[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012144641A1 - Sloshing preventing device and sloshing preventing method - Google Patents

Sloshing preventing device and sloshing preventing method Download PDF

Info

Publication number
WO2012144641A1
WO2012144641A1 PCT/JP2012/060798 JP2012060798W WO2012144641A1 WO 2012144641 A1 WO2012144641 A1 WO 2012144641A1 JP 2012060798 W JP2012060798 W JP 2012060798W WO 2012144641 A1 WO2012144641 A1 WO 2012144641A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
floating body
sloshing
liquid
floating
Prior art date
Application number
PCT/JP2012/060798
Other languages
French (fr)
Japanese (ja)
Inventor
誠 荒井
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to KR1020137029169A priority Critical patent/KR101632104B1/en
Priority to BR112013027132A priority patent/BR112013027132A2/en
Priority to CN201280019801.1A priority patent/CN103492261B/en
Priority to JP2013511080A priority patent/JP6049084B2/en
Publication of WO2012144641A1 publication Critical patent/WO2012144641A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/016Preventing slosh
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Definitions

  • the present invention relates to an anti-sloshing device and an anti-sloshing method, and more particularly, a membrane-type liquid storage that prevents a sloshing phenomenon from occurring in a membrane-type liquid storage tank of a liquid cargo ship or a floating marine facility.
  • the present invention relates to a tank sloshing prevention device and a sloshing prevention method.
  • a liquefied natural gas carrier ship (hereinafter referred to as “LNG ship”) that transports liquefied natural gas over long distances is known.
  • a liquid phase natural gas obtained by liquefying natural gas at an extremely low temperature ( ⁇ 162 ° C.) (that is, liquefied natural gas) is greatly advantageous in terms of transport efficiency because it is greatly reduced in volume compared to a gas phase natural gas.
  • the LNG ship has a special LNG storage tank that can withstand such extremely low temperatures ( ⁇ 162 ° C.).
  • the spherical tank type LNG storage tank is advantageous in terms of structural strength, but the hull tends to be enlarged due to the deterioration of volumetric efficiency.
  • the membrane-type LNG storage tank is advantageous in terms of construction cost, freedom of route selection, etc., because the hull size can be reduced compared to the spherical tank method with the same loading capacity. is there. For this reason, the tendency of membrane type LNG storage tanks to be adopted in the design of LNG ships is particularly noticeable in recent years, coupled with the trend toward larger LNG storage tanks accompanying an increase in demand for liquefied natural gas and the amount of transport.
  • the sloshing phenomenon is a phenomenon in which liquid cargo or the like stored in a tank is vibrated vigorously by being vibrated by the movement of the tank.
  • the sloshing phenomenon causes problems such as excessive liquid impact pressure acting on the inner wall of the tank, fluctuating load on the tank support structure, influence on hull motion, and scattering of liquid cargo.
  • FLNG Floating LNG
  • LNG-FPSO Floating Production Storage and Offloading system
  • FPSO receives natural gas from a well offshore, separates and pretreats, liquefies, and stores and ships as LNG. Since the FPSO floating body is fixed on the ocean, it cannot take retreat action during stormy weather like a normal ship. Moreover, it is stored in the LNG production process, LNG transfer process to the transport ship, etc. A tank half-load condition always occurs. For this reason, in the FPSO type floating body provided with the membrane type LNG storage tank, the occurrence of the sloshing phenomenon is of particular concern.
  • Patent Document 1 JP 2009-18608
  • Patent Document 2 JP 2009-18608
  • Patent Document 2 JP 2009-18608
  • Patent Document 2 describes a sloshing prevention technique for dividing a LNG storage tank by a bulkhead with respect to a large LNG ship equipped with a membrane type LNG storage tank.
  • the LNG ship described in Patent Document 1 appropriately transfers the liquefied natural gas in the spherical independent tank to the membrane tank to keep the inside of the membrane tank in a fully loaded state, thereby preventing sloshing in the membrane tank. This is to prevent the occurrence.
  • the LNG storage tank described in Patent Document 2 attempts to prevent the occurrence of the sloshing phenomenon by completely dividing the tank inner area by partition walls and reducing the volume of the tank inner area accompanying the division.
  • Such a sloshing phenomenon also occurs in the ballast water in the ballast tank. Sloshing prevention designed to divide the ballast water free liquid level in the ballast tank by a floating partition and reduce the area of the free liquid level located on each side of the partition as a technology to prevent the ballast water sloshing phenomenon
  • An apparatus is described in Japanese Utility Model Publication No. 53-44237 (Patent Document 3).
  • Patent Document 4 discloses a sloshing prevention system in which a large number of flat floating bodies are floated on the free surface of ballast water, and the area of the free surface is greatly reduced. An apparatus is described.
  • the LNG ship described in Patent Document 1 appropriately replenishes the liquid in the spherical independent tank into the membrane tank when the amount of liquid in the membrane tank decreases, thereby ensuring that the membrane tank is fully loaded.
  • the configuration is such that it is always maintained.
  • the LNG ship of Patent Document 1 must always use different types of tanks, and a fluid transfer facility for transferring liquefied natural gas between a spherical independent tank and a membrane tank is provided on the hull. Therefore, the overall structure of the LNG ship is complicated.
  • the anti-sloshing device described in Patent Document 2 has a structure in which the region in the membrane tank is completely divided by the partition wall, but the inner surface of the membrane tank is formed of a thin alloy having a thickness of 1 mm or less. Therefore, considering the structural stability, strength and proof strength of a self-standing or upstanding partition that reaches a height of about 25 to 40 m, the joint structure between the partition and the tank inner surface, and the solid support structure that supports the partition Dividing the membrane tank by such a partition wall involves disadvantages in construction cost, complication of the hull structure, difficulty in designing and building the hull, and the like.
  • the floating partition described in Patent Document 3 fixes a steel material for guiding and holding the partition and guides the partition to the wall surface of the ballast tank, and divides the free liquid level of the ballast water by the partition, It has a configuration in which the area of the free liquid surface located on each side of the partition is reduced.
  • This configuration relates to prevention of sloshing of the ballast tank.
  • the inner surface of the membrane tank formed of a thin alloy having a thickness of 1 mm or less does not have the strength to support such a partition wall, and it is extremely difficult to attach such a steel material to the tank inner surface.
  • the partition wall is supported by the inner wall of the tank so that the both ends can move up and down, and extends over the entire length or the entire width of the ballast tank.
  • the anti-sloshing means described in Patent Document 4 has a structure in which the behavior of the free surface of the ballast water is entirely suppressed by a large number of plate-like floating bodies, and thus supports a large number of floating bodies so as to be movable up and down. Many guide members need to be installed in the tank. Although this configuration may be applicable for preventing sloshing of the ballast tank, in the membrane tank for transporting liquefied natural gas, the inner surface of the tank is formed of a thin alloy having a thickness of 1 mm or less as described above. Therefore, it is difficult to install such a large number of guide members and their support structures in the tank. Further, the anti-sloshing means described in Patent Document 4 merely reduces the area of the free water surface and cannot directly regulate or control the behavior or vibration of water below the water surface.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a sloshing with a simple or simple structure that effectively prevents the sloshing phenomenon of the liquid stored in the membrane liquid storage tank. It is to provide a prevention device.
  • Another object of the present invention is to provide a sloshing prevention method capable of effectively preventing the sloshing phenomenon of the liquid stored in the membrane type liquid storage tank with a simple or simple configuration.
  • the present invention provides a sloshing prevention device that is provided in a membrane liquid storage tank of a liquid cargo carrier or a floating marine facility and prevents a sloshing phenomenon from occurring in the tank.
  • a plurality of floating bodies arranged in series in the longitudinal or lateral direction of the ship or marine equipment hull; While supporting the floating body against a horizontal external force acting on the floating body, and having a plurality of vertical struts that guide the floating body in the vertical direction,
  • the floating body has a preset draft amount (meaning a draft size or submerged amount measured from the liquid level, hereinafter referred to as “draft amount” in the present specification and claims) and in the tank.
  • the floating body floats on the free liquid surface in the tank to divide the liquid surface and the liquid below the liquid surface, and in the lower region of the floating body
  • the anti-sloshing device is characterized in that the liquid on both sides of the liquid is made continuous.
  • the present invention also relates to a sloshing prevention method for preventing a sloshing phenomenon occurring in a membrane liquid storage tank of a liquid cargo ship or a floating marine facility.
  • a plurality of floating bodies that are supported with respect to a horizontal external force and move up and down in response to liquid level fluctuations are arranged in series in the longitudinal direction or the lateral direction of the ship or the marine equipment,
  • the floating body that secures a predetermined draft amount is floated on the free liquid surface in the tank to divide the liquid and the liquid below the liquid surface, and the liquid on both sides of the floating body in the lower region of the floating body
  • a sloshing prevention method is provided, which prevents the occurrence of the sloshing phenomenon by shifting the natural frequency of the liquid vibration generated in the tank to the high frequency side.
  • the liquid stored in the tank is divided only by the liquid level and the liquid in the vicinity of the liquid level by the floating body, and the liquid in the tank is continuously continuous in the lower region of the floating body.
  • Each floating body moves up and down independently in response to the vertical movement of the liquid level.
  • the liquid vibration in the tank is attenuated by the vertical movement of the floating body, and the natural frequency of the liquid vibration is shifted to the high frequency range side by dividing the free liquid surface. According to the present invention, such a shift of the natural frequency can prevent synchronization of ocean waves and ship motion and liquid vibration in the tank, and can prevent or suppress the occurrence of sloshing.
  • the floating body divides
  • harmful U-shaped pipe vibration does not occur.
  • the floating row is arranged in the longitudinal direction of the hull (front and rear direction of the hull, longitudinal direction of the hull or rolling axis), and sloshing due to pitching of the hull is prevented.
  • it arranges in a hull lateral direction (left-right dredging direction, hull width direction, or pitching axis direction).
  • the anti-sloshing effect obtained by dividing the free liquid surface and the liquid below the liquid surface is substantially the same as the anti-sloshing effect obtained when the entire liquid in the tank is completely divided by the bulkhead.
  • the floating body row may be suspended in the tank without dividing the liquid in the tank entirely by the partition wall, and thus the structural stability, strength and proof strength of the self-standing or upstanding partition wall.
  • the sloshing prevention mechanism can be disposed in the tank without considering the problem of the joining structure between the partition walls and the tank inner surface, and the solid support structure for supporting the partition walls.
  • the present invention does not require the combined use of different types of tanks intended to prevent sloshing and the transfer of liquefied natural gas between tanks.
  • the floating body does not need to suppress the behavior of the free liquid level over a wide area, and the free liquid level and the liquid in the vicinity thereof may be divided by the floating body row.
  • the occurrence of sloshing in the membrane type liquid storage tank can be effectively prevented by the sloshing prevention mechanism having a simple or simple structure.
  • the liquid level may be divided by a plurality of floating bodies, the distance between the horizontal fulcrums of the floating bodies is greatly reduced. For this reason, the strength of the floating body can be secured relatively easily.
  • the liquid level difference of the free liquid level generated along the floating body row in the direction of the floating body row can be almost absorbed by the height difference between the floating bodies, so that the height dimension of the floating body can be reduced.
  • the sloshing phenomenon of the liquid stored in the membrane type liquid storage tank can be effectively prevented with a simple or simple structure.
  • the sloshing phenomenon of the liquid stored in the membrane type liquid storage tank can be effectively prevented with a simple or simple configuration.
  • FIG. 1 is a longitudinal sectional view schematically showing an overall configuration of an LNG ship including a sloshing prevention device according to an embodiment of the present invention.
  • 2A is a cross-sectional view of the LNG storage tank taken along line II in FIG. 1
  • FIG. 2B is a cross-sectional view illustrating an outline of the stacking limitation applied to the LNG storage tank.
  • FIG. 3 is a plan view and a partially enlarged plan view conceptually showing the configuration of an LNG storage tank having a sloshing prevention device and having a quadrangular cross section.
  • 4A is a cross-sectional view taken along line II-II in FIG. 3
  • FIG. 4B is a cross-sectional view taken along line III-III in FIG. FIG.
  • FIG. 5 is a schematic cross-sectional view illustrating the structure and cross-sectional shape of a floating body.
  • FIG. 6 is a diagram showing the relationship between the excitation frequency of a wave that causes a shake in the horizontal direction (the hull lateral direction) and the maximum wave amplitude per roll angle generated in the LNG storage tank.
  • FIG. 6 shows a numerical analysis result obtained under the condition that the liquid level ratio in the LNG storage tank is assumed to be 63%.
  • FIG. 7 is a diagram showing the relationship between the excitation frequency of the wave that causes the horizontal shaking and the maximum wave amplitude per degree of roll angle generated in the LNG storage tank.
  • FIG. 7 shows a numerical analysis result obtained under the condition that the liquid level ratio of the liquefied natural gas is assumed to be 30%.
  • FIG. 6 is a diagram showing the relationship between the excitation frequency of a wave that causes a shake in the horizontal direction (the hull lateral direction) and the maximum wave amplitude per roll angle generated in the LNG storage tank.
  • FIG. 6 shows
  • FIG. 8 is a diagram showing the relationship between the primary natural frequency of the liquid motion in the LNG storage tank and the liquid level in the tank.
  • FIG. 9 is a cross-sectional view illustrating a form of liquid level division by a floating body.
  • FIG. 10 is a diagram showing the shift of the natural frequency associated with the difference in the number of free liquids.
  • FIG. 11 is a diagram for explaining the anti-sloshing effect of the floating body shown in FIG.
  • FIG. 12 is a diagram showing the relationship between the height of the roll center and the maximum wave amplitude.
  • the floating bodies are spaced apart from each other, and a gap through which liquid can flow is formed between adjacent floating bodies.
  • a gap through which liquid can flow is also formed between the floating body and the inner wall surface of the tank. The movement of the liquid flowing through these gaps works to dampen the liquid vibration in the tank, so that the effect of damping the liquid vibration can be further obtained, and therefore the occurrence of sloshing can be more effectively prevented.
  • the floating body has a draft amount of at least a tank total height H ⁇ 0.05 or more, and preferably, the draft amount of the floating body is set to a dimension of a tank total height H ⁇ 0.1 or more, or The distance from the lower part to the bottom of the tank is set to a dimension of liquid level h ⁇ 0.80 or less at the liquid level of the tank total height H ⁇ 0.5.
  • the distance from the bottom of the floating body to the bottom of the tank is the liquid level h ⁇
  • the dimension is set to 0.80 or less, and the draft of the floating body is set to a dimension of liquid level h ⁇ 0.20 or more.
  • the vertical strut penetrates the floating body.
  • Upper and lower bases that support the upper and lower ends of the column are fixed to the ceiling and bottom surfaces of the tank.
  • the base restricts the vertical movement range of the floating body and prevents the floating body from colliding with the ceiling surface or bottom surface of the tank.
  • the base also shortens the distance between the vertical fulcrum of the struts to a distance smaller than the height of the area in the tank, improving the strut strength and rigidity.
  • the dimension between the lower surface of the upper base that prevents the floating body from rising and the tank ceiling surface is set to a value within the range of the total tank height H ⁇ 0.3 or less. More preferably, the dimension between the upper surface of the lower base portion that prevents the floating body from descending and the tank bottom surface is set to a value within the range of the total tank height H ⁇ 0.1 or less.
  • the free liquid level of the liquid is equally divided in the width direction of the hull (lateral direction of the hull) by floating bodies arranged in the fore-and-aft direction (vertical direction of the hull).
  • Each floating body is supported by a plurality of vertical struts spaced in the bow-stern direction so as to be movable up and down.
  • the floating bodies are aligned on the central axis of the tank extending in the stern direction, or are arranged in parallel in a plurality of substantially parallel rows.
  • the floating body is a hollow polyhedron composed of a horizontal plane and a vertical plane.
  • An internal hollow region for ensuring buoyancy is formed inside the floating body.
  • a floating body has a partition part extended in a perpendicular direction, and a side protrusion part extended in a side from a partition part.
  • the partition portion divides the liquid near the free liquid level or the free liquid level.
  • the side protruding portion functions to attenuate the liquid vibration and to suppress the vertical movement of the floating body itself.
  • the floating body has buoyancy adjusting means for adjusting the amount of draft of the floating body.
  • the buoyancy adjusting means includes buoyancy reducing means for allowing the liquid in the tank area to flow into the hollow interior area of the floating body, or buoyancy weight adjusting means for adjusting the weight of the floating body. It is also possible to provide the floating body with buoyancy control means that can variably control the draft amount in relation to the liquid level in the tank.
  • the cross section of the tank cut by the vertical cutting plane is a quadrangle. Since a tank with a square cross section is disadvantageous compared to a tank with an octagonal cross section from the viewpoint of preventing sloshing, conventionally, a tank with an octagonal cross section having poor volume efficiency has been generally employed. However, by adopting the anti-sloshing mechanism configured as described above in a tank having a square cross section, the anti-sloshing function can be improved and the volumetric efficiency can be improved.
  • FIG. 1 is a longitudinal sectional view schematically showing an overall configuration of an LNG ship (liquefied natural gas carrier ship).
  • FIG. 1 shows an LNG ship equipped with a sloshing prevention device 20 according to an embodiment of the present invention.
  • the LNG ship 1 has a bow part 2, a tank compartment 3, an engine room 4, and a stern part 5. Above the engine room 4, a residential area 6 and a steering room 7 are arranged.
  • the tank partition area 3 is partitioned by a partition wall 8 extending in the left-right ridge direction (the hull width direction), and a membrane-type LNG storage tank 10 having a sloshing prevention device 20 is disposed in each partition.
  • the LNG ship 1 shown in FIG. 1 may be grasped as an offshore LNG-FPSO. In this case, the LNG ship 1 is moored in a state where the position on the sea surface WL is fixed.
  • FIG. 2A is a cross-sectional view of the LNG storage tank 10 taken along the line II in FIG. In FIG. 2A, the hull is indicated by an imaginary line (dashed line).
  • the LNG storage tank 10 (hereinafter referred to as “tank 10”) has a structure in which the surface (the tank inner surface) of the heat insulating material 11 attached inside the hull is completely covered with a metal thin film (membrane) 12 having a thickness of 1 mm or less. Have. The section of the tank 10 cut by the vertical cut surface (II line) in the left-right heel direction is an octagon.
  • a box made of plywood with foamed perlite or polyurethane insulation is generally used.
  • the metal thin film 12 an Invar material (36% nickel steel) having a thickness of about 0.7 mm, a SUS3041 membrane or the like is generally used.
  • the tank 10 constitutes a large membrane type LNG storage tank having a width of 30 to 40 m.
  • FIG. 2 (B) is a cross-sectional view showing the stacking limitation applied to such a membrane type LNG storage tank.
  • An LNG containing area 15 capable of containing liquefied natural gas (LNG) is formed in the tank 10, and the free liquid level LL of the liquefied natural gas is spatially within the range of the total tank height H of the LNG containing area 15. It can be arbitrarily set in. However, when a sloshing phenomenon occurs in the liquid (liquefied natural gas) in the LNG storage area 15, a very high hydraulic pressure acts on the metal thin film 12 by the liquid that violently collides with the metal thin film 12, and as a result, the structure of the tank 10 May be destroyed by the action of excessive fluid pressure.
  • LNG liquefied natural gas
  • the stacking limitation of the membrane type LNG storage tank is defined in the Rules of the Classification Society, etc., and the liquid level LL is limited to the range k1, k3 of the height h1 or h3, and the range of the height h2 A semi-mounted state in which the liquid level LL is located within (range k2) is not allowed.
  • the rules of the classification society rules may be changed in the future due to the revision of the rules, etc., but according to the loading conditions specified in the current classification society rules, the height h1 is the total height of the tank H ⁇
  • the height h1 + h2 is 0.1, and the total tank height H ⁇ 0.7.
  • the height range in which the membrane type LNG storage tank can be stacked is limited to a range k3 of the tank total height H ⁇ 0.7 or more, or a range k1 of the tank total height H ⁇ 0.1 or less.
  • the semi-mounted state where the liquid level LL is located in the range of the height h2 (that is, the tank total height H ⁇ 0.1 to 0.7 range k2) is in the production process or the transfer process. Always occurs.
  • a two-port loading that is, a transportation mode that transports a large amount of liquefied natural gas over long distances while loading liquefied natural gas at multiple ports.
  • a semi-loading state in which the liquid level LL is located within the range k2 of the height h2 may occur transiently.
  • the LNG half-loading state that occurs in the production or transfer process of LNG-FPSO is difficult to tolerate, and two-port loading that can cause the LNG semi-loading state, etc. LNG ships are not allowed to be transported due to the above loading restrictions.
  • the LNG ship 1 of this example includes a sloshing prevention device 20 that prevents the occurrence of sloshing during such half loading.
  • Sloshing is a kind of vibration phenomenon, and the vibration frequency (oscillation frequency) of ocean waves that shake the tank 10 and the natural frequency of liquid motion (vibration of liquefied natural gas) in the tank 10 coincide with each other. Oscillation occurs when the vibrations are synchronized with each other. Further, since the same synchronization phenomenon occurs when the natural frequency of the rolling motion of the hull itself and the natural frequency of the liquid motion in the tank 10 coincide with each other, attention should be paid to such synchronization.
  • the anti-sloshing device 20 of the tank 10 functions to prevent such vibration synchronization.
  • the anti-sloshing device 20 is supported by a pair of upper and lower bases 21, 22, a vertical column 23 extending vertically between the bases 21, 22, and supported by the vertical column 23 so as to be movable up and down.
  • the floating body 24 is formed.
  • the lower base portion 21 is erected on the tank bottom surface 13, and the upper base portion 22 hangs down from the tank ceiling surface 14.
  • the vertical support 23 constitutes a guide means for guiding the floating body 24 in the vertical direction.
  • the upper and lower bases 21 and 22 constitute a stopper or a vertical movement restricting means for limiting the vertical movement range of the floating body 24.
  • the bases 21, 22 prevent the floating body 24 from colliding with the tank bottom surface 13 or the tank ceiling surface 14, and are high enough to firmly fix the upper end portion and the lower end portion of the vertical column 23 to the tank bottom surface 13 and the tank ceiling surface 14.
  • the fulcrum distance j2 of the vertical support 23 is determined by setting the height dimensions j1 and j3 of the bases 21 and 22, and the rigidity and strength of the vertical support 23 are directly related to the fulcrum distance j2.
  • the height dimension j1 is substantially the same as the distance from the lower or lower surface of the floating body 24 at the lowest position to the tank bottom surface 13, and the height dimension j3 is from the upper or upper surface of the floating body 24 at the highest position to the tank ceiling. It is substantially the same as the distance to the surface 14.
  • the height dimensions j1 to j3 correspond to the heights h1 to h3 and the ranges k1 to k3.
  • the height dimensions j1 to j3 are set to substantially the same values as the heights h1 to h3. If desired, j1 ⁇ h1 and j3 ⁇ h3 are set, and a sufficient vertical movement range of the floating body 24 is ensured.
  • FIG. 3 is a plan view and a partially enlarged plan view conceptually showing the structure of the tank 10, and FIG. 4 is a cross-sectional view taken along lines II-II and III-III in FIG. However, the tank 10 has a square (rectangular) cross section (II-II line cross section).
  • the LNG storage tank is designed to have an octagonal cross section in which the width of the bottom region and the top region is gradually reduced.
  • This is a cross-sectional shape mainly considering prevention of sloshing.
  • the cross section of the LNG storage tank cut by the vertical cut surface (II-II line) in the left-right direction is a quadrangle.
  • a square section tank is advantageous in improving volumetric efficiency compared to an octagonal section tank.
  • each tank 10 a plurality (three in this example) of floating bodies 24 are arranged in series in the bow-stern direction (the hull longitudinal direction) at intervals.
  • the liquid level LL is divided by the floating body 24 in the horizontal direction.
  • gaps or gaps 25 through which liquefied natural gas can flow are formed.
  • a gap or gap 26 through which the liquefied natural gas can flow is also formed between the floating body 24 and the tank inner wall surface 16.
  • each floating body 24 includes a plurality of vertical struts 23 (main In the example, it is supported by a pair of vertical columns 23) so as to be movable up and down.
  • Each floating body 24 is made of a metal hollow body having an airtight / liquid-tight structure, and always floats on the liquid surface LL by buoyancy acting on the floating body 24 itself. The draft D of the floating body 24 is determined by its own weight and buoyancy.
  • a hole or an opening is formed in the bottom of the floating body as a liquid introduction means for adjusting buoyancy, and the liquid (liquefied natural gas) enters the floating body 24.
  • a structure with which the above can be used may be employed, or a liquid or solid having a relatively high specific gravity may be additionally accommodated in the floating body 24.
  • FIG. 5 is a cross-sectional view and a perspective view schematically showing the structure of the floating body 24.
  • 5 (A) and 5 (B) show a floating body 24 having an inverted T-shaped cross section shown in FIGS. 2 to 4, and FIG. 5 (C) shows an I without a side protrusion.
  • a floating body 24 having a profile is shown.
  • 5D shows a floating body 24 having a cross-shaped cross section
  • FIG. 5E shows a floating body 24 according to a modified example of an inverted T-shaped cross section.
  • FIG. 5 (F) shows a floating body 24 having an inverted Y-shaped cross section in which a pair of left and right hanging protrusions 29 are disposed on both side edges of the lower surface of the inverted T-shaped floating body.
  • the floating body 24 shown in FIGS. 5 (A) and 5 (B) has an inverted T-shaped cross section with a lower portion projecting laterally.
  • the floating body 24 includes a plurality of sheath tubes 28.
  • the sheath tube 28 has a square cross section and penetrates the floating body 24 in the vertical direction.
  • a vertical column 23 is inserted into each sheath tube 28.
  • the vertical support 23 is made of, for example, a stainless steel rectangular metal tube having an outer dimension of 80 cm ⁇ 40 cm and a thickness of 5 cm. It was confirmed in a simple structural design that such a metal tube exhibits sufficient structural strength to ensure the function of the vertical support 23.
  • the sheath tube 28 has a rectangular cross section similar to the outer shape of the vertical column 23, and a predetermined clearance is secured between the outer surface of the vertical column 23 and the inner surface of the sheath tube 28.
  • the plurality of vertical columns 23 guide the vertical movement of the floating body 24 while maintaining the posture of the floating body 24.
  • a floating body 24 having an inverted Y-shaped cross section illustrated in FIG. The protrusion 29 acts to disturb the flow of fluid near the lower surface of the floating body 24.
  • the floating body 24 shown in FIG. 5 (C) is made of a hollow panel member having a rectangular or box-shaped cross section having an internal hollow region 27 and does not have a side protruding portion.
  • the floating body 24 having such a sectional shape divides the liquid surface LL and the liquid in the vicinity of the liquid surface, and effectively prevents the occurrence of sloshing.
  • a cross-sectional shape known as a wave-free shape that is, a cross-sectional shape that is difficult to receive a vertical wave forcing force.
  • the vertical movement of the floating body 24 at the time of occurrence can be suppressed, and the anti-sloshing effect of the floating body 24 can be further improved.
  • the waveless shape has a shape in which the cross-sectional shape of the floating body bottom is rounded, or the floating body bottom has a triangular shape.
  • the floating body 24 having a laterally protruding portion as shown in FIGS. 5 (A), 5 (D) and 5 (E) has a damping effect that attenuates the liquid motion. This is advantageous in preventing sloshing.
  • the frequency of liquid vibration that requires the anti-sloshing effect varies depending on the shape and dimensions of the tank 10, the structural characteristics such as the support structure of the tank 10, the motion characteristics of the hull or floating marine equipment, or the wave characteristics of the operating sea area. . For this reason, each part dimension of the floating body 24 cannot be defined uniquely.
  • the liquid vibration in the tank 10 has a frequency of 0.15 Hz or more.
  • cross-sectional shape of the floating body 24 various shapes such as a rectangular cross-section (reverse concave cross-section, substantially cross-section), an inverted Y-shaped cross-section, an X-shaped cross-section, etc. having an open bottom can be adopted.
  • the floating body 24 does not divide the liquid in the tank 10 as a whole, but divides only the liquid level LL and the liquid in the vicinity thereof, so that the liquid on both sides of the floating body 24 continues in the lower region of the floating body 24. .
  • the floating body 24 moves up and down in response to the behavior of the liquid level LL and suppresses liquid vibration in the tank 10. Due to the division of the liquid level LL by the floating body 24, the natural frequency of the liquid motion is shifted to the high frequency side. This brings about the same effect as the complete division of the area in the tank by the bulkhead. Since the floating body 24 divides the tank area into a U-tube shape, there is a concern about the occurrence of U-tube vibration in which the liquid columns on the left and right rise alternately. Small and harmful U-tube vibration does not occur.
  • FIGS. 6 and 7 are diagrams showing the relationship between the excitation frequency of a wave that gives 1 degree of roll (hull rolling) to the hull and the maximum wave amplitude ⁇ per roll angle that occurs in the tank 10. It is.
  • the maximum wave amplitude ⁇ is the rising amount (maximum value) of the liquid surface edge during vibration with respect to the stationary horizontal liquid surface.
  • FIGS. 6 and 7 the frequency of ocean waves that have a high probability of occurring in the North Atlantic in winter is shown as the frequency range ⁇ of the excitation frequency.
  • Ocean waves that occur in the North Atlantic in winter generally have a frequency in the frequency range ⁇ (a frequency of about 0.11 to about 0.14 Hz).
  • 6 and 7 show the rolling natural frequency of the hull of the LNG ship 1. In this example, the rolling natural frequency of the hull appears in a frequency range considerably lower than the frequency range ⁇ .
  • LNG storage tank without anti-sloshing device or partition wall and with no internal material in the tank area (Comparative Example 1)
  • LNG storage tank provided with a partition that divides the inner region of the tank into right and left at the position (center in the width direction) of the anti-sloshing device 20 (Comparative Example 2)
  • Tank 10 of the present invention provided with the anti-sloshing device 20 (this embodiment)
  • the maximum wave amplitude ⁇ is 0.20 to 0.21 Hz (FIG. 6) or the excitation frequency of about 0.20 Hz (FIG. 7). Increases rapidly.
  • This frequency belongs to a frequency range considerably higher than the frequency range ⁇ . That is, by dividing the tank region by the partition wall, the tuning point is greatly shifted to the high frequency side, so that the synchronization of the ocean wave and the liquid in the tank can be prevented, and the occurrence of sloshing can be prevented.
  • the membrane tank should be divided by the partition. This involves economic or practical difficulties due to disadvantages in construction costs, complexity of the hull structure, difficulty in designing and building the hull, and the like.
  • the maximum wave amplitude ⁇ increases rapidly, and this frequency belongs to a frequency range considerably higher than the frequency range ⁇ . That is, by dividing only the liquid level LL in the tank and the liquid in the vicinity thereof by the floating body 24 of the anti-sloshing device 20, the tuning point is increased to the high frequency side in the same manner as the LNG storage tank of the comparative example 2 having the partition wall. Shifting, thus preventing the synchronization of ocean waves with the liquid in the tank, thereby preventing sloshing from occurring.
  • FIG. 6 shows the relationship between the vertical movement of the floating body 24 relative to the liquid level LL and the excitation frequency.
  • the vertical movement of the floating body 24 that occurs in the frequency range of 0.20 to 0.21 Hz is only a relatively small behavior.
  • FIG. 6 also shows that the floating body 24 moves up and down even in the frequency range of 0.14 to 0.15 Hz. This is only due to the natural frequency of the floating body 24 itself being in this frequency range, and this vertical movement is also a relatively small behavior.
  • FIG. 8 is a diagram showing the calculation result of the numerical calculation for obtaining the relationship between the primary natural frequency f 1 of the liquid motion in the LNG storage tank and the liquid level h in the tank.
  • the frequency of the ocean wave having a high probability of occurring in the North Atlantic in winter is shown as the above-described frequency region ⁇ .
  • FIG. 8 shows the frequency of the ocean wave having a high probability of occurring in the North Atlantic in winter.
  • the primary natural frequency f 1 was obtained from the sloshing natural frequency estimation formula shown in FIG.
  • sloshing can be effectively prevented by completely dividing the LNG accommodation area 15 into sections having a width of 20 m or less by the partition walls.
  • FIGS. 6 and 7 dividing the liquid level LL and the liquid in the vicinity thereof by the floating body 24 exhibits the same anti-sloshing action as completely dividing the LNG containing area 15 by the partition walls. Therefore, according to the tank 10 of the present embodiment in which the liquid surface LL and the liquid in the vicinity thereof are divided into sections of 20 m or less by the floating body 24, sloshing can be effectively prevented as in the division of the LNG accommodation area 15 by the partition walls. it can. Further, the gaps 25 and 26 (FIGS.
  • the sloshing prevention device 20 of the present embodiment the occurrence of sloshing can be more effectively prevented by forming such gaps 25 and 26.
  • the configuration of the present embodiment in which the liquid level LL and the liquid in the vicinity thereof are divided by the floating body 24 are not accompanied by structural disadvantages associated with the installation of the partition walls.
  • FIG. 9 is a cross-sectional view of the tank 10 exemplifying the form of the liquid level LL divided by the floating body 24, and FIG. 10 is a diagram showing the shift of the natural frequency associated with the difference in the number N of free liquid levels.
  • the liquid level rise ⁇ shown in FIG. 9 is the liquid level edge rise during vibration with respect to the stationary horizontal liquid level, and the maximum wave amplitude ⁇ max shown in FIG. 10 sets the hull roll angle to 1 degree.
  • the maximum value ⁇ of the liquid level rise obtained under the above conditions.
  • the floating bodies 24 are arranged in alignment in the central axis direction of the tank 10.
  • the tuning point shifts to the high frequency region side as the free liquid level N increases. Accordingly, the tuning point can be shifted to the high frequency side as desired by appropriately setting the arrangement of the floating bodies 24 and the number of rows according to the conditions such as the hull structure, the tank shape, and the liquid level. .
  • FIG. FIG. 11 (A) shows the change in the vertical position of the liquid level that occurs at the tank end (liquid surface edge) of the tank 10 that does not include the floating body 24.
  • FIG. 11 (B) The change of the liquid level up-and-down position every moment which arises in the tank edge part of the tank 10 provided with the floating body 24 is shown.
  • the vertical position of the liquid level shown in each figure is a numerical analysis result of the vertical position of the liquid level generated when an irregular wave having a significant wave height of 5.95 m and an average wave period of 10.1 seconds is applied to the hull.
  • FIG. 12 is a diagram showing the relationship between the change in the height Zc of the roll center C and the aforementioned maximum wave amplitude ⁇ max.
  • Such U-shaped tube vibration is a phenomenon that occurs when the same or equivalent condition is sustained for a relatively long time, and therefore, the possibility that the U-shaped tube vibration is generated is relatively low. Even if the U-shaped tube vibration occurs, as shown in FIG. 12, the vibration generated in the frequency range near 0.10 Hz is relatively small. Therefore, the provision of the floating body 24 may cause harmful U-shaped tube vibration. It is considered that there is no risk of the occurrence.
  • the three floating bodies 24 are linearly arranged in the tank 10, but two or four or more floating bodies 24 may be linearly arranged in the tank 10.
  • a single floating body row is arranged on the central axis XX of the tank 10 and the liquid level LL is divided equally on the left and right, but two or more floating body rows are arranged in the tank 10.
  • the liquid level LL can be divided unevenly.
  • the floating bodies 24 do not necessarily have to be arranged strictly on a straight line or in a straight line.
  • a floating body arrangement (such as a staggered arrangement) in a slightly shifted state may be adopted.
  • the present invention can be preferably applied to a membrane liquid storage tank of a liquid cargo ship or a floating marine facility.
  • the anti-sloshing technology of the present invention can be preferably used in a large LNG ship or FLNG facility that has been conventionally recognized as being difficult to store or transport liquid cargo in a semi-mounted state. Since the present invention enables such a large LNG ship or FLNG facility to store or transport liquid cargo in a semi-loading state, its practical effect is significant.
  • the anti-sloshing device of the present invention can be applied to a tank of a ship carrying any liquid cargo.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

A sloshing preventing device (20) with an easy or simple structure or configuration prevents a sloshing phenomenon from occurring in a membrane liquid storage tank (10) of a liquid cargo carrier or floating marine installation (1). The sloshing preventing device has a plurality of floating bodies (24) which are serially arranged in the longitudinal direction or the lateral direction of the carrier or the marine installation, and vertical struts (23) which support the floating bodies against horizontal external force acting on the floating bodies, and guide the floating bodies in the vertical direction. The floating bodies each have the weight for securing the proper draft depth (D). Each floating body floats on a free liquid level (LL) in the tank to divide liquid on the liquid level and around the liquid level, and shifts the natural frequency of liquid vibration to a side of a high frequency zone.

Description

スロッシング防止装置及びスロッシング防止方法Sloshing prevention device and sloshing prevention method
 本発明は、スロッシング防止装置及びスロッシング防止方法に関するものであり、より詳細には、液体貨物運搬船又は浮体式海洋設備のメンブレン式液体格納タンク内にスロッシング現象が発生するのを防止するメンブレン式液体格納タンクのスロッシング防止装置及びスロッシング防止方法に関するものである。 The present invention relates to an anti-sloshing device and an anti-sloshing method, and more particularly, a membrane-type liquid storage that prevents a sloshing phenomenon from occurring in a membrane-type liquid storage tank of a liquid cargo ship or a floating marine facility. The present invention relates to a tank sloshing prevention device and a sloshing prevention method.
 液化天然ガスを長距離海上輸送する液化天然ガス運搬船(以下、「LNG船」という。)が知られている。天然ガスを極低温(-162℃)で液化せしめた液相の天然ガス(即ち、液化天然ガス)は、気相の天然ガスと比べて大きく減容するので、輸送効率上極めて有利である。LNG船は、このような極低温(-162℃)に耐える特殊なタンク構造のLNG格納タンクを有する。従来のLNG格納タンクの方式として、球形タンク方式、角形メンブレン方式、角形SPB方式等が知られているが、現状では、球形タンク方式及び角形メンブレン方式のLNG格納タンクが主流である。 A liquefied natural gas carrier ship (hereinafter referred to as “LNG ship”) that transports liquefied natural gas over long distances is known. A liquid phase natural gas obtained by liquefying natural gas at an extremely low temperature (−162 ° C.) (that is, liquefied natural gas) is greatly advantageous in terms of transport efficiency because it is greatly reduced in volume compared to a gas phase natural gas. The LNG ship has a special LNG storage tank that can withstand such extremely low temperatures (−162 ° C.). As a conventional LNG storage tank system, a spherical tank system, a rectangular membrane system, a rectangular SPB system, and the like are known, but at present, a LNG storage tank of a spherical tank system and a rectangular membrane system is the mainstream.
 球形タンク方式のLNG格納タンクは、構造強度的に有利であるが、容積効率の悪化故に船体が大型化する傾向がある。これに対し、メンブレン方式のLNG格納タンクは、同等の積載量であれば球形タンク方式に比べて船体の小型化を可能にするので、建造コストや、航路選択の自由度等の点で有利である。このため、液化天然ガスの需要及び輸送量の増大に伴うLNG格納タンクの大型化傾向と相まって、メンブレン方式のLNG格納タンクがLNG船の設計において採用される傾向が近年殊に顕著である。 The spherical tank type LNG storage tank is advantageous in terms of structural strength, but the hull tends to be enlarged due to the deterioration of volumetric efficiency. On the other hand, the membrane-type LNG storage tank is advantageous in terms of construction cost, freedom of route selection, etc., because the hull size can be reduced compared to the spherical tank method with the same loading capacity. is there. For this reason, the tendency of membrane type LNG storage tanks to be adopted in the design of LNG ships is particularly noticeable in recent years, coupled with the trend toward larger LNG storage tanks accompanying an increase in demand for liquefied natural gas and the amount of transport.
 メンブレン方式のLNG格納タンクの弱点として、半載状態においてタンク内の液体に発生するスロッシング現象が知られている。スロッシング現象は、タンク内に格納された液体貨物等が、タンクの運動により加振され、激しく動揺する現象である。スロッシング現象は、タンクの内壁に作用する過大な液体衝撃圧力、タンク支持構造に対する変動荷重、船体運動への影響、液体貨物の飛散等の問題を生じさせる。他方、固定式プラットフォームに代わる天然ガス生産設備として、LNG-FPSOシステム(Floating Production, Storage and Offloading system: 浮体式海洋石油・ガス生産貯蔵積出設備)等のFLNG(Floating LNG)施設が近年注目されている。FPSOは、坑井からの天然ガスを洋上にて受入れ、分離・前処理した後に液化し、LNGとして貯蔵・出荷する。FPSOの浮体は洋上に位置固定されるために、通常の船舶のように荒天時の退避行動をとることができず、しかも、LNGの生産過程、輸送船へのLNG移送過程等において、LNG格納タンクの半載状態が必ず発生する。このため、メンブレン方式のLNG格納タンクを備えたFPSO方式の浮体においては、スロッシング現象の発生が殊に懸念される。 As a weak point of the membrane type LNG storage tank, a sloshing phenomenon that occurs in the liquid in the tank in a semi-mounted state is known. The sloshing phenomenon is a phenomenon in which liquid cargo or the like stored in a tank is vibrated vigorously by being vibrated by the movement of the tank. The sloshing phenomenon causes problems such as excessive liquid impact pressure acting on the inner wall of the tank, fluctuating load on the tank support structure, influence on hull motion, and scattering of liquid cargo. On the other hand, FLNG (Floating LNG) facilities such as the LNG-FPSO system (Floating Production Storage and Offloading system) have recently attracted attention as an alternative to the fixed platform. ing. FPSO receives natural gas from a well offshore, separates and pretreats, liquefies, and stores and ships as LNG. Since the FPSO floating body is fixed on the ocean, it cannot take retreat action during stormy weather like a normal ship. Moreover, it is stored in the LNG production process, LNG transfer process to the transport ship, etc. A tank half-load condition always occurs. For this reason, in the FPSO type floating body provided with the membrane type LNG storage tank, the occurrence of the sloshing phenomenon is of particular concern.
 特開2009-18608号公報(特許文献1)には、球形独立式タンクとメンブレン式タンクの双方を備えたLNG船が記載されている。特表2011-505298号公報(特許文献2)には、メンブレン方式のLNG格納タンクを備えた大型LNG船に関し、LNG格納タンクを隔壁(バルクヘッド)によって分割するスロッシング防止技術が記載されている。特許文献1に記載されたLNG船は、球形独立式タンク内の液化天然ガスをメンブレン式タンクに適宜移送してメンブレン式タンク内を常に満載状態に維持し、これにより、メンブレン式タンクにおけるスロッシングの発生を防止しようとしたものである。特許文献2に記載されたLNG格納タンクは、隔壁によってタンク内領域を完全に分割し、分割に伴うタンク内領域の容積低減によってスロッシング現象の発生を防止しようとしたものである。 JP 2009-18608 (Patent Document 1) describes an LNG ship having both a spherical independent tank and a membrane tank. Japanese Patent Publication No. 2011-505298 (Patent Document 2) describes a sloshing prevention technique for dividing a LNG storage tank by a bulkhead with respect to a large LNG ship equipped with a membrane type LNG storage tank. The LNG ship described in Patent Document 1 appropriately transfers the liquefied natural gas in the spherical independent tank to the membrane tank to keep the inside of the membrane tank in a fully loaded state, thereby preventing sloshing in the membrane tank. This is to prevent the occurrence. The LNG storage tank described in Patent Document 2 attempts to prevent the occurrence of the sloshing phenomenon by completely dividing the tank inner area by partition walls and reducing the volume of the tank inner area accompanying the division.
 また、このようなスロッシング現象は、バラストタンク内のバラスト水においても発生する。バラスト水のスロッシング現象を防止する技術として、浮揚式隔壁によりバラストタンク内のバラスト水自由液面を分割し、隔壁の各側に位置する自由液面の面積を縮小するように構成されたスロッシング防止装置が、実公昭53-44237号公報(特許文献3)に記載されている。また、実開昭53-1792号公報(特許文献4)には、多数の平板状浮揚体をバラスト水自由液面に浮揚させ、自由液面の面積を大きく減縮するように構成されたスロッシング防止装置が記載されている。 Moreover, such a sloshing phenomenon also occurs in the ballast water in the ballast tank. Sloshing prevention designed to divide the ballast water free liquid level in the ballast tank by a floating partition and reduce the area of the free liquid level located on each side of the partition as a technology to prevent the ballast water sloshing phenomenon An apparatus is described in Japanese Utility Model Publication No. 53-44237 (Patent Document 3). In addition, Japanese Utility Model Publication No. 53-1792 (Patent Document 4) discloses a sloshing prevention system in which a large number of flat floating bodies are floated on the free surface of ballast water, and the area of the free surface is greatly reduced. An apparatus is described.
特開2009-18608号公報Japanese Unexamined Patent Publication No. 2009-18608 特表2011-505298号公報Special Table 2011-505298 実公昭53-44237号公報Japanese Utility Model Publication No. 53-44237 実開昭53-1792号公報Japanese Utility Model Publication No. 53-1792
 特許文献1に記載されたLNG船は、メンブレン式タンク内の液量が減少したときに球形独立式タンク内の液体をメンブレン式タンク内に適宜補給し、これにより、メンブレン式タンクの満載状態を常に維持するようにした構成のものである。このため、特許文献1のLNG船では、異種方式のタンクを常時併用しなければならず、しかも、球形独立式タンクとメンブレン式タンクとの間で液化天然ガスを移送する流体移送設備等が船体に設けられるので、LNG船の構造が全体的に複雑化する。 The LNG ship described in Patent Document 1 appropriately replenishes the liquid in the spherical independent tank into the membrane tank when the amount of liquid in the membrane tank decreases, thereby ensuring that the membrane tank is fully loaded. The configuration is such that it is always maintained. For this reason, the LNG ship of Patent Document 1 must always use different types of tanks, and a fluid transfer facility for transferring liquefied natural gas between a spherical independent tank and a membrane tank is provided on the hull. Therefore, the overall structure of the LNG ship is complicated.
 特許文献2に記載されたスロッシング防止装置は、メンブレン式タンク内の領域を隔壁によって完全に分割した構成のものであるが、メンブレン式タンクの内面は、厚さ1mm以下の薄い合金によって形成されているので、高さ25~40m程度にも達する自立又は直立隔壁の構造的安定性、強度及び耐力、隔壁とタンク内面との接合構造、更には、隔壁を支持する堅固な支持構造等を考慮すると、このような隔壁によってメンブレン式タンクを分割することは、建造コスト上の不利、船体構造の複雑化、船体の設計・建造の困難性等を伴う。 The anti-sloshing device described in Patent Document 2 has a structure in which the region in the membrane tank is completely divided by the partition wall, but the inner surface of the membrane tank is formed of a thin alloy having a thickness of 1 mm or less. Therefore, considering the structural stability, strength and proof strength of a self-standing or upstanding partition that reaches a height of about 25 to 40 m, the joint structure between the partition and the tank inner surface, and the solid support structure that supports the partition Dividing the membrane tank by such a partition wall involves disadvantages in construction cost, complication of the hull structure, difficulty in designing and building the hull, and the like.
 特許文献3に記載された浮揚式隔壁は、隔壁を案内し且つ保持する案内・保持用の鋼材をバラストタンクの壁面に固定するとともに、隔壁によってバラスト水の自由液面を分割し、これにより、隔壁の各側に位置する自由液面の面積を縮小する構成を有する。この構成は、バラストタンクのスロッシング防止に関するものである。しかし、厚さ1mm以下の薄い合金によって形成されたメンブレン式タンクの内面は、このような隔壁を支持する強度を保有せず、このような鋼材をタンク内面に取付けることは極めて困難である。また、隔壁は、両端をタンク内壁に上下動可能に支持され、バラストタンクの全長又は全幅に亘って延在しており、このため、大容量の大型タンク内においては隔壁の水平支点間距離(全長)が増大するので、隔壁の強度・耐力を確保することが困難である。更に、スロッシング発生時には、自由液面の液面レベル差が隔壁の長手方向にも若干発生するので、隔壁の高さは、このような液面レベル差以上の寸法に設計しなければらない。また、このような液面レベル差は、隔壁を全体的に傾斜させるので、案内・保持用鋼材が隔壁を傾斜姿勢で拘束又は係止してしまい、この結果、隔壁の自由な上下動が妨げられる状態が生じ易い。 The floating partition described in Patent Document 3 fixes a steel material for guiding and holding the partition and guides the partition to the wall surface of the ballast tank, and divides the free liquid level of the ballast water by the partition, It has a configuration in which the area of the free liquid surface located on each side of the partition is reduced. This configuration relates to prevention of sloshing of the ballast tank. However, the inner surface of the membrane tank formed of a thin alloy having a thickness of 1 mm or less does not have the strength to support such a partition wall, and it is extremely difficult to attach such a steel material to the tank inner surface. In addition, the partition wall is supported by the inner wall of the tank so that the both ends can move up and down, and extends over the entire length or the entire width of the ballast tank. Therefore, in a large-capacity large tank, the distance between the horizontal fulcrums of the partition wall ( As the total length) increases, it is difficult to ensure the strength and proof strength of the partition walls. Further, when sloshing occurs, the liquid level difference of the free liquid level is slightly generated in the longitudinal direction of the partition wall. Therefore, the height of the partition wall must be designed to be larger than the liquid level difference. In addition, such a difference in liquid level causes the partition wall to incline as a whole, so that the guide / holding steel material restrains or locks the partition wall in an inclined posture, and as a result, free vertical movement of the partition wall is hindered. This is likely to occur.
 特許文献4に記載されたスロッシング防止手段は、多数の板状浮揚体によってバラスト水自由液面の挙動を全体的に押え込む構成のものであるので、多数の浮揚体を上下動可能に支持する多数のガイド部材をタンク内に設置する必要が生じる。この構成は、バラストタンクのスロッシング防止に関しては適用し得るかもしれないが、液化天然ガスを輸送するメンブレン式タンクにおいては、タンク内面は、前述のとおり厚さ1mm以下の薄い合金によって形成されているので、このような多数のガイド部材及びその支持構造をタンク内に設置し難い。また、特許文献4に記載されたスロッシング防止手段は、自由水面の面積を縮小するにすぎず、水面下の水の挙動又は振動を直接的に規制し又は制御することはできない。 The anti-sloshing means described in Patent Document 4 has a structure in which the behavior of the free surface of the ballast water is entirely suppressed by a large number of plate-like floating bodies, and thus supports a large number of floating bodies so as to be movable up and down. Many guide members need to be installed in the tank. Although this configuration may be applicable for preventing sloshing of the ballast tank, in the membrane tank for transporting liquefied natural gas, the inner surface of the tank is formed of a thin alloy having a thickness of 1 mm or less as described above. Therefore, it is difficult to install such a large number of guide members and their support structures in the tank. Further, the anti-sloshing means described in Patent Document 4 merely reduces the area of the free water surface and cannot directly regulate or control the behavior or vibration of water below the water surface.
 本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、メンブレン式液体格納タンク内に貯留した液体のスロッシング現象を効果的に防止する簡易又は簡素な構造のスロッシング防止装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a sloshing with a simple or simple structure that effectively prevents the sloshing phenomenon of the liquid stored in the membrane liquid storage tank. It is to provide a prevention device.
 本発明は又、メンブレン式液体格納タンク内に貯留した液体のスロッシング現象を簡易又は簡素な構成により効果的に防止することができるスロッシング防止方法を提供することを目的とする。 Another object of the present invention is to provide a sloshing prevention method capable of effectively preventing the sloshing phenomenon of the liquid stored in the membrane type liquid storage tank with a simple or simple configuration.
 本発明は、上記目的を達成すべく、液体貨物運搬船又は浮体式海洋設備のメンブレン式液体格納タンクに設けられ、該タンク内にスロッシング現象が発生するのを防止するスロッシング防止装置において、
 前記運搬船又は海洋設備の船体縦方向又は横方向に直列に配置された複数の浮体と、
  前記浮体に作用する水平外力に抗して該浮体を支承するとともに、前記浮体を上下方向に案内する複数の鉛直支柱とを有し、
  前記浮体は、予め設定された喫水量(液面から測定した喫水寸法又は没水量を意味し、以下、本明細書及び請求の範囲において「喫水量」という。)を保有した状態で前記タンク内の自由液面に浮遊する重量を有し、該浮体は、前記タンク内の自由液面に浮遊して該液面及び液面下の液体を分割するとともに、前記浮体の下側領域において該浮体の両側の液体を連続せしめることを特徴とするスロッシング防止装置を提供する。
In order to achieve the above object, the present invention provides a sloshing prevention device that is provided in a membrane liquid storage tank of a liquid cargo carrier or a floating marine facility and prevents a sloshing phenomenon from occurring in the tank.
A plurality of floating bodies arranged in series in the longitudinal or lateral direction of the ship or marine equipment hull;
While supporting the floating body against a horizontal external force acting on the floating body, and having a plurality of vertical struts that guide the floating body in the vertical direction,
The floating body has a preset draft amount (meaning a draft size or submerged amount measured from the liquid level, hereinafter referred to as “draft amount” in the present specification and claims) and in the tank. The floating body floats on the free liquid surface in the tank to divide the liquid surface and the liquid below the liquid surface, and in the lower region of the floating body The anti-sloshing device is characterized in that the liquid on both sides of the liquid is made continuous.
 本発明は又、液体貨物運搬船又は浮体式海洋設備のメンブレン式液体格納タンク内に発生するスロッシング現象を防止するスロッシング防止方法において、
 水平外力に対して支承され且つ液位変動に応答して上下動する複数の浮体を前記運搬船又は海洋設備の船体縦方向又は横方向に直列に配置し、 
  予め設定された喫水量を確保した前記浮体を前記タンク内の自由液面に浮遊させて該液面及び液面下の液体を分割するとともに、前記浮体の下側領域において該浮体の両側の液体を連続せしめ、これにより、前記タンク内に生じる液体振動の固有周波数を高周波数域の側にシフトさせてスロッシング現象の発生を防止することを特徴とするスロッシング防止方法を提供する。
The present invention also relates to a sloshing prevention method for preventing a sloshing phenomenon occurring in a membrane liquid storage tank of a liquid cargo ship or a floating marine facility.
A plurality of floating bodies that are supported with respect to a horizontal external force and move up and down in response to liquid level fluctuations are arranged in series in the longitudinal direction or the lateral direction of the ship or the marine equipment,
The floating body that secures a predetermined draft amount is floated on the free liquid surface in the tank to divide the liquid and the liquid below the liquid surface, and the liquid on both sides of the floating body in the lower region of the floating body Thus, a sloshing prevention method is provided, which prevents the occurrence of the sloshing phenomenon by shifting the natural frequency of the liquid vibration generated in the tank to the high frequency side.
 本発明の上記構成によれば、タンク内に貯留された液体は、液面と、液面近傍の液体のみが浮体によって分割され、タンク内の液体は、浮体の下側領域において全体的に連続する。各々の浮体は、液面の上下動に応答して独立に上下動する。タンク内の液体振動は浮体の上下動により減衰するとともに、液体振動の固有周波数は自由液面の分割により高周波数域の側にシフトする。本発明によれば、このような固有周波数のシフトにより、海洋波浪及び船体運動とタンク内の液体振動との同調を防止し、スロッシング発生を未然に防止し又は抑制することができる。また、浮体は、タンク内領域をU字管形態に分割するが、本発明者の研究によれば、有害なU字管振動は発生しない。なお、浮体列は、船体の横揺れ(ローリング)によるスロッシングを防止する場合、船体縦方向(船体前後方向、船体長手方向又はローリング軸線方向)に配列され、船体の縦揺れ(ピッチング)によるスロッシングを防止する場合、船体横方向(左右舷方向、船体幅方向又はピッチング軸線方向)に配列される。 According to the above configuration of the present invention, the liquid stored in the tank is divided only by the liquid level and the liquid in the vicinity of the liquid level by the floating body, and the liquid in the tank is continuously continuous in the lower region of the floating body. To do. Each floating body moves up and down independently in response to the vertical movement of the liquid level. The liquid vibration in the tank is attenuated by the vertical movement of the floating body, and the natural frequency of the liquid vibration is shifted to the high frequency range side by dividing the free liquid surface. According to the present invention, such a shift of the natural frequency can prevent synchronization of ocean waves and ship motion and liquid vibration in the tank, and can prevent or suppress the occurrence of sloshing. Moreover, although the floating body divides | segments the area | region in a tank into a U-shaped pipe form, according to this inventor's research, harmful U-shaped pipe vibration does not occur. In order to prevent sloshing due to rolling (rolling) of the hull, the floating row is arranged in the longitudinal direction of the hull (front and rear direction of the hull, longitudinal direction of the hull or rolling axis), and sloshing due to pitching of the hull is prevented. When preventing, it arranges in a hull lateral direction (left-right dredging direction, hull width direction, or pitching axis direction).
 このような自由液面の分割および液面下の液体の分割により得られるスロッシング防止効果は、タンク内の液体全体を隔壁(バルクヘッド)によって完全に分割した場合に得られるスロッシング防止効果と実質的に同一又は同等であることが本発明者の研究により判明した。即ち、本発明によれば、タンク内の液体を隔壁によって全体的に分割することなく、浮体列をタンク内に浮遊させれば良く、従って、自立又は直立隔壁の構造的安定性、強度及び耐力、隔壁とタンク内面との接合構造、更には、隔壁を支持する堅固な支持構造等の問題を考慮することなく、スロッシング防止機構をタンク内に配設することができる。また、本発明は、スロッシング防止を意図した異種方式タンクの併用や、タンク間の液化天然ガスの移送等を要しない。更に、本発明においては、浮体は、自由液面の挙動を広域に亘って押え込む必要はなく、浮体列によって自由液面及びその近傍の液体を分割すれば良い。かくして、本発明によれば、簡易又は簡素な構造のスロッシング防止機構によりメンブレン式液体格納タンクのスロッシング発生を効果的に防止することができる。 The anti-sloshing effect obtained by dividing the free liquid surface and the liquid below the liquid surface is substantially the same as the anti-sloshing effect obtained when the entire liquid in the tank is completely divided by the bulkhead. To the same or equivalent to each other. That is, according to the present invention, the floating body row may be suspended in the tank without dividing the liquid in the tank entirely by the partition wall, and thus the structural stability, strength and proof strength of the self-standing or upstanding partition wall. The sloshing prevention mechanism can be disposed in the tank without considering the problem of the joining structure between the partition walls and the tank inner surface, and the solid support structure for supporting the partition walls. Further, the present invention does not require the combined use of different types of tanks intended to prevent sloshing and the transfer of liquefied natural gas between tanks. Further, in the present invention, the floating body does not need to suppress the behavior of the free liquid level over a wide area, and the free liquid level and the liquid in the vicinity thereof may be divided by the floating body row. Thus, according to the present invention, the occurrence of sloshing in the membrane type liquid storage tank can be effectively prevented by the sloshing prevention mechanism having a simple or simple structure.
 また、本発明によれば、複数の浮体により液面を分割すれば良いので、浮体の水平支点間距離が大幅に短縮する。このため、浮体の強度を比較的容易に確保することができる。加えて、浮体列の方向に浮体列に沿って生じる自由液面の液面レベル差は、浮体同士の高低差によって概ね吸収し得るので、浮体の高さ寸法を縮小することができる。 Further, according to the present invention, since the liquid level may be divided by a plurality of floating bodies, the distance between the horizontal fulcrums of the floating bodies is greatly reduced. For this reason, the strength of the floating body can be secured relatively easily. In addition, the liquid level difference of the free liquid level generated along the floating body row in the direction of the floating body row can be almost absorbed by the height difference between the floating bodies, so that the height dimension of the floating body can be reduced.
  本発明のスロッシング防止装置によれば、メンブレン式液体格納タンク内に貯留した液体のスロッシング現象を簡易又は簡素な構造により効果的に防止することができる。 According to the anti-sloshing device of the present invention, the sloshing phenomenon of the liquid stored in the membrane type liquid storage tank can be effectively prevented with a simple or simple structure.
  本発明のスロッシング防止方法によれば、メンブレン式液体格納タンク内に貯留した液体のスロッシング現象を簡易又は簡素な構成により効果的に防止することができる。 According to the sloshing prevention method of the present invention, the sloshing phenomenon of the liquid stored in the membrane type liquid storage tank can be effectively prevented with a simple or simple configuration.
図1は、本発明の実施形態に係るスロッシング防止装置を備えたLNG船の全体構成を概略的に示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing an overall configuration of an LNG ship including a sloshing prevention device according to an embodiment of the present invention. 図2(A)は、図1のI-I線におけるLNG格納タンクの断面図であり、図2(B)は、LNG格納タンクに適用される積みつけ制限の概要を示す断面図である。2A is a cross-sectional view of the LNG storage tank taken along line II in FIG. 1, and FIG. 2B is a cross-sectional view illustrating an outline of the stacking limitation applied to the LNG storage tank. 図3は、スロッシング防止装置を備え且つ四角形断面を有するLNG格納タンクの構成を概念的に示す平面図及び部分拡大平面図である。FIG. 3 is a plan view and a partially enlarged plan view conceptually showing the configuration of an LNG storage tank having a sloshing prevention device and having a quadrangular cross section. 図4(A)は、図3のII-II線における断面図であり、図4(B)は、図3のIII-III線における断面図である。4A is a cross-sectional view taken along line II-II in FIG. 3, and FIG. 4B is a cross-sectional view taken along line III-III in FIG. 図5は、浮体の構造及び断面形状を例示する概略断面図である。FIG. 5 is a schematic cross-sectional view illustrating the structure and cross-sectional shape of a floating body. 図6は、左右舷方向(船体横方向)の揺れを生じさせる波の加振周波数と、LNG格納タンク内に発生する横揺角1度当たりの最大波振幅との関係を示す線図であり、LNG格納タンク内の液位比を63%に仮定した条件で求められた数値解析結果が図6に示されている。FIG. 6 is a diagram showing the relationship between the excitation frequency of a wave that causes a shake in the horizontal direction (the hull lateral direction) and the maximum wave amplitude per roll angle generated in the LNG storage tank. FIG. 6 shows a numerical analysis result obtained under the condition that the liquid level ratio in the LNG storage tank is assumed to be 63%. 図7は、左右舷方向の揺れを生じさせる波の加振周波数と、LNG格納タンク内に発生する横揺角1度当たりの最大波振幅との関係を示す線図であり、LNG格納タンク内の液化天然ガスの液位比を30%に仮定した条件で求められた数値解析結果が図7に示されている。FIG. 7 is a diagram showing the relationship between the excitation frequency of the wave that causes the horizontal shaking and the maximum wave amplitude per degree of roll angle generated in the LNG storage tank. FIG. 7 shows a numerical analysis result obtained under the condition that the liquid level ratio of the liquefied natural gas is assumed to be 30%. 図8は、LNG格納タンク内の液体運動の一次固有周波数と、タンク内液位との関係を示す線図である。FIG. 8 is a diagram showing the relationship between the primary natural frequency of the liquid motion in the LNG storage tank and the liquid level in the tank. 図9は、浮体による液面の分割の形態を例示する断面図である。FIG. 9 is a cross-sectional view illustrating a form of liquid level division by a floating body. 図10は、自由液面数の相違と関連した固有周波数のシフトを示す線図である。FIG. 10 is a diagram showing the shift of the natural frequency associated with the difference in the number of free liquids. 図11は、図9(A)に示す浮体のスロッシング防止効果を説明するための線図である。FIG. 11 is a diagram for explaining the anti-sloshing effect of the floating body shown in FIG. 図12は、横揺れ中心の高さと最大波振幅との関係を示す線図である。FIG. 12 is a diagram showing the relationship between the height of the roll center and the maximum wave amplitude.
 好ましくは、浮体は、互いに間隔を隔てて配置され、隣接する浮体同士の間には、液体が流動可能な間隙が形成される。浮体とタンクの内壁面との間にも又、液体が流動可能な間隙が形成される。これらの間隙を流動する液体の運動は、タンク内の液体振動を減衰するように働くので、液体振動の減衰効果が更に得られ、従って、スロッシング発生を更に効果的に防止することができる。 Preferably, the floating bodies are spaced apart from each other, and a gap through which liquid can flow is formed between adjacent floating bodies. A gap through which liquid can flow is also formed between the floating body and the inner wall surface of the tank. The movement of the liquid flowing through these gaps works to dampen the liquid vibration in the tank, so that the effect of damping the liquid vibration can be further obtained, and therefore the occurrence of sloshing can be more effectively prevented.
 好適には、浮体は、少なくともタンク全高H×0.05以上の喫水量を有し、好ましくは、浮体の喫水量は、タンク全高H×0.1以上の寸法に設定され、或いは、浮体の下部からタンク底面までの距離は、タンク全高H×0.5の液位において、液位h×0.80以下の寸法に設定される。例えば、H×0.3~H×0.7の範囲(或いは、H×0.4~0.6の範囲)の液位において、浮体の下部からタンク底面までの距離は、液位h×0.80以下の寸法に設定され、浮体の喫水量は、液位h×0.20以上の寸法に設定される。 Preferably, the floating body has a draft amount of at least a tank total height H × 0.05 or more, and preferably, the draft amount of the floating body is set to a dimension of a tank total height H × 0.1 or more, or The distance from the lower part to the bottom of the tank is set to a dimension of liquid level h × 0.80 or less at the liquid level of the tank total height H × 0.5. For example, at the liquid level in the range of H × 0.3 to H × 0.7 (or in the range of H × 0.4 to 0.6), the distance from the bottom of the floating body to the bottom of the tank is the liquid level h × The dimension is set to 0.80 or less, and the draft of the floating body is set to a dimension of liquid level h × 0.20 or more.
 本発明の好ましい実施形態によれば、鉛直支柱は浮体を貫通する。タンクの天井面及び底面には、支柱の上端部及び下端部を支持する上下の基部が固定される。基部は、浮体の上下動範囲を規制し、浮体がタンクの天井面又は底面に衝突するのを阻止する。基部は又、支柱の鉛直支点間距離をタンク内領域の高さよりも小さい距離に短縮し、支柱の強度及び剛性を向上する。好ましくは、浮体の上昇を阻止する上側基部の下面と、タンク天井面との間の寸法は、タンク全高H×0.3以下の範囲内の値に設定される。更に好ましくは、浮体の降下を阻止する下側基部の上面と、タンク底面との間の寸法は、タンク全高H×0.1以下の範囲内の値に設定される。 According to a preferred embodiment of the present invention, the vertical strut penetrates the floating body. Upper and lower bases that support the upper and lower ends of the column are fixed to the ceiling and bottom surfaces of the tank. The base restricts the vertical movement range of the floating body and prevents the floating body from colliding with the ceiling surface or bottom surface of the tank. The base also shortens the distance between the vertical fulcrum of the struts to a distance smaller than the height of the area in the tank, improving the strut strength and rigidity. Preferably, the dimension between the lower surface of the upper base that prevents the floating body from rising and the tank ceiling surface is set to a value within the range of the total tank height H × 0.3 or less. More preferably, the dimension between the upper surface of the lower base portion that prevents the floating body from descending and the tank bottom surface is set to a value within the range of the total tank height H × 0.1 or less.
 好ましくは、液体の自由液面は、船首尾方向(船体縦方向)に配列した浮体によって船体幅方向(船体横方向)に均等に分割される。各浮体は、船首尾方向に間隔を隔てた複数の鉛直支柱によって上下動可能に支持される。例えば、浮体は、船首尾方向に延びるタンクの中心軸線上に整列配置され、或いは、実質的に平行な複数列に並列配置される。 Preferably, the free liquid level of the liquid is equally divided in the width direction of the hull (lateral direction of the hull) by floating bodies arranged in the fore-and-aft direction (vertical direction of the hull). Each floating body is supported by a plurality of vertical struts spaced in the bow-stern direction so as to be movable up and down. For example, the floating bodies are aligned on the central axis of the tank extending in the stern direction, or are arranged in parallel in a plurality of substantially parallel rows.
 本発明の好ましい実施形態において、浮体は、水平面及び鉛直面から構成される中空多面体からなる。浮力を確保するための内部中空域が浮体内部に形成される。好適には、浮体は、鉛直方向に延びる仕切り部分と、仕切り部分から側方に延びる側方突出部分とを有する。仕切り部分は、自由液面又は自由液面近傍の液体を分割する。側方突出部分は、液体振動を減衰させるとともに、浮体自身の上下運動を抑制するように機能する。 In a preferred embodiment of the present invention, the floating body is a hollow polyhedron composed of a horizontal plane and a vertical plane. An internal hollow region for ensuring buoyancy is formed inside the floating body. Suitably, a floating body has a partition part extended in a perpendicular direction, and a side protrusion part extended in a side from a partition part. The partition portion divides the liquid near the free liquid level or the free liquid level. The side protruding portion functions to attenuate the liquid vibration and to suppress the vertical movement of the floating body itself.
 所望により、浮体は、該浮体の喫水量を調節する浮力調整手段を有する。好ましくは、浮力調整手段は、浮体の内部中空域にタンク内領域の液体を流入させる浮力低減手段、或いは、前記浮体の重量を調節する浮体重量調節手段を有する。タンク内液位と関連して喫水量を可変制御可能な浮力制御手段を浮体に設けることも可能である。 If desired, the floating body has buoyancy adjusting means for adjusting the amount of draft of the floating body. Preferably, the buoyancy adjusting means includes buoyancy reducing means for allowing the liquid in the tank area to flow into the hollow interior area of the floating body, or buoyancy weight adjusting means for adjusting the weight of the floating body. It is also possible to provide the floating body with buoyancy control means that can variably control the draft amount in relation to the liquid level in the tank.
 本発明の或る好ましい実施形態において、鉛直切断面によって切断されたタンクの断面は、四角形である。四角形断面のタンクは、スロッシング防止の観点より、八角形断面のタンクに比べて不利であることから、従来は、容積効率が劣る八角形断面のタンクが一般に採用されてきた。しかし、上記構成のスロッシング防止機構を四角形断面のタンクにおいて採用することにより、スロッシング防止機能を向上し且つ容積効率を向上することができる。 In a preferred embodiment of the present invention, the cross section of the tank cut by the vertical cutting plane is a quadrangle. Since a tank with a square cross section is disadvantageous compared to a tank with an octagonal cross section from the viewpoint of preventing sloshing, conventionally, a tank with an octagonal cross section having poor volume efficiency has been generally employed. However, by adopting the anti-sloshing mechanism configured as described above in a tank having a square cross section, the anti-sloshing function can be improved and the volumetric efficiency can be improved.
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
  図1は、LNG船(液化天然ガス運搬船)の全体構成を概略的に示す縦断面図である。 FIG. 1 is a longitudinal sectional view schematically showing an overall configuration of an LNG ship (liquefied natural gas carrier ship).
 図1には、本発明の実施形態に係るスロッシング防止装置20を備えたLNG船が示されている。LNG船1は、船首部2、タンク区画域3、機関室4及び船尾部5を有する。機関室4の上方には、居住区6及び操舵室7が配置される。タンク区画域3は、左右舷方向(船体幅方向)に延びる隔壁8によって区画されており、各区画には、スロッシング防止装置20を備えたメンブレン方式のLNG格納タンク10が配設される。なお、図1に示すLNG船1を洋上のLNG-FPSOとして把握しても良い。この場合、LNG船1は、海面WL上の位置を固定した状態に係留される。 FIG. 1 shows an LNG ship equipped with a sloshing prevention device 20 according to an embodiment of the present invention. The LNG ship 1 has a bow part 2, a tank compartment 3, an engine room 4, and a stern part 5. Above the engine room 4, a residential area 6 and a steering room 7 are arranged. The tank partition area 3 is partitioned by a partition wall 8 extending in the left-right ridge direction (the hull width direction), and a membrane-type LNG storage tank 10 having a sloshing prevention device 20 is disposed in each partition. Note that the LNG ship 1 shown in FIG. 1 may be grasped as an offshore LNG-FPSO. In this case, the LNG ship 1 is moored in a state where the position on the sea surface WL is fixed.
 図2(A)は、図1のI-I線におけるLNG格納タンク10の断面図である。図2(A)には、船体が仮想線(一点鎖線)で示されている。 FIG. 2A is a cross-sectional view of the LNG storage tank 10 taken along the line II in FIG. In FIG. 2A, the hull is indicated by an imaginary line (dashed line).
 LNG格納タンク10(以下、「タンク10」という。)は、船体内部に取付けられた防熱材11の表面(タンク内面)を厚さ1mm以下の金属薄膜(メンブレン)12で完全に被覆した構造を有する。左右舷方向の鉛直切断面(I-I線)によって切断されたタンク10の断面は、八角形である。防熱材11として、発泡パーライト入り合板製ボックス、或いは、ポリウレタン・インシュレーション等が一般に使用される。金属薄膜12として、厚さ0.7mm程度のインバー材(36 %ニッケル鋼)、或いは、SUS3041メンブレン等が一般に使用される。タンク10は、30~40mの幅を有する大型のメンブレン型LNG格納タンクを構成する。 The LNG storage tank 10 (hereinafter referred to as “tank 10”) has a structure in which the surface (the tank inner surface) of the heat insulating material 11 attached inside the hull is completely covered with a metal thin film (membrane) 12 having a thickness of 1 mm or less. Have. The section of the tank 10 cut by the vertical cut surface (II line) in the left-right heel direction is an octagon. As the heat insulating material 11, a box made of plywood with foamed perlite or polyurethane insulation is generally used. As the metal thin film 12, an Invar material (36% nickel steel) having a thickness of about 0.7 mm, a SUS3041 membrane or the like is generally used. The tank 10 constitutes a large membrane type LNG storage tank having a width of 30 to 40 m.
 図2(B)は、このようなメンブレン型LNG格納タンクに適用される積みつけ制限を示す断面図である。 FIG. 2 (B) is a cross-sectional view showing the stacking limitation applied to such a membrane type LNG storage tank.
 タンク10内には、液化天然ガス(LNG)を収容可能なLNG収容域15が形成され、液化天然ガスの自由液面LLは、空間的には、LNG収容域15のタンク全高Hの範囲内において任意に設定可能である。しかし、LNG収容域15内の液体(液化天然ガス)にスロッシング現象が発生すると、金属薄膜12に激しく衝突する液体によって極めて高い液圧が金属薄膜12に作用し、この結果、タンク10の構造体が過大な液圧の作用で破壊する虞がある。例えば、多数の木製保冷ボックスからなる防熱材11がスロッシング発生時の液圧により潰れ、金属薄膜12が破断した事例が過去に発生している。金属薄膜12の破断又は損傷により極低温の液化天然ガスが船外に漏出した場合、液化天然ガスは一気に気化し、火災事故等の原因となり得るので、このような事態は、未然に回避すべき必要がある。 An LNG containing area 15 capable of containing liquefied natural gas (LNG) is formed in the tank 10, and the free liquid level LL of the liquefied natural gas is spatially within the range of the total tank height H of the LNG containing area 15. It can be arbitrarily set in. However, when a sloshing phenomenon occurs in the liquid (liquefied natural gas) in the LNG storage area 15, a very high hydraulic pressure acts on the metal thin film 12 by the liquid that violently collides with the metal thin film 12, and as a result, the structure of the tank 10 May be destroyed by the action of excessive fluid pressure. For example, there have been cases in which the heat insulating material 11 made up of a large number of wooden cold boxes is crushed by the hydraulic pressure when sloshing occurs and the metal thin film 12 is broken. When cryogenic liquefied natural gas leaks out of the ship due to breakage or damage of the metal thin film 12, the liquefied natural gas can be vaporized at a stretch and cause a fire accident. Therefore, this situation should be avoided beforehand. There is a need.
 このような事情より、メンブレン型LNG格納タンクの積みつけ制限が船級協会規則等において規定されており、液面LLは、高さh1又はh3の範囲k1、k3に限定され、高さh2の範囲内(範囲k2)に液面LLが位置するような半載状態は、許容されていない。船級協会規則等の規定は、規則改定等により将来的に変更される可能性もあるが、現行の船級協会規則等において規定された積みつけ条件によれば、高さh1は、タンク全高H×0.1であり、高さh1+h2は、タンク全高H×0.7である。即ち、メンブレン型LNG格納タンクの積みつけ可能な高さ範囲は、タンク全高H×0.7以上の範囲k3、或いは、タンク全高H×0.1以下の範囲k1に制限される。しかし、洋上のLNG-FPSOでは、高さh2の範囲内(即ち、タンク全高H×0.1~0.7の範囲k2)に液面LLが位置する半載状態が生産過程又は移送過程において必ず生じる。また、大型LNG船においては、2港積み等の要求、即ち、複数の港で液化天然ガスを荷積みしながら多量の液化天然ガスを長距離海上輸送する輸送形態が望まれており、そのような輸送形態では、高さh2の範囲k2内に液面LLが位置する半載状態が過渡的に生じ得る。しかし、このような半載状態に伴うスロッシング発生の懸念より、LNG-FPSOの生産過程又は移送過程において生じるLNG半載状態は、許容し難く、また、LNG半載状態が生じ得る2港積み等のLNG船の輸送形態は、上記積みつけ制限により許可されていない。 Due to such circumstances, the stacking limitation of the membrane type LNG storage tank is defined in the Rules of the Classification Society, etc., and the liquid level LL is limited to the range k1, k3 of the height h1 or h3, and the range of the height h2 A semi-mounted state in which the liquid level LL is located within (range k2) is not allowed. The rules of the classification society rules may be changed in the future due to the revision of the rules, etc., but according to the loading conditions specified in the current classification society rules, the height h1 is the total height of the tank H × The height h1 + h2 is 0.1, and the total tank height H × 0.7. In other words, the height range in which the membrane type LNG storage tank can be stacked is limited to a range k3 of the tank total height H × 0.7 or more, or a range k1 of the tank total height H × 0.1 or less. However, in the offshore LNG-FPSO, the semi-mounted state where the liquid level LL is located in the range of the height h2 (that is, the tank total height H × 0.1 to 0.7 range k2) is in the production process or the transfer process. Always occurs. In addition, for large LNG carriers, there is a demand for a two-port loading, that is, a transportation mode that transports a large amount of liquefied natural gas over long distances while loading liquefied natural gas at multiple ports. In such a transport mode, a semi-loading state in which the liquid level LL is located within the range k2 of the height h2 may occur transiently. However, due to concerns about the occurrence of sloshing due to such a semi-loading state, the LNG half-loading state that occurs in the production or transfer process of LNG-FPSO is difficult to tolerate, and two-port loading that can cause the LNG semi-loading state, etc. LNG ships are not allowed to be transported due to the above loading restrictions.
 本例のLNG船1は、このような半載時のスロッシング発生を防止するスロッシング防止装置20を備える。スロッシングは、一種の振動現象であり、タンク10を動揺させる海洋波浪の振動周波数(加振周波数)と、タンク10内の液体運動(液化天然ガスの振動)の固有周波数とが一致し、これらの振動が互いに同調することにより発生する。また、船体自体の横揺れ運動固有周波数とタンク10内の液体運動の固有周波数とが一致することにより、同様の同調現象が生じるので、このような同調についても、注意を要する。タンク10のスロッシング防止装置20は、このような振動の同調を阻止するように機能する。 The LNG ship 1 of this example includes a sloshing prevention device 20 that prevents the occurrence of sloshing during such half loading. Sloshing is a kind of vibration phenomenon, and the vibration frequency (oscillation frequency) of ocean waves that shake the tank 10 and the natural frequency of liquid motion (vibration of liquefied natural gas) in the tank 10 coincide with each other. Oscillation occurs when the vibrations are synchronized with each other. Further, since the same synchronization phenomenon occurs when the natural frequency of the rolling motion of the hull itself and the natural frequency of the liquid motion in the tank 10 coincide with each other, attention should be paid to such synchronization. The anti-sloshing device 20 of the tank 10 functions to prevent such vibration synchronization.
 図2(A)に示すように、スロッシング防止装置20は、上下一対の基部21、22と、基部21、22の間において鉛直方向に延びる鉛直支柱23と、上下動可能に鉛直支柱23に支持された浮体24とから構成される。下側に位置する基部21は、タンク底面13上に立設され、上側に位置する基部22は、タンク天井面14から垂下する。鉛直支柱23は、浮体24を上下方向に案内するガイド手段を構成する。上下の基部21、22は、浮体24の上下動範囲を制限するストッパ又は上下動規制手段を構成する。基部21、22は、浮体24がタンク底面13又はタンク天井面14に衝突するのを防止するとともに、鉛直支柱23の上端部及び下端部をタンク底面13及びタンク天井面14に堅固に固定する高剛性の支柱支持体として機能する。鉛直支柱23の支点間距離j2は、基部21、22の高さ寸法j1、j3の設定により定まり、鉛直支柱23の剛性及び強度は支点間距離j2と直接的に関連する。スロッシング発生時には、比較的大きな液圧が水平外力として各浮体24に作用し、従って、比較的大きな水平荷重が鉛直支柱23に作用するが、基部21、22の高さ寸法j1、j3の増大により、支点間距離j2を短縮して、鉛直支柱23の剛性及び強度を向上することができる。 As shown in FIG. 2 (A), the anti-sloshing device 20 is supported by a pair of upper and lower bases 21, 22, a vertical column 23 extending vertically between the bases 21, 22, and supported by the vertical column 23 so as to be movable up and down. The floating body 24 is formed. The lower base portion 21 is erected on the tank bottom surface 13, and the upper base portion 22 hangs down from the tank ceiling surface 14. The vertical support 23 constitutes a guide means for guiding the floating body 24 in the vertical direction. The upper and lower bases 21 and 22 constitute a stopper or a vertical movement restricting means for limiting the vertical movement range of the floating body 24. The bases 21, 22 prevent the floating body 24 from colliding with the tank bottom surface 13 or the tank ceiling surface 14, and are high enough to firmly fix the upper end portion and the lower end portion of the vertical column 23 to the tank bottom surface 13 and the tank ceiling surface 14. Functions as a rigid support. The fulcrum distance j2 of the vertical support 23 is determined by setting the height dimensions j1 and j3 of the bases 21 and 22, and the rigidity and strength of the vertical support 23 are directly related to the fulcrum distance j2. When sloshing occurs, a relatively large hydraulic pressure acts on each floating body 24 as a horizontal external force. Therefore, a relatively large horizontal load acts on the vertical support 23, but the heights j1 and j3 of the base portions 21 and 22 increase. The distance between supporting points j2 can be shortened and the rigidity and strength of the vertical support 23 can be improved.
 高さ寸法j1は、最降下位置の浮体24の下部又は下面からタンク底面13までの距離と実質的に同一であり、高さ寸法j3は、最上昇位置の浮体24の上部又は上面からタンク天井面14までの距離と実質的に同一である。高さ寸法j1~j3は、高さh1~h3、範囲k1~k3に対応する。例えば、高さ寸法j1~j3は、高さh1~h3と実質的に同一の値に設定される。所望により、j1≦h1、j3≦h3に設定され、浮体24の十分な上下動範囲が確保される。 The height dimension j1 is substantially the same as the distance from the lower or lower surface of the floating body 24 at the lowest position to the tank bottom surface 13, and the height dimension j3 is from the upper or upper surface of the floating body 24 at the highest position to the tank ceiling. It is substantially the same as the distance to the surface 14. The height dimensions j1 to j3 correspond to the heights h1 to h3 and the ranges k1 to k3. For example, the height dimensions j1 to j3 are set to substantially the same values as the heights h1 to h3. If desired, j1 ≦ h1 and j3 ≦ h3 are set, and a sufficient vertical movement range of the floating body 24 is ensured.
 図3は、タンク10の構成を概念的に示す平面図及び部分拡大平面図であり、図4は、図3のII-II線及びIII-III線における断面図である。但し、タンク10は、四角形(矩形)断面(II-II線断面)を有する。 FIG. 3 is a plan view and a partially enlarged plan view conceptually showing the structure of the tank 10, and FIG. 4 is a cross-sectional view taken along lines II-II and III-III in FIG. However, the tank 10 has a square (rectangular) cross section (II-II line cross section).
 一般に、LNG格納タンクは、 図2に示す如く、底部領域及び頂部領域の幅が漸減する八角形断面に設計される。これは、主にスロッシング防止を考慮した断面形状である。他方、図3及び図4に示すタンク10においては、左右舷方向の鉛直切断面(II-II線)によって切断されたLNG格納タンクの断面は、四角形である。即ち、スロッシング防止装置20のスロッシング防止効果を考慮すれば、LNG格納タンクの断面として必ずしも八角形断面の設計を採用することなく、四角形断面を採用することができる。同等の高さ及び幅を有するタンクを設計する場合、四角形断面のタンクは、八角形断面のタンクと比べて容積効率を向上する上で有利である。 Generally, as shown in FIG. 2, the LNG storage tank is designed to have an octagonal cross section in which the width of the bottom region and the top region is gradually reduced. This is a cross-sectional shape mainly considering prevention of sloshing. On the other hand, in the tank 10 shown in FIG. 3 and FIG. 4, the cross section of the LNG storage tank cut by the vertical cut surface (II-II line) in the left-right direction is a quadrangle. In other words, considering the anti-sloshing effect of the anti-sloshing device 20, it is possible to adopt a rectangular cross section without necessarily adopting an octagonal cross section design as the cross section of the LNG storage tank. When designing tanks having the same height and width, a square section tank is advantageous in improving volumetric efficiency compared to an octagonal section tank.
 図3及び図4に示すように、各タンク10には、複数(本例では3体)の浮体24が互いに間隔を隔てて船首尾方向(船体縦方向)に直列に配置される。液面LLは、浮体24によって左右舷方向に分割される。隣接する浮体24の間には、液化天然ガスが流動可能な間隙又は隙間25が形成される。浮体24とタンク内壁面16との間にも又、液化天然ガスが流動可能な間隙又は隙間26が形成される。例えば、間隙25、26の幅Gと浮体24の全長Eの比は、G/E=1/100~1/10の範囲内に設定される。 3 and 4, in each tank 10, a plurality (three in this example) of floating bodies 24 are arranged in series in the bow-stern direction (the hull longitudinal direction) at intervals. The liquid level LL is divided by the floating body 24 in the horizontal direction. Between adjacent floating bodies 24, gaps or gaps 25 through which liquefied natural gas can flow are formed. A gap or gap 26 through which the liquefied natural gas can flow is also formed between the floating body 24 and the tank inner wall surface 16. For example, the ratio between the width G of the gaps 25 and 26 and the total length E of the floating body 24 is set within a range of G / E = 1/100 to 1/10.
 鉛直支柱23は、船体前後方向又は船体長手方向(船体縦方向)に延びるタンク10の中心軸線X-X上に整列配置され、各浮体24は、浮体24を貫通する複数の鉛直支柱23(本例では一対の鉛直支柱23)によって上下動可能に支持される。各浮体24は、気密・液密構造の金属製中空体からなり、浮体24自身に作用する浮力によって液面LLに常時浮遊する。浮体24の喫水量Dは、浮体24の自重及び浮力によって定まる。適切な浮体24の喫水量Dを確保し難い場合には、例えば、浮力調節のための液体導入手段として浮体底部に孔又は開口を形成し、浮体24内への液体(液化天然ガス)の浸入を可能にするような構造を採用し、或いは、比較的高比重の液体又は固体等を浮体24内に付加的に収容しても良い。 The vertical struts 23 are aligned on the central axis XX of the tank 10 extending in the longitudinal direction of the hull or in the longitudinal direction (the longitudinal direction of the hull), and each floating body 24 includes a plurality of vertical struts 23 (main In the example, it is supported by a pair of vertical columns 23) so as to be movable up and down. Each floating body 24 is made of a metal hollow body having an airtight / liquid-tight structure, and always floats on the liquid surface LL by buoyancy acting on the floating body 24 itself. The draft D of the floating body 24 is determined by its own weight and buoyancy. When it is difficult to secure an appropriate draft D of the floating body 24, for example, a hole or an opening is formed in the bottom of the floating body as a liquid introduction means for adjusting buoyancy, and the liquid (liquefied natural gas) enters the floating body 24. Alternatively, a structure with which the above can be used may be employed, or a liquid or solid having a relatively high specific gravity may be additionally accommodated in the floating body 24.
 図5は、浮体24の構造を概略的に示す断面図及び斜視図である。図5(A)及び図5(B)には、図2~図4に示す逆T字形断面の浮体24が示されており、図5(C)には、側方突出部を備えないI形断面の浮体24が示されている。また、図5(D)には、十字形断面の浮体24が示されており、図5(E)には、逆T字形断面の変形例に係る浮体24が示されている。更に、図5(F)には、逆T字形浮体の下面両側縁に左右一対の垂下突出部29を配設してなる逆Y字形断面の浮体24が示されている。 FIG. 5 is a cross-sectional view and a perspective view schematically showing the structure of the floating body 24. 5 (A) and 5 (B) show a floating body 24 having an inverted T-shaped cross section shown in FIGS. 2 to 4, and FIG. 5 (C) shows an I without a side protrusion. A floating body 24 having a profile is shown. 5D shows a floating body 24 having a cross-shaped cross section, and FIG. 5E shows a floating body 24 according to a modified example of an inverted T-shaped cross section. Further, FIG. 5 (F) shows a floating body 24 having an inverted Y-shaped cross section in which a pair of left and right hanging protrusions 29 are disposed on both side edges of the lower surface of the inverted T-shaped floating body.
 図5(A)及び図5(B)に示す浮体24は、下部が側方に張り出した逆T字形の断面を有する。浮体24は、複数の鞘管28を備える。鞘管28は、角形断面を有し、浮体24を上下方向に貫通する。鉛直支柱23が、各鞘管28に挿通される。鉛直支柱23は、例えば、外形寸法80cm×40cm、板厚5cmのステンレス鋼の角形金属管からなる。このような金属管は、鉛直支柱23の機能を確保する上で十分な構造的強度を発揮することが、簡易な構造設計において確認された。但し、浮体24の液体振動減衰効果を考慮した場合、更に詳細な液体運動シミュレーションを行うことにより、鉛直支柱23の断面寸法を縮小し得るものと考えられる。鞘管28は、鉛直支柱23の外形と相似する矩形断面を有し、鉛直支柱23の外面と鞘管28の内面との間には、所定のクリアランスが確保される。複数の鉛直支柱23は、浮体24の姿勢を維持した状態で浮体24の上下動を案内する。図5(A)及び図5(B)に示す浮体24の変形例として、図5(F)に示す逆Y字形断面の浮体24が挙げられる。突起29は、浮体24の下面近傍の流体の流れを乱すように作用する。 The floating body 24 shown in FIGS. 5 (A) and 5 (B) has an inverted T-shaped cross section with a lower portion projecting laterally. The floating body 24 includes a plurality of sheath tubes 28. The sheath tube 28 has a square cross section and penetrates the floating body 24 in the vertical direction. A vertical column 23 is inserted into each sheath tube 28. The vertical support 23 is made of, for example, a stainless steel rectangular metal tube having an outer dimension of 80 cm × 40 cm and a thickness of 5 cm. It was confirmed in a simple structural design that such a metal tube exhibits sufficient structural strength to ensure the function of the vertical support 23. However, when the liquid vibration damping effect of the floating body 24 is taken into consideration, it is considered that the cross-sectional dimension of the vertical column 23 can be reduced by performing a more detailed liquid motion simulation. The sheath tube 28 has a rectangular cross section similar to the outer shape of the vertical column 23, and a predetermined clearance is secured between the outer surface of the vertical column 23 and the inner surface of the sheath tube 28. The plurality of vertical columns 23 guide the vertical movement of the floating body 24 while maintaining the posture of the floating body 24. As a modified example of the floating body 24 illustrated in FIGS. 5A and 5B, a floating body 24 having an inverted Y-shaped cross section illustrated in FIG. The protrusion 29 acts to disturb the flow of fluid near the lower surface of the floating body 24.
 図5(C)に示す浮体24は、内部中空域27を有する断面矩形の箱形形状又は筐体形状の中空パネル部材からなり、側方突出部分を備えない。このような断面形状の浮体24は液面LL及び液面近傍の液体を分割し、スロッシング発生を有効に防止する。 The floating body 24 shown in FIG. 5 (C) is made of a hollow panel member having a rectangular or box-shaped cross section having an internal hollow region 27 and does not have a side protruding portion. The floating body 24 having such a sectional shape divides the liquid surface LL and the liquid in the vicinity of the liquid surface, and effectively prevents the occurrence of sloshing.
 図5(A)、図5(D)及び図5(E)に示す如く、波無し形状として知られた断面形状、即ち、上下揺れ波強制力を受け難い断面形状を採用することにより、スロッシング発生時の浮体24の上下動を抑制し、浮体24のスロッシング防止効果を更に向上することができる。 As shown in FIGS. 5 (A), 5 (D), and 5 (E), by adopting a cross-sectional shape known as a wave-free shape, that is, a cross-sectional shape that is difficult to receive a vertical wave forcing force, The vertical movement of the floating body 24 at the time of occurrence can be suppressed, and the anti-sloshing effect of the floating body 24 can be further improved.
 波無し形状としては、図5(A)、図5(D)及び図5(E)に示すもの以外にも、浮体底部の断面形状を丸く湾曲させた形態のものや、浮体底部を三角形状にした形態のものなどが想定されるが、図5(A)、図5(D)及び図5(E)に示すように側方突出部分を有する浮体24は、液体運動を減衰させる減衰効果を発揮するので、スロッシングを防止する上で有利である。 In addition to the shapes shown in FIGS. 5 (A), 5 (D), and 5 (E), the waveless shape has a shape in which the cross-sectional shape of the floating body bottom is rounded, or the floating body bottom has a triangular shape. The floating body 24 having a laterally protruding portion as shown in FIGS. 5 (A), 5 (D) and 5 (E) has a damping effect that attenuates the liquid motion. This is advantageous in preventing sloshing.
 スロッシング防止効果を要する液体振動の周波数は、タンク10の形状・寸法や、タンク10の支持構造等の構造的特性、船体又は浮体式海洋設備の運動特性、或いは、運行海域の波浪特性等により異なる。このため、浮体24の各部寸法を一義的に定めることはできない。因みに、冬季の北大西洋において幅W=40m、タンク全高H=40mのタンク10を有するFPSOに関して横揺れに伴うスロッシング現象を防止する場合、タンク10内の液体振動が周波数0.15Hz以上のものであるという条件において、ほぼ全ての液位hで浮体自体の上下動が少なく、しかも、スロッシング防止効果を発揮する浮体寸法を求めると、図5(A)及び図5(D)に示す断面形状の浮体24では、例えば、T=8m、T1=4.8m、B=3.3m、B1=7mであり、図5(E)に示す断面形状の浮体24では、例えば、T=8m、T1=4.8m、T2=1.6m、B=3.3m、B1=7.6m、B2=2mであった。但し、これら各部寸法の組合せは、あくまで例示であり、同等のスロッシング防止性能を発揮する他のパラメータの組合せも当然に想定されることはいうまでもない。また、浮体24の断面形状についても、下辺を開口した長方形断面(逆凹形断面、略Π字形断面)、逆Y字形断面、X字形断面等の各種形状を採用することも可能である。 The frequency of liquid vibration that requires the anti-sloshing effect varies depending on the shape and dimensions of the tank 10, the structural characteristics such as the support structure of the tank 10, the motion characteristics of the hull or floating marine equipment, or the wave characteristics of the operating sea area. . For this reason, each part dimension of the floating body 24 cannot be defined uniquely. By the way, in order to prevent the sloshing phenomenon due to rolling for the FPSO having the tank 10 having the width W = 40 m and the total tank height H = 40 m in the winter North Atlantic, the liquid vibration in the tank 10 has a frequency of 0.15 Hz or more. Under certain conditions, when the floating body dimensions that exhibit little sloshing prevention effect are obtained at almost all liquid levels h and the sloshing prevention effect is exhibited, the cross-sectional shapes shown in FIGS. 5 (A) and 5 (D) are obtained. In the floating body 24, for example, T = 8 m, T1 = 4.8 m, B = 3.3 m, and B1 = 7 m. In the floating body 24 having the cross-sectional shape shown in FIG. 5E, for example, T = 8 m, T1 = It was 4.8 m, T2 = 1.6 m, B = 3.3 m, B1 = 7.6 m, and B2 = 2 m. However, these combinations of dimensions are merely examples, and it goes without saying that other combinations of parameters that exhibit equivalent anti-sloshing performance are naturally assumed. As for the cross-sectional shape of the floating body 24, various shapes such as a rectangular cross-section (reverse concave cross-section, substantially cross-section), an inverted Y-shaped cross-section, an X-shaped cross-section, etc. having an open bottom can be adopted.
 浮体24は、タンク10内の液体を全体的に分割するのではなく、液面LL及びその近傍の液体のみを分割するので、浮体24の両側の液体は、浮体24の下側領域において連続する。浮体24は、液面LLの挙動に応答して上下動し、タンク10内の液体振動を抑制する。浮体24による液面LLの分割により、液体運動の固有周波数が高周波数側にシフトする。これは、隔壁(バルクヘッド)によるタンク内領域の完全な分割と同等の効果をもたらす。浮体24は、タンク内領域をU字管形態に分割するので、左右の液柱が交互に上昇するU字管振動の発生が懸念されるが、後述するように、U字管振動は比較的小さく、有害なU字管振動は発生しない。 The floating body 24 does not divide the liquid in the tank 10 as a whole, but divides only the liquid level LL and the liquid in the vicinity thereof, so that the liquid on both sides of the floating body 24 continues in the lower region of the floating body 24. . The floating body 24 moves up and down in response to the behavior of the liquid level LL and suppresses liquid vibration in the tank 10. Due to the division of the liquid level LL by the floating body 24, the natural frequency of the liquid motion is shifted to the high frequency side. This brings about the same effect as the complete division of the area in the tank by the bulkhead. Since the floating body 24 divides the tank area into a U-tube shape, there is a concern about the occurrence of U-tube vibration in which the liquid columns on the left and right rise alternately. Small and harmful U-tube vibration does not occur.
 図6及び図7は、横揺れ(船体ローリング)1度を船体に与える波の加振周波数と、タンク10内に発生する横揺角1度当たりの最大波振幅μとの関係を示す線図である。最大波振幅μは、静止水平液面に対する振動時の液面縁部上昇量(最大値)である。加振周波数と最大波振幅μとの関係は、幅W=40m、タンク全高H=40mのLNG格納タンクに関する数値解析結果である。図6は、LNG格納タンク内の液化天然ガスの液位比h/Hを63%(従って、h=約25m)に設定した場合に得られた数値解析結果を示す線図であり、図7は、LNG格納タンクの液化天然ガスの液位比h/Hを30%(従って、h=12m)に設定した場合に得られた数値解析結果を示す線図である。横揺れ中心Cの位置は、タンク横断面の中心(Xc=20m、Zc=20m)に設定された。 FIGS. 6 and 7 are diagrams showing the relationship between the excitation frequency of a wave that gives 1 degree of roll (hull rolling) to the hull and the maximum wave amplitude μ per roll angle that occurs in the tank 10. It is. The maximum wave amplitude μ is the rising amount (maximum value) of the liquid surface edge during vibration with respect to the stationary horizontal liquid surface. The relationship between the excitation frequency and the maximum wave amplitude μ is a numerical analysis result regarding the LNG storage tank having a width W = 40 m and a tank total height H = 40 m. FIG. 6 is a diagram showing a numerical analysis result obtained when the liquid level ratio h / H of the liquefied natural gas in the LNG storage tank is set to 63% (hence, h = about 25 m). These are the figure which shows the numerical analysis result obtained when the liquid level ratio h / H of the liquefied natural gas of a LNG storage tank was set to 30% (hence, h = 12m). The position of the roll center C was set to the center of the tank cross section (Xc = 20 m, Zc = 20 m).
 図6及び図7には、冬季に北大西洋で発生する確率が高い海洋波浪の周波数が、加振周波数の周波数域αとして示されている。冬季の北大西洋において発生する海洋波浪は、概ね周波数域αの周波数(約0.11~約0.14Hzの周波数)を有する。また、図6及び図7には、LNG船1の船体のローリング固有周波数が示されている。本例においては、船体のローリング固有周波数は、周波数域αよりもかなり低い周波数域に顕れる。 In FIGS. 6 and 7, the frequency of ocean waves that have a high probability of occurring in the North Atlantic in winter is shown as the frequency range α of the excitation frequency. Ocean waves that occur in the North Atlantic in winter generally have a frequency in the frequency range α (a frequency of about 0.11 to about 0.14 Hz). 6 and 7 show the rolling natural frequency of the hull of the LNG ship 1. In this example, the rolling natural frequency of the hull appears in a frequency range considerably lower than the frequency range α.
 図6及び図7に示す数値解析結果は、幅W=40m、タンク全高H=40mの断面を有する以下の3種類のLNG格納タンクに関するものである。
(1)スロッシング防止装置や隔壁を備えず、タンク内領域に内構材を全く備えていないLNG格納タンク(比較例1)
(2)タンク内領域を左右に分割する隔壁をスロッシング防止装置20の位置(幅方向中央)に備えたLNG格納タンク(比較例2)
(3)スロッシング防止装置20を備えた本発明のタンク10(本実施例)
The numerical analysis results shown in FIGS. 6 and 7 relate to the following three types of LNG storage tanks having a cross section with a width W = 40 m and a total tank height H = 40 m.
(1) LNG storage tank without anti-sloshing device or partition wall and with no internal material in the tank area (Comparative Example 1)
(2) LNG storage tank provided with a partition that divides the inner region of the tank into right and left at the position (center in the width direction) of the anti-sloshing device 20 (Comparative Example 2)
(3) Tank 10 of the present invention provided with the anti-sloshing device 20 (this embodiment)
 内構材を全く備えないLNG格納タンク(比較例1)では、0.13~0.14Hz(図6)、或いは、約0.12Hz(図7)の加振周波数において最大波振幅μが急激に増大し、この周波数は、周波数域αの範囲内に顕れる。従って、比較例1のLNG格納タンクは、海洋波浪に同調する同調点を周波数域αに有するので、海洋波浪とタンク内の液体とが同調してスロッシングが発生する虞があると考えられる。 In the LNG storage tank (Comparative Example 1) that does not include any internal material, the maximum wave amplitude μ suddenly increases at an excitation frequency of 0.13 to 0.14 Hz (FIG. 6) or about 0.12 Hz (FIG. 7). This frequency appears within the frequency range α. Therefore, since the LNG storage tank of Comparative Example 1 has a tuning point that synchronizes with ocean waves in the frequency region α, there is a possibility that sloshing may occur due to the ocean waves and the liquid in the tank being synchronized.
 隔壁によってタンク内領域を分割した比較例2のLNG格納タンクにおいては、0.20~0.21Hz(図6)、或いは、約0.20Hz(図7)の加振周波数において最大波振幅μが急激に増大する。この周波数は、周波数域αよりもかなり高い周波数域に属する。即ち、隔壁によってタンク内領域を分割することにより、同調点が高周波数側に大きくシフトするので、海洋波浪とタンク内の液体との同調を防止し、スロッシング発生を未然に防止することができる。しかしながら、自立又は直立隔壁の構造的安定性、強度及び耐力、隔壁とタンク内面との接合構造、更には、隔壁を支持する堅固な支持構造等を考慮すると、隔壁によってメンブレン式タンクを分割することは、建造コスト上の不利、船体構造の複雑化、船体の設計・建造の困難性等の事情より、経済的又は実務的困難を伴う。 In the LNG storage tank of Comparative Example 2 in which the tank inner region is divided by the partition wall, the maximum wave amplitude μ is 0.20 to 0.21 Hz (FIG. 6) or the excitation frequency of about 0.20 Hz (FIG. 7). Increases rapidly. This frequency belongs to a frequency range considerably higher than the frequency range α. That is, by dividing the tank region by the partition wall, the tuning point is greatly shifted to the high frequency side, so that the synchronization of the ocean wave and the liquid in the tank can be prevented, and the occurrence of sloshing can be prevented. However, considering the structural stability, strength and proof strength of a self-supporting or upright partition, the joint structure between the partition and the tank inner surface, and the solid support structure that supports the partition, the membrane tank should be divided by the partition. This involves economic or practical difficulties due to disadvantages in construction costs, complexity of the hull structure, difficulty in designing and building the hull, and the like.
 他方、スロッシング防止装置20を備えた本実施例のタンク10においては、比較例2と同じく、0.20~0.21Hz(図6)、或いは、約0.20Hz(図7)の加振周波数において最大波振幅μが急激に増大し、この周波数は、周波数域αよりもかなり高い周波数域に属する。即ち、スロッシング防止装置20の浮体24によってタンク内の液面LL及びその近傍の液体のみを分割することにより、隔壁を備えた比較例2のLNG格納タンクと同じく、同調点を高周波数側に大きくシフトし、従って、海洋波浪とタンク内の液体との同調を防止して、スロッシング発生を未然に防止することができる。 On the other hand, in the tank 10 of this embodiment provided with the anti-sloshing device 20, the excitation frequency of 0.20 to 0.21 Hz (FIG. 6), or about 0.20 Hz (FIG. 7), as in Comparative Example 2. The maximum wave amplitude μ increases rapidly, and this frequency belongs to a frequency range considerably higher than the frequency range α. That is, by dividing only the liquid level LL in the tank and the liquid in the vicinity thereof by the floating body 24 of the anti-sloshing device 20, the tuning point is increased to the high frequency side in the same manner as the LNG storage tank of the comparative example 2 having the partition wall. Shifting, thus preventing the synchronization of ocean waves with the liquid in the tank, thereby preventing sloshing from occurring.
 図6(下側の線図)には、液面LLに対する浮体24の上下動と加振周波数との関係が示されている。0.20~0.21Hzの周波数域において生じる浮体24の上下動は、比較的小さい挙動であるにすぎない。また、図6には、0.14~0.15Hzの周波数域においても浮体24が上下動することが示されている。これは、浮体24自身の固有周波数がこの周波数域にあることに起因するにすぎず、この上下動も又、比較的小さい挙動である。 FIG. 6 (lower diagram) shows the relationship between the vertical movement of the floating body 24 relative to the liquid level LL and the excitation frequency. The vertical movement of the floating body 24 that occurs in the frequency range of 0.20 to 0.21 Hz is only a relatively small behavior. FIG. 6 also shows that the floating body 24 moves up and down even in the frequency range of 0.14 to 0.15 Hz. This is only due to the natural frequency of the floating body 24 itself being in this frequency range, and this vertical movement is also a relatively small behavior.
 図8は、LNG格納タンク内の液体運動の一次固有周波数f1と、タンク内液位hとの関係を求めた数値計算の計算結果を示す線図である。図8には、内構材を全く備えないタンク全高H=40mのLNG格納タンクに関し、タンクの幅Wを40m、20m、15mに変化させた場合に得られる一次固有周波数f1とタンク内液位hとの関係が示されている。また、図8には、冬季に北大西洋で発生する確率が高い海洋波浪の周波数が前述の周波数域αとして示されている。図8において、液位h及びタンク幅Wが周波数域αの領域に該当する場合、スロッシング現象が極めて発生し易い条件が成立すると考えられる。なお、一次固有周波数f1は、図8に示すスロッシング固有周波数推定式より求められた。 FIG. 8 is a diagram showing the calculation result of the numerical calculation for obtaining the relationship between the primary natural frequency f 1 of the liquid motion in the LNG storage tank and the liquid level h in the tank. FIG. 8 shows the primary natural frequency f 1 and the liquid in the tank obtained when the width W of the tank is changed to 40 m, 20 m, and 15 m for an LNG storage tank having a total tank height H = 40 m that has no internal material. The relationship with the position h is shown. Further, in FIG. 8, the frequency of the ocean wave having a high probability of occurring in the North Atlantic in winter is shown as the above-described frequency region α. In FIG. 8, when the liquid level h and the tank width W correspond to the frequency range α, it is considered that the condition that the sloshing phenomenon is very likely to occur is established. The primary natural frequency f 1 was obtained from the sloshing natural frequency estimation formula shown in FIG.
 図8に示す如く、幅W=40mのLNG格納タンクの一次固有周波数f1は、液位h=約8mを超えると周波数域αに顕れる。即ち、幅W=40mのLNG格納タンクのスロッシング現象を確実に防止するには、液位hを8m以下に制限する必要があると考えられる。これに対し、幅W=20mのLNG格納タンクの一次固有周波数f1は、液位h=約2~3mにおいて周波数域αに顕れるが、液位h=約4m以上の状態では、周波数域αよりも高い周波数域に顕れる。また、幅W15mのLNG格納タンクの一次固有周波数f1は、液位h=約2mにおいて周波数域αに顕れるが、液位h=約3m以上の状態では、周波数域αよりも高い周波数域に顕れる。即ち、幅W=20m又は15m(即ち、幅20m以下)のLNG格納タンク内の液体は海洋波浪と同調し難く、従って、スロッシング現象は、発生し難い。これは、幅W=40mのLNG格納タンクを幅W=20m以下の小区画に分割することにより、海洋波浪とタンク内の液体との同調を防止してスロッシング発生を回避し得ることを意味する。なお、幅W=20mのLNG格納タンクでは、液位h=約2~3mにおいて周波数域αに該当し、幅W=15mのLNG格納タンクでは、液位h=約2mにおいて周波数域αに該当するが、このような液位は、従来より積みつけを許容された液位、即ち、LNG格納タンクに損傷を生じさせるような過大な液圧がタンク内に発生しないタンク全高H×0.1以下の積みつけ状態(図2(B)に示す範囲k1)であるにすぎない。 As shown in FIG. 8, the primary natural frequency f 1 of the LNG storage tank having the width W = 40 m appears in the frequency range α when the liquid level h exceeds about 8 m. That is, it is considered that the liquid level h needs to be limited to 8 m or less in order to reliably prevent the sloshing phenomenon of the LNG storage tank having a width W = 40 m. On the other hand, the primary natural frequency f 1 of the LNG storage tank having the width W = 20 m appears in the frequency range α at the liquid level h = about 2 to 3 m, but in the state where the liquid level h = about 4 m or more, the frequency range α It appears in a higher frequency range. In addition, the primary natural frequency f 1 of the LNG storage tank having a width W of 15 m appears in the frequency range α at the liquid level h = about 2 m, but in the frequency range α higher than the frequency range α in the state where the liquid level h = about 3 m or more. Appears. That is, the liquid in the LNG storage tank having a width W = 20 m or 15 m (that is, a width of 20 m or less) is difficult to synchronize with ocean waves, and therefore, the sloshing phenomenon is unlikely to occur. This means that by dividing the LNG storage tank with a width W = 40 m into small sections with a width W = 20 m or less, it is possible to prevent the occurrence of sloshing by preventing the synchronization of ocean waves with the liquid in the tank. . Note that the LNG storage tank with a width W = 20 m corresponds to the frequency range α at the liquid level h = about 2 to 3 m, and the LNG storage tank with the width W = 15 m corresponds to the frequency range α at the liquid level h = about 2 m. However, such a liquid level is a liquid level that is allowed to be stacked conventionally, that is, an overall tank height H × 0.1 in which an excessive liquid pressure that causes damage to the LNG storage tank does not occur in the tank. It is only the following stacked state (range k1 shown in FIG. 2B).
 即ち、図8から理解し得るように、隔壁によってLNG収容域15を幅20m以下の区画に完全に分割することにより、スロッシングを効果的に防止することができる。図6及び図7に示すとおり、液面LL及びその近傍の液体を浮体24によって分割することは、隔壁によってLNG収容域15を完全に分割するのと同等のスロッシング防止作用を発揮する。従って、浮体24により液面LL及びその近傍の液体を20m以下の区画に分割した本実施形態のタンク10によれば、隔壁によるLNG収容域15の分割と同じく、スロッシングを有効に防止することができる。また、隣接する浮体24の間に形成された間隙25、26(図3及び図4)は、間隙25、26を流通する液体の流れを乱し、液体振動を減衰させる作用を発揮するので、本実施形態のスロッシング防止装置20によれば、このような間隙25、26の形成によってスロッシング発生を更に効果的に防止することができる。しかも、液面LL及びその近傍の液体を浮体24によって分割する本実施形態の構成は、隔壁の設置に伴う構造上の不利等を伴わない。 That is, as can be understood from FIG. 8, sloshing can be effectively prevented by completely dividing the LNG accommodation area 15 into sections having a width of 20 m or less by the partition walls. As shown in FIGS. 6 and 7, dividing the liquid level LL and the liquid in the vicinity thereof by the floating body 24 exhibits the same anti-sloshing action as completely dividing the LNG containing area 15 by the partition walls. Therefore, according to the tank 10 of the present embodiment in which the liquid surface LL and the liquid in the vicinity thereof are divided into sections of 20 m or less by the floating body 24, sloshing can be effectively prevented as in the division of the LNG accommodation area 15 by the partition walls. it can. Further, the gaps 25 and 26 (FIGS. 3 and 4) formed between the adjacent floating bodies 24 exhibit the action of disturbing the flow of the liquid flowing through the gaps 25 and 26 and damping the liquid vibration. According to the sloshing prevention device 20 of the present embodiment, the occurrence of sloshing can be more effectively prevented by forming such gaps 25 and 26. Moreover, the configuration of the present embodiment in which the liquid level LL and the liquid in the vicinity thereof are divided by the floating body 24 are not accompanied by structural disadvantages associated with the installation of the partition walls.
 図9は、浮体24による液面LLの分割の形態を例示するタンク10の断面図であり、図10は、自由液面数Nの相違と関連した固有周波数のシフトを示す線図である。なお、図9に示す液面上昇量ηは、静止水平液面に対する振動時の液面縁部上昇量であり、図10に示す最大波振幅ηmaxは、船体の横揺角を1度に設定した条件で得られた液面上昇量ηの最大値である。 FIG. 9 is a cross-sectional view of the tank 10 exemplifying the form of the liquid level LL divided by the floating body 24, and FIG. 10 is a diagram showing the shift of the natural frequency associated with the difference in the number N of free liquid levels. The liquid level rise η shown in FIG. 9 is the liquid level edge rise during vibration with respect to the stationary horizontal liquid level, and the maximum wave amplitude ηmax shown in FIG. 10 sets the hull roll angle to 1 degree. The maximum value η of the liquid level rise obtained under the above conditions.
 図9には、幅W=58m、全高H=40mのタンク10が示されている。図9(A)には、液面LLを単一列の浮体24によって均等分割した状態(N=2)が示されており、図9(B)には、液面LLを二列の浮体24によって均等分割した状態(N=3)が示されており、図9(C)には、液面LLを三列の浮体24によって均等分割した状態(N=4)が示されている。浮体24は、タンク10の中心軸線方向に整列配置されている。各浮体24は、内部中空域を有する断面矩形の箱形形状又は筐体形状の中空パネルからなり、喫水量D=14.2m、幅B=2mの各部寸法を有する。なお、液位は、高さh=25.2mに設定され、横揺れ中心Cの位置は、タンク横断面の幅方向中心(Xc=20m)、高さZc=10mの位置に設定された。 FIG. 9 shows a tank 10 having a width W = 58 m and an overall height H = 40 m. FIG. 9A shows a state (N = 2) in which the liquid level LL is equally divided by a single row of floating bodies 24, and FIG. 9B shows the liquid level LL in two rows of floating bodies 24. (N = 3) is shown, and FIG. 9C shows a state (N = 4) in which the liquid level LL is equally divided by the three rows of floating bodies 24. The floating bodies 24 are arranged in alignment in the central axis direction of the tank 10. Each floating body 24 is formed of a box-shaped or casing-shaped hollow panel having a rectangular cross section having an internal hollow area, and has dimensions of drafts D = 14.2 m and widths B = 2 m. The liquid level was set at a height h = 25.2 m, and the position of the roll center C was set at the center in the width direction of the tank cross section (Xc = 20 m) and the height Zc = 10 m.
 図10に示されるように、自由液面数Nの増大に伴って、同調点が高周波数域の側にシフトする。従って、船体構造、タンク形状、液位等の条件に相応して浮体24の配置及び列数等を適切に設定することにより、同調点を所望の如く高周波数域の側にシフトさせることができる。 As shown in FIG. 10, the tuning point shifts to the high frequency region side as the free liquid level N increases. Accordingly, the tuning point can be shifted to the high frequency side as desired by appropriately setting the arrangement of the floating bodies 24 and the number of rows according to the conditions such as the hull structure, the tank shape, and the liquid level. .
 図11は、幅W=58m、全高H=40mのタンクに喫水量D=5m、幅B=2mの断面矩形の箱形形状浮体を設置した場合に得られるスロッシング防止効果を説明するための線図である。図11(A)には、浮体24を備えないタンク10のタンク端部(液面縁部)に生じる時々刻々の液面上下位置の変化が示されており、図11(B)には、浮体24を備えたタンク10のタンク端部に生じる時々刻々の液面上下位置の変化が示されている。各図に示す液面上下位置は、有義波高5.95m、波の平均周期10.1秒の不規則な波が船体に作用した状態に生じる液面上下位置の数値解析結果である。 FIG. 11 is a line for explaining the anti-sloshing effect obtained when a box-shaped floating body having a rectangular section with a draft D = 5 m and a width B = 2 m is installed in a tank having a width W = 58 m and an overall height H = 40 m. FIG. FIG. 11 (A) shows the change in the vertical position of the liquid level that occurs at the tank end (liquid surface edge) of the tank 10 that does not include the floating body 24. FIG. 11 (B) The change of the liquid level up-and-down position every moment which arises in the tank edge part of the tank 10 provided with the floating body 24 is shown. The vertical position of the liquid level shown in each figure is a numerical analysis result of the vertical position of the liquid level generated when an irregular wave having a significant wave height of 5.95 m and an average wave period of 10.1 seconds is applied to the hull.
 図11(A)に示すように、浮体24を備えないタンク10においては、スロッシングにより、液面上下位置η=15m以上の液体振動が発生し、タンク10内の液体がタンク天井面14に衝突する現象が発生する。これに対し、浮体24を備えたタンク10においては、浮体24がスロッシングを効果的に防止するので、そのような過大な液体振動は、図11(B)に示すように発生しない。 As shown in FIG. 11A, in the tank 10 that does not include the floating body 24, the liquid vibration of the liquid surface vertical position η = 15 m or more occurs due to the sloshing, and the liquid in the tank 10 collides with the tank ceiling surface 14. Occurs. On the other hand, in the tank 10 provided with the floating body 24, the floating body 24 effectively prevents sloshing, so such excessive liquid vibration does not occur as shown in FIG.
 図12は、横揺れ中心Cの高さZcの変化と、前述した最大波振幅ηmaxとの関係を示す線図である。 FIG. 12 is a diagram showing the relationship between the change in the height Zc of the roll center C and the aforementioned maximum wave amplitude ηmax.
 横揺れ中心Cの高さZcを幅方向中心位置(Xc=W/2)においてZc=20m、10m、5mに設定変更した場合、横揺れ中心Cを下方に設定変更するにつれて、0.20Hz近傍の最大波振幅ηmaxが大きく増大する。他方、0.10Hz近傍においても、横揺れ中心Cを下方に設定変更するにつれて、最大波振幅ηmaxが増大する現象が発生する。この現象は、浮体24によってタンク内領域がU字管形態に変形したことによりU字管振動が発生したことに起因すると考えられる。このようなU字管振動は、比較的長時間に亘って同一又は同等条件の加振を持続することによって発生する現象であるので、U字管振動が発生する可能性は比較的低い。仮にU字管振動が発生したとしても、図12に示されるように、0.10Hz近傍の周波数域において生じる振動は比較的小さく、従って、浮体24を設けることによっては、有害なU字管振動が発生する虞はないと考えられる。 When the height Zc of the roll center C is changed to Zc = 20 m, 10 m, and 5 m at the center position in the width direction (Xc = W / 2), as the roll center C is changed to the lower setting, the vicinity is about 0.20 Hz. The maximum wave amplitude ηmax greatly increases. On the other hand, even in the vicinity of 0.10 Hz, a phenomenon occurs in which the maximum wave amplitude ηmax increases as the roll center C is changed downward. This phenomenon is considered to be caused by the occurrence of U-shaped tube vibration caused by the floating body 24 deforming the tank area into a U-shaped tube shape. Such U-shaped tube vibration is a phenomenon that occurs when the same or equivalent condition is sustained for a relatively long time, and therefore, the possibility that the U-shaped tube vibration is generated is relatively low. Even if the U-shaped tube vibration occurs, as shown in FIG. 12, the vibration generated in the frequency range near 0.10 Hz is relatively small. Therefore, the provision of the floating body 24 may cause harmful U-shaped tube vibration. It is considered that there is no risk of the occurrence.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.
 例えば、上記実施形態においては、タンク10内に3体の浮体24を直線状に整列配置したが、2体又は4体以上の浮体24をタンク10内に直線状に整列配置しても良い。 For example, in the above-described embodiment, the three floating bodies 24 are linearly arranged in the tank 10, but two or four or more floating bodies 24 may be linearly arranged in the tank 10.
 また、上記実施形態においては、単一の浮体列をタンク10の中心軸線X-X上に配置し、液面LLを左右均等に分割したが、2以上の浮体列をタンク10内に配置しても良く、或いは、液面LLを不均等に分割することも可能である。 Further, in the above embodiment, a single floating body row is arranged on the central axis XX of the tank 10 and the liquid level LL is divided equally on the left and right, but two or more floating body rows are arranged in the tank 10. Alternatively, the liquid level LL can be divided unevenly.
 更に、上記実施形態においては、一対の鉛直支柱23によって各浮体24を支持する構成を採用したが、3本以上の鉛直支柱23によって各浮体24を支持しても良い。 Furthermore, in the said embodiment, although the structure which supports each floating body 24 with a pair of vertical support | pillar 23 was employ | adopted, you may support each floating body 24 with the 3 or more vertical support | pillar 23. FIG.
 また、浮体24は、必ずしも厳密に直線上又は一直線に整列配置されなくとも良く、例えば、若干ずれた状態の浮体配列(千鳥配列等)を採用しても良い。 Further, the floating bodies 24 do not necessarily have to be arranged strictly on a straight line or in a straight line. For example, a floating body arrangement (such as a staggered arrangement) in a slightly shifted state may be adopted.
 本発明は、液体貨物運搬船又は浮体式海洋設備のメンブレン式液体格納タンクに好ましく適用し得るものである。本発明のスロッシング防止技術は、半載状態で液体貨物を貯留し又は輸送することが困難であると従来より認識されてきた大型のLNG船又はFLNG施設において好ましく使用することができる。本発明は、このような大型LNG船又はFLNG施設が半載状態で液体貨物を貯留し又は輸送するのを可能にするので、その実用的効果は顕著である。また、本発明のスロッシング防止装置は、任意の液体貨物を搭載する船舶のタンクに適用することができる。 The present invention can be preferably applied to a membrane liquid storage tank of a liquid cargo ship or a floating marine facility. The anti-sloshing technology of the present invention can be preferably used in a large LNG ship or FLNG facility that has been conventionally recognized as being difficult to store or transport liquid cargo in a semi-mounted state. Since the present invention enables such a large LNG ship or FLNG facility to store or transport liquid cargo in a semi-loading state, its practical effect is significant. Moreover, the anti-sloshing device of the present invention can be applied to a tank of a ship carrying any liquid cargo.
 1 LNG船(液化天然ガス運搬船)
10 LNG格納タンク
20  スロッシング防止装置
21、22 基部
23  鉛直支柱
24 浮体
 D 喫水量
LL 液面(自由液面)
1 LNG carrier (liquefied natural gas carrier)
10 LNG storage tank 20 Sloshing prevention device 21, 22 Base 23 Vertical support 24 Floating body D Draft LL Liquid level (free liquid level)

Claims (21)

  1.  液体貨物運搬船又は浮体式海洋設備のメンブレン式液体格納タンクに設けられ、該タンク内にスロッシング現象が発生するのを防止するスロッシング防止装置において、
     前記運搬船又は海洋設備の船体縦方向又は横方向に直列に配置された複数の浮体と、
      前記浮体に作用する水平外力に抗して該浮体を支承するとともに、前記浮体を上下方向に案内する複数の鉛直支柱とを有し、
      前記浮体は、喫水状態で前記タンク内の自由液面に浮遊する重量を有し、該浮体は、前記タンク内の自由液面に浮遊して該液面及び液面下の液体を分割するとともに、前記浮体の下側領域において該浮体の両側の液体を連続せしめることを特徴とするスロッシング防止装置。
    In the anti-sloshing device, which is provided in the membrane-type liquid storage tank of the liquid cargo carrier or the floating offshore facility and prevents the occurrence of the sloshing phenomenon in the tank,
    A plurality of floating bodies arranged in series in the longitudinal or lateral direction of the ship or marine equipment hull;
    While supporting the floating body against a horizontal external force acting on the floating body, and having a plurality of vertical struts that guide the floating body in the vertical direction,
    The floating body has a weight that floats on a free liquid surface in the tank in a draft state, and the floating body floats on a free liquid surface in the tank to divide the liquid and the liquid below the liquid surface. An anti-sloshing device characterized in that liquid on both sides of the floating body is made continuous in a lower region of the floating body.
  2.  前記浮体は、互いに間隔を隔てて配置され、隣接する浮体同士の間に、液体が流動可能な間隙が形成されるとともに、前記浮体と前記タンクの内壁面との間に、液体が流動可能な間隙が形成されることを特徴とする請求項1に記載のスロッシング防止装置。 The floating bodies are spaced apart from each other, and a gap through which liquid can flow is formed between adjacent floating bodies, and liquid can flow between the floating body and the inner wall surface of the tank. The anti-sloshing device according to claim 1, wherein a gap is formed.
  3.  前記浮体の喫水量をタンク全高H×0.1以上の寸法に設定し、或いは、前記浮体の下部からタンク底面までの距離をタンク全高H×0.5の液位において液位h×0.80以下の寸法に設定したことを特徴とする請求項1又は2に記載のスロッシング防止装置。 The draft of the floating body is set to a tank height H × 0.1 or more, or the distance from the bottom of the floating body to the tank bottom is set to a liquid level h × 0. The sloshing prevention device according to claim 1 or 2, wherein the size is set to 80 or less.
  4.  前記支柱は前記浮体を貫通しており、該支柱の上端部及び下端部を支持する上下の基部が前記タンクの天井面及び底面に固定され、前記基部は、前記浮体が前記天井面又は底面に衝突するのを阻止するとともに、前記支柱の鉛直支点間距離をタンク内領域の高さよりも小さい距離に減縮することを特徴とする請求項1乃至3のいずれか1項に記載のスロッシング防止装置。 The support column penetrates the floating body, and upper and lower bases that support the upper end and lower end of the support column are fixed to the ceiling surface and the bottom surface of the tank, and the base portion has the floating body on the ceiling surface or the bottom surface. The sloshing prevention device according to any one of claims 1 to 3, wherein the anti-sloshing device according to any one of claims 1 to 3, wherein the anti-collision is prevented and the distance between the vertical fulcrums of the columns is reduced to a distance smaller than the height of the tank inner region.
  5.  前記自由液面は、船体縦方向に配列した前記浮体によって船体横方向に均等に分割され、各々の浮体は、船体縦方向に間隔を隔てた複数の前記鉛直支柱によって支承され且つ案内されることを特徴とする請求項1乃至4のいずれか1項に記載のスロッシング防止装置。 The free liquid level is equally divided in the horizontal direction of the hull by the floating bodies arranged in the vertical direction of the hull, and each floating body is supported and guided by the plurality of vertical struts spaced in the vertical direction of the hull. The sloshing prevention device according to any one of claims 1 to 4.
  6.  前記自由液面は、実質的に平行な複数列に並列配置した前記浮体によって分割され、各浮体は、船体縦方向に間隔を隔てた複数の前記鉛直支柱によって上下動可能に支持されることを特徴とする請求項1乃至4のいずれか1項に記載のスロッシング防止装置。 The free liquid level is divided by the floating bodies arranged in parallel in a plurality of substantially parallel rows, and each floating body is supported by a plurality of the vertical struts spaced in the vertical direction of the hull so as to be vertically movable. The sloshing prevention device according to any one of claims 1 to 4, wherein the anti-sloshing device is provided.
  7.  前記浮体は、水平面及び鉛直面から構成される中空多面体からなり、浮力を確保するための内部中空域を有することを特徴とする請求項1乃至6のいずれか1項に記載のスロッシング防止装置。 The anti-sloshing device according to any one of claims 1 to 6, wherein the floating body comprises a hollow polyhedron composed of a horizontal plane and a vertical plane, and has an internal hollow area for ensuring buoyancy.
  8.  前記浮体は、前記自由液面又は自由液面近傍の液体を分割するように鉛直方向に延びる仕切り部分と、液体振動を減衰するように前記仕切り部分から側方に延びる側方突出部分とを有することを特徴とする請求項1乃至7のいずれか1項に記載のスロッシング防止装置。 The floating body includes a partition portion extending in a vertical direction so as to divide the liquid near the free liquid surface or the free liquid surface, and a side projecting portion extending laterally from the partition portion so as to attenuate liquid vibration. The anti-sloshing device according to any one of claims 1 to 7, wherein the anti-sloshing device is provided.
  9.  前記浮体は、該浮体の喫水量を調節する浮力調整手段を有することを特徴とする請求項1乃至8のいずれか1項に記載のスロッシング防止装置。 The anti-sloshing device according to any one of claims 1 to 8, wherein the floating body has a buoyancy adjusting means for adjusting a draft amount of the floating body.
  10.  前記浮力調整手段は、前記浮体の内部中空域にタンク内領域の液体を流入させる浮力低減手段、或いは、前記浮体の重量を調節する浮体重量調節手段を有することを特徴とする請求項9に記載のスロッシング防止装置。 The buoyancy adjusting means includes buoyancy reducing means for allowing liquid in the tank inner region to flow into an internal hollow area of the floating body, or floating body weight adjusting means for adjusting the weight of the floating body. Anti-sloshing device.
  11.  鉛直切断面によって切断された前記タンクの断面は、四角形であることを特徴とする請求項1乃至10のいずれか1項に記載のスロッシング防止装置。 The anti-sloshing device according to any one of claims 1 to 10, wherein a cross section of the tank cut by the vertical cut surface is a quadrangle.
  12.  液体貨物運搬船又は浮体式海洋設備のメンブレン式液体格納タンク内に発生するスロッシング現象を防止するスロッシング防止方法において、
     水平外力に対して支承され且つ液位変動に応答して上下動する複数の浮体を前記運搬船又は海洋設備の船体縦方向又は横方向に直列に配置し、 
      前記浮体を前記タンク内の自由液面に喫水状態で浮遊させて該液面及び液面下の液体を分割するとともに、前記浮体の下側領域において該浮体の両側の液体を連続せしめ、これにより、前記タンク内に生じる液体振動の固有周波数を高周波数域の側にシフトさせてスロッシング現象の発生を防止することを特徴とするスロッシング防止方法。
    In the anti-sloshing method for preventing the sloshing phenomenon that occurs in the liquid storage tank of the liquid cargo carrier or floating marine equipment,
    A plurality of floating bodies that are supported with respect to a horizontal external force and move up and down in response to liquid level fluctuations are arranged in series in the longitudinal direction or the lateral direction of the ship or the marine equipment,
    The floating body is floated on the free liquid surface in the tank in a draft state to divide the liquid surface and the liquid below the liquid surface, and the liquid on both sides of the floating body is made continuous in the lower region of the floating body, thereby An anti-sloshing method characterized in that the occurrence of a sloshing phenomenon is prevented by shifting the natural frequency of the liquid vibration generated in the tank to the high frequency side.
  13.  前記タンクの天井面及び底面に支持された複数の鉛直支柱をタンク内に配列し、該支柱によって、前記浮体に作用する水平外力に抗して該浮体を支承するとともに、前記浮体を上下方向に案内することを特徴とする請求項12に記載のスロッシング防止方法。 A plurality of vertical columns supported on the ceiling and bottom surfaces of the tank are arranged in the tank, and the columns support the floating body against a horizontal external force acting on the floating body, and the floating body is moved vertically. The anti-sloshing method according to claim 12, wherein guidance is provided.
  14.  互いに間隔を隔てて前記浮体を配置し、隣接する浮体同士の間に、液体が流動可能な間隙を形成するとともに、前記浮体と前記タンクの内壁面との間に、液体が流動可能な間隙を形成することを特徴とする請求項12又は13に記載のスロッシング防止方法。 The floating bodies are arranged at a distance from each other, a gap is formed between adjacent floating bodies so that liquid can flow, and a gap through which liquid can flow is formed between the floating body and the inner wall surface of the tank. The sloshing prevention method according to claim 12 or 13, wherein the sloshing prevention method is formed.
  15.  前記浮体の喫水量をタンク全高H×0.1以上の寸法に設定し、或いは、前記浮体の下部からタンク底面までの距離をタンク全高H×0.5の液位において液位h×0.80以下の寸法に設定することを特徴とする11乃至14のいずれか1項に記載のスロッシング防止方法。 The draft of the floating body is set to a tank height H × 0.1 or more, or the distance from the bottom of the floating body to the tank bottom is set to a liquid level h × 0. The sloshing prevention method according to any one of 11 to 14, wherein the dimension is set to 80 or less.
  16.  前記タンクの天井面及び底面に支柱支持用の基部を固定し、前記支柱の上端部及び下端部を前記基部に固定し、前記浮体が前記天井面又は底面に衝突するのを前記基部によって阻止するとともに、前記基部によって前記支柱の鉛直支点間距離をタンク内領域の高さよりも小さい距離に減縮することを特徴とする請求項12乃至15のいずれか1項に記載のスロッシング防止方法。 The base for supporting the column is fixed to the ceiling and bottom of the tank, the upper and lower ends of the column are fixed to the base, and the base prevents the floating body from colliding with the ceiling or the bottom. The sloshing prevention method according to any one of claims 12 to 15, wherein the base portion reduces the distance between the vertical fulcrums of the columns to a distance smaller than the height of the tank inner region.
  17.  前記浮体の上昇を阻止する上側基部の下面と、前記タンクの天井面との間の寸法をタンク全高H×0.3以下の範囲内に設定することを特徴とする請求項16に記載のスロッシング防止方法。 17. The sloshing according to claim 16, wherein a dimension between a lower surface of the upper base portion that prevents the floating body from rising and a ceiling surface of the tank is set within a range of a total tank height H × 0.3 or less. Prevention method.
  18.  船首尾方向に整列配置した前記浮体によって前記自由液面を船体幅方向に均等に分割することを特徴とする請求項12乃至17のいずれか1項に記載のスロッシング防止方法。 The sloshing prevention method according to any one of claims 12 to 17, wherein the free liquid level is equally divided in the hull width direction by the floating bodies arranged in alignment in the bow-stern direction.
  19.  実質的に平行な複数列に並列配置した前記浮体によって前記自由液面を分割することを特徴とする請求項12乃至18のいずれか1項に記載のスロッシング防止方法。 The sloshing prevention method according to any one of claims 12 to 18, wherein the free liquid surface is divided by the floating bodies arranged in parallel in a plurality of substantially parallel rows.
  20.  鉛直方向に延びる前記浮体の仕切り部分によって前記自由液面及び自由液面近傍の液体を分割するとともに、前記仕切り部分から側方に延びる側方突出部分によって、液体振動を減衰させることを特徴とする請求項12乃至19のいずれか1項に記載のスロッシング防止方法。 The free liquid surface and the liquid in the vicinity of the free liquid surface are divided by the partition portion of the floating body extending in the vertical direction, and the liquid vibration is attenuated by a side projecting portion extending laterally from the partition portion. The sloshing prevention method according to any one of claims 12 to 19.
  21.  前記浮体の内部中空域にタンク内領域の液体を流入せしめ、或いは、前記浮体の重量を調節して前記浮体の喫水量を調整することを特徴とする請求項12乃至20のいずれか1項に記載のスロッシング防止方法。 21. The amount of draft of the floating body is adjusted by allowing the liquid in the tank area to flow into the internal hollow area of the floating body or adjusting the weight of the floating body. The anti-sloshing method as described.
PCT/JP2012/060798 2011-04-22 2012-04-21 Sloshing preventing device and sloshing preventing method WO2012144641A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137029169A KR101632104B1 (en) 2011-04-22 2012-04-21 Sloshing preventing device and sloshing preventing method
BR112013027132A BR112013027132A2 (en) 2011-04-22 2012-04-21 anti-leakage device and method
CN201280019801.1A CN103492261B (en) 2011-04-22 2012-04-21 Shake preventing device and rock prevention method
JP2013511080A JP6049084B2 (en) 2011-04-22 2012-04-21 Sloshing prevention device and sloshing prevention method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095785 2011-04-22
JP2011-095785 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144641A1 true WO2012144641A1 (en) 2012-10-26

Family

ID=47041737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060798 WO2012144641A1 (en) 2011-04-22 2012-04-21 Sloshing preventing device and sloshing preventing method

Country Status (5)

Country Link
JP (1) JP6049084B2 (en)
KR (1) KR101632104B1 (en)
CN (1) CN103492261B (en)
BR (1) BR112013027132A2 (en)
WO (1) WO2012144641A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107585262A (en) * 2017-10-18 2018-01-16 上海宏华海洋油气装备有限公司 The film rhombus LNG containment systems of flat board half
US20190031435A1 (en) * 2016-04-01 2019-01-31 Wison(Nantong) Heavy Industry Co., Ltd. Liquid-stabilizing apparatus for liquid cargo tank
JP2022511719A (en) * 2018-11-15 2022-02-01 ギャズトランスポルト エ テクニギャズ Ship maintenance management method
CN114715558B (en) * 2022-03-07 2023-07-04 江苏海洋大学 Semi-active oscillation device and oscillation method
FR3137151A1 (en) * 2022-06-28 2023-12-29 Gaztransport Et Technigaz Method for assembling an anti-sloshing system in a storage tank
FR3137152A1 (en) * 2022-06-28 2023-12-29 Gaztransport Et Technigaz Storage tank intended to transport and/or store a gas in the liquid state

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9301666B2 (en) 2006-12-12 2016-04-05 Omachron Intellectual Property Inc. Surface cleaning apparatus
CA2658372C (en) 2009-03-13 2016-09-27 G.B.D. Corp. Surface cleaning apparatus
US12048409B2 (en) 2007-03-11 2024-07-30 Omachron Intellectual Property Inc. Portable surface cleaning apparatus
US11751733B2 (en) 2007-08-29 2023-09-12 Omachron Intellectual Property Inc. Portable surface cleaning apparatus
US9591952B2 (en) 2009-03-11 2017-03-14 Omachron Intellectual Property Inc. Hand vacuum cleaner with removable dirt chamber
US11690489B2 (en) 2009-03-13 2023-07-04 Omachron Intellectual Property Inc. Surface cleaning apparatus with an external dirt chamber
KR101583945B1 (en) * 2014-06-18 2016-01-08 현대중공업 주식회사 Tank structure for decreasing sloshing
CN105711755A (en) * 2016-01-27 2016-06-29 上海交通大学 Liquid tank and sloshing and swashing device used for liquid tank
CN105724305A (en) * 2016-03-23 2016-07-06 山东交通学院 Vehicle-mounted live fish transporting box for preventing liquid from shaking
CN106741653B (en) * 2016-12-29 2019-03-19 浙江海洋大学 A kind of oil carrier cargo tank subtracts rolling device
KR102449398B1 (en) * 2019-06-07 2022-09-30 삼성중공업 주식회사 Cargo tank having sloshing reduction structure
CN110254654A (en) * 2019-06-27 2019-09-20 广船国际有限公司 The method of adjustment of ballast water, the ballast tank of ship and ship in ballast tank of ship
FR3110691B1 (en) * 2020-05-20 2022-05-20 Gaztransport Et Technigaz Estimation of a sloshing response of a tank by a statistical model trained by machine learning
CN111634998B (en) * 2020-06-15 2020-12-22 江苏孺子牛生态科技有限公司 Sewage in-situ treatment equipment for river drain outlet
CN113060696B (en) * 2021-03-18 2022-08-19 苏州市华创力自动化科技有限公司 Stability control method of rail type liquid conveying system
CN113148197A (en) * 2021-04-25 2021-07-23 上海机电工程研究所 Prevent rocking fuel storage tank and aircraft
CN113288187A (en) * 2021-07-27 2021-08-24 深圳市丛峰科技有限公司 Self-adaptive dosage control device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344237Y2 (en) * 1974-06-03 1978-10-24
JPS5477395U (en) * 1977-11-11 1979-06-01
JPS56135398U (en) * 1980-03-17 1981-10-14
JPS60100294U (en) * 1983-12-15 1985-07-08 極東マツク・グレゴ−株式会社 Wave dissipating device
JP2011505298A (en) * 2007-12-04 2011-02-24 三星重工業株式会社 Sloshing suppression structure for LNG cargo tank
JP2012066840A (en) * 2010-09-22 2012-04-05 Ouchi Ocean Consultant Inc Lng floating production storage and offloading system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531792A (en) 1976-06-28 1978-01-10 Toshiba Corp Control rod driving device
JPS5344237A (en) 1976-10-01 1978-04-20 Kunio Fumiiwa Ball pitching machine
FR2832783B1 (en) * 2001-11-27 2004-01-02 Alstom LNG TANKER
JP4316638B2 (en) 2007-07-10 2009-08-19 信吉 森元 Liquefied natural gas carrier and sea transportation method of liquefied natural gas
JP5403900B2 (en) * 2007-11-16 2014-01-29 三菱重工業株式会社 Liquefied gas carrier
CN201276203Y (en) * 2008-09-27 2009-07-22 上海佳豪船舶工程设计股份有限公司 Maintenance system for integral asphalt ship
KR101313617B1 (en) * 2010-07-13 2013-10-02 삼성중공업 주식회사 Sloshing impact reduce device of Cargo Containment and method of reduce the same
KR200480586Y1 (en) * 2011-09-16 2016-06-13 대우조선해양 주식회사 Sloshing decreasing module for liquid cargo tank

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344237Y2 (en) * 1974-06-03 1978-10-24
JPS5477395U (en) * 1977-11-11 1979-06-01
JPS56135398U (en) * 1980-03-17 1981-10-14
JPS60100294U (en) * 1983-12-15 1985-07-08 極東マツク・グレゴ−株式会社 Wave dissipating device
JP2011505298A (en) * 2007-12-04 2011-02-24 三星重工業株式会社 Sloshing suppression structure for LNG cargo tank
JP2012066840A (en) * 2010-09-22 2012-04-05 Ouchi Ocean Consultant Inc Lng floating production storage and offloading system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190031435A1 (en) * 2016-04-01 2019-01-31 Wison(Nantong) Heavy Industry Co., Ltd. Liquid-stabilizing apparatus for liquid cargo tank
US10815052B2 (en) * 2016-04-01 2020-10-27 Wison(Nantong) Heavy Industry Co., Ltd. Liquid-stabilizing apparatus for liquid cargo tank
CN107585262A (en) * 2017-10-18 2018-01-16 上海宏华海洋油气装备有限公司 The film rhombus LNG containment systems of flat board half
JP2022511719A (en) * 2018-11-15 2022-02-01 ギャズトランスポルト エ テクニギャズ Ship maintenance management method
JP7472126B2 (en) 2018-11-15 2024-04-22 ギャズトランスポルト エ テクニギャズ Ship maintenance management method
CN114715558B (en) * 2022-03-07 2023-07-04 江苏海洋大学 Semi-active oscillation device and oscillation method
FR3137151A1 (en) * 2022-06-28 2023-12-29 Gaztransport Et Technigaz Method for assembling an anti-sloshing system in a storage tank
FR3137152A1 (en) * 2022-06-28 2023-12-29 Gaztransport Et Technigaz Storage tank intended to transport and/or store a gas in the liquid state
WO2024003482A1 (en) * 2022-06-28 2024-01-04 Gaztransport Et Technigaz Method for assembling an anti-sloshing system in a storage tank
WO2024003480A1 (en) * 2022-06-28 2024-01-04 Gaztransport Et Technigaz Storage tank for transporting and/or storing a gas in the liquid state

Also Published As

Publication number Publication date
JP6049084B2 (en) 2016-12-21
CN103492261A (en) 2014-01-01
JPWO2012144641A1 (en) 2014-07-28
KR101632104B1 (en) 2016-06-20
KR20140031888A (en) 2014-03-13
BR112013027132A2 (en) 2017-01-10
CN103492261B (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP6049084B2 (en) Sloshing prevention device and sloshing prevention method
JP5715699B2 (en) LNG ship
US11052971B2 (en) Floating offshore platform
EP2594474B1 (en) Device for reducing sloshing impact of cargo hold for liquid cargo and method for reducing same
JP5732347B2 (en) Tank support structure and floating structure
CN101970286B (en) Deep draft semi-submersible lng floating production, storage and offloading vessel
US9003995B2 (en) Floating offshore structure
KR101983901B1 (en) Liquid storage tank for ship
CN102917967B (en) Liquid stabilizing device
KR101041782B1 (en) Floating ocean structure having indenpendent typed lng storage tank
AU2014285934A1 (en) Sealed and thermally insulating tank for storing a fluid
KR101221547B1 (en) Floating structure having roll motion reduction structure
KR20160007976A (en) Liquefied gas storage tank and marine structure including the same
KR20110122518A (en) A cargo tank having wall with helical wire cellular structure
CN205707179U (en) A kind of steady liquid device for cargo tank
JP5552637B2 (en) Sloshing load reducing device and ship with sloshing load reducing device
KR20160034517A (en) Liquefied gas storage tank and marine structure including the same
KR102277370B1 (en) Tank support structure and ship with the same
KR20100127470A (en) Floating structure having storage tanks arranged in plural rows
KR101940345B1 (en) Roll stabilization device
KR20130016584A (en) Anti-rolling tank with chamfers and a marine structure having the tank
KR101894946B1 (en) Liquefied gas storage tank of marine structure
KR101125107B1 (en) Floating structure having storage tanks arranged in plural rows
KR20190114093A (en) Cargo tank for lng ship
KR20190079038A (en) Pump Tower Structure and Ship Having the Same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280019801.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137029169

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013027132

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12774228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112013027132

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131021