WO2012157920A2 - Radioactive compound synthesis system having temperature-control unit - Google Patents
Radioactive compound synthesis system having temperature-control unit Download PDFInfo
- Publication number
- WO2012157920A2 WO2012157920A2 PCT/KR2012/003748 KR2012003748W WO2012157920A2 WO 2012157920 A2 WO2012157920 A2 WO 2012157920A2 KR 2012003748 W KR2012003748 W KR 2012003748W WO 2012157920 A2 WO2012157920 A2 WO 2012157920A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radioactive compound
- control unit
- compound synthesis
- temperature control
- module
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B59/00—Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G1/00—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
- G21G1/04—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
- G21G1/10—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
Definitions
- the present invention relates to a radioactive compound synthesis system, and more particularly to a radiopharmaceutical synthesis system that can be used in PET.
- a proton beam of dozens of MeV from the cyclocron is irradiated to the target H 2 18 0 to produce a radioisotope, 18 F ion.
- 18 F ion is attached to position 2 of the glucose molecule, it becomes FDG.
- FDG is a glucose analog (2-deoxy-2- ( 18 F) fluoro-D-glucose).
- FDG can be used for proton emission tomography (PET).
- the FDG is produced in a place installed at a remote place or in a hot cell so as to shield radiation from the target of the cyclotron.
- the distance from the cyclotron target to the hot cell reaches tens of meters.
- H 2 18 0 being transferred is only 1 ⁇ 2cc.
- H 2 18 0 mixed with 18 F is lost at the connecting portion or the bending portion of the pipe line.
- the reaction efficiency has a close relationship with the temperature inside the reaction chamber.
- the reaction chamber is maintained at a temperature of 105 degrees Celsius, and then reacted quickly to obtain a high reaction efficiency.
- a heating method using a heating wire or a high frequency heating method is applied to heat the reaction chamber.
- a separate cooling means must be added. Then, there is a problem that the configuration becomes more complicated, larger, and the manufacturing cost increases.
- Radioactive compound synthesis system for solving the above technical problem, Radioactive compound synthesis module is synthesized radioactive compound therein; And a base unit detachably coupled to the radioactive compound synthesizing module, wherein the radioactive compound synthesizing module has a flow path that is a fluid passage including a radioisotope or a material required for synthesizing a radioactive compound and is formed therein; A main body having a reaction chamber formed on the flow path; And at least one valve installed in the main body to block or open the flow path, wherein the radioactive compound synthesizing module is used for discarding after synthesizing the radioactive compound once. It includes a temperature control unit for controlling the temperature of.
- the radioisotope may comprise 18 F.
- the temperature control unit may be configured to heat or cool the inside of the reaction chamber.
- the temperature control unit is configured to heat the inside of the reaction chamber when a current is applied in a first direction, and to cool the inside of the reaction chamber when a current is applied in a second direction opposite to the first direction. Can be.
- the temperature control unit may include a thermoelectric element capable of performing both heating and cooling without a separate cooling device.
- the temperature control unit may include a Peltier element.
- a recess is formed on a lower surface of the main body facing the base unit, and when the radioactive compound synthesizing module and the base unit are coupled, the temperature control unit may be configured to be inserted into the recess.
- the concave portion may be formed at a position corresponding to a lower portion of the reaction chamber in the radioactive compound synthesis module.
- FIG. 1 is a schematic diagram of a radioactive compound synthesis system according to an embodiment of the present invention.
- FIG. 2 is a partial cross-sectional view briefly illustrating a process in which 18 F generated from a target is loaded into an FDG synthesis module.
- Figure 3 is a perspective view of the FDG synthesis module and the base unit of the radioactive compound synthesis system according to an embodiment of the present invention.
- FIG. 4 is an exploded perspective view of a radioactive compound synthesis system according to an embodiment of the present invention.
- FIG. 5 is a plan view of a first module of an FDG synthesis module according to an embodiment of the present invention.
- 6a to 6d are simplified views for explaining the temperature control process of the radioactive compound synthesis system by the temperature control unit.
- FDG can be used for proton emission tomography.
- Isotopes for proton emission tomography include 18 F, 11 C, 15 O and 13 N. The following describes an example targeting 18 F.
- the present invention is not limited thereto, and the present invention may also be applied to a radioactive material synthesis module that applies other isotope for tomography.
- FIG. 1 is a schematic configuration diagram of an apparatus for synthesizing a radioactive compound according to an embodiment of the present invention.
- the proton beam B accelerated by the cyclotron 100 is irradiated to the target (target apparatus) through the guide tube.
- the target is filled with H 2 18 0, and the proton beam B collides with the target to generate 18 F.
- H 2 18 0 mixed with 18 F is carried directly into the FDG synthesis module 200 without using a separate intermediate carrier, and FDG is generated through several steps of chemical reactions inside the FDG synthesis module 200.
- H 2 18 0 in which 18 F is mixed is transported to a synthesis apparatus through a thin long pipe or stored in a separate container to be directly transported by a person.
- the cyclotron 100 and FDG synthesis module 200 for generating a 18 F a mix of H 2 18 0 In accordance with the present invention is in one piece.
- H 2 18 0 may be produced in which 18 F is mixed to have a relatively weak radioactivity of about 100 to 200 mCi, there is an effect of reducing the risk of radiation exposure.
- the time for irradiating the proton beam can be reduced by that much, productivity is improved.
- the radioactive compound synthesis time is also reduced to about 15 minutes. Accordingly, there is an effect that can quickly cope with various situations that may occur in the radioactive compound synthesis process.
- the base unit 300 may be combined with the FDG synthesis module 200, and may heat or cool the FDG synthesis module 200 to a predetermined temperature.
- the control unit 400 may control the base unit 300.
- a valve or the like installed in the FDG synthesis module 200 may be controlled.
- the control unit 400 may be controlled from a wireless terminal (smartphone, tablet PC, laptop PC) remotely via a wireless communication network.
- a wireless terminal smart phone, tablet PC, laptop PC
- FIG. 2 is a partial cross-sectional view briefly illustrating a process in which 18 F generated from a target is loaded into an FDG synthesis module.
- Proton beam (B) is a 18 F is generated and irradiated to the target contained in the target chamber 124 through the inner introducer sheath (110).
- the target may be H 2 18 0.
- Both sides of the foil block 123 are provided with a first foil 121 and a second foil 122.
- One side of the target chamber 124 is provided with a cooling chamber 125 for cooling.
- An inert gas helium (He) is introduced through the gas inflow passage 126 to push H 2 18 0 mixed with 18 F through the discharge passage 127. Then, H 2 18 0 mixed with 18 F is loaded into the FDG synthesis module 200 directly connected to the carrying out passage 127.
- the distance from the end of the discharge passage 127 to the FDG synthesis module 200 is only a few millimeters or a few centimeters. In some cases, even if a connection pipe is installed between the end of the discharge passage 127 and the FDG synthesis module 200, the separation distance may be less than 1 meter.
- a separate compressed air pump or the like is required for the radioactive compound synthesizing apparatus.
- only one helium supply (not shown) connected to the gas inlet 126 is sufficient for the synthesis and transport of the compound. That is, the flow rate of the compound may be controlled by adjusting the gas pressure using a micro gas flow controller of the synthesis apparatus connected to the compressed helium gas cylinder. Accordingly, there is no need to attach a large-capacity syringe pump, which makes it possible to miniaturize the synthesis apparatus.
- the high energy neutron beam may be shielded by installing a plastic body including boron around the target chamber 124. Accordingly, to minimize the neutrons react with H 2 0 and 18 is possible to increase the probability of nuclear reaction between H 2 0 and 18 protons.
- the first hole 221a (see FIG. 5) of the FDG synthesis module 200 is detachably installed at the end of the carrying out passage 127, and when coupled, various coupling structures for maintaining watertightness may be applied. .
- the FDG synthesis module 200 has a width, height, and height of 20 centimeters or less, and in this embodiment, 13 centimeters in width and 11 centimeters in length are manufactured.
- FIG. 3 is a perspective view illustrating a FDG synthesis module and a base unit of a radioactive compound synthesizing apparatus according to an embodiment of the present invention.
- the FDG synthesis module 200 may be detachably coupled to the base 310 of the base unit 300.
- the temperature control unit 320 may heat or cool the reaction chambers 229 and 239 of the FDG synthesis module 200 from the outside.
- the portions of the reaction chambers 229 and 239 of the FDG synthesis module 200 are formed to be thinner than other portions so that the effect of heating or cooling by the temperature control unit 320 may be directly inside the reaction chambers 229.239.
- the bottom of the FDG synthesis module 200 is formed with a recess in contact with the temperature control unit 320, the temperature control unit 320 may be configured to be inserted into the recess.
- FIG. 4 is an exploded perspective view of a radioactive compound synthesizing apparatus according to an embodiment of the present invention.
- a radiation detection unit 330 may be installed on an upper surface of the base 310.
- the through hole 331 may be formed in the radiation detection unit 330 so that the temperature control unit 320 may be exposed upward.
- the FDG synthesis module 200 may be detachably installed on the upper surface of the radiation detection unit 330.
- the FDG synthesis module 200 includes a lower cover 210, a first module 220, a second module 230, an upper cover 240, a first filter 251, and first to seventh valves 261 to 267. It includes.
- the lower cover 210 may have a through hole 211 to allow the temperature control unit 320 to directly contact the bottom surfaces of the reaction chambers 229 and 239 of the first module 220.
- the first module 220 is formed with a flow path through which H 2 18 0 mixed with 18 F and other samples required for FDG generation can flow, and an insertion groove through which a valve can be installed.
- the flow path is a movement path of the material required for synthesizing the radioactive compound.
- the lower surface of the second module 230 may be formed in a horizontal plane without concave grooves, or concave grooves may be formed in a shape corresponding to the flow path formed in the first module 220.
- the first to seventh valve installation grooves 231 to 237 may be formed in the second module 230 such that the first to seventh valves 261 to 267 (thermal melting valves) are installed.
- the first module 220 and the second module 230 may be formed of a Teflon material or by coating Teflon on an aluminum frame.
- the first to seventh valves 261 to 267 may be electronic valves controlled electronically by the control unit 400.
- the first to seventh valves may be provided to include a filling part made of a resin weak in heat, and a heater coil surrounding the filling part or inserted into the filling part. Accordingly, in the case of forming a shut-off valve, when the current flows in the heater coil, the filling part may melt and may function as a shut-off valve blocking the flow path. On the other hand, in the case of forming an open valve, the filling part is closed before the current is applied, and when the current is applied to the heater coil, the filling part may be melted to open the flow path.
- FIG 5 is a plan view of a first module of an FDG generation module according to an embodiment of the present invention.
- a first hole 221a is formed at one side such that H 2 18 0 mixed with 18 F is introduced.
- H 2 18 0 18 F is mixed may be introduced into the approximately 1 ml is for about 10-15 seconds the first hole (221a).
- H 2 18 0 mixed with 18 F flows to the end of the first flow path 222a formed in the first module 220 and then opens the first hole 238a (see FIG. 4) formed in the second module 230. Through the first filter 251 through.
- the first filter 251 fixes 18 F, while passing the H 2 18 0.
- AG1-X8 or an anion exchange resin cartridge may be used as the first filter 251, AG1-X8 or an anion exchange resin cartridge.
- the first filter may be integrally inserted into the second module.
- H 2 18 0 filtered by 18 F is carried into the second hole 238b of the second module 230 and flows into the third channel 222c formed in the first module 220.
- the H 2 18 0 enters flow into three euros (222c) of the first through the first valve 261 is inserted into the valve mounting groove (223a), and flow to the fourth flow path (222d), the third hole (221c) Can be discharged to the outside.
- control unit 400 controls the first valve 261 to be switched to the closed state, the third passage 222c and the fourth passage 222d are blocked from each other. Subsequently, the control unit 400 controls the second valve 262 to be switched to the open state so that the third passage 222c and the fifth passage 222e are connected to each other.
- 18 F flows through the fifth flow path 222e together with TBAHCO 3 and MeOH to reach the reaction chambers 229 and 239.
- the control unit 400 controls the third valve 263 to be switched to the closed state, the fifth passage 222e and the reaction chambers 229 and 239 are blocked from each other.
- control unit 400 controls the temperature control unit 320 to evaporate the remaining amount of H 2 18 0 by allowing the reaction chambers 229 and 239 to reach 90 degrees Celsius.
- mannosetriflate and acetonitril (700 microliters) are introduced into the seventh channel 222g through the fourth hole 221d for about 5 to 10 seconds.
- the control unit 400 controls the temperature control unit 320 to heat the reaction chambers 229 and 239 to 70 to 80 degrees Celsius. Furthermore, as the control unit 400 controls the fifth valve 265 to be switched to the closed state, the seventh flow path 222g and the reaction chambers 229 and 239 are blocked from each other.
- control unit 400 controls the temperature control unit 320 to cool the reaction chambers 229 and 239 to reach room temperature.
- HCl 700 microliters
- the control unit 400 controls the temperature control unit 320 to heat the reaction chambers 229 and 239 to reach 70 to 80 degrees, and then cools them again.
- control unit 400 controls the fourth valve 264 to be switched to the closed state, the sixth flow path 222f and the reaction chambers 229 and 239 are blocked from each other.
- control unit 400 controls the seventh valve 267 to be switched to the open state, so that the ninth flow path 222i and the reaction chambers 229 and 239 are opened to each other.
- the nitrogen gas is introduced into the eighth flow path 222h through the sixth hole 221f to pass through the seventh valve 267 in which the reactants located in the reaction chambers 229 and 239 are opened. It is carried out to 7 holes (221g).
- the reactants carried out in the seventh hole (221 g) are transferred to a vial containing KHCO 3 + H 2 O and subjected to neutralization.
- the remaining 18 F filtered FDG is passed through alumina cartridge to a vial containing saline.
- 6a to 6d are simplified views for explaining the temperature control process of the radioactive compound synthesis apparatus by the temperature control unit.
- Temperature control unit 320 is a component for heating or cooling the FDG synthesis module 200. More specifically, the temperature control unit 320 heats or cools the inside of the reaction chambers 229 and 239 of the FDG synthesis module 200.
- the temperature control unit 320 may include a thermoelectric element, in particular a Peltier device using a Peltier effect.
- a Peltier device is an element that uses the effect of transferring heat from one metal to another when a current flows through two kinds of metal joints. In other words, an exothermic phenomenon occurs in one metal, and an endothermic (cooling) phenomenon occurs in another metal.
- FIG. 6A illustrates a process in which the FDG synthesis module 200 and the base unit 300 are coupled to each other.
- Reaction chambers 229 and 239 are formed in the FDG synthesis module 200 to generate radioactive compounds.
- Concave portions 200a are formed in portions of the FDG synthesis module 200 corresponding to the lower portions of the reaction chambers 229 and 239.
- the temperature control unit 320 may be installed on the upper surface of the base 310. When the FDG synthesis module 200 and the base unit 300 are coupled to each other, the temperature control unit 320 may be inserted into the recess 200a.
- FIG. 6B illustrates a process of heating the interior of the reaction chambers 229 and 239 in a state in which the FDG synthesis module 200 and the base unit 300 are coupled to each other. That is, when the current i flows through the terminal 321 of the temperature control unit 320 in a predetermined direction, an exothermic reaction occurs on the upper surface of the temperature control unit 320. Accordingly, the interior of the reaction chambers 229 and 239 is heated.
- 6C illustrates a process of cooling the inside of the reaction chambers 229 and 239 in a state in which the FDG synthesis module 200 and the base unit 300 are coupled to each other. That is, when the current i flows in the opposite direction through the terminal 321 of the temperature control unit 320, a cooling reaction (endothermic reaction) occurs on the upper surface of the temperature control unit 320. As a result, the internal temperatures of the reaction chambers 229 and 239 are lowered.
- the present invention it is possible to switch quickly from the heating mode to the cooling mode only by switching the flow direction of the current has the effect of improving the reaction efficiency.
- the area of the temperature control unit 320 used in this embodiment is relatively small, about 20 mm 2. Therefore, when the separate heating device and the cooling device are provided respectively, the size of the device becomes very large. However, applying the same temperature control unit 320 as the embodiment of the present invention can significantly reduce the size of the device.
- FIG. 6D illustrates a process in which the FDG synthesis module 200 and the base unit 300 are separated from each other. That is, the FDG synthesis module 200, which has been used after the synthesis reaction is completed, is separated from the base unit 300 for use in subsequent work or for disposal.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Nuclear Medicine (AREA)
Abstract
There is a need for the development of an apparatus for synthesis of radioactive compounds with high reaction efficiency. More specifically, there is a need for the miniaturization of an apparatus for synthesis, which can also heat and cool the reaction chamber therein. According to the present invention, which is to solve these technical problems, a radioactive compound synthesis system comprises: a radioactive compound synthesis module for synthesizing radioactive compounds therein; and a base unit which is detachably attached to the radioactive compound synthesis module, wherein the radioactive compound synthesis module comprises: a main body provided with a fluid passageway, in the interior, through which a fluid comprising a radioactive isotope, or a substance necessary for synthesis of a radioactive compound is transported, and having a reaction chamber above the fluid passageway; and at least one valve, disposed on the main body, for closing or opening the fluid passageway. The radioactive compound synthesis module is discarded after being used for one round of synthesis, and the base unit comprises a temperature control unit for controlling the temperature of the main body.
Description
본 발명은 방사성 화합물 합성 시스템에 관한 것으로서, 보다 자세하게는 PET에 사용될 수 있는 방사성 의약품의 합성 시스템에 관한 것이다.The present invention relates to a radioactive compound synthesis system, and more particularly to a radiopharmaceutical synthesis system that can be used in PET.
사이클로크론으로부터 십 수 MeV의 양성자 빔이 타겟(표적장치)인 H2
180에 조사되면 방사성 동위원소인 18F 이온이 생성된다. 생성된 18F 이온이 글루코스 분자의 2번 위치에 부착이 되면 FDG가 된다. FDG는 글루코스 유사체(glucose analog)(2- deoxy- 2-(18F) fluoro-D-glucose)이다. FDG는 양성자 방출 단층촬영(PET)에 사용될 수 있다. A proton beam of dozens of MeV from the cyclocron is irradiated to the target H 2 18 0 to produce a radioisotope, 18 F ion. When the generated 18 F ion is attached to position 2 of the glucose molecule, it becomes FDG. FDG is a glucose analog (2-deoxy-2- ( 18 F) fluoro-D-glucose). FDG can be used for proton emission tomography (PET).
종래 기술(한국등록특허 10-1001300)에 의하면 사이클로트론의 타겟으로부터 나오는 방사선을 차폐할 수 있도록 원거리에 설치된 장소 또는 핫셀 내부에서 FDG를 생산하고 있다. 일반적으로 사이클로트론의 타겟으로부터 핫셀까지의 거리는 수십 미터에 이른다. 또한, 직경 1 밀리미터 이내의 관로를 따라 18F이 혼합된 H2
180을 이송하게 되며, 이송되는 H2
180는 1~2cc에 불과하다. 그리고, 관로의 연결부 또는 꺾이는 부분에서 18F이 혼합된 H2
180이 유실되는 경우가 많이 발생하고 있다. According to the prior art (Korean Patent No. 10-1001300), the FDG is produced in a place installed at a remote place or in a hot cell so as to shield radiation from the target of the cyclotron. In general, the distance from the cyclotron target to the hot cell reaches tens of meters. Further, as the pipe is within 1 mm diameter and the 18 F is transferred to the mixed H 2 18 0, H 2 18 0 being transferred is only 1 ~ 2cc. In many cases, H 2 18 0 mixed with 18 F is lost at the connecting portion or the bending portion of the pipe line.
1~2cc의 H2
180에는 약 2 Ci 이상의 높은 방사선이 검출되기 때문에 핫셀까지의 이송과정에서 방사능 물질 유출 및 환경 오염 문제가 제기되고 있다. 18F은 1.2 MeV의 높은 에너지를 방사하는 핵종이므로 매우 주의가 요구된다. Since high radiation of about 2 Ci or more is detected in 1 to 2 cc of H 2 18 0, radioactive material leakage and environmental pollution are raised during transfer to the hot cell. Extreme care should be taken because 18 F is a radionuclide that emits a high energy of 1.2 MeV.
한편, 18F이 혼합된 H2
180을 먼 거리까지 이송해야 하고 유실의 위험이 컸기 때문에 높은 방사능을 가진 18F을 생산해야만 한다. 그래서, 높은 방사능을 가진 18F을 생산하기 위해서 1 ~ 2 시간 동안 양성자빔을 계속 조사해야만 하는 문제가 있다. On the other hand, must be transferred to 18 F is a distance for mixing the H 2 0 and 18 must produce 18 F having a high radiation keotgi because the risk of loss. Thus, there is a problem that the proton beam must be continuously irradiated for 1 to 2 hours to produce 18 F having high radioactivity.
한편, 방사성 화합물의 합성에 있어서 반응효율은 반응챔버 내부의 온도와 밀접한 관계를 가지고 있다. 일반적으로 반응챔버 내부의 온도가 섭씨 105도를 유지하면서 반응을 시킨 다음에 신속하게 적정 온도로 냉각하여야 높은 반응효율을 얻을 수 있다. 종래 기술에 의하면 반응챔버의 가열을 위하여 열선에 의한 가열방식 또는 고주파 가열방식을 적용하고 있다. 이러한 종래 기술에 의하면, 별도의 냉각수단을 부가하여야 한다. 그렇게 되면, 구성이 더욱 복잡해지게 되고 대형화되며 제조비용이 증가하게 된다는 문제점이 있다. On the other hand, in the synthesis of the radioactive compound, the reaction efficiency has a close relationship with the temperature inside the reaction chamber. In general, the reaction chamber is maintained at a temperature of 105 degrees Celsius, and then reacted quickly to obtain a high reaction efficiency. According to the prior art, a heating method using a heating wire or a high frequency heating method is applied to heat the reaction chamber. According to this prior art, a separate cooling means must be added. Then, there is a problem that the configuration becomes more complicated, larger, and the manufacturing cost increases.
반응효율이 높은 방사성 화합물 합성장치의 개발이 요구된다. 보다 구체적으로는 방사성 화합물 합성장치의 반응챔버를 가열 및 냉각하면서도 합성장치의 소형화가 요구된다. There is a need to develop a radioactive compound synthesizing apparatus having high reaction efficiency. More specifically, miniaturization of the synthesis apparatus is required while heating and cooling the reaction chamber of the radioactive compound synthesis apparatus.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자가 명확하게 이해할 수 있을 것이다.Technical problems of the present invention are not limited to the above-mentioned technical problems, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 기술적 과제를 해결하기 위한 본 발명에 따른 방사성 화합물 합성 시스템은, 내부에서 방사성 화합물이 합성되는 방사성 화합물 합성모듈; 및 상기 방사성 화합물 합성모듈과 탈착가능하게 결합되는 베이스 유닛;을 포함하며, 상기 방사성 화합물 합성모듈은, 방사성 동위원소를 포함한 유체 또는 방사성 화합물 합성에 필요한 물질의 이동통로인 유로가 내부에 형성되며 상기 유로상에 반응챔버가 형성된 본체; 및 상기 유로를 차단하거나 개방하기 위하여 상기 본체에 설치되는 적어도 하나 이상의 밸브;를 포함하며, 상기 방사성 화합물 합성모듈은 상기 방사성 화합물을 1회 합성한 후에 폐기되는 용도로 사용되고, 상기 베이스유닛은 상기 본체의 온도를 조절하기 위한 온도조절유닛을 포함한다.Radioactive compound synthesis system according to the present invention for solving the above technical problem, Radioactive compound synthesis module is synthesized radioactive compound therein; And a base unit detachably coupled to the radioactive compound synthesizing module, wherein the radioactive compound synthesizing module has a flow path that is a fluid passage including a radioisotope or a material required for synthesizing a radioactive compound and is formed therein; A main body having a reaction chamber formed on the flow path; And at least one valve installed in the main body to block or open the flow path, wherein the radioactive compound synthesizing module is used for discarding after synthesizing the radioactive compound once. It includes a temperature control unit for controlling the temperature of.
또한, 상기 방사성 동위원소는 18F를 포함할 수 있다.In addition, the radioisotope may comprise 18 F.
또한, 상기 온도조절유닛은 상기 반응챔버의 내부를 가열하거나 냉각하도록 구성될 수 있다. In addition, the temperature control unit may be configured to heat or cool the inside of the reaction chamber.
또한, 상기 온도조절유닛은 제1방향으로 전류가 인가되면 상기 반응챔버의 내부를 가열하며, 상기 제1방향의 반대방향인 제2방향으로 전류가 인가되면 상기 반응챔버의 내부를 냉각하도록 구성될 수 있다.In addition, the temperature control unit is configured to heat the inside of the reaction chamber when a current is applied in a first direction, and to cool the inside of the reaction chamber when a current is applied in a second direction opposite to the first direction. Can be.
또한, 상기 온도조절유닛은 별도의 냉각장치가 없이도 가열 및 냉각을 모두 수행할 수 있는 열전 소자를 포함할 수 있다.In addition, the temperature control unit may include a thermoelectric element capable of performing both heating and cooling without a separate cooling device.
또한, 상기 온도조절유닛은 펠티어 소자를 포함할 수 있다.In addition, the temperature control unit may include a Peltier element.
또한, 상기 베이스 유닛과 마주보는 상기 본체의 하면에는 오목부가 형성되며, 상기 방사성 화합물 합성모듈과 상기 베이스 유닛이 결합되었을 때에 상기 온도조절유닛은 상기 오목부에 삽입될 수 있도록 구성될 수 있다.In addition, a recess is formed on a lower surface of the main body facing the base unit, and when the radioactive compound synthesizing module and the base unit are coupled, the temperature control unit may be configured to be inserted into the recess.
또한, 상기 오목부는 상기 방사성 화합물 합성모듈에 있어서 상기 반응챔버의 직하부에 대응되는 위치에 형성될 수 있다.The concave portion may be formed at a position corresponding to a lower portion of the reaction chamber in the radioactive compound synthesis module.
하나의 구성요소에 의하여 방사성 화합물 합성모듈의 가열 및 냉각이 가능하기 때문에 소형화가 가능하며, 제조비용이 저렴하게 되고, 반응효율이 향성되는 효과가 있다.Since one component enables heating and cooling of the radioactive compound synthesis module, miniaturization is possible, manufacturing costs are low, and reaction efficiency is improved.
본 발명의 기술적 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical effects of the present invention are not limited to the above-mentioned effects, and other technical effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 실시예에 따른 방사성 화합물 합성 시스템의 개략적인 구성도이다. 1 is a schematic diagram of a radioactive compound synthesis system according to an embodiment of the present invention.
도 2는 타겟으로부터 생성된 18F이 FDG합성모듈에 반입되는 과정을 간략하게 나타낸 부분 단면도이다. FIG. 2 is a partial cross-sectional view briefly illustrating a process in which 18 F generated from a target is loaded into an FDG synthesis module.
도 3은 본 발명의 실시예에 따른 방사성 화합물 합성 시스템의 FDG합성모듈과 베이스 유닛을 도시한 사시도이다.Figure 3 is a perspective view of the FDG synthesis module and the base unit of the radioactive compound synthesis system according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 방사성 화합물 합성 시스템의 분해 사시도이다.4 is an exploded perspective view of a radioactive compound synthesis system according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 FDG합성모듈의 제1모듈의 평면도이다. 5 is a plan view of a first module of an FDG synthesis module according to an embodiment of the present invention.
도 6a 내지 도 6d는 온도조절유닛에 의한 방사성 화합물 합성 시스템의 온도조절 과정을 설명하기 위한 간략도면이다.6a to 6d are simplified views for explaining the temperature control process of the radioactive compound synthesis system by the temperature control unit.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 그러나 본 실시예는 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면에서의 요소의 형상 등은 보다 명확한 설명을 위하여 과장되게 표현된 부분이 있을 수 있으며, 도면상에서 동일 부호로 표시된 요소는 동일 요소를 의미한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present embodiment is not limited to the embodiments disclosed below, but can be implemented in various forms, and only this embodiment makes the disclosure of the present invention complete, and the scope of the invention to those skilled in the art. It is provided for complete information. Shapes of the elements in the drawings may be exaggerated parts for a more clear description, elements denoted by the same reference numerals in the drawings means the same element.
FDG는 양성자 방출 단층촬영에 이용될 수 있다. 양성자 방출 단층촬영용 동위원소로는 18F, 11C, 15O 그리고 13N 등이 있다. 이하에서는 18F를 대상으로 하는 실시예를 기술하였다. 그러나, 반드시 이에 한정되지는 않으며 다른 양성자 방출 단층촬영용 동위원소를 적용하는 방사능 물질 합성모듈의 경우에도 적용이 가능하다.FDG can be used for proton emission tomography. Isotopes for proton emission tomography include 18 F, 11 C, 15 O and 13 N. The following describes an example targeting 18 F. However, the present invention is not limited thereto, and the present invention may also be applied to a radioactive material synthesis module that applies other isotope for tomography.
도 1은 본 발명의 실시예에 따른 방사성 화합물 합성장치의 개략적인 구성도이다. 1 is a schematic configuration diagram of an apparatus for synthesizing a radioactive compound according to an embodiment of the present invention.
사이클로트론(100)에 의하여 가속된 양성자 빔(B)이 유도관을 통과하여 타겟(표적장치)에 조사된다. 타겟에는 H2
180이 채워져 있고, 양성자 빔(B)이 타겟에 충돌하여 18F이 생성된다. The proton beam B accelerated by the cyclotron 100 is irradiated to the target (target apparatus) through the guide tube. The target is filled with H 2 18 0, and the proton beam B collides with the target to generate 18 F.
18F이 혼합된 H2
180이 별도의 중간 운반체에 의하지 않고 직접적으로 FDG합성모듈(200)로 반입되며, FDG합성모듈(200) 내부에서 여러 단계의 화학반응을 거쳐서 FDG가 생성된다. 이와 관련하여, 종래에는 18F이 혼합된 H2
180을 가늘고도 긴 관로를 거쳐서 합성장치로 운반하거나 별도의 용기에 저장하여 사람이 직접 운반할 수 밖에 없는 구성이었다. 그러나, 본 발명에 따르면 18F이 혼합된 H2
180을 생성하는 사이클로트론(100)과 FDG합성모듈(200)이 일체로 된다. H 2 18 0 mixed with 18 F is carried directly into the FDG synthesis module 200 without using a separate intermediate carrier, and FDG is generated through several steps of chemical reactions inside the FDG synthesis module 200. In this regard, in the related art, H 2 18 0 in which 18 F is mixed is transported to a synthesis apparatus through a thin long pipe or stored in a separate container to be directly transported by a person. However, the cyclotron 100 and FDG synthesis module 200 for generating a 18 F a mix of H 2 18 0 In accordance with the present invention is in one piece.
이에 따라, 약 100~ 200mCi의 비교적 약한 방사능을 가지도록 18F이 혼합된 H2
180을 생산해도 되기 때문에 방사선 피폭의 위험성이 감소되는 효과가 있다. 또한, 그 만큼 양성자빔을 조사(irradiation)하는 시간을 줄일 수 있으므로 생산성이 향상되는 효과가 있다. Accordingly, since H 2 18 0 may be produced in which 18 F is mixed to have a relatively weak radioactivity of about 100 to 200 mCi, there is an effect of reducing the risk of radiation exposure. In addition, since the time for irradiating the proton beam can be reduced by that much, productivity is improved.
또한, 화합물의 운반시간이 절약되기 때문에 방사성 화합물 합성시간도 약 15 분 이내로 줄일 수 있는 효과가 있다. 이에 따라, 방사성 화합물 합성 과정에서 발생할 수 있는 다양한 상황에 대하여 신속한 대처가 가능하게 되는 효과가 있다. In addition, since the transport time of the compound is saved, the radioactive compound synthesis time is also reduced to about 15 minutes. Accordingly, there is an effect that can quickly cope with various situations that may occur in the radioactive compound synthesis process.
베이스 유닛(300)은 FDG합성모듈(200)과 결합될 수 있으며, FDG합성모듈(200)을 소정의 온도로 가열하거나 냉각할 수 있다. The base unit 300 may be combined with the FDG synthesis module 200, and may heat or cool the FDG synthesis module 200 to a predetermined temperature.
제어 유닛(400)은 베이스 유닛(300)을 제어할 수 있다. 또한, FDG합성모듈(200)에 설치된 밸브 등을 제어할 수도 있다.The control unit 400 may control the base unit 300. In addition, a valve or the like installed in the FDG synthesis module 200 may be controlled.
제어 유닛(400)은 무선통신망을 통하여 원격으로 무선단말기(스마트폰, 태블릿 PC, 랩탑 PC)로부터 제어될 수 있다.The control unit 400 may be controlled from a wireless terminal (smartphone, tablet PC, laptop PC) remotely via a wireless communication network.
도 2는 타겟으로부터 생성된 18F이 FDG합성모듈에 반입되는 과정을 간략하게 나타낸 부분 단면도이다. FIG. 2 is a partial cross-sectional view briefly illustrating a process in which 18 F generated from a target is loaded into an FDG synthesis module.
양성자 빔(B)은 유도관(110) 내부를 통하여 타겟챔버(124)에 수용된 타겟에 조사되어 18F이 생성된다. 본 실시예에서 타겟은 H2
180일 수 있다. 호일블럭(123)의 양면에는 제1호일(121)과 제2호일(122)이 설치된다. 타겟챔버(124)의 일측에는 냉각을 위한 냉각챔버(125)가 설치된다. Proton beam (B) is a 18 F is generated and irradiated to the target contained in the target chamber 124 through the inner introducer sheath (110). In this embodiment, the target may be H 2 18 0. Both sides of the foil block 123 are provided with a first foil 121 and a second foil 122. One side of the target chamber 124 is provided with a cooling chamber 125 for cooling.
가스유입유로(126)를 통하여 불활성 가스인 헬륨(He)이 투입되어 18F이 혼합된 H2
180을 반출유로(127)를 통하여 밀어낸다. 그리고, 반출유로(127)에 직접 연결된 FDG합성모듈(200) 내부로 18F이 혼합된 H2
180이 반입된다. 반출유로(127)의 단부로부터 FDG합성모듈(200)까지의 거리는 불과 수 밀리미터 또는 수 센티미터에 불과하다. 경우에 따라, 반출유로(127)의 단부와 FDG합성모듈(200) 사이에 연결관로를 설치하더라도 이격 거리는 1미터 미만일 수 있다. An inert gas helium (He) is introduced through the gas inflow passage 126 to push H 2 18 0 mixed with 18 F through the discharge passage 127. Then, H 2 18 0 mixed with 18 F is loaded into the FDG synthesis module 200 directly connected to the carrying out passage 127. The distance from the end of the discharge passage 127 to the FDG synthesis module 200 is only a few millimeters or a few centimeters. In some cases, even if a connection pipe is installed between the end of the discharge passage 127 and the FDG synthesis module 200, the separation distance may be less than 1 meter.
종래기술에 의하면, 방사성 화합물 합성장치에 별도의 압축공기 펌프 등이 필요하다. 그러나, 본 발명에 따르면, 가스유입유로(126)에 연결되는 헬륨 공급장치(미도시) 하나만으로도 화합물의 합성 및 운반에 있어서 충분하다. 즉, 압축 헬륨가스 봄베와 연결된 합성장치의 마이크로 가스 유량 조절기를 이용하여 가스압력을 조절함으로써 화합물의 유량을 조절할 수 있다. 이에 따라, 대용량의 시린지 펌프를 부착할 필요가 없어 합성장치의 소형화가 가능하게 되는 효과가 있다.According to the prior art, a separate compressed air pump or the like is required for the radioactive compound synthesizing apparatus. However, according to the present invention, only one helium supply (not shown) connected to the gas inlet 126 is sufficient for the synthesis and transport of the compound. That is, the flow rate of the compound may be controlled by adjusting the gas pressure using a micro gas flow controller of the synthesis apparatus connected to the compressed helium gas cylinder. Accordingly, there is no need to attach a large-capacity syringe pump, which makes it possible to miniaturize the synthesis apparatus.
타겟챔버(124)의 주위에 붕소를 포함한 플라스틱체를 설치하여 고에너지 중성자빔을 차폐할 수 있다. 이에 따라, H2
180과 반응하게 되는 중성자를 최소화하고 H2
180과 양성자 사이의 핵반응 확률을 높일 수 있다.The high energy neutron beam may be shielded by installing a plastic body including boron around the target chamber 124. Accordingly, to minimize the neutrons react with H 2 0 and 18 is possible to increase the probability of nuclear reaction between H 2 0 and 18 protons.
FDG합성모듈(200)의 제1홀(221a)(도 5 참조)은 반출유로(127)의 단부에 탈착이 가능하게 설치되며, 결합되는 경우에는 수밀성을 유지할 수 있는 다양한 결합구조가 적용될 수 있다. FDG합성모듈(200)은 가로, 세로, 높이가 각각 20 센티미터 이하이며, 본 실시예에서는 가로 13 센티미터, 세로 11 센티미터로 제작되었다.The first hole 221a (see FIG. 5) of the FDG synthesis module 200 is detachably installed at the end of the carrying out passage 127, and when coupled, various coupling structures for maintaining watertightness may be applied. . The FDG synthesis module 200 has a width, height, and height of 20 centimeters or less, and in this embodiment, 13 centimeters in width and 11 centimeters in length are manufactured.
도 3은 본 발명의 실시예에 따른 방사성 화합물 합성장치의 FDG합성모듈과 베이스 유닛을 도시한 사시도이다.3 is a perspective view illustrating a FDG synthesis module and a base unit of a radioactive compound synthesizing apparatus according to an embodiment of the present invention.
도 3에서 보듯이, FDG합성모듈(200)은 베이스 유닛(300)의 베이스(310)에 탈착가능하게 결합될 수 있다. 온도조절유닛(320)은 FDG합성모듈(200)의 반응챔버(229,239)를 외부에서 가열하거나 냉각할 수 있다. FDG합성모듈(200)의 반응챔버(229,239) 부분은 다른 부분보다 두께가 얇게 형성되어서 온도조절유닛(320)에 의한 가열 또는 냉각의 효과가 직접적으로 반응챔버(229.239) 내부로 미칠 수 있다. 또는 FDG합성모듈(200)의 하면에는 온도조절유닛(320)과 접하는 위치에 오목부가 형성되고, 온도조절유닛(320)는 상기 오목부에 삽입되도록 구성될 수 있다.As shown in FIG. 3, the FDG synthesis module 200 may be detachably coupled to the base 310 of the base unit 300. The temperature control unit 320 may heat or cool the reaction chambers 229 and 239 of the FDG synthesis module 200 from the outside. The portions of the reaction chambers 229 and 239 of the FDG synthesis module 200 are formed to be thinner than other portions so that the effect of heating or cooling by the temperature control unit 320 may be directly inside the reaction chambers 229.239. Alternatively, the bottom of the FDG synthesis module 200 is formed with a recess in contact with the temperature control unit 320, the temperature control unit 320 may be configured to be inserted into the recess.
도 4는 본 발명의 실시예에 따른 방사성 화합물 합성장치의 분해 사시도이다.4 is an exploded perspective view of a radioactive compound synthesizing apparatus according to an embodiment of the present invention.
도 4에서 보듯이, 베이스(310)의 상면에는 방사선 검출 유닛(330)이 설치될 수 있다. 방사선 검출 유닛(330)에는 온도조절유닛(320)이 상부로 노출될 수 있도록 관통홀(331)이 형성될 수 있다.As shown in FIG. 4, a radiation detection unit 330 may be installed on an upper surface of the base 310. The through hole 331 may be formed in the radiation detection unit 330 so that the temperature control unit 320 may be exposed upward.
방사선 검출 유닛(330) 상면에는 FDG합성모듈(200)이 탈착 가능하게 설치될 수 있다. The FDG synthesis module 200 may be detachably installed on the upper surface of the radiation detection unit 330.
FDG합성모듈(200)은 하부커버(210), 제1모듈(220), 제2모듈(230), 상부커버(240), 제1필터(251), 제1~7밸브(261~267)를 포함한다.The FDG synthesis module 200 includes a lower cover 210, a first module 220, a second module 230, an upper cover 240, a first filter 251, and first to seventh valves 261 to 267. It includes.
하부커버(210)에는 온도조절유닛(320)이 제1모듈(220)의 반응챔버(229,239) 하면에 직접 접촉할 수 있도록 관통홀(211)이 형성될 수 있다.The lower cover 210 may have a through hole 211 to allow the temperature control unit 320 to directly contact the bottom surfaces of the reaction chambers 229 and 239 of the first module 220.
제1모듈(220)에는 18F이 혼합된 H2
180 및 기타 FDG생성에 필요한 시료가 흐를 수 있는 유로가 형성되어 있으며, 밸브가 설치될 수 있는 삽입홈이 형성되어 있다. 즉, 유로는 방사성 화합물 합성에 필요한 물질의 이동통로이다.The first module 220 is formed with a flow path through which H 2 18 0 mixed with 18 F and other samples required for FDG generation can flow, and an insertion groove through which a valve can be installed. In other words, the flow path is a movement path of the material required for synthesizing the radioactive compound.
제2모듈(230)의 하면은 오목홈이 없는 수평면으로 형성될 수도 있고, 제1모듈(220)에 형성된 유로에 대응되는 형태로 오목홈이 형성될 수도 있다. 제2모듈(230)에는 제1~7밸브(261~267)(열 용융 밸브)가 설치되도록 제1~7밸브 설치홈(231~237)이 형성될 수 있다. 제1모듈(220)과 제2모듈(230)은 테플론 소재로 형성되거나, 또는 알루미늄 프레임에 테플론을 코팅함으로써 형성될 수 있다. The lower surface of the second module 230 may be formed in a horizontal plane without concave grooves, or concave grooves may be formed in a shape corresponding to the flow path formed in the first module 220. The first to seventh valve installation grooves 231 to 237 may be formed in the second module 230 such that the first to seventh valves 261 to 267 (thermal melting valves) are installed. The first module 220 and the second module 230 may be formed of a Teflon material or by coating Teflon on an aluminum frame.
상부커버(240)에는 제1필터(251)가 설치되도록 제1필터설치홈(248a,248b), 제1~7밸브(261~267)가 설치되도록 제1~7밸브 설치홈(241~247)이 형성될 수 있다. First to seventh valve installation grooves 241 to 247 such that the first filter installation grooves 248a and 248b and the first to seventh valves 261 to 267 are installed on the upper cover 240 so that the first filter 251 is installed. ) May be formed.
제1~7밸브(261~267)(열 용융 밸브)는 제어유닛(400)에 의하여 전자적으로 제어되는 전자식 밸브일 수 있다. The first to seventh valves 261 to 267 (thermal melting valves) may be electronic valves controlled electronically by the control unit 400.
다른 실시예로서, 제1~7밸브는 내부에 열에 약한 수지 재질의 충진부와, 충진부를 둘러싸거나 충진부 내부에 삽입된 히터코일을 포함하도록 마련될 수 있다. 이에 따라, 차단형 밸브로 형성하고자 하는 경우에는 히터코일에 전류가 흐르면 충진부가 녹아내리면서 유로를 차단하는 차단밸브로 기능을 수행할 수 있다. 반면, 개방형 밸브로 형성하고자 하는 경우에는 전류가 인가되기 전에는 충진부가 유로를 폐쇄하고 있으며, 전류가 히터코일에 인가되면 충진부가 녹아내리면서 유로를 개방시키도록 마련될 수 있다.As another embodiment, the first to seventh valves may be provided to include a filling part made of a resin weak in heat, and a heater coil surrounding the filling part or inserted into the filling part. Accordingly, in the case of forming a shut-off valve, when the current flows in the heater coil, the filling part may melt and may function as a shut-off valve blocking the flow path. On the other hand, in the case of forming an open valve, the filling part is closed before the current is applied, and when the current is applied to the heater coil, the filling part may be melted to open the flow path.
도 5는 본 발명의 실시예에 따른 FDG생성모듈의 제1모듈의 평면도이다. 5 is a plan view of a first module of an FDG generation module according to an embodiment of the present invention.
도 5에서 보듯이, 18F이 혼합된 H2
180이 투입되도록 일측면에 제1홀(221a)이 형성된다. 18F이 혼합된 H2
180는 대략 1 밀리리터가 대략 10~15초 동안 제1홀(221a) 내부로 유입될 수 있다. 18F이 혼합된 H2
180은 제1모듈(220)에 형성된 제1 유로(222a)의 끝단까지 흐른 다음에 제2모듈(230)에 형성된 제1홀(238a)(도 4 참조)을 통하여 제1필터(251)로 진입하게 된다. As shown in FIG. 5, a first hole 221a is formed at one side such that H 2 18 0 mixed with 18 F is introduced. H 2 18 0 18 F is mixed may be introduced into the approximately 1 ml is for about 10-15 seconds the first hole (221a). H 2 18 0 mixed with 18 F flows to the end of the first flow path 222a formed in the first module 220 and then opens the first hole 238a (see FIG. 4) formed in the second module 230. Through the first filter 251 through.
제1필터(251)는 18F는 고정하는 반면, H2
180는 통과시킨다. 제1필터(251)로서 AG1-X8 또는 음이온 교환수지 카트리지가 사용될 수 있다. The first filter 251 fixes 18 F, while passing the H 2 18 0. As the first filter 251, AG1-X8 or an anion exchange resin cartridge may be used.
다른 실시예로서, 제1필터는 제2모듈에 일체로 삽입설치될 수도 있다. In another embodiment, the first filter may be integrally inserted into the second module.
18F이 필터링된 H2
180는 제2모듈(230)의 제2홀(238b) 내부로 반입되고, 제1모듈(220)에 형성된 제3유로(222c)로 흐르게 된다. 제3유로(222c)로 흘러들어간 H2
180는 제1밸브설치홈(223a)에 삽입된 제1밸브(261)를 관통하여 제4유로(222d)로 흐르게 되며 제3홀(221c)을 통하여 외부로 배출될 수 있다. H 2 18 0 filtered by 18 F is carried into the second hole 238b of the second module 230 and flows into the third channel 222c formed in the first module 220. The H 2 18 0 enters flow into three euros (222c) of the first through the first valve 261 is inserted into the valve mounting groove (223a), and flow to the fourth flow path (222d), the third hole (221c) Can be discharged to the outside.
나아가, 제어유닛(400)은 제1밸브(261)를 제어하여 닫힘상태(close)로 전환되도록 함에 따라 제3유로(222c)와 제4유로(222d)는 서로 차단된다. 이어서, 제어유닛(400)은 제2밸브(262)를 제어하여 열림상태(open)로 전환되도록 함에 따라 제3유로(222c)와 제5유로(222e)가 서로 연결되도록 한다. Further, as the control unit 400 controls the first valve 261 to be switched to the closed state, the third passage 222c and the fourth passage 222d are blocked from each other. Subsequently, the control unit 400 controls the second valve 262 to be switched to the open state so that the third passage 222c and the fifth passage 222e are connected to each other.
18F이 필터링된 H2
180이 배출되고 나면, 제2홀(221b)을 통하여 제2유로(222b)로 TBAHCO3(50~100 마이크로 리터)와 MeOH(약 700 마이크로 리터)가 유입되도록 한다. 이에 따라, 제1필터(251)에 고정되었던 18F은 TBAHCO3 및 MeOH와 함께 제3유로(222c)로 흘러나가게 된다. After 18 F filtered H 2 18 0 is discharged, TBAHCO 3 (50-100 microliters) and MeOH (about 700 microliters) are introduced into the second passage 222b through the second hole 221b. Accordingly, 18 F fixed to the first filter 251 flows to the third passage 222c together with TBAHCO 3 and MeOH.
제1밸브(261)는 차단된 상태이며, 제2밸브(262)는 개방상태이므로 18F은 TBAHCO3 및 MeOH와 함께 제5유로(222e)를 흘러서 반응챔버(229,239)에 도달하게 된다. 그리고, 제어유닛(400)은 제3밸브(263)를 제어하여 닫힘상태(close)로 전환되도록 함에 따라 제5유로(222e)와 반응챔버(229,239)는 서로 차단된다.Since the first valve 261 is in a blocked state and the second valve 262 is in an open state, 18 F flows through the fifth flow path 222e together with TBAHCO 3 and MeOH to reach the reaction chambers 229 and 239. As the control unit 400 controls the third valve 263 to be switched to the closed state, the fifth passage 222e and the reaction chambers 229 and 239 are blocked from each other.
나아가, 제어유닛(400)은 온도조절유닛(320)을 제어하여 반응챔버(229,239)가 섭씨 90도에 이르도록 함으로써 잔존하는 미량의 H2
180를 증발시킨다. In addition, the control unit 400 controls the temperature control unit 320 to evaporate the remaining amount of H 2 18 0 by allowing the reaction chambers 229 and 239 to reach 90 degrees Celsius.
다음으로, mannosetriflate와 acetonitril(700 마이크로 리터)를 약 5~10초간 제4홀(221d)을 통하여 제7유로(222g)로 유입시킨다. mannosetriflate와 acetonitril가 반응챔버(229,239)에 도달하게 되면, 제어유닛(400)은 온도조절유닛(320)을 제어하여 반응챔버(229,239)가 섭씨 70~80도에 이르도록 가열한다. 나아가, 제어유닛(400)은 제5밸브(265)를 제어하여 닫힘상태(close)로 전환되도록 함에 따라 제7유로(222g)와 반응챔버(229,239)는 서로 차단된다.Next, mannosetriflate and acetonitril (700 microliters) are introduced into the seventh channel 222g through the fourth hole 221d for about 5 to 10 seconds. When mannosetriflate and acetonitril reach the reaction chambers 229 and 239, the control unit 400 controls the temperature control unit 320 to heat the reaction chambers 229 and 239 to 70 to 80 degrees Celsius. Furthermore, as the control unit 400 controls the fifth valve 265 to be switched to the closed state, the seventh flow path 222g and the reaction chambers 229 and 239 are blocked from each other.
다음으로, 제어유닛(400)은 온도조절유닛(320)을 제어하여 반응챔버(229,239)가 상온에 도달하도록 냉각한다. Next, the control unit 400 controls the temperature control unit 320 to cool the reaction chambers 229 and 239 to reach room temperature.
다음으로 HCl(700 마이크로리터)를 제5홀(221e)을 통하여 제6유로(222f)로 유입시킨다. HCl이 반응챔버(229,239)에 도달하면 제어유닛(400)은 온도조절유닛(320)을 제어하여 반응챔버(229,239)가 70~80도에 도달하도록 가열한 다음에 다시 냉각한다. Next, HCl (700 microliters) is introduced into the sixth channel 222f through the fifth hole 221e. When HCl reaches the reaction chambers 229 and 239, the control unit 400 controls the temperature control unit 320 to heat the reaction chambers 229 and 239 to reach 70 to 80 degrees, and then cools them again.
나아가, 제어유닛(400)은 제4밸브(264)를 제어하여 닫힘상태(close)로 전환되도록 함에 따라 제6유로(222f)와 반응챔버(229,239)는 서로 차단된다.Furthermore, as the control unit 400 controls the fourth valve 264 to be switched to the closed state, the sixth flow path 222f and the reaction chambers 229 and 239 are blocked from each other.
다음으로, 제어유닛(400)은 제7밸브(267)를 제어하여 개방상태로 전환되도록 함에 따라 제9유로(222i)와 반응챔버(229,239)가 서로 개방된다.Next, the control unit 400 controls the seventh valve 267 to be switched to the open state, so that the ninth flow path 222i and the reaction chambers 229 and 239 are opened to each other.
다음으로, 질소 가스를 제6홀(221f)을 통하여 제8유로(222h)로 유입시킴으로써 반응챔버(229,239) 내부에 위치하는 반응물질이 개방상태로 전환된 제7밸브(267)를 통과하여 제7홀(221g)로 반출된다. Next, the nitrogen gas is introduced into the eighth flow path 222h through the sixth hole 221f to pass through the seventh valve 267 in which the reactants located in the reaction chambers 229 and 239 are opened. It is carried out to 7 holes (221g).
제7홀(221g)로 반출된 반응물질은 KHCO3 + H2O가 담긴 바이알로 이송되어 중성화과정을 거치게 된다. 그리고, alumina cartridge를 통과하도록 하여 잔존하는 18F이 필터링된 FDG는 식염수가 담긴 바이알로 이송된다. The reactants carried out in the seventh hole (221 g) are transferred to a vial containing KHCO 3 + H 2 O and subjected to neutralization. The remaining 18 F filtered FDG is passed through alumina cartridge to a vial containing saline.
도 6a 내지 도 6d는 온도조절유닛에 의한 방사성 화합물 합성장치의 온도조절 과정을 설명하기 위한 간략도면이다.6a to 6d are simplified views for explaining the temperature control process of the radioactive compound synthesis apparatus by the temperature control unit.
온도조절유닛(320)은 FDG합성모듈(200)의 가열 또는 냉각을 위한 구성요소이다. 보다 구체적으로는 온도조절유닛(320)은 FDG합성모듈(200)의 반응챔버(229,239) 내부를 가열 또는 냉각한다. Temperature control unit 320 is a component for heating or cooling the FDG synthesis module 200. More specifically, the temperature control unit 320 heats or cools the inside of the reaction chambers 229 and 239 of the FDG synthesis module 200.
온도조절유닛(320)은 열전소자(thermoelectric element), 특히 펠티에 효과(Peltier effect)를 이용한 펠티에 소자(Peltier device)를 포함할 수 있다. 펠티에 소자(Peltier device)는 2 종류의 금속 접합부에 전류를 통하게 하면, 한쪽의 금속으로부터 다른 금속으로 열이 이동하는 효과를 이용하는 소자이다. 즉, 한쪽 금속에서는 발열 현상이 발생하고, 다른 금속에서는 흡열(냉각) 현상이 발생하게 된다. The temperature control unit 320 may include a thermoelectric element, in particular a Peltier device using a Peltier effect. A Peltier device is an element that uses the effect of transferring heat from one metal to another when a current flows through two kinds of metal joints. In other words, an exothermic phenomenon occurs in one metal, and an endothermic (cooling) phenomenon occurs in another metal.
도 6a은 FDG합성모듈(200)과 베이스 유닛(300)이 서로 결합하는 과정을 도시한 것이다. FDG합성모듈(200) 내부에는 방사성 화합물이 생성되는 반응챔버(229,239)가 형성되어 있다. FDG합성모듈(200)에 있어서 반응챔버(229,239)의 하부에 대응되는 부분에는 오목부(200a)가 형성되어 있다. FIG. 6A illustrates a process in which the FDG synthesis module 200 and the base unit 300 are coupled to each other. Reaction chambers 229 and 239 are formed in the FDG synthesis module 200 to generate radioactive compounds. Concave portions 200a are formed in portions of the FDG synthesis module 200 corresponding to the lower portions of the reaction chambers 229 and 239.
온도조절유닛(320)은 베이스(310)의 상면에 설치될 수 있다. FDG합성모듈(200)과 베이스 유닛(300)이 서로 결합될 때에 온도조절유닛(320)은 오목부(200a)에 삽입될 수 있다. The temperature control unit 320 may be installed on the upper surface of the base 310. When the FDG synthesis module 200 and the base unit 300 are coupled to each other, the temperature control unit 320 may be inserted into the recess 200a.
도 6b는 FDG합성모듈(200)과 베이스 유닛(300)이 서로 결합된 상태에서 반응챔버(229,239)의 내부를 가열하는 과정을 도시한 것이다. 즉, 온도조절유닛(320)의단자(321)를 통하여 전류(i)가 소정의 방향으로 흐르면 온도조절유닛(320)의 상면에서는 발열반응이 일어나게 된다. 이에 따라, 반응챔버(229,239)의 내부는 가열된다.6B illustrates a process of heating the interior of the reaction chambers 229 and 239 in a state in which the FDG synthesis module 200 and the base unit 300 are coupled to each other. That is, when the current i flows through the terminal 321 of the temperature control unit 320 in a predetermined direction, an exothermic reaction occurs on the upper surface of the temperature control unit 320. Accordingly, the interior of the reaction chambers 229 and 239 is heated.
도 6c는 FDG합성모듈(200)과 베이스 유닛(300)이 서로 결합된 상태에서 반응챔버(229,239)의 내부를 냉각하는 과정을 도시한 것이다. 즉, 온도조절유닛(320)의단자(321)를 통하여 전류(i)가 반대 방향으로 흐르면 온도조절유닛(320)의 상면에서는 냉각반응(흡열반응)이 일어나게 된다. 이에 따라, 반응챔버(229,239)의 내부온도가 내려가게 된다. 6C illustrates a process of cooling the inside of the reaction chambers 229 and 239 in a state in which the FDG synthesis module 200 and the base unit 300 are coupled to each other. That is, when the current i flows in the opposite direction through the terminal 321 of the temperature control unit 320, a cooling reaction (endothermic reaction) occurs on the upper surface of the temperature control unit 320. As a result, the internal temperatures of the reaction chambers 229 and 239 are lowered.
본 발명에 따르면 단지 전류의 흐름 방향만을 전환함으로써 신속하게 가열모드에서 냉각모드로 전환이 가능하기 때문에 반응효율이 향상되는 효과가 있다. 본 실시예에서 사용되는 온도조절유닛(320)의 면적은 20㎟ 정도로 비교적 작다. 따라서, 별도의 가열장치와 냉각장치를 각각 구비하게 되면 장치의 크기가 매우 커지게 된다. 그러나, 본 발명에 따른 실시예와 같은 온도조절유닛(320)을 적용하게 되면 장치의 크기를 현격하게 감소시킬 수 있다.According to the present invention it is possible to switch quickly from the heating mode to the cooling mode only by switching the flow direction of the current has the effect of improving the reaction efficiency. The area of the temperature control unit 320 used in this embodiment is relatively small, about 20 mm 2. Therefore, when the separate heating device and the cooling device are provided respectively, the size of the device becomes very large. However, applying the same temperature control unit 320 as the embodiment of the present invention can significantly reduce the size of the device.
도 6d는 FDG합성모듈(200)과 베이스 유닛(300)이 서로 분리되는 과정을 도시한 것이다. 즉, 합성반응이 완료된 다음에 사용이 완료된 FDG합성모듈(200)은 후속작업에 사용하기 위하여 또는 폐기하기 위하여 베이스 유닛(300)으로부터 분리된다.6D illustrates a process in which the FDG synthesis module 200 and the base unit 300 are separated from each other. That is, the FDG synthesis module 200, which has been used after the synthesis reaction is completed, is separated from the base unit 300 for use in subsequent work or for disposal.
앞에서 설명되고, 도면에 도시된 본 발명의 일 실시예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.An embodiment of the present invention described above and illustrated in the drawings should not be construed as limiting the technical idea of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention as long as it will be apparent to those skilled in the art.
Claims (8)
- 내부에서 방사성 화합물이 합성되는 방사성 화합물 합성모듈; 및A radioactive compound synthesis module for synthesizing a radioactive compound therein; And상기 방사성 화합물 합성모듈과 탈착가능하게 결합되는 베이스 유닛;을 포함하며, 상기 방사성 화합물 합성모듈은,And a base unit detachably coupled to the radioactive compound synthesis module, wherein the radioactive compound synthesis module includes:방사성 동위원소를 포함한 유체 또는 방사성 화합물 합성에 필요한 물질의 이동통로인 유로가 내부에 형성되며 상기 유로상에 반응챔버가 형성된 본체; 및A body in which a flow path, which is a movement path of a material required for synthesizing a fluid or a radioactive compound including a radioisotope, is formed therein and a reaction chamber is formed on the flow path; And상기 유로를 차단하거나 개방하기 위하여 상기 본체에 설치되는 적어도 하나 이상의 밸브;를 포함하며,And at least one valve installed in the body to block or open the flow path.상기 방사성 화합물 합성모듈은 상기 방사성 화합물을 1회 합성한 후에 폐기되는 용도로 사용되고,The radioactive compound synthesis module is used for the purpose of discarding after synthesizing the radioactive compound once,상기 베이스유닛은 상기 본체의 온도를 조절하기 위한 온도조절유닛을 포함하는 방사성 화합물 합성 시스템.The base unit is a radioactive compound synthesis system comprising a temperature control unit for controlling the temperature of the body.
- 제1항에 있어서,The method of claim 1,상기 방사성 동위원소는 18F를 포함하는 것을 특징으로 하는 방사성 화합물 합성 시스템.The radioisotope comprises 18 F radioactive compound synthesis system.
- 제1항에 있어서,The method of claim 1,상기 온도조절유닛은 상기 반응챔버의 내부를 가열하거나 냉각하도록 구성된 것을 특징으로 하는 방사성 화합물 합성 시스템. Wherein said temperature control unit is configured to heat or cool the interior of said reaction chamber.
- 제3항에 있어서,The method of claim 3,상기 온도조절유닛은 제1방향으로 전류가 인가되면 상기 반응챔버의 내부를 가열하며, 상기 제1방향의 반대방향인 제2방향으로 전류가 인가되면 상기 반응챔버의 내부를 냉각하도록 구성된 것을 특징으로 하는 방사성 화합물 합성 시스템. The temperature control unit is configured to heat the inside of the reaction chamber when a current is applied in a first direction, and to cool the inside of the reaction chamber when a current is applied in a second direction opposite to the first direction. Radioactive compound synthesis system.
- 제3항에 있어서,The method of claim 3,상기 온도조절유닛은 별도의 냉각장치가 없이도 가열 및 냉각을 모두 수행할 수 있는 열전 소자를 포함하는 것을 특징으로 하는 방사성 화합물 합성 시스템. The temperature control unit is a radioactive compound synthesis system, characterized in that it comprises a thermoelectric element capable of performing both heating and cooling without a separate cooling device.
- 제3항에 있어서,The method of claim 3,상기 온도조절유닛은 펠티어 소자를 포함하는 것을 특징으로 하는 방사성 화합물 합성 시스템. The temperature control unit is a radioactive compound synthesis system, characterized in that it comprises a Peltier element.
- 제1항에 있어서,The method of claim 1,상기 베이스 유닛과 마주보는 상기 본체의 하면에는 오목부가 형성되며, 상기 방사성 화합물 합성모듈과 상기 베이스 유닛이 결합되었을 때에 상기 온도조절유닛은 상기 오목부에 삽입될 수 있도록 구성된 것을 특징으로 하는 방사성 화합물 합성 시스템.A concave portion is formed on a lower surface of the main body facing the base unit, and when the radioactive compound synthesizing module and the base unit are combined, the temperature adjusting unit is configured to be inserted into the concave portion. system.
- 제7항에 있어서,The method of claim 7, wherein상기 오목부는 상기 방사성 화합물 합성모듈에 있어서 상기 반응챔버의 직하부에 대응되는 위치에 형성된 것을 특징으로 하는 방사성 화합물 합성 시스템.The recess is a radioactive compound synthesis system, characterized in that formed in a position corresponding to the lower portion of the reaction chamber in the radioactive compound synthesis module.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110045244 | 2011-05-13 | ||
KR10-2011-0045244 | 2011-05-13 | ||
KR10-2012-0050660 | 2012-05-14 | ||
KR1020120050660A KR101288867B1 (en) | 2011-05-13 | 2012-05-14 | Radioactive compound synthesizing system having temperature regulating unit |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012157920A2 true WO2012157920A2 (en) | 2012-11-22 |
WO2012157920A3 WO2012157920A3 (en) | 2013-01-24 |
Family
ID=47177461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/003748 WO2012157920A2 (en) | 2011-05-13 | 2012-05-14 | Radioactive compound synthesis system having temperature-control unit |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012157920A2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050084202A (en) * | 2002-12-10 | 2005-08-26 | 이온빔 어플리케이션스 에스.에이. | Device and method for producing radioisotopes |
JP2006284337A (en) * | 2005-03-31 | 2006-10-19 | Hitachi Ltd | Radioisotope manufacturing equipment |
JP2009047454A (en) * | 2007-08-14 | 2009-03-05 | Sumitomo Heavy Ind Ltd | Ri compound synthetic apparatus |
KR20100005216A (en) * | 2007-04-12 | 2010-01-14 | 지멘스 메디컬 솔루션즈 유에스에이, 인크. | Microfluidic radiosynthesis system for positron emission tomography biomarkers |
US7829032B2 (en) * | 2007-01-23 | 2010-11-09 | Siemens Medical Solutions Usa, Inc. | Fully-automated microfluidic system for the synthesis of radiolabeled biomarkers for positron emission tomography |
-
2012
- 2012-05-14 WO PCT/KR2012/003748 patent/WO2012157920A2/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050084202A (en) * | 2002-12-10 | 2005-08-26 | 이온빔 어플리케이션스 에스.에이. | Device and method for producing radioisotopes |
JP2006284337A (en) * | 2005-03-31 | 2006-10-19 | Hitachi Ltd | Radioisotope manufacturing equipment |
US7829032B2 (en) * | 2007-01-23 | 2010-11-09 | Siemens Medical Solutions Usa, Inc. | Fully-automated microfluidic system for the synthesis of radiolabeled biomarkers for positron emission tomography |
KR20100005216A (en) * | 2007-04-12 | 2010-01-14 | 지멘스 메디컬 솔루션즈 유에스에이, 인크. | Microfluidic radiosynthesis system for positron emission tomography biomarkers |
JP2009047454A (en) * | 2007-08-14 | 2009-03-05 | Sumitomo Heavy Ind Ltd | Ri compound synthetic apparatus |
Also Published As
Publication number | Publication date |
---|---|
WO2012157920A3 (en) | 2013-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101288867B1 (en) | Radioactive compound synthesizing system having temperature regulating unit | |
US20110008215A1 (en) | Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure | |
US9211520B2 (en) | Modular radiochemistry synthesis system | |
CA2823918C (en) | Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure | |
KR101176710B1 (en) | Microfluidic radiosynthesis system for positron emission tomography biomarkers | |
US9480962B2 (en) | Modular cassette synthesis unit | |
KR20120127111A (en) | Apparatus and method for synthesis of F-18 labelled radiopharmaceuticals | |
US9754694B2 (en) | Method and device for producing a 99mTc reaction product | |
CN107405596B (en) | Additional radiosynthesizer apparatus | |
WO2012157920A2 (en) | Radioactive compound synthesis system having temperature-control unit | |
KR101288866B1 (en) | Remote control system for synthesizing radio-active compound | |
WO2014030792A1 (en) | Radioactive isotope liquid targeting apparatus having functional thermosiphon internal flow channel | |
WO2012157919A2 (en) | Apparatus for synthesis of radioactive compound | |
KR100679867B1 (en) | Synthesizing system for RI labeling compound | |
KR101293158B1 (en) | Radioactive compound synthesizing module | |
KR101347747B1 (en) | Radioactive compound synthesizing apparatus having hot melt valve | |
KR101642091B1 (en) | Apparatus and method for synthesis of radioactive compound | |
KR20120127380A (en) | Apparatus for synthesis of radioactive compound | |
WO2014119821A1 (en) | Apparatus for measuring temperature of glass melting furnace | |
JP2018517126A (en) | Apparatus for synthesizing a radioactive tracer, equipment including the apparatus, and method for obtaining a radioactive tracer using the apparatus | |
KR101633250B1 (en) | Apparatus for synthesis of radioactive compound | |
CN113125479A (en) | Reaction device for in-situ temperature-changing X-ray scattering characterization | |
WO2014175714A1 (en) | Method for manufacturing radioactive compound synthesis module and radioactive compound synthesis system | |
KR101499640B1 (en) | Module type kit and process equipment for fabricating radioisotope labeled compounds | |
KR101465655B1 (en) | Synthesizing system for a radioactive compound having a temperature regulating unit where middle block is included |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12786533 Country of ref document: EP Kind code of ref document: A2 |