WO2012150169A1 - Antiballistic panel - Google Patents
Antiballistic panel Download PDFInfo
- Publication number
- WO2012150169A1 WO2012150169A1 PCT/EP2012/057611 EP2012057611W WO2012150169A1 WO 2012150169 A1 WO2012150169 A1 WO 2012150169A1 EP 2012057611 W EP2012057611 W EP 2012057611W WO 2012150169 A1 WO2012150169 A1 WO 2012150169A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stack
- yarn
- dtex
- laminate
- panel
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H1/00—Personal protection gear
- F41H1/02—Armoured or projectile- or missile-resistant garments; Composite protection fabrics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
- F41H5/0471—Layered armour containing fibre- or fabric-reinforced layers
- F41H5/0485—Layered armour containing fibre- or fabric-reinforced layers all the layers being only fibre- or fabric-reinforced layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
Definitions
- the invention pertains to an antiballistic panel comprising at least a first kind of stack and a second kind of stack.
- Antiballistic panels are well known in the related art.
- a ballistic resistance panel is disclosed in WO 2008/14020.
- the panel according this document comprises a first fiber layer and a second fiber layer, wherein the first and the second fiber layer have different types of high tenacity fibers.
- the first and the second fiber layer are formed of a plurality of plies, which have been laminated together.
- the article of US 2005/0003727 combines spike and ballistic resistant panels.
- the fabrics of the spike resistant panel are made from yarns with a linear density of 55 to 660 dtex and a filament linear density in the range of 0.33 to 8.9 dtex.
- the fabrics of the ballistic resistant panel are made from yarns with a linear density from 1 10 to 930 dtex and a filament linear density in the range of 0.33 to 8.9 dtex.
- DE 37 43 243 discloses a laminate of at least two layers, at least one of these layers being a textile fabric of aramid yarns and at least one polymer film.
- the yarns have a linear density of at least 420 dtex, preferably 1610 to 8050 dtex and the filaments have a linear density of 0.8 to 1 .2 dtex.
- WO 2008/1 15913 a multilayer composite fabric is disclosed. Also this composite fabric comprises a first and a second layer with high tenacity fibers, wherein the layers are directly or indirectly bonded together.
- Document US 2005/0153098 discloses a hybrid-laminated sheet.
- the sheet comprises laminates, wherein each laminate comprises different layers.
- a first and a fourth layer is made of a first kind of fiber and a second and third layer is made of a second, different kind of fiber.
- the aim is achieved by an antiballistic panel with the features of claim 1 .
- the antiballistic panel according to claim 1 comprises at least a first kind of stack (first stack) and a second kind of stack (second stack), wherein the first kind of stack has a plurality of first laminates made of a first kind of yarn and the second kind of stack has a plurality of second laminates made of a second kind of yarn, wherein the first kind of yarn has a linear density of at least 1001 dtex measured by ASTM D1907 and a filament linear density of at most 1 .2 dtex measured by ASTM D1577-07, option C-2 and calculated by dividing the yarn linear density by the number of filaments and the second kind of yarn has a linear density of at most 1000 dtex measured by ASTM D1907 and a filament linear density of at least 1 .3 dtex measured by ASTM D1577-07, option C-2.
- linear density should be understood as a measure of mass per unit of length, and it is a characteristic of strings or other one-dimensional objects.
- the most commonly used unit is actually the decitex, abbreviated dtex, which is the mass in grams per 10,000 meters.
- a yarn comprises fibers and/or filaments, whereby a fiber is an elongate body the length dimension of which is much greater that the transverse dimensions of width and thickness.
- a fiber comprises at least one filament. Accordingly, the term fiber includes monofilament, multifilament, ribbon, strip, staple and other forms of chopped, cut or discontinuous fiber or filaments and the like having regular or irregular cross-section.
- a laminate should be understood as a combination of at least two yarn layers (or also called fiber layers) with a matrix material.
- every fiber layer is impregnated with a matrix material, most preferred with the same matrix material. If different matrix materials are used the matrix materials distinguished from each other.
- As a first matrix material an elastomer for example can be used.
- As second matrix material an epoxy resin can be used.
- the matrix materials in different fiber layers is the same or different and different fiber layers have different matrix contents.
- a laminate has on two outer surfaces a film.
- a laminate comprises four fiber layers, whereby each fiber layer is impregnated with a matrix material.
- a yarn layer can be synonymous called as a fiber layer.
- a fiber layer is a unidirectional fiber layer or a woven fiber layer. Both mentioned layers could be impregnated with a matrix material.
- a stack can exhibit only unidirectional fiber layers or woven fiber layers or a combination of both kinds of layers.
- the first stack as well as the second stack comprises a plurality of laminates.
- Each of the laminates preferably comprises at least two fiber layers.
- the first stack exhibits laminates made of a first kind of fibers. Preferably, no other fibers are used for the laminates and therefore for the first stack.
- the second stack exhibits also a plurality of laminates, but the laminates of the second stack are made of a second kind of fibers. Preferably, no other fibers (or yarn) are used for the laminates in the second stack. Due to this the first stack and the second stack are made of different fibers (or yarns), wherein the fibers distinguished in respect to the used linear density and filament linear density.
- At least one layer of the first stack and/or second stack is made of tapes.
- each of the plurality of laminates of the first and/or the second stack comprises at least one unidirectional fiber layer, more preferred each laminate comprises at least two unidirectional fiber layers and most preferred four unidirectional fiber layers.
- the fibers of the yarn of the unidirectional layers are in a matrix.
- the fiber direction of a layer in a laminate has an angle relative to the fiber direction of an adjacent layer of the same laminate, wherein the angle is preferably between 40° and 100°, more preferred between 45° and 95° and most preferred 90°.
- Unidirectional fiber layers are built up by fibers of yarn, which are aligned parallel to each other along a common fiber direction.
- at least one layer of the laminate comprises unidirectional aligned tapes.
- the resin matrix material for the layers may be formed from a wide variety of elastomeric materials having desired characteristics.
- the elastomeric materials used in such matrix possess an initial tensile modulus (modulus of elasticity) equal to or less than about 6,000 psi (41 .4 MPa) as measured according to ASTM D638.
- the elastomer has an initial tensile modulus equal to or less than about 2,400 psi (16.5 MPa). Most preferably, the elastomeric material has an initial tensile modulus equal to or less than about 1 ,200 psi (8.23 MPa).
- These resin materials are typically thermoplastic in nature but thermosetting materials are also useful. The proportion of the resin material to fiber in the layer may vary widely depending upon the end use and is usually in the range of 5-26% based on matrix weight in respect to matrix and fiber weight.
- Suitable matrix materials are SIS (styrene-isoprene-styrene) block copolymers, SBR (styrene butadiene rubber), polyurethanes, ethylene acrylic acid, polyvinyl butyral.
- At least one laminate of first and/or the second stack comprises at least a woven fiber layer.
- the number of laminates, which builds up a first and/or second stack is between 1 to 30.
- the first and/or second stack have between 2 and 120 layers.
- the panel has a body face and a strike face, whereby the first stack is arranged to the strike face and the second stack is arranged to the body face of the panel.
- the body face is arranged to the body of the wearer.
- the first stack arranged to the body face and the second stack is arranged to the strike face.
- Suitable fibers for the layers of the first stack may be aramid fibers, like Twaron® Type 2000, 1 100 dtex, 1000 filaments, Twaron® Type D2600, 1 100 dtex, 2000 filaments (development product).
- Suitable fibers for the layers of the second stack may also be aramid fibers, like Twaron® Type 2000, 840dtex, 500 filaments.
- At least one laminate of the first and/or the second stack has at least one film on its outer surface. It is especially preferred, if a laminate has on each outer surface a film.
- each laminate of the first and/or second stack comprises preferably two films, whereby the films are arranged on the outer surfaces of the laminate.
- the films can be included on the layers, for example to permit different layers to slide over each other.
- the films may typically be adhered to one or both surfaces of each layer.
- Any suitable film may be employed, such as films made of polyolefin, e.g. linear low density polyethylene (LLDPE) films and ultrahigh molecular weight polyethylene (UHMWPE) films, as well as polyester films, nylon films, polycarbonate films and the like. These films may be of any desirable thickness. Typical film thickness ranges from about 2-20 ⁇ .
- the panel is used for hard or soft anti-ballistic applications.
- the first stack comprising a plurality of unidirectional layers, whereby each layer is made of a 1 100 dtex aramid yarn comprising 1 .1 dtex filaments.
- the layers are impregnated with Rovene® 4019 (MCP, Mallard Creek Polymers) as matrix material.
- the second stack comprises a plurality of unidirectional layers, whereby each layer is made of a 840 dtex aramid yarn comprising 1 .68 dtex filaments.
- the layers for the second stack are impregnated with a matrix mixture of approximately 60% Rovene® 4220 and approximately 40% of Rovene® 4176.
- the first stack or the second stack can be arranged on the strike face or the body face.
- unidirectional layers made of a 840 dtex aramid yarn comprising 1 .68 dtex filaments.
- the layers are impregnated with Rovene® 4019 as matrix material.
- the second stack comprises a plurality of unidirectional layers, whereby each layer is made of a 1 100 dtex aramid yarn comprising 1 .1 dtex filaments.
- the layers for the second stack are impregnated with a matrix mixture of approximately 60% Rovene® 4220 and approximately 40% Rovene® 4176.
- the first stack or the second stack can be arranged on the strike face or the body face.
- unidirectional layers made of a 1 100 dtex aramid yarn comprising 1 .1 dtex filaments.
- the layers are impregnated with Rhoplex® E-358 (Rohm and Haas) as matrix material.
- the second stack comprises a plurality of unidirectional layers, whereby each layer is made of a 840 dtex aramid yarn comprising 1 .68 dtex filaments.
- the layers for the second stack are impregnated with a matrix mixture of approximately 60% Rovene® 4220 and approximately 40% Rovene® 4176.
- the first stack or the second stack can be arranged on the strike face or the body face.
- the first stack comprises a plurality of unidirectional layers made of a 840 dtex aramid yarn comprising 1 .68 dtex filaments.
- the layers are impregnated with Rhoplex® E-358 as matrix material.
- the second stack comprises a plurality of unidirectional layers, whereby each layer is made of a 1 100 dtex aramid yarn comprising 1 .1 dtex filaments.
- the layers for the second stack are impregnated with a matrix mixture of approximately 60% Rovene® 4220 and approximately 40% Rovene® 4176.
- the first stack or the second stack can be arranged on the strike face or the body face.
- Figure 1 schematically shows a panel comprising a first kind of stack and a second kind of stack.
- Figure 2 shows the influence of linear density in respect to the energy
- FIG 1 schematically an antiballistic panel 3 is shown.
- the panel 3 comprises a first stack 1 and a second stack 2 each with one laminate.
- the first stack 1 this means the first laminate (and also the second stack 2, this means the second laminate) is built up by a film layer 4, a first unidirectional fiber layer 5, a second unidirectional fiber layer 6 and another film layer 7.
- the first unidirectional fiber layer 5 and the second unidirectional fiber layer 6 are
- the unidirectional fiber layers 5 and 6 are cross plied to each other, this means the fiber direction of the fiber layer 5 has an angle of approximately 90° in respect to the fiber direction of the fiber layer 6.
- the first stack 1 and the second stack 2 have the same elements (two unidirectional fiber layers 5, 6, and two film layers 4, 7). It is also possible, that the first stack 1 comprises four fiber layers and the second stack 2 comprises two fiber layers or reverse. In all embodiments the first stack 1 distinguished from the second stack 2 in respect to the used fiber.
- the fiber layers 5, 6 and the film layers 4, 7 are laminated together to form the first stack 1 .
- the fiber layers are preferably arranged over each other to form the first and/or second stack. This means inside the stack the laminates are preferably not bonded together.
- each fiber layer is a unidirectional fiber layer (UD), whereby the fiber direction of the fibers of the fiber layers in each laminate was 0°, 90°, 0°, 90°.
- UD unidirectional fiber layer
- Prinlin B7137 AL from Henkel was chosen, which consists of a styrene-isoprene-styrene (SIS) block copolymer.
- this water-based matrix system is applied via a kiss roll to the fiber (yarn) of the fiber layer and subsequently dried on a hotplate.
- Matrix concentration was determined from the dry unidirectional fiber layer (i.e. the concentration based on dry yarn weight) and is given in Table 1 .
- Four unidirectional fiber layers were laminated into a 4-ply laminate with one 10 ⁇ LDPE film on each outer sides of the laminate (each laminate comprises two film- layers), by using the lamination conditions indicated in Table 1 .
- a 4-ply laminate with LDPE-film has propagated through the laminator three times: the first time for 2-ply lamination (this means two UD fiber layers were laminated together), the second time for 4-ply lamination (this means two 2-ply sheets were laminated to one 4-ply laminate) and the third time for LDPE-film lamination on the 4-ply.
- Temperature (T) and lamination speed (v) were kept at comparable levels for each passage, pressure was varied and is indicated by respectively P1 (first lamination), P2 (second lamination) and P3 (third lamination) in Table 1 .
- Areal density of the 4-plied construction with LDPE-film on both sides was determined according to ASTM D3776-96.
- the matrix content (wt.%) is based on dry fiber weight:
- Matrix content (Matrix weight / dry fiber weight) x 100%
- All laminates (4-plies + LDPE-film on both outer sides) were tested at the same conditions.
- a first sensor was arranged in a distance of 12 cm of the laminate.
- a second sensor is arranged behind the laminate (in respect to the muzzle) in a distance of 12 cm from the laminate. The distance between muzzle and laminate was 30 cm.
- the first sensor and the second sensor measure the bullet speed.
- the bullet is fired from an air-pressure rifle.
- the laminates are cut into test sample pieces, whereby the typical test sample dimensions are 1 18 x 1 18 mm.
- the bullet type used is the lead-based Super H-point (field line) produced by RUAG
- SEA specific energy absorption
- the first laminate yarn Twaron Type 2000 f1000, 1 100 dtex as yarn (fiber) material was used.
- the yarn has a linear density of 1 100 dtex measured according to ASTM D1907 and a filament linear density of 1 .1 dtex measured by ASTM D1577-07 option C-2, the elongation at break in % was 3.5 measured according to D7269 and the tensile modulus was 91 GPa measured according to ASTM D7269.
- the second laminate yarn Twaron Type 1000 f1000, 1680 dtex as yarn material was used.
- the yarn has a tensile modulus of 71 GPa measured according to ASTM D7269, the linear density is 1680 dtex for the yarn measured according to ASTM D1907 and 1 .68 dtex for the filament measured by ASTM D1577-07 option C-2 , the elongation at break in % was 3.6 measured according to D7269.
- the yarn has a tensile modulus of 91 GPa measured according to ASTM D7269, the linear density of the yarn was 840 dtex measured according to ASTM D1907 and the filament density was 1 .68 dtex measured by ASTM D1577-07, option C-2, , the elongation at break in % was 3.5 measured according to D7269.
- the fourth laminate yarn Twaron D2600 (development type), f2000, 1 100 dtex was used as yarn material.
- the yarn has a tensile modulus of 94 GPa measured according to ASTM D7269, the linear density of the yarn was 1 100 dtex measured according to ASTM D1907 and the linear density of the filament was 0.55 dtex measured by ASTM D1577-07, option C-2 .
- the elongation at break was 3.6 % measured according to D7269.
- SEA specific energy absorption
- Curve 1 ' represents the specific energy absorption (SEA) in respect to the bullet speed for the first laminate (Twaron Type 2000, f1000, 1 100 dtex).
- Curve 2' represents the specific energy absorption (SEA) in respect to the bullet speed for the second laminate (Twaron Type 1000, f1000, 1680 dtex) and curve 3' for the third laminate (Twaron Type 2000, f500, 840 dtex).
- Curve 4' represents the specific energy absorption (SEA) in respect to the bullet speed for the fourth laminate (Twaron D2600 (development type), f2000, 1 100 dtex) It can be seen that the aim is to have an as high as possible SEA-value for each incoming bullet speed.
- the 1 ' curve represents the laminate made of a yarn with relative low yarn linear density but with a high filament linear density.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Laminated Bodies (AREA)
- Nonwoven Fabrics (AREA)
- Woven Fabrics (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12717279.9A EP2705324A1 (en) | 2011-05-03 | 2012-04-26 | Antiballistic panel |
RU2013153382/11A RU2013153382A (en) | 2011-05-03 | 2012-04-26 | POPULAR PANEL |
JP2014508747A JP2014517900A (en) | 2011-05-03 | 2012-04-26 | Bulletproof panel |
KR1020137032004A KR20140027381A (en) | 2011-05-03 | 2012-04-26 | Antiballistic panel |
CN201280021661.1A CN103562670A (en) | 2011-05-03 | 2012-04-26 | Antiballistic panel |
US14/115,106 US20140069270A1 (en) | 2011-05-03 | 2012-04-26 | Antiballistic panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11164553 | 2011-05-03 | ||
EP11164553.7 | 2011-05-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012150169A1 true WO2012150169A1 (en) | 2012-11-08 |
Family
ID=44645367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/057611 WO2012150169A1 (en) | 2011-05-03 | 2012-04-26 | Antiballistic panel |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140069270A1 (en) |
EP (1) | EP2705324A1 (en) |
JP (1) | JP2014517900A (en) |
KR (1) | KR20140027381A (en) |
CN (1) | CN103562670A (en) |
RU (1) | RU2013153382A (en) |
WO (1) | WO2012150169A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014124770A1 (en) | 2013-02-13 | 2014-08-21 | Cedrem | Anti-intrusion wall |
WO2014160492A1 (en) * | 2013-03-13 | 2014-10-02 | Cubic Tech Corporation | Light-weight semi-rigid composite anti-ballistic systems with engineered compliance and rate-sensitive impact response |
WO2015018909A1 (en) * | 2013-08-07 | 2015-02-12 | Dsm Ip Assets B.V. | Ballistic resistant sheets, articles comprising such sheets and methods of making the same |
US9079218B2 (en) | 2010-08-03 | 2015-07-14 | Cubic Tech Corporation | System and method for the transfer of color and other physical properties to laminate composite materials and other articles |
US9114570B2 (en) | 2012-11-09 | 2015-08-25 | Cubic Tech Corporation | Systems and method for producing three-dimensional articles from flexible composite materials |
US9154593B1 (en) | 2012-06-20 | 2015-10-06 | Cubic Tech Corporation | Flotation and related integrations to extend the use of electronic systems |
US9358755B2 (en) | 2010-06-24 | 2016-06-07 | Cubic Tech Corporation | Waterproof breathable composite materials for fabrication of flexible membranes and other articles |
WO2016124751A1 (en) | 2015-02-06 | 2016-08-11 | Dsm Ip Assets B.V. | Ballistic resistant sheet and use of such a sheet |
US9789662B2 (en) | 2013-03-13 | 2017-10-17 | Cubic Tech Corporation | Engineered composite systems |
US10189209B2 (en) | 2013-03-13 | 2019-01-29 | Dsm Ip Assets B.V. | Systems and method for producing three-dimensional articles from flexible composite materials |
US10513088B2 (en) | 2015-01-09 | 2019-12-24 | Dsm Ip Assets B.V. | Lightweight laminates and plate-carrier vests and other articles of manufacture therefrom |
US11072143B2 (en) | 2013-03-13 | 2021-07-27 | Dsm Ip Assets B.V | Flexible composite systems and methods |
WO2022063285A1 (en) * | 2020-09-28 | 2022-03-31 | 中化高性能纤维材料有限公司 | Nanofiber composite unidirectional fabric, preparation method therefor and application thereof |
WO2022254041A1 (en) | 2021-06-04 | 2022-12-08 | Dsm Ip Assets. B.V. | Hybrid ballistic-resistant molded article |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2705325B1 (en) * | 2011-05-03 | 2015-04-08 | Teijin Aramid B.V. | Antiballistic panel |
WO2020165212A1 (en) * | 2019-02-12 | 2020-08-20 | Teijin Aramid B.V. | Ballistic-resistant article based on sheets with discontinuous film splits |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3743243A1 (en) | 1987-12-19 | 1989-06-29 | Akzo Gmbh | Laminates |
WO2000025614A2 (en) * | 1998-10-17 | 2000-05-11 | Second Chance Body Armor, Inc. | Multi-component lightweight ballistic resistant garment |
US20050003727A1 (en) | 2003-07-01 | 2005-01-06 | Chiou Minshon J. | Flexible spike/ballistic penetration-resistant articles |
US20050153098A1 (en) | 2004-01-12 | 2005-07-14 | Ashok Bhatnagar | Hybrid laminated fiber sheets |
WO2008014020A1 (en) | 2006-03-24 | 2008-01-31 | Honeywell International Inc. | Ceramic faced ballistic panel construction |
WO2008115913A2 (en) | 2007-03-21 | 2008-09-25 | Honeywell International Inc. | Cross-plied composite ballistic articles |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4186648A (en) * | 1977-06-07 | 1980-02-05 | Clausen Carol W | Armor comprising ballistic fabric and particulate material in a resin matrix |
US4748064A (en) * | 1985-01-14 | 1988-05-31 | Allied Corporation | Ballistic-resistant composite article |
DE8607408U1 (en) * | 1986-03-18 | 1987-07-16 | Akzo Gmbh, 5600 Wuppertal | Bullet-resistant protective vest |
US5213874A (en) * | 1990-02-06 | 1993-05-25 | Tissus Techniques De Trevoux | Canopy or similar material having an improved tearing resistance |
EP0656254A1 (en) * | 1993-11-06 | 1995-06-07 | Hoechst Aktiengesellschaft | Textile composite material, method for its manufacture and use |
US6103646A (en) * | 1997-08-08 | 2000-08-15 | E. I. Du Pont De Nemours And Company | Penetration-resistant ballistic article |
US6133169A (en) * | 1998-03-20 | 2000-10-17 | E. I. Du Pont De Nemours And Company | Penetration-resistant ballistic article |
US6099946A (en) * | 1998-11-09 | 2000-08-08 | E. I. Du Pont De Nemours And Company | High pressure water jet protection |
US6475936B1 (en) * | 2000-06-13 | 2002-11-05 | E. I. Du Pont De Nemours And Company | Knife-stab-resistant ballistic article |
US6737368B2 (en) * | 2001-12-19 | 2004-05-18 | E. I. Du Pont De Nemours And Company | Multiple threat penetration resistant articles |
US20040048538A1 (en) * | 2002-09-05 | 2004-03-11 | Safeboard Ab | Penetration resistant article |
US20040048109A1 (en) * | 2002-09-05 | 2004-03-11 | Safeboard Ab | Penetration resistant article |
MX2007004954A (en) * | 2004-10-04 | 2007-08-24 | Honeywell Int Inc | Lightweight armor against multiple high velocity bullets. |
CN101310159A (en) * | 2005-08-10 | 2008-11-19 | 纳幕尔杜邦公司 | Flexible penetration resistant article |
US20100003452A1 (en) * | 2008-04-29 | 2010-01-07 | Dsm Ip Assets B.V. | Stack of first and second layers, a panel and ballistic resistant article comprising the stack or panel |
AU2010305800B2 (en) * | 2009-10-12 | 2015-07-09 | Dsm Ip Assets B.V. | Method for the manufacturing of a low shrinkage flexible sheet |
US20120024137A1 (en) * | 2010-07-30 | 2012-02-02 | E. I. Du Pont De Nemours And Company | Composites and ballistic resistant armor articles containing the composites |
CN103261833B (en) * | 2010-12-21 | 2015-09-23 | 纳幕尔杜邦公司 | Subtract wound wrap member and preparation method thereof, individual protection-gear and health armor |
US8443706B2 (en) * | 2011-09-07 | 2013-05-21 | E I Du Pont De Nemours And Company | Triaxial braid fabric architectures for improved soft body armor ballistic impact performance |
-
2012
- 2012-04-26 US US14/115,106 patent/US20140069270A1/en not_active Abandoned
- 2012-04-26 KR KR1020137032004A patent/KR20140027381A/en not_active Application Discontinuation
- 2012-04-26 EP EP12717279.9A patent/EP2705324A1/en not_active Withdrawn
- 2012-04-26 CN CN201280021661.1A patent/CN103562670A/en active Pending
- 2012-04-26 WO PCT/EP2012/057611 patent/WO2012150169A1/en active Application Filing
- 2012-04-26 RU RU2013153382/11A patent/RU2013153382A/en not_active Application Discontinuation
- 2012-04-26 JP JP2014508747A patent/JP2014517900A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3743243A1 (en) | 1987-12-19 | 1989-06-29 | Akzo Gmbh | Laminates |
WO2000025614A2 (en) * | 1998-10-17 | 2000-05-11 | Second Chance Body Armor, Inc. | Multi-component lightweight ballistic resistant garment |
US20050003727A1 (en) | 2003-07-01 | 2005-01-06 | Chiou Minshon J. | Flexible spike/ballistic penetration-resistant articles |
US20050153098A1 (en) | 2004-01-12 | 2005-07-14 | Ashok Bhatnagar | Hybrid laminated fiber sheets |
WO2008014020A1 (en) | 2006-03-24 | 2008-01-31 | Honeywell International Inc. | Ceramic faced ballistic panel construction |
WO2008115913A2 (en) | 2007-03-21 | 2008-09-25 | Honeywell International Inc. | Cross-plied composite ballistic articles |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9358755B2 (en) | 2010-06-24 | 2016-06-07 | Cubic Tech Corporation | Waterproof breathable composite materials for fabrication of flexible membranes and other articles |
US9079218B2 (en) | 2010-08-03 | 2015-07-14 | Cubic Tech Corporation | System and method for the transfer of color and other physical properties to laminate composite materials and other articles |
US9339842B2 (en) | 2010-08-03 | 2016-05-17 | Cubic Tech Corporation | Systems and methods for the transfer of color and other physical properties to laminate composite materials and other articles |
US9154593B1 (en) | 2012-06-20 | 2015-10-06 | Cubic Tech Corporation | Flotation and related integrations to extend the use of electronic systems |
US9993978B2 (en) | 2012-11-09 | 2018-06-12 | Cubic Tech Corporation | Systems and method for producing three-dimensional articles from flexible composite materials |
US9114570B2 (en) | 2012-11-09 | 2015-08-25 | Cubic Tech Corporation | Systems and method for producing three-dimensional articles from flexible composite materials |
WO2014124770A1 (en) | 2013-02-13 | 2014-08-21 | Cedrem | Anti-intrusion wall |
US11090898B2 (en) | 2013-03-13 | 2021-08-17 | Dsm Ip Assets B.V. | Engineered composite systems |
CN105074378A (en) * | 2013-03-13 | 2015-11-18 | 帝斯曼知识产权资产管理有限公司 | Light-weight semi-rigid composite anti-ballistic systems with engineered compliance and rate-sensitive impact response |
US11072143B2 (en) | 2013-03-13 | 2021-07-27 | Dsm Ip Assets B.V | Flexible composite systems and methods |
WO2014160492A1 (en) * | 2013-03-13 | 2014-10-02 | Cubic Tech Corporation | Light-weight semi-rigid composite anti-ballistic systems with engineered compliance and rate-sensitive impact response |
US9789662B2 (en) | 2013-03-13 | 2017-10-17 | Cubic Tech Corporation | Engineered composite systems |
US10189209B2 (en) | 2013-03-13 | 2019-01-29 | Dsm Ip Assets B.V. | Systems and method for producing three-dimensional articles from flexible composite materials |
US10215538B2 (en) | 2013-08-07 | 2019-02-26 | Dsm Ip Assets B.V. | Ballistic resistant sheets, articles comprising such sheets and methods of making the same |
AU2014304477B2 (en) * | 2013-08-07 | 2018-05-24 | Avient Protective Materials B.V. | Ballistic resistant sheets, articles comprising such sheets and methods of making the same |
CN105452797A (en) * | 2013-08-07 | 2016-03-30 | 帝斯曼知识产权资产管理有限公司 | Ballistic resistant sheets, articles comprising such sheets and methods of making the same |
WO2015018909A1 (en) * | 2013-08-07 | 2015-02-12 | Dsm Ip Assets B.V. | Ballistic resistant sheets, articles comprising such sheets and methods of making the same |
US10513088B2 (en) | 2015-01-09 | 2019-12-24 | Dsm Ip Assets B.V. | Lightweight laminates and plate-carrier vests and other articles of manufacture therefrom |
WO2016124751A1 (en) | 2015-02-06 | 2016-08-11 | Dsm Ip Assets B.V. | Ballistic resistant sheet and use of such a sheet |
US10655940B2 (en) | 2015-02-06 | 2020-05-19 | Dsm Ip Assets B.V. | Ballistic resistant sheet and use of such a sheet |
WO2022063285A1 (en) * | 2020-09-28 | 2022-03-31 | 中化高性能纤维材料有限公司 | Nanofiber composite unidirectional fabric, preparation method therefor and application thereof |
WO2022254041A1 (en) | 2021-06-04 | 2022-12-08 | Dsm Ip Assets. B.V. | Hybrid ballistic-resistant molded article |
Also Published As
Publication number | Publication date |
---|---|
RU2013153382A (en) | 2015-06-10 |
JP2014517900A (en) | 2014-07-24 |
KR20140027381A (en) | 2014-03-06 |
EP2705324A1 (en) | 2014-03-12 |
CN103562670A (en) | 2014-02-05 |
US20140069270A1 (en) | 2014-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140069270A1 (en) | Antiballistic panel | |
US9341445B2 (en) | Antiballistic panel with first and second laminates having fibers of different tensile modulus | |
US7288307B2 (en) | Hybrid laminated fiber sheets | |
JP6427165B2 (en) | Reduced trauma without reducing bulletproof performance | |
AU2005259387B2 (en) | Flexible ballistic-resistant assembly | |
CA2662960C (en) | High performance ballistic composites having improved flexibility and method of making the same | |
US11536540B2 (en) | Rigid ballistic composites having large denier per filament yarns | |
US10081159B2 (en) | Materials gradient within armor for balancing the ballistic performance | |
KR101490139B1 (en) | Advanced antiballistic materials | |
US20100275764A1 (en) | Fabric architectures for improved ballistic impact performance | |
IL184693A (en) | Body armor with improved knife-stab resistance formed from flexible composites | |
US20100293691A1 (en) | Multilayered material sheet for use in soft ballistics | |
US20070293109A1 (en) | Composite material for stab, ice pick and armor applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12717279 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012717279 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012717279 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014508747 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14115106 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137032004 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013153382 Country of ref document: RU Kind code of ref document: A |