[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012147602A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2012147602A1
WO2012147602A1 PCT/JP2012/060555 JP2012060555W WO2012147602A1 WO 2012147602 A1 WO2012147602 A1 WO 2012147602A1 JP 2012060555 W JP2012060555 W JP 2012060555W WO 2012147602 A1 WO2012147602 A1 WO 2012147602A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation
liquid crystal
error
unit
crystal panel
Prior art date
Application number
PCT/JP2012/060555
Other languages
English (en)
French (fr)
Inventor
勇司 田中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012147602A1 publication Critical patent/WO2012147602A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2059Display of intermediate tones using error diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • H04N5/12Devices in which the synchronising signals are only operative if a phase difference occurs between synchronising and synchronised scanning devices, e.g. flywheel synchronising
    • H04N5/126Devices in which the synchronising signals are only operative if a phase difference occurs between synchronising and synchronised scanning devices, e.g. flywheel synchronising whereby the synchronisation signal indirectly commands a frequency generator

Definitions

  • the present invention relates to a liquid crystal display device having a liquid crystal panel.
  • a liquid crystal display device having a liquid crystal panel is known.
  • a predetermined unit for improving the viewing angle of the liquid crystal panel with respect to a display unit (pixel group) composed of a plurality of pixels of the liquid crystal panel is disclosed.
  • the gradation of the pixel is corrected with this pattern.
  • a method of correcting the gradation of a pixel with a predetermined pattern for a display unit composed of a plurality of pixels is generally called a dither method.
  • An object of the present invention is to obtain a configuration capable of displaying a smooth image close to the original image while improving the viewing angle of the liquid crystal panel in the liquid crystal display device.
  • a liquid crystal display device includes a liquid crystal panel in which a plurality of pixels are arranged in a matrix, and a change in gradation of a video signal input to each of the pixels.
  • a viewing angle adjusting device that adjusts the viewing angle, wherein the viewing angle adjusting device sets the gradation of the input signal to black display below the lower limit value and white display above the upper limit value, and to the lower limit value.
  • a gradation conversion unit that performs gradation conversion in at least a part of the intermediate gradation range between the upper limit value and the upper limit value, a gradation of the signal that is output after gradation conversion by the gradation conversion unit, and the gradation conversion
  • An error calculation unit for obtaining an error from the gradation of the signal input to the unit, and an error calculated by the error calculation unit, the gradation of the signal for the next pixel input to the gradation conversion unit is determined.
  • An error correction unit for correcting.
  • a configuration capable of displaying a smooth image close to the original image while improving the viewing angle of the liquid crystal panel can be obtained.
  • FIG. 1 is a block diagram showing a schematic configuration of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a schematic configuration of the viewing angle adjustment circuit according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the relationship between the gradation of the video signal and the transmittance of the liquid crystal panel when the liquid crystal panel is viewed from the front.
  • FIG. 4 is a diagram illustrating an example of the relationship between the gradation of the video signal and the transmittance of the liquid crystal panel when the liquid crystal panel is viewed from an oblique direction.
  • FIG. 5 is a diagram illustrating an example of a difference in transmittance of the liquid crystal panel when the liquid crystal panel is viewed from the front and when viewed from an oblique direction.
  • FIG. 6 is an example of various signals input to the viewing angle adjustment circuit.
  • FIG. 7 is a diagram showing the relationship between the gradation of the video signal input to the viewing angle adjustment circuit and the gradation of the video signal output from the viewing angle adjustment circuit in the liquid crystal display device according to the first embodiment. It is.
  • FIG. 8 is a diagram illustrating an example in which the input video is subjected to gradation conversion by the dither method and the configuration of the first embodiment.
  • FIG. 9 is a diagram illustrating a schematic configuration of a viewing angle adjustment circuit of the liquid crystal display device according to the second embodiment.
  • FIG. 10 is a diagram showing the relationship between the gradation of the video signal input to the viewing angle adjustment circuit and the gradation of the video signal output from the viewing angle adjustment circuit in the liquid crystal display device according to the second embodiment. It is.
  • FIG. 11 shows an example in which the input video is subjected to gradation conversion by the configuration of the second embodiment.
  • FIG. 12 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to the third embodiment.
  • FIG. 13 is a diagram illustrating a schematic configuration of a viewing angle adjustment circuit according to the third embodiment.
  • FIG. 14 shows an example in which the input video is tone-converted without an initial error value and tone-converted with an error initial value.
  • FIG. 15 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to the fourth embodiment.
  • FIG. 16 is a diagram illustrating a schematic configuration of a viewing angle adjustment circuit according to the fourth embodiment.
  • FIG. 17 shows an example in which the input video is subjected to gradation conversion by the configuration of the fourth embodiment.
  • FIG. 18 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to the fifth embodiment.
  • FIG. 19 is a diagram illustrating a schematic configuration of a viewing angle adjustment circuit according to the fifth embodiment.
  • FIG. 20 shows an example in which the input video is subjected to gradation conversion by the configuration of the fifth embodiment.
  • FIG. 21 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to a modification of the fifth embodiment.
  • FIG. 22 is a diagram illustrating a schematic configuration of a viewing angle adjustment circuit according to a modification of the fifth embodiment.
  • FIG. 23 is a block diagram showing a schematic configuration of the liquid crystal display device according to the sixth embodiment.
  • FIG. 24 is a diagram illustrating a schematic configuration of a viewing angle adjustment circuit according to the sixth embodiment.
  • FIG. 25 shows an example in which the input video is subjected to gradation conversion by the configuration of the sixth embodiment.
  • FIG. 26 is a block diagram showing a schematic configuration of the liquid crystal display device according to the seventh embodiment.
  • FIG. 27 is a block diagram showing a schematic configuration of the liquid crystal display device according to the eighth embodiment.
  • FIG. 28 is a block diagram showing a schematic configuration of the liquid crystal display device according to the ninth embodiment.
  • a liquid crystal display device includes a liquid crystal panel in which a plurality of pixels are arranged in a matrix, and the liquid crystal panel by changing a gradation of a video signal input to each pixel.
  • a viewing angle adjusting device that adjusts the viewing angle of the input signal, wherein the viewing angle adjusting device sets the gradation of the input signal to black display below the lower limit value and white display above the upper limit value.
  • a gradation conversion unit that performs gradation conversion in at least a part of an intermediate gradation range between the value and the upper limit value, a gradation of a signal that is output after gradation conversion by the gradation conversion unit, and the gradation
  • An error calculation unit for obtaining an error from the gradation of the signal input to the conversion unit, and a signal gradation for the next pixel input to the gradation conversion unit using the error calculated by the error calculation unit
  • An error correction unit for correcting Adult
  • the input signal is displayed in black when the gradation is lower than the lower limit value and is displayed in white when the gradation is higher than the upper limit value. Can be spread. Thereby, the viewing angle characteristic of the liquid crystal panel can be improved.
  • the gradation conversion unit is configured to convert a gradation of a signal input to the gradation conversion unit into a gradation proportional to the gradation in the intermediate gradation range. (Second configuration).
  • a signal having a gradation within the intermediate gradation range is not converted into a signal having a greatly different gradation. Therefore, it is possible to display an image closer to the original image on the liquid crystal panel.
  • the gradation conversion unit converts the gradation of the signal input to the gradation conversion unit into a constant gradation in at least a part of the gradation range in the intermediate gradation range.
  • the liquid crystal panel includes a plurality of lines in which a plurality of pixels are arranged in an example.
  • An error initial value setting unit is further provided for setting different error initial values for each adjacent line with respect to the gradation of the video signal of the pixel on which the gradation conversion is performed (fourth configuration).
  • the gradation of the pixel on the line is changed to a clear gradation. It becomes possible to change.
  • the error initial value is different for each adjacent line, the entire liquid crystal panel can display an image with clearer contrast. Thereby, the viewing angle characteristic of the liquid crystal panel can be further improved.
  • the error initial value setting unit sets an error initial value for each line so that the magnitude relationship between the error initial values given to the adjacent lines is switched for each display frame of the liquid crystal panel ( Fifth configuration).
  • the brightness changes for each display frame at each pixel, so that the viewer sees the image of the average gradation, that is, the image close to the input image.
  • the gradation of each pixel changes to improve the viewing angle characteristics of the liquid crystal panel.
  • the viewing angle characteristics of the liquid crystal panel can be improved while displaying an image closer to the input image by the above-described configuration.
  • the error initial value setting unit has an error initial value that is different from positive to negative for each display frame of the liquid crystal panel with respect to each line so that the sum of error initial values in each line becomes zero. Is set (sixth configuration).
  • the viewer can visually recognize the image displayed with an average gradation while improving the viewing angle in each display frame.
  • the viewing angle characteristic of the liquid crystal panel can be improved while displaying an image close to the original image.
  • a predetermined error pattern in a pixel group composed of a plurality of pixels is generated by a signal input to the gradation conversion unit and the error calculation unit.
  • An error addition unit for adding to any one of the calculated errors is further provided (seventh configuration).
  • the viewing angle characteristics of the liquid crystal panel can be further improved by further combining the dither method for correcting the gradation with a predetermined error pattern in a pixel group composed of a plurality of pixels.
  • the error adding unit changes the error pattern for each display frame of the liquid crystal panel so that the error due to the error pattern becomes zero in each pixel in the pixel group (eighth). Configuration).
  • the gradation is corrected by the dither method of the error pattern that is different for each display frame in each pixel, the viewer visually recognizes the image displayed with the average gradation. This makes it possible to improve the viewing angle characteristics of the liquid crystal panel in each display frame while displaying an image closer to the original image.
  • a gradation range changing unit that changes at least one of the lower limit value and the upper limit value is further provided (9th configuration).
  • the ninth configuration further includes a visible number detection unit that detects the number of viewers who are viewing the liquid crystal panel, and the gradation range changing unit is configured to detect the number of visible numbers by the visible number detection unit. Accordingly, at least one of the lower limit value and the upper limit value is changed (tenth configuration).
  • the viewing angle characteristics of the liquid crystal panel can be improved according to the number of viewers. That is, as the number of viewers of the liquid crystal panel increases, the number of viewers viewing from the oblique direction with respect to the display surface of the liquid crystal panel increases, and accordingly, the viewing angle characteristics need to be improved accordingly.
  • the number of viewers of the liquid crystal panel is small, since there are few viewers viewing from the oblique direction with respect to the display surface of the liquid crystal panel, it is possible to restore the original image rather than improving the viewing angle characteristics. It is preferable to display a close smooth image.
  • the ninth configuration further includes a visual position detection unit that detects a position of a viewer viewing the liquid crystal panel and obtains an angle between the viewer and a normal line of the display surface of the liquid crystal panel.
  • the gradation range changing unit is configured to change at least one of the lower limit value and the upper limit value according to a detection result of the angle by the visual recognition position detection unit (an eleventh configuration).
  • At least one of the lower limit value and the upper limit value is changed according to the angular position of the viewer viewing the liquid crystal panel, that is, the angle formed by the viewer and the normal line of the display surface of the liquid crystal panel.
  • the angular position of the viewer viewing the liquid crystal panel that is, the angle formed by the viewer and the normal line of the display surface of the liquid crystal panel.
  • the dimension of the structural member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each structural member, etc. faithfully.
  • FIG. 1 is a block diagram showing a schematic configuration of a liquid crystal display device 1 according to the first embodiment of the present invention.
  • the liquid crystal display device 1 includes a liquid crystal panel 11, a backlight 12, and a viewing angle adjustment circuit 13 (viewing angle adjustment device).
  • the liquid crystal display device 1 is configured to improve the viewing angle characteristics of the display surface of the liquid crystal panel 11 by changing the gradation of each pixel of the liquid crystal panel 11 from the gradation of the input image.
  • FIG. 1 illustration of source drivers, gate drivers, and the like for driving the liquid crystal panel 11 and various signals such as vertical synchronization signals and horizontal synchronization signals input to these drivers are omitted.
  • the liquid crystal display device 1 of this embodiment can be used as a display unit of a television, a game machine, a personal computer, a portable information terminal, or the like, for example.
  • the liquid crystal panel 11 includes an active matrix substrate in which a large number of pixels are arranged in a matrix, a counter substrate disposed to face the active matrix substrate, and a liquid crystal sealed between these substrates. With layers.
  • the liquid crystal panel 11 may be, for example, a transmissive liquid crystal panel, or a reflective or semi-reflective liquid crystal panel. That is, the liquid crystal panel 11 may have any configuration as long as it can display video.
  • the active matrix substrate is provided with a thin film transistor as a switching element, a pixel electrode, and a plurality of rows of gate lines and a plurality of columns of source lines arranged in a grid so as to surround them. Yes.
  • the counter substrate is disposed at a position facing at least the pixel electrode of the active matrix substrate.
  • the counter substrate is provided with a counter electrode.
  • Each pixel is formed by the counter electrode, the pixel electrode of the active matrix substrate, and the liquid crystal layer disposed therebetween.
  • the gate electrode of the thin film transistor in the active matrix substrate is connected to the above gate driver through a gate line. Therefore, when a gate voltage is output from the gate driver to the gate line, the thin film transistor connected to the gate line is selected.
  • the gate driver outputs a gate voltage with reference to the vertical synchronization signal.
  • the source electrode of the thin film transistor is connected to the above-described source driver via a source line.
  • the source driver generates a gradation display signal necessary for gradation display of a video based on the input video signal. Therefore, when a grayscale display signal is output as a drive voltage from the source driver to the source line, a voltage is applied to the liquid crystal of each pixel through the thin film transistor connected to the gate line selected by the gate driver. That is, the source driver outputs a driving voltage corresponding to each gate line based on the video signal, thereby enabling gradation display of each pixel.
  • the source driver outputs a drive voltage with reference to the horizontal synchronization signal.
  • the backlight 12 is arranged on one side in the thickness direction of the liquid crystal panel 11 although not particularly shown.
  • the backlight 12 for example, a direct type, an edge light type, or a planar light source type can be used.
  • a light source of the backlight 12 a cold cathode tube, a light emitting diode, etc. can be used, for example.
  • the viewing angle adjustment circuit 13 converts the gradation of the video signal input to the liquid crystal panel 11 so as to improve the viewing angle characteristics on the display surface of the liquid crystal panel 11. That is, the viewing angle adjustment circuit 13 is configured to convert the gradation of the original video signal and output it to the liquid crystal panel 11 so that the viewing angle characteristics are improved on the display surface of the liquid crystal panel 11.
  • the liquid crystal panel 11 adjusts the light transmittance by applying a voltage to the liquid crystal layer to change the alignment state of the liquid crystal molecules in the liquid crystal layer.
  • the liquid crystal panel 11 has a narrow viewing angle compared to other display devices because the alignment state of liquid crystal molecules changes relatively depending on the viewing direction with respect to the display surface. For example, in the case of a liquid crystal panel in which the transmittance of the liquid crystal is proportional to the gradation of the video signal as shown in FIG. As shown in FIG. 4, as shown in FIG. 4, it seems that the transmittance is increased in some gradations. In FIG. 3 and FIG. 4, normalization is performed so that the transmittance of the liquid crystal panel becomes 1 when the gradation of the video signal is 256.
  • the transmittance is 0.5 when the display surface of the liquid crystal panel 11 is viewed from the front.
  • the transmittance is 0.75.
  • an image displayed on the liquid crystal panel 11 an image having a transmittance of 0.5 when viewed from the front.
  • the transmittance is 0.75, and it looks whitish.
  • the gradation of the video signal is zero (so that the average transmittance is 0.5, which is the same as that of video 1. Pixels (hatched portions) that are black) are arranged in a staggered pattern. Then, even when the liquid crystal panel 11 is viewed from an oblique direction (45 degrees with respect to the normal of the display surface), the average transmittance is 0.5.
  • the transmittance of the liquid crystal panel 11 greatly varies depending on the viewing direction. Therefore, the viewing angle is improved as shown in video 2 in FIG. Examples of such a viewing angle improvement method include a dither method.
  • the viewing angle adjustment circuit 13 is configured to display an image closer to the original image while improving the viewing angle of the liquid crystal panel 11. Specifically, as shown in FIGS. 1 and 2, the viewing angle adjustment circuit 13 converts an input video signal (hereinafter referred to as an input video signal) into an output video signal that improves viewing angle characteristics. Is configured to do. Moreover, the viewing angle adjustment circuit 13 is configured to use a so-called error diffusion method in which an error between the gradation of the output video signal and the gradation of the input video signal is used for gradation conversion of the next pixel. .
  • the viewing angle adjustment circuit 13 includes a gradation conversion unit 21 that converts the gradation of the input video signal, and the level of the signal converted by the gradation conversion unit 21.
  • An error calculating unit 22 for obtaining an error between the tone and the gradation of the signal before conversion, an error holding unit 23 for storing the error, and an error correcting unit 24 for correcting the input signal of the next pixel using the error.
  • various signals as shown in FIGS. 1 and 6 are input to the viewing angle adjustment circuit 13. That is, as shown in FIGS.
  • the viewing angle adjustment circuit 13 receives a clock signal (clock), a video signal, a vertical synchronization signal, a horizontal synchronization signal, and an effective signal as reference signals.
  • the valid signal is a signal that is output during a period in which the video signal is output, and is generally used to erase a blanking period provided between the video signals.
  • MIN minimum value
  • MAX maximum value
  • the gradation conversion unit 21 sets the minimum value (MIN) and the maximum value (MAX) to thereby display an intermediate gradation for displaying an image other than the black indication (gradation 0) and the white display (gradation 256).
  • a range is defined.
  • FIG. 7 shows an example of the relationship between the gradation x of the input signal and the gradation y of the output signal in the gradation conversion unit 21.
  • the minimum value (MIN) of the intermediate gradation range is set to 64
  • the maximum value (MAX) is set to 192
  • the gradation of the output signal is converted to 192 for the gradation of 128 or more.
  • An input signal having a gradation of 128 or more is converted into an output signal having a gradation 192.
  • the gradation conversion unit 21 converts the gradation of the video signal into a signal whose gradation changes stepwise according to the value of the gradation.
  • the minimum value and the maximum value are determined, and a signal having a gradation below the minimum value is converted to an output signal having a gradation of zero, while a signal having a gradation above the maximum value is changed to the maximum gradation.
  • the error calculation unit 22 obtains an error z between the gradation x of the signal input to the gradation conversion unit 21 and the gradation y of the output signal.
  • the error calculation unit 22 is configured to obtain a tone error when the tone is converted by the tone conversion unit 21.
  • the error holding unit 23 is configured by, for example, a memory device, and is configured to hold the error z calculated by the error calculation unit 22. As shown in FIG. 2, the error holding unit 23 receives a clock signal and a valid signal. The error holding unit 23 outputs the error z to the error correction unit 24 according to the valid signal so as to match the input of the video signal while synchronizing with the clock signal.
  • the error correction unit 24 is configured to correct the gradation of the video signal based on the error z output from the error holding unit 23.
  • the error correction unit 24 uses the gradation error z generated in the gradation conversion unit 21 to correct the gradation i of the video signal for the next pixel.
  • the signal corrected by the error correction unit 24 is input to the gradation conversion unit 21.
  • the viewing angle adjustment circuit 13 With the configuration of the viewing angle adjustment circuit 13 as described above, it is possible to converge the error in the gradation converting unit 21 and display an image closer to the original image on the liquid crystal panel 11. That is, the viewing angle adjustment circuit 13 can realize viewing angle improvement by an error diffusion method which is one of pseudo halftone processing methods.
  • FIG. 8 shows an example in which tone conversion is performed by the conventional dither method and the method of the present embodiment.
  • a dither pattern corresponding to a pixel group consisting of four pixels was performed using a dither pattern corresponding to a pixel group consisting of four pixels.
  • four pixels surrounded by a thick line are defined as one pixel group, and calculation is performed using a dither pattern for this pixel group.
  • the gradation after conversion of each pixel is calculated by, for example, the following equation according to the position of the pixel in the pixel group (see the bottom diagram in FIG. 8).
  • an error between the gradation of the signal on the input side and the gradation of the signal on the output side of the gradation conversion unit 21 is obtained by the error calculation unit 22, and the error is held by the error holding unit 23. Then, at the timing when the video signal of the next pixel is input to the viewing angle adjustment circuit 13, the error correction unit 24 corrects the gradation of the video signal with the error.
  • the error corrected by the error correction unit 24 is set to zero in the pixel to be calculated first. Further, the error obtained at the last pixel of the line in the liquid crystal panel 11 is used for correcting the video signal of the first pixel of the next line.
  • each pixel When the gradation of each pixel is converted by the method of the present embodiment, as shown in FIG. 8, in the case of an image in which the entire display surface is displayed with an intermediate gradation (for example, the gradation is 126), the entire display surface is displayed. Although each pixel has a variation in gradation, it becomes an intermediate gradation (for example, gradation is 64, 192). That is, in the method of this embodiment, unlike the dither method, a display in which black display pixels are present in a zigzag manner does not occur, so that an image closer to the original display image can be displayed. This is more remarkable in the case where the character “A” is displayed.
  • the gradation of the character “A” displayed with the intermediate gradation for example, the gradation is 126) is converted by the method of the present embodiment, the gradation is different for each pixel (for example, the gradation is 64, 192).
  • the gradation is 64, 192
  • it is not difficult to recognize as a character.
  • the liquid crystal panel 11 is obliquely oriented with respect to the transmittance 0.5 when the liquid crystal panel 11 is viewed from the front ( When viewed from 45 degrees with respect to the normal of the display surface, the average transmittance is 0.6. Therefore, by performing the gradation conversion as described above, the viewing angle characteristics of the liquid crystal panel 11 can be improved as compared with the case where the gradation conversion is not performed (video 1). Note that the image 3 in FIG. 5 is also an example in which the transmittance is calculated using FIGS. 3 and 4.
  • the gradation of the video signal in the range larger than the gradation 64 and smaller than the gradation 128 is converted into the gradation 64, and at the same time, the gradation is greater than the gradation 128 and smaller than the gradation 192.
  • the gradation of the video signal is converted to gradation 192.
  • only one gradation may be converted in the intermediate gradation range, or the intermediate gradation range may be divided into three or more ranges and converted into different gradations.
  • the gradation conversion unit 21 converts gradations below the minimum value (MIN) to gradations 0 (black display) and converts gradations above the maximum value (MAX) to maximum gradations (white display). Therefore, the gradation range of black display and white display can be increased, and the viewing angle characteristics of the liquid crystal panel 11 can be improved.
  • FIG. 9 shows a schematic configuration of the viewing angle adjusting circuit 30 (viewing angle adjusting device) of the liquid crystal display device according to the second embodiment of the present invention.
  • the viewing angle adjustment circuit 30 of this embodiment is different from the first embodiment in the configuration of the gradation conversion unit 31.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The parts different from the first embodiment will be mainly described.
  • the gradation conversion unit 31 outputs an output signal according to the following expression if the gradation x of the input signal is between the minimum value (MIN) and the maximum value (MAX) (intermediate gradation range).
  • the tone y of the signal to be obtained is obtained.
  • the gradation conversion unit 31 of the present embodiment if the gradation x of the input signal is less than the minimum value (MIN), the gradation y of the output signal is changed to zero, while the input signal If the gradation x is equal to or greater than the maximum value (MAX), the gradation y of the output signal is changed to the maximum gradation.
  • the gradation converting unit 31 has a gradation x of the input signal between the minimum value (MIN) and the maximum value (MAX) (intermediate gradation range).
  • the gradation x is converted to a gradation y proportional to the gradation x. That is, in the present embodiment, in the intermediate gradation range, the gradation of the input signal (x) is converted using a linear function as shown in FIG.
  • FIG. 11 shows an example of gradation change when the gradation conversion unit 31 of the present embodiment is used.
  • the character “A” is displayed in an intermediate gradation (for example, 128 gradations) even when an image having an intermediate gradation (for example, a gradation of 128) is displayed on the entire screen.
  • an image having an intermediate gradation for example, a gradation of 128, is displayed on the entire screen.
  • the output video is also displayed with an intermediate gradation. Therefore, according to the configuration of the present embodiment, an image closer to the original image can be displayed on the liquid crystal panel 11.
  • FIG. 12 is a block diagram showing a schematic configuration of a liquid crystal display device 40 according to the third embodiment of the present invention.
  • the configuration of the viewing angle adjustment circuit 41 (viewing angle adjustment device) of the liquid crystal display device 40 is different from that of the second embodiment described above.
  • the same components as those in the above-described second embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the second embodiment are mainly described.
  • the viewing angle adjustment circuit 41 includes an error calculation unit 22, an error holding unit 23, an error correction unit 24 similar to those in the first embodiment, and the same as in the second embodiment.
  • a gradation conversion unit 31 that is, also in this embodiment, as in the above-described second embodiment, the gradation converting unit 31 can input the input signal if the gradation of the input signal is between the minimum value (MIN) and the maximum value (MAX). The gradation of the received signal is converted by a linear function and output.
  • the viewing angle adjustment circuit 41 of the present embodiment includes an error initial value setting unit 42 that gives an error initial value to the error holding unit 23 when performing gradation conversion of pixels at the beginning of each line in the liquid crystal panel 11. Have.
  • the error initial value setting unit 42 is configured to identify the first pixel of each line based on the input horizontal synchronization signal. Then, the error initial value setting unit 42 sets the error initial value to the error holding unit when it is detected that the pixel to be subjected to gradation conversion next is the first pixel of each line based on the horizontal synchronization signal. Output to 23.
  • the initial value of the error output by the error initial value setting unit 42 is preferably different for each line, and more preferably a value such that the initial value of the error becomes zero in adjacent lines. For example, as shown in FIG. 14, when the initial error value is 32 for the first pixel of a certain line, the initial error initial value of the next line is preferably -32.
  • the initial value of the error output from the error initial value setting unit 42 is held by the error holding unit 23, and then when the video signal is input according to the valid signal, the error correction unit is synchronized with the clock signal. 24 (see FIGS. 12 and 13).
  • the error correction unit 24 corrects the video signal for the first pixel of the line in the liquid crystal panel 11 using the initial value of the error.
  • the error holding unit 23 is held in the error holding unit 23 every time the line of the liquid crystal panel 11 changes, that is, every time an error initial value is input from the error initial value setting unit 42. The error is changed to the initial value.
  • the error holding unit 23 may add the error at that time and the initial value of the error output from the error initial value setting unit 42 when the line changes.
  • FIG. 14 shows the change in gradation when the initial value of the error is given to the video signal for the first pixel of each line.
  • the output video may be almost the same as the input video. Such a phenomenon is often observed in the case of a regular still image in which there is almost no difference in transmittance between adjacent pixels.
  • black display pixels do not appear in a staggered manner or cannot be recognized as characters unlike the dither method. Therefore, even with the configuration of the present embodiment, it is possible to display an image closer to the original image on the liquid crystal panel 11 while improving the viewing angle characteristics of the liquid crystal panel 11.
  • FIG. 15 is a block diagram showing a schematic configuration of a liquid crystal display device 50 according to the fourth embodiment of the present invention.
  • the configuration of the viewing angle adjustment circuit 51 (viewing angle adjustment device) is different from the configuration of the third embodiment described above.
  • the same components as those of the above-described third embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the third embodiment are mainly described.
  • the viewing angle adjustment circuit 51 includes a gradation conversion unit 31, an error calculation unit 22, an error holding unit 23, and an error correction unit 24 similar to those in the third embodiment. .
  • the viewing angle adjustment circuit 51 of the present embodiment also has an error initial value setting unit 52 as in the third embodiment.
  • the viewing angle adjustment circuit 51 of the present embodiment includes a display frame determination unit 53 that determines display frame switching.
  • the display frame determination unit 53 determines that the display frame has been switched, and outputs a display frame switching signal to the error initial value setting unit 52.
  • the display frame determination unit 53 determines display frame switching by detecting the rising or falling edge of the vertical synchronization signal.
  • the error initial value setting unit 52 is configured to give an initial value of error to the video signal for the first pixel of each line based on the horizontal synchronization signal, as in the third embodiment. Further, the error initial value setting unit 52 is configured to invert the initial value of the error from the initial value of the error in the previous display frame based on the signal output from the display frame determination unit 53. Yes. That is, when a signal is output from the display frame determination unit 53, the error initial value setting unit 52 reverses the sign of the initial value of the error output to each line in the previous display frame, and converts it after conversion. Output the value to each line of the next display frame.
  • FIG. 17 shows the gradation conversion result of the input video when the viewing angle adjustment circuit 51 of the present embodiment is used.
  • the sign of the initial value of the error to be added to the input signal of the first pixel of each line is inverted, so that the level of each pixel of the output video is displayed for each display frame. Tone changes.
  • the viewer visually recognizes the average value of the gradation to be converted for each display frame in each pixel, and thus visually recognizes an image closer to the original image than the configuration of each of the embodiments described above. can do.
  • the viewing angle characteristics of the display panel 11 can be improved.
  • FIG. 18 is a block diagram showing a schematic configuration of a liquid crystal display device 60 according to the fifth embodiment of the present invention.
  • the liquid crystal display device 60 of this embodiment is different from the above-described second embodiment in the configuration of the viewing angle adjustment circuit 61 (viewing angle adjustment device).
  • the same components as those of the second embodiment are denoted by the same reference numerals, description thereof is omitted, and components different from those of the second embodiment are mainly described.
  • the viewing angle adjustment circuit 61 includes a gradation conversion unit 31, an error calculation unit 22, an error holding unit 23, and an error correction unit 24 similar to those in the second embodiment.
  • the viewing angle adjustment circuit 61 of the present embodiment includes a dither pattern generation unit 62 that generates a dither pattern used for the dither method, and the dither pattern generated by the dither pattern generation unit 62 as an error.
  • an error adder 63 for adding to the input signal.
  • the dither pattern generation unit 62 is configured to generate a dither pattern based on the horizontal synchronization signal, the valid signal, and the clock signal. That is, the dither pattern generation unit 62 generates an error pattern for a pixel group (for example, four pixels) according to the video signal.
  • the dither pattern generation unit 62 obtains the X coordinate of each pixel from the input clock signal and valid signal, and obtains the Y coordinate of each pixel from the input horizontal synchronization signal. Then, the dither pattern generation unit 62 generates an error dither pattern by setting an error according to the coordinates of each pixel obtained in this way.
  • the dither pattern generation unit 62 is, for example, +8 for pixels where both the X coordinate and the Y coordinate are odd, and +4 for pixels where the X coordinate is even and the Y coordinate is odd.
  • a pattern is generated that gives an error of ⁇ 4 for pixels with an odd X coordinate and an even Y coordinate, and ⁇ 8 for pixels with an even X coordinate and Y coordinate.
  • the error dither pattern generated by the dither pattern generation unit 62 is preferably a pattern in which the error of each pixel differs within the pixel group to which the dither pattern is assigned. Further, the dither pattern described above is preferably a pattern in which the error is zero in the pixel group.
  • the error value in the above-described dither pattern is an example, and naturally, other values may be used.
  • the error adding unit 63 is configured to add the dither pattern of the error d generated by the dither pattern generating unit 62 to the input signal v of the gradation converting unit 31.
  • the error signal d of the dither pattern is added to the error z between the output side and the input side of the gradation converter 31 in the input signal of the gradation converter 31.
  • FIG. 20 shows an example of gradation conversion when the viewing angle adjustment circuit 61 having the above-described configuration is used.
  • dither pattern errors as shown in the lower part of FIG. 20 are used to facilitate the calculation of the gradation of the output video.
  • the gradation change at each pixel is further increased as compared with the configuration of the second embodiment described above. That is, the viewing angle characteristics can be further improved by providing the dither pattern generation unit 62 and the error addition unit 63 so that errors due to the dither pattern can be added to the configuration of the second embodiment as in the present embodiment. .
  • the tone conversion unit 31 adds the error of the dither pattern to the error between the tone of the signal on the output side and the tone of the signal on the input side of the tone conversion unit 21 in the second embodiment. Input signal. Thereby, the viewing angle characteristic of the liquid crystal panel 11 can be improved by the amount of the dither pattern error.
  • the viewing angle characteristics of the liquid crystal panel 11 can be further improved while displaying an image closer to the original image.
  • the dither pattern it is possible to reduce the unique pattern that occurs in the configuration of the second embodiment. That is, when tone conversion of a video is performed using the configuration of the second embodiment, a pattern peculiar to the output video may be formed, but such a pattern can be reduced by a dither pattern, The display quality of output video can be improved.
  • FIG. 21 shows a liquid crystal display device 70 according to a modification of the fifth embodiment.
  • the error dither pattern generated by the dither pattern generation unit 62 is added to the error between the gradation of the signal on the output side of the gradation conversion unit 31 and the gradation of the signal on the input side.
  • This is different from the fifth embodiment.
  • the same components as those in the above-described fifth embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the fifth embodiment are mainly described.
  • the error adder 63 calculates an error for calculating an error between the tone of the signal on the output side of the tone converter 31 and the tone of the signal on the input side.
  • the error dither pattern generated by the dither pattern generation unit 62 is added to the signal output from the unit 22.
  • the gradation converter 31 can take into account the error of the dither pattern in addition to the error between the output signal gradation and the input signal gradation, and the viewing angle of the liquid crystal panel 11 The characteristics can be further improved.
  • FIG. 23 is a block diagram showing a schematic configuration of a liquid crystal display device 80 according to the sixth embodiment of the present invention.
  • the configuration of the viewing angle adjustment circuit 81 (viewing angle adjustment device) is different from the configuration of the fifth embodiment.
  • the same components as those in the fifth embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the fifth embodiment are mainly described.
  • the viewing angle adjustment circuit 81 is similar to the fifth embodiment in the gradation conversion unit 31, the error calculation unit 22, the error holding unit 23, and the error correction unit 24. And an error adder 63. Furthermore, the viewing angle adjustment circuit 81 of this embodiment includes a display frame determination unit 82 that determines display frame switching, and an error dither pattern (error) for each display frame in accordance with an output signal from the display frame determination unit 82. A dither pattern generation unit 83 for generating (pattern).
  • the display frame determination unit 82 determines that the display frame has been switched, and outputs a display frame switching signal.
  • the display frame determination unit 82 determines display frame switching by detecting the rising or falling edge of the vertical synchronization signal.
  • the dither pattern generation unit 83 is configured to generate a dither pattern based on the horizontal synchronization signal, the valid signal, and the clock signal, as in the fifth embodiment. That is, the dither pattern generation unit 83 obtains the X coordinate of each pixel from the input clock signal and valid signal, and obtains the Y coordinate of each pixel from the input horizontal synchronization signal. Then, the dither pattern generation unit 83 generates an error dither pattern by setting an error according to the coordinates of each pixel thus obtained.
  • the dither pattern generation unit 83 is configured to be able to generate at least two dither patterns.
  • the dither pattern generation unit 83 sets, for example, as the first pattern, +8 for pixels where both the X coordinate and the Y coordinate are odd, and pixels where the X coordinate is even and the Y coordinate is odd.
  • a pattern that gives an error of +4 an X coordinate that is odd and a Y coordinate that is even -4, and an X that is an even number of pixels that both X and Y coordinates are -8.
  • the dither pattern generation unit 83 for example, as a second pattern, for pixels where both the X coordinate and the Y coordinate are odd, -8, and for pixels where the X coordinate is even and the Y coordinate is odd. Generates a pattern that gives an error of -4, +4 for pixels with an odd X coordinate and an even number of Y coordinates, and +8 for an even number of pixels with both X and Y coordinates.
  • the dither pattern generation unit 83 is configured to generate and output different dither patterns in accordance with the display frame switching signal output from the display frame determination unit 82.
  • the dither pattern generation unit 83 switches and outputs the first pattern and the second pattern described above in accordance with a display frame switching signal output from the display frame determination unit 82.
  • FIG. 25 shows an example of gradation conversion when the viewing angle adjustment circuit 81 having the above-described configuration is used.
  • an error of a dither pattern as shown on the right side of FIG. 25 is used to facilitate the calculation of the gradation of the output video.
  • the viewing angle adjustment circuit 81 outputs a video signal that is closer to the original video than the configuration in which the dither pattern is combined with the configuration of the second embodiment as in the fifth embodiment described above. be able to.
  • FIG. 26 is a block diagram showing a schematic configuration of a liquid crystal display device 90 according to the seventh embodiment of the present invention.
  • the liquid crystal display device 90 of this embodiment includes a MAX and MIN changing unit 91 (tone range changing unit) that changes the minimum value (MIN) and the maximum value (MAX) when the tone conversion unit 31 performs tone conversion.
  • MAX and MIN changing unit 91 tone range changing unit
  • MIN minimum value
  • MAX maximum value
  • FIG. 26 the viewing angle adjustment circuit 30 is simplified, but the configuration of the viewing angle adjustment circuit 30 is the same as the configuration of the second embodiment.
  • the MAX and MIN changing unit 91 outputs a minimum value (MIN) that is a threshold value for black display to the gradation converting unit 31 and white according to a mode input from the outside.
  • MIN minimum value
  • MAX maximum value
  • the liquid crystal display device 90 is provided with a mode selection switch capable of selecting, for example, a viewing angle improvement mode and an image quality priority mode.
  • a mode selection switch capable of selecting, for example, a viewing angle improvement mode and an image quality priority mode.
  • the minimum value (MIN) means a threshold value for converting the gradation below it to black display
  • the maximum value (MAX) means a threshold value for converting the gradation above it to white display. .
  • the MAX and MIN changing unit 91 increases the minimum value (MIN) and the maximum value (MAX) of the intermediate gradation range compared to the image quality priority mode.
  • the MAX and MIN changing unit 91 decreases the minimum value (MIN) and increases the maximum value (MAX) of the intermediate gradation range as compared with the viewing angle improvement mode.
  • the minimum value (MIN) and the maximum value (MAX) of the gradation conversion range in the gradation adjustment unit 31 of the viewing angle adjustment circuit 30 are changed according to the selected mode, so that it is suitable for each mode.
  • Video display can be performed.
  • the viewing angle improvement mode the viewing angle of the liquid crystal panel 11 is improved by expanding the gradation range to be converted into white display and black display.
  • the image quality priority mode the display image on the liquid crystal panel 11 can be made closer to the original image by narrowing the gradation range for conversion to white display and black display.
  • the minimum value (MIN) and the maximum value (MAX) of the intermediate gradation range in the gradation conversion unit 31 of the viewing angle adjustment circuit 30 are changed according to the selected mode. Thereby, it is possible to perform screen display suitable for the selected mode.
  • FIG. 27 is a block diagram showing a schematic configuration of a liquid crystal display device 100 according to the eighth embodiment of the present invention.
  • the liquid crystal display device 100 according to this embodiment detects the number of people viewing the liquid crystal panel 11, and changes the minimum value (MIN) and maximum value (MAX) of the intermediate gradation range according to the number of people.
  • the configuration is different from that of the seventh embodiment.
  • the same components as those in the seventh embodiment are denoted by the same reference numerals, description thereof is omitted, and differences from the seventh embodiment are mainly described.
  • the liquid crystal display device 100 includes a camera unit 101 that captures an image of a person who is viewing the liquid crystal panel 11, and viewing that detects the number of viewers from an image acquired by the camera unit 101. And a number detection unit 102.
  • the camera unit 101 may be provided integrally with the liquid crystal display device 100, for example, or may be provided separately from the liquid crystal display device 100.
  • the viewer number detection unit 102 performs image processing using an image photographed by the camera unit 101 and detects the number of viewers located on the display surface side of the liquid crystal panel 11.
  • the viewer number detection unit 102 detects a person viewing the liquid crystal panel 11 by recognizing a human face in the image, for example. Then, the viewing number detection unit 102 outputs the number of people viewing the liquid crystal panel 11 as a signal.
  • the liquid crystal display device 100 changes the minimum value (MIN) and maximum value (MAX) of the intermediate gradation range in the gradation conversion unit 31 of the viewing angle adjustment circuit 30 according to the number of people viewing the liquid crystal panel 11.
  • a MAX and MIN changing unit 103 is included.
  • the MAX / MIN changing unit 103 increases the minimum value (MIN) and decreases the maximum value (MAX) when the number of people viewing the liquid crystal panel 11 is large compared to when the number of viewers is small.
  • the viewing angle of the liquid crystal panel 11 is improved.
  • the MAX and MIN changing unit 103 reduces the minimum value (MIN) and increases the maximum value (MAX) when the number of viewers of the liquid crystal panel 11 is small compared to when the number of viewers is large. Give priority to display quality.
  • the MAX and MIN changing unit 103 sets the maximum value (MAX) to the gradation 256 and sets the minimum value (MIN) to the gradation zero. If the number of viewers of the liquid crystal panel 11 is two, the MAX and MIN changing unit 103 sets the maximum value (MAX) to the gradation 224 and sets the minimum value (MIN) to the gradation 32. Further, if the number of viewers of the liquid crystal panel 11 is three or more, the maximum value (MAX) is set to the gradation 192 and the minimum value (MIN) is set to the gradation 64. Since the above-described gradation and number of people are examples, the minimum value (MIN) and the maximum value (MAX) may be changed based on the number of people other than this.
  • the viewer's It is possible to display an image suitable for the position. That is, when the number of viewers of the liquid crystal panel 11 is small, it is presumed that the viewer is viewing from almost the center of the display surface of the liquid crystal panel 11, so display image quality is given priority. On the other hand, when the number of viewers of the liquid crystal panel 11 is large, it is estimated that there are many viewers viewing from the oblique direction with respect to the display surface of the liquid crystal panel 11. Priority.
  • the minimum value (MIN) and maximum value (MAX) of the intermediate gradation range in the gradation conversion unit 31 of the viewing angle adjustment circuit 30 are changed according to the number of people viewing the liquid crystal panel 11. Accordingly, the position of the viewer viewing the liquid crystal panel 11 can be estimated based on the number of viewers of the liquid crystal panel 11, and optimal video display can be performed on the liquid crystal panel 11.
  • the display image quality is prioritized without unnecessarily improving the viewing angle characteristics of the liquid crystal panel 11. can do.
  • the number of viewers is large, it is estimated that the viewer is viewing the liquid crystal panel 11 from an oblique direction with respect to the display surface, and the viewing angle characteristics are improved more than the display image quality of the liquid crystal panel 11. Priority can be given.
  • FIG. 28 is a block diagram showing a schematic configuration of a liquid crystal display device 110 according to the ninth embodiment of the present invention.
  • the liquid crystal display device 110 of this embodiment is different from the configuration of the eighth embodiment described above in that the viewing position is detected.
  • the same components as those in the eighth embodiment are denoted by the same reference numerals, description thereof is omitted, and only different portions are described.
  • the liquid crystal display device 110 includes a camera unit 101 similar to that in the eighth embodiment, and a viewing position detection that detects a viewer position from an image acquired by the camera unit 101. Part 111.
  • the viewing position detection unit 111 performs image processing using an image captured by the camera unit 101 and detects a viewer located on the display surface side of the liquid crystal panel 11.
  • the viewer number detection unit 102 detects a person viewing the liquid crystal panel 11 by recognizing a human face in the image, for example.
  • the viewer number detection unit 102 is the person who is viewing the liquid crystal panel 11 and is located most diagonally with respect to the display surface (the person located at the largest angular position with respect to the normal of the display surface).
  • the angle position (angle with respect to the normal to the display surface) is output as a signal.
  • the liquid crystal display device 110 changes the minimum value (MIN) and maximum value (MAX) of the intermediate gradation range in the gradation conversion unit 31 of the viewing angle adjustment circuit 30 according to the angular position of the viewer of the liquid crystal panel 11.
  • a MAX and MIN changing unit 112 is included.
  • a value (MIN) and a maximum value (MAX) are obtained. Note that the relationship between the angular position ⁇ and the minimum value and the maximum value is not limited to the above-described relationship, and may be a relationship in which the minimum value increases and the maximum value decreases as the angular position ⁇ increases.
  • the intermediate gradation range of the liquid crystal panel 11 can be changed according to the angular position of the viewer of the liquid crystal panel 11. Therefore, when the viewer is viewing from a position close to the normal to the display surface of the liquid crystal panel 11, the minimum value (MIN) decreases and the maximum value (MAX) increases, so display image quality is given priority. be able to. On the other hand, when the viewer is viewing from a position at a large angle with respect to the normal line of the liquid crystal panel 11, the minimum value (MIN) increases and the maximum value (MAX) decreases. The adjustment area increases. Thereby, priority can be given to the improvement of the viewing angle characteristic of the liquid crystal panel 11. FIG.
  • the minimum value (MIN) and the maximum value (MIN) of the intermediate gradation range in the gradation conversion unit 31 of the viewing angle adjustment circuit 30 according to the angular position of the viewer with respect to the normal line of the display surface of the liquid crystal panel 11 ( MAX) is changed.
  • an optimal video display can be performed on the liquid crystal panel 11 in accordance with the angular position of the viewer of the liquid crystal panel 11.
  • liquid crystal display device that displays an image with gradations 0 to 256 is shown.
  • the present invention is not limited to this, and the liquid crystal display device displays an image with different gradations other than gradations 0 to 256. It may be configured to perform.
  • the liquid crystal display device performs monochrome display
  • the present invention is not limited to this, and the liquid crystal display device may be configured to be capable of color display.
  • gradation conversion as in each of the above embodiments may be performed for each color.
  • the gradation of the output signal is changed stepwise with respect to the gradation of the video signal input to the viewing angle adjustment circuit 13 in the intermediate gradation range.
  • the gradation of the signal is converted so as to be proportional to the gradation of the video signal input to the viewing angle adjustment circuit 30 in the intermediate gradation range.
  • the gradation of the output signal is changed stepwise in a part of the intermediate gradation range, and is proportional to the gradation of the input video signal in the other range.
  • the gradation may be converted.
  • the error value constituting the dither pattern may be other than the values shown in the above-described embodiments.
  • the dither pattern may be a pattern different from the above-described embodiment, or may be a pattern for a pixel group other than four pixels.
  • the MAX and MIN changing units 91, 103, and 112 are provided in the second embodiment.
  • the present invention is not limited to this, and the MAX and MIN changing units 91, 103, and 112 may be provided for the first, third to sixth embodiments.
  • the liquid crystal display device according to the present invention can be used to improve the viewing angle of a liquid crystal panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

液晶表示装置において、液晶パネルの視野角を改善しつつ、元の映像に近い滑らかな映像を表示できるような構成を得る。液晶表示装置(1)は、複数の画素がマトリクス状に配置された液晶パネル(11)と、前記各画素に対して入力される映像信号の階調を変更することにより、液晶パネル(11)の視野角を調整する視野角調整装置(13)と、を備えている。視野角調整装置(13)は、入力される信号の階調を、下限値以下では黒表示とし且つ上限値以上では白表示とするとともに、中間階調範囲の少なくとも一部で階調変換を行う階調変換部(21)と、階調変換部(21)から出力された信号の階調と該階調変換部に入力される信号の階調との誤差を求める誤差算出部(22)と、該誤差を用いて、階調変換部(21)に入力される次の画素に対する信号の階調を補正する誤差補正部(24)とを有する。

Description

液晶表示装置
 本発明は、液晶パネルを有する液晶表示装置に関する。
 従来より、液晶パネルを有する液晶表示装置が知られている。このような液晶表示装置では、例えば特開平6-222740号公報に開示されるように、液晶パネルの複数の画素からなる表示単位(画素群)に対し、液晶パネルの視野角改善のために所定のパターンで画素の階調を補正する。このように、複数の画素からなる表示単位に対し、所定のパターンで画素の階調を補正する方法は、一般的に、ディザ法と呼ばれている。
 ところで、前記特開平6-222740号公報に開示されている構成のようなディザ法を用いて各画素の階調を補正すると、白表示や黒表示の画素が増えて映像が点状に表示される。そのため、補正後の画像は、見づらい映像になってしまう。また、上述のようなディザ法を用いると、解像度が低下するため、特に文字などを認識しにくくなる可能性がある。
 本発明の目的は、液晶表示装置において、液晶パネルの視野角を改善しつつ、元の映像に近い滑らかな映像を表示可能な構成を得ることにある。
 本発明の一側面に係る液晶表示装置は、複数の画素がマトリクス状に配置された液晶パネルと、前記各画素に対して入力される映像信号の階調を変更することにより、前記液晶パネルの視野角を調整する視野角調整装置と、を備え、前記視野角調整装置は、入力される信号の階調を、下限値以下では黒表示とし且つ上限値以上では白表示とするとともに、下限値と上限値との間の中間階調範囲の少なくとも一部で階調変換を行う階調変換部と、前記階調変換部によって階調変換されて出力された信号の階調と該階調変換部に入力される信号の階調との誤差を求める誤差算出部と、前記誤差算出部によって算出された誤差を用いて、前記階調変換部に入力される次の画素に対する信号の階調を補正する誤差補正部と、を有する。
 本発明の一実施形態により、液晶パネルの視野角を改善しつつ、元の映像に近い滑らかな映像を表示可能な構成が得られる。
図1は、第1の実施形態に係る液晶表示装置の概略構成を示すブロック図である。 図2は、第1の実施形態に係る視野角調整回路の概略構成を示す図である。 図3は、液晶パネルを正面から見た場合における映像信号の階調と液晶パネルの透過率との関係の一例を示す図である。 図4は、液晶パネルを斜め方向から見た場合における映像信号の階調と液晶パネルの透過率との関係の一例を示す図である。 図5は、液晶パネルを正面から見た場合と斜め方向から見た場合における液晶パネルの透過率の違いの一例を示す図である。 図6は、視野角調整回路に入力される各種信号の一例である。 図7は、第1の実施形態に係る液晶表示装置において、視野角調整回路に入力される映像信号の階調と該視野角調整回路から出力される映像信号の階調との関係を示す図である。 図8は、入力映像を、ディザ法及び第1の実施形態の構成によって階調変換した場合の例を示す図である。 図9は、第2の実施形態に係る液晶表示装置の視野角調整回路の概略構成を示す図である。 図10は、第2の実施形態に係る液晶表示装置において、視野角調整回路に入力される映像信号の階調と該視野角調整回路から出力される映像信号の階調との関係を示す図である。 図11は、入力映像を、第2の実施形態の構成によって階調変換した場合の例を示す。 図12は、第3の実施形態に係る液晶表示装置の概略構成を示すブロック図である。 図13は、第3の実施形態に係る視野角調整回路の概略構成を示す図である。 図14は、入力映像を、誤差初期値なしで階調変換した場合と誤差初期値ありで階調変換した場合の例を示す。 図15は、第4の実施形態に係る液晶表示装置の概略構成を示すブロック図である。 図16は、第4の実施形態に係る視野角調整回路の概略構成を示す図である。 図17は、入力映像を、第4の実施形態の構成によって階調変換した場合の例を示す。 図18は、第5の実施形態に係る液晶表示装置の概略構成を示すブロック図である。 図19は、第5の実施形態に係る視野角調整回路の概略構成を示す図である。 図20は、入力映像を、第5の実施形態の構成によって階調変換した場合の例を示す。 図21は、第5の実施形態の変形例に係る液晶表示装置の概略構成を示すブロック図である。 図22は、第5の実施形態の変形例に係る視野角調整回路の概略構成を示す図である。 図23は、第6の実施形態に係る液晶表示装置の概略構成を示すブロック図である。 図24は、第6の実施形態に係る視野角調整回路の概略構成を示す図である。 図25は、入力映像を、第6の実施形態の構成によって階調変換した場合の例を示す。 図26は、第7の実施形態に係る液晶表示装置の概略構成を示すブロック図である。 図27は、第8の実施形態に係る液晶表示装置の概略構成を示すブロック図である。 図28は、第9の実施形態に係る液晶表示装置の概略構成を示すブロック図である。
 本発明の一実施形態にかかる液晶表示装置は、複数の画素がマトリクス状に配置された液晶パネルと、前記各画素に対して入力される映像信号の階調を変更することにより、前記液晶パネルの視野角を調整する視野角調整装置と、を備え、前記視野角調整装置は、入力される信号の階調を、下限値以下では黒表示とし且つ上限値以上では白表示とするとともに、下限値と上限値との間の中間階調範囲の少なくとも一部で階調変換を行う階調変換部と、前記階調変換部によって階調変換されて出力された信号の階調と該階調変換部に入力される信号の階調との誤差を求める誤差算出部と、前記誤差算出部によって算出された誤差を用いて、前記階調変換部に入力される次の画素に対する信号の階調を補正する誤差補正部と、を有する(第1の構成)。
 上記の構成により、液晶パネルの視野角を調整する視野角調整装置に入力される信号の階調と、前記視野角調整装置で階調変換されて出力される信号の階調との誤差を考慮して、前記視野角調整装置に入力される次の画素の信号の階調を補正することができる。これにより、視野角調整装置における階調変換の誤差を補正して、元の映像により近い映像を液晶パネルに表示させることが可能になる。
 しかも、視野角調整装置では、入力される信号を、下限値以下の階調では黒表示とし且つ上限値以上の階調では白表示とすることで、黒表示及び白表示となる階調範囲を広げることができる。これにより、液晶パネルの視野角特性の向上を図れる。
 したがって、以上の構成により、液晶パネルの視野角特性の向上を図りつつ、元の映像により近い滑らかな映像を液晶パネルに表示させることができる。
 前記第1の構成において、前記階調変換部は、前記中間階調範囲において、該階調変換部に入力される信号の階調を、該階調に比例した階調に変換するように構成されている(第2の構成)。
 これにより、中間階調範囲内の階調を有する信号は、階調が大きく異なる信号には変換されない。よって、液晶パネルに元の映像により近い映像を表示させることが可能になる。
 前記第1の構成において、前記階調変換部は、前記中間階調範囲において、該階調変換部に入力される信号の階調を、少なくとも一部の階調範囲では一定の階調に変換するように構成されている(第3の構成)。
 こうすることで、中間階調範囲内の階調を有する信号を、より明暗のはっきりした階調を有する信号へ変換することが可能になる。よって、上述の構成により、液晶パネルの視野角特性の向上を図れる。
 前記第1から第3の構成のうちいずれか一つの構成において、前記液晶パネルは、複数の画素が一例に並んだラインを複数、有していて、前記ラインにおいて前記階調変換部によって最初に階調変換が行われる画素の映像信号の階調に対し、隣り合うライン毎に異なる誤差初期値を設定する誤差初期値設定部をさらに備える(第4の構成)。
 このように、液晶パネルの各ラインで最初に階調変換が行われる画素の階調に対して誤差初期値を与えることにより、該ライン上の画素の階調を、明暗のはっきりした階調に変更することが可能になる。しかも、隣り合うライン毎に前記誤差初期値が異なるため、液晶パネル全体として、明暗がよりはっきりした映像を表示することができる。これにより、液晶パネルの視野角特性をさらに改善することができる。
 前記第4の構成において、前記誤差初期値設定部は、前記隣り合うラインに与える誤差初期値の大小関係が前記液晶パネルの表示フレーム毎に入れ替わるように、各ラインに誤差初期値を設定する(第5の構成)。
 これにより、各画素で表示フレーム毎に明暗が変化するため、視認者には、それらの平均の階調の映像、すなわち入力映像に近い映像として見える。一方、各フレームでは、誤差初期値を与えているので、各画素の階調が変化して液晶パネルの視野角特性が改善される。
 したがって、上述の構成により、入力映像により近い映像を表示しつつ、液晶パネルの視野角特性を改善することができる。
 前記第5の構成において、前記誤差初期値設定部は、各ラインにおいて誤差初期値の合計がゼロになるように、該各ラインに対して前記液晶パネルの表示フレーム毎に正負が異なる誤差初期値を設定する(第6の構成)。
 こうすることで、各表示フレームでは視野角改善を図りつつ、視認者は平均的な階調で表示された映像を視認することになる。これにより、元の映像に近い映像を表示しつつ、液晶パネルの視野角特性を向上することができる。
 前記第1から第6の構成のうちいずれか一つの構成において、複数の画素からなる画素群内で予め定められた誤差パターンを、前記階調変換部に入力される信号及び前記誤差算出部によって算出された誤差のいずれか一方に加算する誤差加算部をさらに備える(第7の構成)。
 このように、複数の画素からなる画素群内で予め定められた誤差パターンによって階調の補正を行うディザ法をさらに組み合わせることで、液晶パネルの視野角特性をさらに向上することができる。
 前記第7の構成において、前記誤差加算部は、前記画素群内の各画素において前記誤差パターンによる誤差がゼロになるように、前記液晶パネルの表示フレーム毎に前記誤差パターンを変更する(第8の構成)。こうすることで、各画素において、表示フレーム毎に異なる誤差パターンのディザ法によって階調が補正されるため、視認者は、それらの平均の階調で表示された映像を視認することになる。これにより、元の映像により近い映像を表示しつつ、各表示フレームでは液晶パネルの視野角特性を向上することが可能になる。
 前記第1から第8の構成のうちいずれか一つの構成において、前記下限値及び上限値の少なくとも一方を変更する階調範囲変更部をさらに備える(第9の構成)。
 これにより、黒表示の基準となる下限値及び白表示の基準となる上限値を変更することができるため、液晶パネルの視野角特性を向上する場合と、元の映像に近い滑らかな映像を表示する場合とを容易に実現できる。すなわち、下限値を大きくするとともに上限値を小さくすることで、黒表示及び白表示の階調領域の範囲が広くなるため、液晶パネルの視野角特性を効率良く改善することができる。一方、下限値を小さくするとともに上限値を大きくすることで、黒表示及び白表示の階調領域の範囲が狭くなるため、元の映像に近い階調で表示することが可能になり、該元の映像に近い滑らかな映像を表示することができる。
 前記第9の構成において、前記液晶パネルを視認している視認者の人数を検出する視認人数検出部をさらに備え、前記階調範囲変更部は、前記視認人数検出部による視認人数の検出結果に応じて前記下限値及び上限値の少なくとも一方を変更するように構成されている(第10の構成)。
 こうすることで、液晶パネルを視認している視認者の人数に応じて下限値及び上限値の少なくとも一方を変更できるため、該視認者の人数に応じて液晶パネルの視野角特性を改善できる。すなわち、液晶パネルの視認者の人数が多くなると、該液晶パネルの表示面に対して斜め方向から視認する視認者が増えるため、その分、視野角特性を向上する必要がある。一方、液晶パネルの視認者の人数が少ない場合には、該液晶パネルの表示面に対して斜め方向から視認する視認者は少ないため、視野角特性を向上することよりも、より元の映像に近い滑らかな映像を表示する方が好ましい。このような視認者の人数から推測される要求に応じて下限値及び上限値の少なくとも一方を変更することよって、液晶パネルを視認している視認者に対して、より適した条件で映像を出力することができる。
 前記第9の構成において、前記液晶パネルを視認している視認者の位置を検出して、該視認者と前記液晶パネルの表示面の法線とのなす角度を求める視認位置検出部をさらに備え、前記階調範囲変更部は、前記視認位置検出部による前記角度の検出結果に応じて前記下限値及び上限値の少なくとも一方を変更するように構成されている(第11の構成)。
 これにより、液晶パネルを視認している視認者の角度位置、すなわち、該視認者と液晶パネルの表示面の法線とのなす角度に応じて、下限値及び上限値の少なくとも一方を変更することができる。すなわち、液晶パネルに対して斜め方向から視認している視認者がいる場合には、該液晶パネルの視野角特性を向上する必要がある一方、液晶パネルに対してほぼ正面から視認している視認者しかいない場合には、元の映像により近い滑らかな映像表示が求められる。このような液晶パネルに対する視認者の角度位置に応じて下限値及び上限値の少なくとも一方を変更することによって、液晶パネルを視認している視認者に対して、より適した条件で映像を出力することができる。
 以下、本発明の液晶表示装置の好ましい実施形態について、図面を参照しながら説明する。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 図1に、本発明の第1の実施形態に係る液晶表示装置1の概略構成をブロック図で示す。この液晶表示装置1は、液晶パネル11と、バックライト12と、視野角調整回路13(視野角調整装置)とを備えている。液晶表示装置1は、詳しくは後述するように、液晶パネル11の各画素の階調を入力映像の階調から変えることにより、該液晶パネル11の表示面の視野角特性を向上するように構成されている。なお、図1は、液晶パネル11を駆動させるためのソースドライバ、ゲートドライバ等の図示、及び、それらのドライバに入力される垂直同期信号及び水平同期信号などの各種信号の図示を省略している。本実施形態の液晶表示装置1は、例えば、テレビ、ゲーム機、パソコン、携帯情報端末等の表示部として用いることができる。
 液晶パネル11は、特に図示しないが、多数の画素がマトリクス状に配列されたアクティブマトリクス基板と、該アクティブマトリクス基板に対向して配置される対向基板と、これらの基板の間に封入された液晶層とを備えている。なお、この液晶パネル11は、例えば透過型の液晶パネルであってもよいし、反射型や半反射型の液晶パネルであってもよい。すなわち、液晶パネル11は、映像を表示可能な構成であれば、どのような構成であってもよい。
 前記アクティブマトリクス基板には、特に図示しないが、スイッチング素子としての薄膜トランジスタと、画素電極と、それらを囲むように格子状に配置された複数行のゲート線及び複数列のソース線とが設けられている。
 前記対向基板は、前記アクティブマトリクス基板の少なくとも画素電極と対向する位置に配置されている。この対向基板には、対向電極が設けられている。この対向電極と、前記アクティブマトリクス基板の画素電極と、両者の間に配置される液晶層とによって、各画素が形成される。
 前記アクティブマトリクス基板における薄膜トランジスタのゲート電極は、ゲート線を介して上述のゲートドライバに接続されている。よって、ゲートドライバからゲート線に対してゲート電圧を出力すると、該ゲート線に接続された薄膜トランジスタは選択状態になる。なお、ゲートドライバは、垂直同期信号を参照して、ゲート電圧を出力する。
 一方、薄膜トランジスタのソース電極は、ソース線を介して上述のソースドライバに接続されている。このソースドライバは、入力される映像信号に基づいて、映像の階調表示に必要な階調表示信号を生成する。よって、ソースドライバからソース線に対して階調表示信号を駆動電圧として出力すると、前記ゲートドライバによって選択されたゲート線に接続された薄膜トランジスタを介して各画素の液晶に電圧が印加される。すなわち、ソースドライバは、映像信号に基づいて、各ゲート線に対応する駆動電圧を出力することにより、各画素の階調表示を可能にする。なお、ソースドライバは、水平同期信号を参照して、駆動電圧を出力する。
 バックライト12は、特に図示しないが、液晶パネル11の厚み方向の一方側に配置されている。バックライト12としては、例えば、直下型やエッジライト型、平面光源型を用いることができる。また、バックライト12の光源としては、例えば、冷陰極管や発光ダイオード等を用いることができる。
 視野角調整回路13は、液晶パネル11に入力する映像信号の階調を、該液晶パネル11の表示面での視野角特性を向上するように変換する。すなわち、視野角調整回路13は、液晶パネル11の表示面で視野角特性が改善されるように、元の映像信号の階調を変換して液晶パネル11に出力するように構成されている。
 ここで、液晶パネル11の視野角特性について、図3から図5を用いて説明する。液晶パネル11は、液晶層に電圧を印加して該液晶層内の液晶分子の配向状態を変化させることにより、光の透過率を調整している。液晶パネル11は、表示面に対する視認方向によって液晶分子の配向状態が相対的に変化するため、他の表示装置に比べると視野角が狭い。例えば、図3に示すように液晶の透過率が映像信号の階調に比例している液晶パネルの場合、液晶パネルの表示面を該表示面の法線に対して斜め方向(例えば45度)から見ると、図4に示すように、一部の階調では、透過率が上昇したように見える。なお、図3及び図4では、映像信号の階調が256のときに液晶パネルの透過率が1になるように正規化している。
 例えば、図3に示すように、映像信号の階調が128の場合、液晶パネル11の表示面を正面から見ると透過率が0.5である。これに対し、図4に示すように表示面を斜め方向(表示面の法線に対して45度)から見ると透過率が0.75となる。これを液晶パネル11に表示される映像の一例(正面から見た場合に透過率が0.5の映像)で説明すると、図5に映像1で示すように、液晶パネル11を斜め方向(表示面の法線に対して45度)から見た場合に透過率が0.75になって、白っぽく見える。
 これに対し、図5の映像2に示すように、液晶パネル11を正面から見たときに平均の透過率が映像1と同等の0.5になるように、映像信号の階調がゼロ(黒表示)になる画素(斜線部分)を千鳥状に配置する。そうすると、液晶パネル11を斜め方向(表示面の法線に対して45度)から見ても平均の透過率は0.5になる。
 このように、中間の階調(例えば階調128)の映像を液晶パネル11に表示する場合(図5の映像1)には、視認方向によって液晶パネル11の透過率が大きく変化する。そのため、図5の映像2のように視野角改善を行う。このような視野角改善の方法としては、例えばディザ法などがある。
 ところが、図5の映像2のような映像表示を行うと、階調がゼロ(黒表示)になる画素及び階調が最大(白表示)になる画素が混在した状態になる。よって、図5の映像2のように、元の映像とは異なり、点状の映像に見える。そのため、元の映像と表示する映像とが大きく異なり、表示画質の低下を招くことになる。
 本実施形態では、視野角調整回路13を、液晶パネル11の視野角改善を行いつつ、より元の映像に近い映像表示が可能な構成とする。具体的には、図1及び図2に示すように、視野角調整回路13は、入力される映像信号(以下、入力映像信号という)を、視野角特性を改善するような出力映像信号に変換するように構成されている。しかも、視野角調整回路13は、出力映像信号の階調と入力映像信号の階調との誤差を次の画素の階調変換に利用するという、いわゆる誤差拡散法を用いるように構成されている。
 より詳しくは、図1及び図2に示すように、視野角調整回路13は、入力映像信号の階調を変換する階調変換部21と、該階調変換部21によって変換された信号の階調と変換前の信号の階調との誤差を求める誤差算出部22と、その誤差を記憶する誤差保持部23と、誤差を用いて次の画素の入力信号を補正する誤差補正部24とを有する。また、視野角調整回路13には、液晶パネル11に入力される各信号(図示省略)とは別に、図1及び図6に示すような各種信号が入力される。すなわち、視野角調整回路13には、図1及び図6に示すように、基準信号としてのクロック信号(クロック)、映像信号、垂直同期信号、水平同期信号及び有効信号が入力される。なお、有効信号は、映像信号が出力されている期間に出力される信号で、一般的に映像信号同士の間に設けられるブランキング期間を消すために用いられる。
 階調変換部21は、図2に示すように、入力される信号の階調xに応じて、出力する信号の階調yを求めるように構成されている。詳しくは、階調変換部21は、入力される信号の階調xを、予め定められた下限値である最小値(MIN)及び上限値である最大値(MAX)と比較して、該最小値(MIN)よりも小さい場合にはy=0(本実施形態では黒表示)、最大値(MAX)よりも大きい場合にはy=256(本実施形態では白表示)とする。また、階調変換部21は、入力される信号の階調xが最小値(MIN)と最大値(MAX)の間であればy=R(設定値)とする。つまり、階調変換部21では、最小値(MIN)及び最大値(MAX)を設定することにより、黒標示(階調0)及び白表示(階調256)以外の映像を表示する中間階調範囲が規定される。
 図7に、階調変換部21において、入力される信号の階調xと出力される信号の階調yとの関係の一例を示す。この図7の例では、中間階調範囲の最小値(MIN)を64とし、最大値(MAX)を192とするとともに、128以上の階調では出力される信号の階調を192に変換している。この図7に示すように、最小値(=64)以下の階調の入力信号は、階調ゼロの出力信号に変換される一方、最大値(=192)以上の階調の入力信号は、階調256の出力信号に変換される。そして、128以上の階調の入力信号は、階調192の出力信号に変換される。
 このように、本実施形態では、階調変換部21によって、映像信号の階調は、その階調の値に応じて階段状に階調が変化する信号に変換される。また、上述のように、最小値及び最大値を決めて、最小値以下の階調の信号は階調ゼロの出力信号に変換する一方、最大値以上の階調の信号は最大階調に変更することで、黒表示及び白表示の階調をそれぞれ増やすことができる。これにより、液晶パネル11の視野角特性を向上することができる。
 図1及び図2に示すように、誤差算出部22は、階調変換部21に入力される信号の階調xと出力される信号の階調yとの誤差zを求める。すなわち、誤差算出部22は、階調変換部21によって階調が変換された際の階調の誤差を求めるように構成されている。
 誤差保持部23は、例えばメモリ装置などによって構成されていて、誤差算出部22で算出された誤差zを保持するように構成されている。この誤差保持部23には、図2に示すように、クロック信号や有効信号が入力される。誤差保持部23は、クロック信号と同期しつつ、映像信号の入力に合わせるように有効信号に応じて前記誤差zを誤差補正部24に出力する。
 図2に示すように、誤差補正部24は、誤差保持部23から出力された誤差zによって、映像信号の階調を補正するように構成されている。すなわち、この誤差補正部24では、階調変換部21で生じた階調の誤差zを、次の画素に対する映像信号の階調iの補正に利用する。誤差補正部24で補正された信号は、階調変換部21に対して入力される。
 上述のような視野角調整回路13の構成により、階調変換部21での誤差を収束させて、元の映像により近い映像を液晶パネル11に表示させることが可能になる。すなわち、視野角調整回路13によって、擬似中間調処理法の一つである誤差拡散法による視野角改善を実現することができる。
 次に、入力映像の階調を変換した一例について説明する。図8に、表示面全体が中間階調(例えば階調が126)で表示されている場合(図8の上段)と、文字“A”が中間階調(例えば階調が126)で表示されている場合(図8の下段)とを用いて、従来のディザ法及び本実施形態の方法によってそれぞれ階調の変換を行った例を示す。
 まず、ディザ法では、4つの画素からなる画素群に対応するディザパターンを用いて計算を行った。具体的には、図8の例では、太線で囲まれた4つの画素を一つの画素群として、この画素群に対するディザパターンを用いて計算する。図8の例のディザパターンでは、各画素の変換後の階調は、画素群内の画素の位置(図8の一番下の図参照)に応じて例えば下式によって算出される。
(1)図8のディザパターンにおける“1”の位置
 y=x×4(0≦x<64)、256(64≦x)
(2)図8のディザパターンにおける“2”の位置
 y=0(x<64)、(x-64)×4(64≦x<128)、256(128≦x)
(3)図8のディザパターンにおける“3”の位置
 y=0(x<128)、(x-128)×4(128≦x<192)、256(192≦x)
(4)図8のディザパターンにおける“4”の位置
 y=0(x<192)、(x-192)×4(192≦x)
 上述のようなディザ法を用いて各画素の階調を変換すると、図8に示すように、表示面全体が中間階調(例えば階調が126)の映像の場合には、黒表示の階調ゼロ(斜線部分)が千鳥状に現れる。そのため、液晶パネル11の視野角特性は向上できるが、点状の映像となって見にくくなる。また、“A”の文字は、ディザ法によって階調の変換を行うと、図8に示すように、文字として認識しにくくなってしまう。
 これに対して、上述の構成の視野角調整回路13を用いた本実施形態の階調変換は、図7に示すような入力信号の階調と出力信号の階調との関係を用いて行う。すなわち、MIN=64及びMAX=192として、階調変換部21において下式によって各画素で階調の計算を行う。
 y=0(x≦64)、64(64<x<128)、
192(128≦x<192)、256(192≦x)
 既述したように、階調変換部21の入力側の信号の階調と出力側の信号の階調との誤差を誤差算出部22によって求め、その誤差を誤差保持部23によって保持する。そして、次の画素の映像信号が視野角調整回路13に入力されるタイミングで誤差補正部24によって該映像信号の階調を前記誤差によって補正する。なお、本実施形態では、最初に計算する画素において、誤差補正部24によって補正する誤差はゼロとする。また、液晶パネル11におけるラインの最後の画素で得られた誤差は、次のラインの最初の画素の映像信号の補正に使用する。
 本実施形態の方法によって各画素の階調を変換すると、図8に示すように、表示面全体が中間階調(例えば階調が126)で表示された映像の場合には、表示面全体の各画素が階調にばらつきはあるものの中間階調(例えば階調が64、192)になる。すなわち、本実施形態の方法ではディザ法のように千鳥状に黒表示の画素が存在する表示にはならないため、元の表示映像により近い映像を表示することができる。これは、文字“A”を表示した場合の例がより顕著である。すなわち、本実施形態の方法によって、中間階調(例えば階調が126)で表示される文字“A”の階調を変換した場合、各画素で階調が異なる(例えば階調が64、192)ものの、ディザ法のように文字として認識しづらくなることはない。
 また、上述のような階調変換を行うことにより、図5に映像3として示すように、液晶パネル11を正面から見た場合の透過率0.5に対し、該液晶パネル11を斜め方向(表示面の法線に対して45度)から見た場合の透過率の平均が0.6になる。よって、上述のような階調変換を行うことにより、階調変換を行わない場合(映像1)に比べて液晶パネル11の視野角特性の向上を図れる。なお、図5の映像3の場合も、図3及び図4を用いて、透過率を算出した一例である。
 なお、この実施形態では、階調64よりも大きくて階調128よりも小さい範囲の映像信号の階調を、階調64に変換するとともに、階調128以上で階調192よりも小さい範囲の映像信号の階調を、階調192に変換している。しかしながら、中間階調範囲で変換される階調は一つであってもよいし、中間階調範囲を3つ以上の範囲に分けてそれぞれ異なる階調に変換してもよい。
 (第1の実施形態の効果)
 この実施形態では、階調変換部21の入力側の信号の階調と出力側の信号の階調との誤差を用いて、次の画素の階調変換を行う。これにより、液晶パネル11の視野角特性を改善しつつ、元の映像により近い映像を表示することができる。
 しかも、階調変換部21では、最小値(MIN)以下の階調は階調ゼロ(黒表示)に変換するとともに、最大値(MAX)以上の階調では最大階調(白表示)に変換するため、黒表示及び白表示の階調範囲を増やすことができ、液晶パネル11の視野角特性を改善することができる。
 [第2の実施形態]
 図9に、本発明の第2の実施形態に係る液晶表示装置の視野角調整回路30(視野角調整装置)の概略構成を示す。この実施形態の視野角調整回路30は、階調変換部31の構成が第1の実施形態とは異なる。以下の説明では、第1の実施形態の構成と同一の部分には同一の符号を付して説明を省略し、第1の実施形態と異なる部分について主に説明する。
 具体的には、階調変換部31は、入力される信号の階調xが最小値(MIN)と最大値(MAX)との間(中間階調範囲)であれば、下式によって、出力する信号の階調yを求める。なお、本実施形態の階調変換部31でも、入力される信号の階調xが最小値(MIN)以下であれば出力する信号の階調yをゼロに変更する一方、入力される信号の階調xが最大値(MAX)以上であれば出力する信号の階調yを最大階調に変更する。
 y=(x-MIN)×256/(MAX-MIN)
 すなわち、この実施形態では、階調変換部31は、図10に示すように、入力される信号の階調xが最小値(MIN)と最大値(MAX)の間(中間階調範囲)の場合には、階調xを該階調xに比例する階調yに変換するように構成されている。つまり、本実施形態において、中間階調範囲では、入力する信号(x)の階調は図10に示すような一次関数を用いて変換される。
 本実施形態の階調変換部31を用いた場合の階調変化の一例を図11に示す。この図11に示すように、全画面で中間階調(例えば階調が128)の映像が表示されている場合でも文字“A”を中間階調(例えば階調が128)で表示している場合でも、入力映像の階調を本実施形態の視野角調整回路30によって変換すると、出力映像も中間階調で表示される。したがって、本実施形態の構成によって、液晶パネル11に元の映像により近い映像を表示させることができる。
 (第2の実施形態の効果)
 この実施形態では、入力される信号の階調が最小値(MIN)と最大値(MAX)との間の中間階調範囲内であれば、一次関数を用いて階調の変換を行う。これにより、液晶パネル11に元の映像により近い映像を表示させることが可能になる。
 [第3の実施形態]
 図12に、本発明の第3の実施形態に係る液晶表示装置40の概略構成をブロック図で示す。この実施形態では、液晶表示装置40の視野角調整回路41(視野角調整装置)の構成が上述の第2の実施形態とは異なる。以下の説明において、上述の第2の実施形態と同一の構成には同一の符号を付して説明を省略し、第2の実施形態と異なる点について主に説明する。
 具体的には、図12及び図13に示すように、視野角調整回路41は、実施形態1と同様の誤差算出部22、誤差保持部23及び誤差補正部24と、実施形態2と同様の階調変換部31とを有している。すなわち、この実施形態も、上述の実施形態2と同様、階調変換部31は、入力される信号の階調が最小値(MIN)と最大値(MAX)との間であれば、該入力される信号の階調を一次関数によって変換して出力するように構成されている。
 また、本実施形態の視野角調整回路41は、液晶パネル11で各ラインの最初に画素の階調変換を行う際に、誤差の初期値を誤差保持部23に与える誤差初期値設定部42を有している。この誤差初期値設定部42は、入力される水平同期信号に基づいて、各ラインの最初の画素を識別するように構成されている。そして、誤差初期値設定部42は、水平同期信号に基づいて、次に階調の変換を行う画素が各ラインの最初の画素であることを検出した場合に、誤差の初期値を誤差保持部23に対して出力する。なお、この誤差初期値設定部42によって出力する誤差の初期値は、ライン毎に異なるのが好ましく、隣り合うラインで誤差の初期値がゼロになるような値がより好ましい。例えば図14に示すように、或るラインの最初の画素に対して誤差の初期値を32とした場合には、次のラインの最初の誤差の初期値を-32とするのが好ましい。
 誤差初期値設定部42から出力された誤差の初期値は、誤差保持部23で保持された後、有効信号に応じて映像信号が入力されたときに、クロック信号に同期して、誤差補正部24に対して出力される(図12及び図13参照)。これにより、誤差補正部24では、誤差の初期値を用いて、液晶パネル11におけるラインの最初の画素に対する映像信号を補正する。
 本実施形態では、誤差保持部23は、液晶パネル11のラインが変わる毎に、すなわち、誤差初期値設定部42から誤差の初期値が入力される毎に、誤差保持部23内に保持されている誤差を初期値に変更する。なお、このような構成に限らず、誤差保持部23は、ラインが変わる際に、そのときの誤差と誤差初期値設定部42から出力される誤差の初期値とを加算してもよい。
 上述のように、各ラインの最初の画素に対する映像信号に対して誤差の初期値を付与する場合の階調の変化を図14に示す。この図14の中央部分に示すように、各ラインの最初の画素に対する映像信号に誤差の初期値を加えない場合には、入力映像とほぼ同じ出力映像になる場合がある。このような現象は、隣り合う画素間で透過率の差がほとんどない規則正しい静止画の場合に多く見られる。
 これに対し、図14の右側に示すように、各ラインの最初の画素に対する映像信号に誤差の初期値を加えることにより、ライン毎に変換後の階調に差が生じて、各画素の変換後の階調が入力映像から変化する。したがって、本実施形態の構成により、出力映像が入力映像とほぼ同等になるのを防止することができ、液晶パネル11の視野角特性を改善することができる。
 また、この実施形態の構成を用いた場合でも、ディザ法のように黒表示の画素が千鳥状に出現したり、文字として認識できなくなったりすることがない。よって、本実施形態の構成によっても、液晶パネル11の視野角特性を改善しつつ、液晶パネル11に元の映像により近い映像を表示させることができる。
 (第3の実施形態の効果)
 この実施形態では、各ラインの最初の画素に対する映像信号に、誤差の初期値を付与する。これにより、隣り合う画素間で透過率の差がほとんど生じない静止画の場合でも、入力映像がほぼそのまま出力映像として出力されるのを防止できる。
 したがって、本実施形態の構成により、静止画の場合でも、液晶パネル11の視野角を改善しつつ、液晶パネル11に元の映像により近い映像を表示させることができる。
 [第4の実施形態]
 図15に、本発明の第4の実施形態に係る液晶表示装置50の概略構成をブロック図で示す。この実施形態の液晶表示装置50は、視野角調整回路51(視野角調整装置)の構成が上述の第3の実施形態の構成とは異なる。以下の説明において、上述の第3の実施形態の構成と同一の構成については同一の符号を付して説明を省略し、第3の実施形態と異なる点について主に説明する。
 具体的には、図15及び図16に示すように、視野角調整回路51は、実施形態3と同様の階調変換部31、誤差算出部22、誤差保持部23及び誤差補正部24を有する。また、本実施形態の視野角調整回路51も、実施形態3と同様、誤差初期値設定部52を有する。さらに、本実施形態の視野角調整回路51は、表示フレームの切り替えを判別する表示フレーム判別部53を有する。
 表示フレーム判別部53は、垂直同期信号が入力されると、表示フレームが切り替えられたと判別して、誤差初期値設定部52に対して表示フレームの切り替え信号の出力を行う。なお、表示フレーム判別部53は、垂直同期信号の立ち上がりまたは立ち下りを検出することにより、表示フレームの切り替えを判別する。
 誤差初期値設定部52は、上述の実施形態3と同様、水平同期信号に基づいて、各ラインの最初の画素に対する映像信号に、誤差の初期値を付与するように構成されている。また、誤差初期値設定部52は、表示フレーム判別部53から出力された信号に基づいて、誤差の初期値を、前の表示フレームにおける誤差の初期値とは正負を反転させるように構成されている。すなわち、誤差初期値設定部52は、表示フレーム判別部53から信号が出力されると、その前の表示フレームにおいて各ラインに出力していた誤差の初期値の正負を逆にして、変換後の値を次の表示フレームの各ラインに出力する。
 本実施形態の視野角調整回路51を用いた場合の入力映像の階調変換結果を図17に示す。この図17に示すように、表示フレームが切り替わると、各ラインの最初の画素の入力信号に対して加算する誤差の初期値の正負が反転するため、表示フレーム毎に出力映像の各画素の階調が変化する。これにより、視認者は、各画素において、表示フレーム毎に変換する階調の平均値で視認していることになるため、上述の各実施形態の構成よりもさらに元の映像に近い映像を視認することができる。しかも、各表示フレームでは、各画素の階調が階調変換部31によって変換されているため、表示パネル11の視野角特性を改善することができる。
 (第4の実施形態の効果)
 この実施形態では、液晶パネル11における各ラインの最初の画素の入力信号に対して付与する誤差の初期値の正負を、表示フレーム毎に反転させる。これにより、視認者は、各画素において、表示フレーム毎に変化する階調の平均値で視認することになるため、元の映像にさらに近い映像で視認することができる。しかも、各表示フレームでは、各画素の階調は変換されているため、液晶パネル11の視野角特性を向上することができる。
 したがって、この実施形態の構成により、液晶パネル11の視野角特性を向上しつつ、視認者に元の映像にさらに近い映像を視認させることが可能になる。
 [第5の実施形態]
 図18に、本発明の第5の実施形態に係る液晶表示装置60の概略構成をブロック図で示す。この実施形態の液晶表示装置60は、視野角調整回路61(視野角調整装置)の構成が上述の第2の実施形態とは異なる。以下の説明において、第2の実施形態と同一の構成には同一の符号を付して説明を省略し、第2の実施形態と異なる構成について主に説明する。
 具体的には、図18及び図19に示すように、視野角調整回路61は、第2の実施形態と同様の階調変換部31、誤差算出部22、誤差保持部23及び誤差補正部24を有する。さらに、本実施形態の視野角調整回路61は、ディザ法に用いるディザパターンを生成するディザパターン生成部62と、該ディザパターン生成部62で生成されたディザパターンを誤差として階調変換部31の入力信号に加算する誤差加算部63とを有している。
 ディザパターン生成部62は、水平同期信号、有効信号及びクロック信号に基づいて、ディザパターンを生成するように構成されている。すなわち、ディザパターン生成部62は、映像信号に応じて画素群(例えば4画素)に対する誤差パターンを生成する。
 より詳しくは、ディザパターン生成部62は、入力されるクロック信号及び有効信号によって各画素のX座標を求めるとともに、入力される水平同期信号によって各画素のY座標を求める。そして、ディザパターン生成部62は、このようにして求めた各画素の座標に応じて誤差を設定することにより、誤差のディザパターンを生成する。本実施形態の例では、ディザパターン生成部62は、例えば、X座標及びY座標の両方が奇数の画素に対しては+8、X座標が偶数で且つY座標が奇数の画素に対しては+4、X座標が奇数で且つY座標が偶数の画素に対しては-4、X座標及びY座標の両方が偶数の画素に対しては-8の誤差を付与するようなパターンを生成する。
 なお、ディザパターン生成部62で生成する誤差のディザパターンは、該ディザパターンが付与される画素群内で各画素の誤差が異なるようなパターンが好ましい。また、上述のディザパターンは、前記画素群内で誤差がゼロになるようなパターンが好ましい。上述のディザパターンにおける誤差の値は一例であり、当然のことながら、これ以外の値であってもよい。
 図19に示すように、誤差加算部63では、ディザパターン生成部62によって生成された誤差dのディザパターンを、階調変換部31の入力信号vに加算するように構成されている。これにより、階調変換部31の入力信号には、該階調変換部31の出力側と入力側との誤差zに、ディザパターンの誤差dも加わる。
 上述のような構成の視野角調整回路61を用いた場合の階調変換の一例を図20に示す。この図20では、出力映像の階調の計算を容易にするために、該図20の下方に示すようなディザパターンの誤差を用いている。実際には、上述のように、図20に示すディザパターンの誤差よりも小さい誤差を用いるのが好ましい。
 図20に示すように、上述の第2の実施形態の構成の場合に比べて、各画素での階調変化がさらに大きくなる。すなわち、本実施形態のように、第2の実施形態の構成に、ディザパターンによる誤差も加算できるようにディザパターン生成部62及び誤差加算部63を設けることにより、さらに視野角特性の向上を図れる。
 (第5の実施形態の効果)
 この実施形態では、第2の実施形態における階調変換部21の出力側の信号の階調と入力側の信号の階調との誤差に、ディザパターンの誤差も加えて、階調変換部31の入力信号とする。これにより、ディザパターンの誤差の分、液晶パネル11の視野角特性を向上することができる。
 したがって、本実施形態の構成により、元の映像により近い映像を表示しつつ、液晶パネル11の視野角特性をより向上することができる。
 しかも、ディザパターンを用いることにより、第2の実施形態の構成の場合に発生する特有のパターンを低減することができる。すなわち、第2の実施形態の構成を用いて映像の階調変換を行うと、出力映像に特有のパターンが形成される場合があるが、このようなパターンをディザパターンによって低減することができ、出力映像の表示品位の向上を図れる。
 (第5の実施形態の変形例)
 図21に、第5の実施形態の変形例に係る液晶表示装置70を示す。この変形例は、ディザパターン生成部62によって生成した誤差のディザパターンを、階調変換部31の出力側の信号の階調と入力側の信号の階調との誤差に加える点で、上述の第5の実施形態とは異なる。以下の説明において、上述の第5の実施形態と同一の構成には同一の符号を付して説明を省略し、第5の実施形態と異なる点について主に説明する。
 具体的には、図21及び図22に示すように、誤差加算部63は、階調変換部31の出力側の信号の階調と入力側の信号の階調との誤差を算出する誤差算出部22から出力される信号に対し、ディザパターン生成部62で生成された誤差のディザパターンを加算する。
 この構成によっても、階調変換部31において、出力側の信号の階調と入力側の信号の階調との誤差に加えてディザパターンの誤差を考慮することができ、液晶パネル11の視野角特性をさらに向上することができる。
 [第6の実施形態]
 図23に、本発明の第6の実施形態に係る液晶表示装置80の概略構成をブロック図で示す。この実施形態の液晶表示装置80は、視野角調整回路81(視野角調整装置)の構成が、第5の実施形態の構成とは異なる。以下の説明において、第5の実施形態と同一の構成については同一の符号を付して説明を省略し、第5の実施形態と異なる点について主に説明する。
 具体的には、図23及び図24に示すように、視野角調整回路81は、第5の実施形態と同様、階調変換部31、誤差算出部22、誤差保持部23、誤差補正部24及び誤差加算部63を有する。さらに、本実施形態の視野角調整回路81は、表示フレームの切り替えを判別する表示フレーム判別部82と、該表示フレーム判別部82からの出力信号に応じて表示フレーム毎に誤差のディザパターン(誤差パターン)を生成するディザパターン生成部83と、を有する。
 表示フレーム判別部82は、図24に示すように垂直同期信号が入力されると、表示フレームが切り替えられたと判定し、表示フレームの切り替え信号を出力する。なお、表示フレーム判別部82は、垂直同期信号の立ち上がりまたは立ち下りを検出することにより、表示フレームの切り替えを判別する。
 ディザパターン生成部83は、上述の第5の実施形態と同様、水平同期信号、有効信号及びクロック信号に基づいて、ディザパターンを生成するように構成されている。すなわち、ディザパターン生成部83は、入力されるクロック信号及び有効信号によって各画素のX座標を求めるとともに、入力される水平同期信号によって各画素のY座標を求める。そして、ディザパターン生成部83は、このようにして求めた各画素の座標に応じて誤差を設定することにより、誤差のディザパターンを生成する。
 また、ディザパターン生成部83は、少なくとも2つのディザパターンを生成可能に構成されている。本実施形態では、ディザパターン生成部83は、例えば、第1のパターンとして、X座標及びY座標の両方が奇数の画素に対しては+8、X座標が偶数で且つY座標が奇数の画素に対しては+4、X座標が奇数で且つY座標が偶数の画素に対しては-4、X座標及びY座標の両方が偶数の画素に対しては-8の誤差を付与するようなパターンを生成する。また、ディザパターン生成部83は、例えば、第2のパターンとして、X座標及びY座標の両方が奇数の画素に対しては-8、X座標が偶数で且つY座標が奇数の画素に対しては-4、X座標が奇数で且つY座標が偶数の画素に対しては+4、X座標及びY座標の両方が偶数の画素に対しては+8の誤差を付与するようなパターンを生成する。
 さらに、ディザパターン生成部83は、表示フレーム判別部82から出力される表示フレームの切り替え信号に応じて、異なるディザパターンを生成して出力するように構成されている。例えば、本実施形態では、ディザパターン生成部83は、表示フレーム判別部82から出力される表示フレームの切り替え信号によって、上述の第1のパターンと第2のパターンとを切り替えて出力する。
 上述のような構成の視野角調整回路81を用いた場合の階調変換の一例を図25に示す。この図25では、出力映像の階調の計算を容易にするために、該図25の右側に示すようなディザパターンの誤差を用いている。なお、実際には、図25に示すディザパターンの誤差よりも小さい誤差を用いるのが好ましい。
 図25に示すように、出力映像は、表示フレーム毎に切り替えられるディザパターンによって、同じ入力映像でも2種類の出力映像が得られる。すなわち、各画素で、表示フレーム毎に階調が変化するため、視認者はそれらの階調の平均値の階調で視認していることになる。よって、視野角調整回路81は、上述の第5の実施形態のように第2の実施形態の構成にディザパターンを組み合わせた構成よりも、さらに元の映像に近い映像になる映像信号を出力することができる。
 (第6の実施形態の効果)
 この実施形態では、階調変換部31の出力側と入力側との誤差に対し、表示フレーム毎に異なるディザパターンを加える。これにより、視認者は、各画素の階調を、ディザパターンを加えた場合の階調の平均値として視認する。したがって、視認者は元の映像とほとんど同じ映像として視認することができる。しかも、各表示フレームでは視野角特性が改善された映像が表示されるため、液晶パネル11の視野角特性を改善することができる。
 [第7の実施形態]
 図26に、本発明の第7の実施形態に係る液晶表示装置90の概略構成をブロック図で示す。この実施形態の液晶表示装置90は、階調変換部31で階調変換を行う際の最小値(MIN)及び最大値(MAX)を変更するMAX及びMIN変更部91(階調範囲変更部)を備えている点で、第2の実施形態の構成とは異なる。以下の説明において、第2の実施形態と同一の構成には同一の符号を付して説明を省略し、第2の実施形態と異なる点について主に説明する。なお、図26では、視野角調整回路30を簡略化して示しているが、視野角調整回路30の構成は第2の実施形態の構成と同様である。
 具体的には、図26に示すように、MAX及びMIN変更部91は、外部からのモード入力に応じて、階調変換部31に対して黒表示の閾値である最小値(MIN)及び白表示の閾値である最大値(MAX)を決定する信号を出力するように構成されている。
 液晶表示装置90には、特に図示しないが、例えば、視野角改善のモードと、画質優先のモードとを選択可能なモード選択スイッチが設けられている。このモード選択スイッチによってモード選択が行われると、MAX及びMIN変更部91に対して、選択したモードに対応するモード信号が入力される。
 MAX及びMIN変更部91では、入力されたモード信号に応じて、視野角調整回路30の階調変換部31で白黒以外の階調に変換を行う階調範囲、すなわち中間階調範囲の最小値(MIN)及び最大値(MAX)を設定する。この最小値(MIN)は、それ以下の階調は黒表示に変換する閾値を意味していて、最大値(MAX)は、それ以上の階調は白表示に変換する閾値を意味している。
 MAX及びMIN変更部91は、例えば、視野角改善モードのときには、画質優先モードのときに比べて中間階調範囲の最小値(MIN)を大きくするとともに最大値(MAX)を小さくする。一方、MAX及びMIN変更部91は、例えば、画質優先モードのときには、視野角改善モードのときに比べて中間階調範囲の最小値(MIN)を小さくするとともに最大値(MAX)を大きくする。
 このように視野角調整回路30の階調調整部31における階調変換範囲の最小値(MIN)及び最大値(MAX)を、選択されたモードに応じて変更することで、各モードに適した映像表示を行うことが可能になる。すなわち、視野角改善モードの場合には、白表示及び黒表示に変換する階調範囲を拡大して液晶パネル11の視野角を改善する。一方、画質優先モードの場合には、白表示及び黒表示に変換する階調範囲を狭めて液晶パネル11の表示映像を元の映像により近づけることができる。
 (第7の実施形態の効果)
 この実施形態では、選択されたモードに応じて、視野角調整回路30の階調変換部31における中間階調範囲の最小値(MIN)及び最大値(MAX)を変更する。これにより、選択されたモードに適した画面表示を行うことが可能になる。
 [第8の実施形態]
 図27に、本発明の第8の実施形態に係る液晶表示装置100の概略構成をブロック図で示す。この実施形態の液晶表示装置100は、液晶パネル11を視聴している人数を検出し、その人数に応じて中間階調範囲の最小値(MIN)及び最大値(MAX)を変更する点で、第7の実施形態とは構成が異なる。以下の説明において、第7の実施形態と同一の構成には同一の符号を付して説明を省略し、第7の実施形態と異なる点について主に説明する。
 具体的には、図27に示すように、液晶表示装置100は、液晶パネル11を視聴している人を撮像するカメラ部101と、該カメラ部101で取得した画像から視聴人数を検出する視聴人数検出部102とを有する。カメラ部101は、例えば液晶表示装置100に一体に設けられていてもよいし、該液晶表示装置100とは別体に設けられていてもよい。
 視聴人数検出部102は、カメラ部101によって撮影された画像を用いて画像処理を行い、液晶パネル11の表示面側に位置する視聴人数を検出する。視聴人数検出部102は、例えば、画像内の人間の顔を認識することにより、液晶パネル11を視聴している人を検出する。そして、視聴人数検出部102は、液晶パネル11を視聴している人数を信号として出力する。
 液晶表示装置100は、液晶パネル11を視聴している人数に応じて、視野角調整回路30の階調変換部31における中間階調範囲の最小値(MIN)及び最大値(MAX)を変更するMAX及びMIN変更部103を有する。このMAX及びMIN変更部103は、液晶パネル11を視聴している人数が多い場合には、視聴人数が少ない場合に比べて最小値(MIN)を大きくするとともに最大値(MAX)を小さくして液晶パネル11の視野角改善を行う。一方、MAX及びMIN変更部103は、液晶パネル11を視聴している人数が少ない場合には、視聴人数が多い場合に比べて最小値(MIN)を小さくするとともに最大値(MAX)を大きくして表示画質を優先する。
 例えば、液晶パネル11の視聴人数が一人であれば、MAX及びMIN変更部103は、最大値(MAX)を階調256に設定するとともに、最小値(MIN)を階調ゼロに設定する。また、液晶パネル11の視聴人数が二人であれば、MAX及びMIN変更部103は、最大値(MAX)を階調224に設定するとともに、最小値(MIN)を階調32に設定する。さらに、液晶パネル11の視聴人数が三人以上であれば、最大値(MAX)を階調192に設定するとともに、最小値(MIN)を階調64に設定する。なお、上述の階調や人数は一例なので、これ以外の人数を基準として最小値(MIN)や最大値(MAX)を変更してもよい。
 このように視野角調整回路30の階調調整部31における中間階調範囲の最小値(MIN)及び最大値(MAX)を、液晶パネル11の視聴人数に応じて変更することで、視聴者の位置に適した映像表示を行うことが可能になる。すなわち、液晶パネル11の視聴人数が少ない場合には、該液晶パネル11の表示面のほぼ中央から視聴者が視聴していると推定されるため、表示画質を優先する。一方、液晶パネル11の視聴人数が多い場合には、該液晶パネル11の表示面に対して斜め方向から視聴している視聴者が多いと推定されるため、液晶パネル11の視野角特性の向上を優先する。
 (第8の実施形態の効果)
 この実施形態では、液晶パネル11を視聴している人数に応じて、視野角調整回路30の階調変換部31における中間階調範囲の最小値(MIN)及び最大値(MAX)を変更する。これにより、液晶パネル11の視聴者の人数によって該液晶パネル11を視認している視聴者の位置を推定して、液晶パネル11で最適な映像表示を行うことができる。
 すなわち、視聴者の人数が少ない場合には、視聴者が液晶パネル11を表示面の正面から見ていると推定して、該液晶パネル11視野角特性を無駄に改善することなく表示画質を優先することができる。一方、視聴者の人数が多い場合には、視聴者が液晶パネル11を表示面に対して斜め方向から見ていると推定して、該液晶パネル11の表示画質よりも視野角特性の改善を優先することができる。
 [第9の実施形態]
 図28に、本発明の第9の実施形態に係る液晶表示装置110の概略構成をブロック図で示す。この実施形態の液晶表示装置110は、視聴位置を検出する点で上述の第8の実施形態の構成とは異なる。以下の説明において、第8の実施形態と同一の構成には同一の符号を付して説明を省略し、異なる部分についてのみ説明する。
 具体的には、図28に示すように、液晶表示装置110は、第8の実施形態と同様のカメラ部101と、該カメラ部101で取得した画像から視聴者の位置を検出する視聴位置検出部111とを有する。
 視聴位置検出部111は、カメラ部101によって撮影された画像を用いて画像処理を行い、液晶パネル11の表示面側に位置する視聴者を検出する。視聴人数検出部102は、例えば、画像内の人間の顔を認識することにより、液晶パネル11を視聴している人を検出する。そして、視聴人数検出部102は、液晶パネル11を視聴している人のうち、表示面に対して最も斜めに位置する人(表示面の法線に対して最も大きい角度位置に位置する人)の角度位置(表示面に対する法線との角度)を信号として出力する。
 液晶表示装置110は、液晶パネル11の視聴者の角度位置に応じて、視野角調整回路30の階調変換部31における中間階調範囲の最小値(MIN)及び最大値(MAX)を変更するMAX及びMIN変更部112を有している。このMAX及びMIN変更部112は、液晶パネル11の視聴者の角度位置をθとすると、最小値(MIN)=θ及び最大値(MAX)=255-θ(0≦θ≦90)によって、最小値(MIN)及び最大値(MAX)を求める。なお、角度位置θと最小値及び最大値との関係は、上述の関係に限らず、角度位置θが大きくなるほど最小値が大きく且つ最大値が小さくなるような関係であればよい。
 これにより、液晶パネル11の視聴者の角度位置に応じて、液晶パネル11の中間階調範囲を変更することができる。よって、視聴者が液晶パネル11の表示面に対する法線に近い位置から視聴している場合には、最小値(MIN)が小さくなるとともに最大値(MAX)が大きくなるため、表示画質を優先することができる。一方、視聴者が液晶パネル11の法線に対して大きい角度の位置から視聴している場合には、最小値(MIN)が大きくなるとともに最大値(MAX)が小さくなるため、白黒表示の階調領域が増大する。これにより、液晶パネル11の視野角特性の向上を優先することができる。
 (第8の実施形態の効果)
 この実施形態では、液晶パネル11の表示面の法線に対する視聴者の角度位置に応じて、視野角調整回路30の階調変換部31における中間階調範囲の最小値(MIN)及び最大値(MAX)を変更する。これにより、液晶パネル11の視聴者の角度位置に応じて液晶パネル11で最適な映像表示を行うことができる。
 [その他の実施形態]
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 前記各実施形態では、階調0~256の映像表示を行う液晶表示装置の例を示しているが、この限りではなく、液晶表示装置は、階調0~256以外の異なる階調の映像表示を行うように構成されていてもよい。
 前記各実施形態では、液晶表示装置が白黒表示の場合の例を示しているが、この限りではなく、液晶表示装置はカラー表示可能に構成されていてもよい。この場合には、各色で、前記各実施形態のような階調変換を行うようにすればよい。
 前記第1の実施形態では、中間階調範囲において、視野角調整回路13に入力される映像信号の階調に対して、出力する信号の階調を階段状に変化させている。前記第2の実施形態では、中間階調範囲において、視野角調整回路30に入力される映像信号の階調に対して比例するように、信号の階調を変換している。しかしながら、これらを組み合わせて、中間階調範囲の一部の範囲では、出力する信号の階調を階段状に変化させるとともに、その他の範囲では、入力される映像信号の階調に比例するように階調を変換してもよい。
 前記第5及び第6の各実施形態では、ディザパターンの一例を示しているが、ディザパターンを構成する誤差の値は、上述の実施形態で示した値以外であってもよい。また、ディザパターンも、上述の実施形態とは異なるパターンであってもよいし、4画素以外の画素群に対するパターンであってもよい。
 前記第7から第9の各実施形態では、第2の実施形態に対してMAX及びMIN変更部91,103,112を設けている。しかしながら、この限りではなく、第1、第3から第6の各実施形態に対して、MAX及びMIN変更部91,103,112を設けてもよい。
 本発明による液晶表示装置は、液晶パネルの視野角改善に利用可能である。

Claims (11)

  1.  複数の画素がマトリクス状に配置された液晶パネルと、
     前記各画素に対して入力される映像信号の階調を変更することにより、前記液晶パネルの視野角を調整する視野角調整装置と、を備え、
     前記視野角調整装置は、
      入力される信号の階調を、下限値以下では黒表示とし且つ上限値以上では白表示とするとともに、下限値と上限値との間の中間階調範囲の少なくとも一部で階調変換を行う階調変換部と、
      前記階調変換部によって階調変換されて出力された信号の階調と該階調変換部に入力される信号の階調との誤差を求める誤差算出部と、
      前記誤差算出部によって算出された誤差を用いて、前記階調変換部に入力される次の画素に対する信号の階調を補正する誤差補正部と、
     を有する、液晶表示装置。
  2.  前記階調変換部は、前記中間階調範囲において、該階調変換部に入力される信号の階調を、該階調に比例した階調に変換するように構成されている、請求項1に記載の液晶表示装置。
  3.  前記階調変換部は、前記中間階調範囲において、該階調変換部に入力される信号の階調を、少なくとも一部の階調範囲では一定の階調に変換するように構成されている、請求項1に記載の液晶表示装置。
  4.  前記液晶パネルは、複数の画素が一例に並んだラインを複数、有していて、
     前記ラインにおいて前記階調変換部によって最初に階調変換が行われる画素の映像信号の階調に対し、隣り合うライン毎に異なる誤差初期値を設定する誤差初期値設定部をさらに備える、請求項1から3のいずれか一つに記載の液晶表示装置。
  5.  前記誤差初期値設定部は、前記隣り合うラインに与える誤差初期値の大小関係が前記液晶パネルの表示フレーム毎に入れ替わるように、各ラインに誤差初期値を設定する、請求項4に記載の液晶表示装置。
  6.  前記誤差初期値設定部は、各ラインにおいて誤差初期値の合計がゼロになるように、該各ラインに対して前記液晶パネルの表示フレーム毎に正負が異なる誤差初期値を設定する、請求項5に記載の液晶表示装置。
  7.  複数の画素からなる画素群内で予め定められた誤差パターンを、前記階調変換部に入力される信号及び前記誤差算出部によって算出された誤差のいずれか一方に加算する誤差加算部をさらに備える、請求項1から6のいずれか一つに記載の液晶表示装置。
  8.  前記誤差加算部は、前記画素群内の各画素において前記誤差パターンによる誤差がゼロになるように、前記液晶パネルの表示フレーム毎に前記誤差パターンを変更する、請求項7に記載の液晶表示装置。
  9.  前記下限値及び上限値の少なくとも一方を変更する階調範囲変更部をさらに備える、請求項1から8のいずれか一つに記載の液晶表示装置。
  10.  前記液晶パネルを視認している視認者の人数を検出する視認人数検出部をさらに備え、
     前記階調範囲変更部は、前記視認人数検出部による視認人数の検出結果に応じて前記下限値及び上限値の少なくとも一方を変更するように構成されている、請求項9に記載の液晶表示装置。
  11.  前記液晶パネルを視認している視認者の位置を検出して、該視認者と前記液晶パネルの表示面の法線とのなす角度を求める視認位置検出部をさらに備え、
     前記階調範囲変更部は、前記視認位置検出部による前記角度の検出結果に応じて前記下限値及び上限値の少なくとも一方を変更するように構成されている、請求項9に記載の液晶表示装置。
PCT/JP2012/060555 2011-04-26 2012-04-19 液晶表示装置 WO2012147602A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-098736 2011-04-26
JP2011098736 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147602A1 true WO2012147602A1 (ja) 2012-11-01

Family

ID=47072123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060555 WO2012147602A1 (ja) 2011-04-26 2012-04-19 液晶表示装置

Country Status (1)

Country Link
WO (1) WO2012147602A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142621A (ja) * 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd 半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092405A (ja) * 1999-09-27 2001-04-06 Sumitomo Metal Ind Ltd 画像処理方法、画像処理装置及びマトリクス駆動型表示装置
WO2006009106A1 (ja) * 2004-07-16 2006-01-26 Sony Corporation 画像表示装置および画像表示方法
JP2006109263A (ja) * 2004-10-07 2006-04-20 Ricoh Co Ltd 画像処理装置、画像処理方法、その方法をコンピュータに実行させるプログラム、画像形成装置、およびコンピュータ読み取り可能な記録媒体
JP2009300550A (ja) * 2008-06-11 2009-12-24 Funai Electric Co Ltd 液晶表示装置
JP2010117579A (ja) * 2008-11-13 2010-05-27 Sharp Corp 液晶表示装置及び液晶表示装置における視野角特性改善方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092405A (ja) * 1999-09-27 2001-04-06 Sumitomo Metal Ind Ltd 画像処理方法、画像処理装置及びマトリクス駆動型表示装置
WO2006009106A1 (ja) * 2004-07-16 2006-01-26 Sony Corporation 画像表示装置および画像表示方法
JP2006109263A (ja) * 2004-10-07 2006-04-20 Ricoh Co Ltd 画像処理装置、画像処理方法、その方法をコンピュータに実行させるプログラム、画像形成装置、およびコンピュータ読み取り可能な記録媒体
JP2009300550A (ja) * 2008-06-11 2009-12-24 Funai Electric Co Ltd 液晶表示装置
JP2010117579A (ja) * 2008-11-13 2010-05-27 Sharp Corp 液晶表示装置及び液晶表示装置における視野角特性改善方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142621A (ja) * 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd 半導体装置

Similar Documents

Publication Publication Date Title
JP4720843B2 (ja) 映像信号処理回路、液晶表示装置及び投射型表示装置
CN112119449B (zh) 图像处理装置、显示装置和图像处理方法
TWI476753B (zh) 處理用於顯示於包含多原色圖像顯示面板之顯示裝置之圖像資料之方法
KR101929001B1 (ko) 표시 패널의 얼룩 보상 방법, 이를 포함하는 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
US7609880B2 (en) Display apparatus and its control method
US20100013872A1 (en) Liquid crystal display device
JP6051544B2 (ja) 画像処理回路、液晶表示装置、電子機器及び画像処理方法
WO2011125899A1 (ja) 液晶表示装置、表示方法、プログラム、および記録媒体
TWI588814B (zh) 像素驅動方法
JP4571782B2 (ja) 画像処理方法及びそれを用いた液晶表示装置
US20080024652A1 (en) Electro-optical device, image processing circuit, and electronic device
WO2013031867A1 (ja) 表示装置及びその駆動方法
US10121400B2 (en) Video processing circuit, electro-optical device, electronic apparatus, and video processing method
KR101906422B1 (ko) 화질처리방법과 이를 이용한 표시장치
WO2012077601A1 (ja) 画像処理装置、画像処理方法、および表示装置
JP2022182139A (ja) 液晶表示装置
WO2012147602A1 (ja) 液晶表示装置
JPWO2010109643A1 (ja) 映像表示装置および映像補正方法
JP2010117579A (ja) 液晶表示装置及び液晶表示装置における視野角特性改善方法
US11605358B2 (en) Liquid crystal display including two overlapping display panels that differ from each other in terms of the size of their respective display pixels
JP2009237594A (ja) 画像処理方法及びそれを用いた液晶表示装置
CN113160767B (zh) 显示补偿方法及装置、显示面板
TW201820307A (zh) 顯示器的控制方法
JP5279055B2 (ja) 液晶表示装置、プログラム、及び液晶表示装置の調整方法
KR20090023016A (ko) 디지털 표시장치의 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP