[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012160761A1 - Imaging optics, imaging apparatus and digital device - Google Patents

Imaging optics, imaging apparatus and digital device Download PDF

Info

Publication number
WO2012160761A1
WO2012160761A1 PCT/JP2012/002975 JP2012002975W WO2012160761A1 WO 2012160761 A1 WO2012160761 A1 WO 2012160761A1 JP 2012002975 W JP2012002975 W JP 2012002975W WO 2012160761 A1 WO2012160761 A1 WO 2012160761A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
image
imaging
imaging optical
Prior art date
Application number
PCT/JP2012/002975
Other languages
French (fr)
Japanese (ja)
Inventor
田中 宏明
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to JP2013516183A priority Critical patent/JPWO2012160761A1/en
Publication of WO2012160761A1 publication Critical patent/WO2012160761A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses

Definitions

  • the present invention relates to an imaging optical system, and more particularly to an imaging optical system suitably applied to a solid-state imaging device such as a CCD image sensor or a CMOS image sensor.
  • the present invention relates to an imaging device including the imaging optical system and a digital device equipped with the imaging device.
  • imaging optical system for forming (imaging) an optical image of an object on the light receiving surface of the solid-state imaging device, which is mounted on these imaging devices, is further reduced in size and performance.
  • the demand for is increasing.
  • higher resolution has been demanded of the imaging optical system due to the progress of pixel miniaturization in solid-state imaging devices.
  • a four-element optical system has been proposed because higher performance is possible compared to a two-element or three-element optical system.
  • Such an imaging optical system is disclosed in, for example, Patent Documents 1 to 4.
  • the imaging optical system disclosed in Patent Document 1 is arranged in order of the first positive lens, the second negative lens, the third positive lens, and the fourth positive lens in order from the object side, and the first positive lens to the second negative lens.
  • the combined focal length of the second negative lens to the fourth positive lens is negative.
  • the photographing lens disclosed in Patent Document 2 has an aperture stop closest to the object side, and thereafter, in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a positive lens.
  • a third lens having a refractive power and a fourth lens having a positive refractive power are arranged.
  • the imaging lens disclosed in Patent Document 3 includes an aperture stop, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, in order from the object side.
  • a fourth lens having a negative refractive power is arranged, the second to fourth lenses are made of a resin material, the focal length of the entire lens system is f, and the focal length of the first lens is f1,
  • the focal length of the second lens is f2
  • the Abbe number of the second lens at the d-line is ⁇ d2
  • the Abbe number of the third lens at the d-line is ⁇ d3, f / f1 ⁇ 1.5, -2.
  • the imaging lens disclosed in Patent Document 4 includes, in order from the object side, a first lens having a positive power, a second lens having a negative power, and a first lens having a positive surface with a convex surface on the image side.
  • a first lens having a positive power in order from the object side, a second lens having a negative power, and a first lens having a positive surface with a convex surface on the image side.
  • the overall focal length is f
  • the fourth lens has a focal length f4 Furthermore, 0.28 ⁇
  • the imaging optical system disclosed in Patent Document 1 is a so-called reverse Ernostar type, its fourth lens is a positive lens. For this reason, compared with the case where the fourth lens is a negative lens as in the so-called telephoto type, the imaging optical system disclosed in Patent Document 1 has a longer back focus because the principal point position of the optical system is on the image side. Therefore, it is a disadvantageous type for downsizing. Furthermore, in the imaging optical system disclosed in Patent Document 1, since the lens having negative refractive power is one of the four first to fourth lenses, it is difficult to correct the Petzval sum, and the image It is difficult to ensure good performance at the periphery.
  • the imaging lens disclosed in Patent Document 2 is a telephoto type, but has a narrow shooting angle of view and insufficient aberration correction. Further, if the total length of the entire imaging lens system is shortened, it becomes difficult for the imaging lens disclosed in Patent Document 2 to cope with the increase in the number of pixels of the imaging device due to performance degradation.
  • the imaging lens described in Patent Document 3 has a shape in which the peripheral portion of the fourth lens protrudes greatly in the image plane direction, and is therefore disposed between the fourth lens and the solid-state imaging device.
  • a parallel flat plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package, or a substrate of the solid-state image sensor.
  • the imaging lens disclosed in Patent Document 3 is a telephoto type, the back focus is relatively long, and sufficient miniaturization has not been achieved.
  • the imaging lens described in Patent Document 3 has insufficient aberration correction to cope with the increase in the number of pixels.
  • the imaging lens described in Patent Document 4 can correct aberrations of about F2.8, but it can only handle insufficient brightness in portable terminals where pixels are becoming increasingly thin.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to obtain a four-element imaging optical system that is smaller, has various aberrations corrected better, and is bright at about F2.4. Is to provide. And this invention is providing an imaging device provided with this imaging optical system, and a digital apparatus carrying this imaging device.
  • the imaging optical system according to the present invention includes, in order from the object side, an aperture 15 and first to fourth lenses that are positive, negative, positive, and negative.
  • the fourth lens has concave surfaces on both sides, the object side surface of the first lens and the second lens.
  • the conditional expression ⁇ 1000 ⁇ (r1 + r4) / (r1 ⁇ r4) ⁇ 55 is satisfied.
  • the imaging optical system having such a configuration has a bright four-lens configuration of about F2.4, is smaller, and can correct various aberrations better. And the imaging device and digital apparatus using such an imaging optical system can achieve size reduction and high performance.
  • FIG. 3 is a cross-sectional view illustrating an arrangement of lens groups in the imaging optical system in Embodiment 1.
  • FIG. 7 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Embodiment 2.
  • FIG. 6 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Embodiment 3.
  • FIG. 6 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Embodiment 4.
  • FIG. 10 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Embodiment 5.
  • FIG. 10 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Example 6.
  • FIG. 3 is an aberration diagram of the imaging optical system in Example 1.
  • FIG. 6 is an aberration diagram of the image pickup optical system in Example 2.
  • FIG. 6 is an aberration diagram of the image pickup optical system in Example 3.
  • FIG. 6 is an aberration diagram of the image pickup optical system in Example 4.
  • 10 is an aberration diagram of the image pickup optical system in Example 5.
  • FIG. FIG. 10 is an aberration diagram of the image pickup optical system according to the sixth embodiment.
  • symbol in each figure shows that it is the same structure, The description is abbreviate
  • the number of lenses in the cemented lens is not expressed as one for the entire cemented lens, but is represented by the number of single lenses constituting the cemented lens.
  • a refractive index is a refractive index with respect to the wavelength (587.56 nm) of d line
  • ⁇ d (nd ⁇ 1) / (nF ⁇ nC)
  • the Abbe number ⁇ d obtained by the definition formula (C) When the notation “concave”, “convex” or “meniscus” is used for the lens, these represent the lens shape near the optical axis (near the center of the lens).
  • D The notation of refractive power (optical power, reciprocal of focal length) in each single lens constituting the cemented lens is power when both sides of the lens surface of the single lens are air.
  • the resin material used for the composite aspherical lens has only an additional function of the substrate glass material, it is not treated as a single optical member, but is treated as if the substrate glass material has an aspherical surface, and the number of lenses Shall be handled as one sheet.
  • the lens refractive index is also the refractive index of the glass material serving as the substrate.
  • the composite aspherical lens is a lens that is aspherical by applying a thin resin material on a glass material to be a substrate.
  • FIG. 1 is a lens cross-sectional view schematically illustrating the configuration of an imaging optical system in the embodiment.
  • FIG. 2 is a schematic diagram showing the definition of the image plane incident angle of the chief ray.
  • the image plane incident angle of the chief ray is the angle (deg, degree) of the chief ray having the maximum field angle among the incident rays to the imaging surface with respect to the vertical line standing on the image plane, as shown in FIG.
  • the image plane incident angle ⁇ is the principal ray angle when the exit pupil position is on the object side with respect to the image plane.
  • the imaging optical system 1 forms an optical image of an object (subject) on the light receiving surface of an image sensor 17 that converts an optical image into an electrical signal.
  • the optical system is composed of four lenses of first to fourth lenses 11 to 14 in order.
  • focusing is performed by moving the first to fourth lenses 11 to 14 in the optical axis direction by extending all the balls.
  • the first lens 11 has a positive refractive power
  • the second lens 12 has a negative refractive power
  • the third lens 13 has a positive refractive power
  • the fourth lens 14 The both surfaces are concave and have negative refractive power. More specifically, in the example shown in FIG. 1, the first lens 11 is a biconvex positive lens having convex surfaces on both sides, and the second lens 12 is a meniscus negative lens having a convex surface facing the object side.
  • the third lens 13 is a positive meniscus lens convex to the image side, and the fourth lens 14 is a biconcave negative lens.
  • These first to fourth lenses 11 to 15 are aspheric on both surfaces. Further, in the example shown in FIG.
  • the fourth lens 14 has a negative refractive power at the center (near the optical axis), and the negative refractive power becomes weaker toward the end of the effective region, and the optical axis AX is aligned.
  • the contact points IP4 and IP4 are provided when going from the intersection of the optical axes AX to the effective area end.
  • first to fourth lenses 11 to 14 may be glass molded lenses, for example, or may be lenses made of a resin material such as plastic.
  • a lens made of a resin material is preferable from the viewpoint of weight reduction and cost reduction and from the viewpoint of workability.
  • the first to fourth lenses 11 to 14 are resin material lenses.
  • the imaging optical system 1 satisfies the following conditional expression (1) when the radius of curvature of the object side surface of the first lens 11 is r1 and the radius of curvature of the image side surface of the second lens 12 is r4. Satisfies. ⁇ 1000 ⁇ (r1 + r4) / (r1 ⁇ r4) ⁇ 55 (1)
  • an optical diaphragm 15 such as an aperture diaphragm is disposed on the object side of the first lens 11.
  • a filter 16 and an image sensor 17 are disposed on the image side of the image pickup optical system 1, that is, on the image side of the fourth lens 14.
  • the filter 16 is a parallel plate-like optical element, and schematically represents various optical filters, a cover glass (seal glass) of the image sensor 17, and the like.
  • An optical filter such as an optical low-pass filter or an infrared cut filter can be appropriately disposed according to the use application, the configuration of the image sensor, the camera, or the like.
  • the image sensor 17 performs photoelectric conversion to image signals of R (red), G (green), and B (blue) components in accordance with the amount of light in the optical image of the subject imaged by the imaging optical system 1, and performs predetermined conversion.
  • the optical image of the object on the object side is guided to the light receiving surface of the image sensor 17 at a predetermined magnification along the optical axis AX by the imaging optical system 1, and the optical image of the object is captured by the image sensor 17. .
  • the imaging optical system 1 having such a configuration is composed of four first to fourth lenses 11 to 14, and each of the first to fourth lenses 11 to 14 has the above optical characteristics, and these By arranging the four first to fourth lenses 11 to 14 in order from the object side to the image side, various aberrations can be corrected more favorably with a brightness of about F2.4 and a small size. It becomes.
  • the imaging optical system 1 includes, in order from the object side, a diaphragm 15, a positive lens group Gr1 including first to third lenses 11 to 13, and a negative lens group Gr2 including a negative fourth lens 14. It is a so-called telephoto type to be arranged, and has a lens configuration that is advantageous for shortening the overall length of the imaging optical system (imaging lens) 1.
  • two of the four lens configurations of the first to fourth lenses 11 to 14, in the example shown in FIG. 1, the second and fourth lenses 12, 14 have a diverging action.
  • the number of surfaces can be increased, and the Petzval sum can be easily corrected.
  • the imaging optical system 1 can ensure good imaging performance up to the periphery of the screen.
  • the imaging optical system 1 can ensure the telecentricity of the image-side light beam.
  • the peripheral portion of the fourth lens 14 does not protrude greatly in the image plane direction, and therefore the fourth lens 14 and the image sensor 17 such as a solid-state image sensor, for example.
  • a parallel plate filter 16 in the example shown in FIG. 1
  • the back focus can be shortened while avoiding contact with the imaging optical system 1, which is advantageous for shortening the overall length of the imaging optical system 1.
  • conditional expression (1) defines the relationship between the radius of curvature of the object side surface of the first lens 11 and the image side surface of the second lens 12, thereby reducing the overall length of the imaging optical system 1 and appropriate aberrations. It is a conditional expression for achieving correction.
  • the value of conditional expression (1) is less than the upper limit, the radius of curvature of the image side surface of the second lens 12 does not become too strong, the occurrence of higher-order spherical aberration and coma aberration is suppressed, and further, manufacturing errors This is preferable because the influence of the above is reduced and the mass productivity is improved.
  • conditional expression (1) exceeds the lower limit, it is prevented that the radius of curvature on the image plane side of the second lens 12 becomes too weak with respect to the object side surface of the first lens 11. Since the principal point position can be arranged on the object side, the entire length of the imaging optical system 1 can be shortened, which is preferable.
  • conditional expression (1) is preferably the following conditional expression (1A). ⁇ 800 ⁇ (r1 + r4) / (r1 ⁇ r4) ⁇ 60 (1A)
  • the term “miniaturization” means that the distance on the optical axis from the lens surface of the lens closest to the object side to the image side focal point in the entire imaging optical system is L, and the diagonal length of the imaging surface (for example, When the diagonal length of the rectangular execution pixel region in a solid-state imaging device or the like is 2Y, it means that L / 2Y ⁇ 1 is satisfied, and more preferably L / 2Y ⁇ 0.9 is satisfied.
  • the image side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging optical system.
  • a parallel plate member such as an optical low-pass filter, an infrared cut filter, or a seal glass of a fixed imaging device package is disposed between the most image-side surface and the image-side focal point of the imaging optical system.
  • This parallel plate member calculates the above formula as an air equivalent distance.
  • both surfaces of the first lens 11 are convex.
  • the imaging optical system 1 can share the optical power distribution on both sides by forming the first lens 11 into a biconvex shape. Therefore, the imaging optical system 1 having such a configuration can suppress the occurrence of higher-order spherical aberration and coma aberration by preventing the curvature radius on one side from becoming extremely strong (small).
  • the second lens 12 has a meniscus shape with a convex surface facing the object side.
  • the imaging optical system 1 having such a configuration makes it possible to arrange the principal point position on the object side by forming the second lens 12 in a meniscus shape having a convex surface facing the object side. Shortening of the overall length can be achieved.
  • all of the first to fourth lenses 11 to 14 are resin material lenses made of a resin material.
  • the first lens 11 and the second lens 12 satisfies the following conditional expression (2). 1 ⁇ f12 / f ⁇ 1.7 (2)
  • Conditional expression (2) is a conditional expression for appropriately setting the combined focal length f12 of the first lens 11 and the second lens 12 and achieving more preferable shortening of the entire length of the imaging optical system 1 and correction of aberration. . Therefore, when the value of the conditional expression (2) falls below the upper limit value, the imaging optical system 1 having such a configuration appropriately maintains the positive composite focal length of the first lens 11 and the second lens 12. The total length can be shortened. On the other hand, when the value of the conditional expression (2) exceeds the lower limit value, it is possible to prevent the positive combined focal length of the first lens 11 and the second lens 12 from becoming too short, and a higher order spherical surface. Occurrence of aberration and coma can be suppressed.
  • conditional expression (2) is preferably the following conditional expression (2A). 1.15 ⁇ f12 / f ⁇ 1.5 (2A)
  • the fourth lens 14 satisfies the following conditional expression (3) when the thickness of the fourth lens on the optical axis is T4. 0.05 ⁇ T4 / f ⁇ 0.17 (3)
  • the image side surface of the fourth lens 14 of the imaging optical system 1 has an aspherical shape that weakens the negative refractive power from the optical axis AX toward the periphery and has a perpendicular contact. For this reason, the imaging optical system 1 having such a configuration is easy to ensure the telecentric characteristics of the image-side light beam. Further, since the image side surface of the third lens 13 does not need to weaken the negative refractive power excessively at the periphery of the lens, the imaging optical system 1 having such a configuration can satisfactorily correct off-axis aberrations. it can.
  • the conditional expression (3) is a conditional expression for appropriately setting the axial thickness of the fourth lens 14 and appropriately achieving the image plane property of the imaging optical system 1.
  • the fourth lens 14 has a refractive power in the vicinity of the optical axis and a refractive power in the vicinity that are significantly different from those of other lenses, and thus the axial thickness has a great influence on the curvature of field.
  • the imaging optical system 1 having such a configuration has an image plane property of the imaging optical system 1 of the over side. It can be prevented from falling too much to the under side.
  • conditional expression (3) is preferably the following conditional expression (3A). 0.08 ⁇ T4 / f ⁇ 0.15 (3A)
  • the perpendicular contact is within the effective radius of the lens, and at each point on the contour curve of the lens cross section along the optical axis (the lens cross section including the optical axis along the optical axis) A point on the aspherical surface where the tangent plane of the spherical vertex is a plane perpendicular to the optical axis.
  • the effective area refers to an area set as an area that is optically used as a lens by design.
  • the fourth lens 14 has the following ( The conditional expression 4) is satisfied. 0.1 ⁇ (r7 + r8) / (r7 ⁇ r8) ⁇ 1 (4)
  • This conditional expression (4) is a conditional expression for setting the surface shape of the fourth lens 14 appropriately and optimizing the back focus. Therefore, in the imaging optical system 1 having such a configuration, when the value of the conditional expression (4) is less than the upper limit value, the peripheral portion of the fourth lens 14 is not greatly projected in the image plane direction. For this reason, the imaging optical system 1 having such a configuration is arranged between the fourth lens 14 and the imaging element 17, and is a parallel flat plate such as an optical low-pass filter, an infrared cut filter, or a sealing glass of an imaging element package, for example. In addition, it is possible to avoid contact of the image sensor 17 with a member such as a substrate.
  • the refractive power of the object side surface of the fourth lens 14 is appropriately maintained to shorten the back focus, thereby imaging with such a configuration.
  • the optical system 1 can shorten the overall length of the imaging optical system 1.
  • conditional expression (4) is preferably the following conditional expression (4A). 0.5 ⁇ (r7 + r8) / (r7 ⁇ r8) ⁇ 1 (4A)
  • the second lens 12 satisfies the following conditional expression (5). 1.6 ⁇ r3 / f ⁇ 2.2 (5)
  • This conditional expression (5) is a conditional expression for appropriately setting the radius of curvature of the object side surface of the second lens 12 to achieve the shortening of the entire length of the imaging optical system 1 and appropriate aberration correction.
  • the value of the conditional expression (5) is below the upper limit value, it is possible to prevent the negative optical power of the second lens 12 from becoming too large.
  • the imaging optical system 1 having such a configuration can capture images. The overall length of the optical system 1 can be shortened.
  • the value of the conditional expression (5) exceeds the lower limit, the imaging optical system 1 having such a configuration suppresses higher-order spherical aberration and coma aberration generated on the object side surface of the second lens 12. be able to.
  • conditional expression (5) is preferably the following conditional expression (5A). 1.75 ⁇ r3 / f ⁇ 2.15 (5A)
  • the third lens satisfies the following conditional expression (6). 0.1 ⁇ T3 / f ⁇ 0.6 (6)
  • This conditional expression (6) is a conditional expression for setting the on-axis thickness T3 of the third lens 13 appropriately to achieve the shortening of the entire length of the imaging optical system 1 and the aberration correction.
  • the imaging optical system 1 having such a configuration can appropriately maintain the focal length f3 of the third lens 13, and the imaging optical system 1 Shortening of the overall length can be achieved.
  • the value of the conditional expression (6) is less than the upper limit value, the imaging optical system 1 having such a configuration does not make the focal length f3 of the third lens 13 too short. Generation of coma aberration can be suppressed.
  • conditional expression (6) is preferably the following conditional expression (6A). 0.25 ⁇ T3 / f ⁇ 0.4 (6)
  • a cam, a stepping motor, or the like may be used for driving the movable first to fourth lenses 11 to 14, or a piezoelectric actuator may be used. Good.
  • the piezoelectric actuator it is possible to drive each group independently while suppressing an increase in the volume and power consumption of the driving device, and the imaging device can be further downsized.
  • the lens is made of a resin material.
  • a glass lens having an aspherical surface may be used.
  • the aspheric glass lens may be a glass molded aspheric lens, a ground aspheric glass lens, or a composite aspheric lens (aspheric glass resin formed on a spherical glass lens).
  • Glass molded aspherical lenses are suitable for mass production, and composite aspherical lenses have a high degree of design freedom because there are many types of glass materials that can serve as substrates.
  • an aspherical lens using a high refractive index material is not easy to mold, so a composite aspherical lens is preferable.
  • the advantages of the composite aspherical lens can be fully utilized.
  • a plastic lens when used, it is preferably a lens molded using a material in which particles having a maximum length of 30 nanometers or less are dispersed in plastic (resin material). .
  • inorganic fine particles having a maximum length of 30 nanometers or less inorganic fine particles having a maximum length of 30 nanometers or less in a resin material as a base material, a resin material with reduced temperature dependency of the refractive index is obtained.
  • fine particles of niobium oxide (Nb 2 O 5 ) are dispersed in acrylic.
  • a plastic material in which such inorganic particles are dispersed is used for a lens having a relatively large refractive power or all the lenses, so that the temperature of the entire imaging optical system 1 can be changed. Image point position fluctuation can be suppressed to a small level.
  • Such a lens made of plastic material in which inorganic fine particles are dispersed is preferably molded as follows.
  • n (T) The temperature change n (T) of the refractive index is expressed by the formula Fa by differentiating the refractive index n with respect to the temperature T based on the Lorentz-Lorentz equation.
  • n (T) ((n 2 +2) ⁇ (n 2 ⁇ 1)) / 6n ⁇ ( ⁇ 3 ⁇ + (1 / [R]) ⁇ ( ⁇ [R] / ⁇ T)) (Fa)
  • is a linear expansion coefficient
  • [R] molecular refraction.
  • the contribution of the refractive index to the temperature dependence is smaller in the second term than in the first term in the formula Fa, and can be almost ignored.
  • the temperature change n (T) of the refractive index which was conventionally about ⁇ 12 ⁇ 10 ⁇ 5 [/ ° C.], can be suppressed to an absolute value of less than 8 ⁇ 10 ⁇ 5 [/ ° C.]. preferable. More preferably, the absolute value is less than 6 ⁇ 10 ⁇ 5 [/ ° C.].
  • the refractive index temperature change n (T) is about ⁇ 11 ⁇ 10 ⁇ 5 (/ ° C.)
  • the refractive index temperature change n (T) is about ⁇ 14 ⁇ 10 ⁇ 5 (/ ° C.)
  • the temperature change n (T) of the refractive index is about ⁇ 13 ⁇ 10 ⁇ 5 (/ ° C.).
  • FIG. 3 is a block diagram showing the configuration of the digital device in the embodiment.
  • the digital device 3 includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a driving unit 34, a control unit 35, a storage unit 36, and an I / F unit 37 for the imaging function. Composed.
  • Examples of the digital device 3 include a digital still camera, a video camera, a surveillance camera (monitor camera), a portable terminal such as a mobile phone or a personal digital assistant (PDA), a personal computer, and a mobile computer.
  • Equipment eg, a mouse, scanner, printer, etc.
  • the imaging optical system 1 of the present embodiment is sufficiently compact when mounted on a mobile terminal such as a mobile phone or a personal digital assistant (PDA), and is preferably mounted on this mobile terminal.
  • the imaging unit 30 includes an imaging device 21 and an imaging element 17.
  • the imaging device 21 includes an imaging optical system 1 as shown in FIG. 1 that functions as an imaging lens, a lens driving device (not shown), etc., for performing focusing by driving a lens for focusing in the optical axis direction. It is prepared for. Light rays from the subject are imaged on the light receiving surface of the image sensor 17 by the imaging optical system 1 and become an optical image of the subject.
  • the imaging device 17 converts the optical image of the subject formed by the imaging optical system 1 into an electrical signal (image signal) of R, G, and B color components, and each of the R, G, and B colors. It outputs to the image generation part 31 as an image signal.
  • the image sensor 17 is controlled by the control unit 35 for imaging operations such as imaging of either a still image or a moving image, or reading (horizontal synchronization, vertical synchronization, transfer) of an output signal of each pixel in the image sensor 17. .
  • the image generation unit 31 performs amplification processing, digital conversion processing, and the like on the analog output signal from the image sensor 17 and determines an appropriate black level, ⁇ correction, and white balance adjustment (WB adjustment) for the entire image. Then, known image processing such as contour correction and color unevenness correction is performed to generate image data from the image signal. The image data generated by the image generation unit 31 is output to the image data buffer 32.
  • the image data buffer 32 is a memory that temporarily stores image data and is used as a work area for performing processing described later on the image data by the image processing unit 33.
  • the image data buffer 32 is a volatile storage element. It consists of a certain RAM (Random Access Memory).
  • the image processing unit 33 is a circuit that performs predetermined image processing such as resolution conversion on the image data in the image data buffer 32.
  • the image processing unit 33 could not be corrected by the imaging optical system 1 such as a known distortion correction process for correcting distortion in the optical image of the subject formed on the light receiving surface of the imaging element 17. It may be configured to correct aberrations.
  • the distortion correction an image distorted by aberration is corrected to a natural image having a similar shape similar to a sight seen with the naked eye and having substantially no distortion.
  • the image processing unit 33 may include a known peripheral illuminance decrease correction process for correcting the peripheral illuminance decrease in the optical image of the subject formed on the light receiving surface of the image sensor 17 as necessary.
  • the peripheral illuminance drop correction (shading correction) is executed by storing correction data for performing the peripheral illuminance drop correction in advance and multiplying the image (pixel) after photographing by the correction data. Since the decrease in ambient illuminance mainly occurs due to the incident angle dependence of the sensitivity in the image sensor 17, the vignetting of the lens, the cosine fourth law, and the like, the correction data has a predetermined value that corrects the decrease in illuminance caused by these factors. Is set. With such a configuration, even if the peripheral illuminance drops in the optical image of the subject guided to the image sensor 17 by the imaging optical system 1, it is possible to generate an image having sufficient illuminance to the periphery. It becomes.
  • the shading correction is performed by setting the pitch of the arrangement of the color filters and the on-chip microlens array slightly smaller than the pixel pitch on the imaging surface of the imaging device 17 so as to reduce the shading. It may be done.
  • a color filter and an on-chip microlens array are arranged on the optical axis side of the imaging optical system 1 for each pixel as it goes to the periphery of the imaging surface in the imaging element 17. Therefore, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, shading generated in the image sensor 17 is suppressed to a small level.
  • the driving unit 34 drives the lens for focusing in the imaging optical system 1 so as to perform desired focusing by operating the lens driving device (not shown) based on a control signal output from the control unit 35. To do.
  • the control unit 35 includes, for example, a microprocessor and its peripheral circuits, and includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a storage unit 36, and an I / F unit.
  • the operation of each part 37 is controlled according to its function.
  • the imaging device 21 is controlled by the control unit 35 to execute at least one of the still image shooting and the moving image shooting of the subject.
  • the storage unit 36 is a storage circuit that stores image data generated by still image shooting or moving image shooting of a subject.
  • a ROM Read Only Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • the storage unit 36 has a function as a still image memory and a moving image memory.
  • the I / F unit 37 is an interface that transmits / receives image data to / from an external device, and is an interface that conforms to a standard such as USB or IEEE1394.
  • the following describes the imaging operation of the digital device 3 having such a configuration.
  • the control unit 35 controls the imaging device 21 to shoot a still image and operates the lens driving device (not shown) of the imaging device 21 via the driving unit 34. , Focusing is performed by paying out all balls. As a result, the focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor 17, converted into image signals of R, G, and B color components, and then output to the image generation unit 31. .
  • the image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). The photographer can adjust the main subject so as to be within a desired position on the screen by referring to the display.
  • a so-called shutter button (not shown) is pressed in this state, image data is stored in the storage unit 36 as a still image memory, and a still image is obtained.
  • the control unit 35 controls the imaging device 21 to perform moving image shooting. After that, as in the case of still image shooting, the photographer refers to the display (not shown) so that the image of the subject obtained through the imaging device 21 is placed at a desired position on the screen. Can be adjusted. When a shutter button (not shown) is pressed, moving image shooting is started. At the time of moving image shooting, the control unit 35 controls the imaging device 21 to shoot a moving image and operates the lens driving device (not shown) of the imaging device 21 via the driving unit 34 to perform focusing. Do.
  • a focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor 17, converted into image signals of R, G, and B color components, and then output to the image generation unit 31.
  • the image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). Then, when the shutter button (not shown) is pressed again, the moving image shooting is completed.
  • the captured moving image is guided to and stored in the storage unit 36 as a moving image memory.
  • the imaging device 21 using the imaging optical system 1 having a four-lens configuration which has a brightness of about F2.4 and is small and can correct various aberrations better, and A digital device 3 is provided.
  • the imaging optical system 1 is reduced in size and performance, it is possible to employ the imaging element 17 having a high pixel while reducing the size (compacting).
  • the imaging optical system 1 is small and can be applied to a high-pixel imaging device, the imaging optical system 1 is suitable for a mobile terminal that is increasing in pixel count and functionality. As an example, a case where the imaging device 21 is mounted on a mobile phone will be described below.
  • FIG. 4 is an external configuration diagram of a camera-equipped mobile phone showing an embodiment of a digital device.
  • 4A shows an operation surface of the mobile phone
  • FIG. 4B shows a back surface of the operation surface, that is, a back surface.
  • the mobile phone 5 is provided with an antenna 51 at the top, and on its operation surface, as shown in FIG. 4A, a rectangular display 52, activation of image shooting mode, still image shooting and moving image An image shooting button 53 for switching to shooting, a shutter button 55, and a dial button 56 are provided.
  • the cellular phone 5 incorporates a circuit for realizing a telephone function using a cellular phone network, and includes the above-described imaging unit 30, image generating unit 31, image data buffer 32, image processing unit 33, and driving unit. 34, the control part 35, and the memory
  • a control signal indicating the operation content is output to the control unit 35, and the control unit 35 performs the activation and execution of the still image shooting mode and the activation and execution of the moving image shooting mode. Execute the action according to the operation content.
  • a control signal indicating the operation content is output to the control unit 35, and the control unit 35 executes an operation corresponding to the operation content such as still image shooting or moving image shooting. .
  • FIGS. 5 to 10 are cross-sectional views showing the arrangement of lenses in the image pickup optical system according to the first to sixth embodiments.
  • FIGS. 11 to 16 are aberration diagrams of the imaging optical system in Examples 1 to 6.
  • FIGS. 11 to 16 are aberration diagrams of the imaging optical system in Examples 1 to 6.
  • the first to fourth lenses L1 to L4 are sequentially arranged from the object side to the image side, and focusing (focusing) is performed. ), The first to fourth lenses L1 to L4 move together in the optical axis direction AX when all the balls are extended.
  • the first to fourth lenses L1 to L4 are configured as follows in order from the object side to the image side.
  • the first lens L1 is a biconvex positive lens having positive refractive power
  • the second lens L2 is a negative meniscus lens having negative refractive power with the convex surface facing the object side
  • the third lens L3 is The positive meniscus lens having positive refractive power with the convex surface facing the image side
  • the fourth lens L4 is a biconcave negative lens having negative refractive power.
  • the negative refractive power of the image side surface of the fourth lens L4 decreases from the center (optical axis AX) toward the end of the effective area, and the lens cross section along the optical axis AX (light along the optical axis AX).
  • the contact points IPA4 to IPF4 and IPA4 to IPF4 are provided when going from the intersection of the optical axes AX to the end of the effective area.
  • the optical aperture stop ST is disposed on the object side of the first lens L1.
  • the optical aperture stop ST may be an aperture stop, a mechanical shutter, or a variable stop.
  • the light receiving surface of the image pickup element SR is disposed via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass or the like of various optical filters or the image sensor SR.
  • the numbers ri (i 1, 2, 3,%) Given to the respective lens surfaces are the i-th lens surfaces when counted from the object side (however, the lens joints). The surface is counted as one surface.), And a surface with an asterisk “*” is an aspherical surface.
  • both surfaces of the parallel plate FT and the light receiving surface of the imaging element SR are handled as one surface, and the surface of the optical aperture stop ST is also handled as one surface.
  • the meaning of such handling and symbols is the same for each embodiment. However, it does not mean that they are exactly the same.
  • the lens surface arranged closest to the object side is denoted by the same symbol (r1) in each drawing of each embodiment, but the construction described later is used. As shown in the data, this does not mean that these curvatures are the same throughout the embodiments.
  • a light beam incident from the object side sequentially has an optical stop ST, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a parallel plate along the optical axis AX.
  • An optical image of the object is formed on the light receiving surface of the image sensor SR through the FT.
  • the image sensor SR the optical image is converted into an electrical signal.
  • This electric signal is subjected to predetermined digital image processing as necessary, and is recorded as a digital video signal in a memory of a digital device such as a digital camera, or other digital signal is transmitted by wired or wireless communication via an interface. Or transmitted to the device.
  • the construction data of each lens in the imaging optical systems 1A to 1F of each example is as follows.
  • the total lens length (TL) of the above-mentioned various data is the total lens length (distance from the first lens object side surface to the imaging surface) when the object distance is infinite.
  • ENTP is the distance from the entrance pupil to the first surface (aperture).
  • the entrance pupil is equal to the aperture, and is 0.
  • EXTP is the distance from the final surface (cover glass image surface side) to the exit pupil
  • H1 is the distance from the first surface (aperture) to the object side principal point
  • H2 is the final surface (cover glass image). This is the distance from the image side principal point to the image side principal point.
  • the surface marked with * in the number i indicates an aspherical surface (aspherical refractive optical surface or a surface having a refractive action equivalent to an aspherical surface).
  • R is the radius of curvature of each surface (unit: mm)
  • d is the distance (axis) between the lens surfaces on the optical axis in the infinitely focused state (focused state at infinity).
  • Top indicates the refractive index of each lens with respect to the d-line (wavelength 587.56 nm)
  • ⁇ d indicates the Abbe number
  • ER indicates the effective radius (mm). Since each surface of the optical aperture stop ST, both surfaces of the parallel flat plate FT, and the light receiving surface of the image sensor SR is a flat surface, the radius of curvature thereof is ⁇ (infinite).
  • the shape of the aspheric surface is defined by the following equation when the surface vertex is the origin, the X axis is taken in the optical axis direction, and the height in the direction perpendicular to the optical axis is h.
  • the paraxial radius of curvature (r) described in the claims, embodiments, and examples is in the vicinity of the center of the lens (more specifically, within 10% of the lens outer diameter) in the actual lens measurement scene.
  • the approximate curvature radius when the shape measurement value in the center region of the curve is fitted by the least square method can be regarded as the paraxial curvature radius.
  • a curvature radius that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius (for example, reference literature). (See pages 41-42 of “Lens Design Method” by K. Matsui, Kyoritsu Publishing Co., Ltd.).
  • En means “10 to the power of n”.
  • E + 001 means “10 to the power of +1”
  • E-003 means “10 to the power of ⁇ 3”.
  • FIG. 11 to FIG. 16 show aberrations in the imaging lenses 1A to 1F of the respective examples under the lens arrangement and configuration as described above.
  • FIGS. 11 to 16 show aberration diagrams at a distance of infinity, and (A), (B), and (C) in each figure are spherical aberrations (sinusoidal conditions) (LONGITUDINAL) in this order, respectively.
  • SPHERICAL ABERRATION spherical aberrations (sinusoidal conditions)
  • ASIGMATISM astigmatism
  • FIELD CURVE FIELD CURVE
  • DISTORTION distortion
  • the abscissa of the spherical aberration represents the focal position shift in mm
  • the ordinate represents the value normalized by the maximum incident height.
  • the horizontal axis of astigmatism represents the focal position shift in mm
  • the vertical axis represents the image height in mm.
  • the horizontal axis of the distortion aberration represents the actual image height as a percentage (%) with respect to the ideal image height, and the vertical axis represents the image height in mm.
  • the broken line represents the result on the tangential (meridional) surface, and the solid line represents the result on the sagittal (radial) surface.
  • the aberrations of two light beams ie, the d-line (wavelength 587.56 nm) as a solid line and the g-line (wavelength 435.84 nm) as a broken line are shown.
  • the diagrams of astigmatism and distortion are the results when the d-line (wavelength 587.56 nm) is used.
  • Table 1 shows numerical values obtained when the above-described conditional expressions (1) to (6) are applied to the imaging optical systems 1A to 1F of Examples 1 to 6 listed above.
  • the imaging optical systems 1A to 1F in Embodiments 1 to 6 have a four-lens configuration and satisfy the above-described conditions. As a result, the imaging optical systems 1A to 1F have a brightness of about F2.4. Thus, various aberrations can be corrected more favorably while reducing the size of the conventional optical system.
  • the imaging optical systems 1A to 1F in the first to sixth embodiments are sufficiently reduced in size when mounted on the imaging device 21 and the digital device 3, particularly when mounted on the portable terminal 5.
  • a pixel imaging device 17 can be employed.
  • a high-pixel image sensor 17 having a class (grade) of about 8M to 16M pixels such as 8M pixel, 10M pixel, and 16M pixel has a short pixel pitch when the size of the image sensor 17 is constant (pixel
  • the imaging optical systems 1A to 1F need a resolution corresponding to the pixel pitch, and are defined by, for example, specifications when the imaging optical system 1 is evaluated with the required resolution, for example, with MTF. Although it is necessary to suppress various aberrations within a predetermined range, in the imaging optical systems 1A to 1F in Examples 1 to 6, the various aberrations are suppressed within the predetermined range as shown in each aberration diagram. Accordingly, since the imaging optical systems 1A to 1F in Examples 1 to 6 correct various aberrations satisfactorily, the imaging optical systems 1A to 1F are preferably used for the imaging element 17 of the class of 5M to 8M pixels, for example.
  • the principal ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily sufficiently small at the periphery of the imaging surface.
  • shading can be corrected by hardware or software. Such shading countermeasures alleviate the demand for shading, so that the imaging optical systems 1A to 1F of the present embodiment are further downsized.
  • An imaging optical system includes, in order from the object side to the image side, a stop, a first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens having a positive refractive power. It consists of a lens and a fourth lens having negative refractive power whose both surfaces are concave, and satisfies the conditional expression (1) above.
  • the imaging optical system having such a configuration has a bright four-lens configuration of about F2.4, is smaller, and can correct various aberrations better.
  • the first lens has a convex shape on both sides.
  • the second lens has a meniscus shape with a convex surface facing the object side.
  • the first lens and the second lens satisfy the conditional expression (2).
  • the image side surface of the fourth lens has an aspherical shape, has a negative refractive power at the center thereof, and approaches the effective area end.
  • the negative refractive power becomes weak and the lens cross section along the optical axis moves from the intersection of the optical axes toward the effective region end, the vertical contact is provided, and the conditional expression (3) is satisfied.
  • the fourth lens satisfies the conditional expression (4).
  • the second lens satisfies the conditional expression (5).
  • the third lens satisfies the conditional expression (6).
  • all of the first to fourth lenses are resin material lenses formed of a resin material.
  • An imaging apparatus includes any one of the above-described imaging optical systems and an imaging element that converts an optical image into an electrical signal, and the imaging optical system receives a light receiving surface of the imaging element. An optical image of the object can be formed thereon.
  • a digital apparatus includes the above-described imaging device, and a control unit that causes the imaging device to perform at least one of photographing a still image and a moving image of the subject, and imaging optics of the imaging device.
  • the system is assembled so that an optical image of the subject can be formed on the imaging surface of the imaging device.
  • the digital device comprises a mobile terminal.
  • an imaging optical system an imaging device, and a digital device can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

The imaging optics (1) of the present invention comprise, in successive order from the object side, an aperture (15) and positive/negative/positive/negative first through fourth lenses (11-14), both surfaces of the fourth lens (14) being convex surfaces, and the optics satisfying the conditional expression -1000 < (r1 + r4)/(r1 - r4) < -55, where r1 and r4 are the radius of curvature, respectively, of the object-side surface of the first lens (11) and the image-side surface of the second lens (12).

Description

撮像光学系、撮像装置およびデジタル機器Imaging optical system, imaging apparatus, and digital device
 本発明は、撮像光学系に関し、特に、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子に好適に適用される撮像光学系に関する。そして、本発明は、この撮影光学系を備える撮像装置およびこの撮像装置を搭載したデジタル機器に関する。 The present invention relates to an imaging optical system, and more particularly to an imaging optical system suitably applied to a solid-state imaging device such as a CCD image sensor or a CMOS image sensor. The present invention relates to an imaging device including the imaging optical system and a digital device equipped with the imaging device.
 近年、CCD(Charged Coupled Device)型イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像素子の高性能化や小型化が伸展し、これに伴って、このような撮像素子を用いた撮像装置を備えた携帯電話や携帯情報端末等のデジタル機器が普及しつつある。また、これらの撮像装置に搭載される、前記固体撮像素子の受光面上に物体の光学像を形成(結像)するための撮像光学系(撮像レンズ)には、さらなる小型化や高性能化への要求が高まっている。特に、近年では、固体撮像素子における画素の高細化が進展したため、撮像光学系には、より高い解像力が要求されてきている。このような用途の撮像光学系において、2枚構成あるいは3枚構成の光学系に較べて、より高性能化が可能であることから、4枚構成の光学系が提案されている。 In recent years, image sensors using solid-state image sensors such as CCD (Charged Coupled Device) type image sensors and CMOS (Complementary Metal Oxide Semiconductor) type image sensors have become more sophisticated and downsized. Digital devices such as mobile phones and personal digital assistants equipped with image pickup devices using various image pickup devices are becoming widespread. In addition, the imaging optical system (imaging lens) for forming (imaging) an optical image of an object on the light receiving surface of the solid-state imaging device, which is mounted on these imaging devices, is further reduced in size and performance. The demand for is increasing. In particular, in recent years, higher resolution has been demanded of the imaging optical system due to the progress of pixel miniaturization in solid-state imaging devices. In such an imaging optical system, a four-element optical system has been proposed because higher performance is possible compared to a two-element or three-element optical system.
 このような撮像光学系は、例えば、特許文献1ないし特許文献4に開示されている。特許文献1に開示の結像光学系は、物体側から順に、第1正レンズ、第2負レンズ、第3正レンズ、第4正レンズの順に配置され、第1正レンズないし第2負レンズの合成焦点距離が正、あるいは、第2負レンズないし第4正レンズの合成焦点距離が負であるものである。また、特許文献2に開示の撮影レンズは、最も物体側に開口絞りを配し、以降物体側より順に、正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズおよび正の屈折力を有する第4レンズを配して構成されるものである。また、特許文献3に開示の撮像レンズは、物体側より順に、開口絞り、正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズおよび負の屈折力を有する第4レンズを配列して構成され、前記第2ないし第4レンズが樹脂材料で構成され、レンズ系全体の焦点距離をfとし、第1レンズの焦点距離をf1とし、第2レンズの焦点距離をf2とし、第2レンズのd線におけるアッベ数をνd2とし、第3レンズのd線におけるアッベ数をνd3とする場合に、f/f1<1.5、-2.5<|f/f2|<-1.5、15<νd2-νd3であるものである。また、特許文献4に開示の撮像レンズは、物体側から順に、正のパワーを有する第1レンズと、負のパワーを有する第2レンズと、像側の面が凸面で正のパワーを有する第3レンズと、物体側の面が光軸近傍において凹面または平面であり、負のパワーを有する第4レンズとを備え、全体の焦点距離をfとし、第4レンズの焦点距離をf4とする場合に、0.28<|f4/f|<0.60であるものである。 Such an imaging optical system is disclosed in, for example, Patent Documents 1 to 4. The imaging optical system disclosed in Patent Document 1 is arranged in order of the first positive lens, the second negative lens, the third positive lens, and the fourth positive lens in order from the object side, and the first positive lens to the second negative lens. The combined focal length of the second negative lens to the fourth positive lens is negative. The photographing lens disclosed in Patent Document 2 has an aperture stop closest to the object side, and thereafter, in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a positive lens. A third lens having a refractive power and a fourth lens having a positive refractive power are arranged. The imaging lens disclosed in Patent Document 3 includes an aperture stop, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, in order from the object side. A fourth lens having a negative refractive power is arranged, the second to fourth lenses are made of a resin material, the focal length of the entire lens system is f, and the focal length of the first lens is f1, When the focal length of the second lens is f2, the Abbe number of the second lens at the d-line is νd2, and the Abbe number of the third lens at the d-line is νd3, f / f1 <1.5, -2. 5 <| f / f2 | <−1.5, 15 <νd2−νd3. In addition, the imaging lens disclosed in Patent Document 4 includes, in order from the object side, a first lens having a positive power, a second lens having a negative power, and a first lens having a positive surface with a convex surface on the image side. A case in which three lenses and a fourth lens having a negative power in the vicinity of the optical axis are concave or flat in the vicinity of the optical axis, the overall focal length is f, and the fourth lens has a focal length f4 Furthermore, 0.28 <| f4 / f | <0.60.
 ところで、前記特許文献1に開示の結像光学系は、いわゆる逆エルノスタータイプであるため、その第4レンズが正レンズである。このため、いわゆるテレフォトタイプのように第4レンズが負レンズである場合に比べ、前記特許文献1に開示の結像光学系は、光学系の主点位置が像側になりバックフォーカスが長くなるため、小型化には不利なタイプである。さらに、前記特許文献1に開示の結像光学系は、負の屈折力を有するレンズが4枚の第1ないし第4レンズのうちの1枚であるため、ペッツバール和の補正が困難となり、画像周辺部では良好な性能を確保することが難しい。 Incidentally, since the imaging optical system disclosed in Patent Document 1 is a so-called reverse Ernostar type, its fourth lens is a positive lens. For this reason, compared with the case where the fourth lens is a negative lens as in the so-called telephoto type, the imaging optical system disclosed in Patent Document 1 has a longer back focus because the principal point position of the optical system is on the image side. Therefore, it is a disadvantageous type for downsizing. Furthermore, in the imaging optical system disclosed in Patent Document 1, since the lens having negative refractive power is one of the four first to fourth lenses, it is difficult to correct the Petzval sum, and the image It is difficult to ensure good performance at the periphery.
 この点、前記特許文献2に開示の撮像レンズは、テレフォトタイプであるが、撮影画角が狭くて収差補正が不充分である。さらに撮像レンズ全系の全長を短縮化すると、前記特許文献2に開示の撮像レンズは、性能の劣化による撮像素子の高画素化に対応することが困難となる。 In this regard, the imaging lens disclosed in Patent Document 2 is a telephoto type, but has a narrow shooting angle of view and insufficient aberration correction. Further, if the total length of the entire imaging lens system is shortened, it becomes difficult for the imaging lens disclosed in Patent Document 2 to cope with the increase in the number of pixels of the imaging device due to performance degradation.
 また、前記特許文献3に記載の撮像レンズは、第4レンズの周辺部が像面方向に大きく張り出す形状となっており、このため、第4レンズと固体撮像素子との間に配置される、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケージのシールガラス等の平行平板や、固体撮像素子の基板等との接触を避けるために、バックフォーカスを長くする必要がある。事実、前記特許文献3に開示の撮像レンズは、テレフォトタイプであるにもかかわらずバックフォーカスが比較的長く、充分な小型化が達成されていない。また、前記特許文献3に記載の撮像レンズは、前記高画素化に対応するためには収差補正が不充分である。 In addition, the imaging lens described in Patent Document 3 has a shape in which the peripheral portion of the fourth lens protrudes greatly in the image plane direction, and is therefore disposed between the fourth lens and the solid-state imaging device. In order to avoid contact with a parallel flat plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package, or a substrate of the solid-state image sensor, it is necessary to lengthen the back focus. In fact, although the imaging lens disclosed in Patent Document 3 is a telephoto type, the back focus is relatively long, and sufficient miniaturization has not been achieved. In addition, the imaging lens described in Patent Document 3 has insufficient aberration correction to cope with the increase in the number of pixels.
 また、特許文献4に記載の撮像レンズは、F2.8程度の収差補正が可能であるが、画素の高細化が進む携帯端末において、不充分な明るさにしか対応できていない。 In addition, the imaging lens described in Patent Document 4 can correct aberrations of about F2.8, but it can only handle insufficient brightness in portable terminals where pixels are becoming increasingly thin.
特開2004-341013号公報Japanese Patent Laid-Open No. 2004-341013 特開2002-365530号公報JP 2002-365530 A 特開2005-292559号公報JP 2005-292559 A 特開2009-020182号公報JP 2009-020182 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、より小型であって諸収差がより良好に補正され、そして、F2.4程度の明るい4枚構成の撮像光学系を提供することである。そして、本発明は、この撮像光学系を備える撮像装置およびこの撮像装置を搭載したデジタル機器を提供することである。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to obtain a four-element imaging optical system that is smaller, has various aberrations corrected better, and is bright at about F2.4. Is to provide. And this invention is providing an imaging device provided with this imaging optical system, and a digital apparatus carrying this imaging device.
 本発明の撮像光学系は、物体側から順に、絞り15と、正負正負の第1ないし第4レンズとから成り、第4レンズは、両面が凹面であり、第1レンズの物体側面および第2レンズの像側面における各曲率半径をr1、r4とした場合に、-1000<(r1+r4)/(r1-r4)<-55の条件式を満たす。このような構成の撮像光学系は、F2.4程度の明るい、4枚のレンズ構成であって、より小型であって諸収差をより良好に補正することができる。そして、このような撮像光学系を用いた撮像装置およびデジタル機器は、小型化および高性能化を図ることができる。 The imaging optical system according to the present invention includes, in order from the object side, an aperture 15 and first to fourth lenses that are positive, negative, positive, and negative. The fourth lens has concave surfaces on both sides, the object side surface of the first lens and the second lens. When the curvature radii on the image side surface of the lens are r1 and r4, the conditional expression −1000 <(r1 + r4) / (r1−r4) <− 55 is satisfied. The imaging optical system having such a configuration has a bright four-lens configuration of about F2.4, is smaller, and can correct various aberrations better. And the imaging device and digital apparatus using such an imaging optical system can achieve size reduction and high performance.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
実施形態における撮像光学系の説明のための、その構成を模式的に示したレンズ断面図である。It is a lens sectional view showing the composition typically for explanation of an image pick-up optical system in an embodiment. 主光線の像面入射角の定義を示す模式図である。It is a schematic diagram which shows the definition of the image surface incident angle of a chief ray. 実施形態におけるデジタル機器の構成を示すブロック図である。It is a block diagram which shows the structure of the digital device in embodiment. デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。It is an external appearance block diagram of the mobile phone with a camera which shows one Embodiment of a digital device. 実施例1における撮像光学系におけるレンズ群の配列を示す断面図である。3 is a cross-sectional view illustrating an arrangement of lens groups in the imaging optical system in Embodiment 1. FIG. 実施例2における撮像光学系におけるレンズ群の配列を示す断面図である。7 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Embodiment 2. FIG. 実施例3における撮像光学系におけるレンズ群の配列を示す断面図である。6 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Embodiment 3. FIG. 実施例4における撮像光学系におけるレンズ群の配列を示す断面図である。6 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Embodiment 4. FIG. 実施例5における撮像光学系におけるレンズ群の配列を示す断面図である。10 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Embodiment 5. FIG. 実施例6における撮像光学系におけるレンズ群の配列を示す断面図である。10 is a cross-sectional view illustrating an arrangement of lens groups in an imaging optical system in Example 6. FIG. 実施例1における撮像光学系の収差図である。FIG. 3 is an aberration diagram of the imaging optical system in Example 1. 実施例2における撮像光学系の収差図である。FIG. 6 is an aberration diagram of the image pickup optical system in Example 2. 実施例3における撮像光学系の収差図である。FIG. 6 is an aberration diagram of the image pickup optical system in Example 3. 実施例4における撮像光学系の収差図である。FIG. 6 is an aberration diagram of the image pickup optical system in Example 4. 実施例5における撮像光学系の収差図である。10 is an aberration diagram of the image pickup optical system in Example 5. FIG. 実施例6における撮像光学系の収差図である。FIG. 10 is an aberration diagram of the image pickup optical system according to the sixth embodiment.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、接合レンズにおけるレンズ枚数は、接合レンズ全体で1枚ではなく、接合レンズを構成する単レンズの枚数で表すこととする。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, the number of lenses in the cemented lens is not expressed as one for the entire cemented lens, but is represented by the number of single lenses constituting the cemented lens.
 <用語の説明>
 以下の説明において使用されている用語は、本明細書においては、次の通り定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数は、d線、F線(波長486.13nm)、C線(波長656.28nm)に対する屈折率を各々nd、nF、nC、アッベ数をνdとした場合に、
νd=(nd-1)/(nF-nC)
の定義式で求められるアッベ数νdをいうものとする。
(c)レンズについて、「凹」、「凸」または「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているものとする。
(d)接合レンズを構成している各単レンズにおける屈折力(光学的パワー、焦点距離の逆数)の表記は、単レンズのレンズ面の両側が空気である場合におけるパワーである。
(e)複合型非球面レンズに用いる樹脂材料は、基板ガラス材料の付加的機能しかないため、単独の光学部材として扱わず、基板ガラス材料が非球面を有する場合と同等の扱いとし、レンズ枚数も1枚として取り扱うものとする。そして、レンズ屈折率も基板となっているガラス材料の屈折率とする。複合型非球面レンズは、基板となるガラス材料の上に薄い樹脂材料を塗布して非球面形状としたレンズである。
<Explanation of terms>
The terms used in the following description are defined in this specification as follows.
(A) A refractive index is a refractive index with respect to the wavelength (587.56 nm) of d line | wire.
(B) Abbe number is nd, nF, nC, and Abbe number is νd for d-line, F-line (wavelength 486.13 nm), C-line (wavelength 656.28 nm), respectively.
νd = (nd−1) / (nF−nC)
The Abbe number νd obtained by the definition formula
(C) When the notation “concave”, “convex” or “meniscus” is used for the lens, these represent the lens shape near the optical axis (near the center of the lens).
(D) The notation of refractive power (optical power, reciprocal of focal length) in each single lens constituting the cemented lens is power when both sides of the lens surface of the single lens are air.
(E) Since the resin material used for the composite aspherical lens has only an additional function of the substrate glass material, it is not treated as a single optical member, but is treated as if the substrate glass material has an aspherical surface, and the number of lenses Shall be handled as one sheet. The lens refractive index is also the refractive index of the glass material serving as the substrate. The composite aspherical lens is a lens that is aspherical by applying a thin resin material on a glass material to be a substrate.
 <実施の一形態の撮像光学系の説明>
 図1は、実施形態における撮像光学系の説明のための、その構成を模式的に示したレンズ断面図である。図2は、主光線の像面入射角の定義を示す模式図である。なお、以下において、主光線の像面入射角は、図2に示すように、撮像面への入射光線のうち最大画角の主光線の、像面に立てた垂線に対する角度(deg、度)αであり、像面入射角αは、射出瞳位置が像面より物体側にある場合の主光線角度を正方向とする。
<Description of Imaging Optical System of One Embodiment>
FIG. 1 is a lens cross-sectional view schematically illustrating the configuration of an imaging optical system in the embodiment. FIG. 2 is a schematic diagram showing the definition of the image plane incident angle of the chief ray. In the following, the image plane incident angle of the chief ray is the angle (deg, degree) of the chief ray having the maximum field angle among the incident rays to the imaging surface with respect to the vertical line standing on the image plane, as shown in FIG. The image plane incident angle α is the principal ray angle when the exit pupil position is on the object side with respect to the image plane.
 図1において、この撮像光学系1は、光学像を電気的な信号に変換する撮像素子17の受光面上に、物体(被写体)の光学像を形成するものであって、物体側より像側へ順に、第1ないし第4レンズ11~14の4枚のレンズから構成されて成る光学系である。撮像素子17は、その受光面が撮像光学系1の像面と略一致するように配置される(像面=撮像面)。 In FIG. 1, the imaging optical system 1 forms an optical image of an object (subject) on the light receiving surface of an image sensor 17 that converts an optical image into an electrical signal. The optical system is composed of four lenses of first to fourth lenses 11 to 14 in order. The image sensor 17 is arranged such that its light receiving surface substantially coincides with the image plane of the imaging optical system 1 (image plane = imaging plane).
 そして、この撮像光学系1では、第1ないし第4レンズ11~14が全玉繰り出しで光軸方向に移動することによってフォーカシングが行われる。 In the imaging optical system 1, focusing is performed by moving the first to fourth lenses 11 to 14 in the optical axis direction by extending all the balls.
 さらに、第1レンズ11は、正の屈折力を有し、第2レンズ12は、負の屈折力を有し、第3レンズ13は、正の屈折力を有し、そして、第4レンズ14は、両面が凹面であって負の屈折力を有している。より具体的には、図1に示す例では、第1レンズ11は、両面が凸形状である両凸の正レンズであり、第2レンズ12は、物体側に凸面を向けたメニスカス形状の負メニスカスレンズであり、第3レンズ13は、像側に凸の正メニスカスレンズであり、そして、第4レンズ14は、両凹の負レンズである。これら第1ないし第4レンズ11~15は、両面が非球面である。さらに、図1に示す例では、第4レンズ14は、その中心(光軸近傍)では負の屈折力を持ち、有効領域端に向かうに従い負の屈折力が弱くなり、光軸AXに沿ったレンズ断面(光軸AXに沿って光軸AXを含むレンズ断面)の輪郭線において光軸AXの交点から前記有効領域端に向かった場合に垂接点IP4、IP4を有している。 Further, the first lens 11 has a positive refractive power, the second lens 12 has a negative refractive power, the third lens 13 has a positive refractive power, and the fourth lens 14. The both surfaces are concave and have negative refractive power. More specifically, in the example shown in FIG. 1, the first lens 11 is a biconvex positive lens having convex surfaces on both sides, and the second lens 12 is a meniscus negative lens having a convex surface facing the object side. The third lens 13 is a positive meniscus lens convex to the image side, and the fourth lens 14 is a biconcave negative lens. These first to fourth lenses 11 to 15 are aspheric on both surfaces. Further, in the example shown in FIG. 1, the fourth lens 14 has a negative refractive power at the center (near the optical axis), and the negative refractive power becomes weaker toward the end of the effective region, and the optical axis AX is aligned. In the contour line of the lens cross section (the lens cross section including the optical axis AX along the optical axis AX), the contact points IP4 and IP4 are provided when going from the intersection of the optical axes AX to the effective area end.
 これら第1ないし第4レンズ11~14は、例えばガラスモールドレンズであってもよく、また例えば、プラスチック等の樹脂材料製レンズであってもよい。特に、携帯端末に搭載する場合には軽量化や低コスト化の観点から、また加工性の観点から、樹脂材料製レンズが好ましい。図1に示す例では、これら第1ないし第4レンズ11~14は、樹脂材料製レンズである。 These first to fourth lenses 11 to 14 may be glass molded lenses, for example, or may be lenses made of a resin material such as plastic. In particular, when mounted on a portable terminal, a lens made of a resin material is preferable from the viewpoint of weight reduction and cost reduction and from the viewpoint of workability. In the example shown in FIG. 1, the first to fourth lenses 11 to 14 are resin material lenses.
 また、この撮像光学系1は、第1レンズ11における物体側面の曲率半径をr1とし、そして、第2レンズ12における像側面の曲率半径をr4とした場合に、下記(1)の条件式を満たしている。
-1000<(r1+r4)/(r1-r4)<-55   ・・・(1)
Further, the imaging optical system 1 satisfies the following conditional expression (1) when the radius of curvature of the object side surface of the first lens 11 is r1 and the radius of curvature of the image side surface of the second lens 12 is r4. Satisfies.
−1000 <(r1 + r4) / (r1−r4) <− 55 (1)
 そして、この撮像光学系1には、例えば開口絞り等の光学絞り15が第1レンズ11の物体側に配置されている。 In the imaging optical system 1, an optical diaphragm 15 such as an aperture diaphragm is disposed on the object side of the first lens 11.
 さらに、この撮像光学系1の像側、すなわち、第4レンズ14における像側には、フィルタ16や撮像素子17が配置される。フィルタ16は、平行平板状の光学素子であり、各種光学フィルタや、撮像素子17のカバーガラス(シールガラス)等を模式的に表したものである。使用用途、撮像素子、カメラの構成等に応じて、光学的ローパスフィルタ、赤外線カットフィルタ等の光学フィルタを適宜に配置することが可能である。撮像素子17は、この撮像光学系1によって結像された被写体の光学像における光量に応じてR(赤)、G(緑)、B(青)の各成分の画像信号に光電変換して所定の画像処理回路(不図示)へ出力する素子である。これらによって物体側の被写体の光学像が、撮像光学系1によりその光軸AXに沿って所定の倍率で撮像素子17の受光面まで導かれ、撮像素子17によって前記被写体の光学像が撮像される。 Further, a filter 16 and an image sensor 17 are disposed on the image side of the image pickup optical system 1, that is, on the image side of the fourth lens 14. The filter 16 is a parallel plate-like optical element, and schematically represents various optical filters, a cover glass (seal glass) of the image sensor 17, and the like. An optical filter such as an optical low-pass filter or an infrared cut filter can be appropriately disposed according to the use application, the configuration of the image sensor, the camera, or the like. The image sensor 17 performs photoelectric conversion to image signals of R (red), G (green), and B (blue) components in accordance with the amount of light in the optical image of the subject imaged by the imaging optical system 1, and performs predetermined conversion. This is an element that outputs to an image processing circuit (not shown). As a result, the optical image of the object on the object side is guided to the light receiving surface of the image sensor 17 at a predetermined magnification along the optical axis AX by the imaging optical system 1, and the optical image of the object is captured by the image sensor 17. .
 このような構成の撮像光学系1は、4枚の第1ないし第4レンズ11~14から構成されて成り、それぞれの第1ないし第4レンズ11~14に上記光学特性を持たせて、これら4枚の第1ないし第4レンズ11~14を物体側から像側へ順に配置することによって、F2.4程度の明るさで、小型でありながら、より良好に諸収差を補正することが可能となる。 The imaging optical system 1 having such a configuration is composed of four first to fourth lenses 11 to 14, and each of the first to fourth lenses 11 to 14 has the above optical characteristics, and these By arranging the four first to fourth lenses 11 to 14 in order from the object side to the image side, various aberrations can be corrected more favorably with a brightness of about F2.4 and a small size. It becomes.
 より詳しくは、撮像光学系1は、物体側より順に、絞り15と、第1ないし第3レンズ11~13から成る正レンズ群Gr1と、負の第4レンズ14から成る負レンズ群Gr2とを配置する、いわゆるテレフォトタイプであって、撮像光学系(撮像レンズ)1の全長の短縮化には有利なレンズ構成となっている。 More specifically, the imaging optical system 1 includes, in order from the object side, a diaphragm 15, a positive lens group Gr1 including first to third lenses 11 to 13, and a negative lens group Gr2 including a negative fourth lens 14. It is a so-called telephoto type to be arranged, and has a lens configuration that is advantageous for shortening the overall length of the imaging optical system (imaging lens) 1.
 そして、第1ないし第4レンズ11~14の4枚構成のうちの2枚、図1に示す例では、第2および第4レンズ12、14が負レンズとされることによって、発散作用を有する面をより多くすることができ、ペッツバール和の補正が容易となる。この結果、この撮像光学系1は、画面周辺部まで良好な結像性能を確保することができる。 In addition, in the example shown in FIG. 1, two of the four lens configurations of the first to fourth lenses 11 to 14, in the example shown in FIG. 1, the second and fourth lenses 12, 14 have a diverging action. The number of surfaces can be increased, and the Petzval sum can be easily corrected. As a result, the imaging optical system 1 can ensure good imaging performance up to the periphery of the screen.
 また、絞り15を第1レンズ11の物体側に配置することによって、この撮像光学系1は、像側光束のテレセントリック性を確保することができる。 Further, by arranging the diaphragm 15 on the object side of the first lens 11, the imaging optical system 1 can ensure the telecentricity of the image-side light beam.
 さらに、第4レンズ14を両凹の形状とすることによって、第4レンズ14の周辺部が像面方向に大きく張り出すことがなくなるため、第4レンズ14と例えば固体撮像素子等の撮像素子17における受光面との間に配置される、例えば光学的ローパスフィルタ、赤外線カットフィルタ、または撮像素子パッケージのシールガラス等の平行平板(図1に示す例ではフィルタ16)や、撮像素子17の基板等との接触を避けながらも、バックフォーカスを短くすることができ、撮像光学系1の全長の短縮化に有利な構成となっている。 Furthermore, by making the fourth lens 14 into a biconcave shape, the peripheral portion of the fourth lens 14 does not protrude greatly in the image plane direction, and therefore the fourth lens 14 and the image sensor 17 such as a solid-state image sensor, for example. For example, a parallel plate (filter 16 in the example shown in FIG. 1) such as an optical low-pass filter, an infrared cut filter, or a seal glass of the image sensor package, a substrate of the image sensor 17, etc. The back focus can be shortened while avoiding contact with the imaging optical system 1, which is advantageous for shortening the overall length of the imaging optical system 1.
 そして、上記条件式(1)は、第1レンズ11の物体側面と第2レンズ12の像側面の曲率半径との関係を規定することによって、撮像光学系1の全長の短縮化と適切な収差補正を達成するための条件式である。この条件式(1)の値がその上限値を下回ることによって、第2レンズ12の像側面の曲率半径が強くなり過ぎず、高次の球面収差やコマ収差の発生が抑えられ、さらに製造誤差の影響も小さくなって量産性も向上するため、好ましい。一方、この条件式(1)の値がその下限値を上回ることによって、第1レンズ11の物体側面に対して、第2レンズ12の像面側の曲率半径が弱くなりすぎることが防がれ、主点位置を物体側に配置することができるため、撮像光学系1の全長を短縮化することができ、好ましい。 The conditional expression (1) defines the relationship between the radius of curvature of the object side surface of the first lens 11 and the image side surface of the second lens 12, thereby reducing the overall length of the imaging optical system 1 and appropriate aberrations. It is a conditional expression for achieving correction. When the value of conditional expression (1) is less than the upper limit, the radius of curvature of the image side surface of the second lens 12 does not become too strong, the occurrence of higher-order spherical aberration and coma aberration is suppressed, and further, manufacturing errors This is preferable because the influence of the above is reduced and the mass productivity is improved. On the other hand, when the value of conditional expression (1) exceeds the lower limit, it is prevented that the radius of curvature on the image plane side of the second lens 12 becomes too weak with respect to the object side surface of the first lens 11. Since the principal point position can be arranged on the object side, the entire length of the imaging optical system 1 can be shortened, which is preferable.
 このような観点から、条件式(1)は、好ましくは、下記条件式(1A)である。
-800<(r1+r4)/(r1-r4)<-60   ・・・(1A)
From such a viewpoint, the conditional expression (1) is preferably the following conditional expression (1A).
−800 <(r1 + r4) / (r1−r4) <− 60 (1A)
 なお、小型化とは、本明細書では、撮像光学系全体の中で最も物体側のレンズにおけるレンズ面から、像側焦点までの光軸上での距離をLとし、撮像面対角線長(例えば固体撮像素子等における矩形実行画素領域の対角線長)を2Yとした場合に、L/2Y<1を満たすことをいい、より望ましくはL/2Y<0.9を満たすことである。像側焦点とは、光軸と平行な平行光線が撮像光学系に入射した場合の像点をいう。また、撮像光学系の最も像側の面と像側焦点との間に、例えば、光学的ローパスフィルタ、赤外線カットフィルタまたは固定撮像素子パッケージのシールガラス等の平行平板の部材が配置される場合には、この平行平板部材は、空気換算距離として前記式を計算するものとする。 In this specification, the term “miniaturization” means that the distance on the optical axis from the lens surface of the lens closest to the object side to the image side focal point in the entire imaging optical system is L, and the diagonal length of the imaging surface (for example, When the diagonal length of the rectangular execution pixel region in a solid-state imaging device or the like is 2Y, it means that L / 2Y <1 is satisfied, and more preferably L / 2Y <0.9 is satisfied. The image side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging optical system. Further, when a parallel plate member such as an optical low-pass filter, an infrared cut filter, or a seal glass of a fixed imaging device package is disposed between the most image-side surface and the image-side focal point of the imaging optical system. This parallel plate member calculates the above formula as an air equivalent distance.
 また、この撮像光学系1では、第1レンズ11は、両面が凸形状である。一般に、光学系の全長の短縮化を図るためには、第1レンズの屈折力(光学的パワー)を強く保つ必要がある。この撮像光学系1は、第1レンズ11を両凸形状とすることによって、光学的パワー配分を両面に分担させることができる。このため、このような構成の撮像光学系1は、片面側の曲率半径が極端に強く(小さく)なるのを防ぐことによって、高次の球面収差やコマ収差の発生を抑えることができる。 Moreover, in this imaging optical system 1, both surfaces of the first lens 11 are convex. Generally, in order to shorten the overall length of the optical system, it is necessary to keep the refractive power (optical power) of the first lens strong. The imaging optical system 1 can share the optical power distribution on both sides by forming the first lens 11 into a biconvex shape. Therefore, the imaging optical system 1 having such a configuration can suppress the occurrence of higher-order spherical aberration and coma aberration by preventing the curvature radius on one side from becoming extremely strong (small).
 また、この撮像光学系1では、第2レンズ12は、物体側に凸面を向けたメニスカス形状である。このような構成の撮像光学系1は、第2レンズ12を物体側に凸面を向けたメニスカス形状とすることによって、主点位置を物体側に配置することが可能になり、撮像光学系1の全長の短縮化を達成することができる。 In the imaging optical system 1, the second lens 12 has a meniscus shape with a convex surface facing the object side. The imaging optical system 1 having such a configuration makes it possible to arrange the principal point position on the object side by forming the second lens 12 in a meniscus shape having a convex surface facing the object side. Shortening of the overall length can be achieved.
 また、上述の撮像光学系1では、第1ないし第4レンズ11~14の全ては、樹脂材料で形成された樹脂材料製レンズである。 In the imaging optical system 1 described above, all of the first to fourth lenses 11 to 14 are resin material lenses made of a resin material.
 近年では、固体撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズの小さい装置が開発されている。このような撮像面サイズの小さい固体撮像素子用の撮像光学系は、全系の焦点距離を比較的に短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。したがって、手間のかかる研磨加工により製造するガラスレンズと比較すれば、全てのレンズを、射出成形により製造されるプラスチックレンズで構成することにより、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。また、プラスチックレンズは、プレス温度を低くできることから、成形金型の損耗を抑えることができ、その結果、成形金型の交換回数やメンテナンス回数を減少させ、コスト低減を図ることができる。このため、本実施形態の撮像光学系1は、所定の性能を比較的容易に実現することができ、低コスト化を図ることができる。 Recently, for the purpose of downsizing the entire solid-state imaging device, even a solid-state imaging device having the same number of pixels has been developed as a device having a small pixel pitch and consequently a small imaging surface size. In such an imaging optical system for a solid-state imaging device with a small imaging surface size, it is necessary to make the focal length of the entire system relatively short, so that the curvature radius and the outer diameter of each lens are considerably reduced. Therefore, compared to glass lenses manufactured by time-consuming polishing, all lenses are made of plastic lenses manufactured by injection molding, so that even lenses with small radii of curvature and outer diameters are inexpensive. Mass production is possible. Further, since the plastic lens can lower the press temperature, it is possible to suppress the wear of the molding die. As a result, it is possible to reduce costs by reducing the number of replacements and maintenance of the molding die. For this reason, the imaging optical system 1 of this embodiment can implement | achieve predetermined performance comparatively easily, and can aim at cost reduction.
 また、この撮像光学系1では、第1レンズおよび第2レンズの合成焦点距離をf2とし、そして、撮像光学系1全系の焦点距離をfとした場合に、第1レンズ11および第2レンズ12は、下記(2)の条件式を満たしている。
1<f12/f<1.7   ・・・(2)
Further, in this imaging optical system 1, when the combined focal length of the first lens and the second lens is f2, and the focal length of the entire imaging optical system 1 is f, the first lens 11 and the second lens 12 satisfies the following conditional expression (2).
1 <f12 / f <1.7 (2)
 この条件式(2)は、第1レンズ11および第2レンズ12の合成焦点距離f12を適切に設定し、より好ましい撮像光学系1全長の短縮化および収差補正を達成するための条件式である。したがって、上記条件式(2)の値がその上限値を下回ることによって、このような構成の撮像光学系1は、第1レンズ11と第2レンズ12との正の合成焦点距離を適度に維持することができ、その全長を短縮化することができる。一方、上記条件式(2)の値がその下限値を上回ることによって、第1レンズ11と第2レンズ12との正の合成焦点距離が短くなり過ぎるのを防ぐことができ、高次の球面収差やコマ収差の発生を抑えることができる。 Conditional expression (2) is a conditional expression for appropriately setting the combined focal length f12 of the first lens 11 and the second lens 12 and achieving more preferable shortening of the entire length of the imaging optical system 1 and correction of aberration. . Therefore, when the value of the conditional expression (2) falls below the upper limit value, the imaging optical system 1 having such a configuration appropriately maintains the positive composite focal length of the first lens 11 and the second lens 12. The total length can be shortened. On the other hand, when the value of the conditional expression (2) exceeds the lower limit value, it is possible to prevent the positive combined focal length of the first lens 11 and the second lens 12 from becoming too short, and a higher order spherical surface. Occurrence of aberration and coma can be suppressed.
 このような観点から、条件式(2)は、好ましくは、下記条件式(2A)である。
1.15<f12/f<1.5   ・・・(2A)
From such a viewpoint, the conditional expression (2) is preferably the following conditional expression (2A).
1.15 <f12 / f <1.5 (2A)
 また、この撮像光学系1では、第4レンズ14は、第4レンズの光軸上の厚さをT4とする場合に、下記(3)の条件式を満たしている。
0.05<T4/f<0.17   ・・・(3)
In the imaging optical system 1, the fourth lens 14 satisfies the following conditional expression (3) when the thickness of the fourth lens on the optical axis is T4.
0.05 <T4 / f <0.17 (3)
 上述したように、撮像光学系1の第4レンズ14の像側面は、光軸AXから周辺に行くに従って負の屈折力を弱くするとともに、垂接点を有する非球面形状となっている。このため、このような構成の撮像光学系1は、像側光束のテレセントリック特性を確保し易い。また、第3レンズ13の像側面は、レンズ周辺部で過度に負の屈折力を弱くする必要がなくなるため、このような構成の撮像光学系1は、軸外収差を良好に補正することができる。 As described above, the image side surface of the fourth lens 14 of the imaging optical system 1 has an aspherical shape that weakens the negative refractive power from the optical axis AX toward the periphery and has a perpendicular contact. For this reason, the imaging optical system 1 having such a configuration is easy to ensure the telecentric characteristics of the image-side light beam. Further, since the image side surface of the third lens 13 does not need to weaken the negative refractive power excessively at the periphery of the lens, the imaging optical system 1 having such a configuration can satisfactorily correct off-axis aberrations. it can.
 そして、上記条件式(3)は、第4レンズ14の軸上厚みを適切に設定し、撮像光学系1の像面性を適切に達成するための条件式である。第4レンズ14は、一般に、他レンズと比べ、光軸付近での屈折力と周辺での屈折力とが大きく異なるため、軸上厚みは、像面湾曲に対し大きな影響を与える。このため、上記条件式(3)の値が上記範囲内に入る(上記範囲を充足する)ことによって、このような構成の撮像光学系1は、撮像光学系1の像面性がオーバー側やアンダー側に倒れすぎるのを防ぐことができる。 The conditional expression (3) is a conditional expression for appropriately setting the axial thickness of the fourth lens 14 and appropriately achieving the image plane property of the imaging optical system 1. In general, the fourth lens 14 has a refractive power in the vicinity of the optical axis and a refractive power in the vicinity that are significantly different from those of other lenses, and thus the axial thickness has a great influence on the curvature of field. For this reason, when the value of the conditional expression (3) falls within the above range (satisfies the above range), the imaging optical system 1 having such a configuration has an image plane property of the imaging optical system 1 of the over side. It can be prevented from falling too much to the under side.
 このような観点から、条件式(3)は、好ましくは、下記条件式(3A)である。
0.08<T4/f<0.15   ・・・(3A)
From such a viewpoint, the conditional expression (3) is preferably the following conditional expression (3A).
0.08 <T4 / f <0.15 (3A)
 なお、垂接点とは、レンズの有効半径内であって、光軸に沿ったレンズ断面(光軸に沿って該光軸を含むレンズ断面)の輪郭線の曲線上の個々の点において、非球面頂点の接平面が光軸と垂直な平面となるような非球面上の点のことである。有効領域とは、設計上、光学的にレンズとして使用される領域として設定された領域をいう。 In addition, the perpendicular contact is within the effective radius of the lens, and at each point on the contour curve of the lens cross section along the optical axis (the lens cross section including the optical axis along the optical axis) A point on the aspherical surface where the tangent plane of the spherical vertex is a plane perpendicular to the optical axis. The effective area refers to an area set as an area that is optically used as a lens by design.
 また、この撮像光学系1では、第4レンズ14における物体側面の曲率半径をr7とし、そして、第4レンズ14における像側面の曲率半径をr8とした場合に、第4レンズ14は、下記(4)の条件式を満たしている。
0.1<(r7+r8)/(r7-r8)<1・・・(4)
In the imaging optical system 1, when the radius of curvature of the object side surface of the fourth lens 14 is r7 and the radius of curvature of the image side surface of the fourth lens 14 is r8, the fourth lens 14 has the following ( The conditional expression 4) is satisfied.
0.1 <(r7 + r8) / (r7−r8) <1 (4)
 この条件式(4)は、第4レンズ14の面形状を適切に設定し、バックフォーカスを最適化するための条件式である。したがって、このような構成の撮像光学系1では、上記条件式(4)の値がその上限値を下回ることによって、第4レンズ14の周辺部が像面方向に大きく張り出すことがなくなり、このため、このような構成の撮像光学系1は、第4レンズ14と撮像素子17との間に配置される、例えば光学的ローパスフィルタ、赤外線カットフィルタ、または撮像素子パッケージのシールガラス等の平行平板や、撮像素子17の基板等の部材との接触を避けることができる。一方、上記条件式(4)の値がその下限値を上回ることによって、第4レンズ14の物体側面の屈折力を適度に維持してバックフォーカスを短縮化することによって、このような構成の撮像光学系1は、撮像光学系1の全長の短縮化が可能となる。 This conditional expression (4) is a conditional expression for setting the surface shape of the fourth lens 14 appropriately and optimizing the back focus. Therefore, in the imaging optical system 1 having such a configuration, when the value of the conditional expression (4) is less than the upper limit value, the peripheral portion of the fourth lens 14 is not greatly projected in the image plane direction. For this reason, the imaging optical system 1 having such a configuration is arranged between the fourth lens 14 and the imaging element 17, and is a parallel flat plate such as an optical low-pass filter, an infrared cut filter, or a sealing glass of an imaging element package, for example. In addition, it is possible to avoid contact of the image sensor 17 with a member such as a substrate. On the other hand, when the value of the conditional expression (4) exceeds the lower limit value, the refractive power of the object side surface of the fourth lens 14 is appropriately maintained to shorten the back focus, thereby imaging with such a configuration. The optical system 1 can shorten the overall length of the imaging optical system 1.
 このような観点から、条件式(4)は、好ましくは、下記条件式(4A)である。
0.5<(r7+r8)/(r7-r8)<1・・・(4A)
From such a viewpoint, the conditional expression (4) is preferably the following conditional expression (4A).
0.5 <(r7 + r8) / (r7−r8) <1 (4A)
 また、この撮像光学系1では、第2レンズ12における像側面の曲率半径をr3とした場合に、第2レンズ12は、下記(5)の条件式を満たしている。
1.6<r3/f<2.2   ・・・(5)
In the imaging optical system 1, when the curvature radius of the image side surface of the second lens 12 is r3, the second lens 12 satisfies the following conditional expression (5).
1.6 <r3 / f <2.2 (5)
 この条件式(5)は、第2レンズ12の物体側面の曲率半径を適切に設定し、撮像光学系1の全長の短縮化と適切な収差補正とを達成するための条件式である。上記条件式(5)の値がその上限値を下回ることによって、第2レンズ12の負の光学的パワーが大きくなり過ぎるのを防ぐことができ、このような構成の撮像光学系1は、撮像光学系1の全長の短縮化が達成できる。一方、上記条件式(5)の値がその下限値を上回ることによって、このような構成の撮像光学系1は、第2レンズ12の物体側面で発生する高次の球面収差やコマ収差を抑えることができる。 This conditional expression (5) is a conditional expression for appropriately setting the radius of curvature of the object side surface of the second lens 12 to achieve the shortening of the entire length of the imaging optical system 1 and appropriate aberration correction. When the value of the conditional expression (5) is below the upper limit value, it is possible to prevent the negative optical power of the second lens 12 from becoming too large. The imaging optical system 1 having such a configuration can capture images. The overall length of the optical system 1 can be shortened. On the other hand, when the value of the conditional expression (5) exceeds the lower limit, the imaging optical system 1 having such a configuration suppresses higher-order spherical aberration and coma aberration generated on the object side surface of the second lens 12. be able to.
 このような観点から、条件式(5)は、好ましくは、下記条件式(5A)である。
1.75<r3/f<2.15   ・・・(5A)
From such a viewpoint, the conditional expression (5) is preferably the following conditional expression (5A).
1.75 <r3 / f <2.15 (5A)
 また、この撮像光学系1では、第3レンズ13の光軸上の厚さをT3とした場合に、第3レンズは、下記(6)の条件式を満たす。
0.1<T3/f<0.6   ・・・(6)
In the imaging optical system 1, when the thickness of the third lens 13 on the optical axis is T3, the third lens satisfies the following conditional expression (6).
0.1 <T3 / f <0.6 (6)
 この条件式(6)は、第3レンズ13の軸上厚さT3を適切に設定し、撮像光学系1の全長の短縮化と収差補正とを達成するための条件式である。上記条件式(6)の値がその下限値を上回ることによって、このような構成の撮像光学系1は、第3レンズ13の焦点距離f3を適度に維持することができ、撮像光学系1の全長の短縮化を達成することができる。一方、上記条件式(6)の値がその上限値を下回ることによって、このような構成の撮像光学系1は、第3レンズ13の焦点距離f3が短くなり過ぎず、高次の球面収差やコマ収差の発生を抑えることができる。 This conditional expression (6) is a conditional expression for setting the on-axis thickness T3 of the third lens 13 appropriately to achieve the shortening of the entire length of the imaging optical system 1 and the aberration correction. When the value of the conditional expression (6) exceeds the lower limit value, the imaging optical system 1 having such a configuration can appropriately maintain the focal length f3 of the third lens 13, and the imaging optical system 1 Shortening of the overall length can be achieved. On the other hand, when the value of the conditional expression (6) is less than the upper limit value, the imaging optical system 1 having such a configuration does not make the focal length f3 of the third lens 13 too short. Generation of coma aberration can be suppressed.
 このような観点から、条件式(6)は、好ましくは、下記条件式(6A)である。
0.25<T3/f<0.4   ・・・(6)
From such a viewpoint, the conditional expression (6) is preferably the following conditional expression (6A).
0.25 <T3 / f <0.4 (6)
 また、これら上述の撮像光学系1において、可動する第1ないし第4レンズ11~14等の駆動には、カムやステッピングモータ等が用いられてもよいし、あるいは、圧電アクチュエータが用いられてもよい。圧電アクチュエータを用いる場合では、駆動装置の体積および消費電力の増加を抑制しつつ、各群を独立に駆動させることも可能で、撮像装置の更なるコンパクト化を図ることができる。 In the above-described imaging optical system 1, a cam, a stepping motor, or the like may be used for driving the movable first to fourth lenses 11 to 14, or a piezoelectric actuator may be used. Good. In the case of using the piezoelectric actuator, it is possible to drive each group independently while suppressing an increase in the volume and power consumption of the driving device, and the imaging device can be further downsized.
 また、上述では、樹脂材料製レンズであったが、これら上述の撮像光学系1において、非球面を有するガラスレンズが用いられてもよい。この場合に、この非球面ガラスレンズは、ガラスモールド非球面レンズや、研削非球面ガラスレンズや、複合型非球面レンズ(球面ガラスレンズ上に非球面形状の樹脂を形成したもの)であってもよい。ガラスモールド非球面レンズは、大量生産に向き、好ましく、複合型非球面レンズは、基板となり得るガラス材料の種類が多いため、設計の自由度が高くなる。特に、高屈折率材料を用いた非球面レンズでは、モールド形成が容易ではないため、複合型非球面レンズが好ましい。また、片面非球面の場合には、複合型非球面レンズの利点を最大限に活用することが可能となる。 In the above description, the lens is made of a resin material. However, in the above-described imaging optical system 1, a glass lens having an aspherical surface may be used. In this case, the aspheric glass lens may be a glass molded aspheric lens, a ground aspheric glass lens, or a composite aspheric lens (aspheric glass resin formed on a spherical glass lens). Good. Glass molded aspherical lenses are suitable for mass production, and composite aspherical lenses have a high degree of design freedom because there are many types of glass materials that can serve as substrates. In particular, an aspherical lens using a high refractive index material is not easy to mold, so a composite aspherical lens is preferable. In the case of a single-sided aspherical surface, the advantages of the composite aspherical lens can be fully utilized.
 また、これら上述の撮像光学系1において、プラスチックレンズを用いる場合では、プラスチック(樹脂材料)中に最大長が30ナノメートル以下の粒子を分散させた素材を用いて成形したレンズであることが好ましい。 In the above-described imaging optical system 1, when a plastic lens is used, it is preferably a lens molded using a material in which particles having a maximum length of 30 nanometers or less are dispersed in plastic (resin material). .
 一般に透明な樹脂材料に微粒子を混合させると、光が散乱し透過率が低下するので、光学材料として使用することが困難であったが、微粒子の大きさを透過光束の波長よりも小さくすることによって、光は、実質的に散乱しない。そして、樹脂材料は、温度上昇に伴って屈折率が低下してしまうが、無機粒子は、逆に、温度上昇に伴って屈折率が上昇する。このため、このような温度依存性を利用して互いに打ち消し合うように作用させることで、温度変化に対して屈折率変化がほとんど生じないようにすることができる。より具体的には、母材となる樹脂材料に最大長で30ナノメートル以下の無機微粒子を分散させることによって、屈折率の温度依存性を低減した樹脂材料となる。例えば、アクリルに酸化ニオブ(Nb)の微粒子を分散させる。これら上述の撮像光学系1において、比較的屈折力の大きなレンズ、またはすべてのレンズに、このような無機粒子を分散させたプラスチック材料を用いることにより、撮像光学系1全系の温度変化時の像点位置変動を小さく抑えることが可能となる。 In general, mixing fine particles with a transparent resin material scatters light and reduces the transmittance, making it difficult to use as an optical material. However, the size of the fine particles should be smaller than the wavelength of the transmitted light beam. The light is not substantially scattered. And although a resin material will have a refractive index falling with a temperature rise, an inorganic particle will raise a refractive index with a temperature rise conversely. For this reason, it is possible to make the refractive index change hardly occur with respect to the temperature change by acting so as to cancel each other by utilizing such temperature dependency. More specifically, by dispersing inorganic fine particles having a maximum length of 30 nanometers or less in a resin material as a base material, a resin material with reduced temperature dependency of the refractive index is obtained. For example, fine particles of niobium oxide (Nb 2 O 5 ) are dispersed in acrylic. In the imaging optical system 1 described above, a plastic material in which such inorganic particles are dispersed is used for a lens having a relatively large refractive power or all the lenses, so that the temperature of the entire imaging optical system 1 can be changed. Image point position fluctuation can be suppressed to a small level.
 このような無機微粒子を分散させたプラスチック材料製レンズは、以下のように成形されることが好ましい。 Such a lens made of plastic material in which inorganic fine particles are dispersed is preferably molded as follows.
 屈折率の温度変化について説明すると、屈折率の温度変化n(T)は、ローレンツ・ローレンツの式に基づいて、屈折率nを温度Tで微分することによって式Faで表される。
n(T)=((n+2)×(n-1))/6n×(-3α+(1/[R])×(∂[R]/∂T))   ・・・(Fa)
ただし、αは、線膨張係数であり、[R]は、分子屈折である。
The temperature change n (T) of the refractive index is expressed by the formula Fa by differentiating the refractive index n with respect to the temperature T based on the Lorentz-Lorentz equation.
n (T) = ((n 2 +2) × (n 2 −1)) / 6n × (−3α + (1 / [R]) × (∂ [R] / ∂T)) (Fa)
Where α is a linear expansion coefficient and [R] is molecular refraction.
 樹脂材料の場合では、一般に、屈折率の温度依存性に対する寄与は、式Fa中の第1項に較べて第2項が小さく、ほぼ無視することができる。例えば、PMMA樹脂の場合では、線膨張係数αは、7×10-5であって、式Faに代入すると、n(T)=-12×10-5(/℃)となり、実測値と略一致する。 In the case of a resin material, in general, the contribution of the refractive index to the temperature dependence is smaller in the second term than in the first term in the formula Fa, and can be almost ignored. For example, in the case of PMMA resin, the linear expansion coefficient α is 7 × 10 −5 , and if it is substituted into the formula Fa, it becomes n (T) = − 12 × 10 −5 (/ ° C.), which is substantially equal to the actually measured value. Match.
 具体的には、従来は、-12×10-5[/℃]程度であった屈折率の温度変化n(T)を、絶対値で8×10-5[/℃]未満に抑えることが好ましい。さらに好ましくは、絶対値で6×10-5[/℃]未満にすることである。 Specifically, the temperature change n (T) of the refractive index, which was conventionally about −12 × 10 −5 [/ ° C.], can be suppressed to an absolute value of less than 8 × 10 −5 [/ ° C.]. preferable. More preferably, the absolute value is less than 6 × 10 −5 [/ ° C.].
 よって、このような樹脂材料としては、ポリオレフィン系の樹脂材料やポリカーボネイト系の樹脂材料やポリエステル系の樹脂材料が好ましい。ポリオレフィン系の樹脂材料では、屈折率の温度変化n(T)は、約-11×10-5(/℃)となり、ポリカーボネイト系の樹脂材料では、屈折率の温度変化n(T)は、約-14×10-5(/℃)となり、そして、ポリエステル系の樹脂材料では、屈折率の温度変化n(T)は、約-13×10-5(/℃)となる。 Therefore, as such a resin material, a polyolefin resin material, a polycarbonate resin material, or a polyester resin material is preferable. In the polyolefin resin material, the refractive index temperature change n (T) is about −11 × 10 −5 (/ ° C.), and in the polycarbonate resin material, the refractive index temperature change n (T) is about −14 × 10 −5 (/ ° C.), and in the case of a polyester resin material, the temperature change n (T) of the refractive index is about −13 × 10 −5 (/ ° C.).
 <撮像光学系を組み込んだデジタル機器の説明>
 次に、上述の撮像光学系1が組み込まれたデジタル機器について説明する。
<Description of digital equipment incorporating imaging optical system>
Next, a digital device in which the above-described imaging optical system 1 is incorporated will be described.
 図3は、実施形態におけるデジタル機器の構成を示すブロック図である。デジタル機器3は、撮像機能のために、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35、記憶部36およびI/F部37を備えて構成される。デジタル機器3としては、例えば、デジタルスチルカメラ、ビデオカメラ、監視カメラ(モニタカメラ)、携帯電話機や携帯情報端末(PDA)等の携帯端末、パーソナルコンピュータおよびモバイルコンピュータを挙げることができ、これらの周辺機器(例えば、マウス、スキャナおよびプリンタなど)を含んでよい。特に、本実施形態の撮像光学系1は、携帯電話機や携帯情報端末(PDA)等の携帯端末に搭載する上で充分にコンパクト化されており、この携帯端末に好適に搭載される。 FIG. 3 is a block diagram showing the configuration of the digital device in the embodiment. The digital device 3 includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a driving unit 34, a control unit 35, a storage unit 36, and an I / F unit 37 for the imaging function. Composed. Examples of the digital device 3 include a digital still camera, a video camera, a surveillance camera (monitor camera), a portable terminal such as a mobile phone or a personal digital assistant (PDA), a personal computer, and a mobile computer. Equipment (eg, a mouse, scanner, printer, etc.) may be included. In particular, the imaging optical system 1 of the present embodiment is sufficiently compact when mounted on a mobile terminal such as a mobile phone or a personal digital assistant (PDA), and is preferably mounted on this mobile terminal.
 撮像部30は、撮像装置21と撮像素子17とを備えて構成される。撮像装置21は、撮像レンズとして機能する図1に示したような撮像光学系1と、光軸方向にフォーカスのためのレンズを駆動してフォーカシングを行うための図略のレンズ駆動装置等とを備えて構成される。被写体からの光線は、撮像光学系1によって撮像素子17の受光面上に結像され、被写体の光学像となる。 The imaging unit 30 includes an imaging device 21 and an imaging element 17. The imaging device 21 includes an imaging optical system 1 as shown in FIG. 1 that functions as an imaging lens, a lens driving device (not shown), etc., for performing focusing by driving a lens for focusing in the optical axis direction. It is prepared for. Light rays from the subject are imaged on the light receiving surface of the image sensor 17 by the imaging optical system 1 and become an optical image of the subject.
 撮像素子17は、上述したように、撮像光学系1により結像された被写体の光学像をR,G,Bの色成分の電気信号(画像信号)に変換し、R,G,B各色の画像信号として画像生成部31に出力する。撮像素子17は、制御部35によって静止画あるいは動画のいずれか一方の撮像、または、撮像素子17における各画素の出力信号の読出し(水平同期、垂直同期、転送)などの撮像動作が制御される。 As described above, the imaging device 17 converts the optical image of the subject formed by the imaging optical system 1 into an electrical signal (image signal) of R, G, and B color components, and each of the R, G, and B colors. It outputs to the image generation part 31 as an image signal. The image sensor 17 is controlled by the control unit 35 for imaging operations such as imaging of either a still image or a moving image, or reading (horizontal synchronization, vertical synchronization, transfer) of an output signal of each pixel in the image sensor 17. .
 画像生成部31は、撮像素子17からのアナログ出力信号に対し、増幅処理、デジタル変換処理等を行うと共に、画像全体に対して適正な黒レベルの決定、γ補正、ホワイトバランス調整(WB調整)、輪郭補正および色ムラ補正等の周知の画像処理を行って、画像信号から画像データを生成する。画像生成部31で生成された画像データは、画像データバッファ32に出力される。 The image generation unit 31 performs amplification processing, digital conversion processing, and the like on the analog output signal from the image sensor 17 and determines an appropriate black level, γ correction, and white balance adjustment (WB adjustment) for the entire image. Then, known image processing such as contour correction and color unevenness correction is performed to generate image data from the image signal. The image data generated by the image generation unit 31 is output to the image data buffer 32.
 画像データバッファ32は、画像データを一時的に記憶するとともに、この画像データに対し画像処理部33によって後述の処理を行うための作業領域として用いられるメモリであり、例えば、揮発性の記憶素子であるRAM(Random Access Memory)などで構成される。 The image data buffer 32 is a memory that temporarily stores image data and is used as a work area for performing processing described later on the image data by the image processing unit 33. For example, the image data buffer 32 is a volatile storage element. It consists of a certain RAM (Random Access Memory).
 画像処理部33は、画像データバッファ32の画像データに対し、解像度変換等の所定の画像処理を行う回路である。 The image processing unit 33 is a circuit that performs predetermined image processing such as resolution conversion on the image data in the image data buffer 32.
 また、必要に応じて画像処理部33は、撮像素子17の受光面上に形成される被写体の光学像における歪みを補正する公知の歪み補正処理等の、撮像光学系1では補正しきれなかった収差を補正するように構成されてもよい。歪み補正は、収差によって歪んだ画像を肉眼で見える光景と同様な相似形の略歪みのない自然な画像に補正するものである。このように構成することによって、撮像光学系1によって撮像素子17へ導かれた被写体の光学像に歪みが生じていたとしても、略歪みのない自然な画像を生成することが可能となる。また、このような歪みを情報処理による画像処理で補正する構成では、特に、歪曲収差を除く他の諸収差だけを考慮すればよいので、撮像光学系1の設計の自由度が増し、設計がより容易となる。また、このような歪みを情報処理による画像処理で補正する構成では、特に、像面に近いレンズによる収差負担が軽減されるため、射出瞳位置の制御が容易となり、レンズ形状を加工性の良い形状にすることができる。 Further, if necessary, the image processing unit 33 could not be corrected by the imaging optical system 1 such as a known distortion correction process for correcting distortion in the optical image of the subject formed on the light receiving surface of the imaging element 17. It may be configured to correct aberrations. In the distortion correction, an image distorted by aberration is corrected to a natural image having a similar shape similar to a sight seen with the naked eye and having substantially no distortion. With this configuration, even if the optical image of the subject guided to the image sensor 17 by the imaging optical system 1 is distorted, it is possible to generate a natural image with substantially no distortion. Further, in the configuration in which such distortion is corrected by image processing by information processing, in particular, only other aberrations other than distortion aberration need to be considered, so that the degree of freedom in designing the imaging optical system 1 is increased and the design is improved. It becomes easier. In addition, in the configuration in which such distortion is corrected by image processing based on information processing, the aberration burden due to the lens close to the image plane is reduced, so that the exit pupil position can be easily controlled, and the lens shape is easy to process. It can be shaped.
 また、必要に応じて画像処理部33は、撮像素子17の受光面上に形成される被写体の光学像における周辺照度落ちを補正する公知の周辺照度落ち補正処理を含んでもよい。周辺照度落ち補正(シェーディング補正)は、周辺照度落ち補正を行うための補正データを予め記憶しておき、撮影後の画像(画素)に対して補正データを乗算することによって実行される。周辺照度落ちが主に撮像素子17における感度の入射角依存性、レンズの口径食およびコサイン4乗則等によって生じるため、前記補正データは、これら要因によって生じる照度落ちを補正するような所定値に設定される。このように構成することによって、撮像光学系1によって撮像素子17へ導かれた被写体の光学像に周辺照度落ちが生じていたとしても、周辺まで充分な照度を持った画像を生成することが可能となる。 Further, the image processing unit 33 may include a known peripheral illuminance decrease correction process for correcting the peripheral illuminance decrease in the optical image of the subject formed on the light receiving surface of the image sensor 17 as necessary. The peripheral illuminance drop correction (shading correction) is executed by storing correction data for performing the peripheral illuminance drop correction in advance and multiplying the image (pixel) after photographing by the correction data. Since the decrease in ambient illuminance mainly occurs due to the incident angle dependence of the sensitivity in the image sensor 17, the vignetting of the lens, the cosine fourth law, and the like, the correction data has a predetermined value that corrects the decrease in illuminance caused by these factors. Is set. With such a configuration, even if the peripheral illuminance drops in the optical image of the subject guided to the image sensor 17 by the imaging optical system 1, it is possible to generate an image having sufficient illuminance to the periphery. It becomes.
 なお、本実施形態では、撮像素子17の撮像面における画素ピッチに対し、色フィルタやオンチップマイクロレンズアレイの配置のピッチを、シェーディングを軽減するように僅かに小さく設定することによって、シェーディング補正が行われてもよい。このような構成では、前記ピッチを僅かに小さく設定することによって、撮像素子17における撮像面の周辺部に行くほど各画素に対し色フィルタやオンチップマイクロレンズアレイが撮像光学系1の光軸側へシフトするため、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより撮像素子17で発生するシェーディングが小さく抑えられる。 In this embodiment, the shading correction is performed by setting the pitch of the arrangement of the color filters and the on-chip microlens array slightly smaller than the pixel pitch on the imaging surface of the imaging device 17 so as to reduce the shading. It may be done. In such a configuration, by setting the pitch slightly small, a color filter and an on-chip microlens array are arranged on the optical axis side of the imaging optical system 1 for each pixel as it goes to the periphery of the imaging surface in the imaging element 17. Therefore, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, shading generated in the image sensor 17 is suppressed to a small level.
 駆動部34は、制御部35から出力される制御信号に基づいて図略の前記レンズ駆動装置を動作させることによって、所望のフォーカシングを行わせるように撮像光学系1におけるフォーカスのためのレンズを駆動する。 The driving unit 34 drives the lens for focusing in the imaging optical system 1 so as to perform desired focusing by operating the lens driving device (not shown) based on a control signal output from the control unit 35. To do.
 制御部35は、例えばマイクロプロセッサおよびその周辺回路などを備えて構成され、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、記憶部36およびI/F部37の各部の動作をその機能に従って制御する。すなわち、この制御部35によって、撮像装置21は、被写体の静止画撮影および動画撮影の少なくとも一方の撮影を実行するよう制御される。 The control unit 35 includes, for example, a microprocessor and its peripheral circuits, and includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a storage unit 36, and an I / F unit. The operation of each part 37 is controlled according to its function. In other words, the imaging device 21 is controlled by the control unit 35 to execute at least one of the still image shooting and the moving image shooting of the subject.
 記憶部36は、被写体の静止画撮影または動画撮影によって生成された画像データを記憶する記憶回路であり、例えば、不揮発性の記憶素子であるROM(Read Only Memory)や、書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)や、RAMなどを備えて構成される。つまり、記憶部36は、静止画用および動画用のメモリとしての機能を有する。 The storage unit 36 is a storage circuit that stores image data generated by still image shooting or moving image shooting of a subject. For example, a ROM (Read Only Memory) that is a nonvolatile storage element, a rewritable nonvolatile memory, or the like. It comprises an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a storage element, a RAM, and the like. That is, the storage unit 36 has a function as a still image memory and a moving image memory.
 I/F部37は、外部機器と画像データを送受信するインタフェースであり、例えば、USBやIEEE1394などの規格に準拠したインタフェースである。 The I / F unit 37 is an interface that transmits / receives image data to / from an external device, and is an interface that conforms to a standard such as USB or IEEE1394.
 このような構成のデジタル機器3の撮像動作に次について説明する。 The following describes the imaging operation of the digital device 3 having such a configuration.
 静止画を撮影する場合は、制御部35は、撮像装置21に静止画の撮影を行わせるように制御すると共に、駆動部34を介して撮像装置21の図略の前記レンズ駆動装置を動作させ、全玉繰り出しによってフォーカシングを行う。これにより、ピントの合った光学像が撮像素子17の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、撮影者は、前記ディスプレイを参照することで、主被写体をその画面中の所望の位置に収まるように調整することが可能となる。この状態でいわゆるシャッターボタン(不図示)が押されることによって、静止画用のメモリとしての記憶部36に画像データが格納され、静止画像が得られる。 When shooting a still image, the control unit 35 controls the imaging device 21 to shoot a still image and operates the lens driving device (not shown) of the imaging device 21 via the driving unit 34. , Focusing is performed by paying out all balls. As a result, the focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor 17, converted into image signals of R, G, and B color components, and then output to the image generation unit 31. . The image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). The photographer can adjust the main subject so as to be within a desired position on the screen by referring to the display. When a so-called shutter button (not shown) is pressed in this state, image data is stored in the storage unit 36 as a still image memory, and a still image is obtained.
 また、動画撮影を行う場合は、制御部35は、撮像装置21に動画の撮影を行わせるように制御する。後は、静止画撮影の場合と同様にして、撮影者は、前記ディスプレイ(不図示)を参照することで、撮像装置21を通して得た被写体の像が、その画面中の所望の位置に収まるように調整することができる。前記シャッターボタン(不図示)が押されることによって、動画撮影が開始される。そして、動画撮影時、制御部35は、撮像装置21に動画の撮影を行わせるように制御すると共に、駆動部34を介して撮像装置21の図略の前記レンズ駆動装置を動作させ、フォーカシングを行う。これによって、ピントの合った光学像が撮像素子17の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われた後、その画像信号に基づく画像がディスプレイ(不図示)に表示される。そして、もう一度前記シャッターボタン(不図示)を押すことで、動画撮影が終了する。撮影された動画像は、動画用のメモリとしての記憶部36に導かれて格納される。 In addition, when performing moving image shooting, the control unit 35 controls the imaging device 21 to perform moving image shooting. After that, as in the case of still image shooting, the photographer refers to the display (not shown) so that the image of the subject obtained through the imaging device 21 is placed at a desired position on the screen. Can be adjusted. When a shutter button (not shown) is pressed, moving image shooting is started. At the time of moving image shooting, the control unit 35 controls the imaging device 21 to shoot a moving image and operates the lens driving device (not shown) of the imaging device 21 via the driving unit 34 to perform focusing. Do. As a result, a focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor 17, converted into image signals of R, G, and B color components, and then output to the image generation unit 31. . The image signal is temporarily stored in the image data buffer 32, and after image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). Then, when the shutter button (not shown) is pressed again, the moving image shooting is completed. The captured moving image is guided to and stored in the storage unit 36 as a moving image memory.
 このような構成では、F2.4程度の明るさであって、小型でありながら、より良好に諸収差を補正することができる4枚のレンズ構成の撮像光学系1を用いた撮像装置21およびデジタル機器3が提供される。特に、撮像光学系1は、小型化および高性能化が図られているので、小型化(コンパクト化)を図りつつ高画素な撮像素子17を採用することができる。特に、撮像光学系1が小型で高画素撮像素子に適用可能であるので、高画素化や高機能化が進む携帯端末に好適である。その一例として、携帯電話機に撮像装置21を搭載した場合について、以下に説明する。 In such a configuration, the imaging device 21 using the imaging optical system 1 having a four-lens configuration, which has a brightness of about F2.4 and is small and can correct various aberrations better, and A digital device 3 is provided. In particular, since the imaging optical system 1 is reduced in size and performance, it is possible to employ the imaging element 17 having a high pixel while reducing the size (compacting). In particular, since the imaging optical system 1 is small and can be applied to a high-pixel imaging device, the imaging optical system 1 is suitable for a mobile terminal that is increasing in pixel count and functionality. As an example, a case where the imaging device 21 is mounted on a mobile phone will be described below.
 図4は、デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。図4(A)は、携帯電話機の操作面を示し、図4(B)は、操作面の裏面、つまり背面を示す。 FIG. 4 is an external configuration diagram of a camera-equipped mobile phone showing an embodiment of a digital device. 4A shows an operation surface of the mobile phone, and FIG. 4B shows a back surface of the operation surface, that is, a back surface.
 図4において、携帯電話機5には、上部にアンテナ51が備えられ、その操作面には、図4(A)に示すように、長方形のディスプレイ52、画像撮影モードの起動および静止画撮影と動画撮影との切り替えを行う画像撮影ボタン53、シャッタボタン55およびダイヤルボタン56が備えられている。 In FIG. 4, the mobile phone 5 is provided with an antenna 51 at the top, and on its operation surface, as shown in FIG. 4A, a rectangular display 52, activation of image shooting mode, still image shooting and moving image An image shooting button 53 for switching to shooting, a shutter button 55, and a dial button 56 are provided.
 そして、この携帯電話機5には、携帯電話網を用いた電話機能を実現する回路が内蔵されると共に、上述した撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35および記憶部36が内蔵されており、撮像部30の撮像装置21が背面に臨んでいる。 The cellular phone 5 incorporates a circuit for realizing a telephone function using a cellular phone network, and includes the above-described imaging unit 30, image generating unit 31, image data buffer 32, image processing unit 33, and driving unit. 34, the control part 35, and the memory | storage part 36 are incorporated, and the imaging device 21 of the imaging part 30 faces the back.
 画像撮影ボタン53が操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、静止画撮影モードの起動、実行や動画撮影モードの起動、実行等の、その操作内容に応じた動作を実行する。そして、シャッタボタン55が操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、静止画撮影や動画撮影等の、その操作内容に応じた動作を実行する。 When the image shooting button 53 is operated, a control signal indicating the operation content is output to the control unit 35, and the control unit 35 performs the activation and execution of the still image shooting mode and the activation and execution of the moving image shooting mode. Execute the action according to the operation content. When the shutter button 55 is operated, a control signal indicating the operation content is output to the control unit 35, and the control unit 35 executes an operation corresponding to the operation content such as still image shooting or moving image shooting. .
 <撮像光学系のより具体的な実施形態の説明>
 以下、図1に示したような撮像光学系1、すなわち、図3に示したようなデジタル機器3に搭載される撮像装置21に備えられる撮像光学系1の具体的な構成を、図面を参照しつつ説明する。
<Description of More Specific Embodiment of Imaging Optical System>
Hereinafter, the specific configuration of the imaging optical system 1 as shown in FIG. 1, that is, the imaging optical system 1 provided in the imaging device 21 mounted in the digital device 3 as shown in FIG. However, it will be explained.
 図5ないし図10は、実施例1ないし実施例6における撮像光学系におけるレンズの配列を示す断面図である。図11ないし図16は、実施例1ないし実施例6における撮像光学系の収差図である。 5 to 10 are cross-sectional views showing the arrangement of lenses in the image pickup optical system according to the first to sixth embodiments. FIGS. 11 to 16 are aberration diagrams of the imaging optical system in Examples 1 to 6. FIGS.
 実施例1~6の撮像光学系1A~1Fは、図5ないし図10のそれぞれに示すように、第1ないし第4レンズL1~L4が物体側から像側へ順に配置され、フォーカシング(ピント合わせ)の際には、第1ないし第4レンズL1~L4は、全玉繰り出しで光軸方向AXに一体で移動する。 In the imaging optical systems 1A to 1F of the first to sixth embodiments, as shown in FIGS. 5 to 10, the first to fourth lenses L1 to L4 are sequentially arranged from the object side to the image side, and focusing (focusing) is performed. ), The first to fourth lenses L1 to L4 move together in the optical axis direction AX when all the balls are extended.
 より詳しくは、実施例1~6の撮像光学系1A~1Fは、第1ないし第4レンズL1~L4が物体側から像側へ順に、次のように構成されている。 More specifically, in the imaging optical systems 1A to 1F of Examples 1 to 6, the first to fourth lenses L1 to L4 are configured as follows in order from the object side to the image side.
 第1レンズL1は、正の屈折力を有する両凸の正レンズであり、第2レンズL2は、物体側に凸面を向けた負の屈折力を有する負メニスカスレンズであり、第3レンズL3は、像側に凸面を向けた正の屈折力を有する正メニスカスレンズであり、そして、第4レンズL4は、負の屈折力を有する両凹の負レンズである。これら第1ないし第4レンズL1~L4は、両面が非球面であり、樹脂材料製レンズである。そして、第4レンズL4の像側面は、その中心(光軸AX)から有効領域端に向かうに従い前記負の屈折力が弱くなり、光軸AXに沿ったレンズ断面(光軸AXに沿って光軸AXを含むレンズ断面)の輪郭線において光軸AXの交点から有効領域端に向かった場合に垂接点IPA4~IPF4、IPA4~IPF4を有している。 The first lens L1 is a biconvex positive lens having positive refractive power, the second lens L2 is a negative meniscus lens having negative refractive power with the convex surface facing the object side, and the third lens L3 is The positive meniscus lens having positive refractive power with the convex surface facing the image side, and the fourth lens L4 is a biconcave negative lens having negative refractive power. These first to fourth lenses L1 to L4 are aspherical on both surfaces and are made of a resin material. Then, the negative refractive power of the image side surface of the fourth lens L4 decreases from the center (optical axis AX) toward the end of the effective area, and the lens cross section along the optical axis AX (light along the optical axis AX). In the contour line of the lens cross section including the axis AX), the contact points IPA4 to IPF4 and IPA4 to IPF4 are provided when going from the intersection of the optical axes AX to the end of the effective area.
 光学絞りSTは、第1レンズL1の物体側に配設される。光学絞りSTは、各実施例の場合も同様に、開口絞りやメカニカルシャッタや可変絞りであってよい。 The optical aperture stop ST is disposed on the object side of the first lens L1. Similarly in each embodiment, the optical aperture stop ST may be an aperture stop, a mechanical shutter, or a variable stop.
 そして、第4レンズL4の像側には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子SRのカバーガラス等である。 And, on the image side of the fourth lens L4, the light receiving surface of the image pickup element SR is disposed via a parallel plate FT as a filter. The parallel plate FT is a cover glass or the like of various optical filters or the image sensor SR.
 図5ないし図10において、各レンズ面に付されている番号ri(i=1,2,3,・・・)は、物体側から数えた場合のi番目のレンズ面(ただし、レンズの接合面は1つの面として数えるものとする。)であり、riに「*」印が付されている面は、非球面であることを示す。なお、平行平板FTの両面および撮像素子SRの受光面も1つの面として扱っており、光学絞りSTの面も1つの面として扱っている。このような取り扱いおよび符号の意義は、各実施例についても同様である。ただし、全く同一のものであるという意味ではなく、例えば、各実施例の各図を通じて、最も物体側に配置されるレンズ面には、同じ符号(r1)が付されているが、後述のコンストラクションデータに示すように、これらの曲率などが各実施例を通じて同一であるという意味ではない。 In FIG. 5 to FIG. 10, the numbers ri (i = 1, 2, 3,...) Given to the respective lens surfaces are the i-th lens surfaces when counted from the object side (however, the lens joints). The surface is counted as one surface.), And a surface with an asterisk “*” is an aspherical surface. In addition, both surfaces of the parallel plate FT and the light receiving surface of the imaging element SR are handled as one surface, and the surface of the optical aperture stop ST is also handled as one surface. The meaning of such handling and symbols is the same for each embodiment. However, it does not mean that they are exactly the same. For example, the lens surface arranged closest to the object side is denoted by the same symbol (r1) in each drawing of each embodiment, but the construction described later is used. As shown in the data, this does not mean that these curvatures are the same throughout the embodiments.
 このような構成の下で、物体側から入射した光線は、光軸AXに沿って、順に光学絞りST、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4および平行平板FTを通過し、撮像素子SRの受光面に物体の光学像を形成する。そして、撮像素子SRでは、光学像が電気的な信号に変換される。この電気信号は、必要に応じて所定のデジタル画像処理などが施され、デジタル映像信号として例えばデジタルカメラ等のデジタル機器のメモリに記録されたり、インタフェースを介して有線あるいは無線の通信によって他のデジタル機器に伝送されたりする。 Under such a configuration, a light beam incident from the object side sequentially has an optical stop ST, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a parallel plate along the optical axis AX. An optical image of the object is formed on the light receiving surface of the image sensor SR through the FT. In the image sensor SR, the optical image is converted into an electrical signal. This electric signal is subjected to predetermined digital image processing as necessary, and is recorded as a digital video signal in a memory of a digital device such as a digital camera, or other digital signal is transmitted by wired or wireless communication via an interface. Or transmitted to the device.
 各実施例の撮像光学系1A~1Fにおける、各レンズのコンストラクションデータは、次の通りである。 The construction data of each lens in the imaging optical systems 1A to 1F of each example is as follows.
 まず、実施例1の撮像光学系1Aにおける、各レンズのコンストラクションデータを以下に示す。 First, construction data of each lens in the imaging optical system 1A of Example 1 is shown below.
 数値実施例1
単位 mm
面データ
面番号      r    d    nd    νd   ER
物面       ∞    ∞
1(絞り)    ∞   -0.06               0.74
2*      1.842   0.81   1.54470   56.2    0.77
3*      -5.205   0.05               0.88
4*      6.438   0.30   1.63470   23.9    0.92
5*      1.872   0.50               0.93
6*      -8.420   1.03   1.54470   56.2    1.12
7*      -1.044   0.19               1.36
8*     -191.341   0.45   1.54470   56.2    1.52
9*      1.037   0.49               1.97
10       ∞    0.11   1.51630   64.1    2.22
11       ∞                     2.25
像面       ∞
 非球面データ
第2面
K=0.61922E+00、A4=-0.26416E-01、A6=-0.36817E-01、A8=0.20788E-01、A10=-0.22500E-01
第3面
K=-0.67572E+01、A4=-0.11387E-01、A6=-0.26456E-01、A8=0.69959E-01、A10=-0.47760E-01
第4面
K=-0.41325E+01、A4=-0.34785E-01、A6=-0.60106E-02、A8=0.11783E+00、A10=-0.30290E-01、A12=-0.34564E-01
第5面
K=-0.16739E+01、A4=0.79913E-02、A6=0.25187E-01、A8=-0.19002E-02、A10=0.10522E+00、A12=-0.80140E-01
第6面
K=0.48670E+02、A4=0.61034E-01、A6=-0.12844E+00、A8=0.16286E+00、A10=-0.75348E-01、A12=0.15723E-01
第7面
K=-0.48941E+01、A4=-0.14695E+00、A6=0.12510E+00、A8=-0.11833E+00、A10=0.81354E-01、A12=-0.18372E-01
第8面
K=0.40000E+03、A4=-0.21942E+00、A6=0.13554E-01、A8=0.66277E-01、A10=-0.33886E-01、A12=0.64851E-02、A14=-0.31694E-03
第9面
K=-0.57134E+01、A4=-0.16514E+00、A6=0.92086E-01、A8=-0.39873E-01、A10=0.11298E-01、A12=-0.18667E-02、A14=0.13125E-03
 各種データ
焦点距離(f)      3.55  (mm)
Fナンバ(Fno)    2.4
撮像面対角線長(2Y)  4.6   (mm)
バックフォーカス(Bf) 0.52  (mm)
レンズ全長(TL)    4.45  (mm)
ENTP         0   (mm)
EXTP         -2.25  (mm)
H1           -1    (mm)
H2           -3.03  (mm)
 各レンズの焦点距離(mm)
第1レンズL1      2.603
第2レンズL2      -4.268
第3レンズL3      2.086
第4レンズL4      -1.893
Numerical example 1
Unit mm
Surface data surface number r d nd νd ER
Object ∞ ∞
1 (aperture) ∞ -0.06 0.74
2 * 1.842 0.81 1.54470 56.2 0.77
3 * -5.205 0.05 0.88
4 * 6.438 0.30 1.63470 23.9 0.92
5 * 1.872 0.50 0.93
6 * -8.420 1.03 1.54470 56.2 1.12
7 * -1.044 0.19 1.36
8 * -191.341 0.45 1.54470 56.2 1.52
9 * 1.037 0.49 1.97
10 ∞ 0.11 1.51630 64.1 2.22
11 ∞ 2.25
Image plane ∞
Aspheric data 2nd surface K = 0.61922E + 00, A4 = -0.26416E-01, A6 = -0.36817E-01, A8 = 0.20788E-01, A10 = -0.22500E-01
Third surface K = −0.67572E + 01, A4 = −0.11387E-01, A6 = −0.26456E-01, A8 = 0.69959E-01, A10 = −0.47760E-01
4th surface K = -0.41325E + 01, A4 = -0.34785E-01, A6 = -0.60106E-02, A8 = 0.17883E + 00, A10 = -0.30290E-01, A12 = -0.34564E-01
5th surface K = -0.16739E + 01, A4 = 0.79913E-02, A6 = 0.25187E-01, A8 = -0.19002E-02, A10 = 0.10522E + 00, A12 = -0.80140E-01
6th surface K = 0.48670E + 02, A4 = 0.61034E-01, A6 = −0.12844E + 00, A8 = 0.16286E + 00, A10 = −0.75348E-01, A12 = 0.15723E-01
7th surface K = -0.48941E + 01, A4 = -0.14695E + 00, A6 = 0.12510E + 00, A8 = -0.11833E + 00, A10 = 0.81354E-01, A12 = -0.18372E-01
Eighth surface K = 0.0000E + 03, A4 = −0.21942E + 00, A6 = 0.13554E-01, A8 = 0.66277E-01, A10 = −0.33886E-01, A12 = 0.64851E-02, A14 = − 0.31694E-03
9th surface K = −0.57134E + 01, A4 = −0.16514E + 00, A6 = 0.92086E-01, A8 = −0.39873E-01, A10 = 0.11298E-01, A12 = −0.18667E-02, A14 = 0.13125E-03
Various data focal length (f) 3.55 (mm)
F number 2.4
Diagonal length of imaging surface (2Y) 4.6 (mm)
Back focus (Bf) 0.52 (mm)
Total lens length (TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.25 (mm)
H1 -1 (mm)
H2 -3.03 (mm)
Focal length of each lens (mm)
1st lens L1 2.603
Second lens L2 -4.268
Third lens L3 2.086
Fourth lens L4 -1.893
 次に、実施例2の撮像光学系1Bにおける、各レンズのコンストラクションデータを以下に示す。 Next, construction data of each lens in the imaging optical system 1B of Example 2 is shown below.
 数値実施例2
単位 mm
面データ
面番号      r    d    nd    νd    ER
物面       ∞    ∞
1(絞り)    ∞   -0.06                0.74
2*      1.853   0.80   1.54470   56.2     0.77
3*      -5.215   0.05                0.87
4*      6.392   0.31   1.63470   23.9     0.91
5*      1.859   0.49                0.92
6*      -8.324   1.03   1.54470   56.2     1.09
7*      -1.033   0.19                1.28
8*     -437.709   0.45   1.54470   56.2     1.43
9*      1.032   0.50                1.87
10       ∞    0.11   1.51630   64.1     2.07
11       ∞                      2.10
像面       ∞
 非球面データ
第2面
K=0.64162E+00,A4=-0.25436E-01,A6=-0.36892E-01,A8=0.21677E-01,A10=-0.21474E-01
第3面
K=-0.92148E+01,A4=-0.95609E-02,A6=-0.24788E-01,A8=0.71304E-01,A10=-0.49069E-01
第4面
K=-0.46304E+01,A4=-0.35039E-01,A6=-0.70042E-02,A8=0.11904E+00,A10=-0.32540E-01,A12=-0.35312E-01
第5面
K=-0.17602E+01,A4=0.69022E-02,A6=0.26056E-01,A8=-0.15337E-02,A10=0.10274E+00,A12=-0.81082E-01
第6面
K=0.45056E+02,A4=0.61519E-01,A6=-0.12084E+00,A8=0.16524E+00,A10=-0.73974E-01,A12=0.13793E-01
第7面
K=-0.47736E+01,A4=-0.14524E+00,A6=0.12747E+00,A8=-0.11692E+00,A10=0.81714E-01,A12=-0.18215E-01
第8面
K=0.40000E+03,A4=-0.21155E+00,A6=0.14812E-01,A8=0.65105E-01,A10=-0.34010E-01,A12=0.66107E-02,A14=-0.32092E-03
第9面
K=-0.56695E+01,A4=-0.16198E+00,A6=0.91490E-01,A8=-0.39660E-01,A10=0.11280E-01,A12=-0.18677E-02,A14=0.13055E-03
 各種データ
焦点距離(f)      3.53  (mm)
Fナンバ(Fno)    2.4
撮像面対角線長(2Y)  4.6   (mm)
バックフォーカス(Bf) 0.52  (mm)
レンズ全長(TL)    4.45  (mm)
ENTP         0   (mm)
EXTP         -2.26  (mm)
H1           -0.97  (mm)
H2           -3.02  (mm)
 各レンズの焦点距離(mm)
第1レンズL1      2.614
第2レンズL2      -4.241
第3レンズL3      2.063
第4レンズL4      -1.890
Numerical example 2
Unit mm
Surface data surface number r d nd νd ER
Object ∞ ∞
1 (aperture) ∞ -0.06 0.74
2 * 1.853 0.80 1.54470 56.2 0.77
3 * -5.215 0.05 0.87
4 * 6.392 0.31 1.63470 23.9 0.91
5 * 1.859 0.49 0.92
6 * -8.324 1.03 1.54470 56.2 1.09
7 * -1.033 0.19 1.28
8 * -437.709 0.45 1.54470 56.2 1.43
9 * 1.032 0.50 1.87
10 ∞ 0.11 1.51630 64.1 2.07
11 ∞ 2.10
Image plane ∞
Aspherical data second surface K = 0.64162E + 00, A4 = -0.25436E-01, A6 = -0.36892E-01, A8 = 0.21677E-01, A10 = -0.21474E-01
3rd surface K = -0.92148E + 01, A4 = -0.95609E-02, A6 = -0.24788E-01, A8 = 0.71304E-01, A10 = -0.49069E-01
4th surface K = -0.46304E + 01, A4 = -0.35039E-01, A6 = -0.70042E-02, A8 = 0.11904E + 00, A10 = -0.32540E-01, A12 = -0.35312E-01
5th surface K = -0.17602E + 01, A4 = 0.69022E-02, A6 = 0.26056E-01, A8 = -0.15337E-02, A10 = 0.10274E + 00, A12 = -0.81082E-01
6th surface K = 0.45056E + 02, A4 = 0.61519E-01, A6 = −0.12084E + 00, A8 = 0.16524E + 00, A10 = −0.73974E-01, A12 = 0.13793E-01
7th surface K = -0.47736E + 01, A4 = -0.14524E + 00, A6 = 0.12747E + 00, A8 = -0.11692E + 00, A10 = 0.81714E-01, A12 = -0.18215E-01
Eighth surface K = 0.0000E + 03, A4 = −0.21155E + 00, A6 = 0.14812E-01, A8 = 0.65105E-01, A10 = −0.34010E-01, A12 = 0.66107E-02, A14 = − 0.32092E-03
9th surface K = -0.56695E + 01, A4 = -0.16198E + 00, A6 = 0.91490E-01, A8 = -0.39660E-01, A10 = 0.11280E-01, A12 = -0.18677E-02, A14 = 0.13055E-03
Various data focal length (f) 3.53 (mm)
F number 2.4
Diagonal length of imaging surface (2Y) 4.6 (mm)
Back focus (Bf) 0.52 (mm)
Total lens length (TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.26 (mm)
H1 -0.97 (mm)
H2 -3.02 (mm)
Focal length of each lens (mm)
1st lens L1 2.614
Second lens L2 -4.241
Third lens L3 2.063
Fourth lens L4 -1.890
 次に、実施例3の撮像光学系1Cにおける、各レンズのコンストラクションデータを以下に示す。 Next, construction data of each lens in the imaging optical system 1C of Example 3 is shown below.
 数値実施例3
単位 mm
面データ
面番号      r    d    nd    νd    ER
物面       ∞    ∞
1(絞り)    ∞   -0.06                0.74
2*      1.835   0.81   1.54470   56.2     0.77
3*      -5.270   0.05                0.88
4*      6.446   0.30   1.63470   23.9     0.92
5*      1.874   0.51                0.93
6*      -8.456   1.03   1.54470   56.2     1.11
7*      -1.046   0.18                1.36
8*     -244.617   0.45   1.54470   56.2     1.52
9*      1.035   0.49                1.97
10       ∞   0.11   1.51630   64.1     2.24
11       ∞                     2.27
像面       ∞
 非球面データ
第2面
K=0.62322E+00,A4=-0.26849E-01,A6=-0.36216E-01,A8=0.19442E-01,A10=-0.21897E-01
第3面
K=-0.60691E+01,A4=-0.11741E-01,A6=-0.24483E-01,A8=0.67934E-01,A10=-0.47494E-01
第4面
K=-0.30629E+01,A4=-0.34292E-01,A6=-0.53860E-02,A8=0.11835E+00,A10=-0.31083E-01,A12=-0.35107E-01
第5面
K=-0.16148E+01,A4=0.88283E-02,A6=0.24112E-01,A8=-0.12431E-02,A10=0.10861E+00,A12=-0.83273E-01
第6面
K=0.50035E+02,A4=0.61044E-01,A6=-0.13057E+00,A8=0.16302E+00,A10=-0.76267E-01,A12=0.16624E-01
第7面
K=-0.49378E+01,A4=-0.14761E+00,A6=0.12481E+00,A8=-0.11875E+00,A10=0.81339E-01,A12=-0.18395E-01
第8面
K=0.40000E+03,A4=-0.22206E+00,A6=0.13864E-01,A8=0.66675E-01,A10=-0.33862E-01,A12=0.63645E-02,A14=-0.29164E-03
第9面
K=-0.57245E+01,A4=-0.16591E+00,A6=0.92276E-01,A8=-0.39887E-01,A10=0.11306E-01,A12=-0.18737E-02,A14=0.13246E-03
 各種データ
焦点距離(f)      3.55  (mm)
Fナンバ(Fno)    2.4
撮像面対角線長(2Y)  4.6   (mm)
バックフォーカス(Bf) 0.52  (mm)
レンズ全長(TL)    4.45  (mm)
ENTP         0   (mm)
EXTP         -2.24  (mm)
H1           -1.02  (mm)
H2           -3.04  (mm)
 各レンズの焦点距離(mm)
第1レンズL1      2.604
第2レンズL2      -4.275
第3レンズL3      2.090
第4レンズL4      -1.891
Numerical Example 3
Unit mm
Surface data surface number r d nd νd ER
Object ∞ ∞
1 (aperture) ∞ -0.06 0.74
2 * 1.835 0.81 1.54470 56.2 0.77
3 * -5.270 0.05 0.88
4 * 6.446 0.30 1.63470 23.9 0.92
5 * 1.874 0.51 0.93
6 * -8.456 1.03 1.54470 56.2 1.11
7 * -1.046 0.18 1.36
8 * -244.617 0.45 1.54470 56.2 1.52
9 * 1.035 0.49 1.97
10 ∞ 0.11 1.51630 64.1 2.24
11 ∞ 2.27
Image plane ∞
Aspherical data second surface K = 0.632232E + 00, A4 = -0.26849E-01, A6 = -0.36216E-01, A8 = 0.19442E-01, A10 = -0.21897E-01
Third plane K = -0.60691E + 01, A4 = -0.11741E-01, A6 = -0.24483E-01, A8 = 0.67934E-01, A10 = -0.47494E-01
4th surface K = -0.30629E + 01, A4 = -0.34292E-01, A6 = -0.53860E-02, A8 = 0.11835E + 00, A10 = -0.31083E-01, A12 = -0.35107E-01
5th surface K = -0.16148E + 01, A4 = 0.88283E-02, A6 = 0.24112E-01, A8 = -0.12431E-02, A10 = 0.86186E + 00, A12 = -0.83273E-01
6th surface K = 0.50035E + 02, A4 = 0.61044E-01, A6 = -0.13057E + 00, A8 = 0.16302E + 00, A10 = -0.76267E-01, A12 = 0.166624E-01
7th surface K = -0.49378E + 01, A4 = -0.14761E + 00, A6 = 0.12481E + 00, A8 = -0.11875E + 00, A10 = 0.81339E-01, A12 = -0.18395E-01
8th surface K = 0.0000E + 03, A4 = −0.22206E + 00, A6 = 0.13864E-01, A8 = 0.66675E-01, A10 = −0.33862E-01, A12 = 0.63645E-02, A14 = − 0.29164E-03
9th surface K = −0.57245E + 01, A4 = −0.16591E + 00, A6 = 0.92276E-01, A8 = −0.39887E-01, A10 = 0.11306E-01, A12 = −0.18737E-02, A14 = 0.13246E-03
Various data focal length (f) 3.55 (mm)
F number 2.4
Diagonal length of imaging surface (2Y) 4.6 (mm)
Back focus (Bf) 0.52 (mm)
Total lens length (TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.24 (mm)
H1 -1.02 (mm)
H2 -3.04 (mm)
Focal length of each lens (mm)
1st lens L1 2.604
Second lens L2 -4.275
Third lens L3 2.090
Fourth lens L4 -1.891
 次に、実施例4の撮像光学系1Dにおける、各レンズのコンストラクションデータを以下に示す。 Next, construction data of each lens in the imaging optical system 1D of Example 4 is shown below.
 数値実施例4
単位 mm
面データ
面番号      r    d    nd    νd    ER
物面       ∞    ∞
1(絞り)    ∞   -0.06                0.74
2*      1.842   0.82   1.54470   56.2     0.77
3*      -5.214   0.05                0.88
4*      6.447   0.30   1.63470   23.9     0.92
5*      1.875   0.50                0.93
6*      -8.425   1.03   1.54470   56.2     1.12
7*      -1.042   0.19                1.36
8*     -176.801   0.45   1.54470   56.2     1.52
9*      1.035   0.49                1.97
10       ∞   0.11   1.51630   64.1     2.24
11       ∞                     2.27
像面       ∞
 非球面データ
第2面
K=0.62107E+00,A4=-0.26315E-01,A6=-0.36696E-01,A8=0.20896E-01,A10=-0.22514E-01
第3面
K=-0.68408E+01,A4=-0.11301E-01,A6=-0.26325E-01,A8=0.69862E-01,A10=-0.47577E-01
第4面
K=-0.42152E+01,A4=-0.34826E-01,A6=-0.61296E-02,A8=0.11791E+00,A10=-0.30615E-01,A12=-0.33979E-01
第5面
K=-0.16858E+01,A4=0.78428E-02,A6=0.25054E-01,A8=-0.17820E-02,A10=0.10411E+00,A12=-0.78809E-01
第6面
K=0.48646E+02,A4=0.60894E-01,A6=-0.12851E+00,A8=0.16273E+00,A10=-0.75630E-01,A12=0.15865E-01
第7面
K=-0.48956E+01,A4=-0.14730E+00,A6=0.12537E+00,A8=-0.11826E+00,A10=0.81325E-01,A12=-0.18400E-01
第8面
K=0.40000E+03,A4=-0.21941E+00,A6=0.13863E-01,A8=0.66225E-01,A10=-0.33859E-01,A12=0.64559E-02,A14=-0.31228E-03
第9面
K=-0.57312E+01,A4=-0.16465E+00,A6=0.91848E-01,A8=-0.39804E-01,A10=0.11298E-01,A12=-0.18707E-02,A14=0.13175E-03
 各種データ
焦点距離(f)      3.55  (mm)
Fナンバ(Fno)    2.4
撮像面対角線長(2Y)  4.6   (mm)
バックフォーカス(Bf) 0.52  (mm)
レンズ全長(TL)    4.45  (mm)
ENTP         0   (mm)
EXTP         -2.25  (mm)
H1           -1    (mm)
H2           -3.03  (mm)
 各レンズの焦点距離(mm)
第1レンズL1      2.605
第2レンズL2      -4.274
第3レンズL3      2.080
第4レンズL4      -1.888
Numerical Example 4
Unit mm
Surface data surface number r d nd νd ER
Object ∞ ∞
1 (aperture) ∞ -0.06 0.74
2 * 1.842 0.82 1.54470 56.2 0.77
3 * -5.214 0.05 0.88
4 * 6.447 0.30 1.63470 23.9 0.92
5 * 1.875 0.50 0.93
6 * -8.425 1.03 1.54470 56.2 1.12
7 * -1.042 0.19 1.36
8 * -176.801 0.45 1.54470 56.2 1.52
9 * 1.035 0.49 1.97
10 ∞ 0.11 1.51630 64.1 2.24
11 ∞ 2.27
Image plane ∞
Aspherical data second surface K = 0.612107E + 00, A4 = −0.26315E-01, A6 = −0.36696E-01, A8 = 0.20896E-01, A10 = −0.22514E-01
Third surface K = −0.68408E + 01, A4 = −0.11301E-01, A6 = −0.26325E-01, A8 = 0.69862E-01, A10 = −0.47577E-01
Fourth surface K = −0.42152E + 01, A4 = −0.34826E-01, A6 = −0.61296E-02, A8 = 0.11791E + 00, A10 = −0.330615E-01, A12 = −0.33979E-01
5th surface K = -0.16858E + 01, A4 = 0.78428E-02, A6 = 0.50554E-01, A8 = -0.17820E-02, A10 = 0.10411E + 00, A12 = -0.78809E-01
6th surface K = 0.48646E + 02, A4 = 0.60894E-01, A6 = -0.12851E + 00, A8 = 0.16273E + 00, A10 = -0.75630E-01, A12 = 0.15865E-01
7th surface K = -0.48956E + 01, A4 = -0.14730E + 00, A6 = 0.12537E + 00, A8 = -0.11826E + 00, A10 = 0.81325E-01, A12 = -0.18400E-01
8th surface K = 0.0000E + 03, A4 = −0.21941E + 00, A6 = 0.13863E-01, A8 = 0.62625E-01, A10 = −0.33859E-01, A12 = 0.64559E-02, A14 = − 0.31228E-03
9th surface K = −0.57312E + 01, A4 = −0.16465E + 00, A6 = 0.91848E-01, A8 = −0.39804E-01, A10 = 0.11298E-01, A12 = −0.18707E-02, A14 = 0.13175E-03
Various data focal length (f) 3.55 (mm)
F number 2.4
Diagonal length of imaging surface (2Y) 4.6 (mm)
Back focus (Bf) 0.52 (mm)
Total lens length (TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.25 (mm)
H1 -1 (mm)
H2 -3.03 (mm)
Focal length of each lens (mm)
1st lens L1 2.605
Second lens L2 -4.274
Third lens L3 2.080
Fourth lens L4 -1.888
 次に、実施例5の撮像光学系1Eにおける、各レンズのコンストラクションデータを以下に示す。 Next, construction data of each lens in the imaging optical system 1E of Example 5 is shown below.
 数値実施例5
単位 mm
面データ
面番号      r    d    nd    νd    ER
物面       ∞    ∞
1(絞り)    ∞   -0.06                0.73
2*      1.860   0.80   1.54470   56.2     0.77
3*      -5.201   0.05                0.88
4*      7.177   0.33   1.63470   23.9     0.92
5*      1.922   0.48                0.94
6*      -8.415   1.03   1.54470   56.2     1.13
7*      -1.014   0.18                1.35
8*     -411.733   0.45   1.54470   56.2     1.53
9*      1.017   0.45                1.98
10       ∞   0.11   1.51630   64.1     2.21
11       ∞                     2.24
像面       ∞
 非球面データ
第2面
K=0.64790E+00,A4=-0.25198E-01,A6=-0.36700E-01,A8=0.19492E-01,A10=-0.19750E-01
第3面
K=-0.93736E+01,A4=-0.97166E-02,A6=-0.25706E-01,A8=0.73936E-01,A10=-0.51589E-01
第4面
K=0.26553E+01,A4=-0.31698E-01,A6=-0.73939E-02,A8=0.11582E+00,A10=-0.34375E-01,A12=-0.31283E-01
第5面
K=-0.16396E+01,A4=0.89770E-02,A6=0.26413E-01,A8=-0.66480E-02,A10=0.99281E-01,A12=-0.74104E-01
第6面
K=0.47683E+02,A4=0.60002E-01,A6=-0.11217E+00,A8=0.15822E+00,A10=-0.74908E-01,A12=0.14858E-01
第7面
K=-0.48009E+01,A4=-0.14410E+00,A6=0.13159E+00,A8=-0.11660E+00,A10=0.80392E-01,A12=-0.18493E-01
第8面
K=0.40000E+03,A4=-0.20152E+00,A6=0.15242E-01,A8=0.63266E-01,A10=-0.34233E-01,A12=0.66441E-02,A14=-0.28591E-03
第9面
K=-0.57647E+01,A4=-0.15568E+00,A6=0.88198E-01,A8=-0.38649E-01,A10=0.11175E-01,A12=-0.19011E-02,A14=0.13705E-03
 各種データ
焦点距離(f)      3.52  (mm)
Fナンバ(Fno)    2.4
撮像面対角線長(2Y)  4.6   (mm)
バックフォーカス(Bf) 0.57  (mm)
レンズ全長(TL)    4.45  (mm)
ENTP         0   (mm)
EXTP         -2.22  (mm)
H1           -0.93  (mm)
H2           -2.95  (mm)
 各レンズの焦点距離(mm)
第1レンズL1      2.620
第2レンズL2      -4.238
第3レンズL3      2.017
第4レンズL4      -1.861
Numerical Example 5
Unit mm
Surface data surface number r d nd νd ER
Object ∞ ∞
1 (aperture) ∞ -0.06 0.73
2 * 1.860 0.80 1.54470 56.2 0.77
3 * -5.201 0.05 0.88
4 * 7.177 0.33 1.63470 23.9 0.92
5 * 1.922 0.48 0.94
6 * -8.415 1.03 1.54470 56.2 1.13
7 * -1.014 0.18 1.35
8 * -411.733 0.45 1.54470 56.2 1.53
9 * 1.017 0.45 1.98
10 ∞ 0.11 1.51630 64.1 2.21
11 ∞ 2.24
Image plane ∞
Aspheric data 2nd surface K = 0.64790E + 00, A4 = -0.25198E-01, A6 = -0.36700E-01, A8 = 0.19492E-01, A10 = -0.19750E-01
3rd surface K = -0.93736E + 01, A4 = -0.97166E-02, A6 = -0.25706E-01, A8 = 0.73936E-01, A10 = -0.51589E-01
4th surface K = 0.26553E + 01, A4 = -0.31698E-01, A6 = -0.73939E-02, A8 = 0.11582E + 00, A10 = -0.34375E-01, A12 = -0.31283E-01
Fifth surface K = -0.16396E + 01, A4 = 0.89770E-02, A6 = 0.26413E-01, A8 = -0.66480E-02, A10 = 0.99281E-01, A12 = -0.74104E-01
6th surface K = 0.47683E + 02, A4 = 0.60002E-01, A6 = -0.11217E + 00, A8 = 0.15822E + 00, A10 = -0.74908E-01, A12 = 0.14858E-01
7th surface K = -0.48009E + 01, A4 = -0.14410E + 00, A6 = 0.13159E + 00, A8 = -0.11660E + 00, A10 = 0.80392E-01, A12 = -0.18493E-01
8th surface K = 0.0000E + 03, A4 = -0.20152E + 00, A6 = 0.15242E-01, A8 = 0.63266E-01, A10 = -0.34233E-01, A12 = 0.66441E-02, A14 =- 0.28591E-03
9th surface K = -0.57647E + 01, A4 = -0.15568E + 00, A6 = 0.88198E-01, A8 = -0.38649E-01, A10 = 0.11175E-01, A12 = -0.19011E-02, A14 = 0.13705E-03
Various data focal length (f) 3.52 (mm)
F number 2.4
Diagonal length of imaging surface (2Y) 4.6 (mm)
Back focus (Bf) 0.57 (mm)
Total lens length (TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.22 (mm)
H1 -0.93 (mm)
H2 -2.95 (mm)
Focal length of each lens (mm)
First lens L1 2.620
Second lens L2 -4.238
Third lens L3 2.017
Fourth lens L4 -1.861
 次に、実施例6の撮像光学系1Fにおける、各レンズのコンストラクションデータを以下に示す。 Next, construction data of each lens in the imaging optical system 1F of Example 6 is shown below.
 数値実施例6
単位 mm
面データ
面番号      r    d    nd    νd    ER
物面       ∞    ∞
1(絞り)    ∞   -0.06                0.74
2*      1.838   0.81   1.54470   56.2     0.77
3*      -5.349   0.05                0.88
4*      6.470   0.30   1.63470   23.9     0.92
5*      1.882   0.50                0.93
6*      -8.422   1.02   1.54470   56.2     1.12
7*      -1.039   0.19                1.35
8*     -359.933   0.45   1.54470   56.2     1.53
9*      1.030   0.51                1.98
10       ∞   0.15   1.51630   64.1     2.24
11       ∞                     2.28
像面       ∞
 非球面データ
第2面
K=0.64587E+00,A4=-0.26148E-01,A6=-0.35239E-01,A8=0.19715E-01,A10=-0.21206E-01
第3面
K=-0.80138E+01,A4=-0.10339E-01,A6=-0.22766E-01,A8=0.68437E-01,A10=-0.48178E-01
第4面
K=-0.46053E+01,A4=-0.34957E-01,A6=-0.56803E-02,A8=0.11818E+00,A10=-0.31044E-01,A12=-0.35791E-01
第5面
K=-0.17006E+01,A4=0.74300E-02,A6=0.22742E-01,A8=-0.15821E-02,A10=0.10891E+00,A12=-0.83496E-01
第6面
K=0.48552E+02,A4=0.61719E-01,A6=-0.12921E+00,A8=0.16470E+00,A10=-0.76050E-01,A12=0.16457E-01
第7面
K=-0.48849E+01,A4=-0.14736E+00,A6=0.12585E+00,A8=-0.11823E+00,A10=0.81714E-01,A12=-0.18179E-01
第8面
K=0.40000E+03,A4=-0.21942E+00,A6=0.13989E-01,A8=0.67012E-01,A10=-0.33825E-01,A12=0.63463E-02,A14=-0.29396E-03
第9面
K=-0.57105E+01,A4=-0.16502E+00,A6=0.92459E-01,A8=-0.39898E-01,A10=0.11322E-01,A12=-0.18707E-02,A14=0.13084E-03
 各種データ
焦点距離(f)      3.55  (mm)
Fナンバ(Fno)    2.4
撮像面対角線長(2Y)  4.6   (mm)
バックフォーカス(Bf) 0.48  (mm)
レンズ全長(TL)    4.45  (mm)
ENTP         0   (mm)
EXTP         -2.29  (mm)
H1           -1    (mm)
H2           -3.07  (mm)
 各レンズの焦点距離(mm)
第1レンズL1      2.616
第2レンズL2      -4.289
第3レンズL3      2.074
第4レンズL4      -1.884
Numerical Example 6
Unit mm
Surface data surface number r d nd νd ER
Object ∞ ∞
1 (aperture) ∞ -0.06 0.74
2 * 1.838 0.81 1.54470 56.2 0.77
3 * -5.349 0.05 0.88
4 * 6.470 0.30 1.63470 23.9 0.92
5 * 1.882 0.50 0.93
6 * -8.422 1.02 1.54470 56.2 1.12
7 * -1.039 0.19 1.35
8 * -359.933 0.45 1.54470 56.2 1.53
9 * 1.030 0.51 1.98
10 ∞ 0.15 1.51630 64.1 2.24
11 ∞ 2.28
Image plane ∞
Aspherical data second surface K = 0.64587E + 00, A4 = −0.26148E-01, A6 = −0.35239E-01, A8 = 0.19715E-01, A10 = −0.21206E-01
Third surface K = −0.80138E + 01, A4 = −0.10339E-01, A6 = −0.22766E-01, A8 = 0.68437E-01, A10 = −0.48178E-01
4th surface K = -0.46053E + 01, A4 = -0.34957E-01, A6 = -0.56803E-02, A8 = 0.11818E + 00, A10 = -0.31044E-01, A12 = -0.35791E-01
5th surface K = -0.17006E + 01, A4 = 0.74300E-02, A6 = 0.22742E-01, A8 = -0.15821E-02, A10 = 0.010891E + 00, A12 = -0.83496E-01
6th surface K = 0.48552E + 02, A4 = 0.61719E-01, A6 = -0.12921E + 00, A8 = 0.16470E + 00, A10 = -0.76050E-01, A12 = 0.16457E-01
7th surface K = −0.48849E + 01, A4 = −0.14736E + 00, A6 = 0.12585E + 00, A8 = −0.11823E + 00, A10 = 0.81714E-01, A12 = −0.18179E-01
8th surface K = 0.0000E + 03, A4 = −0.21942E + 00, A6 = 0.13989E-01, A8 = 0.67012E-01, A10 = −0.33825E-01, A12 = 0.346346E-02, A14 = − 0.29396E-03
9th surface K = −0.57105E + 01, A4 = −0.16502E + 00, A6 = 0.92459E-01, A8 = −0.39898E-01, A10 = 0.11322E-01, A12 = −0.18707E-02, A14 = 0.13084E-03
Various data focal length (f) 3.55 (mm)
F number 2.4
Diagonal length of imaging surface (2Y) 4.6 (mm)
Back focus (Bf) 0.48 (mm)
Total lens length (TL) 4.45 (mm)
ENTP 0 (mm)
EXTP -2.29 (mm)
H1 -1 (mm)
H2 -3.07 (mm)
Focal length of each lens (mm)
1st lens L1 2.616
Second lens L2 -4.289
Third lens L3 2.074
Fourth lens L4 -1.884
 ここで、上記各種データのレンズ全長(TL)は、物体距離無限時でのレンズ全長(第1レンズ物体側面から撮像面までの距離)である。ENTPは、入射瞳から第1面(絞り)までの距離であり、ここでは、入射瞳=絞りであるので、0となる。EXTPは、最終面(カバーガラス像面側)から射出瞳までの距離であり、H1は、第1面(絞り)から物体側主点までの距離であり、H2は、最終面(カバーガラス像面側)から像側主点までの距離である。 Here, the total lens length (TL) of the above-mentioned various data is the total lens length (distance from the first lens object side surface to the imaging surface) when the object distance is infinite. ENTP is the distance from the entrance pupil to the first surface (aperture). Here, the entrance pupil is equal to the aperture, and is 0. EXTP is the distance from the final surface (cover glass image surface side) to the exit pupil, H1 is the distance from the first surface (aperture) to the object side principal point, and H2 is the final surface (cover glass image). This is the distance from the image side principal point to the image side principal point.
 上記の面データにおいて、面番号は、図5ないし図10に示した各レンズ面に付した符号ri(i=1,2,3,…)の番号iが対応する。番号iに*が付された面は、非球面(非球面形状の屈折光学面または非球面と等価な屈折作用を有する面)であることを示す。 In the above surface data, the surface number corresponds to the number i of the symbol ri (i = 1, 2, 3,...) Given to each lens surface shown in FIGS. The surface marked with * in the number i indicates an aspherical surface (aspherical refractive optical surface or a surface having a refractive action equivalent to an aspherical surface).
 また、“r”は、各面の曲率半径(単位はmm)、“d”は、無限遠合焦状態(無限距離での合焦状態)での光軸上の各レンズ面の間隔(軸上面間隔)、“nd”は、各レンズのd線(波長587.56nm)に対する屈折率、“νd”は、アッベ数、“ER”は、有効半径(mm)をそれぞれ示している。なお、光学絞りST、平行平面板FTの両面、撮像素子SRの受光面の各面は、平面であるために、それらの曲率半径は、∞(無限大)である。 “R” is the radius of curvature of each surface (unit: mm), and “d” is the distance (axis) between the lens surfaces on the optical axis in the infinitely focused state (focused state at infinity). “Top”), “nd” indicates the refractive index of each lens with respect to the d-line (wavelength 587.56 nm), “νd” indicates the Abbe number, and “ER” indicates the effective radius (mm). Since each surface of the optical aperture stop ST, both surfaces of the parallel flat plate FT, and the light receiving surface of the image sensor SR is a flat surface, the radius of curvature thereof is ∞ (infinite).
 上記の非球面データは、非球面とされている面(面データにおいて番号iに*が付された面)の2次曲面パラメータ(円錐係数K)と非球面係数Ai(i=4,6,8,10,12,14,16)の値とを示すものである。 The above-mentioned aspheric surface data includes the quadric surface parameter (cone coefficient K) and the aspheric surface coefficient Ai (i = 4, 6, 6) of the surface that is an aspheric surface (the surface with the number i added to * in the surface data). 8, 10, 12, 14, 16).
 各実施例において、非球面の形状は、面頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとする場合に、次式により定義している。 In each embodiment, the shape of the aspheric surface is defined by the following equation when the surface vertex is the origin, the X axis is taken in the optical axis direction, and the height in the direction perpendicular to the optical axis is h.
X=(h/R)/[1+(1-(1+K)h/R1/2]+ΣA・h
ただし、Aiは、i次の非球面係数であり、Rは、基準曲率半径であり、そして、Kは、円錐定数である。
X = (h 2 / R) / [1+ (1− (1 + K) h 2 / R 2 ) 1/2 ] + ΣA i · h i
Where Ai is an i-th order aspheric coefficient, R is a reference radius of curvature, and K is a conic constant.
 なお、請求項、実施形態および各実施例に記載の近軸曲率半径(r)について、実際のレンズ測定の場面において、レンズ中央近傍(より具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41~P42を参照)。 Note that the paraxial radius of curvature (r) described in the claims, embodiments, and examples is in the vicinity of the center of the lens (more specifically, within 10% of the lens outer diameter) in the actual lens measurement scene. The approximate curvature radius when the shape measurement value in the center region of the curve is fitted by the least square method can be regarded as the paraxial curvature radius. For example, when a secondary aspherical coefficient is used, a curvature radius that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius (for example, reference literature). (See pages 41-42 of “Lens Design Method” by K. Matsui, Kyoritsu Publishing Co., Ltd.).
 そして、上記非球面データにおいて、「En」は、「10のn乗」を意味する。例えば、「E+001」は、「10の+1乗」を意味し、「E-003」は、「10の-3乗」を意味する。 In the aspheric data, “En” means “10 to the power of n”. For example, “E + 001” means “10 to the power of +1”, and “E-003” means “10 to the power of −3”.
 以上のようなレンズ配置、構成のもとでの、各実施例の撮像レンズ1A~1Fにおける各収差を図11ないし図16のそれぞれに示す。 FIG. 11 to FIG. 16 show aberrations in the imaging lenses 1A to 1F of the respective examples under the lens arrangement and configuration as described above.
 図11ないし図16には、距離無限遠での収差図が示されており、各図の(A)、(B)および(C)は、それぞれ、この順に、球面収差(正弦条件)(LONGITUDINAL SPHERICAL ABERRATION)、非点収差(ASTIGMATISM
FIELD CURVE)および歪曲収差(DISTORTION)をそれぞれ示す。球面収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、最大入射高で規格化した値で表している。非点収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、像高をmm単位で表している。歪曲収差の横軸は、実際の像高を理想像高に対する割合(%)で表しており、縦軸は、その像高をmm単位で表している。また、非点収差の図中、破線は、タンジェンシャル(メリディオナル)面、実線は、サジタル(ラディアル)面における結果をそれぞれ表している。
FIGS. 11 to 16 show aberration diagrams at a distance of infinity, and (A), (B), and (C) in each figure are spherical aberrations (sinusoidal conditions) (LONGITUDINAL) in this order, respectively. SPHERICAL ABERRATION), astigmatism (ASTIGMATISM)
FIELD CURVE) and distortion (DISTORTION) are shown respectively. The abscissa of the spherical aberration represents the focal position shift in mm, and the ordinate represents the value normalized by the maximum incident height. The horizontal axis of astigmatism represents the focal position shift in mm, and the vertical axis represents the image height in mm. The horizontal axis of the distortion aberration represents the actual image height as a percentage (%) with respect to the ideal image height, and the vertical axis represents the image height in mm. Moreover, in the figure of astigmatism, the broken line represents the result on the tangential (meridional) surface, and the solid line represents the result on the sagittal (radial) surface.
 球面収差の図には、実線でd線(波長587.56nm)、破線でg線(波長435.84nm)の2つの光の収差をそれぞれ示してある。非点収差および歪曲収差の図は、上記d線(波長587.56nm)を用いた場合の結果である。 In the diagram of spherical aberration, the aberrations of two light beams, ie, the d-line (wavelength 587.56 nm) as a solid line and the g-line (wavelength 435.84 nm) as a broken line are shown. The diagrams of astigmatism and distortion are the results when the d-line (wavelength 587.56 nm) is used.
 上記に列挙した実施例1~6の撮像光学系1A~1Fに、上述した条件式(1)~(6)を当てはめた場合の数値を、それぞれ、表1に示す。 Table 1 shows numerical values obtained when the above-described conditional expressions (1) to (6) are applied to the imaging optical systems 1A to 1F of Examples 1 to 6 listed above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上、説明したように、上記実施例1~6における撮像光学系1A~1Fは、4枚のレンズ構成であって、上述の各条件を満足している結果、F2.4程度の明るさであって、従来の光学系より、より小型化を図りつつ、諸収差をより良好に補正することができる。そして、上記実施例1~6における撮像光学系1A~1Fは、撮像装置21およびデジタル機器3に搭載する上で、特に携帯端末5に搭載する上で小型化が充分に達成され、また、高画素な撮像素子17を採用することができる。 As described above, the imaging optical systems 1A to 1F in Embodiments 1 to 6 have a four-lens configuration and satisfy the above-described conditions. As a result, the imaging optical systems 1A to 1F have a brightness of about F2.4. Thus, various aberrations can be corrected more favorably while reducing the size of the conventional optical system. The imaging optical systems 1A to 1F in the first to sixth embodiments are sufficiently reduced in size when mounted on the imaging device 21 and the digital device 3, particularly when mounted on the portable terminal 5. A pixel imaging device 17 can be employed.
 例えば、8Mピクセルや10Mピクセルや16Mピクセル等の約8M~16Mピクセルのクラス(グレード)の高画素な撮像素子17は、撮像素子17のサイズが一定の場合には画素ピッチが短くなるため(画素面積が狭くなるため)、撮像光学系1A~1Fは、この画素ピッチに応じた解像度が必要となり、その所要の解像度で例えばMTFで撮像光学系1を評価した場合に例えば仕様等によって規定された所定の範囲内に諸収差を抑える必要があるが、上記実施例1~6における撮像光学系1A~1Fは、各収差図に示す通り、所定の範囲内で諸収差が抑えられている。したがって、上記実施例1~6における撮像光学系1A~1Fは、良好に諸収差を補正しているので、例えば5M~8Mピクセルのクラスの撮像素子17に好適に用いられる。 For example, a high-pixel image sensor 17 having a class (grade) of about 8M to 16M pixels such as 8M pixel, 10M pixel, and 16M pixel has a short pixel pitch when the size of the image sensor 17 is constant (pixel The imaging optical systems 1A to 1F need a resolution corresponding to the pixel pitch, and are defined by, for example, specifications when the imaging optical system 1 is evaluated with the required resolution, for example, with MTF. Although it is necessary to suppress various aberrations within a predetermined range, in the imaging optical systems 1A to 1F in Examples 1 to 6, the various aberrations are suppressed within the predetermined range as shown in each aberration diagram. Accordingly, since the imaging optical systems 1A to 1F in Examples 1 to 6 correct various aberrations satisfactorily, the imaging optical systems 1A to 1F are preferably used for the imaging element 17 of the class of 5M to 8M pixels, for example.
 なお、上記実施例1~6では、固体撮像素子の撮像面に入射する光束の主光線入射角は、撮像面周辺部において必ずしも充分に小さくない。しかしながら、上述したように、ハードウェア的にあるいはソフトウェア的に、シェーディングを補正することが可能である。このようなシェーディング対策によってシェーディングに対する要求が緩和されるので、本実施例の撮像光学系1A~1Fは、より小型化されている。 In Examples 1 to 6, the principal ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily sufficiently small at the periphery of the imaging surface. However, as described above, shading can be corrected by hardware or software. Such shading countermeasures alleviate the demand for shading, so that the imaging optical systems 1A to 1F of the present embodiment are further downsized.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる撮像光学系は、物体側から像側へ順に、絞りと、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、両面が凹面である負の屈折力を有する第4レンズとから成り、上記(1)の条件式を満たす。このような構成の撮像光学系は、F2.4程度の明るい、4枚のレンズ構成であって、より小型であって諸収差をより良好に補正することができる。 An imaging optical system according to an aspect includes, in order from the object side to the image side, a stop, a first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens having a positive refractive power. It consists of a lens and a fourth lens having negative refractive power whose both surfaces are concave, and satisfies the conditional expression (1) above. The imaging optical system having such a configuration has a bright four-lens configuration of about F2.4, is smaller, and can correct various aberrations better.
 また、他の一態様では、上述の撮像光学系において、好ましくは、前記第1レンズは、両面が凸形状である。 In another aspect, in the imaging optical system described above, preferably, the first lens has a convex shape on both sides.
 また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第2レンズは、物体側に凸面を向けたメニスカス形状である。 In another aspect, in the above-described imaging optical system, preferably, the second lens has a meniscus shape with a convex surface facing the object side.
 また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第1レンズおよび第2レンズは、上記(2)の条件式を満たす。 In another aspect, in the above-described imaging optical system, it is preferable that the first lens and the second lens satisfy the conditional expression (2).
 また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第4レンズの像側面は、非球面形状であり、その中心では負の屈折力を持ち、有効領域端に向かうに従い負の屈折力が弱くなり、光軸に沿ったレンズ断面の輪郭線において前記光軸の交点から前記有効領域端に向かった場合に垂接点を有し、上記(3)の条件式を満たす。 In another aspect, in the above-described imaging optical system, preferably, the image side surface of the fourth lens has an aspherical shape, has a negative refractive power at the center thereof, and approaches the effective area end. When the negative refractive power becomes weak and the lens cross section along the optical axis moves from the intersection of the optical axes toward the effective region end, the vertical contact is provided, and the conditional expression (3) is satisfied.
 また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第4レンズは、上記(4)の条件式を満たす。 In another aspect, in the above-described imaging optical system, it is preferable that the fourth lens satisfies the conditional expression (4).
 また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第2レンズは、上記(5)の条件式を満たす
 また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第3レンズは、上記(6)の条件式を満たす。
In another aspect, in the above-described imaging optical system, preferably, the second lens satisfies the conditional expression (5). In another aspect, in the above-described imaging optical system, Preferably, the third lens satisfies the conditional expression (6).
 また、他の一態様では、これら上述の撮像光学系において、好ましくは、前記第1ないし第4レンズの全ては、樹脂材料で形成された樹脂材料製レンズであることである。 In another aspect, in the above-described imaging optical system, it is preferable that all of the first to fourth lenses are resin material lenses formed of a resin material.
 そして、他の一態様にかかる撮像装置は、これら上述のいずれかの撮像光学系と、光学像を電気的な信号に変換する撮像素子とを備え、前記撮像光学系が前記撮像素子の受光面上に物体の光学像を形成可能とされている。 An imaging apparatus according to another aspect includes any one of the above-described imaging optical systems and an imaging element that converts an optical image into an electrical signal, and the imaging optical system receives a light receiving surface of the imaging element. An optical image of the object can be formed thereon.
 この構成によれば、小型でありながら、良好に諸収差を補正することができ、F2.4程度の明るい4枚のレンズ構成の撮像光学系を用いた撮像装置を提供することができる。したがって、このような撮像装置は、小型化および高性能化を図ることができる。 According to this configuration, it is possible to provide an image pickup apparatus using the image pickup optical system having a bright four-lens configuration of about F2.4 while being able to correct various aberrations satisfactorily while being small. Therefore, such an imaging apparatus can be reduced in size and performance.
 また、他の一態様にかかるデジタル機器は、上述の撮像装置と、前記撮像装置に被写体の静止画撮影および動画撮影の少なくとも一方の撮影を行わせる制御部とを備え、前記撮像装置の撮像光学系が、前記撮像素子の撮像面上に前記被写体の光学像を形成可能に組み付けられていることを特徴とする。そして、好ましくは、デジタル機器は、携帯端末から成る。 According to another aspect of the present invention, a digital apparatus includes the above-described imaging device, and a control unit that causes the imaging device to perform at least one of photographing a still image and a moving image of the subject, and imaging optics of the imaging device. The system is assembled so that an optical image of the subject can be formed on the imaging surface of the imaging device. Preferably, the digital device comprises a mobile terminal.
 この構成によれば、小型でありながら、良好に諸収差を補正することができ、F2.4程度の明るい4枚のレンズ構成の撮像光学系を用いたデジタル機器や携帯端末を提供することができる。したがって、このようなデジタル機器や携帯端末は、小型化および高性能化を図ることができる。 According to this configuration, it is possible to provide a digital device or a portable terminal using an imaging optical system having a bright four-lens configuration of about F2.4, which can correct various aberrations in a small size, but is excellent. it can. Accordingly, such digital devices and portable terminals can be reduced in size and performance.
 この出願は、2011年5月20日に出願された日本国特許出願特願2011-113743を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2011-113743 filed on May 20, 2011, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in
 本発明によれば、撮像光学系、撮像装置およびデジタル機器を提供することができる。 According to the present invention, an imaging optical system, an imaging device, and a digital device can be provided.

Claims (12)

  1.  物体側から像側へ順に、
     絞りと、
     正の屈折力を有する第1レンズと、
     負の屈折力を有する第2レンズと、
     正の屈折力を有する第3レンズと、
     両面が凹面である負の屈折力を有する第4レンズとから成り、
     下記(1)の条件式を満たすことを特徴とする撮像光学系。
     -1000<(r1+r4)/(r1-r4)<-55   ・・・(1)
      ただし、
       r1:第1レンズにおける物体側面の曲率半径
       r4:第2レンズにおける像側面の曲率半径
    From the object side to the image side,
    Aperture,
    A first lens having a positive refractive power;
    A second lens having negative refractive power;
    A third lens having positive refractive power;
    A fourth lens having negative refractive power, both surfaces of which are concave,
    An imaging optical system characterized by satisfying conditional expression (1) below.
    −1000 <(r1 + r4) / (r1−r4) <− 55 (1)
    However,
    r1: radius of curvature of object side surface in first lens r4: radius of curvature of image side surface of second lens
  2.  前記第1レンズは、両面が凸形状であること
     を特徴とする請求項1に記載の撮像光学系。
    The imaging optical system according to claim 1, wherein both surfaces of the first lens are convex.
  3.  前記第2レンズは、物体側に凸面を向けたメニスカス形状であること
     を特徴とする請求項1または請求項2に記載の撮像光学系。
    The imaging optical system according to claim 1, wherein the second lens has a meniscus shape with a convex surface facing the object side.
  4.  前記第1レンズおよび第2レンズは、下記(2)の条件式を満たすこと
     を特徴とする請求項1ないし請求項3のいずれか1項に記載の撮像光学系。
     1<f12/f<1.7   ・・・(2)
      ただし、
       f12:第1レンズおよび第2レンズの合成焦点距離
       f:撮像光学系全系の焦点距離
    The imaging optical system according to any one of claims 1 to 3, wherein the first lens and the second lens satisfy a conditional expression (2) below.
    1 <f12 / f <1.7 (2)
    However,
    f12: Composite focal length of the first lens and the second lens f: Focal length of the entire imaging optical system
  5.  前記第4レンズの像側面は、非球面形状であり、その中心では負の屈折力を持ち、有効領域端に向かうに従い負の屈折力が弱くなり、光軸に沿ったレンズ断面の輪郭線において前記光軸の交点から前記有効領域端に向かった場合に垂接点を有し、下記(3)の条件式を満たすこと
     を特徴とする請求項1ないし請求項4のいずれか1項に記載の撮像光学系。
     0.05<T4/f<0.17   ・・・(3)
      ただし、
       T4:第4レンズの光軸上の厚さ
       f:撮像光学系全系の焦点距離
    The image side surface of the fourth lens has an aspherical shape, has a negative refractive power at the center thereof, and the negative refractive power becomes weaker toward the end of the effective region, and in the contour line of the lens cross section along the optical axis. 5. The device according to claim 1, wherein the contact point has a perpendicular contact when it goes from the intersection of the optical axes toward the end of the effective region, and satisfies the following conditional expression (3): Imaging optical system.
    0.05 <T4 / f <0.17 (3)
    However,
    T4: thickness on the optical axis of the fourth lens f: focal length of the entire imaging optical system
  6.  前記第4レンズは、下記(4)の条件式を満たすこと
     を特徴とする請求項1ないし請求項5のいずれか1項に記載の撮像光学系。
     0.1<(r7+r8)/(r7-r8)<1・・・(4)
      ただし、
       r7:第4レンズにおける物体側面の曲率半径
       r8:第4レンズにける像側面の曲率半径
    The imaging optical system according to any one of claims 1 to 5, wherein the fourth lens satisfies the following conditional expression (4).
    0.1 <(r7 + r8) / (r7−r8) <1 (4)
    However,
    r7: radius of curvature of object side surface in the fourth lens r8: radius of curvature of image side surface of the fourth lens
  7.  前記第2レンズは、下記(5)の条件式を満たすこと
     を特徴とする請求項1ないし請求項6のいずれか1項に記載の撮像光学系。
     1.6<r3/f<2.2   ・・・(5)
      ただし、
       r3:第2レンズにおける像側面の曲率半径
       f:撮像光学系全系の焦点距離
    The imaging optical system according to any one of claims 1 to 6, wherein the second lens satisfies the following conditional expression (5).
    1.6 <r3 / f <2.2 (5)
    However,
    r3: radius of curvature of image side surface of second lens f: focal length of entire imaging optical system
  8.  前記第3レンズは、下記(6)の条件式を満たすこと
     を特徴とする請求項1ないし請求項7のいずれか1項に記載の撮像光学系。
     0.1<T3/f<0.6   ・・・(6)
      ただし、
       T3:第3レンズの光軸上の厚さ
       f:撮像光学系全系の焦点距離
    The imaging optical system according to any one of claims 1 to 7, wherein the third lens satisfies the following conditional expression (6).
    0.1 <T3 / f <0.6 (6)
    However,
    T3: thickness on the optical axis of the third lens f: focal length of the entire imaging optical system
  9.  前記第1ないし第4レンズの全ては、樹脂材料で形成された樹脂材料製レンズであること
     を特徴とする請求項1ないし請求項8のいずれか1項に記載の撮像光学系。
    9. The imaging optical system according to claim 1, wherein all of the first to fourth lenses are resin material lenses made of a resin material.
  10.  請求項1ないし請求項9のいずれか1項に記載の撮像光学系と、
     光学像を電気的な信号に変換する撮像素子とを備え、
     前記撮像光学系が前記撮像素子の受光面上に物体の光学像を形成可能とされていること
     を特徴とする撮像装置。
    The imaging optical system according to any one of claims 1 to 9,
    An image sensor that converts an optical image into an electrical signal,
    An image pickup apparatus, wherein the image pickup optical system is capable of forming an optical image of an object on a light receiving surface of the image pickup element.
  11.  請求項10に記載の撮像装置と、
     前記撮像装置に被写体の静止画撮影および動画撮影の少なくとも一方の撮影を行わせる制御部とを備え、
     前記撮像装置の撮像光学系が、前記撮像素子の撮像面上に前記被写体の光学像を形成可能に組み付けられていること
     を特徴とするデジタル機器。
    An imaging device according to claim 10;
    A controller that causes the imaging device to perform at least one of still image shooting and moving image shooting of a subject;
    A digital apparatus, wherein an imaging optical system of the imaging apparatus is assembled on an imaging surface of the imaging element so that an optical image of the subject can be formed.
  12.  携帯端末から成ることを特徴とする請求項11に記載のデジタル機器。 The digital device according to claim 11, comprising a mobile terminal.
PCT/JP2012/002975 2011-05-20 2012-05-02 Imaging optics, imaging apparatus and digital device WO2012160761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516183A JPWO2012160761A1 (en) 2011-05-20 2012-05-02 Imaging optical system, imaging apparatus, and digital device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-113743 2011-05-20
JP2011113743 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012160761A1 true WO2012160761A1 (en) 2012-11-29

Family

ID=47216855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002975 WO2012160761A1 (en) 2011-05-20 2012-05-02 Imaging optics, imaging apparatus and digital device

Country Status (3)

Country Link
JP (1) JPWO2012160761A1 (en)
TW (1) TW201307888A (en)
WO (1) WO2012160761A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625424A (en) * 2021-07-20 2021-11-09 江西晶超光学有限公司 Optical system, image capturing module and electronic equipment
WO2023044854A1 (en) * 2021-09-26 2023-03-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module and imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506332B (en) * 2013-09-27 2015-11-01 Largan Precision Co Ltd Image capturing lens system, imaging device and mobile terminal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082282A (en) * 2000-09-06 2002-03-22 Ricoh Co Ltd Original reading lens, original reading lens unit, original reading module, original reading method, original reader, and image information processor
JP3146436U (en) * 2008-05-28 2008-11-13 一品光学工業股▲ふん▼有限公司 Four-lens optical pickup system
JP2009020182A (en) * 2007-07-10 2009-01-29 Fujinon Corp Imaging lens, camera module, and image pickup unit
JP2009151113A (en) * 2007-12-20 2009-07-09 Olympus Corp Imaging optical system
JP2009282223A (en) * 2008-05-21 2009-12-03 Konica Minolta Opto Inc Imaging lens, imaging unit and personal digital assistant
JP2011107631A (en) * 2009-11-20 2011-06-02 Panasonic Corp Imaging lens, imaging apparatus using the same, and portable device mounting the imaging apparatus
JP2011221355A (en) * 2010-04-12 2011-11-04 Sharp Corp Imaging lens and imaging module
JP2012003230A (en) * 2010-06-17 2012-01-05 Samsung Electro-Mechanics Co Ltd Imaging optical system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082282A (en) * 2000-09-06 2002-03-22 Ricoh Co Ltd Original reading lens, original reading lens unit, original reading module, original reading method, original reader, and image information processor
JP2009020182A (en) * 2007-07-10 2009-01-29 Fujinon Corp Imaging lens, camera module, and image pickup unit
JP2009151113A (en) * 2007-12-20 2009-07-09 Olympus Corp Imaging optical system
JP2009282223A (en) * 2008-05-21 2009-12-03 Konica Minolta Opto Inc Imaging lens, imaging unit and personal digital assistant
JP3146436U (en) * 2008-05-28 2008-11-13 一品光学工業股▲ふん▼有限公司 Four-lens optical pickup system
JP2011107631A (en) * 2009-11-20 2011-06-02 Panasonic Corp Imaging lens, imaging apparatus using the same, and portable device mounting the imaging apparatus
JP2011221355A (en) * 2010-04-12 2011-11-04 Sharp Corp Imaging lens and imaging module
JP2012003230A (en) * 2010-06-17 2012-01-05 Samsung Electro-Mechanics Co Ltd Imaging optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625424A (en) * 2021-07-20 2021-11-09 江西晶超光学有限公司 Optical system, image capturing module and electronic equipment
WO2023044854A1 (en) * 2021-09-26 2023-03-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module and imaging device

Also Published As

Publication number Publication date
JPWO2012160761A1 (en) 2014-07-31
TW201307888A (en) 2013-02-16

Similar Documents

Publication Publication Date Title
JP5578275B2 (en) Imaging optical system, imaging apparatus, and digital device
JP5574049B2 (en) Imaging optical system, imaging apparatus, and digital device
JP5370619B1 (en) Imaging optical system, imaging apparatus, and digital device
JP5115647B2 (en) Imaging device and digital device
JP2012203234A (en) Imaging optical system, imaging apparatus and digital instrument
CN205281005U (en) Photographic lens and possess photographic arrangement of photographic lens
WO2013058111A1 (en) Image-capturing lens
WO2012164877A1 (en) Imaging optical system, imaging device, and digital apparatus
WO2013031122A1 (en) Image pickup optical system, image pickup device and digital equipment
JP2014123034A (en) Imaging optical system, image capturing device, and digital equipment
JP2009098492A (en) Imaging lens, imaging apparatus, and digital device
JP6287865B2 (en) Imaging optical system, imaging apparatus and digital apparatus
JP2007127960A (en) Imaging optical system, imaging lens device and digital equipment
WO2012160761A1 (en) Imaging optics, imaging apparatus and digital device
WO2012063391A1 (en) Image pickup optical system, image pickup device, and digital apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789728

Country of ref document: EP

Kind code of ref document: A1