[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012153549A1 - Piezoelectric sensor device - Google Patents

Piezoelectric sensor device Download PDF

Info

Publication number
WO2012153549A1
WO2012153549A1 PCT/JP2012/052229 JP2012052229W WO2012153549A1 WO 2012153549 A1 WO2012153549 A1 WO 2012153549A1 JP 2012052229 W JP2012052229 W JP 2012052229W WO 2012153549 A1 WO2012153549 A1 WO 2012153549A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric sensor
sensor device
detection
detection element
Prior art date
Application number
PCT/JP2012/052229
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 館
谷本 亮介
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012153549A1 publication Critical patent/WO2012153549A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/178Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of a laminated structure of multiple piezoelectric layers with inner electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0426Bulk waves, e.g. quartz crystal microbalance, torsional waves

Definitions

  • the present invention relates to a piezoelectric sensor device used for detection of biochemical substances, inorganic or organic materials, and more particularly, to detect using a change in resonance characteristics due to mass load of a detection substance on a detection surface.
  • the present invention relates to a piezoelectric sensor device that detects a substance.
  • Patent Document 1 discloses a QCM (Quartz Crystal Microbalance) sensor shown in FIGS. 5 (a) and 5 (b).
  • QCM Quadrat Crystal Microbalance
  • the crystal unit 1002 has a structure in which electrodes are formed on the upper surface and the lower surface of a crystal substrate.
  • the resonance characteristics of the crystal unit 1002 change.
  • a substance to be detected is detected using the change in the resonance characteristics.
  • the QCM sensor 1001 uses a substantially cylindrical package member 1003.
  • the package member 1003 has a substantially cylindrical shape and has a bottom surface closed.
  • the crystal unit 1002 is fixed in a substantially cylindrical package member 1003 with an adhesive 1004.
  • the upper side of the crystal unit 1002 is opened toward the upper end opening of the package member 1003. Accordingly, the substance to be detected can adhere to the upper surface of the crystal unit 1002.
  • a sealed space B is formed below the crystal unit 1002 so as not to disturb vibration.
  • the closed space B had to be formed on the surface opposite to the detection surface of the crystal unit 1002. For this reason, the miniaturization could not be promoted. In addition, the space B must be sealed. Otherwise, the detected substance may enter the space B and the detected substance may not be detected accurately.
  • the crystal unit 1002 must be accurately fixed to the inner peripheral surface of the package member 1003. That is, if the crystal unit 1002 is not fixed at an accurate position, the detection accuracy decreases.
  • the crystal unit 1002 is fixed to the package member 1003 with an adhesive 1004. However, it is difficult to fix the crystal unit 1002 in an accurate position with the adhesive 1004. Therefore, there is a problem that it takes a cost to manage the fixing accuracy of the crystal unit 1002.
  • An object of the present invention is to provide a piezoelectric sensor device that can be easily and inexpensively manufactured and can be downsized without requiring a complicated operation for managing accuracy when fixing a piezoelectric detection element. It is to provide.
  • the piezoelectric sensor device includes a piezoelectric detection element, a bonding layer, and a holding member.
  • the piezoelectric detection element has an open detection surface, and is configured to detect a detection target substance based on a mass change when the detection target substance adheres to the detection surface, and has a first acoustic impedance value Z1.
  • the bonding layer is laminated on a surface opposite to the detection surface of the piezoelectric detection element, and is made of a material having a second acoustic impedance value Z2 smaller than the first acoustic impedance value Z1.
  • the holding member is bonded to the surface of the bonding layer opposite to the piezoelectric detection element, and is made of a material having a third acoustic impedance value Z3 larger than the second acoustic impedance value Z2.
  • a plurality of piezoelectric sensor devices are provided, and the resonance frequencies of the piezoelectric detection elements of the plurality of piezoelectric sensor devices are equalized.
  • the vibration of the piezoelectric detection element is unlikely to leak to other members such as a mounting substrate via the holding member. Therefore, interference between the piezoelectric detection elements of the plurality of piezoelectric sensor devices can be suppressed. Therefore, by mounting a plurality of piezoelectric sensor devices configured using piezoelectric detection elements having the same resonance frequency on, for example, one mounting substrate, a piezoelectric sensor device having a plurality of detection portions can be provided.
  • one of the plurality of piezoelectric sensor devices is a reference piezoelectric sensor device, and the other piezoelectric sensor device is a detection piezoelectric sensor device.
  • the substance to be detected can be detected with higher accuracy by using the output of the reference piezoelectric sensor device and the output of the detection piezoelectric sensor device.
  • a mounting board on which the plurality of piezoelectric sensor devices are mounted is further provided.
  • the plurality of piezoelectric sensor devices can be mounted on one mounting substrate, and a piezoelectric sensor device having a plurality of detection portions can be configured as a single component.
  • the piezoelectric detection element includes a plurality of electrodes provided to face the piezoelectric substrate via a part or all of the piezoelectric substrate.
  • a piezoelectric detection element used in the piezoelectric sensor device of the present invention can be configured in the same manner as a known piezoelectric vibrator.
  • the piezoelectric sensor device according to the present invention can be used for detecting various substances to be detected.
  • a biosensor apparatus using a biochemical substance as a substance to be detected is configured. .
  • a biochemical substance can be detected with high accuracy, and a small and inexpensive biosensor device can be provided.
  • the piezoelectric sensor device since the acoustic impedance values of the piezoelectric detection element, the bonding layer, and the piezoelectric sensor device are set as described above, vibration of the piezoelectric detection element is hardly hindered by the bonding layer and the holding member. Therefore, the holding member can be bonded via the bonding layer without providing a space on the surface opposite to the detection surface of the piezoelectric detection element.
  • FIG. 1A is a perspective view of a piezoelectric sensor device according to a first embodiment of the present invention
  • FIG. 1B is a perspective view showing a piezoelectric detection element used in the piezoelectric sensor device.
  • FIG. 2 is a partially cutaway front sectional view showing a piezoelectric sensor device according to a second embodiment of the present invention.
  • FIGS. 3A and 3B are a plan view for explaining another example of the piezoelectric detection element used in the present invention and a schematic plan view showing the electrode shape on the lower surface through the piezoelectric substrate.
  • FIG. 4 is a perspective view showing still another example of the piezoelectric detection element used in the piezoelectric sensor device of the present invention.
  • 5 (a) and 5 (b) are a plan view showing a conventional QCM sensor and a cross-sectional view showing a portion along line AA in FIG. 5 (a).
  • FIG. 1A is a perspective view showing a piezoelectric sensor device according to a first embodiment of the present invention.
  • the piezoelectric sensor device 1 of the present embodiment is a biosensor device that detects biochemical substances such as proteins.
  • the piezoelectric sensor device 1 can also be used for measuring a substance to be detected other than a biochemical substance, for example, a chemical substance such as a gas.
  • the piezoelectric sensor device 1 has a piezoelectric detection element 2. As shown in FIG. 1B, the piezoelectric detection element 2 includes a piezoelectric substrate 3, a first electrode 4 formed on the upper surface of the piezoelectric substrate 3, and a second electrode formed on the lower surface of the piezoelectric substrate 3. And 5.
  • the piezoelectric substrate 3 is made of a piezoelectric ceramic such as a lead zirconate titanate ceramic. However, the piezoelectric substrate 3 may be formed of a piezoelectric single crystal such as quartz.
  • the piezoelectric substrate 3 is made of piezoelectric ceramics and is polarized in the direction indicated by the arrow P shown in the drawing.
  • the piezoelectric substrate 3 has a strip shape with a rectangular planar shape.
  • the polarization direction P is a direction connecting the first end face 3a and the second end face 3b.
  • the first electrode 4 extends from the central region toward the second end surface 3b side on the upper surface of the piezoelectric substrate 3, and reaches the edge formed by the upper surface and the second end surface 3b.
  • the second electrode 5 is formed so as to extend from the central region of the lower surface of the piezoelectric substrate 3 to the edge formed by the first end surface 3a and the lower surface.
  • the first electrode 4 and the second electrode 5 are overlapped via the piezoelectric substrate 3. This overlapping portion constitutes a piezoelectric vibration part.
  • the piezoelectric detection element 2 is a piezoelectric element using an energy confinement type thickness-shear vibration mode.
  • the first and second electrodes 4 and 5 can be formed of an appropriate metal such as Ag, Au, Cu, Al, or an alloy thereof.
  • the piezoelectric detection element 2 is made of piezoelectric ceramics, and its acoustic impedance value is defined as a first acoustic impedance value Z1.
  • the upper surface of the piezoelectric detection element 2 is a detection surface.
  • a bonding layer 6 is laminated on the surface of the piezoelectric detection element 2 opposite to the detection surface, that is, the lower surface.
  • the bonding layer 6 is made of an insulating adhesive.
  • an appropriate adhesive such as an epoxy resin adhesive or a silicone resin adhesive can be used.
  • the bonding layer 6 may be an insulating bonding material other than the adhesive as long as it performs the bonding function.
  • the holding member 7 is laminated on the lower surface of the bonding layer 6.
  • the holding member 7 has a rectangular plate shape.
  • the holding member 7 has the same planar shape as the piezoelectric substrate 3.
  • the holding member 7 constitutes a surface on the side where the piezoelectric sensor device 1 is mounted on the mounting substrate. That is, the holding member 7 is bonded via the bonding layer 6 in order to open the detection surface of the piezoelectric detection element 2 so that the substance to be detected can adhere and to seal the opposite surface.
  • an appropriate material such as an insulating ceramic such as alumina or a synthetic resin such as an epoxy resin can be used.
  • the holding member 7 is made of an insulating ceramic.
  • the acoustic impedance value of the bonding layer 6 is a second acoustic impedance value Z2, and the acoustic impedance value of the holding member 7 is a third acoustic impedance value Z3.
  • a first terminal electrode 8 is formed on the first end face of the laminate composed of the bonding layer 6 and the holding member 7.
  • a second terminal electrode 9 is formed on the opposite end surface facing the first end surface.
  • the first terminal electrode 8 is formed so as to extend from the first end face to the lower face of the laminate.
  • the second terminal electrode 9 is formed so as to reach the upper surface and the lower surface from the second end surface of the laminate. The portion of the second terminal electrode 9 reaching the upper surface of the laminate is in surface contact with the first electrode 4.
  • the portions of the first terminal electrode 8 and the second terminal electrode 9 reaching the lower surface of the laminate are provided in contact with electrode lands and the like on the mounting substrate described later in surface contact.
  • the resonance characteristics of the piezoelectric detection element 2 change. Thereby, the presence or absence of the substance to be detected and the amount of the substance to be detected can be detected.
  • the piezoelectric sensor device 1 since the piezoelectric sensor device 1 only needs to be laminated and bonded to the holding member 7 via the bonding layer 6, the piezoelectric sensor device 1 can simplify the assembly process.
  • the conventional QCM sensor 1001 since the space B must be formed, the package structure is complicated, and the accuracy of the fixing position of the crystal unit 1002 must be increased.
  • the piezoelectric sensor device 1 according to the present embodiment since it is not necessary to provide a space, it is possible not only to simplify the package structure but also to increase the fixing accuracy of the piezoelectric detection element 2.
  • the resonance characteristics of the piezoelectric detection element 2 are hardly deteriorated.
  • the first acoustic impedance value Z1 to the third acoustic impedance value Z3 have a relationship of Z1> Z2 ⁇ Z3. That is, since the first to third acoustic impedance values Z1 to Z3 satisfy such a relationship, the vibration leaked from the piezoelectric detection element 2 to the bonding layer 6 is an interface between the bonding layer 6 and the holding member 7. Reflected by. Therefore, even if the structure does not provide a space, the resonance characteristics of the piezoelectric detection element 2 are unlikely to deteriorate. Therefore, it is possible to measure the presence / absence of the substance to be detected and the amount of the substance to be detected with high accuracy by using the change in resonance characteristics due to the mass load action of the substance to be detected attached to the detection surface.
  • FIG. 2 is a partially cutaway front sectional view showing a piezoelectric sensor device 16 according to a second embodiment of the present invention.
  • a plurality of piezoelectric sensor devices 1, 1 ⁇ / b> A are mounted on the mounting substrate 11.
  • the piezoelectric sensor devices 1 and 1A are configured in the same manner as the piezoelectric sensor device 1 of the first embodiment.
  • the mounting substrate 11 is made of an insulating material such as alumina. Electrode lands 12 to 15 are formed on the mounting substrate 11. The first and second terminal electrodes 8 and 9 of the piezoelectric sensor device 1 are in contact with the electrode lands 12 and 13, respectively. In this way, the piezoelectric sensor device 1 is mounted on the portion where the electrode lands 12 and 13 are formed using a conductive bonding material (not shown) made of solder, conductive adhesive or the like. Similarly, the piezoelectric sensor device 1 ⁇ / b> A is mounted on the mounting substrate 11 in a portion where the electrode lands 14 and 15 are provided.
  • the piezoelectric sensor devices 1 and 1A have the above-described structure, the vibration of the piezoelectric detection element 2 hardly leaks to the holding member 7 side. Therefore, even when the plurality of piezoelectric sensor devices 1 and 1A are fixed and mounted on the same mounting substrate 11, that is, a single mounting substrate 11, interference between the piezoelectric sensor devices 1 and 1A hardly occurs.
  • the piezoelectric sensor device 1 and the piezoelectric sensor device 1A exactly the same piezoelectric sensor device having the same resonance frequency of the piezoelectric detection element 2 can be used. Thereby, the assembly process of the piezoelectric sensor device 16 according to the second embodiment having the plurality of piezoelectric sensor devices 1 and 1A can be simplified and the cost can be reduced.
  • any of the plurality of piezoelectric sensor devices 1 and 1A may be used as a detection piezoelectric sensor device.
  • one piezoelectric sensor device 1 is used as a reference piezoelectric sensor device, and the other piezoelectric sensor device 1A is used. It is desirable to use a piezoelectric sensor device for detection. Accordingly, the substance to be detected can be measured with higher accuracy based on the output difference between the reference piezoelectric sensor device and the detection piezoelectric sensor device.
  • the number of piezoelectric sensor devices is not limited to the illustrated configuration, and three or more piezoelectric sensor devices may be mounted.
  • the plurality of piezoelectric sensor devices 1 and 1A are mounted on the mounting substrate 11, but only one piezoelectric sensor device 1 is mounted on the mounting substrate. Also good.
  • the resonance frequency of the piezoelectric detection element 2 of the piezoelectric sensor device 1 and the resonance frequency of the piezoelectric detection element 2 of the piezoelectric sensor device 1A are made equal, but they may be different. When the resonance frequencies are different, interference between the piezoelectric sensor devices 1 and 1A can be more effectively suppressed.
  • FIGS. 3A and 3B are a plan view showing a modification of the piezoelectric detection element used in the present invention and a schematic plan view showing the electrode shape on the lower surface through the piezoelectric substrate.
  • the piezoelectric detection element 21 has a rectangular plate-shaped piezoelectric substrate 22.
  • the piezoelectric substrate 22 is made of piezoelectric ceramic and is polarized in the thickness direction.
  • a first electrode 23 having a circular planar shape is formed at the center of the upper surface of the piezoelectric substrate 22.
  • a second electrode 24 is formed on the lower surface so as to face the first electrode 23.
  • a portion where the first electrode 23 and the second electrode 24 overlap each other constitutes an energy confinement type piezoelectric vibration portion using a thickness longitudinal vibration mode.
  • the first electrode 23 is electrically connected via a wiring electrode 25 to a connection electrode 26 provided along the edge formed by the upper surface and one end surface of the piezoelectric substrate 22.
  • the second electrode 24 is connected to the connection electrode 28 via the wiring electrode 27.
  • the connection electrode 28 is formed so as to reach the edge formed by the lower surface of the piezoelectric substrate 22 and the other end surface.
  • the piezoelectric detection element may be an energy confinement type piezoelectric element using a thickness longitudinal vibration mode.
  • FIG. 4 is a perspective view for explaining still another modified example of the piezoelectric detecting element used in the present invention.
  • the piezoelectric detection element 31 of the present modification is an energy confinement type piezoelectric element using a second harmonic of thickness longitudinal vibration.
  • the piezoelectric detection element 31 has a rectangular plate-shaped piezoelectric substrate 32.
  • the piezoelectric substrate 32 is polarized in the thickness direction.
  • a first electrode 33 is formed on the upper surface of the piezoelectric substrate 32, and a second electrode 34 is formed on the lower surface.
  • the first electrode 33 and the second electrode 34 extend from the center of the upper surface and the lower surface of the piezoelectric substrate 32 toward the second end surface 32b.
  • an internal electrode 35 is formed at an intermediate height position of the piezoelectric substrate 32.
  • the internal electrode 35 overlaps the first electrode 33 and the second electrode 34 with the piezoelectric substrate layer in the central region of the piezoelectric substrate 32.
  • the internal electrode 35 extends from the central portion of the piezoelectric substrate 32 toward the first end face 32a and is drawn out to the first end face 32a.
  • an energy confinement type piezoelectric element using the second harmonic of the thickness longitudinal vibration mode is applied by applying an alternating electric field between the first and second electrodes 33 and 34 and the internal electrode 35.
  • an energy confinement type piezoelectric element using such a higher-order mode of the thickness longitudinal vibration mode may be used as the piezoelectric detection element.
  • various energy confinement type piezoelectric elements such as a piezoelectric element using a harmonic in the thickness longitudinal vibration mode and the thickness longitudinal vibration mode are not limited to the thickness sliding mode.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Disclosed is a piezoelectric sensor device with which reduction in device size can be achieved and in which costs can be reduced without requiring precise fixing of the piezoelectric detection element and without needing to provide a space on the opposite side to the detection face. One side face of a piezoelectric detection element (2) of the enclosed energy type is designated as the detection face and a holding member (7) is laminated, with interposition of a joining layer (6), on the face on the opposite side to this detection face. If the acoustic impedance value of the piezoelectric detection element (2) is identified as the first acoustic impedance value Z1, the acoustic impedance value of the joining layer (6) is identified as the second acoustic impedance value Z2, and the acoustic impedance value of the holding member (7) is identified as the third acoustic impedance value Z3, then, for this piezoelectric sensor device (1), it is specified that: Z1 > Z2 < Z3.

Description

圧電センサ装置Piezoelectric sensor device
 本発明は、生化学物質や無機もしくは有機材料などの検出に用いられる圧電センサ装置に関し、より詳細には、検出面への被検出物質の質量負荷による共振特性への変化を利用して被検出物質を検出する圧電センサ装置に関する。 The present invention relates to a piezoelectric sensor device used for detection of biochemical substances, inorganic or organic materials, and more particularly, to detect using a change in resonance characteristics due to mass load of a detection substance on a detection surface. The present invention relates to a piezoelectric sensor device that detects a substance.
 従来、水晶振動子を用いた様々なセンサが開発されている。例えば、下記の特許文献1には、図5(a)及び(b)に示すQCM(Quartz Crystal Microbalance)センサが開示されている。QCMセンサ1001では、水晶振動子1002が用いられている。水晶振動子1002は、水晶基板の上面及び下面に電極を形成した構造を有する。水晶振動子1002に被検出物質が付着すると、水晶振動子1002の共振特性が変化する。この共振特性の変化を利用して、被検出物質を検出する。 Conventionally, various sensors using a crystal resonator have been developed. For example, Patent Document 1 below discloses a QCM (Quartz Crystal Microbalance) sensor shown in FIGS. 5 (a) and 5 (b). In the QCM sensor 1001, a crystal resonator 1002 is used. The crystal unit 1002 has a structure in which electrodes are formed on the upper surface and the lower surface of a crystal substrate. When a substance to be detected adheres to the crystal unit 1002, the resonance characteristics of the crystal unit 1002 change. A substance to be detected is detected using the change in the resonance characteristics.
 水晶振動子1002を用いるため、水晶振動子1002の振動を妨げないようなパッケージ構造が必要である。従って、QCMセンサ1001では、略円筒状のパッケージ部材1003が用いられている。パッケージ部材1003は、略円筒状の形状を有し、かつ底面が閉じられている。水晶振動子1002は、接着剤1004により略円筒状のパッケージ部材1003内に固定されている。この構造では、水晶振動子1002の上方はパッケージ部材1003の上端開口に向かって開放されている。従って、水晶振動子1002の上面に被検出物質が付着し得る。他方、水晶振動子1002の下方には、振動を妨げないために、密閉された空間Bが形成されている。 Since the crystal unit 1002 is used, a package structure that does not hinder the vibration of the crystal unit 1002 is necessary. Therefore, the QCM sensor 1001 uses a substantially cylindrical package member 1003. The package member 1003 has a substantially cylindrical shape and has a bottom surface closed. The crystal unit 1002 is fixed in a substantially cylindrical package member 1003 with an adhesive 1004. In this structure, the upper side of the crystal unit 1002 is opened toward the upper end opening of the package member 1003. Accordingly, the substance to be detected can adhere to the upper surface of the crystal unit 1002. On the other hand, a sealed space B is formed below the crystal unit 1002 so as not to disturb vibration.
特開2008-32617号公報JP 2008-32617 A
 上記QCMセンサ1001では、水晶振動子1002の検出面とは反対側の面に閉じられた空間Bを形成しなければならなかった。そのため、小型化を進めることができなかった。加えて、上記空間Bは密閉しなければならない。さもないと、被検出物質が空間Bに入り込み、被検出物質を正確に検出し得ないことがある。 In the QCM sensor 1001, the closed space B had to be formed on the surface opposite to the detection surface of the crystal unit 1002. For this reason, the miniaturization could not be promoted. In addition, the space B must be sealed. Otherwise, the detected substance may enter the space B and the detected substance may not be detected accurately.
 さらに、水晶振動子1002を、パッケージ部材1003の内周面に正確に固定しなければならない。すなわち、水晶振動子1002が正確な位置に固定されないと、検出精度が低下する。上記水晶振動子1002は、接着剤1004によりパッケージ部材1003に固定されているが、接着剤1004により水晶振動子1002を正確な位置に固定することは困難である。従って、水晶振動子1002の固定精度を管理するためのコストがかかるという問題もあった。 Furthermore, the crystal unit 1002 must be accurately fixed to the inner peripheral surface of the package member 1003. That is, if the crystal unit 1002 is not fixed at an accurate position, the detection accuracy decreases. The crystal unit 1002 is fixed to the package member 1003 with an adhesive 1004. However, it is difficult to fix the crystal unit 1002 in an accurate position with the adhesive 1004. Therefore, there is a problem that it takes a cost to manage the fixing accuracy of the crystal unit 1002.
 本発明の目的は、圧電検出素子の固定に際し、精度を管理するための煩雑な作業を必要とせず、簡便にかつ安価に製造することができ、しかも小型化を図ることができる圧電センサ装置を提供することにある。 An object of the present invention is to provide a piezoelectric sensor device that can be easily and inexpensively manufactured and can be downsized without requiring a complicated operation for managing accuracy when fixing a piezoelectric detection element. It is to provide.
 本発明に係る圧電センサ装置は、圧電検出素子と、接合層と、保持部材とを備える。圧電検出素子は、開放した検出面を有し、該検出面に被検出物質が付着した際の質量変化により被検出物質を検出するように構成されており、第1の音響インピーダンス値Z1を有する。上記接合層は、前記圧電検出素子の前記検出面とは反対側の面に積層されており、前記第1の音響インピーダンス値Z1よりも小さい第2の音響インピーダンス値Z2を有する材料からなる。上記保持部材は、前記接合層の前記圧電検出素子とは反対側の面に接合されており、第2の音響インピーダンス値Z2よりも大きい第3の音響インピーダンス値Z3を有する材料からなる。 The piezoelectric sensor device according to the present invention includes a piezoelectric detection element, a bonding layer, and a holding member. The piezoelectric detection element has an open detection surface, and is configured to detect a detection target substance based on a mass change when the detection target substance adheres to the detection surface, and has a first acoustic impedance value Z1. . The bonding layer is laminated on a surface opposite to the detection surface of the piezoelectric detection element, and is made of a material having a second acoustic impedance value Z2 smaller than the first acoustic impedance value Z1. The holding member is bonded to the surface of the bonding layer opposite to the piezoelectric detection element, and is made of a material having a third acoustic impedance value Z3 larger than the second acoustic impedance value Z2.
 本発明の圧電センサ装置のある特定の局面では、複数の圧電センサ装置が備えられており、複数の圧電センサ装置の圧電検出素子の共振周波数が等しくされている。本発明では、圧電検出素子の振動が保持部材を介して実装基板などの他の部材に漏洩し難い。従って、複数の圧電センサ装置の圧電検出素子間の干渉を抑制することができる。よって、同じ共振周波数の圧電検出素子を用いて構成された複数の圧電センサ装置を例えば1つの実装基板上に搭載することにより、複数の検出部分を備えた圧電センサ装置を提供することができる。 In a specific aspect of the piezoelectric sensor device of the present invention, a plurality of piezoelectric sensor devices are provided, and the resonance frequencies of the piezoelectric detection elements of the plurality of piezoelectric sensor devices are equalized. In the present invention, the vibration of the piezoelectric detection element is unlikely to leak to other members such as a mounting substrate via the holding member. Therefore, interference between the piezoelectric detection elements of the plurality of piezoelectric sensor devices can be suppressed. Therefore, by mounting a plurality of piezoelectric sensor devices configured using piezoelectric detection elements having the same resonance frequency on, for example, one mounting substrate, a piezoelectric sensor device having a plurality of detection portions can be provided.
 この場合、好ましくは、前記複数の圧電センサ装置の内、1つの圧電センサ装置が基準用圧電センサ装置であり、他の圧電センサ装置が検出用圧電センサ装置とされる。この場合には、基準用圧電センサ装置の出力と、検出用圧電センサ装置の出力とを用いて、被検出物質をより高精度に検出することができる。 In this case, preferably, one of the plurality of piezoelectric sensor devices is a reference piezoelectric sensor device, and the other piezoelectric sensor device is a detection piezoelectric sensor device. In this case, the substance to be detected can be detected with higher accuracy by using the output of the reference piezoelectric sensor device and the output of the detection piezoelectric sensor device.
 また、本発明の他の特定の局面では、上記複数の圧電センサ装置が実装されている実装基板がさらに備えられる。この場合には、1つの実装基板上に、上記複数の圧電センサ装置を実装し、単一の部品として、複数の検出部分を有する圧電センサ装置を構成することができる。 Further, in another specific aspect of the present invention, a mounting board on which the plurality of piezoelectric sensor devices are mounted is further provided. In this case, the plurality of piezoelectric sensor devices can be mounted on one mounting substrate, and a piezoelectric sensor device having a plurality of detection portions can be configured as a single component.
 本発明に係る圧電センサ装置の他の特定の局面では、前記圧電検出素子が、圧電基板と、圧電基板の一部または全部を介して対向するように設けられた複数の電極を備える。この場合には、周知の圧電振動子と同様にして、本発明の圧電センサ装置に用いられる圧電検出素子を構成することができる。 In another specific aspect of the piezoelectric sensor device according to the present invention, the piezoelectric detection element includes a plurality of electrodes provided to face the piezoelectric substrate via a part or all of the piezoelectric substrate. In this case, a piezoelectric detection element used in the piezoelectric sensor device of the present invention can be configured in the same manner as a known piezoelectric vibrator.
 本発明に係る圧電センサ装置は、様々な被検出物質の検出に用いることができるが、本発明のさらに別の特定の局面では、生化学物質を被検出物質とするバイオセンサ装置が構成される。その場合には、本発明に従って生化学物質を高精度に検出し、かつ小型であり、安価なバイオセンサ装置を提供することができる。 The piezoelectric sensor device according to the present invention can be used for detecting various substances to be detected. However, in yet another specific aspect of the present invention, a biosensor apparatus using a biochemical substance as a substance to be detected is configured. . In that case, according to the present invention, a biochemical substance can be detected with high accuracy, and a small and inexpensive biosensor device can be provided.
 本発明に係る圧電センサ装置では、圧電検出素子、接合層及び圧電センサ装置の音響インピーダンス値が上記のように設定されているため、接合層及び保持部材により圧電検出素子の振動が妨げられ難い。従って、圧電検出素子の検出面とは反対側の面に空間を設けることなく、接合層を介して保持部材を接合することが可能とされている。 In the piezoelectric sensor device according to the present invention, since the acoustic impedance values of the piezoelectric detection element, the bonding layer, and the piezoelectric sensor device are set as described above, vibration of the piezoelectric detection element is hardly hindered by the bonding layer and the holding member. Therefore, the holding member can be bonded via the bonding layer without providing a space on the surface opposite to the detection surface of the piezoelectric detection element.
 従って、圧電センサ装置の検出精度を低めることなく、小型化を図ることができる。加えて、圧電検出素子を接合層を介して保持部材に接合するに際し、高精度な位置決めを必要としない。よって、圧電検出素子の固定精度を高めるために必要な工程及びコストを大幅に軽減することが可能となる。 Therefore, downsizing can be achieved without lowering the detection accuracy of the piezoelectric sensor device. In addition, when the piezoelectric detection element is bonded to the holding member via the bonding layer, highly accurate positioning is not required. Therefore, it is possible to greatly reduce the process and cost necessary for increasing the fixing accuracy of the piezoelectric detection element.
図1(a)は、本発明の第1の実施形態に係る圧電センサ装置の斜視図であり、図1(b)は、該圧電センサ装置に用いられる圧電検出素子を示す斜視図である。FIG. 1A is a perspective view of a piezoelectric sensor device according to a first embodiment of the present invention, and FIG. 1B is a perspective view showing a piezoelectric detection element used in the piezoelectric sensor device. 図2は、本発明の第2の実施形態に係る圧電センサ装置を示す部分切欠正面断面図である。FIG. 2 is a partially cutaway front sectional view showing a piezoelectric sensor device according to a second embodiment of the present invention. 図3(a)及び図3(b)は、本発明で用いられる圧電検出素子の他の例を説明するための平面図及び圧電基板を透かして下面の電極形状を示す模式的平面図である。FIGS. 3A and 3B are a plan view for explaining another example of the piezoelectric detection element used in the present invention and a schematic plan view showing the electrode shape on the lower surface through the piezoelectric substrate. . 図4は、本発明の圧電センサ装置で用いられる圧電検出素子のさらに他の例を示す斜視図である。FIG. 4 is a perspective view showing still another example of the piezoelectric detection element used in the piezoelectric sensor device of the present invention. 図5(a)及び図5(b)は、従来のQCMセンサを示す平面図及び図5(a)中のA-A線に沿う部分を示す断面図である。5 (a) and 5 (b) are a plan view showing a conventional QCM sensor and a cross-sectional view showing a portion along line AA in FIG. 5 (a).
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1(a)は、本発明の第1の実施形態に係る圧電センサ装置を示す斜視図である。本実施形態の圧電センサ装置1は、生化学物質、例えばタンパク質を検出するバイオセンサ装置である。もっとも、圧電センサ装置1は、生化学物質以外の、例えば、ガスなどの化学物質の被検出物質を測定する用途にも用いることができる。 FIG. 1A is a perspective view showing a piezoelectric sensor device according to a first embodiment of the present invention. The piezoelectric sensor device 1 of the present embodiment is a biosensor device that detects biochemical substances such as proteins. However, the piezoelectric sensor device 1 can also be used for measuring a substance to be detected other than a biochemical substance, for example, a chemical substance such as a gas.
 圧電センサ装置1は、圧電検出素子2を有する。図1(b)に示すように、圧電検出素子2は、圧電基板3と、圧電基板3の上面に形成された第1の電極4と、圧電基板3の下面に形成された第2の電極5とを有する。 The piezoelectric sensor device 1 has a piezoelectric detection element 2. As shown in FIG. 1B, the piezoelectric detection element 2 includes a piezoelectric substrate 3, a first electrode 4 formed on the upper surface of the piezoelectric substrate 3, and a second electrode formed on the lower surface of the piezoelectric substrate 3. And 5.
 圧電基板3は、チタン酸ジルコン酸鉛系セラミックスのような圧電セラミックスからなる。もっとも、圧電基板3は、水晶などの圧電単結晶により形成されていてもよい。 The piezoelectric substrate 3 is made of a piezoelectric ceramic such as a lead zirconate titanate ceramic. However, the piezoelectric substrate 3 may be formed of a piezoelectric single crystal such as quartz.
 本実施形態では、圧電基板3は、圧電セラミックスからなり、図示の矢印Pで示す方向に分極されている。また、圧電基板3は、平面形状が矩形のストリップ型の形状を有する。分極方向Pは、第1の端面3aと第2の端面3bとを結ぶ方向とされている。 In the present embodiment, the piezoelectric substrate 3 is made of piezoelectric ceramics and is polarized in the direction indicated by the arrow P shown in the drawing. The piezoelectric substrate 3 has a strip shape with a rectangular planar shape. The polarization direction P is a direction connecting the first end face 3a and the second end face 3b.
 第1の電極4は、圧電基板3の上面において、中央領域から第2の端面3b側に向かって延ばされており、上面と第2の端面3bとのなす端縁に至っている。第2の電極5は、圧電基板3の下面中央領域から、第1の端面3aと下面とがなす端縁に至るように形成されている。圧電基板3の中央領域において、第1の電極4と第2の電極5とが圧電基板3を介して重なり合っている。この重なり合っている部分が圧電振動部を構成している。 The first electrode 4 extends from the central region toward the second end surface 3b side on the upper surface of the piezoelectric substrate 3, and reaches the edge formed by the upper surface and the second end surface 3b. The second electrode 5 is formed so as to extend from the central region of the lower surface of the piezoelectric substrate 3 to the edge formed by the first end surface 3a and the lower surface. In the central region of the piezoelectric substrate 3, the first electrode 4 and the second electrode 5 are overlapped via the piezoelectric substrate 3. This overlapping portion constitutes a piezoelectric vibration part.
 圧電基板3の分極方向Pが上記方向であるため、第1,第2の電極4,5間に交流電界を印加すると、厚み滑り振動モードが励振され、上記振動部に閉じ込められる。すなわち、圧電検出素子2はエネルギー閉じ込め型の厚み滑り振動モードを利用した圧電素子である。 Since the polarization direction P of the piezoelectric substrate 3 is the above direction, when an AC electric field is applied between the first and second electrodes 4 and 5, the thickness shear vibration mode is excited and confined in the vibration part. That is, the piezoelectric detection element 2 is a piezoelectric element using an energy confinement type thickness-shear vibration mode.
 上記第1,第2の電極4,5は、Ag、Au、Cu、Alまたはこれらの合金などの適宜の金属により形成することができる。 The first and second electrodes 4 and 5 can be formed of an appropriate metal such as Ag, Au, Cu, Al, or an alloy thereof.
 上記圧電検出素子2は、圧電セラミックスからなるが、その音響インピーダンス値を第1の音響インピーダンス値Z1とする。 The piezoelectric detection element 2 is made of piezoelectric ceramics, and its acoustic impedance value is defined as a first acoustic impedance value Z1.
 図1(a)に示す圧電センサ装置1では、圧電検出素子2の上面が検出面である。この圧電検出素子2の上記検出面とは反対側の面すなわち下面に、接合層6が積層されている。接合層6は、本実施形態では、絶縁性の接着剤からなる。このような接着剤としては、エポキシ樹脂系接着剤、シリコーン樹脂系接着剤などの適宜の接着剤を用いることができる。もっとも、接合層6は、接合機能を果すかぎり、接着剤以外の他の絶縁性の接合材であってもよい。 In the piezoelectric sensor device 1 shown in FIG. 1A, the upper surface of the piezoelectric detection element 2 is a detection surface. A bonding layer 6 is laminated on the surface of the piezoelectric detection element 2 opposite to the detection surface, that is, the lower surface. In the present embodiment, the bonding layer 6 is made of an insulating adhesive. As such an adhesive, an appropriate adhesive such as an epoxy resin adhesive or a silicone resin adhesive can be used. However, the bonding layer 6 may be an insulating bonding material other than the adhesive as long as it performs the bonding function.
 接合層6の下面に、保持部材7が積層されている。保持部材7は、矩形板状の形状を有する。本実施形態では、保持部材7は、圧電基板3と同じ平面形状を有する。保持部材7は、圧電センサ装置1を実装基板上に実装する側の面を構成している。すなわち、圧電検出素子2の検出面を被検出物質が付着し得るように開放し、反対側の面を密閉するために、接合層6を介して保持部材7が接合されている。保持部材7を構成する材料については、アルミナなどの絶縁性セラミックス、エポキシ樹脂などの合成樹脂などの適宜の材料を用いることができる。本実施形態では、保持部材7は絶縁性セラミックスからなる。 The holding member 7 is laminated on the lower surface of the bonding layer 6. The holding member 7 has a rectangular plate shape. In the present embodiment, the holding member 7 has the same planar shape as the piezoelectric substrate 3. The holding member 7 constitutes a surface on the side where the piezoelectric sensor device 1 is mounted on the mounting substrate. That is, the holding member 7 is bonded via the bonding layer 6 in order to open the detection surface of the piezoelectric detection element 2 so that the substance to be detected can adhere and to seal the opposite surface. As a material constituting the holding member 7, an appropriate material such as an insulating ceramic such as alumina or a synthetic resin such as an epoxy resin can be used. In the present embodiment, the holding member 7 is made of an insulating ceramic.
 上記接合層6の音響インピーダンス値を第2の音響インピーダンス値Z2とし、保持部材7の音響インピーダンス値を第3の音響インピーダンス値Z3とする。 The acoustic impedance value of the bonding layer 6 is a second acoustic impedance value Z2, and the acoustic impedance value of the holding member 7 is a third acoustic impedance value Z3.
 また、上記圧電検出素子2に、接合層6及び保持部材7からなる積層体の第1の端面に第1の端子電極8が形成されている。また、第1の端面と対向している反対側の端面に第2の端子電極9が形成されている。第1の端子電極8は、上記積層体の第1の端面から下面に至るように形成されている。第2の端子電極9は、上記積層体の第2の端面から上面及び下面に至るように形成されている。第2の端子電極9の積層体の上面に至っている部分において、第1の電極4と面接触的に接触している。 In the piezoelectric detection element 2, a first terminal electrode 8 is formed on the first end face of the laminate composed of the bonding layer 6 and the holding member 7. A second terminal electrode 9 is formed on the opposite end surface facing the first end surface. The first terminal electrode 8 is formed so as to extend from the first end face to the lower face of the laminate. The second terminal electrode 9 is formed so as to reach the upper surface and the lower surface from the second end surface of the laminate. The portion of the second terminal electrode 9 reaching the upper surface of the laminate is in surface contact with the first electrode 4.
 第1の端子電極8及び第2の端子電極9の上記積層体の下面に至っている部分は、後述する実装基板上の電極ランド等に面接触的に接触させるために設けられている。 The portions of the first terminal electrode 8 and the second terminal electrode 9 reaching the lower surface of the laminate are provided in contact with electrode lands and the like on the mounting substrate described later in surface contact.
 圧電センサ装置1では、検出面すなわち圧電検出素子2の上面に被検出物質が付着すると、圧電検出素子2の共振特性が変化する。それによって、被検出物質の有無や被検出物質の量を検出することができる。 In the piezoelectric sensor device 1, when a substance to be detected adheres to the detection surface, that is, the upper surface of the piezoelectric detection element 2, the resonance characteristics of the piezoelectric detection element 2 change. Thereby, the presence or absence of the substance to be detected and the amount of the substance to be detected can be detected.
 従来、圧電検出素子を用いた圧電センサ装置では、圧電検出素子の振動を妨げないための空間を設ける必要があった。すなわち、開放されている検出面とは反対側の面に、図5に示した空間Bを形成しなければならなかった。これに対して、圧電センサ装置1では、このような空間Bを形成する必要がない。すなわち、図1(a)から明らかなように、圧電検出素子2の下面の全面が、接合層6を介して保持部材7に接合されている。従って、圧電検出素子2の検出面とは反対側の面に空間は存在しない。よって、圧電センサ装置1では、小型化を進めることができる。 Conventionally, in a piezoelectric sensor device using a piezoelectric detection element, it has been necessary to provide a space for preventing the vibration of the piezoelectric detection element. That is, the space B shown in FIG. 5 must be formed on the surface opposite to the open detection surface. On the other hand, in the piezoelectric sensor device 1, it is not necessary to form such a space B. That is, as is clear from FIG. 1A, the entire lower surface of the piezoelectric detection element 2 is bonded to the holding member 7 via the bonding layer 6. Therefore, there is no space on the surface opposite to the detection surface of the piezoelectric detection element 2. Therefore, the piezoelectric sensor device 1 can be reduced in size.
 加えて、圧電センサ装置1を、接合層6を介して保持部材7に積層し、接合するだけでよいため、圧電センサ装置1では、組み立て工程の簡略化を図ることができる。従来のQCMセンサ1001では、空間Bを形成しなければならないため、パッケージ構造が煩雑であり、水晶振動子1002の固定位置の精度を高めねばならなかった。これに対して、本実施形態の圧電センサ装置1では、空間を設ける必要がないため、パッケージ構造の簡略化を図ることができるだけでなく、圧電検出素子2の固定精度を高める必要もない。 In addition, since the piezoelectric sensor device 1 only needs to be laminated and bonded to the holding member 7 via the bonding layer 6, the piezoelectric sensor device 1 can simplify the assembly process. In the conventional QCM sensor 1001, since the space B must be formed, the package structure is complicated, and the accuracy of the fixing position of the crystal unit 1002 must be increased. On the other hand, in the piezoelectric sensor device 1 according to the present embodiment, since it is not necessary to provide a space, it is possible not only to simplify the package structure but also to increase the fixing accuracy of the piezoelectric detection element 2.
 また、本実施形態の圧電センサ装置1では、上記空間を省略した構造であっても、圧電検出素子2の共振特性の劣化が生じ難い。これは、第1の音響インピーダンス値Z1~第3の音響インピーダンス値Z3が、Z1>Z2<Z3の関係とされていることによる。すなわち、第1~第3の音響インピーダンス値Z1~3がこのような関係を満たしているため、圧電検出素子2から接合層6に漏洩してきた振動は、接合層6と保持部材7との界面で反射される。従って、空間を設けない構造であっても、圧電検出素子2の共振特性が劣化し難い。よって、検出面に付着した被検出物質の質量負荷作用による共振特性の変化を利用して、被検出物質の有無や被検出物質の量を高精度に測定することが可能とされている。 Further, in the piezoelectric sensor device 1 of the present embodiment, even if the space is omitted, the resonance characteristics of the piezoelectric detection element 2 are hardly deteriorated. This is because the first acoustic impedance value Z1 to the third acoustic impedance value Z3 have a relationship of Z1> Z2 <Z3. That is, since the first to third acoustic impedance values Z1 to Z3 satisfy such a relationship, the vibration leaked from the piezoelectric detection element 2 to the bonding layer 6 is an interface between the bonding layer 6 and the holding member 7. Reflected by. Therefore, even if the structure does not provide a space, the resonance characteristics of the piezoelectric detection element 2 are unlikely to deteriorate. Therefore, it is possible to measure the presence / absence of the substance to be detected and the amount of the substance to be detected with high accuracy by using the change in resonance characteristics due to the mass load action of the substance to be detected attached to the detection surface.
 図2は、本発明の第2の実施形態に係る圧電センサ装置16を示す部分切欠正面断面図である。第2の実施形態では、実装基板11上に複数の圧電センサ装置1,1Aが実装されている。圧電センサ装置1,1Aは、第1の実施形態の圧電センサ装置1と同様に構成されている。 FIG. 2 is a partially cutaway front sectional view showing a piezoelectric sensor device 16 according to a second embodiment of the present invention. In the second embodiment, a plurality of piezoelectric sensor devices 1, 1 </ b> A are mounted on the mounting substrate 11. The piezoelectric sensor devices 1 and 1A are configured in the same manner as the piezoelectric sensor device 1 of the first embodiment.
 実装基板11は、アルミナなどの絶縁性材料からなる。実装基板11上に、電極ランド12~15が形成されている。電極ランド12,13上に、圧電センサ装置1の第1,第2の端子電極8,9がそれぞれ接触されている。このようにして、図示しない、半田や導電性接着剤などからなる導電性接合材を用いて、圧電センサ装置1が電極ランド12,13が形成されている部分に実装されている。同様に、圧電センサ装置1Aは、電極ランド14,15が設けられている部分において、実装基板11上に実装されている。 The mounting substrate 11 is made of an insulating material such as alumina. Electrode lands 12 to 15 are formed on the mounting substrate 11. The first and second terminal electrodes 8 and 9 of the piezoelectric sensor device 1 are in contact with the electrode lands 12 and 13, respectively. In this way, the piezoelectric sensor device 1 is mounted on the portion where the electrode lands 12 and 13 are formed using a conductive bonding material (not shown) made of solder, conductive adhesive or the like. Similarly, the piezoelectric sensor device 1 </ b> A is mounted on the mounting substrate 11 in a portion where the electrode lands 14 and 15 are provided.
 圧電センサ装置1,1Aは、上記のような構造を有するため、圧電検出素子2の振動が保持部材7側に漏洩し難い。そのため、同じ実装基板11、すなわち単一の実装基板11上に複数の圧電センサ装置1,1Aを上記のように固定し、実装したとしても、圧電センサ装置1,1A間の干渉が生じ難い。 Since the piezoelectric sensor devices 1 and 1A have the above-described structure, the vibration of the piezoelectric detection element 2 hardly leaks to the holding member 7 side. Therefore, even when the plurality of piezoelectric sensor devices 1 and 1A are fixed and mounted on the same mounting substrate 11, that is, a single mounting substrate 11, interference between the piezoelectric sensor devices 1 and 1A hardly occurs.
 従って、圧電センサ装置1と圧電センサ装置1Aとして、圧電検出素子2の共振周波数が等しい、全く同一の圧電センサ装置を用いることができる。それによって、複数の圧電センサ装置1,1Aを有する第2の実施形態の圧電センサ装置16の組み立て工程の簡略化及びコストの低減を果すことができる。 Therefore, as the piezoelectric sensor device 1 and the piezoelectric sensor device 1A, exactly the same piezoelectric sensor device having the same resonance frequency of the piezoelectric detection element 2 can be used. Thereby, the assembly process of the piezoelectric sensor device 16 according to the second embodiment having the plurality of piezoelectric sensor devices 1 and 1A can be simplified and the cost can be reduced.
 なお、複数の圧電センサ装置1,1Aは、いずれも検出用圧電センサ装置として用いてもよいが、好ましくは、1つの圧電センサ装置1を基準用圧電センサ装置とし、他の圧電センサ装置1Aを検出用圧電センサ装置とすることが望ましい。それによって、基準用圧電センサ装置と、検出用圧電センサ装置との出力差に基づき、被検出物質をより高精度に測定することができる。 Any of the plurality of piezoelectric sensor devices 1 and 1A may be used as a detection piezoelectric sensor device. Preferably, one piezoelectric sensor device 1 is used as a reference piezoelectric sensor device, and the other piezoelectric sensor device 1A is used. It is desirable to use a piezoelectric sensor device for detection. Accordingly, the substance to be detected can be measured with higher accuracy based on the output difference between the reference piezoelectric sensor device and the detection piezoelectric sensor device.
 また、複数の圧電センサ装置を実装基板11上に実装するに際し、圧電センサ装置の数は図示の構成に限定されるものではなく、3以上の圧電センサ装置が実装されていてもよい。 Further, when mounting a plurality of piezoelectric sensor devices on the mounting substrate 11, the number of piezoelectric sensor devices is not limited to the illustrated configuration, and three or more piezoelectric sensor devices may be mounted.
 なお、図2に示した第2の実施形態では、実装基板11上に複数の圧電センサ装置1,1Aが実装されていたが、実装基板上に1つの圧電センサ装置1のみが実装されていてもよい。 In the second embodiment shown in FIG. 2, the plurality of piezoelectric sensor devices 1 and 1A are mounted on the mounting substrate 11, but only one piezoelectric sensor device 1 is mounted on the mounting substrate. Also good.
 さらに、第2の実施形態では、圧電センサ装置1の圧電検出素子2の共振周波数と、圧電センサ装置1Aの圧電検出素子2の共振周波数が等しくされていたが、異なっていてもよい。共振周波数が異なる場合には、圧電センサ装置1,1A間における干渉をより効果的に抑制することができる。 Furthermore, in the second embodiment, the resonance frequency of the piezoelectric detection element 2 of the piezoelectric sensor device 1 and the resonance frequency of the piezoelectric detection element 2 of the piezoelectric sensor device 1A are made equal, but they may be different. When the resonance frequencies are different, interference between the piezoelectric sensor devices 1 and 1A can be more effectively suppressed.
 図3(a)及び(b)は、本発明で用いられる圧電検出素子の変形例を示す平面図及び圧電基板を透かして下面の電極形状を示す模式的平面図である。 FIGS. 3A and 3B are a plan view showing a modification of the piezoelectric detection element used in the present invention and a schematic plan view showing the electrode shape on the lower surface through the piezoelectric substrate.
 図3(a)及び(b)に示すように、本変形例に係る圧電検出素子21は、矩形板状の圧電基板22を有する。この圧電基板22は、圧電セラミックスからなり、厚み方向に分極処理されている。圧電基板22の上面中央に平面形状が円形の第1の電極23が形成されている。下面に、第1の電極23と対向するように、第2の電極24が形成されている。第1の電極23及び第2の電極24が重なり合っている部分が、厚み縦振動モードを利用したエネルギー閉じ込め型の圧電振動部を構成している。 3 (a) and 3 (b), the piezoelectric detection element 21 according to this modification has a rectangular plate-shaped piezoelectric substrate 22. The piezoelectric substrate 22 is made of piezoelectric ceramic and is polarized in the thickness direction. A first electrode 23 having a circular planar shape is formed at the center of the upper surface of the piezoelectric substrate 22. A second electrode 24 is formed on the lower surface so as to face the first electrode 23. A portion where the first electrode 23 and the second electrode 24 overlap each other constitutes an energy confinement type piezoelectric vibration portion using a thickness longitudinal vibration mode.
 第1の電極23は、配線電極25を介して圧電基板22の上面と一方端面との成す端縁に沿うように設けられた接続電極26に電気的に接続されている。同様に、第2の電極24は配線電極27を介して接続電極28に接続されている。なお、接続電極28は、圧電基板22の下面と他方端面とのなす端縁に至るように形成されている。 The first electrode 23 is electrically connected via a wiring electrode 25 to a connection electrode 26 provided along the edge formed by the upper surface and one end surface of the piezoelectric substrate 22. Similarly, the second electrode 24 is connected to the connection electrode 28 via the wiring electrode 27. The connection electrode 28 is formed so as to reach the edge formed by the lower surface of the piezoelectric substrate 22 and the other end surface.
 図3に示したように、本発明では、圧電検出素子は、厚み縦振動モードを利用したエネルギー閉じ込め型の圧電素子であってもよい。 As shown in FIG. 3, in the present invention, the piezoelectric detection element may be an energy confinement type piezoelectric element using a thickness longitudinal vibration mode.
 図4は、本発明で用いられる圧電検出素子のさらに他の変形例を説明するための斜視図である。本変形例の圧電検出素子31は、厚み縦振動の2倍波を用いたエネルギー閉じ込め型の圧電素子である。圧電検出素子31は、矩形板状の圧電基板32を有する。圧電基板32は、厚み方向に分極処理されている。圧電基板32の上面には、第1の電極33が形成されており、下面には、第2の電極34が形成されている。また、第1の電極33及び第2の電極34は、圧電基板32の上面及び下面中央から第2の端面32b側に向かって延ばされている。 FIG. 4 is a perspective view for explaining still another modified example of the piezoelectric detecting element used in the present invention. The piezoelectric detection element 31 of the present modification is an energy confinement type piezoelectric element using a second harmonic of thickness longitudinal vibration. The piezoelectric detection element 31 has a rectangular plate-shaped piezoelectric substrate 32. The piezoelectric substrate 32 is polarized in the thickness direction. A first electrode 33 is formed on the upper surface of the piezoelectric substrate 32, and a second electrode 34 is formed on the lower surface. The first electrode 33 and the second electrode 34 extend from the center of the upper surface and the lower surface of the piezoelectric substrate 32 toward the second end surface 32b.
 さらに、圧電基板32の中間高さ位置に、内部電極35が形成されている。内部電極35は、第1の電極33及び第2の電極34と圧電基板32の中央領域において、圧電基板層を介して重なり合っている。内部電極35は、圧電基板32の中央部分から第1の端面32aに向かって延ばされ、第1の端面32aに引き出されている。 Furthermore, an internal electrode 35 is formed at an intermediate height position of the piezoelectric substrate 32. The internal electrode 35 overlaps the first electrode 33 and the second electrode 34 with the piezoelectric substrate layer in the central region of the piezoelectric substrate 32. The internal electrode 35 extends from the central portion of the piezoelectric substrate 32 toward the first end face 32a and is drawn out to the first end face 32a.
 圧電検出素子31では、第1,第2の電極33,34と、内部電極35との間に交流電界を印加することにより、厚み縦振動モードの2倍波を利用したエネルギー閉じ込め型の圧電素子として動作する。本発明では、このような厚み縦振動モードの高次モードを利用したエネルギー閉じ込め型の圧電素子を圧電検出素子として用いてもよい。 In the piezoelectric detection element 31, an energy confinement type piezoelectric element using the second harmonic of the thickness longitudinal vibration mode is applied by applying an alternating electric field between the first and second electrodes 33 and 34 and the internal electrode 35. Works as. In the present invention, an energy confinement type piezoelectric element using such a higher-order mode of the thickness longitudinal vibration mode may be used as the piezoelectric detection element.
 図3及び図4に示したように、本発明においては、厚み滑りモードに限らず、厚み縦振動モードや厚み縦振動モードの高調波を利用した圧電素子など、様々なエネルギー閉じ込め型の圧電素子を圧電検出素子として用いることができ、特に限定されるものではない。 As shown in FIGS. 3 and 4, in the present invention, various energy confinement type piezoelectric elements such as a piezoelectric element using a harmonic in the thickness longitudinal vibration mode and the thickness longitudinal vibration mode are not limited to the thickness sliding mode. Can be used as a piezoelectric detection element, and is not particularly limited.
 1,1A…圧電センサ装置
 2…圧電検出素子
 3…圧電基板
 3a…第1の端面
 3b…第2の端面
 4…第1の電極
 5…第2の電極
 6…接合層
 7…保持部材
 8…第1の端子電極
 9…第2の端子電極
 11…実装基板
 12~15…電極ランド
 16…圧電センサ装置
 21…圧電検出素子
 22…圧電基板
 23…第1の電極
 24…第2の電極
 25…配線電極
 26…接続電極
 27…配線電極
 28…接続電極
 31…圧電検出素子
 32…圧電基板
 32a…第1の端面
 32b…第2の端面
 33…第1の電極
 34…第2の電極
 35…内部電極
DESCRIPTION OF SYMBOLS 1,1A ... Piezoelectric sensor apparatus 2 ... Piezoelectric detection element 3 ... Piezoelectric substrate 3a ... 1st end surface 3b ... 2nd end surface 4 ... 1st electrode 5 ... 2nd electrode 6 ... Bonding layer 7 ... Holding member 8 ... 1st terminal electrode 9 ... 2nd terminal electrode 11 ... Mounting board 12-15 ... Electrode land 16 ... Piezoelectric sensor device 21 ... Piezoelectric detection element 22 ... Piezoelectric substrate 23 ... 1st electrode 24 ... 2nd electrode 25 ... Wiring electrode 26 ... Connection electrode 27 ... Wiring electrode 28 ... Connection electrode 31 ... Piezoelectric detection element 32 ... Piezoelectric substrate 32a ... First end face 32b ... Second end face 33 ... First electrode 34 ... Second electrode 35 ... Inside electrode

Claims (6)

  1.  開放した検出面を有し、該検出面に被検出物質が付着した際の質量変化により被検出物質を検出するように構成されており、第1の音響インピーダンス値Z1を有する圧電検出素子と、
     前記圧電検出素子の前記検出面とは反対側の面に積層されており、前記第1の音響インピーダンス値Z1よりも小さい第2の音響インピーダンス値Z2を有する材料からなる接合層と、
     前記接合層の前記圧電検出素子とは反対側の面に接合されており、第2の音響インピーダンス値Z2よりも大きい第3の音響インピーダンス値Z3を有する材料からなる保持部材とを備える、圧電センサ装置。
    A piezoelectric detection element having an open detection surface, configured to detect the detection target material by a mass change when the detection target material adheres to the detection surface, and having a first acoustic impedance value Z1;
    A bonding layer made of a material that is laminated on a surface opposite to the detection surface of the piezoelectric detection element and has a second acoustic impedance value Z2 smaller than the first acoustic impedance value Z1,
    A piezoelectric sensor comprising: a holding member made of a material having a third acoustic impedance value Z3 larger than the second acoustic impedance value Z2, which is joined to a surface of the joining layer opposite to the piezoelectric detection element; apparatus.
  2.  請求項1に記載の圧電センサ装置を複数備え、複数の圧電センサ装置の圧電検出素子の共振周波数が等しい、圧電センサ装置。 A piezoelectric sensor device comprising a plurality of piezoelectric sensor devices according to claim 1, wherein the resonance frequencies of the piezoelectric detection elements of the plurality of piezoelectric sensor devices are equal.
  3.  前記複数の圧電センサ装置の内、1つの圧電センサ装置が基準用圧電センサ装置であり、他の圧電センサ装置が検出用圧電センサ装置である、請求項2に記載の圧電センサ装置。 3. The piezoelectric sensor device according to claim 2, wherein one of the plurality of piezoelectric sensor devices is a reference piezoelectric sensor device, and the other piezoelectric sensor device is a detection piezoelectric sensor device.
  4.  前記複数の圧電センサ装置が実装されている実装基板をさらに備える、請求項2または3に記載の圧電センサ装置。 The piezoelectric sensor device according to claim 2 or 3, further comprising a mounting substrate on which the plurality of piezoelectric sensor devices are mounted.
  5.  前記圧電検出素子が、圧電基板と、圧電基板の一部または全部を介して対向するように設けられた複数の電極を備える、請求項1~4のいずれか1項に記載の圧電センサ装置。 The piezoelectric sensor device according to any one of claims 1 to 4, wherein the piezoelectric detection element includes a piezoelectric substrate and a plurality of electrodes provided so as to face each other through part or all of the piezoelectric substrate.
  6.  生化学物質を被検出物質とするバイオセンサ装置である、請求項1~5のいずれか1項に記載の圧電センサ装置。 The piezoelectric sensor device according to any one of claims 1 to 5, which is a biosensor device using a biochemical substance as a substance to be detected.
PCT/JP2012/052229 2011-05-12 2012-02-01 Piezoelectric sensor device WO2012153549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011107426 2011-05-12
JP2011-107426 2011-05-12

Publications (1)

Publication Number Publication Date
WO2012153549A1 true WO2012153549A1 (en) 2012-11-15

Family

ID=47139035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052229 WO2012153549A1 (en) 2011-05-12 2012-02-01 Piezoelectric sensor device

Country Status (1)

Country Link
WO (1) WO2012153549A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144359A (en) * 1989-10-31 1991-06-19 Sumitomo Bakelite Co Ltd Ultrasonic sensor
JPH08251694A (en) * 1995-02-15 1996-09-27 Hewlett Packard Co <Hp> Ultrasonic transducer and reflection damping method
JP2005533265A (en) * 2002-07-19 2005-11-04 シーメンス アクチエンゲゼルシヤフト Device for detecting substance and method for detecting substance
JP2007508539A (en) * 2003-10-08 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Bulk ultrasonic sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144359A (en) * 1989-10-31 1991-06-19 Sumitomo Bakelite Co Ltd Ultrasonic sensor
JPH08251694A (en) * 1995-02-15 1996-09-27 Hewlett Packard Co <Hp> Ultrasonic transducer and reflection damping method
JP2005533265A (en) * 2002-07-19 2005-11-04 シーメンス アクチエンゲゼルシヤフト Device for detecting substance and method for detecting substance
JP2007508539A (en) * 2003-10-08 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Bulk ultrasonic sensor

Similar Documents

Publication Publication Date Title
EP2712080B1 (en) Surface acoustic wave element and equipment for measuring characteristics of liquid material
JP3298898B2 (en) Double head type mass sensor and mass detection method thereof
US9636709B2 (en) Ultrasonic generation device
US7656070B2 (en) Surface wave sensor apparatus
US9255912B2 (en) Monolithic FBAR-CMOS structure such as for mass sensing
JP4947213B2 (en) Piezoelectric vibration parts
JP2000180250A (en) Mass sensor and mass detection method
WO1999013300A1 (en) Mass sensor and mass detection method
WO2007125612A1 (en) Vibration gyro
JP2013050321A (en) Physical quantity detector and electronic apparatus
JP2007060465A5 (en)
WO2017082104A1 (en) Piezoelectric deflection sensor
EP2020692B1 (en) Piezoelectric film device
WO2012153549A1 (en) Piezoelectric sensor device
JP2007183147A (en) Vibrating element and angular velocity sensor using the same
WO2021005833A1 (en) Piezoelectric vibrator and oscillator including same
JP2010161528A (en) Piezoelectric vibration piece, piezoelectric vibrator using piezoelectric vibration piece, and piezoelectric device using piezoelectric vibration piece
CN110999079A (en) Piezoelectric vibrator
JP4333474B2 (en) Piezoelectric vibrator
JP5040196B2 (en) Angular velocity sensor element and angular velocity sensor using the same
JP2006300784A (en) Saw pressure sensor
JP4796825B2 (en) Sensor for measuring minute mass
JP4781784B2 (en) Structure of sensor for measuring minute mass
JP4693437B2 (en) Sensor for measuring minute mass and manufacturing method thereof
JP2018515988A (en) Acoustic sensor for transmitting and receiving acoustic signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12781731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP