[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012157633A1 - 走行制御装置 - Google Patents

走行制御装置 Download PDF

Info

Publication number
WO2012157633A1
WO2012157633A1 PCT/JP2012/062384 JP2012062384W WO2012157633A1 WO 2012157633 A1 WO2012157633 A1 WO 2012157633A1 JP 2012062384 W JP2012062384 W JP 2012062384W WO 2012157633 A1 WO2012157633 A1 WO 2012157633A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm
time
distance
vehicle
collision
Prior art date
Application number
PCT/JP2012/062384
Other languages
English (en)
French (fr)
Inventor
由幸 黒羽
英彰 ▲楢▼
賢二 小高
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201280023300.0A priority Critical patent/CN103534742B/zh
Priority to EP12785627.6A priority patent/EP2711911B1/en
Priority to JP2013515159A priority patent/JP5577460B2/ja
Priority to US14/116,967 priority patent/US9406230B2/en
Publication of WO2012157633A1 publication Critical patent/WO2012157633A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the present invention relates to a travel control device.
  • This application claims priority based on Japanese Patent Application No. 2011-111354 filed in Japan on May 18, 2011, the contents of which are incorporated herein by reference.
  • the timing when the average driver performs a deceleration operation, the timing when the alarm is activated are set to coincide with each other (see, for example, Patent Document 1 below). This is to prevent the driver from feeling annoying the timing at which the alarm is activated.
  • the timing of the alarm is set to a certain time, for example, when the obstacle is stopped and it is in a very low speed range, it is more than the actual distance.
  • an error may occur in the driver's sense of the vehicle, such as when an obstacle is felt nearby, and the alarm may not be activated at an appropriate timing for the driver.
  • This vehicle-like error is that at very low speeds, the distance to the obstacle is closer, so the feeling of pressure against the obstacle becomes stronger, and the driver feels closer to the actual distance. Is attributed.
  • the present invention has been made in view of the above problems, and one object of the present invention is a travel control capable of operating an alarm at an appropriate timing even when an error occurs in a driver's vehicle feeling. Is to provide a device.
  • a travel control device includes a travel speed detection unit that detects the travel speed of the host vehicle and an object detection result by detecting an object around the host vehicle. Based on the object detection unit to be acquired, a collision time calculation unit that calculates a time until the object and the host vehicle collide based on the traveling speed and the object detection result, and the time until the collision
  • An alarm unit that issues an alarm to the driver, wherein the alarm unit includes a reference alarm start time set in advance as a reference value for the time to start the alarm, and the driver's A predetermined distance set in advance as a minimum value of the vehicle sense error is obtained, and an alarm activation start threshold time is obtained by adding a time obtained by dividing the predetermined distance by the traveling speed to the reference alarm start time. , The alarm activation start threshold Performing the alarm to the driver based on the time until the collision with.
  • the alarm unit may perform the alarm to the driver based on the alarm activation start threshold time only at an extremely low vehicle speed.
  • a travel control device includes a travel speed detection unit that detects the travel speed of the host vehicle, an object detection unit that detects an object around the host vehicle and acquires an object detection result.
  • a collision distance calculation unit that calculates a distance until the object and the host vehicle collide based on the traveling speed and the object detection result, and alerts the driver based on the distance until the collision.
  • a warning control unit that performs a warning control, and the warning unit includes a reference warning start distance that is preset as a reference value of a distance at which the warning is started, and a minimum error in the vehicle sense of the driver.
  • a predetermined distance set in advance as a value add the predetermined distance to the reference alarm start distance to obtain an alarm activation start threshold distance, and the distance from the alarm activation start threshold distance to the collision To the driver based on It performs the alarm.
  • the alarm unit may perform the alarm to the driver based on the alarm activation start threshold distance only at an extremely low vehicle speed.
  • a travel control device includes a travel speed detection unit that detects the travel speed of the host vehicle, an object detection unit that detects an object around the host vehicle and acquires an object detection result.
  • a relative speed detection unit that detects a relative speed between the host vehicle and the object, and a collision distance calculation that calculates a distance until the object and the host vehicle collide based on the travel speed and the object detection result.
  • a warning control unit that warns the driver based on the distance until the collision, wherein the warning unit is set in advance as a reference value for the time to start the warning.
  • the reference alarm start time and a predetermined distance set in advance as the minimum value of the driver's vehicle sense error are acquired, and the relative speed between the host vehicle and the object is obtained with respect to the reference alarm start time.
  • the alarm is activated by adding the divided time. Seeking the threshold time, it performs the alarm to the driver based on the time until the collision with between the alarm operation start threshold time.
  • the alarm unit may perform the alarm to the driver based on the alarm activation start threshold time only when the relative speed is extremely low.
  • the alarm activation start threshold time becomes longer as the host vehicle speed is lower than when the host vehicle speed is high, and the alarm is started earlier. For this reason, it is possible to improve the merchantability by operating the alarm at an appropriate timing according to the driver's vehicle sense error.
  • the alarm activation start threshold distance is determined. It can be increased by the distance. For this reason, it is possible to improve the merchantability by operating the alarm at an appropriate timing according to the driver's vehicle sense error.
  • an alarm in addition to the effect (3) above, an alarm can be activated at an appropriate timing especially at an extremely low vehicle speed with a large error in the vehicle sense of the driver.
  • the alarm activation start threshold time becomes longer and the alarm starts as the relative speed between the host vehicle and the object is lower than when the relative speed between the host vehicle and the object is higher.
  • the timing will be early. For this reason, even when the host vehicle is approaching an object that is moving at the same speed as the traveling host vehicle, an alarm is activated at an appropriate timing according to the error of the driver's sense of vehicle. Can be made.
  • the alarm is activated at an appropriate timing particularly when the relative speed between the host vehicle and the object having a large error in the vehicle sense of the driver is extremely low. Can do.
  • FIG. 1 shows schematic structure of the traveling control apparatus in 1st Embodiment of this invention. It is a flowchart of the alarm timing determination process of the said travel control apparatus. It is a figure which shows the limit approach distance for every driver
  • the travel control device 1 of this embodiment includes an external sensor (object detection unit) 11, a host vehicle sensor (travel speed detection unit) 12, an alarm generation device 13, and an electronic control device 20. It has.
  • the external sensor 11 is, for example, a millimeter-wave band radar device, a laser radar device using a wavelength band near the infrared light band, an image recognition device using one or more camera devices, or a combination thereof. It is configured. Object information (position, speed, traveling direction, size, etc.) around the host vehicle is detected at a predetermined time interval (for example, 100 msec). The external sensor 11 outputs the detection result to the electronic control unit 20.
  • a predetermined time interval for example, 100 msec.
  • the own vehicle sensor 12 includes sensors for detecting information on the own vehicle such as the vehicle speed, the steering amount, the accelerator opening degree, the brake pedal switch ON / OFF, the blinker switch ON / OFF, and the like.
  • the detection result is output to the electronic control unit 20. It is possible to estimate the yaw rate that will occur in the vehicle in the future based on the steering amount. Further, it is possible to estimate the acceleration / deceleration that will occur in the vehicle in the future based on the accelerator opening and the ON / OFF of the brake pedal switch.
  • the information on the host vehicle may be detected directly from each sensor, or may be acquired via various ECUs or in-vehicle LANs mounted on the host vehicle.
  • the alarm generation device 13 is a device that issues an alarm to a passenger (in particular, a driver) of the host vehicle.
  • the alarm generation device 13 can be constituted by, for example, a buzzer that emits an alarm sound or synthesized sound in accordance with a control signal output from the electronic control device 20, a speaker, a display device that displays an alarm, or the like.
  • the alarm generator 13 prompts the driver of the host vehicle to avoid contact by generating an alarm.
  • the electronic control unit 20 determines the time until the host vehicle and the preceding vehicle come into contact based on various information on the preceding vehicle input from the external sensor 11 and various information on the host vehicle input from the own vehicle sensor 12. Is calculated. Based on this result, the electronic control unit 20 determines the timing for issuing a warning, and determines whether or not it is necessary to issue a warning to the passenger of the host vehicle. When it is determined that it is necessary to perform an alarm, the electronic control device 20 outputs an alarm command to the alarm generation device 13.
  • the electronic control unit 20 includes, for example, a relative relationship calculation unit 21, a TTC calculation unit (collision time calculation unit) 22, and an alarm timing determination unit (alarm unit) 24.
  • the relative relationship calculation unit 21 for example, information on the preceding vehicle (position, speed, traveling direction, size) input from the external sensor 11 and own vehicle information (position, speed, traveling direction) input from the own vehicle sensor 12. And the relative distance and relative speed between the host vehicle and the preceding vehicle are calculated and output to the TTC calculation unit 22.
  • the TTC calculation unit 22 determines whether or not the host vehicle and the preceding vehicle may come into contact based on the predicted course, the relative distance, and the relative speed of the host vehicle and the preceding vehicle input from the relative relationship calculation unit 21.
  • the time until contact that is, the collision time TTC is calculated and output to the alarm timing determination unit 24.
  • the alarm timing determination unit 24 issues an alarm based on, for example, the collision time TTC input from the TTC calculation unit 22, the vehicle speed of the host vehicle input from the host vehicle sensor 12, and a preset reference alarm start time.
  • the timing to perform is determined and output to the alarm generator 13.
  • step S1 vehicle speed information is acquired from the own vehicle sensor.
  • step S2 information on the reference alarm start time stored in advance in a storage device (not shown) such as a memory is read and acquired.
  • the reference alarm start time is a reference value for calculating an alarm operation start threshold time (alarm operation time) that is a threshold of the collision time TTC, and is a time (for example, 1) according to various conditions such as the vehicle type of the host vehicle. .. about 2 seconds).
  • the predetermined distance set in advance means that the distance between the host vehicle and the preceding vehicle is a short distance, and the vehicle speed of the host vehicle is extremely low (higher than 0 km / h, up to around 5 km / h). This is a value determined by statistically looking at the error of the driver's vehicle feeling that occurs in the case of (region).
  • FIG. 3 shows the limit approach distance (vertical axis) of the host vehicle with respect to a stationary preceding vehicle (obstacle), and symbols A to E (horizontal axis) indicate drivers having different driving experiences.
  • the minimum value of the limit approach distance is a value slightly larger than 0.5.
  • the driver's sense of vehicle error is the difference between the limit approach distance where the TTC that cannot actually approach further is 0 seconds (see FIG. 4A) and the distance that the driver thinks that the driver can no longer approach (see FIG. 4B). Even if the driving experience is abundant like the driver B, it is difficult to approach the above-mentioned 0.5 m.
  • the collision time TTC is 1.44 seconds.
  • the divided time is added to the reference alarm start time.
  • an appropriate distance may be set according to conditions such as the shape and size of the host vehicle. Further, since the magnitude of the vehicle sense error varies depending on the driving experience, an arbitrary distance may be set according to the driving experience of the driver.
  • FIG. 5 shows a graph when the vertical axis represents the alarm activation start threshold time (s), the horizontal axis represents the vehicle speed (km / h) of the host vehicle, and the reference alarm start time is 1.2 seconds. As can be seen from this graph, in the region where the vehicle speed is low, the rate of increase of the alarm activation start threshold time is increased and the alarm start timing is advanced.
  • step S4 it is determined whether or not the collision time TTC calculated by the TTC calculation unit 22 is equal to or shorter than the alarm activation start threshold time.
  • this determination result is “No” (TTC> alarm activation start threshold time)
  • the execution of this routine is temporarily ended.
  • the determination result in step S4 is “Yes” (TTC ⁇ alarm operation start threshold time)
  • the process proceeds to step S5, where an alarm is issued, and execution of this routine is temporarily terminated.
  • the alarm timing determination unit obtains the alarm activation start threshold time by adding the value obtained by dividing the predetermined distance by the traveling speed to the preset reference alarm start time.
  • the timing at which the alarm is started can be accelerated as the host vehicle speed is low. For this reason, it is possible to improve the merchantability by starting the alarm at an appropriate timing according to an error in the vehicle sense of the driver.
  • the travel control device of this embodiment replaces the determination of the alarm timing based on the collision time TTC performed in the above-described first embodiment with the determination of the alarm timing based on the collision distance.
  • a reference numeral is attached and a duplicate description is omitted.
  • the travel control device 100 of this embodiment includes, for example, an external sensor (object detection unit) 11, a host vehicle sensor (travel speed detection unit) 12, an alarm generation device 13, and an electronic control device. 30.
  • the electronic control unit 30 determines the time until the host vehicle and the preceding vehicle come into contact based on various information on the preceding vehicle input from the external sensor 11 and various information on the own vehicle input from the own vehicle sensor 12. calculate. Based on this, the timing for alarming is determined, it is determined whether or not it is necessary to alert the passenger of the own vehicle, and when it is determined that the alarm needs to be performed, the alarm generator 13 is warned. Outputs a command.
  • the electronic control unit 30 includes a relative relationship calculation unit (relative relationship calculation unit) 21, a collision distance calculation unit (collision distance calculation unit) 32, and an alarm timing determination unit (alarm unit) 34.
  • relative relationship calculation unit 21 is the same structure as 1st Embodiment mentioned above, description here is abbreviate
  • the collision distance calculation unit 32 determines whether or not the host vehicle and the preceding vehicle may come into contact based on the predicted course, the relative distance, and the relative speed of the host vehicle and the preceding vehicle input from the relative relationship calculation unit 21. When there is a possibility of contact, a distance until contact (that is, a collision distance) is calculated and output to the alarm timing determination unit 34.
  • the warning timing determination unit 34 determines the timing for warning based on the collision distance input from the collision distance calculation unit 32, the vehicle speed of the host vehicle input from the host vehicle sensor 12, and the reference alarm start distance. Output to the alarm generator 13.
  • step S11 vehicle speed information is acquired from the host vehicle sensor.
  • step S12 based on the vehicle speed and a preset alarm reference time (for example, about 1.2 seconds), a reference alarm start distance that is a distance traveled by the vehicle during the reference time is determined. calculate.
  • an alarm activation start threshold distance is calculated based on the vehicle speed information and the reference alarm start distance information. More specifically, as shown in the following equation (2), the alarm activation start threshold distance is calculated by adding a predetermined distance 0.5 (m) set in advance to the reference alarm start distance.
  • Alarm activation start threshold distance reference alarm start distance + predetermined distance (2)
  • the predetermined distance set in advance is the same as in the first embodiment described above when the distance between the host vehicle and the preceding vehicle is a short distance and the vehicle speed of the host vehicle is the above-described extremely low vehicle speed. This is a value determined by statistically looking at the error of the driver's sense of vehicle. Since an error in the vehicle sense varies depending on the shape and size of the host vehicle, an appropriate distance may be set according to conditions such as the shape and size of the host vehicle. Further, since the magnitude of the vehicle sense error varies depending on the driving experience, an arbitrary distance may be set according to the driving experience of the driver.
  • step S14 it is determined whether or not the collision distance calculated by the collision distance calculation unit 32 is equal to or less than the alarm activation start threshold distance.
  • this determination result is “No” (collision distance> alarm activation start threshold distance)
  • the execution of this routine is temporarily ended.
  • the determination result in step S14 is “Yes” (collision distance ⁇ alarm activation start threshold distance)
  • the process proceeds to step S15 to give an alarm, and the execution of this routine is temporarily terminated.
  • the lower the traveling speed of the host vehicle the longer the reference alarm start distance.
  • a predetermined distance which is the minimum value of the driver's vehicle sense error is added to the reference alarm start distance to obtain the alarm activation start threshold distance. For this reason, even when the traveling speed of the host vehicle is low and the collision distance becomes extremely short and an error is likely to occur in the driver's vehicle feeling, the alarm activation start threshold distance can be increased by a predetermined distance. . For this reason, it is possible to improve the merchantability by operating an alarm at an appropriate timing according to an error in the vehicle sense of the driver.
  • the travel control device of this embodiment includes an external sensor 11, a host vehicle sensor 12, an alarm generation device 13, and an electronic control device 20.
  • the electronic control unit 20 includes a relative relationship calculation unit (relative speed detection unit) 21, a TTC calculation unit (collision time calculation unit) 22, and an alarm timing determination unit (alarm unit) 24.
  • the relative relationship calculation unit 21 is based on the preceding vehicle information (position, speed, traveling direction, size) input from the external sensor 11 and the own vehicle information (position, speed, traveling direction) input from the own vehicle sensor 12. In addition, the course of the host vehicle and the preceding vehicle is predicted, and the relative distance and the relative speed between the host vehicle and the preceding vehicle are calculated and output to the TTC calculation unit 22.
  • the TTC calculation unit 22 determines whether there is a possibility that the host vehicle and the preceding vehicle are in contact with each other based on the predicted course, the relative distance, and the relative speed between the host vehicle and the preceding vehicle input from the relative relationship calculation unit 21. When there is a possibility of this, the collision time TTC is calculated, and information on the collision time TTC and the relative speed between the host vehicle and the preceding vehicle is output to the alarm timing determination unit 24.
  • the alarm timing determination unit 24 determines the timing for alarming based on the collision time TTC and relative speed input from the TTC calculation unit 22 and a preset reference alarm start time, and outputs the alarm timing to the alarm generation device 13. .
  • step S21 information on the relative speed between the host vehicle and the preceding vehicle is acquired from the TTC calculation unit 22.
  • the relative speed information may be acquired from the relative relationship calculation unit 21.
  • step S22 information of a reference alarm start time (for example, about 1.2 seconds) stored in advance in a storage device (not shown) such as a memory is read and acquired.
  • This reference alarm start time is a reference value for calculating an alarm activation start threshold time that is a threshold of the collision time TTC, similarly to the reference alarm start time described in the first embodiment.
  • the predetermined distance set in advance means that the distance between the host vehicle and the preceding vehicle is a short distance, and the relative speed between the host vehicle and the preceding vehicle is extremely low (a speed higher than 0 km to about 5 km / h).
  • This is a value determined by statistically looking at the error of the driver's vehicle feeling that occurs in the case of (region).
  • the error in the driver's sense of vehicle becomes large when the relative speed between the host vehicle and the preceding vehicle is extremely low, as in the case where the vehicle speed in the first and second embodiments described above is extremely low.
  • step S24 it is determined whether or not the collision time TTC calculated by the TTC calculation unit 22 is equal to or shorter than the alarm activation start threshold time.
  • this determination result is “No” (TTC> alarm activation start threshold time)
  • the execution of this routine is temporarily ended.
  • the determination result in step S24 is “Yes” (TTC ⁇ alarm operation start threshold time)
  • the process proceeds to step S25, where an alarm is issued, and execution of this routine is temporarily terminated.
  • the third embodiment described above in particular, even if the host vehicle approaches the preceding vehicle that is traveling at the same speed as the host vehicle that is traveling, an error in the vehicle sense of the driver.
  • the alarm can be activated at an appropriate timing according to the situation.
  • the present invention is not limited to the configuration of each of the above-described embodiments, and the design can be changed without departing from the gist thereof.
  • the example in which the alarm activation start threshold time and the alarm activation start threshold distance are calculated using the equation (1) or (2) for the entire vehicle speed range has been described.
  • an extremely low speed range in which the vehicle speed is particularly low is set in advance, and only when it is determined that the vehicle speed from the own vehicle sensor 12 has become an extremely low speed range, the alarm activation start threshold time or the alarm activation time The alarm timing may be determined using the start threshold distance.
  • a particularly low extremely low speed range is set in advance, and an alarm is issued only when it is determined that the relative speed calculated by the relative relationship calculation unit 21 has become a very low speed range.
  • the alarm timing may be determined using the operation start threshold time.
  • the reference alarm start time described above may be used as the alarm activation start threshold time and the reference alarm start distance may be used as the alarm activation start threshold distance in a higher speed range than in the extremely low speed range.
  • the vehicle is not limited to the preceding vehicle. It may be.
  • the object for determining the possibility of collision is a large vehicle such as a truck
  • the driver receives a feeling of pressure and an error in the vehicle sense increases. From this, when it is determined that the object is a relatively large obstacle such as a large vehicle based on the detection result of the external sensor 11, it is determined that the object is a large vehicle. May be replaced with a longer distance for large vehicles.
  • the present invention is not limited to this, and it may be set such that the rate of increase in the reference alarm start distance increases as the speed decreases using a map or the like, as in the change in the alarm operation start threshold time in the graph shown in FIG. Further, when the traveling speed or the relative speed is close to 0 km / h, the alarm activation start threshold time may become too long. For this reason, a predetermined value may be added to the reference alarm start time at a predetermined traveling speed or a predetermined relative speed or less.
  • the travel control device of the present invention it is possible to improve the merchantability by operating an alarm at an appropriate timing according to the driver's vehicle sense error.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 この走行制御装置は、自車両の走行速度を検出する走行速度検出部と、自車両周囲の物体を検出して物体検出結果を取得する物体検出部と、前記走行速度、および、前記物体検出結果に基づいて前記物体と前記自車両とが衝突するまでの時間を算出する衝突時間算出部と、前記衝突するまでの時間に基づいて運転者に警報を行う警報部と、を備えた走行制御装置であって、前記警報部は、前記警報を開始する時間の基準値として予め設定された基準警報開始時間と、前記運転者の車両感覚の誤差の最小値として予め設定された所定距離とを取得し、前記基準警報開始時間に対して、前記所定距離を前記走行速度で除算した時間を加算して警報作動開始閾時間を求め、前記警報作動開始閾時間と前記衝突するまでの時間とに基づいて前記運転者への前記警報を行うことを特徴とする走行制御装置。

Description

走行制御装置
 本発明は、走行制御装置に関する。
 本願は、2011年5月18日に、日本に出願された特願2011-111354号に基づき優先権を主張し、その内容をここに援用する。
 従来、衝突防止のために警報を発したり、自動ブレーキにより衝突被害の軽減や衝突回避動作を行うシステムにあっては、平均的なドライバーが減速操作を行うタイミングと、警報が作動されるタイミングとが一致するように設定されている(例えば、以下の特許文献1を参照。)。これは、警報が作動されるタイミングを運転者に煩わしいと感じさせないようにするためである。
日本国特開2009-146029号公報
 しかしながら、上述した従来の走行制御装置においては、警報のタイミングを一定の時間に設定しているにも関わらず、例えば障害物が停止していて極低速域の場合には、実際の距離よりも障害物が近くに感じるなど運転者の車両感覚に誤差が生じ、運転者にとって適切なタイミングで警報を作動させることができない場合があるという課題がある。
 この車両感覚の誤差は、極低速域では、障害物との距離が近くなるため障害物に対しての圧迫感が強くなり、実際の距離よりも運転者は近づいていると感じてしまうことに起因している。
 本発明は、上記問題に鑑みてなされたものであり、本発明の一課題は、運転者の車両感覚に誤差が生じる場合であっても、適切なタイミングで警報を作動させることができる走行制御装置を提供することである。
(1)上記課題を解決するために、本発明の一態様に係る走行制御装置は、自車両の走行速度を検出する走行速度検出部と、自車両周囲の物体を検出して物体検出結果を取得する物体検出部と、前記走行速度、および、前記物体検出結果に基づいて前記物体と前記自車両とが衝突するまでの時間を算出する衝突時間算出部と、前記衝突するまでの時間に基づいて運転者に警報を行う警報部と、を備えた走行制御装置であって、前記警報部は、前記警報を開始する時間の基準値として予め設定された基準警報開始時間と、前記運転者の車両感覚の誤差の最小値として予め設定された所定距離とを取得し、前記基準警報開始時間に対して、前記所定距離を前記走行速度で除算した時間を加算して警報作動開始閾時間を求め、前記警報作動開始閾時間と前記衝突するまでの時間とに基づいて前記運転者への前記警報を行う。
(2)上記(1)に記載の走行制御装置では、前記警報部は、極低車速時のみ、前記警報作動開始閾時間に基づいて前記運転者に前記警報を行ってもよい。
(3)本発明の別の一態様に係る走行制御装置は、自車両の走行速度を検出する走行速度検出部と、自車両周囲の物体を検出して物体検出結果を取得する物体検出部と、前記走行速度、および、前記物体検出結果に基づいて前記物体と前記自車両とが衝突するまでの距離を算出する衝突距離算出部と、前記衝突するまでの距離に基づいて運転者に警報を行う警報部と、を備えた走行制御装置であって、前記警報部は、前記警報を開始する距離の基準値として予め設定された基準警報開始距離と、前記運転者の車両感覚の誤差の最小値として予め設定された所定距離とを取得し、前記基準警報開始距離に対して、前記所定距離を加算して警報作動開始閾距離を求め、前記警報作動開始閾距離と前記衝突するまでの距離とに基づいて前記運転者への前記警報を行う。
(4)上記(3)に記載の走行制御装置では、前記警報部は、極低車速時のみ、前記警報作動開始閾距離に基づいて前記運転者に前記警報を行ってもよい。
(5)本発明の別の一態様に係る走行制御装置は、自車両の走行速度を検出する走行速度検出部と、自車両周囲の物体を検出して物体検出結果を取得する物体検出部と、自車両と物体との相対速度を検出する相対速度検出部と、前記走行速度、および、前記物体検出結果に基づいて前記物体と前記自車両とが衝突するまでの距離を算出する衝突距離算出部と、前記衝突するまでの距離に基づいて運転者に警報を行う警報部と、を備えた走行制御装置であって、前記警報部は、前記警報を開始する時間の基準値として予め設定された基準警報開始時間と、前記運転者の車両感覚の誤差の最小値として予め設定された所定距離とを取得し、前記基準警報開始時間に対して、前記自車両と前記物体との相対速度で除算した時間を加算して警報作動開始閾時間を求め、前記警報作動開始閾時間と前記衝突するまでの時間とに基づいて前記運転者への前記警報を行う。
(6)上記(5)に記載の走行制御装置では、前記警報部は、前記相対速度が極低速時のみ、前記警報作動開始閾時間に基づいて前記運転者に前記警報を行ってもよい。
 上記(1)の態様によれば、自車速度が高い場合と比較して、自車速度が低い場合ほど警報作動開始閾時間が長くなり、警報が開始されるタイミングが早くなる。このため、運転者の車両感覚の誤差に応じた適切なタイミングで警報を作動させて商品性の向上を図ることができる。
 上記(2)の態様によれば、とりわけ運転者の車両感覚の誤差が大きい極低車速時に適切なタイミングで警報を作動させることができる。
 上記(3)の態様によれば、自車両の走行速度が低く、且つ衝突距離が極端に短くなり、運転者の車両感覚に誤差が生じやすい場合であっても、警報作動開始閾距離を所定距離分だけ長くすることができる。このため、運転者の車両感覚の誤差に応じた適切なタイミングで警報を作動させて商品性の向上を図ることができる。
 上記(4)の態様によれば、上記(3)の効果に加え、とりわけ運転者の車両感覚の誤差が大きい極低車速時に適切なタイミングで警報を作動させることができる。
 上記(5)の態様によれば、自車両と物体との相対速度が高い場合と比較して、自車両と物体との相対速度が低い場合ほど警報作動開始閾時間が長くなり、警報が開始されるタイミングが早くなる。このため、走行中の自車両と同じ速度で移動している物体に対して自車両が近づいていくような場合であっても運転者の車両感覚の誤差に応じた適切なタイミングで警報を作動させることができる。
 上記(6)の態様によれば、上記(5)の効果に加え、とりわけ運転者の車両感覚の誤差が大きい自車両と物体との相対速度が極低速時に適切なタイミングで警報を作動させることができる。
本発明の第1実施形態における走行制御装置の概略構成を示すブロック図である。 上記走行制御装置の警報タイミング決定処理のフローチャートである。 静止車両に対する運転者毎の限界接近距離を示す図である。 限界接近距離の説明図であって、実際の限界接近距離を示す。 限界接近距離の説明図であって、車両感覚の誤差が生じている場合の限界接近距離を示す。 車両速度に対する警報作動開始閾時間の変化を示すグラフである。 本発明の第2実施形態における図1に相当するブロック図である。 本発明の第2実施形態における図2に相当するフローチャートである。 本発明の第3実施形態における図2に相当するフローチャートである。
 次に、本発明の実施形態における走行制御装置について図面を参照しながら説明する。
 図1に示すように、この実施形態の走行制御装置1は、外界センサ(物体検出部)11と、自車両センサ(走行速度検出部)12と、警報発生装置13と、電子制御装置20とを備えている。
 外界センサ11は、例えばミリ波帯域レーダ装置、あるいは、赤外光帯域近くの波長域を使用したレーザレーダ装置、あるいは、単数または複数のカメラ装置を用いた画像認識装置、あるいは、これらの組み合わせにより構成されている。所定の時間間隔(例えば 100msec)で自車両周辺の物体情報(位置、速度、進行方向、および大きさ等)を検出する。また外界センサ11は検出結果を電子制御装置20に出力する。
 自車両センサ12は、例えば自車両の車速、操舵量、アクセル開度、ブレーキペダルスイッチのON/OFF、ウィンカースイッチのON/OFF等、自車両の情報を検出するセンサを有し、各センサの検出結果を電子制御装置20に出力する。なお、操舵量に基づいて自車両に今後発生するヨーレートを推定することができる。また、アクセル開度やブレーキペダルスイッチのON/OFFに基づいて自車両に今後発生する加減速度を推定することができる。また、これら自車両の情報は、各センサから直接検出してもよいし、自車両に搭載された各種ECUや車内LANを介して取得することも可能である。
 警報発生装置13は、自車両の乗員(特に、運転者)に対して警報を発する装置である。警報発生装置13は、例えば、電子制御装置20から出力される制御信号に応じて警報音、あるいは合成音声を発するブザー、あるいはスピーカや、警報表示を行う表示装置などから構成することができる。警報発生装置13は警報を発生することにより、自車両の運転者に接触回避の行動を促す。
 電子制御装置20は、外界センサ11から入力される先行車両の各種情報と、自車両センサ12から入力される自車両の各種情報に基づいて、自車両とその先行車両とが接触するまでの時間を算出する。電子制御装置20は、この結果に基づいて警報を行うタイミングを決定し、自車両の乗員に対して警報を行う必要があるか否かを判定する。警報を行う必要があると判定された場合に、電子制御装置20は、警報発生装置13に警報指令を出力する。
 電子制御装置20は、例えば、相対関係算出部21と、TTC算出部(衝突時間算出部)22と、警報タイミング決定部(警報部)24とを備える。
 相対関係算出部21は、例えば、外界センサ11から入力した先行車両の情報(位置、速度、進行方向、大きさ)と、自車両センサ12から入力した自車両情報(位置、速度、進行方向)に基づいて、自車両および先行車両の進路を予測するとともに、自車両と先行車両の相対距離、相対速度を算出し、TTC算出部22に出力する。
 TTC算出部22は、例えば、相対関係算出部21から入力した自車両と先行車両の予測進路、相対距離、相対速度に基づいて、自車両と先行車両が接触する可能性があるか否か、および接触する可能性があるときには、接触するまでの時間(すなわち、衝突時間TTC)を算出し、警報タイミング決定部24に出力する。
 警報タイミング決定部24は、例えば、TTC算出部22から入力した衝突時間TTCと、自車両センサ12から入力した自車両の車両速度と、予め設定された基準警報開始時間とに基づいて、警報を行うタイミングを決定し、警報発生装置13に出力する。
 次に、警報タイミング決定部24により実行される警報を行うタイミングを決定する警報タイミング決定処理を、図2のフローチャートを参照しながら説明する。
 まず、ステップS1において、自車両センサから車両速度の情報を取得する。
 次に、ステップS2において、メモリ等の記憶装置(図示せず)に予め記憶された基準警報開始時間の情報を読み出して取得する。この基準警報開始時間は、衝突時間TTCの閾値である警報作動開始閾時間(警報作動時間)を算出するための基準値であり、自車両の車種等の種々条件に応じた時間(例えば、1.2秒程度)に設定される。
 次に、ステップS3において、車両速度の情報と基準警報開始時間の情報とに基づき、警報作動開始閾時間を算出する。より具体的には、下記(1)式に示すように、基準警報開始時間に対して、予め設定された所定距離(m)(例えば、0.5m)を走行速度(m/s)で除算した値(s)を加算して警報作動開始閾時間を算出する。
 警報作動開始閾時間=基準警報開始時間+所定距離/走行速度・・・(1)
 ここで、予め設定された所定距離とは、自車両と先行車両との距離が近距離で、且つ自車両の車両速度が極低車速(0km/hよりも高く、5km/h前後までの速度領域)である場合に生じる運転者の車両感覚の誤差を統計的に見て決定した値である。図3は、静止した先行車両(障害物)に対する自車両の限界接近距離(縦軸)を示しており、記号A~E(横軸)はそれぞれ運転経験の異なる運転者を示している。そして、限界接近距離の最小値は0.5よりも若干大きい値となっている。運転者の車両感覚の誤差とは、実際にこれ以上接近できないTTCが0秒の限界接近距離(図4A参照)と、運転者がもうこれ以上接近できないと思う距離(図4B参照)とのずれであり、運転者Bのように運転経験が豊富な場合でも上述した0.5mよりも接近することは難しい。
 例えば、時速5km/h、自車両と先行車両との距離が2mの場合、衝突時間TTCが1.44秒である。このときに運転者が感じている自車両と先行車両との距離は2m-0.5m=1.5mであり、この距離を衝突時間TTCに換算すれば1.08秒となる。すなわち、5km/hの場合には、運転者は実際の警報のタイミングが0.36秒だけ遅いと感じてしまうため、この誤差分を補うべく、上記(1)式によって所定距離を走行速度で除算した時間を、基準警報開始時間に加算している。なお、所定距離を0.5mに設定する場合について説明したがこの値に限られるものではない。自車両の形状や大きさなどによって車両感覚の誤差に変化が生じるため、これら自車両の形状や大きさなどの条件に応じて適宜の距離を設定してもよい。また、運転経験によって車両感覚の誤差の大きさが異なるため、運転者の運転経験に応じて任意の距離を設定できるようにしてもよい。
 図5は、縦軸を警報作動開始閾時間(s)、横軸を自車両の車両速度(km/h)とし、基準警報開始時間が1.2秒の場合のグラフを示している。このグラフからも分かるように、車両速度が低い領域では、警報作動開始閾時間の増加率が大きくなり警報の開始タイミングが早くなるように構成されている。
 次に、ステップS4において、TTC算出部22により算出された衝突時間TTCが警報作動開始閾時間以下か否かを判定する。この判定結果が「No」(TTC>警報作動開始閾時間)である場合は、本ルーチンの実行を一旦終了する。一方、ステップS4の判定結果が「Yes」(TTC≦警報作動開始閾時間)である場合は、ステップS5に進み警報を行い、本ルーチンの実行を一旦終了する。
 したがって、上述した実施形態によれば、警報タイミング決定部により、予め設定された所定距離を走行速度で除算した値を、予め設定された基準警報開始時間に加算して警報作動開始閾時間を求めることで、自車速度が高い場合と比較して、自車速度が低い場合ほど警報が作動開始するタイミングを早めることができる。このため、運転者の車両感覚の誤差に応じた適切なタイミングで、警報を作動開始させて商品性の向上を図ることができる。
 次に、本発明の第2実施形態における走行制御装置について説明する。
 なお、この実施形態の走行制御装置は、上述した第1実施形態で行っていた衝突時間TTCによる警報タイミングの決定を、衝突距離による警報タイミングの決定に置き換えたものであるため、同一部分に同一符号を付して重複説明を省略する。
 図6に示すように、この実施形態の走行制御装置100は、例えば、外界センサ(物体検出部)11と、自車両センサ(走行速度検出部)12と、警報発生装置13と、電子制御装置30とを備えている。
 電子制御装置30は、外界センサ11から入力される先行車両の各種情報と、自車両センサ12から入力される自車両の各種情報に基づいて、自車両と先行車両とが接触するまでの時間を算出する。これに基づいて警報を行うタイミングを決定し、自車両の乗員に対して警報を行う必要があるか否かを判定し、警報を行う必要があると判定した場合に、警報発生装置13に警報指令を出力する。
 電子制御装置30は、相対関係算出部(相対関係算出部)21と、衝突距離算出部(衝突距離算出部)32と、警報タイミング決定部(警報部)34とを備えて構成されている。なお、相対関係算出部21は、上述した第1実施形態と同じ構成であるため、ここでの説明は省略する。
 衝突距離算出部32は、相対関係算出部21から入力した自車両と先行車両の予測進路、相対距離、相対速度に基づいて、自車両と先行車両が接触する可能性があるか否か、および接触する可能性があるときには接触するまでの距離(すなわち、衝突距離)を算出し、警報タイミング決定部34に出力する。
 警報タイミング決定部34は、衝突距離算出部32から入力した衝突距離と、自車両センサ12から入力した自車両の車両速度と、基準警報開始距離とに基づいて、警報を行うタイミングを決定し、警報発生装置13に出力する。
 次に、警報タイミング決定部34により、実行される警報を行うタイミングを決定する警報タイミング決定処理を、図7のフローチャートを参照しながら説明する。
 まず、ステップS11において、自車両センサから車両速度の情報を取得する。
 次に、ステップS12において、上記車両速度と、予め設定される警報の基準時間(例えば、1.2秒程度)と、に基づき、基準時間中に自車両が進む距離である基準警報開始距離を算出する。
 次に、ステップS13において、車両速度の情報と基準警報開始距離の情報とに基づき、警報作動開始閾距離を算出する。より具体的には、下記(2)式に示すように、基準警報開始距離に対して、予め設定された所定距離0.5(m)を加算して警報作動開始閾距離を算出する。
 警報作動開始閾距離=基準警報開始距離+所定距離・・・(2)
 なお、予め設定された所定距離とは、上述した第1実施形態と同様に、自車両と先行車両との距離が、近距離で且つ自車両の車両速度が上述した極低車速である場合に生じる運転者の車両感覚の誤差を統計的に見て決定した値である。自車両の形状や大きさなどによって車両感覚の誤差には変化が生じるため、これら自車両の形状や大きさなどの条件に応じて適宜の距離を設定してもよい。また、運転経験によって車両感覚の誤差の大きさが異なるため、運転者の運転経験に応じて任意の距離を設定できるようにしてもよい。
 次に、ステップS14において、衝突距離算出部32により算出された衝突距離が、警報作動開始閾距離以下か否かを判定する。この判定結果が「No」(衝突距離>警報作動開始閾距離)である場合は、本ルーチンの実行を一旦終了する。一方、ステップS14の判定結果が「Yes」(衝突距離≦警報作動開始閾距離)である場合は、ステップS15に進み警報を行い、本ルーチンの実行を一旦終了する。
 したがって、上述した第2実施形態によれば、自車両の走行速度が低いほど基準警報開始距離が長くなる。さらに基準警報開始距離に対して、運転者の車両感覚の誤差の最小値である所定距離を、加算して警報作動開始閾距離を求めている。このため、自車両の走行速度が低く且つ衝突距離が極端に短くなり、運転者の車両感覚に誤差が生じやすい場合であっても、警報作動開始閾距離を所定距離分だけ長くすることができる。このため、運転者の車両感覚の誤差に応じた適切なタイミングで、警報を作動させて商品性の向上を図ることができる。
 次に、本発明の第3実施形態における走行制御装置について説明する。
 なお、この実施形態の走行制御装置は、上述した第1実施形態における(1)式の「走行速度」を「相対速度」に置き換えたものであるため、図1を援用し、重複説明を省略する。
 この実施形態の走行制御装置は、外界センサ11と、自車両センサ12と、警報発生装置13と、電子制御装置20とを備えている。
 電子制御装置20は、相対関係算出部(相対速度検出部)21と、TTC算出部(衝突時間算出部)22と、警報タイミング決定部(警報部)24とを備えて構成されている。
 相対関係算出部21は、外界センサ11から入力した先行車両の情報(位置、速度、進行方向、大きさ)と、自車両センサ12から入力した自車両情報(位置、速度、進行方向)に基づいて、自車両および先行車両の進路を予測するとともに、自車両と先行車両の相対距離、相対速度を算出し、TTC算出部22に出力する。
 TTC算出部22は、相対関係算出部21から入力した自車両と先行車両の予測進路、相対距離、相対速度に基づいて、自車両と先行車両が接触する可能性があるか否か、および接触する可能性があるときには衝突時間TTCを算出し、この衝突時間TTCと自車両と先行車両との相対速度の情報を警報タイミング決定部24に出力する。
 警報タイミング決定部24は、TTC算出部22から入力した衝突時間TTCおよび相対速度と、予め設定された基準警報開始時間とに基づいて、警報を行うタイミングを決定し、警報発生装置13に出力する。
 次に、この第3実施形態における警報タイミング決定部24により実行される警報タイミング決定処理について、図8のフローチャートを参照しながら説明する。
 まず、ステップS21において、TTC算出部22から自車両と先行車両との相対速度の情報を取得する。なお、相対速度の情報は、相対関係算出部21から取得するようにしても良い。
 次に、ステップS22において、メモリ等の記憶装置(図示せず)に予め記憶された基準警報開始時間(例えば、1.2秒程度)の情報を読み出して取得する。この基準警報開始時間は、第1実施形態で説明した基準警報開始時間と同様に、衝突時間TTCの閾値である警報作動開始閾時間を算出するための基準値である。
 次に、ステップS23において、上記相対速度情報と基準警報開始時間の情報とに基づき、警報作動開始閾時間を算出する。より具体的には、下記(3)式に示すように、基準警報開始時間に対して、予め設定された所定距離(m)(例えば、0.5m)を相対速度(m/s)で除算した値(s)を加算して警報作動開始閾時間を算出する。
 警報作動開始閾時間=基準警報開始時間+所定距離/相対速度・・・(3)
 ここで、予め設定された所定距離とは、自車両と先行車両との距離が近距離で、かつ自車両と先行車両との相対速度が極低速(0kmよりも高く5km/h前後までの速度領域)である場合に生じる運転者の車両感覚の誤差を統計的に見て決定した値である。運転者の車両感覚の誤差は、上述した第1および第2実施形態の車両速度が極低速の場合と同様に、自車両と先行車両の相対速度が極低速の場合において大きくなる。
 ステップS24において、TTC算出部22により算出された衝突時間TTCが警報作動開始閾時間以下か否かを判定する。この判定結果が「No」(TTC>警報作動開始閾時間)である場合は、本ルーチンの実行を一旦終了する。一方、ステップS24の判定結果が「Yes」(TTC≦警報作動開始閾時間)である場合は、ステップS25に進み警報を行い、本ルーチンの実行を一旦終了する。
 したがって、上述した第3実施形態によれば、とりわけ、走行中の自車両と同じ速度で走行している先行車両に対して自車両が近づいていく場合であっても運転者の車両感覚の誤差に応じた適切なタイミングで警報を作動させることができる。
 なお、本発明は上述した各実施形態の構成に限られるものではなく、その要旨を逸脱しない範囲で設計変更可能である。
 上述した第1実施形態および第2実施形態では、全車速域について(1)式、又は(2)式を用いて警報作動開始閾時間や警報作動開始閾距離を算出する例について説明した。これに限らず、車両速度が特に低速な極低速域を予め設定しておき、自車両センサ12からの車両速度が極低速域になったと判定された場合にのみ警報作動開始閾時間や警報作動開始閾距離を用いて警報タイミングを決定するようにしても良い。また、第3実施形態の相対速度についても、特に低速な極低速域を予め設定しておき、相対関係算出部21で算出された相対速度が極低速域になったと判定された場合にのみ警報作動開始閾時間を用いて警報タイミングを決定するようにしても良い。これらの場合、極低速域よりも高速域では上述した基準警報開始時間を警報作動開始閾時間として用い、基準警報開始距離を警報作動開始閾距離として用いればよい。
 また、上述した各実施形態では、自車両に対する先行車両の衝突可能性を判定する場合について説明したが、衝突可能性のあるものであれば先行車両に限られず、例えば、案内標識や歩行者等であってもよい。
 さらに、上述した各実施形態では、衝突可能性を判定する対象物がトラックなどの大型車である場合には、運転者が圧迫感を受けて、車両感覚の誤差が大きくなる。このことから、外界センサ11の検出結果に基づき対象物が大型車などの比較的大型の障害物であるか否かを判定して大型車であると判定された場合には、上述した所定距離を大型車用のより長い距離に置き換えるようにしてもよい。
 また、上述した第2実施形態では、基準警報開始距離を自車両が所定時間1.2秒程度)で進む距離、すなわち、自車両の速度と基準警報開始距離とが比例する例について説明した。これに限らず、図5に示すグラフの警報作動開始閾時間の変化のように、マップ等を用いて低速になるほど基準警報開始距離の増加率が高くなるように設定しても良い。
 また、走行速度や相対速度が0km/h近くになると警報作動開始閾時間が大きくなりすぎる場合がある。このため、所定の走行速度又は所定の相対速度以下では、一定の値を基準警報開始時間に加算するようにしても良い。
 本発明にかかる走行制御装置によれば、運転者の車両感覚の誤差に応じた適切なタイミングで警報を作動させて商品性の向上を図ることができる。
1,100 走行制御装置
11 外界センサ(物体検出部)
 12 自車両センサ(走行速度検出部)
13 警報発生装置
 20,30 電子制御装置
 21 相対関係算出部(相対速度検出部)
 22 TTC算出部(衝突時間算出部)
 24,34 警報タイミング決定部(警報部)
 32 衝突距離算出部

Claims (6)

  1.  自車両の走行速度を検出する走行速度検出部と、
     自車両周囲の物体を検出して物体検出結果を取得する物体検出部と、
     前記走行速度、および、前記物体検出結果に基づいて前記物体と前記自車両とが衝突するまでの時間を算出する衝突時間算出部と、
     前記衝突するまでの時間に基づいて運転者に警報を行う警報部と、を備えた走行制御装置であって、
     前記警報部は:
     前記警報を開始する時間の基準値として予め設定された基準警報開始時間と、前記運転者の車両感覚の誤差の最小値として予め設定された所定距離と、を取得し;
     前記基準警報開始時間に対して、前記所定距離を前記走行速度で除算した時間を加算して警報作動開始閾時間を求め;
     前記警報作動開始閾時間と前記衝突するまでの時間とに基づいて前記運転者への前記警報を行うことを特徴とする走行制御装置。
  2.  前記警報部は、
     極低車速時のみ、前記警報作動開始閾時間に基づいて前記運転者に前記警報を行うことを特徴とする請求項1に記載の走行制御装置。
  3.  自車両の走行速度を検出する走行速度検出部と、
     自車両周囲の物体を検出して物体検出結果を取得する物体検出部と、
     前記走行速度、および、前記物体検出結果に基づいて前記物体と前記自車両とが衝突するまでの距離を算出する衝突距離算出部と、
     前記衝突するまでの距離に基づいて運転者に警報を行う警報部と、を備えた走行制御装置であって、
     前記警報部は、
     前記警報を開始する距離の基準値として予め設定された基準警報開始距離と、前記運転者の車両感覚の誤差の最小値として予め設定された所定距離と、を取得し;
    前記基準警報開始距離に対して、前記所定距離を加算して警報作動開始閾距離を求め;
    前記警報作動開始閾距離と前記衝突するまでの距離とに基づいて前記運転者への前記警報を行うことを特徴とする走行制御装置。
  4.  前記警報部は、
     極低車速時のみ、前記警報作動開始閾距離に基づいて前記運転者に前記警報を行うことを特徴とする請求項3に記載の走行制御装置。
  5.  自車両の走行速度を検出する走行速度検出部と、
     自車両周囲の物体を検出して物体検出結果を取得する物体検出部と、
     自車両と物体との相対速度を検出する相対速度検出部と、
     前記走行速度、および、前記物体検出結果に基づいて前記物体と前記自車両とが衝突するまでの距離を算出する衝突距離算出部と、
     前記衝突するまでの距離に基づいて運転者に警報を行う警報部と、を備えた走行制御装置であって、
     前記警報部は、
     前記警報を開始する時間の基準値として予め設定された基準警報開始時間と、前記運転者の車両感覚の誤差の最小値として予め設定された所定距離と、を取得し;
    前記基準警報開始時間に対して、前記自車両と前記物体との相対速度で除算した時間を加算して警報作動開始閾時間を求め;
    前記警報作動開始閾時間と前記衝突するまでの時間とに基づいて前記運転者への前記警報を行うことを特徴とする走行制御装置。
  6.  前記警報部は、
     前記相対速度が極低速時のみ、前記警報作動開始閾時間に基づいて前記運転者に前記警報を行うことを特徴とする請求項5に記載の走行制御装置。
PCT/JP2012/062384 2011-05-18 2012-05-15 走行制御装置 WO2012157633A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280023300.0A CN103534742B (zh) 2011-05-18 2012-05-15 行驶控制装置
EP12785627.6A EP2711911B1 (en) 2011-05-18 2012-05-15 Drive control device
JP2013515159A JP5577460B2 (ja) 2011-05-18 2012-05-15 走行制御装置
US14/116,967 US9406230B2 (en) 2011-05-18 2012-05-15 Drive control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011111354 2011-05-18
JP2011-111354 2011-05-18

Publications (1)

Publication Number Publication Date
WO2012157633A1 true WO2012157633A1 (ja) 2012-11-22

Family

ID=47176950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062384 WO2012157633A1 (ja) 2011-05-18 2012-05-15 走行制御装置

Country Status (5)

Country Link
US (1) US9406230B2 (ja)
EP (1) EP2711911B1 (ja)
JP (1) JP5577460B2 (ja)
CN (1) CN103534742B (ja)
WO (1) WO2012157633A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149741A (ja) * 2013-02-01 2014-08-21 Fuji Heavy Ind Ltd 車両の衝突判定装置
JP2017107328A (ja) * 2015-12-08 2017-06-15 トヨタ自動車株式会社 運転支援装置
WO2018173455A1 (ja) * 2017-03-24 2018-09-27 株式会社デンソー 運転支援装置
CN111856510A (zh) * 2020-08-03 2020-10-30 北京理工大学重庆创新中心 一种基于激光雷达的车辆前碰撞预测方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2750117B1 (en) * 2011-08-22 2016-03-16 Toyota Jidosha Kabushiki Kaisha Vehicle-use alert device
JP5938483B2 (ja) * 2012-11-26 2016-06-22 本田技研工業株式会社 車両制御装置
JP6183388B2 (ja) * 2015-02-03 2017-08-23 トヨタ自動車株式会社 車両用制御装置
JP2016148971A (ja) * 2015-02-12 2016-08-18 トヨタ自動車株式会社 運転支援装置
CN106157690B (zh) * 2015-03-24 2018-10-19 重庆长安汽车股份有限公司 一种基于可见光通信的汽车追尾预警系统及方法
US9701244B2 (en) 2015-09-29 2017-07-11 Toyota Motor Engineering & Manufacturing North America, Inc. Systems, methods, and vehicles for generating cues to drivers
US20170106857A1 (en) * 2015-10-20 2017-04-20 GM Global Technology Operations LLC Vehicle collision system and method of using the same
KR101996416B1 (ko) * 2016-12-30 2019-10-01 현대자동차주식회사 보행자 충돌 시 충격 완화 장치 및 방법
KR102653350B1 (ko) * 2017-01-18 2024-04-01 에이치디현대인프라코어 주식회사 건설 기계 및 이의 경고 알람 제어 방법
JP7032698B2 (ja) * 2018-06-01 2022-03-09 マツダ株式会社 車両用警報システム
DE102018214201A1 (de) * 2018-08-22 2020-02-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Sicherstellung der Funktionssicherheit und Integrität von Abschalteinrichtungen im Fahrzeug durch präventive Steuerung der Abschaltung von Energieversorgern in einem Fahrzeug, sowie Fahrzeug
CN112668363B (zh) * 2019-10-15 2024-06-14 北京地平线机器人技术研发有限公司 报警准确度确定方法、装置及计算机可读存储介质
CN115376361A (zh) * 2021-05-17 2022-11-22 上海博泰悦臻网络技术服务有限公司 车辆追尾预警方法、装置、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025937A (ja) * 2001-07-13 2003-01-29 Nissan Motor Co Ltd 車線逸脱警報装置
JP2005149024A (ja) * 2003-11-13 2005-06-09 Nissan Motor Co Ltd 走行支援用車載情報提供装置
JP2007304815A (ja) * 2006-05-10 2007-11-22 Toyota Motor Corp 車両用制御装置
JP2009146029A (ja) 2007-12-12 2009-07-02 Honda Motor Co Ltd 車両の走行安全装置
JP2011022990A (ja) * 2009-06-18 2011-02-03 Nissan Motor Co Ltd 車両運転支援装置及び車両運転支援方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235316A (en) * 1991-12-20 1993-08-10 Qualizza Gregory K Vehicle collision avoidance system
JP3218826B2 (ja) * 1993-12-03 2001-10-15 日産自動車株式会社 先行車両接近警報装置
JP3189560B2 (ja) * 1994-03-25 2001-07-16 株式会社デンソー 車間距離検知装置および車間距離警報装置
JPH08132931A (ja) * 1994-11-14 1996-05-28 Toyota Motor Corp 車両用走行制御装置
JP2869888B2 (ja) * 1995-11-21 1999-03-10 本田技研工業株式会社 車両の衝突防止装置
JP3849650B2 (ja) * 2003-01-28 2006-11-22 トヨタ自動車株式会社 車両
JP2005280398A (ja) * 2004-03-29 2005-10-13 Honda Motor Co Ltd 走行制御装置
JP4466299B2 (ja) * 2004-09-28 2010-05-26 日本電気株式会社 車両用警報装置、車両用警報方法及び車両用警報発生プログラム
JP4412356B2 (ja) * 2007-06-13 2010-02-10 株式会社デンソー 車両用衝突緩和装置
DE102007050962A1 (de) * 2007-10-23 2009-04-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Kollisionswarnsystem für ein Fahrzeug und Verfahren zum Warnen eines Fahrers eines Fahrzeugs vor Kollisionen mit einem Objekt
CN101169480A (zh) 2007-11-29 2008-04-30 上海龙鲁自动化科技有限公司 车辆防追尾的雷达控制方法
JP4678611B2 (ja) 2008-06-05 2011-04-27 トヨタ自動車株式会社 障害物検出装置および障害物検出システム
JP5210233B2 (ja) 2009-04-14 2013-06-12 日立オートモティブシステムズ株式会社 車両用外界認識装置及びそれを用いた車両システム
JP5691237B2 (ja) 2010-05-06 2015-04-01 トヨタ自動車株式会社 運転支援装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025937A (ja) * 2001-07-13 2003-01-29 Nissan Motor Co Ltd 車線逸脱警報装置
JP2005149024A (ja) * 2003-11-13 2005-06-09 Nissan Motor Co Ltd 走行支援用車載情報提供装置
JP2007304815A (ja) * 2006-05-10 2007-11-22 Toyota Motor Corp 車両用制御装置
JP2009146029A (ja) 2007-12-12 2009-07-02 Honda Motor Co Ltd 車両の走行安全装置
JP2011022990A (ja) * 2009-06-18 2011-02-03 Nissan Motor Co Ltd 車両運転支援装置及び車両運転支援方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2711911A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149741A (ja) * 2013-02-01 2014-08-21 Fuji Heavy Ind Ltd 車両の衝突判定装置
JP2017107328A (ja) * 2015-12-08 2017-06-15 トヨタ自動車株式会社 運転支援装置
WO2018173455A1 (ja) * 2017-03-24 2018-09-27 株式会社デンソー 運転支援装置
JP2018163482A (ja) * 2017-03-24 2018-10-18 株式会社デンソー 運転支援装置
CN111856510A (zh) * 2020-08-03 2020-10-30 北京理工大学重庆创新中心 一种基于激光雷达的车辆前碰撞预测方法

Also Published As

Publication number Publication date
EP2711911B1 (en) 2017-07-12
US20140104050A1 (en) 2014-04-17
CN103534742A (zh) 2014-01-22
JP5577460B2 (ja) 2014-08-20
EP2711911A1 (en) 2014-03-26
JPWO2012157633A1 (ja) 2014-07-31
EP2711911A4 (en) 2015-01-21
CN103534742B (zh) 2016-06-01
US9406230B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5577460B2 (ja) 走行制御装置
US8396642B2 (en) Adaptive cruise control system
CN109969116B (zh) 一种用于车辆的防撞方法和系统
US9079571B2 (en) Method for operating a brake assist device and brake assist device for a vehicle
JP6367323B2 (ja) 予想され得る後続衝突を回避するための、若しくは衝突の事故結果を低減させるための方法および装置
JP5768891B2 (ja) 車両の運転支援システム
JP6221569B2 (ja) 運転支援装置
KR101478068B1 (ko) 차량 충돌 방지 장치 및 그 방법
US20150187217A1 (en) Collision avoidance system and method for vehicles
CN111791889A (zh) 用于驾驶机动车的控制系统和控制方法
KR101552017B1 (ko) 성능이 개선된 운전보조시스템 및 그 제어방법
JP2006069419A (ja) 車両の走行制御装置
JP2008290600A (ja) 車両の走行制御装置
KR20220144003A (ko) 운전자 보조 시스템 및 그를 가지는 차량
KR20150051548A (ko) 운전자의 성향을 반영하는 운전보조시스템 및 그 제어방법
JP2020040648A (ja) 自動車、特にオートバイの運転の方法、コンピュータプログラム
JP5642761B2 (ja) 運転支援装置
JP5298104B2 (ja) 車両の制御装置
KR20170071272A (ko) 후면 충돌 경보 제어 방법 및 장치
WO2017014112A1 (ja) 車両の衝突回避制御装置および衝突回避制御方法
JP6657673B2 (ja) 車両制御装置および車両制御方法
JP5782793B2 (ja) 車載機器制御装置
JP5007167B2 (ja) 車両の走行制御装置
JP7548163B2 (ja) 車両運転支援装置及び車両運転支援プログラム
JP2007290708A (ja) 車両用走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785627

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013515159

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14116967

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012785627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012785627

Country of ref document: EP