 shows the structure of a communication packet that is transmitted and received by the plant monitoring and control apparatus 10 via the network (process bus) 18.
Reference numeral 40 denotes a header part of the communication packet, 41 denotes a data part, and 42 denotes a footer part.
43 is an attribute number of data, 44 is a data length, and 45 is data.
The data part 41 stores a plurality of data 43 to 45.
The attribute number 43 is an identifier of the data 45.
In addition, the data 45 indicates the identification number and state data of the data collection device 19, the value of electric quantity (current value, voltage value) collected by the data collection device 19, and the like.
 本実施の形態では、デコード処理は、属性番号43やデータ長44を解釈して、必要なデータ45を取り出し、更に、処理部C14の処理に適するようにダミーデータを追加する処理をいう。
 例えば、処理部C14が32ビットCPUの場合は、データが4バイト単位で格納されているのが最も処理効率が良いが、実際には抽出したデータのデータ長が4バイトの倍数であるとは限らないので、処理部B13は、4バイトのアライメントが崩れないようにダミーデータを追加する(Paddingを行う)。
In the present embodiment, the decoding process refers to a process of interpreting the attribute number 43 and the data length 44, extracting necessary data 45, and adding dummy data so as to be suitable for the processing of the processing unit C14.
For example, when the processing unit C14 is a 32-bit CPU, the processing efficiency is best when the data is stored in units of 4 bytes, but actually the data length of the extracted data is a multiple of 4 bytes. Since it is not limited, the processing unit B13 adds dummy data (padding) so that the 4-byte alignment is not lost.
 SVパケットから取り出すべきデータは、デコードプログラミングレジスタ58に予め設定しておく。
 デコードプログラミングレジスタ58に記述されている属性番号と同じ属性番号43に後続しているデータ45が抽出対象のデータである。
 デコードプログラミングレジスタ58は、例えば、処理部B13内に配置されている。
 デコードプログラミングレジスタ58では、また、図6に示すように属性番号に対してPadding数が定義されている。
 Padding数とは、抽出されたデータに追加するダミーデータの追加数である。
 なお、通信パケットの構造は、動作中にダイナミックに変化するものではないので、デコードプログラミングレジスタ58のPadding数は、例えば、電源投入時に一度設定するだけで良い。
Data to be extracted from the SV packet is set in the decode programming register 58 in advance.
Data 45 that follows the same attribute number 43 as the attribute number described in the decode programming register 58 is the data to be extracted.
The decode programming register 58 is arranged in the processing unit B13, for example.
In the decode programming register 58, as shown in FIG. 6, the number of padding is defined for the attribute number.
The number of paddings is the number of dummy data added to the extracted data.
Since the structure of the communication packet does not change dynamically during operation, the number of paddings in the decode programming register 58 need only be set once when the power is turned on, for example.
 次に、図5を用いて処理部B13のデコード処理を説明する。 Next, the decoding process of the processing unit B13 will be described with reference to FIG.
 まず、処理部B13は、データ保持部A16に格納されている通信パケットから属性番号43を読み出す(ステップ51)。 First, the processing unit B13 reads the attribute number 43 from the communication packet stored in the data holding unit A16 (step 51).
 次に、処理部B13は、読み出した属性番号43と、デコードプログラミングレジスタ58を比較し、読み出した属性番号43に後続するデータが抽出対象のデータか否かを判定する(ステップ52)。
 つまり、読み出した属性番号43が、デコードプログラミングレジスタ58に記述されている属性番号と一致すれば、処理部B13は、読み出した属性番号43に後続するデータが抽出対象であると判定する。
Next, the processing unit B13 compares the read attribute number 43 with the decode programming register 58, and determines whether or not the data following the read attribute number 43 is data to be extracted (step 52).
That is, if the read attribute number 43 matches the attribute number described in the decode programming register 58, the processing unit B13 determines that the data following the read attribute number 43 is an extraction target.
 データが抽出対象の場合(ステップ52でYES)、処理部B13は、対象となるデータをデータ保持部A16から読み出し、データ保持部B17に格納する(ステップ53)。 If the data is an extraction target (YES in step 52), the processing unit B13 reads the target data from the data holding unit A16 and stores it in the data holding unit B17 (step 53).
 次に、処理部B13は、データ保持部B17に格納したデータが、Padding処理(32ビット整列のため、ダミー値を格納する処理)を必要としているか否かを、デコードプログラミングレジスタ58を参照し判定する(ステップ54)。
 つまり、デコードプログラミングレジスタ58において、ステップ51で読み出した属性番号43に対して「0」以外のPadding数が定義されていれば、Paddingが必要であると判断する。
Next, the processing unit B13 determines whether or not the data stored in the data holding unit B17 requires padding processing (processing for storing dummy values for 32-bit alignment) with reference to the decoding programming register 58. (Step 54).
That is, if the number of paddings other than “0” is defined for the attribute number 43 read in step 51 in the decode programming register 58, it is determined that padding is necessary.
 Paddingが必要な場合、データ保持部B17に必要なバイト分のダミーデータを格納する。例えば、Padding数が2の場合、2バイト分のダミーデータ(例えば、値「0」)をデータ保持部B17にライトする(ステップ55)。 When padding is required, dummy data for the necessary bytes is stored in the data holding unit B17. For example, if the number of paddings is 2, dummy data for 2 bytes (for example, value “0”) is written to the data holding unit B17 (step 55).
 そして、処理部B13は、以上のステップ51~ステップ55を、図4のデータ部41の全てに対して実施し(ステップ56)、データ部41の全てに対する処理を終えるとデコード処理を終了する(ステップ57)。 Then, the processing unit B13 performs the above steps 51 to 55 for all the data units 41 in FIG. 4 (step 56), and ends the decoding process when the processing for all the data units 41 is completed (step 56). Step 57).
 図4に示した通信パケットのデータ部41は、ASN.1(Abstract Syntax Notation 1)での構造記述を前提としており、Tag(属性番号)+Length(データ長)+Value(データ)を基本とした階層構造をとっている。
 具体的には図7に示す階層構造となっている(図7はIEC61850-9-2規格より引用)。
 図7のTag(図7において60、80~87、A2、30が示されている部分)が図4の属性番号43に相当する。
 また、図7のLength(図7においてLが示されている部分)が図4のデータ長44に相当する。
 また、図7のValueが図4のデータ45に相当する。
 例えば、第1段のTagとLength(60とL)に付随するデータ45は、第2段(80とLとValue)以下の全てのデータとなる。
 また、第4段のTagとLength(A2とL)に付随するデータ45は、第5段(30とL)以下の全てのデータとなる。
 第5段のTagとLength(30とL)に付随するデータ45は、ASDU(Application Service Data Unit)1がカバーしている範囲のデータである。
 また、図7中のASDU2、ASDU3、ASDUnの内部構成は、ASDU1と同じである。
 処理部B13は、デコード処理として、図7の階層構造の中から処理部C14の処理に必要なValueを取り出す。
 図7の階層構造におけるデコード処理の方法を、図7の右側の(1)~(10)に示す。
 図7に示すように、処理部B13は、受信したSVパケットの階層構造を解析し、ASDU1~ASDUnに含まれているデータを抽出する。
 ASDU1~ASDUnに含まれているデータには、監視対象のプラントで収集された電気量の値等が示されている。
 そして、処理部C14が、処理部B13により抽出されたデータで示される電気量の値等に対する演算を行う。
The communication packet data portion 41 shown in FIG. 1 (Abstract Syntax Notation 1) is assumed and a hierarchical structure based on Tag (attribute number) + Length (data length) + Value (data) is adopted.
Specifically, it has a hierarchical structure shown in FIG. 7 (FIG. 7 is cited from the IEC 61850-9-2 standard).
7 corresponds to the attribute number 43 in FIG. 4 (the portion where 60, 80 to 87, A2, and 30 are shown in FIG. 7).
7 corresponds to the data length 44 shown in FIG. 4. The length shown in FIG.
Further, Value in FIG. 7 corresponds to data 45 in FIG.
For example, the data 45 associated with the first stage Tag and Length (60 and L) is all the data below the second stage (80, L and Value).
Further, the data 45 associated with the fourth stage Tag and Length (A2 and L) is all the data below the fifth stage (30 and L).
Data 45 associated with the fifth stage Tag and Length (30 and L) is data in a range covered by ASDU (Application Service Data Unit) 1.
In addition, the internal configuration of ASDU2, ASDU3, and ASDUn in FIG. 7 is the same as that of ASDU1.
As a decoding process, the processing unit B13 extracts a value necessary for the processing of the processing unit C14 from the hierarchical structure of FIG.
The decoding processing method in the hierarchical structure of FIG. 7 is shown in (1) to (10) on the right side of FIG.
As shown in FIG. 7, the processing unit B13 analyzes the hierarchical structure of the received SV packet, and extracts data included in ASDU1 to ASDUn.
The data included in ASDU1 to ASDUn shows the value of the amount of electricity collected in the monitored plant.
Then, the processing unit C14 performs an operation on the value of the electric quantity indicated by the data extracted by the processing unit B13.
 以上、実施の形態1及び2によれば、受信パケットから特定のデータを抽出する処理(デコード処理)を、論理演算用のCPU及び数値演算用のCPUとは別の専用のハードウェアで実施させるため、デコード処理を効率化し、短周期でのパケット受信、データ抽出及び演算が可能となる。
 特に、IEC61850-9-2(プロセスバス規格)に準拠した保護リレー装置において、SVパケットのデコード処理を効率化し、短周期でのSVパケット受信、データ抽出及び演算が可能となる。
As described above, according to the first and second embodiments, processing (decoding processing) for extracting specific data from a received packet is performed by dedicated hardware different from the CPU for logic operation and the CPU for numerical operation. Therefore, the decoding process is made efficient, and packet reception, data extraction and calculation can be performed in a short cycle.
In particular, in a protection relay device compliant with IEC61850-9-2 (process bus standard), SV packet decoding processing is made efficient, and SV packet reception, data extraction, and computation can be performed in a short cycle.
 実施の形態1及び2では、以下を備えたプラント監視制御装置を説明した。
 (a)収集した電流・電圧値を通信パケットで受信するプロセスバス送受信部、
 (b)データ判定や通信パケット生成等の論理演算を行う処理部、
 (c)特定の通信パケットに対するデコード処理を高速実行する処理部、
 (d)電流・電圧値の数値演算処理を行う処理部、
 (e)処理部への処理振分けを行う管理部、
 (f)プロセスバスから受信した通信パケットを格納するデータ保持部、
 (g)通信パケットのデコード結果を格納するデータ保持部。
In the first and second embodiments, the plant monitoring control apparatus including the following has been described.
(A) a process bus transmission / reception unit that receives the collected current / voltage values in a communication packet;
(B) a processing unit that performs logical operations such as data determination and communication packet generation;
(C) a processing unit that executes a decoding process on a specific communication packet at a high speed;
(D) a processing unit for performing numerical calculation processing of current / voltage values;
(E) a management unit that performs processing distribution to the processing unit;
(F) a data holding unit for storing communication packets received from the process bus;
(G) A data holding unit that stores the decoding result of the communication packet.
 また、実施の形態1及び2では、以下を備えた通信パケットデコード処理部を説明した。
 (a)処理に必要な属性データのみを抽出する処理部、
 (b)抽出すべき属性をプログラミングする処理部、
 (c)アドレスのアライメント整合処理を実施する処理部。
In Embodiments 1 and 2, the communication packet decoding processing unit including the following has been described.
(A) a processing unit for extracting only attribute data necessary for processing;
(B) a processing unit for programming attributes to be extracted;
(C) A processing unit for performing address alignment matching processing.
 最後に、実施の形態1及び2に示したプラント監視制御装置10のハードウェア構成例について説明する。
 図8は、実施の形態1及び2に示すプラント監視制御装置10のハードウェア資源の一例を示す図である。
 なお、図8の構成は、あくまでもプラント監視制御装置10のハードウェア構成の一例を示すものであり、プラント監視制御装置10のハードウェア構成は図8に記載の構成に限らず、他の構成であってもよい。
Finally, a hardware configuration example of the plant monitoring control apparatus 10 shown in the first and second embodiments will be described.
FIG. 8 is a diagram illustrating an example of hardware resources of the plant monitoring control apparatus 10 illustrated in the first and second embodiments.
The configuration in FIG. 8 is merely an example of the hardware configuration of the plant monitoring control device 10, and the hardware configuration of the plant monitoring control device 10 is not limited to the configuration described in FIG. There may be.
 図8において、プラント監視制御装置10は、プログラムを実行するCPU911(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)を備えている。
 CPU911は、バス912を介して、例えば、ROM(Read Only Memory)913、RAM(Random Access Memory)914、通信ボード915、表示装置901、キーボード902、マウス903、磁気ディスク装置920と接続され、これらのハードウェアデバイスを制御する。
 CPU911は、例えば、図1に示した処理部A12、処理部C14に相当する。
In FIG. 8, the plant monitoring and control apparatus 10 includes a CPU 911 (also referred to as a central processing unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, and a processor) that executes a program.
The CPU 911 is connected to, for example, a ROM (Read Only Memory) 913, a RAM (Random Access Memory) 914, a communication board 915, a display device 901, a keyboard 902, a mouse 903, and a magnetic disk device 920 via a bus 912. Control hardware devices.
The CPU 911 corresponds to, for example, the processing unit A12 and the processing unit C14 illustrated in FIG.
 更に、CPU911は、FDD904(Flexible Disk Drive)、コンパクトディスク装置905(CDD)、プリンタ装置906と接続していてもよい。また、磁気ディスク装置920の代わりに、SSD(Solid State Drive)、光ディスク装置、メモリカード(登録商標)読み書き装置などの記憶装置でもよい。
 RAM914は、揮発性メモリの一例である。ROM913、FDD904、CDD905、磁気ディスク装置920の記憶媒体は、不揮発性メモリの一例である。これらは、記憶装置の一例である。
 図1に示したデータ保持部A16、データ保持部B17は、例えば、RAM914により実現される。
 図1に示したプロセスバス送受信部11は、例えば通信ボード915により実現される。
 通信ボード915、キーボード902、マウス903などは、入力装置の一例である。
 また、通信ボード915、表示装置901、プリンタ装置906などは、出力装置の一例である。
Further, the CPU 911 may be connected to an FDD 904 (Flexible Disk Drive), a compact disk device 905 (CDD), and a printer device 906. Further, instead of the magnetic disk device 920, a storage device such as an SSD (Solid State Drive), an optical disk device, or a memory card (registered trademark) read / write device may be used.
The RAM 914 is an example of a volatile memory. The storage media of the ROM 913, the FDD 904, the CDD 905, and the magnetic disk device 920 are an example of a nonvolatile memory. These are examples of the storage device.
The data holding unit A16 and the data holding unit B17 illustrated in FIG. 1 are realized by the RAM 914, for example.
The process bus transmission / reception unit 11 illustrated in FIG. 1 is realized by the communication board 915, for example.
The communication board 915, the keyboard 902, the mouse 903, etc. are examples of input devices.
The communication board 915, the display device 901, the printer device 906, and the like are examples of output devices.
 通信ボード915は、図1に示すように、ネットワーク(プロセスバス)18に接続されている。
 例えば、通信ボード915は、LAN(ローカルエリアネットワーク)、インターネット、WAN(ワイドエリアネットワーク)、SAN(ストレージエリアネットワーク)などに接続されていてもよい。
The communication board 915 is connected to a network (process bus) 18 as shown in FIG.
For example, the communication board 915 may be connected to a LAN (Local Area Network), the Internet, a WAN (Wide Area Network), a SAN (Storage Area Network), or the like.
 専用ハードウェア907は、図1に示した処理部B13に相当する。
 専用ハードウェア907は、図5に示したデコード処理を実現するためのプログラムを実行するCPUであってもよいし、論理回路の組合せであってもよい。
 専用ハードウェア907がCPUである場合は、図5に示したデコード処理の実現のためのプログラムが、例えば、磁気ディスク装置920のプログラム群923に含まれている。
The dedicated hardware 907 corresponds to the processing unit B13 illustrated in FIG.
The dedicated hardware 907 may be a CPU that executes a program for realizing the decoding process shown in FIG. 5, or may be a combination of logic circuits.
When the dedicated hardware 907 is a CPU, a program for realizing the decoding process shown in FIG. 5 is included in the program group 923 of the magnetic disk device 920, for example.
 磁気ディスク装置920には、オペレーティングシステム921(OS)、ウィンドウシステム922、プログラム群923、ファイル群924が記憶されている。
 プログラム群923のプログラムは、CPU911がオペレーティングシステム921、ウィンドウシステム922を利用しながら実行する。
 プログラム群923には、例えば、処理部A12、処理部C14の処理を実現するためのプログラム、管理部15の処理を実現するためのプログラムが含まれる。
 更に、プログラム群923には、前述したように、専用ハードウェア907がCPUである場合に、図5に示したデコード処理の実現のためのプログラムが含まれる。
The magnetic disk device 920 stores an operating system 921 (OS), a window system 922, a program group 923, and a file group 924.
The programs in the program group 923 are executed by the CPU 911 using the operating system 921 and the window system 922.
The program group 923 includes, for example, a program for realizing the processing of the processing unit A12 and the processing unit C14 and a program for realizing the processing of the management unit 15.
Further, as described above, the program group 923 includes a program for realizing the decoding process shown in FIG. 5 when the dedicated hardware 907 is a CPU.
 また、RAM914には、CPU911に実行させるオペレーティングシステム921のプログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。
 また、RAM914には、CPU911による処理に必要な各種データが格納される。
 また、RAM914には、ネットワーク(プロセスバス)18から受信したSVパケットや、処理部B13により抽出されたデータが格納される。
The RAM 914 temporarily stores at least part of the operating system 921 program and application programs to be executed by the CPU 911.
The RAM 914 stores various data necessary for processing by the CPU 911.
The RAM 914 stores the SV packet received from the network (process bus) 18 and the data extracted by the processing unit B13.
 また、ROM913には、BIOS(Basic Input Output System)プログラムが格納され、磁気ディスク装置920にはブートプログラムが格納されている。
 プラント監視制御装置10の起動時には、ROM913のBIOSプログラム及び磁気ディスク装置920のブートプログラムが実行され、BIOSプログラム及びブートプログラムによりオペレーティングシステム921が起動される。
The ROM 913 stores a BIOS (Basic Input Output System) program, and the magnetic disk device 920 stores a boot program.
When the plant monitoring control device 10 is started, the BIOS program in the ROM 913 and the boot program for the magnetic disk device 920 are executed, and the operating system 921 is started by the BIOS program and the boot program.
 ファイル群924には、実施の形態1及び2の説明において、「~の判断」、「~の判定」、「~の抽出」、「~の解析」、「~の比較」、「~の更新」、「~の設定」、「~の登録」、「~の選択」等として説明している処理の結果を示す情報やデータや信号値や変数値やパラメータが、「~ファイル」や「~データベース」の各項目として記憶されている。
 また、実施の形態1及び2で説明しているフローチャートの矢印の部分は主としてデータや信号の入出力を示す。
 データや信号値は、RAM914の他、FDD904のフレキシブルディスク、CDD905のコンパクトディスク、磁気ディスク装置920の磁気ディスク、その他光ディスク、ミニディスク、DVD等の記録媒体に記録されてもよい。
 また、データや信号は、バス912や信号線やケーブルその他の伝送媒体によりオンライン伝送される。
In the file group 924, in the description of the first and second embodiments, “determination of”, “determination of”, “extraction of”, “analysis of”, “comparison of”, “update of” ”,“ Settings ”,“ Registering ”,“ Selecting ”, etc. Information, data, signal values, variable values, and parameters that indicate the results of the processing are“ It is stored as each item of “Database”.
In addition, the arrows in the flowcharts described in the first and second embodiments mainly indicate input / output of data and signals.
In addition to the RAM 914, the data and signal values may be recorded on a recording medium such as a flexible disk of the FDD 904, a compact disk of the CDD 905, a magnetic disk of the magnetic disk device 920, other optical disks, mini disks, and DVDs.
Data and signals are transmitted online via a bus 912, signal lines, cables, or other transmission media.
 また、実施の形態1及び2で説明したステップ、手順、処理により、プラント監視制御装置10の処理をデータ処理方法として捉えることができる。 Further, the process of the plant monitoring control apparatus 10 can be regarded as a data processing method by the steps, procedures, and processes described in the first and second embodiments.
 10 プラント監視制御装置、11 プロセスバス送受信部、12 処理部A、13 処理部B、14 処理部C、15 管理部、16 データ保持部、17 データ保持部、18 ネットワーク(プロセスバス)、19 データ収集装置。 10 plant monitoring control device, 11 process bus transmission / reception unit, 12 processing unit A, 13 processing unit B, 14 processing unit C, 15 management unit, 16 data holding unit, 17 data holding unit, 18 network (process bus), 19 data Collection device.

Claims (5)

  1.  複数のデータが含まれるパケットを受信する通信装置であって、
     受信したパケットの前記複数のデータの中から特定の条件に合致するデータを抽出するデータ抽出処理のための専用ハードウェアを有することを特徴とする通信装置。
    A communication device that receives a packet including a plurality of data,
    A communication apparatus, comprising: dedicated hardware for data extraction processing for extracting data that matches a specific condition from the plurality of data of the received packet.
  2.  前記通信装置は、
     複数のデータがデータ識別子と対応付けられて含まれている階層構造のパケットを受信し、
     前記専用ハードウェアは、
     前記データ抽出処理において、受信したパケットの階層構造を解析し、受信したパケットの前記複数のデータの中から、特定のデータ識別子と対応付けられているデータを抽出することを特徴とする請求項1に記載の通信装置。
    The communication device
    Receive a hierarchical packet containing multiple data associated with a data identifier,
    The dedicated hardware is
    2. The data extraction process includes analyzing a hierarchical structure of a received packet and extracting data associated with a specific data identifier from the plurality of data of the received packet. The communication apparatus as described in.
  3.  前記専用ハードウェアは、
     前記データ抽出処理において、抽出したデータにダミーデータを追加することを特徴とする請求項1に記載の通信装置。
    The dedicated hardware is
    The communication apparatus according to claim 1, wherein dummy data is added to the extracted data in the data extraction process.
  4.  前記通信装置は、
     前記複数のデータの中に、計測された電気量を通知するデータが含まれるパケットを受信し、
     前記専用ハードウェアは、
     前記データ抽出処理において、受信したパケットの前記複数のデータの中から、電気量を通知するデータを抽出し、
     前記通信装置は、更に、
     前記専用ハードウェア以外に、前記専用ハードウェアで抽出されたデータで通知される電気量に対する演算を行うハードウェアを有することを特徴とする請求項1に記載の通信装置。
    The communication device
    In the plurality of data, a packet including data for notifying the measured amount of electricity is received,
    The dedicated hardware is
    In the data extraction process, the data for notifying the amount of electricity is extracted from the plurality of data of the received packet,
    The communication device further includes:
    The communication apparatus according to claim 1, further comprising hardware that performs an operation on an electric quantity notified by data extracted by the dedicated hardware, in addition to the dedicated hardware.
  5.  前記通信装置は、
     計測された電気量を通知するデータが含まれるパケットとして、IEC(International Electrotechnical Commission)61850-9-2規格に準拠したパケットを受信し、
     前記専用ハードウェアは、
     前記データ抽出処理において、電気量を通知するデータとして、ASDU(Application Service Data Unit)に含まれているデータを抽出することを特徴とする請求項4に記載の通信装置。
    The communication device
    As a packet including data for notifying the measured amount of electricity, a packet conforming to the International Electrotechnical Commission (IEC) 61850-9-2 standard is received,
    The dedicated hardware is
    5. The communication apparatus according to claim 4, wherein, in the data extraction process, data included in an ASDU (Application Service Data Unit) is extracted as data for notifying the amount of electricity.
PCT/JP2011/062396 2011-05-30 2011-05-30 Communication device WO2012164665A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/062396 WO2012164665A1 (en) 2011-05-30 2011-05-30 Communication device
JP2013517728A JPWO2012164665A1 (en) 2011-05-30 2011-05-30 Communication device
GB1315042.0A GB2501660A (en) 2011-05-30 2011-05-30 Communication device
KR1020137027212A KR20130132650A (en) 2011-05-30 2011-05-30 Communication device
CN201180071264.0A CN103563308A (en) 2011-05-30 2011-05-30 Communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062396 WO2012164665A1 (en) 2011-05-30 2011-05-30 Communication device

Publications (1)

Publication Number Publication Date
WO2012164665A1 true WO2012164665A1 (en) 2012-12-06

Family

ID=47258551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062396 WO2012164665A1 (en) 2011-05-30 2011-05-30 Communication device

Country Status (5)

Country Link
JP (1) JPWO2012164665A1 (en)
KR (1) KR20130132650A (en)
CN (1) CN103563308A (en)
GB (1) GB2501660A (en)
WO (1) WO2012164665A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290207A (en) * 1997-04-17 1998-10-27 Hitachi Ltd Multiplexed data separating device
JP2005057373A (en) * 2003-08-07 2005-03-03 Ntt Docomo Inc Radio packet communication apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555405B2 (en) * 1988-03-04 1996-11-20 株式会社日立製作所 Data display device for plant monitoring and control system
JPH03131923A (en) * 1989-10-18 1991-06-05 Nec Corp Shifting circuit
FI106996B (en) * 1998-08-27 2001-05-15 Nokia Mobile Phones Ltd Method for indicating the use of power in a packet switching data transmission system
FI110224B (en) * 1999-09-17 2002-12-13 Nokia Corp Monitoring system
WO2007075332A2 (en) * 2005-12-23 2007-07-05 Wms Gaming Inc. Networks for use in gaming
US8126008B2 (en) * 2006-11-30 2012-02-28 Mitsubishi Electric Corporation Communication system and communication apparatus
WO2010040409A1 (en) * 2008-10-09 2010-04-15 Areva T&D Uk Ltd Method and apparatus for dynamic signal switching of a merging unit in an electrical power system
JP5222103B2 (en) * 2008-11-12 2013-06-26 キヤノン株式会社 Information processing apparatus, information processing method, communication system, program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290207A (en) * 1997-04-17 1998-10-27 Hitachi Ltd Multiplexed data separating device
JP2005057373A (en) * 2003-08-07 2005-03-03 Ntt Docomo Inc Radio packet communication apparatus

Also Published As

Publication number Publication date
GB201315042D0 (en) 2013-10-02
GB2501660A (en) 2013-10-30
KR20130132650A (en) 2013-12-04
CN103563308A (en) 2014-02-05
JPWO2012164665A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
EP2895956B1 (en) Method and system for monitoring execution of user request in distributed system
US9588834B1 (en) Methods and apparatus for improved fault analysis
CN112804123B (en) Network protocol identification method and system for scheduling data network
CN104951990B (en) Power grid data processing method and equipment
CN105306463A (en) Modbus TCP intrusion detection method based on support vector machine
KR101784613B1 (en) Method and system for detecting abnormal data in distributed environment
CN104462962A (en) Method for detecting unknown malicious codes and binary bugs
US20160205118A1 (en) Cyber black box system and method thereof
US9852037B2 (en) Efficiency of cycle-reproducible debug processes in a multi-core environment
CN107491372A (en) A kind of method and system for linux system RPM bags statistics CPU usage
CN113225339A (en) Network security monitoring method and device, computer equipment and storage medium
Mao et al. Real-time detection of malicious PMU data
Katsigiannis et al. MTF-Storm: a high performance fuzzer for Modbus/TCP
WO2012164665A1 (en) Communication device
CN102539980A (en) Protection fault panoramic data dumping method based on virtual sampling
CN112256683B (en) Information management method and device for substation automation system
US10055522B2 (en) Automated checker generation
CN116881913B (en) Staged malicious file detection method, device, equipment and medium
CN109284483B (en) Text processing method and device, storage medium and electronic equipment
CN109522195A (en) A kind of method and apparatus of information processing
CN105607988A (en) Method for automatically testing and analyzing IO performance of server storage equipment
Uwibambe et al. Fuzzing for Power Grids: A Comparative Study of Existing Frameworks and a New Method for Detecting Silent Crashes in Control Devices
US20220365127A1 (en) Method of identifying appliances by analyzing harmonic components of power signal and devices for performing the same
CN105445692B (en) A kind of electricity data processing method and device
CN118376962A (en) Method and system for detecting stator inter-turn faults in an induction motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517728

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1315042

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110530

WWE Wipo information: entry into national phase

Ref document number: 1315042.0

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 20137027212

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866603

Country of ref document: EP

Kind code of ref document: A1