[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012153189A2 - Process and system for producing biogas from anaerobic digestion of plant biomass in solid phase - Google Patents

Process and system for producing biogas from anaerobic digestion of plant biomass in solid phase Download PDF

Info

Publication number
WO2012153189A2
WO2012153189A2 PCT/IB2012/001034 IB2012001034W WO2012153189A2 WO 2012153189 A2 WO2012153189 A2 WO 2012153189A2 IB 2012001034 W IB2012001034 W IB 2012001034W WO 2012153189 A2 WO2012153189 A2 WO 2012153189A2
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
process according
hydrolysis
anaerobic
biomass
Prior art date
Application number
PCT/IB2012/001034
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2012153189A3 (en
Inventor
Adrianus CORNELIUS VAN HAANDEL
Claudia RODRIGUES BARBOSA
Original Assignee
Cetrel S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cetrel S.A. filed Critical Cetrel S.A.
Publication of WO2012153189A2 publication Critical patent/WO2012153189A2/en
Publication of WO2012153189A3 publication Critical patent/WO2012153189A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/02Pretreatment of the finely-divided materials before digesting with water or steam
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention is part of the field of green technology by producing biogas from plant biomass in reactors operated in a semicontinuous or continuous process.
  • sugarcane is a potential energy generator, with the advantage of being completely renewable. Brazil is in a very favorable situation regarding sugarcane production, and until the second half of November 2008, approximately 460 million tons of sugarcane were processed in the 2008/2009 harvest. In 2010, approximately 654 million tons of sugarcane were processed in the 2009/2010 harvest.
  • sugarcane straw and bagasse As a consequence of the increase in ethanol production in recent years, there is the increase of agro-industrial residues from this process, such as sugarcane straw and bagasse.
  • the sugarcane waste production potential (dry matter) represents on average 14% of the sugarcane mass.
  • duos straw and sugarcane bagasse
  • the accumulation is approximately 183 million tons of waste (straw and sugarcane bagasse).
  • the composition of sugarcane bagasse and straw is variable; The largest component is cellulose (40-50%), followed by hemicellulose (20-30%) and lignin (25-35%). Ashes, phenolic compounds, fatty acids and other constituents, called extractives, make up the remaining fraction of these plant biomasses (Reddy, N.; Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, v.23, p 22-27, 2005).
  • the cellulosic and hemicellulosic fractions may be hydrolyzed and converted to fermentable sugars by physical (eg steam blast), chemical (eg alkali, acid, solvent, gas) and biological (eg enzyme or fungal) methods.
  • sugarcane bagasse and residual straw As economic alternatives for the use of sugarcane bagasse and residual straw, the following can be cited as examples: use as fuel in industrial / farm boilers, use in the paper and cardboard industry, use in microbial biomass production and use in feed. animals.
  • sugarcane residue volume can also be verified in other crops such as rice (rice husk), corn (maize straw), barley (barley straw), wheat. (wheat straw), wood (eucalyptus chips) and banana (banana pseudostem). All of this plant biomass has been the subject of a series of studies for applications in green technologies to obtain products of industrial interest, such as alcohols (eg ethanol, butanol), organic acids (eg lactic, acetic, citric acid). ) and biogas.
  • alcohols eg ethanol, butanol
  • organic acids eg lactic, acetic, citric acid
  • Anaerobic digestion is a process performed by a consortium of microorganisms under anaerobic conditions (absence of oxygen) converting complex organic material into simpler compounds and cellular material.
  • the biogas generated is composed of methane, carbon dioxide, water, hydrogen sulfide gas, ammonia, among others, depending on the biomass composition employed.
  • the process is developed in sequential stages involving complex metabolic processes, which depend on the activity of at least four groups of microorganisms, namely: hydrolytic bacteria, responsible for the release of exoenzymes that catalyze the hydrolysis of complex organic polymers such as pectin, hemicellulose and cellulose to sugars, long chain carboxylic acids and glycerol; acidogenic bacteria, which metabolize hydrolysed products to even simpler ones such as short chain carboxylic acids, alcohols, lactic acid, CO 2 , H 2 , NH 3 and H 2 S as a function of environmental conditions; acetogenic bacteria that convert the products resulting from acidogenic metabolism into acetate, hydrogen and carbon dioxide and, finally, these are converted to methane and carbon dioxide by methanogenic bacteria (Chernicharo, CAL. Anaerobic Reactors. Department of Engineering Sanitary and Environmental-UFMG, 246p., 1997).
  • hydrolytic bacteria responsible for the release of exoenzymes that catalyze the hydrolysis of complex organic poly
  • the temperature in the anaerobic digestion process has a strong influence on the conversion rate of organic material and on the predominant species in a certain temperature range.
  • Alkalinity of a system is its ability to neutralize acids as a result of the presence of chemical species of alkaline nature. Alkalinity is indicative of the buffering capacity of a given system and therefore for high alkalinity it should not be It should be understood that the pH is necessarily high. Volatile fatty acids are closely related to alkalinity. The acids formed in the process tend to lower the pH making it acidic and unsuitable for anaerobic processes. In this sense the buffering effect of the solution avoids sudden drops and frequent pH fluctuations (Chernicharo, CAL. Anaerobic Reactors. Department of Sanitary and Environmental Engineering-UFMG, 246p., 1997).
  • the present invention differs from the above by the type of pretreatment employed (steam blast) and the possibility of addition of catalyst (industrial enzymes) combined with anaerobic bacteria to increase productivity and digestion efficiency. Additionally, anaerobic sludge is selected from industrial and domestic effluent treatment plants, and the industrial or domestic effluent digestion step is not part of this invention.
  • Cellulases are usually a mixture of several enzymes that catalyze cellulose hydrolysis, converting it into reducing sugars (mainly glucose) that can be used by microorganisms to produce industrially interesting inputs.
  • reducing sugars mainly glucose
  • the present invention relates to a process for producing biogas from lignocellulosic materials, comprising the steps of:
  • step (a) by anaerobic bacteria, with or without the addition of cellulase enzymes, together or not with xylanase enzymes, where steps (a) and (b) are performed in separate reactors, step (b) is performed in a The only reactor and the products from step (b) are biogas and digested biomass.
  • the present invention further relates to a system for carrying out the biogas production process also object of the invention which comprises:
  • step (ii) a second reactor for hydrolysis and anaerobic digestion of the material treated in step (i) by anaerobic bacteria with or without the addition of cellulase enzymes together or not with xylanase enzymes.
  • the hydrolysis step may be initiated prior to step (b) in an intermediate reactor with the addition of anaerobic bacteria and enzymes operated under thermophilic condition.
  • Figure 1 - Figure 1 is a schematic representation of the system and process of biogas production from plant biomass, with a steam blast pretreatment reactor (10) and an anaerobic digestion reactor (20) without addition of catalyst (mesophilic or thermophilic temperature).
  • Figure 2 - Figure 2 corresponds to the schematic representation. of the system and process of biogas production from plant biomass, with a steam blast pretreatment reactor (10) and an anaerobic digestion reactor (20), with catalyst addition (mesophilic or thermophilic temperature ).
  • FIG 3 - Figure 3 is a schematic representation of the system and process of biogas production from plant biomass, with a steam blast pretreatment reactor (10), an intermediate reactor (15) to initiate hydrolysis. in thermophilic condition with addition of catalyst and anaerobic bacteria and an anaerobic digestion reactor (20) (thermophilic temperature).
  • the present invention relates to a process of producing biogas from lignocellulosic materials, which comprises the steps of:
  • step (b) hydrolysis and anaerobic digestion of material treated in step (a) by anaerobic bacteria, with or without the addition of cellulase enzymes together or not with xylanase enzymes, wherein steps (a) and (b) are carried out.
  • step (b) is performed in a single reactor and the products of step (b) are biogas and digested biomass.
  • hydrolysis may be previously initiated in an intermediate reactor between steps (a) and (b) under thermophilic condition.
  • the production of biogas according to the invention is made from vegetable biomass, which can be selected from the group consisting of: sugarcane bagasse, sugarcane straw, rice husk, corn, barley straw, wheat straw, eucalyptus chips, banana pseudostem and mixtures thereof.
  • the first process step of the invention comprises pretreatment of the lignocellulosic material into a first reactor (10) by steam explosion as shown schematically.
  • a first reactor 10
  • Hemicellulose due to its amorphous structure and lower degree of polymerization than cellulose, is partially or completely hydrolyzed in this pretreatment step, depending on the reaction conditions employed.
  • Said pretreatment also aims at destroying the plant biomass fiber, reducing crystallinity and increasing porosity, in order to facilitate hydrolysis of the cellulosic fraction.
  • the pretreatment of process step (a) of the invention comprises steam explosion by the application of water vapor to the plant biomass in said first reactor, with temperatures ranging from 150-300 ° C, preferably 160-260 °. C, which corresponds to pressures of 0.62-4.7MPa and reaction time ranging from a few seconds to a few minutes before decompression. Even more preferably, the reaction should be carried out at temperatures in the range of 180-220 ° C and reaction times of 3-15 minutes.
  • the steam explosion process is the sudden decompression of a pressurized system containing high pressure saturated water vapor and plant biomass. Water under high pressure penetrates the cell structure of the biomass, hydrates the cellulose and hydrolyzes the hemicellulose.
  • CHEN and others Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemistry. V. 5-9, 2008).
  • the pentoses of the hemicellulosic fraction can be separated and access of enzymes to cellulose is facilitated.
  • sugars from the hemicellulosic fraction may be transferred to the liquid phase by a biomass wash step, and this liquid rich in organic material may be sent directly to the anaerobic digester.
  • Pretreated biomass has humidity around 55-60%.
  • the second process step of the invention comprises hydrolysis and anaerobic digestion of the material treated in step (a) in a second reactor (20).
  • the material treated in step (a) undergoes hydrolysis and anaerobic digestion in said reactor (as shown in figures 1, 2 and 3), which can operate under mesophilic or thermophilic conditions, with a temperature in the range of 20-70 ° C. preferably from 37 to 55 ° C.
  • Anaerobic bacteria Robots are added to the reactor, which should be operated at a pH of 5.0-8.0, preferably 6.0-8.0, even more preferably 6.5-7.5.
  • the total solids concentration in the anaerobic digestion and hydrolysis reactor is in the range of 5-50%, preferably 5-15%.
  • the feed of said reactor may be semicontinuous or continuous.
  • Industrial enzymes can be added to anaerobic digestion combined with anaerobic bacteria to increase the efficiency of hydrolysis and anaerobic digestion.
  • the pH in step (b) may be controlled by the addition of alkalizing agents (strong or weak bases), preferably sodium hydroxide or urea.
  • alkalizing agents strong or weak bases
  • pH control can be obtained by recirculating the material contained in the reactor, with or without the addition of alkalinizers.
  • the cellulosic and hemicellulosic fractions can be converted to lower molecular weight compounds by anaerobic bacteria and commercial enzymes, cellulases with or without xylanases, with the aim of increasing the efficiency and productivity of the reactions. hydrolysis and anaerobic digestion.
  • the fungus Trichoderma reesei is the most industrially used microorganism for the production of cellulases and xylanases, but some bacteria are also capable of producing such enzymes, such as Clostridium thermocellum, Ruminococcus albus and Streptomyces sp. (Corridor and others Pretreatment and Enzymatic Hydrolysis of Sorghum Bran. Cereal Chemistry, v.84, p.61-66, 2007).
  • Anaerobic bacteria can be selected from anaerobic sludges from wastewater treatment plants or solid domestic or industrial waste.
  • the microorganisms must be adapted to the medium containing the biomass employed for a period ranging from 20-90 days.
  • the most suitable volumetric organic load applied to the reactor is in the range of 5-25 g COD / L.day, more preferably 10-20 g COD / L.day. This organic load should be increased slowly, ensuring conditions that favor the development of anaerobic bacteria.
  • the type and dosage of enzymes employed in the process of hydrolysis and anaerobic digestion are dependent on factors such as biomass composition, degree of crystallinity of the polymeric chain, type of pretreatment employed and process conditions, especially temperature and pH.
  • Hydrolysis of the cellulosic fraction of plant biomass for biogas production may be carried out by the addition of cellulases in amounts of about 0.05-5% by mass of total solids (ST), more preferably 0.5-2.5. Mass% ST.
  • the xylanase is added in an amount sufficient to hydrolyze hemicellulose to xylose at concentrations of 0.001-1 wt.% ST, more preferably 0.05-0.2 wt.%.
  • treatment of hemicellulose with the addition of xylanase is not mandatory according to the present invention after steam blast pretreatment.
  • the anaerobic bacteria of said second reactor (step (b)) are obtained by inoculating the same with 5-40% v / v anaerobic sludge, preferably 10-20% v / v.
  • Such inoculation aims at the conversion of carbohydrates produced in the hydrolysis reaction to organic acids, which can be converted to methane and carbon dioxide in this same reactor of step (b).
  • said second reactor may further comprise a solution of organic nutrients, to provide a suitable medium for the development of anaerobic bacteria.
  • the ideal nutrient solution should contain macro (N-NH 4 + , P-P0 4 3 " , Mg, Ca) and micronutrients (Fe, Ni, Zn, Co, etc.) as well as alkalinity (NaHC0 3 or KH 2 P0 4 and K 2 HP0 4 ) (Aquino et al. Journal of Sanitary and Environmental Engineering, v.12, n. 2, p. 192-201, 2007)
  • a fraction of the nutrient solution can be composed of vinasse (5-10). 20%), by-product of the distillation process for ethanol production from sugar and alcohol plants.
  • step (b) the microorganisms present in the sludge perform all the stages of conversion of organic matter to biogas (hydrolysis, acycogenesis, acetogenesis and methanogenesis) in the same reactor.
  • a solid / liquid separation step is not required prior to step (b) as the Anaerobic digestion occurs in the semi-solid phase.
  • the digested bagasse may be subjected to solid / liquid separation with recirculation of one of the phases to the solid phase digestion reactor. At this stage filtration, centrifugation or pressing can be used, and the fraction to be recirculated (solid or liquid) to the reactor will be dependent on the separation method employed.
  • the parameters monitored in the aaerobic digestion and hydrolysis reactor (step (b)) to assist in monitoring reactor stability and performance are pH, temperature, alkalinity, volatile fatty acids, COD (Chemical Oxygen Demand), total solids, suspended solids, volatile solids, biomass density and humidity.
  • the present invention further relates to a system for carrying out the biogas production process also object of the invention which comprises:
  • step (ii) a second reactor for hydrolysis and anaerobic digestion of material treated in step (i) by anaerobic bacteria.
  • hydrolysis and anaerobic digestion steps may be performed in separate reactors.
  • the hydrolysis step can be started in an intermediate reactor (15), as shown in Figure 3, between steps (a) and (b) in the thermophilic condition with anaerobic bacteria, with addition of cellulase enzymes, with or without the addition of xylanases.
  • Sugarcane bagasse was used as biomass material, which was pre-treated in a first steam blast reactor (10), using temperatures of 200 ° C, pressure of 1, 6 MPa (16 bar) and reaction time of 7 minutes. The humidity of the expelled bagasse was around 50%.
  • the pretreated bagasse was transferred to the second anaerobic digestion reactor (20). Said reactor was inoculated with 20% v / v sludge anaerobic treatment of a brewery effluent treatment system adapted to the substrate (pretreated bagasse).
  • the total volatile solids concentration of the obtained sludge was 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV ⁇ .day " 1 using standard substrate.
  • AME specific methanogenic activity
  • the process was carried out under thermophilic condition, temperature around 50 ° C, pH around 7.0, solids concentration around 10%, with retention time of 20 days and semicontinuous feeding.
  • the digested bagasse was submitted to solid / liquid separation and the solid fraction recirculated to the digester.
  • the parameters monitored in the second reactor to assist in monitoring its stability and process performance were: pH, temperature, alkalinity, volatile fatty acids, COD, total solids, suspended volatile solids, total volatile solids, total fixed solids, bagasse density and moisture and cake density and moisture.
  • FIG 1 shows schematically the system and process presented in this example.
  • Sugarcane bagasse was used as biomass material, which was pre-treated in a first steam explosion reactor (10), using temperatures of 200 ° C, 1.6 MPa (16 bar) and reaction time of 7 minutes. The humidity of the exploded bagasse was around 50%.
  • the pretreated bagasse was transferred to the second anaerobic digestion reactor (20).
  • Said reactor was inoculated with 20% v / v anaerobic sludge, with total volatile solids concentration of 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV ⁇ 1 .day " 1 using standard substrate, and with a commercial enzyme cocktail composed of cellulases and xylanases.
  • the sludge was purchased from an anaerobic digestion unit of brewery effluents and adapted to the substrate used (pretreated bagasse).
  • the process was carried out under thermophilic condition, with temperature around 50 ° C, pH around 7.0, solids concentration around 10%, retention time of 20 days and semicontinuous feeding.
  • the digested bagasse was submitted to solid / liquid separation and the solid fraction recirculated to the digester.
  • the parameters monitored in the second reactor to assist in monitoring its stability and performance were: pH, temperature, alkalinity, volatile fatty acids, COD, total solids, suspended volatile solids, total volatile solids, total fixed solids, density and bagasse moisture and cake density and moisture.
  • FIG. 2 shows schematically the process and system presented in this example.
  • Sugarcane bagasse was used as biomass material, which was pre-treated in a first steam explosion reactor (10), using temperatures of 200 ° C, 1.6 MPa (16 bar) and reaction time of 7 minutes. The humidity of the exploded bagasse was around 50%.
  • the exploded bagasse was transferred to a hydrolysis reactor (15) and inoculated with 20% v / v anaerobic sludge, with total volatile solids concentration of 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV "1 day '1 using standard substrate, and with a commercial enzyme cocktail composed of cellulases and xylanases.
  • the sludge was purchased from an anaerobic digestion unit of brewery effluents and adapted to the substrate used (pretreated bagasse).
  • the bagasse cellulosic and hemicellulosic fractions are converted to lower molecular weight compounds (sugars, alcohols and organic acids) by sludge enzymes and bacteria.
  • the process was carried out under thermophilic condition, with temperature around 50 ° C, pH around 5.0, solids concentration around 10%, and retention time of 2 days.
  • the pre-treated bagasse was fed in batches.
  • the solid and liquid fractions from the hydrolysis reactor were transferred to the anaerobic digestion reactor (20) with semicontinuous feeding.
  • Said reactor was inoculated with 30% v / v anaerobic sludge with total volatile solids concentration of 32gSTV.L "1 and specific metagenogenic activity (AME) of 0.3gDQO.gSTV ⁇ 1 .day " 1 using standard substrate. .
  • the sludge was purchased from an anaerobic digestion unit of brewery effluents and adapted to the substrate used (pretreated bagasse).
  • the reactor was operated in thermophilic condition, with temperature around 50 ° C, pH around 7.0, solids concentration around 10%, and retention time of 20 days. After the digestion step, the digested bagasse was submitted to solid / liquid separation and the solid fraction recirculated to the digester.
  • FIG. 3 shows schematically the process and system presented in this example.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a process for the production of biogas from lignocellulosic materials, comprising the steps of: (a) treatment of plant biomass by steam explosion; and (b) hydrolysis and anaerobic digestion o the material treated in step (a) by anaerobic bacteria; wherein steps (a) and (b) are carried out in separate reactors, step (b) is carried out in a single reactor and the products of step (b) are biogas and the digested biomass. Alternatively, the hydrolysis and the digestion can be carried out in separate reactors. The present invention further relates to a system for carrying out the process of producing biogas of the present invention, which comprises: (i) first reactor for the treatment of plant biomass by steam explosion; and (ii) second reactor for hydrolysis and anaerobic digestion of the material treated in step (i) by anaerobic bacteria. In a preferred embodiment, both process and system of the invention can further comprise, in the hydrolysis and anaerobic digestion reactor, cellulase enzymes with or without addition of xylanases. In an alternative configuration, the hydrolysis can take place in separate reactors.

Description

Relatório Descritivo da Patente de Invenção para "PROCESSO E SISTEMA DE PRODUÇÃO DE BIOGÁS A PARTIR DA DIGESTÃO A- NAERÓBIA DE BIOMASSA VEGETAL EM FASE SÓLIDA".  Report of the Invention Patent for "BIOGAS PRODUCTION PROCESS AND SYSTEM FROM SOLAR PHASE VEGETABLE BIOMASS DIGESTION".
CAMPO DA INVENÇÃO  FIELD OF INVENTION
A presente invenção insere-se no campo da tecnologia verde, por meio da produção de biogás, a partir de biomassa vegetal, em reatores operados em processo semicontínuo ou contínuo.  The present invention is part of the field of green technology by producing biogas from plant biomass in reactors operated in a semicontinuous or continuous process.
FUNDAMENTOS DA INVENÇÃO BACKGROUND OF THE INVENTION
As preocupações referentes ao aumento da demanda energéti- ca, ao acúmulo de CO2 atmosférico devido à queima dos combustíveis fósseis, à segurança energética nacional aliada ao fim dos combustíveis fósseis e ao desenvolvimento da economia rural são os principais motivos para a busca de fontes energéticas sustentáveis e provenientes de materiais renováveis. Métodos, materiais e técnicas de geração de novos produtos e pro- cessos que causem menos impacto ambiental e/ou que auxiliem na redução da poluição e dos danos ao meio ambiente são englobados no campo da tecnologia verde ou tecnologia ambiental. Concerns about rising energy demand, the accumulation of atmospheric CO 2 from burning fossil fuels, national energy security coupled with the end of fossil fuels and the development of the rural economy are the main reasons for seeking energy sources. sustainable and renewable materials. Methods, materials and techniques for generating new products and processes that cause less environmental impact and / or help reduce pollution and damage to the environment are encompassed in the field of green technology or environmental technology.
Como um dos principais produtos agrícolas do Brasil, cultivada desde a época da sua colonização, a cana-de-açúcar constitui um potencial gerador de energia, com a vantagem de ser completamente renovável. O Brasil encontra-se em uma situação bastante favorável quanto à produção da cana-de-açúcar, sendo que até a segunda quinzena de novembro de 2008, aproximadamente 460 milhões de toneladas de cana foram processadas na safra 2008/2009. Em 2010, aproximadamente 654 milhões de tonela- das de cana foram processadas na safra de 2009/2010.  As one of Brazil's main agricultural products, cultivated since the time of its colonization, sugarcane is a potential energy generator, with the advantage of being completely renewable. Brazil is in a very favorable situation regarding sugarcane production, and until the second half of November 2008, approximately 460 million tons of sugarcane were processed in the 2008/2009 harvest. In 2010, approximately 654 million tons of sugarcane were processed in the 2009/2010 harvest.
Como consequência do aumento da produção de etanol nos últimos anos, tem-se o aumento dos resíduos agroindustriais deste processo, tais como a palha e o bagaço da cana-de-açúcar. O potencial de produção de resíduos da cana-de-açúcar (matéria-seca) representa em média 14% da massa da cana. Dessa forma, para cada tonelada de cana produzida, têm-se 140kg de bagaço e 140kg de palha, e segundo dados da safra 2008/2009, o Brasil está acumulando aproximadamente 130 milhões de toneladas de resí- duos (palha e bagaço de cana) (Seabra. Análise de opções tecnológicas para uso integral da biomassa no setor de cana-de-açúcar e suas implicações. Tese de doutorado. Unicamp, 298p., 2008). Segundo dados da safra de 2009/2010, o acúmulo é de aproximadamente 183 milhões de toneladas de resíduos (palha e bagaço de cana). As a consequence of the increase in ethanol production in recent years, there is the increase of agro-industrial residues from this process, such as sugarcane straw and bagasse. The sugarcane waste production potential (dry matter) represents on average 14% of the sugarcane mass. Thus, for each ton of sugarcane produced, there are 140kg of bagasse and 140kg of straw, and according to data from the 2008/2009 harvest, Brazil is accumulating approximately 130 million tons of waste. duos (straw and sugarcane bagasse) (Seabra. Analysis of technological options for the full use of biomass in the sugarcane sector and its implications. Doctoral dissertation. Unicamp, 298p., 2008). According to data from the 2009/2010 harvest, the accumulation is approximately 183 million tons of waste (straw and sugarcane bagasse).
A composição do bagaço e da palha de cana é variável; o maior componente é a celulose (40-50%), seguido de hemicelulose (20-30%) e lignina (25-35%). Cinzas, compostos fenólicos, ácidos graxos e outros constituintes, denominados extrativos, compõem a fração remanescente destas biomassas vegetais (Reddy, N.; Yang, Y. Biofibers from agricultural bypro- ducts for industrial applications. Trends in Biotechnology, v.23, p.22-27, 2005). As frações celulósica e hemicelulósica podem ser hidrolisadas e convertidas em açúcares fermentescíveis, por métodos físicos (por exemplo explosão a vapor), químicos (por exemplo álcalis, ácidos, solventes, gases) e biológicos (por exemplo enzimas ou fungos).  The composition of sugarcane bagasse and straw is variable; The largest component is cellulose (40-50%), followed by hemicellulose (20-30%) and lignin (25-35%). Ashes, phenolic compounds, fatty acids and other constituents, called extractives, make up the remaining fraction of these plant biomasses (Reddy, N.; Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, v.23, p 22-27, 2005). The cellulosic and hemicellulosic fractions may be hydrolyzed and converted to fermentable sugars by physical (eg steam blast), chemical (eg alkali, acid, solvent, gas) and biological (eg enzyme or fungal) methods.
Como alternativas económicas para a utilização do bagaço e da palha residual de cana, podem ser citados como exemplos: uso como combustível nas caldeiras de indústrias/fazendas, uso na indústria de papel e papelão, uso na produção de biomassa microbiana e uso na alimentação de animais.  As economic alternatives for the use of sugarcane bagasse and residual straw, the following can be cited as examples: use as fuel in industrial / farm boilers, use in the paper and cardboard industry, use in microbial biomass production and use in feed. animals.
O potencial energético observado para o volume de resíduos de cana-de-açúcar também pode ser verificado em outras culturas, como, por exemplo, arroz (casca de arroz), milho (palha de milho), cevada (palha de cevada), trigo (palha de trigo), madeira (cavacos de eucalipto) e banana (pseudocaule de bananeira). Toda esta biomassa vegetal tem sido objeto de uma série de estudos para aplicações em tecnologias verdes para obtenção de produtos de interesse industrial, como álcoois (por exemplo, etanol, buta- nol), ácidos orgânicos (por exemplo, ácido láctico, acético, cítrico) e biogás.  The observed energy potential for sugarcane residue volume can also be verified in other crops such as rice (rice husk), corn (maize straw), barley (barley straw), wheat. (wheat straw), wood (eucalyptus chips) and banana (banana pseudostem). All of this plant biomass has been the subject of a series of studies for applications in green technologies to obtain products of industrial interest, such as alcohols (eg ethanol, butanol), organic acids (eg lactic, acetic, citric acid). ) and biogas.
A digestão anaeróbia é um processo realizado por um consórcio de micro-organismos sob condições anaeróbias (ausência de oxigénio) convertendo o material orgânico complexo em compostos mais simples e material celular. O biogás gerado é composto de metano, dióxido de carbono, água, gás sulfídrico, amónia entre outros, dependendo da composição da biomassa empregada. O processo é desenvolvido em estágios sequenciais envolvendo processos metabólicos complexos, que dependem da atividade de, no mínimo, quatro grupos de micro-organismos, sendo: bactérias hidrolí- ticas, responsáveis pela liberação de exoenzimas que catalisam a hidrólise de polímeros orgânicos complexos como a pectina, a hemicelulose e a celulose a açúcares, ácidos carboxílicos de cadeia longa e glicerol; bactérias acidogênicas, que metabolizam os produtos hidrolisados em outros ainda mais simples como ácidos carboxílicos de cadeia curta, álcoois, ácido lácti- co, C02, H2, NH3 e H2S em função das condições do meio; bactérias aceto- gênicas que convertem os produtos resultantes do metabolismo das acidogênicas em acetato, hidrogénio e dióxido de carbono e, por fim, estes são convertidos a metano e dióxido de carbono, pelas bactérias metanogênicas (Chernicharo, CAL. Reatores anaeróbios. Departamento de Engenharia Sanitária e Ambiental-UFMG, 246p.,1997). Anaerobic digestion is a process performed by a consortium of microorganisms under anaerobic conditions (absence of oxygen) converting complex organic material into simpler compounds and cellular material. The biogas generated is composed of methane, carbon dioxide, water, hydrogen sulfide gas, ammonia, among others, depending on the biomass composition employed. The process is developed in sequential stages involving complex metabolic processes, which depend on the activity of at least four groups of microorganisms, namely: hydrolytic bacteria, responsible for the release of exoenzymes that catalyze the hydrolysis of complex organic polymers such as pectin, hemicellulose and cellulose to sugars, long chain carboxylic acids and glycerol; acidogenic bacteria, which metabolize hydrolysed products to even simpler ones such as short chain carboxylic acids, alcohols, lactic acid, CO 2 , H 2 , NH 3 and H 2 S as a function of environmental conditions; acetogenic bacteria that convert the products resulting from acidogenic metabolism into acetate, hydrogen and carbon dioxide and, finally, these are converted to methane and carbon dioxide by methanogenic bacteria (Chernicharo, CAL. Anaerobic Reactors. Department of Engineering Sanitary and Environmental-UFMG, 246p., 1997).
Alguns parâmetros possuem uma significância maior no monito- ramento de reatores anaeróbios por serem um indicativo da eficiência, do estágio operacional e de alterações externas ou internas dos processos que ocorrem no reator. Pode-se destacar a alcalinidade, o pH, os ácidos graxos voláteis (AGV) e a temperatura como os fatores mais preponderantes.  Some parameters have a greater significance in the monitoring of anaerobic reactors because they are indicative of the efficiency, operational stage and external or internal changes of processes that occur in the reactor. Alkalinity, pH, volatile fatty acids (VFA) and temperature can be highlighted as the most predominant factors.
A temperatura no processo de digestão anaeróbia exerce influência forte sobre a taxa de conversão do material orgânico e sobre as espécies predominantes em determinada faixa de temperatura. Há três faixas de temperatura que possuem alguma relação com o crescimento microbiano na maioria dos processos biológicos, a saber: a faixa psicrófila compreendida entre 4 e 15 °C; a faixa mesófila de 20 a 40 °C e a faixa termófila entre 45 e 70 °C (Lettinga, G. Sustainable integrated biological wastewater treatment. Water Science and Technology, v. 33, n. 3. p. 85-98, 1996).  The temperature in the anaerobic digestion process has a strong influence on the conversion rate of organic material and on the predominant species in a certain temperature range. There are three temperature ranges that have some relationship to microbial growth in most biological processes, namely: the psychophilic range between 4 and 15 ° C; the mesophilic range of 20 to 40 ° C and the thermophilic range of 45 to 70 ° C (Lettinga, G. Sustainable Integrated Biological Wastewater Treatment. Water Science and Technology, v. 33, n. 3. pp. 85-98, 1996). ).
Alcalinidade de um sistema é a capacidade que este tem de neutralizar ácidos, resultado da presença de espécies químicas de natureza alcalina. A alcalinidade é um indicativo da capacidade tamponante de um determinado sistema e sendo assim, para uma alcalinidade alta, não deve ser entendida que o pH esteja necessariamente alto. Os ácidos graxos voláteis mantêm uma relação estreita com a alcalinidade. Os ácidos formados no processo tendem a reduzir o pH tornando-o ácido e inadequado aos processos anaeróbios. Neste sentido o efeito tamponante da solução evita quedas bruscas e oscilações frequentes do pH (Chernicharo, CAL. Reatores anaeróbios. Departamento de Engenharia Sanitária e Ambiental-UFMG, 246p., 1997). Alkalinity of a system is its ability to neutralize acids as a result of the presence of chemical species of alkaline nature. Alkalinity is indicative of the buffering capacity of a given system and therefore for high alkalinity it should not be It should be understood that the pH is necessarily high. Volatile fatty acids are closely related to alkalinity. The acids formed in the process tend to lower the pH making it acidic and unsuitable for anaerobic processes. In this sense the buffering effect of the solution avoids sudden drops and frequent pH fluctuations (Chernicharo, CAL. Anaerobic Reactors. Department of Sanitary and Environmental Engineering-UFMG, 246p., 1997).
Um exemplo de sistema de digestão de sólidos para a produção de biogás é descrito no documento de patente WO 2011/020000publicado em 17.02.2011 , no qual materiais lignocelulósicos são empregados para a produção de biogás, sendo o processo composto de: 1) um sistema de digestão em fase líquida, utilizando efluentes industriais ou domésticos; (2) mistura do efluente obtido na etapa (1) contendo bactérias anaeróbias com materiais lignocelulósicos de diversas fontes; e (3) digestão anaeróbia da biomassa obtida na etapa (2). A invenção ainda cita a possibilidade de pré- tratamento da biomassa com hidróxido de sódio para remoção de lignina.  An example of a solid digestion system for biogas production is described in patent document WO 2011/020000 published on 17.02.2011, in which lignocellulosic materials are employed for biogas production, the process comprising: 1) a system liquid phase digestion using industrial or domestic effluents; (2) mixing the effluent obtained in step (1) containing anaerobic bacteria with lignocellulosic materials from various sources; and (3) anaerobic digestion of biomass obtained in step (2). The invention further cites the possibility of pretreatment of biomass with sodium hydroxide for lignin removal.
A presente invenção diferencia-se da citada anteriormente, pelo tipo de pré-tratamento empregado (explosão a vapor) e possibilidade de adição de catalisador (enzimas industriais) combinado com bactérias anaeró- bias para aumentar a produtividade e eficiência da digestão. Adicionalmente, o lodo anaeróbio é selecionado a partir de estações de tratamento de efluentes industriais e domésticos, não sendo parte desta invenção a etapa de digestão de efluente industrial ou doméstico.  The present invention differs from the above by the type of pretreatment employed (steam blast) and the possibility of addition of catalyst (industrial enzymes) combined with anaerobic bacteria to increase productivity and digestion efficiency. Additionally, anaerobic sludge is selected from industrial and domestic effluent treatment plants, and the industrial or domestic effluent digestion step is not part of this invention.
As celulases são usualmente uma mistura de diversas enzimas que catalisam a hidrólise da celulose, convertendo-a em açúcares redutores (principalmente glicose) que podem ser utilizados por micro-organismos para a produção de insumos de interesse industrial. Admite-se a existência de três tipos de celulases, responsáveis pela hidrólise da celulose: (1) endoce- lulase - responsável pelo rompimento de ligações poliméricas que conferem estrutura cristalina à celulose; (2) exocelulase - cliva segmentos das cadeias expostas pela endocelulase, gerando celobiose (dissacarídio); e (3) beta- glicosidase - hidrolisa celobiose, gerando monômeros de glicose. As xilana- ses catalisam a hidrólise da fração hemicelulósica da biomassa, produzindo hidrolisado com cerca de 90% de pentoses (principalmente xilose e arabino- se) (Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materiais for ethanol pro- duction: a review. Bioresource Technology, v. 83, p. 1 - 1 1 , 2002). Cellulases are usually a mixture of several enzymes that catalyze cellulose hydrolysis, converting it into reducing sugars (mainly glucose) that can be used by microorganisms to produce industrially interesting inputs. There are three types of cellulases responsible for cellulose hydrolysis: (1) endocellulase - responsible for the disruption of polymeric bonds that give the cellulose crystalline structure; (2) exocellulase - cleaves segments of the chains exposed by endocellulase, generating cellobiose (disaccharide); and (3) beta-glycosidase - hydrolyzes cellobiose, generating glucose monomers. The xylan- These catalyze the hydrolysis of the hemicellulosic fraction of the biomass, producing hydrolysate with about 90% pentoses (mainly xylose and arabinase) (Sun, Y .; Cheng. J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, v. 83, pp. 1-11, 2002).
SUMÁRIO DA INVENÇÃO SUMMARY OF THE INVENTION
A presente invenção refere-se a um processo de produção de biogás a partir de materiais lignocelulósicos, compreendendo as etapas de:  The present invention relates to a process for producing biogas from lignocellulosic materials, comprising the steps of:
(a) pré-tratamento de biomassa vegetal através de explosão a vapor; e  (a) pretreatment of plant biomass by steam explosion; and
(b) hidrólise e digestão anaeróbia do material tratado na etapa (b) hydrolysis and anaerobic digestion of the material treated in step
(a) por bactérias anaeróbias, com ou sem a adição de enzimas celulases, em conjunto ou não com enzimas xilanases, em que as etapas (a) e (b) são realizadas em reatores separados, a etapa (b) é realizada em um único reator e os produtos da etapa (b) são o biogás e a biomassa digerida. (a) by anaerobic bacteria, with or without the addition of cellulase enzymes, together or not with xylanase enzymes, where steps (a) and (b) are performed in separate reactors, step (b) is performed in a The only reactor and the products from step (b) are biogas and digested biomass.
A presente invenção refere-se ainda a um sistema para a realização do processo de produção de biogás também objeto da invenção, o qual compreende:  The present invention further relates to a system for carrying out the biogas production process also object of the invention which comprises:
(i) um primeiro reator para o pré-tratamento de biomassa vegetal através de explosão a vapor;  (i) a first reactor for steam blast pretreatment of plant biomass;
(ii) um segundo reator para a hidrólise e a digestão anaeróbia do material tratado na etapa (i) por bactérias anaeróbias com ou sem a adição de enzimas celulases em conjunto ou não com enzimas xilanases.  (ii) a second reactor for hydrolysis and anaerobic digestion of the material treated in step (i) by anaerobic bacteria with or without the addition of cellulase enzymes together or not with xylanase enzymes.
Alternativamente, a etapa de hidrólise pode ser iniciada antes da etapa (b) em um reator intermediário, com adição de enzimas e bactérias anaeróbias, operado em condição termofílica.  Alternatively, the hydrolysis step may be initiated prior to step (b) in an intermediate reactor with the addition of anaerobic bacteria and enzymes operated under thermophilic condition.
BREVE DESCRIÇÃO DOS DESENHOS BRIEF DESCRIPTION OF DRAWINGS
Figura 1 - A figura 1 corresponde à representação esquemática do sistema e do processo de produção de biogás a partir de biomassa vegetal, com um reator de pré-tratamento por explosão a vapor (10) e um reator de digestão anaeróbia (20), sem adição de catalisador (temperatura mesofí- lica ou termofílica).  Figure 1 - Figure 1 is a schematic representation of the system and process of biogas production from plant biomass, with a steam blast pretreatment reactor (10) and an anaerobic digestion reactor (20) without addition of catalyst (mesophilic or thermophilic temperature).
Figura 2 - A figura 2 corresponde à representação esquemática do sistema e do processo de produção de biogás a partir de biomassa vegetal, com um reator de pré-tratamento por explosão a vapor (10) e um reator de digestão anaeróbia (20), com adição de catalisador (temperatura mesofí- lica ou termofílica). Figure 2 - Figure 2 corresponds to the schematic representation. of the system and process of biogas production from plant biomass, with a steam blast pretreatment reactor (10) and an anaerobic digestion reactor (20), with catalyst addition (mesophilic or thermophilic temperature ).
Figura 3 - A figura 3 corresponde à representação esquemática do sistema e do processo de produção de biogás a partir de biomassa vegetal, com um reator de pré-tratamento por explosão a vapor (10), um reator intermediário (15) para iniciar a hidrólise em condição termofílica com adição de catalisador e bactérias anaeróbias e um reator de digestão anaeróbia (20) (temperatura termofílica).  Figure 3 - Figure 3 is a schematic representation of the system and process of biogas production from plant biomass, with a steam blast pretreatment reactor (10), an intermediate reactor (15) to initiate hydrolysis. in thermophilic condition with addition of catalyst and anaerobic bacteria and an anaerobic digestion reactor (20) (thermophilic temperature).
DESCRIÇÃO DETALHADA DA INVENÇÃO  DETAILED DESCRIPTION OF THE INVENTION
A presente invenção refere-se a um processo de produção de biogás a partir de materiais lignocelulósicos, o qual compreende as etapas de:  The present invention relates to a process of producing biogas from lignocellulosic materials, which comprises the steps of:
(a) pré-tratamento de biomassa vegetal através de explosão a vapor;  (a) pretreatment of plant biomass by steam explosion;
(b) hidrólise e digestão anaeróbia do material tratado na etapa (a) por bactérias anaeróbias, com ou sem a adição de enzimas celulases em conjunto ou não com enzimas xilanases, em que as etapas (a) e (b) são rea- lizadas em reatores separados, a etapa (b) é realizada em um único reator e os produtos da etapa (b) são o biogás e a biomassa digerida.  (b) hydrolysis and anaerobic digestion of material treated in step (a) by anaerobic bacteria, with or without the addition of cellulase enzymes together or not with xylanase enzymes, wherein steps (a) and (b) are carried out. In separate reactors, step (b) is performed in a single reactor and the products of step (b) are biogas and digested biomass.
Em uma configuração alternativa, a hidrólise poderá ser iniciada previamente em um reator intermediário entre as etapas (a) e (b), em condição termofílica.  In an alternative embodiment, hydrolysis may be previously initiated in an intermediate reactor between steps (a) and (b) under thermophilic condition.
A produção de biogás de acordo com a invenção é realizada a partir de biomassa vegetal, que pode ser selecionada a partir do grupo consistindo em: bagaço de cana-de-açúcar, palha de cana-de-açúcar, casca de arroz, palha de milho, palha de cevada, palha de trigo, cavacos de eucalipto, pseudocaule de bananeira e misturas dos mesmos.  The production of biogas according to the invention is made from vegetable biomass, which can be selected from the group consisting of: sugarcane bagasse, sugarcane straw, rice husk, corn, barley straw, wheat straw, eucalyptus chips, banana pseudostem and mixtures thereof.
A primeira etapa do processo da invenção, a etapa (a), compreende o pré-tratamento do material lignocelulósico em um primeiro reator (10), através de explosão a vapor, como apresentado esquematicamente nas figuras , 2 e 3. A hemicelulose, por apresentar estrutura amorfa e menor grau de polimerização que a celulose, é hidrolisada parcialmente ou completamente nesta etapa de pré-tratamento, dependendo das condições de reação empregadas. O referido pré-tratamento também visa à desestrutu- ração da fibra da biomassa vegetal, reduzindo a cristalinidade e aumentando a porosidade, de modo a facilitar a hidrólise da fração celulósica. The first process step of the invention, step (a), comprises pretreatment of the lignocellulosic material into a first reactor (10) by steam explosion as shown schematically. Figures 2 and 3. Hemicellulose, due to its amorphous structure and lower degree of polymerization than cellulose, is partially or completely hydrolyzed in this pretreatment step, depending on the reaction conditions employed. Said pretreatment also aims at destroying the plant biomass fiber, reducing crystallinity and increasing porosity, in order to facilitate hydrolysis of the cellulosic fraction.
O pré-tratamento da etapa (a) do processo da invenção compreende explosão a vapor pela aplicação de vapor d'água na biomassa vegetal, no referido primeiro reator, com temperaturas que variam de 150-300 C, pre- ferencialmente 160-260°C, o que corresponde a pressões de 0,62-4,7MPa e tempo de reação variando de alguns segundos a poucos minutos antes da descompressão. Ainda mais preferencialmente, a reação deve ser realizada a temperaturas na faixa de 180-220°C e tempos de reação de 3-15 minutos.  The pretreatment of process step (a) of the invention comprises steam explosion by the application of water vapor to the plant biomass in said first reactor, with temperatures ranging from 150-300 ° C, preferably 160-260 °. C, which corresponds to pressures of 0.62-4.7MPa and reaction time ranging from a few seconds to a few minutes before decompression. Even more preferably, the reaction should be carried out at temperatures in the range of 180-220 ° C and reaction times of 3-15 minutes.
O processo de explosão a vapor consiste na descompressão súbita de um sistema pressurizado contendo o vapor d'água saturado à elevada pressão e a biomassa vegetal. A água, sob elevada pressão, penetra na estrutura celular da biomassa, hidrata a celulose e hidrolisa a hemicelulose. (CHEN e outros Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemis- try. v. 5-9, 2008). As pentoses da fração hemicelulósica podem ser separadas e o acesso das enzimas à celulose é facilitado. Alternativamente, antes da etapa de digestão (b), os açúcares provenientes da fração hemicelulósica podem ser transferidos para fase líquida por uma etapa de lavagem da biomassa, e este líquido rico em material orgânico pode ser enviado diretamen- te para o digestor anaeróbio. A biomassa pré-tratada apresenta umidade em torno de 55-60%.  The steam explosion process is the sudden decompression of a pressurized system containing high pressure saturated water vapor and plant biomass. Water under high pressure penetrates the cell structure of the biomass, hydrates the cellulose and hydrolyzes the hemicellulose. (CHEN and others Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemistry. V. 5-9, 2008). The pentoses of the hemicellulosic fraction can be separated and access of enzymes to cellulose is facilitated. Alternatively, prior to digestion step (b), sugars from the hemicellulosic fraction may be transferred to the liquid phase by a biomass wash step, and this liquid rich in organic material may be sent directly to the anaerobic digester. Pretreated biomass has humidity around 55-60%.
A segunda etapa do processo da invenção, a etapa (b), compreende a hidrólise e a digestão anaeróbia do material tratado na etapa (a), em um segundo reator (20). O material tratado na etapa (a) sofre hidrólise e di- gestão anaeróbia no referido reator (conforme apresentado nas figuras 1 , 2 e 3), o qual pode operar em condições mesofílicas ou termofílicas, com temperatura na faixa de 20-70°C, preferencialmente de 37 a 55°C. Bactérias anae- róbias são adicionadas ao reator, o qual deve ser operado com pH de 5,0- 8,0, preferencialmente 6,0-8,0, ainda mais preferencialmente 6,5-7,5. A concentração de sólidos totais no reator de hidrólise e digestão anaeróbia está compreendida na faixa de 5-50%, preferencialmente de 5-15%. A alimenta- ção do referido reator pode ser semicontínua ou contínua. Enzimas industriais (celulases em conjunto ou não com xilanases) podem ser adicionadas à digestão anaeróbia combinadas com as bactérias anaeróbias para elevar a eficiência da hidrólise e da digestão anaeróbia. The second process step of the invention, step (b), comprises hydrolysis and anaerobic digestion of the material treated in step (a) in a second reactor (20). The material treated in step (a) undergoes hydrolysis and anaerobic digestion in said reactor (as shown in figures 1, 2 and 3), which can operate under mesophilic or thermophilic conditions, with a temperature in the range of 20-70 ° C. preferably from 37 to 55 ° C. Anaerobic bacteria Robots are added to the reactor, which should be operated at a pH of 5.0-8.0, preferably 6.0-8.0, even more preferably 6.5-7.5. The total solids concentration in the anaerobic digestion and hydrolysis reactor is in the range of 5-50%, preferably 5-15%. The feed of said reactor may be semicontinuous or continuous. Industrial enzymes (cellulases with or without xylanases) can be added to anaerobic digestion combined with anaerobic bacteria to increase the efficiency of hydrolysis and anaerobic digestion.
O pH na etapa (b) pode ser controlado pela adição de agentes alcalinizantes (bases fortes ou fracas), preferivelmente hidróxido de sódio ou ureia. Alternativamente, o controle do pH pode ser obtido recirculando o material contido no reator, com ou sem a adição dos alcalinizantes.  The pH in step (b) may be controlled by the addition of alkalizing agents (strong or weak bases), preferably sodium hydroxide or urea. Alternatively, pH control can be obtained by recirculating the material contained in the reactor, with or without the addition of alkalinizers.
No reator da etapa (b), as frações celulósica e hemicelulósica podem ser convertidas em compostos de menor massa molecular por bacté- rias anaeróbias e enzimas comerciais, celulases com ou sem adição de xilanases, com o objetivo de aumentar a eficiência e produtividade das reações de hidrólise e digestão anaeróbia.  In the reactor of step (b), the cellulosic and hemicellulosic fractions can be converted to lower molecular weight compounds by anaerobic bacteria and commercial enzymes, cellulases with or without xylanases, with the aim of increasing the efficiency and productivity of the reactions. hydrolysis and anaerobic digestion.
O fungo Trichoderma reesei é o micro-organismo mais utilizado industrialmente para a produção de celulases e xilanases, mas algumas bac- térias também são capazes de produzir tais enzimas, como, por exemplo, Clostridium thermocellum, Ruminococcus albus e Streptomyces sp. (Corredor e outros Pretreatment and Enzymatic Hydrolysis of Sorghum Bran. Cereal Chemistry, v.84, p.61-66, 2007). As bactérias anaeróbias podem ser selecionadas a partir de lodos anaeróbios provenientes de estações de tra- tamentos de efluentes ou de resíduos sólidos, domésticos ou industriais. Os micro-organismos devem ser adaptados ao meio contendo a biomassa empregada, durante um período que pode variar de 20-90 dias. A carga orgânica volumétrica mais adequada aplicada no reator está na faixa de 5-25 g DQO/L.dia, mais preferivelmente de 10-20 g DQO/L.dia. Esta carga orgânica deve ser aumentada lentamente, garantindo condições que propiciem o desenvolvimento de bactérias anaeróbias.  The fungus Trichoderma reesei is the most industrially used microorganism for the production of cellulases and xylanases, but some bacteria are also capable of producing such enzymes, such as Clostridium thermocellum, Ruminococcus albus and Streptomyces sp. (Corridor and others Pretreatment and Enzymatic Hydrolysis of Sorghum Bran. Cereal Chemistry, v.84, p.61-66, 2007). Anaerobic bacteria can be selected from anaerobic sludges from wastewater treatment plants or solid domestic or industrial waste. The microorganisms must be adapted to the medium containing the biomass employed for a period ranging from 20-90 days. The most suitable volumetric organic load applied to the reactor is in the range of 5-25 g COD / L.day, more preferably 10-20 g COD / L.day. This organic load should be increased slowly, ensuring conditions that favor the development of anaerobic bacteria.
O tipo e a dosagem das enzimas empregadas no processo de hidrólise e digestão anaeróbia são dependentes de fatores como: composição da biomassa, grau de cristalinidade da cadeia polimérica, tipo de pré- tratamento empregado e condições de processo, principalmente temperatura e pH. The type and dosage of enzymes employed in the process of hydrolysis and anaerobic digestion are dependent on factors such as biomass composition, degree of crystallinity of the polymeric chain, type of pretreatment employed and process conditions, especially temperature and pH.
A hidrólise da fração celulósica da biomassa vegetal para produção de biogás pode ser realizada com adição de celulases, em quantidades de cerca de 0,05-5% em massa de sólidos totais (ST), mais preferivelmente de 0,5-2,5% em massa de ST. A xilanase é adicionada em uma quantidade suficiente para hidrolisar a hemicelulose em xilose, em concentrações de 0,001-1 % em massa de ST, mais preferivelmente de 0,05-0,2%. No entanto, o tratamento da hemicelulose com a adição de xilanase não é obrigatório de acordo com a presente invenção, após o pré-tratamento com explosão a vapor.  Hydrolysis of the cellulosic fraction of plant biomass for biogas production may be carried out by the addition of cellulases in amounts of about 0.05-5% by mass of total solids (ST), more preferably 0.5-2.5. Mass% ST. The xylanase is added in an amount sufficient to hydrolyze hemicellulose to xylose at concentrations of 0.001-1 wt.% ST, more preferably 0.05-0.2 wt.%. However, treatment of hemicellulose with the addition of xylanase is not mandatory according to the present invention after steam blast pretreatment.
As bactérias anaeróbias do referido segundo reator (etapa (b)) são obtidas pela inoculação do mesmo com 5-40% v/v de lodo anaeróbio, preferivelmente de 10-20% v/v. Tal inoculação visa à conversão dos carboi- dratos produzidos na reação de hidrólise a ácidos orgânicos, os quais poderão ser convertidos a metano e dióxido de carbono neste mesmo reator da etapa (b).  The anaerobic bacteria of said second reactor (step (b)) are obtained by inoculating the same with 5-40% v / v anaerobic sludge, preferably 10-20% v / v. Such inoculation aims at the conversion of carbohydrates produced in the hydrolysis reaction to organic acids, which can be converted to methane and carbon dioxide in this same reactor of step (b).
Na etapa (b), o referido segundo reator pode compreender adicionalmente uma solução de nutrientes orgânicos, para propiciar um meio adequado para o desenvolvimento de bactérias anaeróbias. A solução de nutrientes ideal deve conter macro (N-NH4 +, P-P04 3", Mg, Ca) e micronutrien- tes (Fe, Ni, Zn, Co, etc), bem como alcalinidade (NaHC03 ou KH2P04 e K2HP04) (Aquino e outros Revista Engenharia Sanitária e Ambiental, v.12, n. 2, p. 192-201 , 2007). Uma fração da solução de nutrientes pode ser composta por vinhaça (5-20%), subproduto do processo de destilação para produção de etanol de usinas de álcool e açúcar. In step (b), said second reactor may further comprise a solution of organic nutrients, to provide a suitable medium for the development of anaerobic bacteria. The ideal nutrient solution should contain macro (N-NH 4 + , P-P0 4 3 " , Mg, Ca) and micronutrients (Fe, Ni, Zn, Co, etc.) as well as alkalinity (NaHC0 3 or KH 2 P0 4 and K 2 HP0 4 ) (Aquino et al. Journal of Sanitary and Environmental Engineering, v.12, n. 2, p. 192-201, 2007) A fraction of the nutrient solution can be composed of vinasse (5-10). 20%), by-product of the distillation process for ethanol production from sugar and alcohol plants.
Na etapa (b), os micro-organismos presentes no lodo realizam todas as etapas de conversão da matéria orgânica a biogás (hidrólise, aci- dogênese, acetogênese e metanogênese) no mesmo reator. Não é necessária uma etapa de separação sólido/líquido antes da etapa (b) uma vez que a digestão anaeróbia ocorre em fase semissólida. Após finalizar a etapa (b), o bagaço digerido pode ser submetido a uma separação sólido/líquido com recirculação de uma das fases para o reator de digestão em fase sólida. Nesta etapa pode-se utilizar filtração, centrifugação ou prensagem, e a fra- ção a ser recirculada (sólida ou líquida) para o reator será dependente do método de separação empregado. In step (b), the microorganisms present in the sludge perform all the stages of conversion of organic matter to biogas (hydrolysis, acycogenesis, acetogenesis and methanogenesis) in the same reactor. A solid / liquid separation step is not required prior to step (b) as the Anaerobic digestion occurs in the semi-solid phase. Upon completion of step (b), the digested bagasse may be subjected to solid / liquid separation with recirculation of one of the phases to the solid phase digestion reactor. At this stage filtration, centrifugation or pressing can be used, and the fraction to be recirculated (solid or liquid) to the reactor will be dependent on the separation method employed.
Os parâmetros monitorados no reator de hidrólise e digestão a- naeróbia (etapa (b)), para auxiliar no acompanhamento da estabilidade e do desempenho do reator, são pH, temperatura, alcalinidade, ácidos graxos voláteis, DQO (Demanda Química de Oxigénio), sólidos totais, sólidos suspensos, sólidos voláteis, densidade e umidade da biomassa.  The parameters monitored in the aaerobic digestion and hydrolysis reactor (step (b)) to assist in monitoring reactor stability and performance are pH, temperature, alkalinity, volatile fatty acids, COD (Chemical Oxygen Demand), total solids, suspended solids, volatile solids, biomass density and humidity.
A presente invenção refere-se ainda a um sistema para a realização do processo de produção de biogás também objeto da invenção, o qual compreende:  The present invention further relates to a system for carrying out the biogas production process also object of the invention which comprises:
(i) um primeiro reator para o tratamento de biomassa vegetal a- través de explosão a vapor; e  (i) a first reactor for the treatment of plant biomass by steam explosion; and
(ii) um segundo reator para a hidrólise e a digestão anaeróbia do material tratado na etapa (i) por bactérias anaeróbias.  (ii) a second reactor for hydrolysis and anaerobic digestion of material treated in step (i) by anaerobic bacteria.
Alternativamente, as etapas de hidrólise e digestão anaeróbia podem ser realizadas em reatores separados. A etapa de hidrólise pode ser iniciada em um reator intermediário (15), conforme demonstrado na figura 3, entre as etapas (a) e (b) na condição termofílica com bactérias anaeróbias, com adição de enzimas celulases, com ou sem a adição de xilanases.  Alternatively, the hydrolysis and anaerobic digestion steps may be performed in separate reactors. The hydrolysis step can be started in an intermediate reactor (15), as shown in Figure 3, between steps (a) and (b) in the thermophilic condition with anaerobic bacteria, with addition of cellulase enzymes, with or without the addition of xylanases.
EXEMPLOS: EXAMPLES:
EXEMPLO V. EXAMPLE V.
Utilizou-se bagaço de cana-de-açúcar como material de biomassa, o qual foi submetido a um pré-tratamento, em um primeiro reator de explosão a vapor (10), empregando-se temperaturas de 200°C, pressão de 1 ,6 MPa (16 bar) e tempo de reação de 7 minutos. A umidade do bagaço explo- dido situou-se em torno de 50%.  Sugarcane bagasse was used as biomass material, which was pre-treated in a first steam blast reactor (10), using temperatures of 200 ° C, pressure of 1, 6 MPa (16 bar) and reaction time of 7 minutes. The humidity of the expelled bagasse was around 50%.
O bagaço pré-tratado foi transferido para o segundo reator de digestão anaeróbia (20). O referido reator foi inoculado com 20% v/v de lodo anaeróbio de um sistema de tratamento de efluentes de cervejaria e adaptado ao substrato (bagaço pré-tratado). A concentração de sólidos voláteis totais do lodo obtido foi de 32gSTV.L"1 e atividade metanogênica específica (AME) de 0,3gDQO.gSTV~ .dia"1 utilizando substrato padrão. O processo foi realizado em condição termofílica, temperatura em torno de 50°C, pH em torno de 7,0, concentração de sólidos em torno de 10%, com tempo de retenção de 20 dias e alimentação semicontínua. Finalizada a etapa de digestão, o bagaço digerido foi submetido à separação sólido/líquido e a fração sólida recirculada para o digestor. The pretreated bagasse was transferred to the second anaerobic digestion reactor (20). Said reactor was inoculated with 20% v / v sludge anaerobic treatment of a brewery effluent treatment system adapted to the substrate (pretreated bagasse). The total volatile solids concentration of the obtained sludge was 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV ~ .day " 1 using standard substrate. The process was carried out under thermophilic condition, temperature around 50 ° C, pH around 7.0, solids concentration around 10%, with retention time of 20 days and semicontinuous feeding. After the digestion step, the digested bagasse was submitted to solid / liquid separation and the solid fraction recirculated to the digester.
Os parâmetros monitorados no segundo reator, para auxiliar no acompanhamento da sua estabilidade e do seu desempenho no processo, foram: pH, temperatura, alcalinidade, ácidos graxos voláteis, DQO, sólidos totais, sólidos voláteis suspensos, sólidos voláteis totais, sólidos fixos totais, densidade e umidade do bagaço e densidade e umidade da torta.  The parameters monitored in the second reactor to assist in monitoring its stability and process performance were: pH, temperature, alkalinity, volatile fatty acids, COD, total solids, suspended volatile solids, total volatile solids, total fixed solids, bagasse density and moisture and cake density and moisture.
Não foi empregado nenhum tipo de catalisador no processo, como enzimas industriais ou ácidos inorgânicos.  No catalysts were used in the process, such as industrial enzymes or inorganic acids.
A figura 1 representa de forma esquemática o sistema e processo apresentado neste exemplo.  Figure 1 shows schematically the system and process presented in this example.
EXEMPLO 2: EXAMPLE 2:
Utilizou-se bagaço de cana-de-açúcar como material de biomas- sa, o qual foi submetido a um pré-tratamento, em um primeiro reator de explosão a vapor (10), empregando-se temperaturas de 200°C, pressão de 1 ,6 MPa (16 bar) e tempo de reação de 7 minutos. A umidade do bagaço explodido situou-se em torno de 50%.  Sugarcane bagasse was used as biomass material, which was pre-treated in a first steam explosion reactor (10), using temperatures of 200 ° C, 1.6 MPa (16 bar) and reaction time of 7 minutes. The humidity of the exploded bagasse was around 50%.
O bagaço pré-tratado foi transferido para o segundo reator de digestão anaeróbia (20). O referido reator foi inoculado com 20% v/v de lodo anaeróbio, com concentração de sólidos voláteis totais de 32gSTV.L"1 e atividade metanogênica específica (AME) de 0,3gDQO.gSTV~1.dia"1 utilizando substrato padrão, e com um coquetel de enzimas comerciais composto por celulases e xilanases. O lodo foi adquirido de uma unidade de digestão anaeróbia de efluentes de cervejaria e adaptado ao substrato utilizado (bagaço pré-tratado). O processo foi realizado em condição termofílica, com temperatura em torno de 50°C, pH em torno de 7,0, concentração de sólidos em torno de 10%, com tempo de retenção de 20 dias e alimentação semicontínua. Finalizada a etapa de digestão, o bagaço digerido foi submetido à separação sólido/líquido e a fração sólida recirculada para o digestor. The pretreated bagasse was transferred to the second anaerobic digestion reactor (20). Said reactor was inoculated with 20% v / v anaerobic sludge, with total volatile solids concentration of 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV ~ 1 .day " 1 using standard substrate, and with a commercial enzyme cocktail composed of cellulases and xylanases. The sludge was purchased from an anaerobic digestion unit of brewery effluents and adapted to the substrate used (pretreated bagasse). The process was carried out under thermophilic condition, with temperature around 50 ° C, pH around 7.0, solids concentration around 10%, retention time of 20 days and semicontinuous feeding. After the digestion step, the digested bagasse was submitted to solid / liquid separation and the solid fraction recirculated to the digester.
Os parâmetros monitorados no segundo reator, para auxiliar no acompanhamento da sua estabilidade e do seu desempenho, foram: pH, temperatura, alcalinidade, ácidos graxos voláteis, DQO, sólidos totais, sólidos voláteis suspensos, sólidos voláteis totais, sólidos fixos totais, densidade e umidade do bagaço e densidade e umidade da torta.  The parameters monitored in the second reactor to assist in monitoring its stability and performance were: pH, temperature, alkalinity, volatile fatty acids, COD, total solids, suspended volatile solids, total volatile solids, total fixed solids, density and bagasse moisture and cake density and moisture.
A figura 2 representa de forma esquemática o processo e sistema apresentado neste exemplo.  Figure 2 shows schematically the process and system presented in this example.
EXEMPLO 3: EXAMPLE 3:
Utilizou-se bagaço de cana-de-açúcar como material de biomas- sa, o qual foi submetido a um pré-tratamento, em um primeiro reator de explosão a vapor (10), empregando-se temperaturas de 200°C, pressão de 1 ,6 MPa (16 bar) e tempo de reação de 7 minutos. A umidade do bagaço explodido situou-se em torno de 50%.  Sugarcane bagasse was used as biomass material, which was pre-treated in a first steam explosion reactor (10), using temperatures of 200 ° C, 1.6 MPa (16 bar) and reaction time of 7 minutes. The humidity of the exploded bagasse was around 50%.
O bagaço explodido foi transferido para um reator de hidrólise (15) e inoculado com 20% v/v de lodo anaeróbio, com concentração de sólidos voláteis totais de 32gSTV.L"1 e atividade metanogênica específica (AME) de 0,3gDQO.gSTV"1.dia'1 utilizando substrato padrão, e com um coquetel de enzimas comerciais composto por celulases e xilanases. O lodo foi adquirido de uma unidade de digestão anaeróbia de efluentes de cervejaria e adapta- do ao substrato utilizado (bagaço pré-tratado). The exploded bagasse was transferred to a hydrolysis reactor (15) and inoculated with 20% v / v anaerobic sludge, with total volatile solids concentration of 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV "1 day '1 using standard substrate, and with a commercial enzyme cocktail composed of cellulases and xylanases. The sludge was purchased from an anaerobic digestion unit of brewery effluents and adapted to the substrate used (pretreated bagasse).
Neste reator, as frações celulósicas e hemicelulósicas do bagaço são convertidas a compostos de menor massa molecular (açúcares, álcoois e ácidos orgânicos) por enzimas e bactérias do lodo. O processo foi realizado em condição termofílica, com temperatura em torno de 50°C, pH em torno de 5,0, concentração de sólidos em torno de 10%, e tempo de retenção de 2 dias. A alimentação do bagaço pré-tratado foi realizada em batelada. As frações sólida e líquida provenientes do reator de hidrólise foram transferidas para o reator de digestão anaeróbia (20) com alimentação semicontínua. O referido reator foi inoculado com 30% v/v de lodo anaeróbio com concentração de sólidos voláteis totais de 32gSTV.L"1 e atividade meta- nogênica específica (AME) de 0,3gDQO.gSTV~1.dia"1 utilizando substrato padrão. O lodo foi adquirido de uma unidade de digestão anaeróbia de efluentes de cervejaria e adaptado ao substrato utilizado (bagaço pré-tratado). O reator foi operado em condição termofílica, com temperatura em torno de 50°C, pH em torno de 7,0, concentração de sólidos em torno de 10%, com tempo de retenção de 20 dias. Finalizada a etapa de digestão, o bagaço digerido foi submetido à separação sólido/líquido e a fração sólida recirculada para o digestor. In this reactor, the bagasse cellulosic and hemicellulosic fractions are converted to lower molecular weight compounds (sugars, alcohols and organic acids) by sludge enzymes and bacteria. The process was carried out under thermophilic condition, with temperature around 50 ° C, pH around 5.0, solids concentration around 10%, and retention time of 2 days. The pre-treated bagasse was fed in batches. The solid and liquid fractions from the hydrolysis reactor were transferred to the anaerobic digestion reactor (20) with semicontinuous feeding. Said reactor was inoculated with 30% v / v anaerobic sludge with total volatile solids concentration of 32gSTV.L "1 and specific metagenogenic activity (AME) of 0.3gDQO.gSTV ~ 1 .day " 1 using standard substrate. . The sludge was purchased from an anaerobic digestion unit of brewery effluents and adapted to the substrate used (pretreated bagasse). The reactor was operated in thermophilic condition, with temperature around 50 ° C, pH around 7.0, solids concentration around 10%, and retention time of 20 days. After the digestion step, the digested bagasse was submitted to solid / liquid separation and the solid fraction recirculated to the digester.
A figura 3 representa de forma esquemática o processo e sistema apresentado neste exemplo.  Figure 3 shows schematically the process and system presented in this example.

Claims

REIVINDICAÇÕES
. Processo de produção de biogás a partir de materiais lignoce- lulósicos, caracterizado pelo fato de que compreende as etapas de.  . Biogas production process from lignocellulosic materials, characterized by the fact that it comprises the steps of.
(a) pré-tratamento de biomassa vegetal através de explosão a vapor; e  (a) pretreatment of plant biomass by steam explosion; and
(b) hidrólise e digestão anaeróbia do material tratado na etapa (a) por bactérias anaeróbias;  (b) anaerobic hydrolysis and digestion of material treated in step (a) by anaerobic bacteria;
em que as etapas (a) e (b) são realizadas em reatores separados, a etapa (b) é realizada em um único reator e os produtos da etapa (b) são o biogás e a biomassa biodigerida.  wherein steps (a) and (b) are performed in separate reactors, step (b) is performed in a single reactor and the products of step (b) are biogas and biodigested biomass.
2. Processo de acordo com a reivindicação 1 , caracterizado pelo fato de que a biomassa vegetal da etapa (a) é selecionada a partir do grupo consistindo em bagaço de cana-de-açúcar, palha de cana-de-açúcar, casca de arroz, palha de milho, palha de cevada, palha de trigo, cavacos de euca- lipto, pseudocaule de bananeira e misturas dos mesmos.  Process according to Claim 1, characterized in that the vegetable biomass of step (a) is selected from the group consisting of sugarcane bagasse, sugarcane straw, rice husk. , maize straw, barley straw, wheat straw, eucalyptus chips, banana pseudostem and mixtures thereof.
3. Processo de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que a etapa (a) compreende o processo de explosão a vapor para o tratamento da biomassa vegetal, em um reator com temperatura de 150-300°C, preferencialmente 160-260°C, e pressão de 0,62 a 4,7 MPa. Process according to Claim 1 or 2, characterized in that step (a) comprises the steam explosion process for the treatment of plant biomass in a reactor with a temperature of 150-300 ° C, preferably 160 ° C. -260 ° C, and pressure from 0.62 to 4.7 MPa.
4. Processo de acordo com qualquer uma das reivindicações 1- Process according to any one of claims 1-
3, caracterizado pelo fato de que a etapa (b) compreende a hidrólise e a digestão anaeróbia do material tratado na etapa (a), em um reator que pode operar em condições mesofílicas, com bactérias anaeróbias, pH de 5,0-8,0, preferencialmente de 6,0-8,0, ainda mais preferencialmente de 6,5-7,5, con- centração de sólidos de 5-50%, sendo preferencialmente de 5-15%, alimentação semicontínua ou contínua e temperatura de 20-40°C, preferencialmente de 35-40°C. 3, characterized in that step (b) comprises hydrolysis and anaerobic digestion of the material treated in step (a) in a reactor that can operate under mesophilic conditions with anaerobic bacteria, pH 5.0-8, 0, preferably 6.0-8.0, even more preferably 6.5-7.5, 5-50% solids concentration, preferably 5-15%, semicontinuous or continuous feeding and temperature of 20-40 ° C, preferably 35-40 ° C.
5. Processo de acordo com qualquer uma das reivindicações 1- 3, caracterizado pelo fato de que a etapa (b) compreende a hidrólise e a di- gestão anaeróbia do material tratado na etapa (a), em um reator que pode operar em condições termofílicas, com bactérias anaeróbias, pH de 5,0-8,0, preferencialmente de 6,0-8,0, ainda mais preferencialmente de 6,5-7,5, con- centração de sólidos de 5-50%, sendo preferencialmente de 5-15%, alimentação semicontínua ou contínua e temperatura de 40-70°C, preferencialmente de 45-55°C. Process according to any one of claims 1-3, characterized in that step (b) comprises hydrolysis and anaerobic digestion of the material treated in step (a) in a reactor which can operate under conditions anaerobic bacteria, pH 5.0-8.0, preferably 6.0-8.0, even more preferably 6.5-7.5, 5-50% solids concentration, preferably 5-15%, semicontinuous or continuous feeding and temperature 40-70 ° C, preferably 45-55 ° C.
6. Processo de acordo com as reivindicações 4 e 5, caracteriza- do pelo fato de que o pH é controlado pela adição de agentes alcalinizantes como ureia e hidróxido de sódio, alternativamente com recirculação da fra- ção líquida, após separação sólido/líquido da biomassa digerida no reator, com ou sem a adição de alcalinizantes.  Process according to claims 4 and 5, characterized in that the pH is controlled by the addition of alkalizing agents such as urea and sodium hydroxide, alternatively with recirculation of the liquid fraction after solid / liquid separation of the digested biomass in the reactor, with or without the addition of alkalinizers.
7. Processo de acordo com qualquer uma das reivindicações 1- 6, caracterizado pelo fato de que as bactérias do reator da etapa (b) são obtidas pela inoculação do referido reator com 5-40-% v/v de lodo anaeróbio, preferivelmente de 10-20 %v/v.  Process according to any one of claims 1-6, characterized in that the reactor bacteria of step (b) are obtained by inoculating said reactor with 5-40-% v / v anaerobic sludge, preferably of 10-20% v / v.
8. Processo de acordo com qualquer uma das reivindicações 1- Process according to any one of claims 1-
7, caracterizado pelo fato de que o reator da etapa (b) compreende ainda adição de uma solução de nutrientes orgânicos. 7, characterized in that the reactor of step (b) further comprises adding a solution of organic nutrients.
9. Processo de acordo com qualquer uma das reivindicações 1- Process according to any one of claims 1-
8, caracterizado pelo fato de que a etapa (b) compreende ainda adição de enzimas celulases em conjunto ou não com enzimas xilanases.8, characterized in that step (b) further comprises adding cellulase enzymes together or not with xylanase enzymes.
0. Processo de acordo com qualquer uma das reivindicações 1- 9, caracterizado pelo fato de que o bagaço digerido na etapa (b) pode ser submetido à separação sólido/líquido com recirculação de uma das fases para o reator da etapa (b).  Process according to any one of claims 1-9, characterized in that the bagasse digested in step (b) can be subjected to solid / liquid separation with recirculation of one of the phases to the reactor of step (b).
11. Processo de acordo com qualquer uma das reivindicações 1- Process according to any one of claims 1-
10, caracterizado pelo fato de que o processo pode ser realizado sem adição de enzimas industriais. 10, characterized by the fact that the process can be performed without the addition of industrial enzymes.
12. Processo de acordo com qualquer uma das reivindicações 1- Process according to any one of claims 1-
11 , caracterizado pelo fato de que o processo pode ser realizado com adição de enzimas industriais. 11, characterized by the fact that the process can be performed with the addition of industrial enzymes.
13. Processo de acordo com uma das reivindicações 1-12, ca- racterizado pelo fato de que a biomassa obtida na etapa (a) pode ser submetida a uma etapa de lavagem para recuperação de material orgânico e que este líquido pode ser enviado diretamente para o reator da etapa (b). Process according to one of Claims 1-12, characterized in that the biomass obtained in step (a) may be subjected to a washing step for recovery of organic material and that this liquid may be sent directly to the reactor from step (b).
14. Processo de acordo com qualquer uma das reivindicações 1-13, caracterizado pelo fato de que o bagaço pode ainda ser hidrolisado previamente em um reator de hidrólise que antecede o digestor da etapa (b), na condição termofílica, temperatura na faixa de 40-70 °C, preferencialmente 45-55 °C, pH na faixa de 4-7, preferencialmente de 5-6, sendo as frações sólida e líquida resultantes posteriormente encaminhadas para o reator da etapa (b). Process according to any one of claims 1-13, characterized in that the bagasse may further be hydrolyzed previously in a hydrolysis reactor prior to the digester of step (b), in the thermophilic condition, temperature in the range of 40 ° C. -70Â ° C, preferably 45-55Â ° C, pH in the range 4-7, preferably 5-6, with the resulting solid and liquid fractions subsequently routed to the reactor of step (b).
15. Sistema para a realização do processo de produção de bio- gás como definido em qualquer uma das reivindicações 1-14, caracterizado pelo fato de que compreende:  System for carrying out the biogas production process as defined in any one of claims 1-14, characterized in that it comprises:
(i) um primeiro reator para o tratamento de biomassa vegetal a- través de explosão a vapor; e  (i) a first reactor for the treatment of plant biomass by steam explosion; and
(ii) um segundo reator para a hidrólise e a digestão anaeróbia do material tratado na etapa (i) por bactérias anaeróbias.  (ii) a second reactor for hydrolysis and anaerobic digestion of material treated in step (i) by anaerobic bacteria.
16. Sistema para a realização do processo de produção de bio- gás como definido em qualquer uma das reivindicações 1-15, caracterizado pelo fato de que o bagaço pode ainda ser hidrolisado previamente em um reator de hidrólise que antecede o digestor da etapa (ii).  System for carrying out the biogas production process as defined in any one of claims 1-15, characterized in that the bagasse may further be hydrolyzed previously in a hydrolysis reactor prior to the digester of step (ii). ).
PCT/IB2012/001034 2011-05-11 2012-05-25 Process and system for producing biogas from anaerobic digestion of plant biomass in solid phase WO2012153189A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1102151-9A2A BRPI1102151A2 (en) 2011-05-11 2011-05-11 BIOGAS PRODUCTION PROCESS AND SYSTEM FROM SOLID PHASE ANAEROBIC DIGESTION
BRPI1102151-9 2011-05-11

Publications (2)

Publication Number Publication Date
WO2012153189A2 true WO2012153189A2 (en) 2012-11-15
WO2012153189A3 WO2012153189A3 (en) 2013-01-17

Family

ID=46981011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/001034 WO2012153189A2 (en) 2011-05-11 2012-05-25 Process and system for producing biogas from anaerobic digestion of plant biomass in solid phase

Country Status (2)

Country Link
BR (1) BRPI1102151A2 (en)
WO (1) WO2012153189A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231689A (en) * 2018-10-22 2019-01-18 南开大学 A method of Heisui River containing oestrone and synchronous production biogas are handled with photocatalysis technology using anaerobism
WO2018226170A3 (en) * 2017-06-07 2019-03-07 Ptt Global Chemical Public Company Limited Mutant strain clostridium thermocellum for producing cellulase and xylanase and preparation method thereof
US10233592B2 (en) * 2014-10-03 2019-03-19 Nafici Environmental Research Method for processing straw
WO2019099953A1 (en) * 2017-11-16 2019-05-23 Hansen Jaron C Microbial pretreatment for conversion of biomass into biogas
WO2023086493A1 (en) * 2021-11-10 2023-05-19 The Penn State Research Foundation Method for the production of high purity biogases from a lignocellulosic feedstock

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862968A (en) * 2018-07-13 2018-11-23 常州大学 A kind of swine waste treatment device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020000A2 (en) 2009-08-14 2011-02-17 The Ohio State University Research Foundation Combined liquid to solid-phase anaerobic digestion for biogas production from municipal and agricultural wastes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057639B2 (en) * 2008-02-28 2011-11-15 Andritz Inc. System and method for preextraction of hemicellulose through using a continuous prehydrolysis and steam explosion pretreatment process
US8246828B2 (en) * 2009-08-04 2012-08-21 Geosynfuels, Llc Methods for selectively producing hydrogen and methane from biomass feedstocks using an anaerobic biological system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020000A2 (en) 2009-08-14 2011-02-17 The Ohio State University Research Foundation Combined liquid to solid-phase anaerobic digestion for biogas production from municipal and agricultural wastes

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
AQUINO ET AL., REVISTA ENGENHARIA SANITARIA AMBIENTAL, vol. 12, no. 2, 2007, pages 192 - 201
CHEN ET AL.: "Simultaneous saccharification and fermentation of steam exploded wheat straw pre-treated with alkaline peroxide", PROCESS BIOCHEMISTRY, vol. 5-9, 2008
CHERNICHARO, C.A.L.: "Departamento de Engenharia Sanitaria e Ambiental-UFMG", REATORES ANAER6BIOS, 1997, pages 246
CHERNICHARO, C.A.L.: "Departamento de Engenharia Sanitaria e Ambiental-UFMG", REATORES ANAERO- BIOS, 1997, pages 246
CORREDOR ET AL.: "Pretreatment and Enzymatic Hydrolysis of Sorghum Bran", CEREAL CHEMISTRY, vol. 84, 2007, pages 61 - 66
LETTINGA, G.: "Sustainable integrated biological wastewater treatment", WATER SCIENCE AND TECHNOLOGY, vol. 33, no. 3, 1996, pages 85 - 98
REDDY, N.; YANG, Y.: "Biofibers from agricultural byproducts for industrial applications", TRENDS IN BIOTECHNOLOGY, vol. 23, 2005, pages 22 - 27, XP025290643, DOI: doi:10.1016/j.tibtech.2004.11.002
SEABRA: "Doctorate thesis", 2008, UNICAMP, article "Analise de opções tecnológicas para uso integral da bio- massa no setor de cana-de-açúcar e suas implicações", pages: 298
SUN, Y.; CHEN, J.: "Hydrolysis of lignocellulosic materials for ethanol production: a review", BIORESOURCE TECHNOLOGY, vol. 83, 2002, pages 1 - 11

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233592B2 (en) * 2014-10-03 2019-03-19 Nafici Environmental Research Method for processing straw
WO2018226170A3 (en) * 2017-06-07 2019-03-07 Ptt Global Chemical Public Company Limited Mutant strain clostridium thermocellum for producing cellulase and xylanase and preparation method thereof
CN111386341A (en) * 2017-06-07 2020-07-07 Ptt全球化学公共有限公司 Mutant strain clostridium thermocellum for producing cellulase and xylanase and preparation method thereof
US11236375B2 (en) 2017-06-07 2022-02-01 Ptt Global Chemical Public Company Limited Mutant strain Clostridium thermocellum for producing cellulase and xylanase and preparation method thereof
CN111386341B (en) * 2017-06-07 2023-09-15 Ptt全球化学公共有限公司 Mutant clostridium thermocellum for producing cellulase and xylanase and preparation method thereof
WO2019099953A1 (en) * 2017-11-16 2019-05-23 Hansen Jaron C Microbial pretreatment for conversion of biomass into biogas
US20190203250A1 (en) * 2017-11-16 2019-07-04 Jaron C. Hansen Microbial pretreatment for conversion of biomass into biogas
EP3710559A4 (en) * 2017-11-16 2021-09-01 Jaron C. Hansen Microbial pretreatment for conversion of biomass into biogas
CN109231689A (en) * 2018-10-22 2019-01-18 南开大学 A method of Heisui River containing oestrone and synchronous production biogas are handled with photocatalysis technology using anaerobism
WO2023086493A1 (en) * 2021-11-10 2023-05-19 The Penn State Research Foundation Method for the production of high purity biogases from a lignocellulosic feedstock

Also Published As

Publication number Publication date
WO2012153189A3 (en) 2013-01-17
BRPI1102151A2 (en) 2014-03-04

Similar Documents

Publication Publication Date Title
Dhanya et al. Development of sustainable approaches for converting the organic waste to bioenergy
Cheng et al. Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis+ fermentation and anaerobic digestion
Chen et al. A review on recycling techniques for bioethanol production from lignocellulosic biomass
Sindhu et al. Water hyacinth a potential source for value addition: an overview
Nagarajan et al. Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production
Kuglarz et al. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment
Dionisi et al. The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review
Abdel-Rahman et al. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits
Juárez et al. Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment
US10513714B2 (en) Lignocellulosic conversion process comprising sulfur dioxide and/or sulfurous acid pretreatment
Tyagi et al. Production of bioethanol from sugarcane bagasse: current approaches and perspectives
Ma et al. Enhanced biomethane production from corn straw by a novel anaerobic digestion strategy with mechanochemical pretreatment
BRPI0814755B1 (en) PROCESS FOR THE PRODUCTION OF ALCOHOL AND GLUCOSE FROM A LIGNOCELLULOSE PRIME MATTER
Cheng et al. Resource recovery from lignocellulosic wastes via biological technologies: Advancements and prospects
Nozari et al. Bioenergy production from sweet sorghum stalks via a biorefinery perspective
Saratale et al. Biohydrogen from renewable resources
WO2012153189A2 (en) Process and system for producing biogas from anaerobic digestion of plant biomass in solid phase
Du et al. High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)
Başar et al. Ethanol, methane, or both? Enzyme dose impact on ethanol and methane production from untreated energy crop switchgrass varieties
Molaverdi et al. Efficient ethanol production from rice straw through cellulose restructuring and high solids loading fermentation by Mucor indicus
Ghasemzadeh et al. Production of bioalcohol and biomethane
Wijeyekoon et al. Woody biomass as a potential feedstock for fermentative gaseous biofuel production
Eswari et al. Recent insight into anaerobic digestion of lignocellulosic biomass for cost effective bioenergy generation
Uddin et al. Enhancement of biogas generation in up-flow sludge blanket (UASB) bioreactor from palm oil mill effluent (POME)
Elalami et al. State of the art of energy production from agricultural residues using thermochemical and biological processes

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12769166

Country of ref document: EP

Kind code of ref document: A2