[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012144554A1 - Method and kit for assessing virus concentration - Google Patents

Method and kit for assessing virus concentration Download PDF

Info

Publication number
WO2012144554A1
WO2012144554A1 PCT/JP2012/060562 JP2012060562W WO2012144554A1 WO 2012144554 A1 WO2012144554 A1 WO 2012144554A1 JP 2012060562 W JP2012060562 W JP 2012060562W WO 2012144554 A1 WO2012144554 A1 WO 2012144554A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
hollow fiber
compound
group
capturing
Prior art date
Application number
PCT/JP2012/060562
Other languages
French (fr)
Japanese (ja)
Inventor
江原 岳
平橋 智裕
三浦 博
西江 晴男
石井 孝司
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2013511032A priority Critical patent/JPWO2012144554A1/en
Publication of WO2012144554A1 publication Critical patent/WO2012144554A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/085Picornaviridae, e.g. coxsackie virus, echovirus, enterovirus
    • G01N2333/10Hepatitis A virus

Definitions

  • the present invention relates to a method for evaluating the concentration of virus contained in a liquid by capturing the virus through a liquid containing a virus through or in contact with a surface-treated hollow fiber, and calculating the amount of the captured virus, and
  • the present invention relates to a virus concentration evaluation kit having a function of evaluating the virus concentration by a method for evaluating the virus concentration.
  • concentration of environmental water containing virus is carried out by negative charge membrane method (mixed membrane of nitrocellulose and cellulose acetate, flat membrane cartridge).
  • negative charge membrane method mixed membrane of nitrocellulose and cellulose acetate, flat membrane cartridge.
  • secondary concentration may be further performed using an ultrafiltration membrane as necessary.
  • this method has a high virus recovery rate, depending on the origin of the environmental water, the membrane may become clogged during concentration, which is problematic.
  • Patent Document 1 describes an apparatus for detecting an analyte in a biological sample or an analog thereof, including a solid support provided with several adjacent zones.
  • Patent Document 2 describes an apparatus, a method, and a kit for detecting an analyte in a biological sample.
  • An analyte that requires extraction from a biological sample before detection can be performed in one stage. It is described that it can provide a means to be extracted and detected.
  • Patent Document 3 describes a method of recovering a surface sample (including microorganisms and other analytes) by wiping within a certain range of the surface by a predetermined method using a recovery device means made of an absorbent or an adsorbent. Yes.
  • Patent Document 4 describes a virus detection method in which a test sample that can contain a virus is brought into contact with a virus-separating cell, and then in situ hybridization is performed on the obtained cell.
  • test samples nasal discharge, nasal wipe, ocular conjunctival wipe, pharyngeal wipe, sputum, stool, blood (serum, plasma), spinal fluid, saliva, urine, sweat, semen or tissue are described.
  • an object of the present invention is to easily capture a virus from a solution containing virus without causing clogging in the step of capturing or concentrating the virus from the solution containing virus, and to accurately and easily determine the amount of virus captured. It is to provide a way to evaluate.
  • the present inventors have studied a method for capturing a virus and a method for evaluating the supplemented virus, and have completed the present invention.
  • the present invention captures a virus by bringing a liquid containing a virus into contact with or passes through a surface-treated hollow fiber, and calculates the amount of the captured virus, thereby calculating the concentration of the virus contained in the liquid.
  • ADVANTAGE OF THE INVENTION it becomes possible to evaluate accurately and simply the method of capture
  • the present invention 1.
  • the present invention 1.
  • the liquid B is passed through or brought into contact with the hollow fiber to capture the virus in the hollow fiber.
  • Two steps 3) a method for evaluating the concentration of virus, comprising each step of the third step of calculating the amount of virus in the B liquid trapped in the hollow fiber, 3. 1.
  • the hollow fiber is composed of polyolefin, polyethersulfone, or cellulose mixed ester. Or 2. A method for evaluating the concentration of the virus described in 4).
  • the hollow fiber is a porous hollow fiber; ⁇ 3.
  • the polyolefin is polyethylene, polypropylene or poly-4-methylpentene Or 4.
  • the compound having a charge is a (meth) acrylate, a sulfonate, a compound having an ammonium group, a compound having a sulfonium group, a compound having a carboxylate group, or a compound having a phosphate group. ⁇ 5.
  • the compound having no charge is (meth) acrylic acid, sulfonic acid, a compound having an amino group, a compound having a sulfo group, a compound having a carboxy group, or a compound having a phospho group.
  • a sulfonium group or a compound having a sulfo group is a sulfated sugar.
  • Sulfated sugar is heparin, a heparin derivative in which the primary or secondary hydroxyl group of heparin is sulfated, a heparin derivative in which an N-acetyl group-elimination product of heparin is N-sulfate-esterified, dextran sulfate, or fucoidan 8.
  • a method for evaluating the concentration of the virus described in 10. The method for calculating the amount of virus is by polymerase chain reaction, antigen-antibody reaction, or culture method. ⁇ 9. A method for evaluating the concentration of the virus according to any one of 11. 1.
  • the virus is hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis E virus, adenovirus, enterovirus, norovirus, influenza virus, human immunodeficiency virus, rotavirus, or poliovirus.
  • ⁇ 10. A method for evaluating the concentration of the virus according to any one of 12 3) In the third step of calculating the amount of virus in the B liquid trapped in the hollow fiber, 1. a step of recovering the virus from the hollow fiber capturing the virus with a phenol aqueous solution, an alkaline aqueous solution, or an inorganic salt aqueous solution; ⁇ 11. A method for evaluating the concentration of the virus described in 13.1. ⁇ 12.
  • a virus concentration evaluation kit having a function of evaluating the virus concentration by the method according to any one of 14.1.
  • the compound having an amino group or the compound having an ammonium group is a compound selected from polyethyleneimine, polyallylamine, amino acids, and salts thereof.
  • a compound having an amino group or a compound having an ammonium group is immobilized on a hollow fiber surface-treated with a polymer material having a hydroxyl group via a compound having a group capable of reacting with a hydroxyl group and an amino group or an ammonium group.
  • a hollow fiber for capturing a virus 17.
  • a hollow fiber surface-treated with a polymer material having a hydroxyl group is an ethylene-vinyl alcohol copolymer, an ethylene-vinyl alcohol-vinyl acetate copolymer, a partially saponified product of an ethylene-vinyl acetate copolymer, or a vinyl alcohol-acetic acid.
  • the compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group is epichlorohydrin or a diepoxy compound.
  • the hollow fiber is a porous hollow fiber. ⁇ 20.
  • the hollow fiber is based on polyethylene, polypropylene or poly-4-methylpentene.14. 21.
  • Immobilization amount of a compound having an amino group or a compound having an ammonium group is in the range of 1 to 100 ⁇ g / cm 2 . ⁇ 22.
  • the virus is hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis E virus, adenovirus, enterovirus, norovirus, influenza virus, human immunodeficiency virus, rotavirus, or poliovirus. 23. Or a virus-capturing hollow fiber according to any one of the above.
  • the hollow fiber used in the present invention can be used without limitation as long as it captures the virus targeted in the present invention.
  • a base material constituting the hollow fiber from the viewpoint of capturing viruses, olefin resin, styrene resin, sulfone resin, acrylic resin, urethane resin, ester resin, ether resin, cellulose mixed ester, etc. More specifically, examples include polyethylene terephthalate, ethylene vinyl alcohol copolymer, polymethyl methacrylate, polysulfone, polyether sulfone, polyacrylonitrile, polyethylene, polypropylene, and poly-4-methylpentene.
  • the hollow fiber that can be used in the present invention is not particularly limited, but a porous hollow fiber is preferable in that it can efficiently trap viruses.
  • a non-filtration type hollow fiber having a skin layer on the outer wall surface while the hollow fiber inner wall surface is porous may be used.
  • the said porous hollow fiber can be manufactured by well-known and usual manufacturing methods, such as an extending
  • the compound used for the surface treatment of the hollow fiber is not particularly limited as long as it has the ability to trap viruses, and it may be either a charged compound or a non-charged compound. May be.
  • Examples of such compounds include the following. Examples of those having a charge include (meth) acrylates, sulfonates, compounds having an ammonium group, compounds having a sulfonium group, compounds having a carboxylate group, and compounds having a phosphate group. Examples of those having no charge include (meth) acrylic acid, sulfonic acid, compounds having an amino group, compounds having a sulfo group, compounds having a carboxy group, and compounds having a phospho group.
  • Examples of the compound having an amino group or the compound having an ammonium group include compounds selected from polyethyleneimine, polyallylamine, amino acids, and salts thereof. Regarding amino acids, those in which a salt is formed in the molecule are also included in the present invention.
  • the sulfonium group or the compound having a sulfo group may be a sulfated sugar. More specifically, heparin, a heparin derivative in which a primary or secondary hydroxyl group of heparin is sulfated, and deacetylation of the N-acetyl group of heparin. It may be a heparin derivative obtained by N-sulfate esterification, dextran sulfate, or fucoidan.
  • a publicly known and commonly used method can be used as a method of performing the surface treatment of the hollow fiber with the above-mentioned compound.
  • a publicly known and commonly used method include graft polymerization with a radical polymerizable compound and sulfonation with concentrated sulfuric acid, and the like.
  • Examples thereof include a method of reacting a compound capable of reacting with the graft chain after graft polymerization.
  • the hollow fiber can also be surface-treated with a polymer material having a hydroxyl group.
  • a compound having an amino group or a compound having an ammonium group may also be immobilized via a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group by utilizing a hydroxyl group. Is possible.
  • a treatment method by a graft polymerization reaction with a compound having a radical polymerizable group by irradiating with ionizing radiation can be carried out as follows.
  • an ethylenically unsaturated group of a compound having a radical polymerizable group such as (meth) acrylic acid is graft-polymerized to the hollow fiber by radicals generated by irradiating the hollow fiber with ionizing radiation.
  • Examples of the ionizing radiation source used in the graft polymerization include known and commonly used ⁇ -rays, ⁇ -rays, ⁇ -rays, accelerated electron beams, X-rays and the like, and practically preferred are ⁇ -rays and accelerated electron beams.
  • the graft polymerization method includes a simultaneous irradiation graft polymerization method in which the hollow fiber is brought into contact with a compound having a radical polymerizable group and irradiated with ionizing radiation, and the hollow fiber is preliminarily irradiated with a compound having a radical polymerizable group. Any pre-irradiation graft polymerization method can be used and can be selected according to the purpose.
  • the optimum irradiation dose and accelerating voltage differ depending on the hollow fiber, so the range cannot be determined unconditionally, and it is adjusted as appropriate considering the material and thickness of the hollow fiber. It is necessary to. For example, when the irradiation amount is large, dielectric breakdown due to charging occurs, and when the irradiation amount is small, the polymerization reaction does not proceed. For this reason, in consideration of the material and form of the hollow fiber, the amount of irradiation that does not cause dielectric breakdown due to charging and the polymerization reaction proceeds sufficiently may be adjusted as appropriate.
  • the acceleration voltage is related to the permeability and varies depending on the thickness of the hollow fiber. When the thickness is small, the acceleration voltage is generally small, and when it is thick, it needs to be large.
  • the hollow fiber when the hollow fiber is made of poly-4-methylpentene and has a thickness of 10 ⁇ m to 100 ⁇ m, it may be 10 kGy or more, 300 kGy or less, more preferably 90 kGy or less, and the acceleration voltage may be appropriately selected. it can.
  • the hollow fiber even when the hollow fiber is made of polyethylene or polypropylene, graft polymerization can be similarly performed.
  • the radicals in the hollow fiber base material after irradiation with the ionizing radiation are quickly inactivated by temperature rise and contact with oxygen. Therefore, after irradiation, it is preferable to store at a low temperature in a state where oxygen is sufficiently removed, and to carry out the graft polymerization reaction promptly. For the above reasons, it is desirable to carry out the reaction under deoxygenation or in an inert gas.
  • the hollow fiber after the graft polymerization reaction may be removed from the compound having an unreacted radical polymerizable group by various methods such as washing with a solvent.
  • the introduction of the compound having a radical polymerizable group into the hollow fiber can be performed by selecting either the inner surface or the outer surface of the hollow fiber, or both, depending on the embodiment.
  • the compound when the virus is captured by passing through the inner surface of the hollow fiber, the compound may be introduced into the inner surface of the hollow fiber.
  • the compound when used by passing through the outer surface, the compound is introduced into the outer surface of the hollow fiber.
  • a polymer compound having a methylene group in the main chain is particularly preferred because radicals are easily generated by irradiation with ionizing radiation.
  • the compound introduced into the hollow fiber by the graft polymerization reaction can be converted into a salt by a known and usual method. Such salts are not particularly limited as long as they can capture viruses, but salts formed with metal ions such as sodium, potassium, calcium and magnesium, trialkylamines, aromatic amines And salts formed as preferred salts.
  • the sulfonation of the hollow fiber of the present invention can be carried out by a generally known method using a sulfonating agent such as concentrated sulfuric acid or fuming sulfuric acid.
  • a sulfonating agent such as concentrated sulfuric acid or fuming sulfuric acid.
  • the obtained sulfonic acid group can be converted to a sulfonate by a known and commonly used method.
  • Such salts are not particularly limited as long as they can capture viruses, but salts formed with metal ions such as sodium, potassium, calcium, and magnesium salts of sulfonic acids, trialkyls
  • Examples of preferred salts include amines and salts formed with aromatic amines.
  • the introduction method of the amino group is not limited, but a preferable introduction method is a radical polymerizable group capable of graft polymerization and a group capable of reacting with the amino group. Examples thereof include a method of introducing a compound (I) having an amino group into a hollow fiber and then reacting with a compound (II) having an amino group or ammonia.
  • the compound (II) having an amino group may have a functional group such as a hydroxyl group in addition to the amino group.
  • Preferred compounds as the compound (I) having a radically polymerizable group capable of graft polymerization and a group capable of reacting with an amino group include epoxy groups such as (meth) acrylic acid and glycidyl (meth) acrylate (meta And (meth) acrylate having an isocyanate group such as acrylate and (meth) acryloyloxyalkyl isocyanate.
  • Preferred examples of the compound (II) having an amino group include a hydroxyalkylamine derivative in which a hydroxyl group or an amino group may have a protecting group, or at least two in a molecule in which an amino group may have a protecting group.
  • Examples include ethane, polyethyleneimine, polyallylamine, and the like.
  • ammonia can also be mentioned as a compound that reacts with the compound (I) having a radical polymerizable group and a group capable of reacting with an amino group.
  • the protecting group used include, but are not limited to, a group protecting with a carbamate bond, a group protecting with an ester bond, a group protecting with an amide bond, or a group protecting with an ether bond.
  • Examples of the group protected by a carbamate bond include t-butyl carbamate (Boc group) and benzyl carbamate.
  • Examples of the group protected by an ester bond include an acetyl group and a benzoyl group.
  • Examples of the protecting group include an acetylamide group and a benzoylamide group, and examples of the group to be protected by an ether bond include a methoxymethyl ether group and a benzyl ether group.
  • amidation reaction methods include, for example, amidation with an active ester, amidation with a condensing agent, a combination thereof, a mixed acid anhydride method, an azide method, a redox method, a DPPA method, a Woodward method, peptide synthesis, etc. What is necessary is just to perform the well-known and usual amidation reaction used suitably.
  • amidation with an active ester examples include NHS (N-hydroxysuccinimide), nitrophenol, pentafluorophenol, DMAP (4-dimethylaminopyridine), HOBT (1-hydroxybenzotriazole), and HOAT (hydroxyazabenzotriazole). And the like to form an active ester obtained by once condensing a group having a high leaving ability with a carboxy group, and reacting this with an amino group.
  • Amidation with a condensing agent may be used alone or in combination with the active ester.
  • EDC (3-dimethylaminopropyl-3-ethyl-carbodiimide hydrochloride), HONB (endo-N-hydroxy-5-norbornene-2,3-dicarboxamide), DCC (dicyclohexylcarbodiimide) , BOP (benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate), HBTU (O-benzotriazol-1-yl-N, N, N ′, N′-tetramethyluronium hexafluorophosphate) TBTU (O-benzotriazol-1-yl-N, N, N ′, N′-tetramethyluronium tetrafluoroborate), HOBt (1-hydroxybenzotriazole), HOOBt (3,4-dihydro-3- Hydroxy-4-oxo- , 2,3-benzotriazine), di
  • a solvent that can be used in these amidation methods water and an organic solvent used for peptide synthesis can be used.
  • an organic solvent used for peptide synthesis can be used.
  • dimethylformamide (DMF) dimethyl sulfoxide (DMSO), hexaphosphoroamide, dioxane, tetrahydrofuran ( THF), ethyl acetate, and the like, and mixed solvents and aqueous solutions containing these.
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • THF tetrahydrofuran
  • ethyl acetate ethyl acetate
  • the proportion of the activated ester residue introduced into the carboxy group depends on the type of activator used and the amount of reagent used. In general, compared to the reaction in solution, the polymer obtained from the polymerizable compound is bonded, and the reactivity is lowered. Therefore, in order to increase the introduction amount, it is necessary to use a considerably excessive amount of the reaction reagent. It is thought that there is. Therefore, the ratio of the activator to the condensing agent reaction reagent relative to the carboxy group of (meth) acrylic acid polymerized on the hollow fiber cannot be defined unconditionally, but the active ester group is introduced into the carboxyl group in an equal amount. Is preferably about 1 to 10 in molar ratio. Furthermore, by adjusting the excess amount of the reaction reagent, it is possible to arbitrarily adjust the introduction ratio of the active ester group in the range of 0.01 to 100%.
  • the reaction conditions include a solvent used in the reaction of a normal hydroxyl group or amino group and a glycidyl group, a reaction temperature, and a reaction time.
  • the compound having a hydroxyl group or an amino group is a solution, it may be used directly.
  • a solvent that does not dissolve or swell the hollow fiber more preferably a hollow
  • a solvent capable of dissolving a polymer of a compound having a radical polymerizable group without dissolving and swelling the yarn can be used, and the concentration of the compound having a hydroxyl group or an amino group can be arbitrarily selected. Can be used by adjusting to a concentration of 1 to 50%.
  • the reaction temperature can be selected from the temperature at which the compound (II) having an amino group and the solvent do not vaporize, and is preferably 0 to 70 ° C., more preferably 20 to 60 ° C.
  • the reaction time varies depending on the type, concentration, and reaction temperature of the compound (II) having an amino group
  • the content of the compound (II) having an amino group in the reaction solution can be determined by gas chromatography, liquid chromatography, titration, etc. Monitoring is preferably performed until the compound (II) having an amino group is not consumed.
  • the reaction can be completed in 30 minutes to 12 hours, but is not limited thereto, and reaction conditions can be appropriately selected and set.
  • (meth) acryloyloxyalkyl isocyanate is used as the compound (I) having a radical polymerizable group and a group capable of reacting with an amino group, the hydroxyl group or amino group of the compound (II) having an amino group; It can couple
  • the reaction conditions include a solvent used in a reaction between a normal hydroxyl group or amino group and an isocyanate group, a reaction temperature, and a reaction time.
  • the solvent can be appropriately selected from solvents such as ethyl acetate and acetonitrile that do not dissolve and swell the hollow fiber and do not react with isocyanate.
  • the reaction concentration can be arbitrarily selected. Specifically, the reaction concentration can be selected from 0.5 to 15% by weight.
  • the reaction temperature is preferably 0 to 50 ° C. because the reaction with isocyanate is an exothermic reaction.
  • the reaction time can be 2 to 24 hours, but is not limited thereto, and reaction conditions can be set by appropriately selecting.
  • the amino group introduced by the above method can be converted to an ammonium salt by a known and conventional method.
  • a preferable ammonium salt is not particularly limited as long as it has a function of capturing a virus, but inorganic salts such as hydrochloride, sulfate, phosphate, formate, acetate, oxalate, succinate, benzoic acid Organic salts such as salts can be mentioned.
  • a compound having an amino group or a compound having an ammonium group is immobilized via a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group.
  • the method includes the following.
  • Examples of the polymer material having a hydroxyl group that can be used in the present invention include an ethylene-vinyl alcohol copolymer, an ethylene-vinyl alcohol-vinyl acetate copolymer, a partially saponified product of ethylene-vinyl acetate copolymer, vinyl, and the like.
  • Examples include those containing a vinyl alcohol copolymer such as an alcohol-vinyl acetate copolymer, those containing a hydroxymethacrylate copolymer, partially saponified cellulose acetate, or glycerin derivatives.
  • the surface treatment with the polymer material having a hydroxyl group can be carried out by a known and usual method.
  • the porous polyolefin is dipped in a solution in which the polymer material having a hydroxyl group is dissolved, pulled up and then dried.
  • an ethylene-vinyl alcohol copolymer is preferable in that the polyolefin porous hollow fiber can be easily hydrophilized as disclosed in JP-A-61-271003.
  • the compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group used in the present invention has a group capable of reacting with a hydroxyl group present on the surface of the surface-treated hollow fiber, and the amino group after immobilization.
  • a functional group that easily reacts with an ammonium group for example, compounds such as epichlorohydrin, carboxylic anhydride, dicarboxylic acid, dicarboxylic acid chloride, diisocyanate, diepoxy compound and the like can be mentioned.
  • Examples of the compound that can be graft-polymerized on the substrate include (meth) acrylic acid, glycidyl (meth) acrylate, (meth) acryloyloxyalkyl isocyanate, and maleic anhydride.
  • the hydroxyl group present on the surface of the hollow fiber is reacted with a hydroxyl group and a compound having a group capable of reacting with an amino group or an ammonium group and immobilized, for example, a reaction between a known and commonly used hydroxyl group and an epoxy group
  • the reaction can be carried out under conditions such as a reaction with a carboxy group, a reaction between a hydroxyl group and a carboxylic acid anhydride, a reaction between a hydroxyl group and an isocyanate.
  • the compound which has a group which can react with a hydroxyl group and an amino group or an ammonium group it can fix to either the inner surface of a thread
  • a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group may be contacted and immobilized on the inner surface of the hollow fiber.
  • a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group may be brought into contact with the outer surface of the hollow fiber.
  • the yarn may be bundled and immersed in the reaction solution, or the reaction solution may be circulated after assembling as a module.
  • the compound having an amino group or an ammonium group used in the present invention is not particularly limited as long as it can react with a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group.
  • examples of such compounds include polyallylamine, ammonia, 2-aminoethanol, ethylenediamine, butylenediamine, hexamethylenediamine, 1,2-bis (2-aminoethoxy) ethane, 3,3′-diaminodipropylamine.
  • amines such as diethylenetriamine, phenylenediamine or polyethyleneimine, or ammonium salts thereof.
  • the reaction of a compound having an amino group or an ammonium group with a hydroxyl group and a compound having a group capable of reacting with an amino group or an ammonium group is a reaction of a known and commonly used amino group or ammonium group with an epoxy group, an amino group or an ammonium group. It can be suitably carried out under the conditions used for the reaction between the carboxy group and the carboxyl group, the reaction between the amino group or ammonium group and the carboxylic acid anhydride, and the reaction between the amino group or ammonium group and the isocyanate.
  • Sulfated sugar can be used as the compound having a sulfonium group or the compound having a sulfo group of the present invention.
  • sulfated saccharide used in the present invention heparin, a heparin derivative in which primary or secondary hydroxyl groups of heparin are sulfated, and an acetyl group-eliminated product of N-acetyl group of heparin are converted to N-sulfate.
  • examples include heparin derivatives, dextran sulfate, sulfonium groups such as fucoidan, and sulfated sugars having a sulfo group.
  • Heparin is a kind of heparan sulfate that is widely present in the body such as small intestine, muscles, lungs, spleen and mast cells, and is chemically a glycosaminoglycan, ⁇ -D-glucuronic acid or ⁇ -L-iduron. It is a polymer in which an acid and D-glucosamine are polymerized by 1,4-bonds, and has a feature that the degree of sulfation is particularly high compared to heparan sulfate.
  • the average molecular weight of heparin is not particularly limited, but when the average molecular weight is large, the reactivity with a compound having a hydroxyl group or an amino group is lowered, so that the efficiency of immobilizing heparin is considered to be poor. Accordingly, the molecular weight of heparin is preferably about 500 to 500,000 daltons, more preferably 1,200 to 50,000 daltons, and even more preferably 5,000 to 20,000 daltons.
  • sulfated sugars examples include heparin derivatives in which the primary or secondary hydroxyl group of heparin is sulfated or heparin in which an acetyl group-elimination product of the N-acetyl group of the heparin is N-sulfated.
  • heparin derivatives in which the primary or secondary hydroxyl group of heparin is sulfated or heparin in which an acetyl group-elimination product of the N-acetyl group of the heparin is N-sulfated.
  • the sulfuric esterification can be usually performed by a known method.
  • heparin amine salt is obtained by treating an alkali salt of heparin with an ion exchange resin (H + ) or the like and treating with an amine. Adjust. Thereafter, it can be treated with a sulfating agent to obtain the desired heparin derivative.
  • a sulfating agent known and commonly used SO 3 • pyridine is preferable.
  • the compound (I) having a radical polymerizable group and a group capable of reacting with an amino group is subjected to a graft polymerization reaction, and then reacted with a compound (II) having an amino group or ammonia to fix sulfated sugar.
  • the compound (I) having a group capable of reacting with a radical polymerizable group and an amino group and the compound (II) having an amino group or ammonia are reacted, and then a graft polymerization reaction is carried out, followed by sulfation.
  • Sugar may be immobilized.
  • bonding of the sulfated sugar of this invention and the compound (II) which has an amino group can be performed by the said amidation reaction, for example.
  • the average pore size of the hollow fiber used in the present invention is not particularly limited as long as it has a pore size capable of efficiently removing viruses. Considering the efficiency of capturing the virus, it varies depending on the type of virus to be captured and can be appropriately selected and used. For example, the average flow pore size is preferably in the range of 50 to 500 nm.
  • the inner diameter of the porous hollow fiber used is not particularly limited as long as it has an inner diameter capable of efficiently removing viruses. When the inner diameter is large, the number of yarns that can be put into the module is reduced, so that the contact area may be reduced, and the test substance (environmental water or the like) may be retained due to inferior linear velocity.
  • the inner diameter is preferably 150 to 500 ⁇ m, more preferably 160 to 400 ⁇ m, and further preferably 170 to 350 ⁇ m.
  • the thickness of the porous hollow fiber used is not particularly limited as long as it has a thickness that can efficiently remove the virus.
  • Preferable film thickness is 30 to 100 ⁇ m, more preferably 35 to 80 ⁇ m, and further preferably 40 to 60 ⁇ m.
  • the amount of the compound used for the surface treatment of the hollow fiber of the present invention is not particularly limited as long as it is an amount capable of efficiently removing viruses. Considering the efficiency of capturing the virus, it varies depending on the type of virus to be captured and can be appropriately selected and used. For example, in the case of a hollow fiber based on polyolefin, 1 ⁇ The case of 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 mol / g can be mentioned.
  • the water vapor adsorption amount of the compound used for the surface treatment of the hollow fiber of the present invention is not particularly limited as long as it is an amount capable of efficiently removing viruses. Considering the efficiency of capturing the virus, it varies depending on the type of virus to be captured and can be appropriately selected and used, but a preferable water vapor adsorption amount is 1 to 100 mL / g. Here, the water vapor adsorption amount can be measured by a publicly known and commonly used method.
  • the present invention is characterized in that the virus trapped in the hollow fiber is recovered, the amount is calculated, and the amount of virus contained in the liquid containing the original virus is evaluated. Have.
  • the method for recovering the virus is not particularly limited as long as it can recover the virus efficiently, but the hollow fiber is washed with a phenol aqueous solution, an alkaline aqueous solution, or an inorganic salt aqueous solution (inorganic salt aqueous solution). Is particularly preferred.
  • the alkaline aqueous solution can be used without limitation as long as it is an alkaline aqueous solution.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used.
  • carbonates such as sodium carbonate and sodium hydrogen carbonate.
  • the inorganic salt aqueous solution include a sodium chloride aqueous solution.
  • the method for recovering the virus can be carried out by washing the hollow fiber in which the virus is trapped, either alone or in combination with an aqueous organic polymer solution such as phenol aqueous solution, alkaline aqueous solution, beef extract, or inorganic salt aqueous solution. .
  • the washing method is not particularly limited as long as the virus can be eluted from the hollow fiber.
  • the washing method can be carried out by immersion of the hollow fiber or by passing the solution in a hollow fiber module.
  • the form of the evaluation kit comprising the hollow fiber of the present invention is not particularly limited as long as it is a shape applicable to the above-mentioned use, and examples thereof include a hollow fiber module.
  • the shape and material of the container are not particularly limited, and may be any convenient size, shape, and material according to the amount and properties of the liquid containing the virus to be used.
  • the virus targeted by the present invention is a virus that can be captured by the hollow fiber of the present invention.
  • viruses include hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis E virus, adenovirus, enterovirus, norovirus, influenza virus, human immunodeficiency virus, rotavirus, and poliovirus. Can be mentioned.
  • liquid containing virus targeted in the present invention examples include environmental water that can contain virus, body fluid that is a human body fluid component, culture liquid containing virus, and water for daily use. More specific examples of body fluids include blood, saliva, sweat, urine, runny nose, semen, plasma, lymph, tissue fluid and the like. Specific examples of environmental water include river water, lake water, groundwater, seawater, and the like. Examples of water for daily use include tap water, well water, hot springs, and pool water.
  • the concentration of the virus of the present invention is evaluated by each of the following: “collecting a solution containing virus” ⁇ “capturing virus” ⁇ (“freeing virus” ⁇ “removing unwanted substances” ⁇ ) “calculating the amount of virus” It goes through the process.
  • the virus can be captured by passing a solution containing the virus through the surface-treated hollow fiber or by bringing it into contact. In this step, clogging can be reduced by using a non-filtration-type hollow fiber as the hollow fiber, or by suppressing the pressure at the time of liquid passing or contacting.
  • a step of releasing the virus from the hollow fiber may be added prior to calculating the amount of virus. Examples of the releasing step include a method of treating with a salt, acid, alkali, surfactant or the like. Further, a step of removing the substance added in the release step may be added thereafter.
  • the method for calculating the amount of virus is not particularly limited as long as it is a method capable of detecting the above virus.
  • Preferred methods include polymerase chain reaction (PCR) method, antigen-antibody reaction method (envelope protein detection method, core protein detection). Method), culture methods and the like.
  • the PCR method is a principle for amplifying a nucleic acid or a technique using the same, and has the following excellent features. 1) It is possible to selectively amplify only a specific nucleic acid fragment (several tens to thousands of base pairs) desired from a very long nucleic acid molecule and achieve the object with a very small amount of nucleic acid solution. . 2) The time required for amplification is as short as about 2 hours. 3) The process is simple and can be amplified by a fully automatic desktop device.
  • liquid B a certain amount of liquid (liquid B) is collected from the virus-containing liquid (liquid A), and the virus in the liquid B is captured by the method shown in the examples below, and the capture rate (X %). Thereafter, the captured virus is collected by the method shown in the following examples, and the recovery rate (Y%) is calculated. Furthermore, in order to calculate the concentration of virus in the solution A (for example, virus copy number / L), for example, calculation may be performed using the following equation.
  • the dilution rate indicates the dilution rate when the B solution is prepared from the A solution.
  • virus copy number represents the amount of virus in the specimen measured and calculated by the PCR method.
  • a hollow fiber having an epoxy group introduced into 28% ammonia water was immersed and reacted at 40 ° C. for 2 hours. After completion of the reaction, it was washed with water to obtain a hollow fiber having a primary amino group introduced.
  • Heparin 150 mg and sodium cyanoborohydride 20 mg were put into a test tube, dissolved in 30 mL of PBS, the hollow fiber was immersed and reacted at 40 ° C. for 3 days. After completion of the reaction, it was washed with water. 26 mL of 0.2 M AcONa aqueous solution was added to the hollow fiber, and 13 mL of acetic anhydride was slowly added dropwise while cooling with ice. Then, it was made to react with an ultrasonic wave for 30 minutes under ice cooling. Furthermore, it was made to react for 30 minutes, returning to room temperature. After completion of the reaction, the mixture was washed with 20% NaCl, 0.1 M NaHCO 3 aqueous solution, water, and PBS to obtain a heparin surface-treated hollow fiber.
  • Example 1 ⁇ Capture of hepatitis B virus-like particles>
  • BSA-PBS containing hepatitis B virus-like particles (hepatitis B virus surface antigen HBsAg-XT, manufactured by Vehicle Co., Ltd.) at a concentration of 0.1 ng / mL
  • the solution was passed through the module, and a filtrate fraction of 42 mL and a flow-through fraction of 38 mL were collected.
  • the hepatitis B virus-like particle concentration of each fraction was measured using a microwell ELISA HBsAg for hepatitis B surface antigen (manufactured by HOPE Laboratory). As a result, it was confirmed that 57% of hepatitis B virus-like particles were trapped in the hollow fiber in the module.
  • an unfiltered hollow fiber bundle (hollow fiber surface area: 200 cm 2 , manufactured by DIC Corporation) made of poly-4-methylpentene (hereinafter referred to as PMP) is placed in a glass test tube and sealed with a rubber stopper. The inside of the test tube was replaced with nitrogen. Thereafter, an electron beam of 90 kGy was irradiated at an acceleration energy of 4.8 MeV with an electron beam irradiation apparatus “DYNAMITRON 5 MeV-150 kW” manufactured by RDI.
  • PMP poly-4-methylpentene
  • the inside of the test tube containing the hollow fiber bundle irradiated with the electron beam was evacuated, and the deoxygenated acrylic acid monomer aqueous solution was added under 23 ° C. to start graft polymerization.
  • the hollow fiber bundle was taken out, washed repeatedly with water until unreacted monomers and the like were below the detection limit (1 ⁇ g / mL) by GPC measurement, and then dried in vacuo.
  • the amount of polyacrylic acid bonded is 25 mg, and the bond density (in terms of monomer) is 1.7 ⁇ 10 ⁇ 6 mol / cm 2 (1.0 ⁇ 10 ⁇ 3 mol / g). Met.
  • a deoxygenated 50 mg / mL glycidyl methacrylate (hereinafter referred to as GMA) methanol solution was poured into the test tube, and allowed to react at 23 ° C. for a predetermined time.
  • the hollow fiber bundle was taken out, washed with methanol, and vacuum dried to obtain a polyGMA surface-treated hollow fiber.
  • the amount of polyGMA introduced calculated from the weight increase of the hollow fiber was 0.190 mg per 1 cm 2 of the hollow fiber.
  • the poly-GMA surface-treated hollow fiber is immersed in a 30% by mass polyethyleneimine (molecular weight 600, manufactured by Wako Pure Chemical Industries) acetonitrile solution, heated at 60 ° C.
  • the amount of polyethyleneimine introduced was 8.58 ⁇ g (8.5 ⁇ 10 ⁇ 6 mol / g) per 1 cm 2 of hollow fiber.
  • the inside of the hollow fiber bundle test tube irradiated with the electron beam was evacuated, and deoxygenated 50 mg / mL GMA / methanol solution was added to the test tube at 23 ° C. to start graft polymerization.
  • the hollow fiber bundle was taken out, washed with ethyl acetate and methanol, and vacuum dried to obtain a polyGMA surface-treated hollow fiber.
  • the amount of polyGMA introduced from the increase in the weight of the hollow fiber was about 4.0 mg (1.7 ⁇ 10 ⁇ 2 mol / g) per 1 cm 2 of the hollow fiber.
  • the polyGMA surface-treated hollow fiber was immersed in a 30% by mass polyethyleneimine (molecular weight 600, manufactured by Wako Pure Chemical Industries) acetonitrile solution, heated at 60 ° C. for 3 hours, washed with methanol and acetonitrile, and vacuum-dried. An imine surface-treated hollow fiber was obtained.
  • the amount of polyethyleneimine introduced was about 1.0 mg (1.0 ⁇ 10 ⁇ 3 mol / g) per 1 cm 2 of hollow fiber.
  • Example 2 ⁇ Polyethyleneimine (molecular weight 600) HEV capture of surface-treated hollow fiber> Porcine liver-derived hepatitis E virus (hereinafter referred to as HEV) was mixed with DMEM (manufactured by Wako Pure Chemical Industries, Ltd.) and 199 medium (manufactured by Life Technologies) in 1: 1, and the medium was supplemented with 2% fetal calf serum. / PRF / 5 (human hepatoma-derived cells) HEV culture solution infected with cells and proliferated was prepared. As a result of measuring real-time reverse transcription PCR (hereinafter referred to as real-time RT-PCR), HEV in the culture solution was 2 ⁇ 10 5 copies / ⁇ L.
  • real-time RT-PCR real-time reverse transcription PCR
  • the hollow fiber 5 cm 2 produced in Preparation Example 4 was cut out, immersed in 1 mL of PBS ( ⁇ ) for 16 hours, further washed twice with PBS ( ⁇ ), and used for the test. This was transferred to a 1.5 mL capacity microtube, 1 mL of the diluted virus solution was added, and the mixture was shaken back and forth at room temperature for 1 hour. Thereafter, the supernatant was recovered, and HEV-RNA in the supernatant was extracted with ISOGEN (manufactured by Nippon Gene Co., Ltd., 40% phenol aqueous solution) and isolated with chloroform and isopropanol. Isolated HEV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 74% HEV was trapped in the hollow fiber.
  • HEV-RNA was isolated directly from the hollow fiber with ISOGEN, chloroform and isopropanol. Isolated HEV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 42% of the captured HEV was recovered.
  • Example 3 ⁇ Production of polyethyleneimine (molecular weight 1,800) surface-treated hollow fiber>
  • a polyGMA surface-treated hollow fiber was obtained.
  • a polyethyleneimine surface-treated hollow fiber was obtained in the same manner as in Preparation Example 4 using polyethyleneimine (molecular weight 1,800, manufactured by Wako Pure Chemical Industries, Ltd.).
  • Introduction amount of polyethyleneimine was hollow fiber 1 cm 2 per about 0.9mg (2.9 ⁇ 10 -4 mol / g).
  • the hollow fiber was subjected to the HEV capture test in the same manner as in Example 2. As a result, it was confirmed that 76% HEV was trapped in the hollow fiber.
  • the trapped virus was recovered and isolated in the same manner as in Example 2. (Recovery rate: 22%)
  • Example 4 ⁇ HEV capture of acrylic acid surface-treated hollow fiber>
  • the acrylic acid surface hollow fiber produced in Preparation Example 2 was subjected to the HEV capture test in the same manner as in Example 2. As a result, it was confirmed that 30% HEV was trapped in the hollow fiber.
  • the reaction product was washed with acetone and water to obtain a hollow fiber having an epoxy group introduced therein.
  • the amount of epoxy groups introduced was about 0.01 ⁇ mol / cm 2 (4.8 ⁇ 10 ⁇ 6 mol / g) as a result of titration with NaOH using a Na 2 S 2 O 3 solution. Was confirmed.
  • transduced the epoxy group was immersed in the 3.2 mass% polyethyleneimine (molecular weight 1,800 Wako Purechemical make) aqueous solution, and it was made to react at 40 degreeC for 3 days. After completion of the reaction, it was washed with water to obtain a hollow fiber introduced with polyethyleneimine. When the amount immobilized was measured, it was confirmed that about 27 ⁇ g / cm 2 (7.1 ⁇ 10 ⁇ 6 mol / g) was introduced.
  • Example 5 ⁇ HEV capture and recovery test of polyethyleneimine (molecular weight 1,800)>
  • the hollow fiber produced above was subjected to the HEV capture test in the same manner as in Example 1. As a result, it was confirmed that 95% HEV was trapped in the hollow fiber.
  • the hollow fiber is recovered, washed three times with PBS ( ⁇ ), immersed in a 10 mM NaOH aqueous solution to recover the supernatant, neutralized by adding 1/10 volume of 100 mM HCl aqueous solution, and HEV-RNA is recovered. It was measured by isolation and real-time RT-PCR. As a result, it was found that HEV could be recovered 100% from the captured hollow fiber.
  • Example 6 ⁇ HEV capture / recovery test of polyethyleneimine (molecular weight 10,000) immobilized hollow fiber> Except for using polyethyleneimine (molecular weight 10,000, manufactured by Wako Pure Chemical Industries, Ltd.), the same operation as in Example 4 was performed to obtain a hollow fiber into which polyethyleneimine (molecular weight 10,000) was introduced. When the immobilized amount was measured, it was found that about 67 ⁇ g / cm 2 (3.2 ⁇ 10 ⁇ 6 mol / g) was introduced.
  • the hollow fiber produced above was subjected to the HEV capture test in the same manner as in Preparation Example 3. As a result, it was confirmed that 96% HEV was trapped in the hollow fiber.
  • the hollow fiber is recovered, washed three times with PBS ( ⁇ ), immersed in a 10 mM NaOH aqueous solution to recover the supernatant, neutralized by adding 1/10 volume of 100 mM HCl aqueous solution, and using ISOGEN.
  • HEV-RNA was isolated and measured by real-time RT-PCR. As a result, it was found that 12% of HEV could be recovered from the captured hollow fiber.
  • the hollow fiber was washed three times with PBS ( ⁇ ), and HEV-RNA was isolated directly from the hollow fiber with ISOGEN, chloroform and isopropanol. Isolated HEV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 88% of the captured HEV was recovered.
  • Example 7 ⁇ HEV capture, elution, and recovery test of phenylalanine-immobilized hollow fiber>
  • a hollow fiber into which phenylalanine was introduced was obtained in the same manner as in Preparation Example 5 except that 3.0 mass% phenylalanine / 0.1 M sodium carbonate aqueous solution was used instead of polyethyleneimine.
  • the amount of immobilization was measured, it was found that about 7 ⁇ g / cm 2 (1.1 ⁇ 10 ⁇ 5 mol / g) was introduced.
  • the hollow fiber was subjected to the HEV capture test in the same manner as in Example 2. As a result, it was confirmed that 41% of HEV was captured by the hollow fiber.
  • the trapped virus was recovered and isolated in the same manner as in Example 2. (Recovery rate: 13%)
  • Example 8 ⁇ HEV capture / elution / recovery test of cetylamine-immobilized hollow fiber>
  • a hollow fiber into which phenylalanine was introduced was obtained in the same manner as in Preparation Example 3, except that a 10% by mass cetylamine (C 16 —NH 2 manufactured by Tokyo Chemical Industry) / ethanol solution was used instead of polyethyleneimine. Measurement of the amount of immobilization, it was confirmed to be introduced about 16 ⁇ g / cm 2 (3.3 ⁇ 10 -5 mol / g).
  • the hollow fiber was subjected to the HEV capture test in the same manner as in Example 2. As a result, it was confirmed that 58% of HEV was trapped in the hollow fiber.
  • HEV-RNA was isolated directly from the hollow fiber with ISOGEN, chloroform, and isopropanol. Isolated HEV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 80% of the captured HEV was recovered.
  • HAV Hepatitis A virus
  • Eagle's MEM manufactured by Wako Pure Chemical Industries, Ltd.
  • sodium bicarbonate added to a final concentration of 0.15% in a medium containing fetal bovine serum 2% (final concentration).
  • GL37 Africann green monkey kidney-derived cultured cells
  • HAV solution purified by sucrose density gradient centrifugation was prepared.
  • the amount of HAV in the culture broth was 2.0 ⁇ 10 6 copies / ⁇ L.
  • the hollow fiber 5 cm 2 produced in Preparation Example 5 was cut out, immersed in 1 mL of PBS ( ⁇ ) for 16 hours, further washed twice with PBS ( ⁇ ) and used for the test. This was transferred to a 1.5 mL capacity microtube, 1 mL of the diluted virus solution was added, and the mixture was shaken back and forth at room temperature for 1 hour. Thereafter, the supernatant was recovered, and HAV-RNA in the supernatant was extracted with ISOGEN and isolated with chloroform and isopropanol. Isolated HAV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 88% of HEV was trapped in the hollow fiber.
  • the hollow fiber is recovered, washed three times with PBS ( ⁇ ), immersed in a 10 mM NaOH aqueous solution to recover the supernatant, neutralized by adding 1/10 volume of 100 mM HCl aqueous solution, and using ISOGEN.
  • HAV-RNA was isolated and measured by real-time RT-PCR. As a result, it was found that 66% of HEV could be recovered from the captured hollow fiber.
  • HAV-RNA was isolated directly from the hollow fiber with ISOGEN, chloroform and isopropanol. Isolated HAV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 34% of the captured HAV was recovered.
  • Table 1 shows various substrates and ligands, virus capture ability, and recovery performance.
  • Example 6 a recovery result using a sodium hydroxide aqueous solution (NaOH aqueous solution recovery) and a recovery result using a phenol aqueous solution (phenol aqueous solution recovery) are shown.
  • the evaluation method and kit of the present invention can be used for evaluation of virus contamination in environmental water, body fluid, domestic water and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The purpose of the present invention is to provide a method for capturing a virus from a solution containing the virus in a simple manner without causing clogging in a process of capturing or concentrating the virus from the solution containing the virus, and assessing the quantity of the captured virus accurately and in a simple manner. As a means for achieving the purposes, provided is a method for assessing the concentration of a virus in a solution containing the virus by bringing the solution containing the virus into contact with a surface-treated hollow yarn or allowing the solution to pass through the hollow yarn to capture the virus and then calculating the quantity of the captured virus.

Description

ウイルス濃度の評価方法及び評価キットMethod and kit for evaluating virus concentration
本発明は、表面処理した中空糸にウイルスを含む液を通じて、或いは接触させてウイルスを捕捉し、該捕捉したウイルスの量を算出することにより液中に含まれるウイルスの濃度を評価する方法、及び当該ウイルスの濃度を評価する方法によりウイルスの濃度を評価する機能を備えたウイルス濃度評価キットに関する。 The present invention relates to a method for evaluating the concentration of virus contained in a liquid by capturing the virus through a liquid containing a virus through or in contact with a surface-treated hollow fiber, and calculating the amount of the captured virus, and The present invention relates to a virus concentration evaluation kit having a function of evaluating the virus concentration by a method for evaluating the virus concentration.
下水、河川水、水道水等が各種ウイルスによって汚染されると、近隣住民の健康が損なわれる危険性が高まる。特に、開発途上地域における生活水のウイルス汚染は、住民の健康障害への大きな脅威となっている。また、例えば不特定多数の人々が利用するプール等の公共施設において、その水が経口感染性ウイルスによって汚染された場合には、ウイルス感染が一気に広がる恐れがある。これらに鑑み、水環境のウイルス汚染を恒常的に監視することは国民生活の安心安全を維持していく上で非常に重要であり、そのためには簡便で正確なウイルス量の評価技術が必須である。 When sewage, river water, tap water, etc. are contaminated by various viruses, the risk of harming the health of neighboring residents increases. In particular, viral contamination of living water in developing regions is a major threat to health problems for residents. Moreover, in public facilities such as a pool used by an unspecified large number of people, when the water is contaminated with an orally infectious virus, the virus infection may spread at a stretch. In view of these, it is very important to constantly monitor the virus contamination in the water environment in order to maintain the safety and security of people's lives. To that end, simple and accurate viral load assessment technology is essential. is there.
これまでウイルス量の評価方法としては、例えば、ウイルスを含む環境水の濃縮を陰電荷膜法(ニトロセルロースとセルロースアセテートの混合膜、平膜カートリッジ)でウイルスを吸着、誘出して濃縮した後ウイルスを検出する方法が知られている(非特許文献1)。その際には、必要に応じて更に限外ろ過膜を用いて2次濃縮を行う場合もある。この方法では、ウイルスの回収率は高いものの、環境水の由来によっては濃縮時に膜に目詰まりを生じることがあり、問題となっている。 To date, as a method for evaluating the amount of virus, for example, concentration of environmental water containing virus is carried out by negative charge membrane method (mixed membrane of nitrocellulose and cellulose acetate, flat membrane cartridge). There is known a method for detecting the above (Non-patent Document 1). In that case, secondary concentration may be further performed using an ultrafiltration membrane as necessary. Although this method has a high virus recovery rate, depending on the origin of the environmental water, the membrane may become clogged during concentration, which is problematic.
 また、特許文献1には、いくつかの隣接するゾーンが提供される固形支持体を含む、生物試料中の分析物またはそのアナログを検出するための装置が記載されている。 Also, Patent Document 1 describes an apparatus for detecting an analyte in a biological sample or an analog thereof, including a solid support provided with several adjacent zones.
 特許文献2には、生物学的サンプル中の被分析物を検出するための装置、方法及びキットが記載されており、検出前に生物学的サンプルから抽出を必要とするアナライトが1段階で抽出され、かつ、検出される手段を提供することができると記載されている。 Patent Document 2 describes an apparatus, a method, and a kit for detecting an analyte in a biological sample. An analyte that requires extraction from a biological sample before detection can be performed in one stage. It is described that it can provide a means to be extracted and detected.
 特許文献3には、吸収剤あるいは吸着物質からなる回収装置手段を用い所定の方法により表面の一定範囲内を拭って、(微生物その他分析対象物を含む)表面サンプルを回収する方法が記載されている。 Patent Document 3 describes a method of recovering a surface sample (including microorganisms and other analytes) by wiping within a certain range of the surface by a predetermined method using a recovery device means made of an absorbent or an adsorbent. Yes.
その他、特許文献4には、ウイルスを含み得る被検試料をウイルス分離用細胞に接触させ、次いで得られた細胞に対してin situハイブリダーゼーションを行うウイルスの検出方法が記載されており、当該被検試料として、鼻汁、鼻腔ぬぐい液、眼結膜ぬぐい液、咽頭ぬぐい液、喀痰、糞便、血液(血清、血漿)、髄液、唾液、尿、汗、精液または組織が記載されている。 In addition, Patent Document 4 describes a virus detection method in which a test sample that can contain a virus is brought into contact with a virus-separating cell, and then in situ hybridization is performed on the obtained cell. As test samples, nasal discharge, nasal wipe, ocular conjunctival wipe, pharyngeal wipe, sputum, stool, blood (serum, plasma), spinal fluid, saliva, urine, sweat, semen or tissue are described.
特表2009-518636号公報Special table 2009-518636 特表平9-501494号公報JP-T 9-501494 特表2002-514916号公報JP-T-2002-514916 特開2003-024077号公報JP 2003-024077 A
これまでの技術では、ウイルスを含む液からウイルスを捕捉或いは濃縮する工程で目詰まり等のトラブルを生じる問題があった。
そこで、本発明の課題は、ウイルスを含む液からウイルスを捕捉或いは濃縮する工程で目詰まりを起こすことなく、ウイルスを含む液から簡便にウイルスを捕捉し、さらに捕捉したウイルス量を正確且つ簡便に評価する方法を提供することである。
The conventional technology has a problem of causing problems such as clogging in the process of capturing or concentrating the virus from the liquid containing the virus.
Therefore, an object of the present invention is to easily capture a virus from a solution containing virus without causing clogging in the step of capturing or concentrating the virus from the solution containing virus, and to accurately and easily determine the amount of virus captured. It is to provide a way to evaluate.
上記課題を解決するために、本発明者らはウイルスの捕捉方法、及び該補足したウイルスの評価方法を検討し、本発明を完成させるに至った。 In order to solve the above problems, the present inventors have studied a method for capturing a virus and a method for evaluating the supplemented virus, and have completed the present invention.
即ち、本発明は、表面処理した中空糸にウイルスを含む液を接触させることにより、又は通じることによりウイルスを捕捉し、該捕捉したウイルスの量を算出することにより液中に含まれるウイルスの濃度を評価する方法に関する。 That is, the present invention captures a virus by bringing a liquid containing a virus into contact with or passes through a surface-treated hollow fiber, and calculates the amount of the captured virus, thereby calculating the concentration of the virus contained in the liquid. On how to evaluate
本発明によれば、ウイルスを含む液から簡便にウイルスを捕捉する方法、捕捉したウイルス量を正確且つ簡便に評価することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to evaluate accurately and simply the method of capture | acquiring a virus simply from the liquid containing a virus, and the amount of captured viruses.
即ち、本発明は、
1.電荷を有する化合物、或いは電荷を有しない化合物で表面処理された中空糸にウイルスを含む液を通じて、或いは接触させてウイルスを捕捉し、捕捉したウイルスの量を算出することにより前記ウイルスを含む液中に含まれるウイルスの濃度を評価する方法、
2.1.に記載のウイルスの濃度を評価する方法において、
1)ウイルスを含む液(A液)から一定量の液(B液)を採取する第一工程
2)B液を、前記中空糸に通じて、或いは接触させてウイルスを中空糸に捕捉させる第二工程
3)前記中空糸に捕捉されたB液中のウイルスの量を算出する第三工程
の各工程を含むことを特徴とするウイルスの濃度を評価する方法、
3.中空糸が、ポリオレフィン、ポリエーテルスルホン、又はセルロース混合エステルから構成されるものである1.又は2.に記載のウイルスの濃度を評価する方法、
4.中空糸が多孔性中空糸である、1.~3.の何れかに記載のウイルスの濃度を評価する方法、
5.ポリオレフィンが、ポリエチレン、ポリプロピレン又はポリ-4-メチルペンテンである3.又は4.に記載のウイルスの濃度を評価する方法、
6.電荷を有する化合物が、(メタ)アクリル酸塩、スルホン酸塩、アンモニウム基を有する化合物、スルホニウム基を有する化合物、カルボキシレート基を有する化合物、又はホスフェート基を有する化合物である1.~5.の何れかに記載のウイルスの濃度を評価する方法、
7.電荷を有しない化合物が、(メタ)アクリル酸、スルホン酸、アミノ基を有する化合物、スルホ基を有する化合物、カルボキシ基を有する化合物、又はホスホ基を有する化合物である1.~5.の何れかに記載のウイルスの濃度を評価する方法、
8.スルホニウム基又はスルホ基を有する化合物が硫酸化糖である6.又は7.に記載のウイルスの濃度を評価する方法、
9.硫酸化糖が、ヘパリン、ヘパリンの1級又は2級水酸基を硫酸エステル化したヘパリン誘導体、ヘパリンのN-アセチル基のアセチル基脱離体をN-硫酸エステル化したヘパリン誘導体、デキストラン硫酸、又はフコイダンである8.に記載のウイルスの濃度を評価する方法、
10.ウイルスの量を算出する方法が、ポリメラーゼ連鎖反応によるもの、抗原抗体反応によるもの、又は培養法によるものである1.~9.の何れかに記載のウイルスの濃度を評価する方法、
11.ウイルスが、A型肝炎ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、E型肝炎ウイルス、アデノウイルス、エンテロウイルス、ノロウイルス、インフルエンザウイルス、ヒト免疫不全ウイルス、ロタウイルス、又はポリオウイルスである1.~10.の何れかに記載のウイルスの濃度を評価する方法、
12.前記3)前記中空糸に捕捉されたB液中のウイルスの量を算出する第三工程において、
ウイルスを捕捉させた中空糸から、フェノール水溶液、アルカリ性水溶液、又は無機塩水溶液によりウイルスを回収する工程を有する、2.~11.に記載のウイルスの濃度を評価する方法、
13.1.~12.の何れかに記載の方法によりウイルスの濃度を評価する機能を備えたウイルス濃度評価キット、
14.1.~12.の何れかに記載のウイルスの濃度を評価する方法に用いられる、アミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸、
15.アミノ基を有する化合物、又はアンモニウム基を有する化合物が、ポリエチレンイミン、ポリアリルアミン、アミノ酸、及びそれらの塩から選ばれる化合物である、14.に記載のウイルス捕捉用中空糸、
16.14.又は15.に記載のアミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸において、
水酸基を有する高分子材で表面処理された中空糸に、水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物を介して前記アミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたことを特徴とするウイルス捕捉用中空糸、
17.水酸基を有する高分子材で表面処理された中空糸が、エチレン-ビニルアルコール共重合体、エチレン-ビニルアルコール-酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体の部分けん化物、ビニルアルコール-酢酸ビニル共重合体、ヒドロキシメタクリレート共重合体、酢酸セルロースの部分けん化物、又はグリセリン誘導体で表面処理された中空糸である14.~16.の何れかに記載のウイルス捕捉用中空糸、
18.水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物が、エピクロロヒドリン、又はジエポキシ化合物である16.又は17.に記載のウイルス捕捉用中空糸、
19.14.又は15.に記載のアミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸において、
グラフト重合反応により前記アミノ基を有する化合物、又はアンモニウム基を有する化合物が中空糸に固定化されたウイルス捕捉用中空糸、
20.14.又は15.に記載のアミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸において、
前記アミノ基を有する化合物、又はアンモニウム基を有する化合物で中空糸を表面処理することによりアミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸、
21.中空糸が、多孔性中空糸である14.~20.の何れかに記載のウイルス捕捉用中空糸、
22.中空糸が、ポリエチレン、ポリプロピレン又はポリ-4-メチルペンテンを基質とするものである14.~21.の何れかに記載のウイルス捕捉用中空糸、
23.アミノ基を有する化合物、又はアンモニウム基を有する化合物の固定化量が1~100μg/cmの範囲である14.~22.の何れかに記載のウイルス捕捉用中空糸、
24.ウイルスが、A型肝炎ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、E型肝炎ウイルス、アデノウイルス、エンテロウイルス、ノロウイルス、インフルエンザウイルス、ヒト免疫不全ウイルス、ロタウイルス、又はポリオウイルスである14.~23.の何れかに記載のウイルス捕捉用中空糸に関する。
That is, the present invention
1. In the liquid containing the virus by capturing the virus through the liquid containing the virus through or in contact with the hollow fiber surface-treated with a compound having a charge or a compound having no charge, and calculating the amount of the captured virus A method for evaluating the concentration of viruses contained in
2.1. In the method for evaluating the virus concentration described in
1) First step of collecting a certain amount of liquid (liquid B) from the liquid containing liquid (liquid A) 2) The liquid B is passed through or brought into contact with the hollow fiber to capture the virus in the hollow fiber. Two steps 3) a method for evaluating the concentration of virus, comprising each step of the third step of calculating the amount of virus in the B liquid trapped in the hollow fiber,
3. 1. The hollow fiber is composed of polyolefin, polyethersulfone, or cellulose mixed ester. Or 2. A method for evaluating the concentration of the virus described in
4). The hollow fiber is a porous hollow fiber; ~ 3. A method for evaluating the concentration of the virus according to any one of
5. 2. The polyolefin is polyethylene, polypropylene or poly-4-methylpentene Or 4. A method for evaluating the concentration of the virus described in
6). The compound having a charge is a (meth) acrylate, a sulfonate, a compound having an ammonium group, a compound having a sulfonium group, a compound having a carboxylate group, or a compound having a phosphate group. ~ 5. A method for evaluating the concentration of the virus according to any one of
7. The compound having no charge is (meth) acrylic acid, sulfonic acid, a compound having an amino group, a compound having a sulfo group, a compound having a carboxy group, or a compound having a phospho group. ~ 5. A method for evaluating the concentration of the virus according to any one of
8). 5. A sulfonium group or a compound having a sulfo group is a sulfated sugar. Or 7. A method for evaluating the concentration of the virus described in
9. Sulfated sugar is heparin, a heparin derivative in which the primary or secondary hydroxyl group of heparin is sulfated, a heparin derivative in which an N-acetyl group-elimination product of heparin is N-sulfate-esterified, dextran sulfate, or fucoidan 8. A method for evaluating the concentration of the virus described in
10. The method for calculating the amount of virus is by polymerase chain reaction, antigen-antibody reaction, or culture method. ~ 9. A method for evaluating the concentration of the virus according to any one of
11. 1. The virus is hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis E virus, adenovirus, enterovirus, norovirus, influenza virus, human immunodeficiency virus, rotavirus, or poliovirus. ~ 10. A method for evaluating the concentration of the virus according to any one of
12 3) In the third step of calculating the amount of virus in the B liquid trapped in the hollow fiber,
1. a step of recovering the virus from the hollow fiber capturing the virus with a phenol aqueous solution, an alkaline aqueous solution, or an inorganic salt aqueous solution; ~ 11. A method for evaluating the concentration of the virus described in
13.1. ~ 12. A virus concentration evaluation kit having a function of evaluating the virus concentration by the method according to any one of
14.1. ~ 12. A hollow fiber for capturing a virus, to which a compound having an amino group or a compound having an ammonium group is used, which is used in the method for evaluating the virus concentration according to any one of
15. 13. The compound having an amino group or the compound having an ammonium group is a compound selected from polyethyleneimine, polyallylamine, amino acids, and salts thereof. The hollow fiber for capturing a virus according to claim 1,
16.14. Or 15. In the hollow fiber for capturing a virus to which an amino group-containing compound or an ammonium group-containing compound is immobilized,
A compound having an amino group or a compound having an ammonium group is immobilized on a hollow fiber surface-treated with a polymer material having a hydroxyl group via a compound having a group capable of reacting with a hydroxyl group and an amino group or an ammonium group. A hollow fiber for capturing a virus,
17. A hollow fiber surface-treated with a polymer material having a hydroxyl group is an ethylene-vinyl alcohol copolymer, an ethylene-vinyl alcohol-vinyl acetate copolymer, a partially saponified product of an ethylene-vinyl acetate copolymer, or a vinyl alcohol-acetic acid. 15. A hollow fiber surface-treated with a vinyl copolymer, a hydroxymethacrylate copolymer, a cellulose acetate partial saponified product, or a glycerin derivative. ~ 16. A hollow fiber for capturing a virus according to any one of
18. 15. The compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group is epichlorohydrin or a diepoxy compound. Or 17. The hollow fiber for capturing a virus according to claim 1,
19.14. Or 15. In the hollow fiber for capturing a virus to which an amino group-containing compound or an ammonium group-containing compound is immobilized,
A virus-capturing hollow fiber in which a compound having an amino group or a compound having an ammonium group is immobilized on a hollow fiber by a graft polymerization reaction,
20.14. Or 15. In the hollow fiber for capturing a virus to which an amino group-containing compound or an ammonium group-containing compound is immobilized,
A virus-capturing hollow fiber in which a compound having an amino group or a compound having an ammonium group is immobilized by surface-treating the hollow fiber with a compound having an amino group or a compound having an ammonium group,
21. 15. The hollow fiber is a porous hollow fiber. ~ 20. A hollow fiber for capturing a virus according to any one of
22. The hollow fiber is based on polyethylene, polypropylene or poly-4-methylpentene.14. 21. A hollow fiber for capturing a virus according to any one of
23. 13. Immobilization amount of a compound having an amino group or a compound having an ammonium group is in the range of 1 to 100 μg / cm 2 . ~ 22. A hollow fiber for capturing a virus according to any one of
24. 13. The virus is hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis E virus, adenovirus, enterovirus, norovirus, influenza virus, human immunodeficiency virus, rotavirus, or poliovirus. 23. Or a virus-capturing hollow fiber according to any one of the above.
以下、本発明で行われる中空糸の表面処理について説明する。
・中空糸
本発明に用いる中空糸は、本発明で対象とするウイルスを捕捉するものであれば制限なく用いることができる。
中空糸を構成する基材としては、ウイルスを捕捉する観点から、オレフィン系樹脂、スチレン系樹脂、スルホン系樹脂、アクリル系樹脂、ウレタン系樹脂、エステル系樹脂、エーテル系樹脂又はセルロース混合エステル等が挙げられ、より具体的にはポリエチレンテレフタレート、エチレンビニルアルコール共重合体、ポリメチルメタクリレート、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン又はポリ-4-メチルペンテン等を例示できる。
本発明で用いることのできる中空糸は特に制限はないが、ウイルスを効率的に捕捉することができる点で多孔性中空糸が好ましい。また、目詰まりの軽減を考慮して、中空糸内壁面は多孔性でありながら外壁面にスキン層を有する非濾過型の中空糸を用いてもよい。当該多孔性中空糸は、延伸法等の公知慣用の製造方法によって製造することができる。
Hereinafter, the surface treatment of the hollow fiber performed in the present invention will be described.
-Hollow fiber The hollow fiber used in the present invention can be used without limitation as long as it captures the virus targeted in the present invention.
As a base material constituting the hollow fiber, from the viewpoint of capturing viruses, olefin resin, styrene resin, sulfone resin, acrylic resin, urethane resin, ester resin, ether resin, cellulose mixed ester, etc. More specifically, examples include polyethylene terephthalate, ethylene vinyl alcohol copolymer, polymethyl methacrylate, polysulfone, polyether sulfone, polyacrylonitrile, polyethylene, polypropylene, and poly-4-methylpentene.
The hollow fiber that can be used in the present invention is not particularly limited, but a porous hollow fiber is preferable in that it can efficiently trap viruses. In view of reducing clogging, a non-filtration type hollow fiber having a skin layer on the outer wall surface while the hollow fiber inner wall surface is porous may be used. The said porous hollow fiber can be manufactured by well-known and usual manufacturing methods, such as an extending | stretching method.
・表面処理に用いる化合物
 中空糸の表面処理に用いる化合物としては、ウイルスを捕捉する能力を有している限り特に制限されるものではなく、電荷を有する化合物、電荷を有しない化合物のいずれであっても良い。そのような化合物として、以下のようなものが挙げられる。例えば電荷を有するものとしては、(メタ)アクリル酸塩、スルホン酸塩、アンモニウム基を有する化合物、スルホニウム基を有する化合物、カルボキシレート基を有する化合物、又はホスフェート基を有する化合物等が例示される。また電荷を有しないものとして、(メタ)アクリル酸、スルホン酸、アミノ基を有する化合物、スルホ基を有する化合物、カルボキシ基を有する化合物、又はホスホ基を有する化合物等が例示される。アミノ基を有する化合物、又はアンモニウム基を有する化合物としては、ポリエチレンイミン、ポリアリルアミン、アミノ酸、及びそれらの塩から選ばれる化合物等を挙げることができる。アミノ酸に関しては、分子内で塩を形成されたものも本発明に含まれる。
・ Compound used for surface treatment The compound used for the surface treatment of the hollow fiber is not particularly limited as long as it has the ability to trap viruses, and it may be either a charged compound or a non-charged compound. May be. Examples of such compounds include the following. Examples of those having a charge include (meth) acrylates, sulfonates, compounds having an ammonium group, compounds having a sulfonium group, compounds having a carboxylate group, and compounds having a phosphate group. Examples of those having no charge include (meth) acrylic acid, sulfonic acid, compounds having an amino group, compounds having a sulfo group, compounds having a carboxy group, and compounds having a phospho group. Examples of the compound having an amino group or the compound having an ammonium group include compounds selected from polyethyleneimine, polyallylamine, amino acids, and salts thereof. Regarding amino acids, those in which a salt is formed in the molecule are also included in the present invention.
 前記スルホニウム基又はスルホ基を有する化合物は硫酸化糖であってもよく、更に詳しくはヘパリン、ヘパリンの1級又は2級水酸基を硫酸エステル化したヘパリン誘導体、ヘパリンのN-アセチル基のアセチル基脱離体をN-硫酸エステル化したヘパリン誘導体、デキストラン硫酸、又はフコイダンであってもよい。 The sulfonium group or the compound having a sulfo group may be a sulfated sugar. More specifically, heparin, a heparin derivative in which a primary or secondary hydroxyl group of heparin is sulfated, and deacetylation of the N-acetyl group of heparin. It may be a heparin derivative obtained by N-sulfate esterification, dextran sulfate, or fucoidan.
・表面処理方法
 上記化合物で中空糸の表面処理を行う方法としては公知慣用の方法を用いることができ、そのような方法として、例えばラジカル重合性化合物によるグラフト重合や濃硫酸等によるスルホン酸化、及びグラフト重合後に該グラフト鎖と反応し得る化合物とを反応させる方法等が挙げられる。
-Surface treatment method As a method of performing the surface treatment of the hollow fiber with the above-mentioned compound, a publicly known and commonly used method can be used. Examples of such a method include graft polymerization with a radical polymerizable compound and sulfonation with concentrated sulfuric acid, and the like. Examples thereof include a method of reacting a compound capable of reacting with the graft chain after graft polymerization.
 また、水酸基を有する高分子材で中空糸を表面処理することもできる。その際には、更に、水酸基を利用して、水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物を介してアミノ基を有する化合物、又はアンモニウム基を有する化合物を固定化することも可能である。 The hollow fiber can also be surface-treated with a polymer material having a hydroxyl group. In that case, a compound having an amino group or a compound having an ammonium group may also be immobilized via a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group by utilizing a hydroxyl group. Is possible.
 以下、それぞれのケースごとに詳述する。
・・グラフト重合によるラジカル重合性基を有する化合物の導入
電離放射線を照射することによるラジカル重合性基を有する化合物とのグラフト重合反応による処理方法は以下のようにして行うことができる。
中空糸に電離放射線を照射して発生させたラジカルにより、例えば(メタ)アクリル酸等のラジカル重合性基を有する化合物のエチレン性不飽和基を中空糸にグラフト重合させる。グラフト重合に際して用いる電離放射線源としては、公知慣用のα線、β線、γ線、加速電子線、X線等があげられ、実用的にはγ線、加速電子線が望ましい。
Hereinafter, each case will be described in detail.
.. Treatment of a compound having a radical polymerizable group by graft polymerization A treatment method by a graft polymerization reaction with a compound having a radical polymerizable group by irradiating with ionizing radiation can be carried out as follows.
For example, an ethylenically unsaturated group of a compound having a radical polymerizable group such as (meth) acrylic acid is graft-polymerized to the hollow fiber by radicals generated by irradiating the hollow fiber with ionizing radiation. Examples of the ionizing radiation source used in the graft polymerization include known and commonly used α-rays, β-rays, γ-rays, accelerated electron beams, X-rays and the like, and practically preferred are γ-rays and accelerated electron beams.
グラフト重合法は、前記中空糸とラジカル重合性基を有する化合物とを接触させて電離放射線を照射する同時照射グラフト重合法と、中空糸に予め照射した後でラジカル重合性基を有する化合物と接触させる前照射グラフト重合法のいずれでも可能であり、目的に合わせて選択できる。 The graft polymerization method includes a simultaneous irradiation graft polymerization method in which the hollow fiber is brought into contact with a compound having a radical polymerizable group and irradiated with ionizing radiation, and the hollow fiber is preliminarily irradiated with a compound having a radical polymerizable group. Any pre-irradiation graft polymerization method can be used and can be selected according to the purpose.
本発明に用いる電離放射線を用いたグラフト重合法において、最適な照射線量や加速電圧は中空糸によって異なるため一概には範囲を決めることができず、中空糸の素材、厚みなどを考慮し適宜調整することが必要である。例えば、照射量が多いと帯電による絶縁破壊が発生し、照射量が少ないと重合反応が進行しない。このため、中空糸の材質や形態などを考慮し、帯電による絶縁破壊が発生せず、かつ重合反応が充分に進む照射量を適宜調整すればよい。また、加速電圧は透過性に関係し、中空糸の厚みによって異なる。厚みが薄い場合、加速電圧は一般には小さくて済み、厚い場合には大きくする必要がある。 In the graft polymerization method using ionizing radiation used in the present invention, the optimum irradiation dose and accelerating voltage differ depending on the hollow fiber, so the range cannot be determined unconditionally, and it is adjusted as appropriate considering the material and thickness of the hollow fiber. It is necessary to. For example, when the irradiation amount is large, dielectric breakdown due to charging occurs, and when the irradiation amount is small, the polymerization reaction does not proceed. For this reason, in consideration of the material and form of the hollow fiber, the amount of irradiation that does not cause dielectric breakdown due to charging and the polymerization reaction proceeds sufficiently may be adjusted as appropriate. Further, the acceleration voltage is related to the permeability and varies depending on the thickness of the hollow fiber. When the thickness is small, the acceleration voltage is generally small, and when it is thick, it needs to be large.
例えば、中空糸がポリ-4-メチルペンテンからなる厚さ10μm~100μmの中空糸の場合においては、10kGy以上、300kGy以下、さらに望ましくは90kGy以下であればよく、加速電圧は適宜選択することができる。
その他、中空糸が、ポリエチレン、ポリプロピレンから構成されるものであっても同様にグラフト重合を行うことができる。
For example, when the hollow fiber is made of poly-4-methylpentene and has a thickness of 10 μm to 100 μm, it may be 10 kGy or more, 300 kGy or less, more preferably 90 kGy or less, and the acceleration voltage may be appropriately selected. it can.
In addition, even when the hollow fiber is made of polyethylene or polypropylene, graft polymerization can be similarly performed.
前記電離放射線照射後の中空糸基材中のラジカルは温度の上昇、酸素との接触によって速やかに不活化される。従って、照射後は十分に酸素を除いた状態で低温にて貯蔵し、速やかにグラフト重合反応を行うことが好ましい。また前記の理由から、反応は脱酸素下、又は不活性ガス下で実施することが望ましい。グラフト重合反応後の中空糸は、溶媒による洗浄など種々の方法で未反応のラジカル重合性基を有する化合物を除去すればよい。 The radicals in the hollow fiber base material after irradiation with the ionizing radiation are quickly inactivated by temperature rise and contact with oxygen. Therefore, after irradiation, it is preferable to store at a low temperature in a state where oxygen is sufficiently removed, and to carry out the graft polymerization reaction promptly. For the above reasons, it is desirable to carry out the reaction under deoxygenation or in an inert gas. The hollow fiber after the graft polymerization reaction may be removed from the compound having an unreacted radical polymerizable group by various methods such as washing with a solvent.
なお、中空糸へのラジカル重合性基を有する化合物の導入に際しては、実施形態に応じて中空糸の内面、外面のどちらか、又は両方を選択して行うことができる。例えば中空糸内面に通液してウイルスを捕捉する場合には、中空糸内面に該化合物を導入しておけばよく、逆に、外面に通液して用いる場合には中空糸外面に導入しておけばよい。中空糸の基材としては電離放射線照射によってラジカルを生成しやすいことから、主鎖にメチレン基を有するような高分子化合物が特に好ましい。
グラフト重合反応により中空糸に導入した前記化合物は、公知慣用の方法により塩とすることができる。このような塩としては、ウイルスを捕捉することができるものであれば特に制限はないが、ナトリウム、カリウム、カルシウム、マグネシウム等の金属イオンと形成される塩、トリアルキルアミン類、芳香族アミン類と形成される塩等を好ましい塩として挙げることができる。
The introduction of the compound having a radical polymerizable group into the hollow fiber can be performed by selecting either the inner surface or the outer surface of the hollow fiber, or both, depending on the embodiment. For example, when the virus is captured by passing through the inner surface of the hollow fiber, the compound may be introduced into the inner surface of the hollow fiber. Conversely, when used by passing through the outer surface, the compound is introduced into the outer surface of the hollow fiber. Just keep it. As the hollow fiber base material, a polymer compound having a methylene group in the main chain is particularly preferred because radicals are easily generated by irradiation with ionizing radiation.
The compound introduced into the hollow fiber by the graft polymerization reaction can be converted into a salt by a known and usual method. Such salts are not particularly limited as long as they can capture viruses, but salts formed with metal ions such as sodium, potassium, calcium and magnesium, trialkylamines, aromatic amines And salts formed as preferred salts.
・・スルホン酸化によるスルホン酸又はスルホン酸塩の導入
 本発明の中空糸のスルホン酸化は、濃硫酸又は発煙硫酸等のスルホン酸化剤を用いた通常公知の方法で行うことが可能である。また、得られたスルホン酸基は、公知慣用の方法により、スルホン酸塩とすることができる。このような塩としては、ウイルスを捕捉することができるものであれば特に制限はないが、スルホン酸のナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等の金属イオンと形成される塩、トリアルキルアミン類、芳香族アミン類と形成される塩等を好ましい塩として挙げることができる。
.. Introduction of sulfonic acid or sulfonate by sulfonation The sulfonation of the hollow fiber of the present invention can be carried out by a generally known method using a sulfonating agent such as concentrated sulfuric acid or fuming sulfuric acid. The obtained sulfonic acid group can be converted to a sulfonate by a known and commonly used method. Such salts are not particularly limited as long as they can capture viruses, but salts formed with metal ions such as sodium, potassium, calcium, and magnesium salts of sulfonic acids, trialkyls Examples of preferred salts include amines and salts formed with aromatic amines.
・・アミノ基又はアンモニウム基を有する化合物の導入
本発明においてアミノ基の導入法に制限はないが、好ましい導入法としては、グラフト重合が可能なラジカル重合性基とアミノ基と反応し得る基とを有する化合物(I)を中空糸に導入した後に、アミノ基を有する化合物(II)又はアンモニアと反応させる方法を挙げることができる。アミノ基を有する化合物(II)は、アミノ基の他に水酸基等の官能基を有していてもよい。
.. Introduction of compound having amino group or ammonium group In the present invention, the introduction method of the amino group is not limited, but a preferable introduction method is a radical polymerizable group capable of graft polymerization and a group capable of reacting with the amino group. Examples thereof include a method of introducing a compound (I) having an amino group into a hollow fiber and then reacting with a compound (II) having an amino group or ammonia. The compound (II) having an amino group may have a functional group such as a hydroxyl group in addition to the amino group.
グラフト重合が可能なラジカル重合性基とアミノ基と反応し得る基とを有する化合物(I)として好ましい化合物は、例えば、(メタ)アクリル酸、グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリレート、(メタ)アクリロイルオキシアルキルイソシアネート等のイソシアネート基を有する(メタ)アクリレート等を挙げることができる。
好ましいアミノ基を有する化合物(II)としては、例えば、水酸基若しくはアミノ基が保護基を有してもよいヒドロキシアルキルアミン誘導体、又はアミノ基が保護基を有してもよい分子内に少なくとも2個のアミノ基を有するアミン誘導体であって、水酸基若しくはアミノ基が保護基を有してもよい、2-アミノエタノール、エチレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、1,2-ビス(2-アミノエトキシ)エタン、ポリエチレンイミン、ポリアリルアミン等を挙げることができる。
また、ラジカル重合性基とアミノ基と反応し得る基とを有する化合物(I)と反応する化合物としてアンモニアも挙げることができる。
使用される保護基としては、カーバメート結合により保護する基、エステル結合により保護する基、アミド結合により保護する基又はエーテル結合により保護する基等を挙げることができるが、これらに限らない。
Preferred compounds as the compound (I) having a radically polymerizable group capable of graft polymerization and a group capable of reacting with an amino group include epoxy groups such as (meth) acrylic acid and glycidyl (meth) acrylate (meta And (meth) acrylate having an isocyanate group such as acrylate and (meth) acryloyloxyalkyl isocyanate.
Preferred examples of the compound (II) having an amino group include a hydroxyalkylamine derivative in which a hydroxyl group or an amino group may have a protecting group, or at least two in a molecule in which an amino group may have a protecting group. 2-aminoethanol, ethylenediamine, butylenediamine, hexamethylenediamine, 1,2-bis (2-aminoethoxy), which is an amine derivative having an amino group of which hydroxyl group or amino group may have a protecting group Examples include ethane, polyethyleneimine, polyallylamine, and the like.
Moreover, ammonia can also be mentioned as a compound that reacts with the compound (I) having a radical polymerizable group and a group capable of reacting with an amino group.
Examples of the protecting group used include, but are not limited to, a group protecting with a carbamate bond, a group protecting with an ester bond, a group protecting with an amide bond, or a group protecting with an ether bond.
カーバメート結合により保護する基としては、例えばt-ブチルカーバメート(Boc基)、ベンジルカーバメート等が挙げられ、エステル結合により保護する基としては、例えば、アセチル基、ベンゾイル基等が挙げられ、アミド結合により保護する基としては、アセチルアミド基、ベンゾイルアミド基等が挙げられ、エーテル結合により保護する基としては、メトキシメチルエーテル基、ベンジルエーテル基等の基を挙げることができる。これらの基は、ラジカル重合性基を有する化合物との間で行われる反応の種類・条件等により適宜選択して行うことができる。 Examples of the group protected by a carbamate bond include t-butyl carbamate (Boc group) and benzyl carbamate. Examples of the group protected by an ester bond include an acetyl group and a benzoyl group. Examples of the protecting group include an acetylamide group and a benzoylamide group, and examples of the group to be protected by an ether bond include a methoxymethyl ether group and a benzyl ether group. These groups can be appropriately selected depending on the type and conditions of the reaction performed with the compound having a radical polymerizable group.
 グラフト重合が可能なラジカル重合性基とアミノ基と反応し得る基とを有する化合物(I)として(メタ)アクリル酸を用いた場合、アミノ基を有する化合物(II)との反応は、アミド化法を行えばよい。アミド化反応の方法は、例えば、活性エステルによるアミド化、縮合剤によるアミド化、これらの併用、混合酸無水物法、アジド法、酸化還元法、DPPA法、ウッドワード法など、ペプチド合成などで用いられている公知慣用のアミド化反応を適宜行えばよい。 When (meth) acrylic acid is used as the compound (I) having a radical polymerizable group capable of graft polymerization and a group capable of reacting with an amino group, the reaction with the compound (II) having an amino group is amidation. Just do the law. Amidation reaction methods include, for example, amidation with an active ester, amidation with a condensing agent, a combination thereof, a mixed acid anhydride method, an azide method, a redox method, a DPPA method, a Woodward method, peptide synthesis, etc. What is necessary is just to perform the well-known and usual amidation reaction used suitably.
活性エステルによるアミド化としては、例えば、NHS(N-ヒドロキシスクシンイミド)、ニトロフェノール、ペンタフルオロフェノール、DMAP(4-ジメチルアミノピリジン)、HOBT(1-ヒドロキシベンゾトリアゾール)、HOAT(ヒドロキシアザベンゾトリアゾール)等を用いて、脱離能の高い基をカルボキシ基と一旦縮合させた活性エステルを形成させておき、これにアミノ基を反応させる方法が挙げられる。縮合剤によるアミド化は、それ単独で用いても良いが、上記活性エステルと併用することができる。縮合剤としては、EDC(1-(3-ジメチルアミノプロピル-3-エチル-カルボジイミドヒドロクロライド)、HONB(エンド-N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキサミド)、DCC(ジシクロヘキシルカルボジイミド)、BOP(ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスフェート)、HBTU(O-ベンゾトリアゾール-1-イル-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスフェート)、TBTU(O-ベンゾトリアゾール-1-イル-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボレート)、HOBt(1-ヒドロキシベンゾトリアゾール)、HOOBt(3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,3-ベンゾトリアジン)、ジ-p-トリオイルカルボジイミド、DIC(ジイソプロピルカルボジイミド)、BDP(1-ベンゾトリアゾールジエチルホスフェート-1-シクロヘキシル-3-(2-モルホリニルエチル)カルボジイミド)、フッ化シアヌル、塩化シアヌル、TFFH(テトラメチルフルオロホルムアミジニウムヘキサフルオロホスホスフェート)、DPPA(ジフェニルホスホラジデート)、TSTU(O-(N-スクシニミジル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボレート)、HATU(N-[(ジメチルアミノ)-1-H-1,2,3-トリアゾロ[4,5,6]-ピリジン-1-イルメチレン]-N-メチルメタンアミニウム・ヘキサフルオロホスフェート・N-オキシド)、BOP-Cl(ビス(2-オキソ-3-オキサゾリジニル)ホスフィンクロライド)、PyBOP((1-H-1,2,3-ベンゾトリアゾール-1-イルオキシ)-トリス(ピロリジノ)ホスホニウム・テトラフルオロホスフェート)、BrOP(ブロモトリス(ジメチルアミノ)ホスホニウム・ヘキサフルオロホスフェート)、DEPBT(3-(ジエトキシホスホリルオキシ)-1,2,3-ベンゾトリアジン-4(3H)-オン)、PyBrOP(ブロモトリス(ピロリジノ)ホスホニウム・ヘキサフルオロホスフェート)などが挙げられる。 Examples of amidation with an active ester include NHS (N-hydroxysuccinimide), nitrophenol, pentafluorophenol, DMAP (4-dimethylaminopyridine), HOBT (1-hydroxybenzotriazole), and HOAT (hydroxyazabenzotriazole). And the like to form an active ester obtained by once condensing a group having a high leaving ability with a carboxy group, and reacting this with an amino group. Amidation with a condensing agent may be used alone or in combination with the active ester. As the condensing agent, EDC (1- (3-dimethylaminopropyl-3-ethyl-carbodiimide hydrochloride), HONB (endo-N-hydroxy-5-norbornene-2,3-dicarboxamide), DCC (dicyclohexylcarbodiimide) , BOP (benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate), HBTU (O-benzotriazol-1-yl-N, N, N ′, N′-tetramethyluronium hexafluorophosphate) TBTU (O-benzotriazol-1-yl-N, N, N ′, N′-tetramethyluronium tetrafluoroborate), HOBt (1-hydroxybenzotriazole), HOOBt (3,4-dihydro-3- Hydroxy-4-oxo- , 2,3-benzotriazine), di-p-trioylcarbodiimide, DIC (diisopropylcarbodiimide), BDP (1-benzotriazole diethyl phosphate-1-cyclohexyl-3- (2-morpholinylethyl) carbodiimide), fluorine Cyanuric chloride, cyanuric chloride, TFFH (tetramethylfluoroformamidinium hexafluorophosphophosphate), DPPA (diphenylphosphoradidate), TSTU (O- (N-succinimidyl) -N, N, N ′, N′-tetramethyl Uronium tetrafluoroborate), HATU (N-[(dimethylamino) -1-H-1,2,3-triazolo [4,5,6] -pyridin-1-ylmethylene] -N-methylmethanaminium Hexafluorophosphate / N-oxide) BOP-Cl (bis (2-oxo-3-oxazolidinyl) phosphine chloride), PyBOP ((1-H-1,2,3-benzotriazol-1-yloxy) -tris (pyrrolidino) phosphonium tetrafluorophosphate), BrOP (bromotris (dimethylamino) phosphonium hexafluorophosphate), DEPBT (3- (diethoxyphosphoryloxy) -1,2,3-benzotriazin-4 (3H) -one), PyBrOP (bromotris (pyrrolidino) phosphonium Hexafluorophosphate) and the like.
このうち、(メタ)アクリル酸のカルボキシ基を一旦、NHS化した後に、アミノ基を有する化合物(II)のアミノ基と反応させアミド化する方法が好ましい。 Among these, a method in which the carboxy group of (meth) acrylic acid is once NHS and then reacted with the amino group of the compound (II) having an amino group for amidation is preferred.
これらのアミド化方法において利用できる溶媒としては、水及びペプチド合成に用いられる有機溶媒を使用することができ、例えばジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ヘキサホスホロアミド、ジオキサン、テトラヒドロフラン(THF)、酢酸エチル等、更にはこれらの混合溶媒やこれらを含む水溶液が挙げられる。 As a solvent that can be used in these amidation methods, water and an organic solvent used for peptide synthesis can be used. For example, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), hexaphosphoroamide, dioxane, tetrahydrofuran ( THF), ethyl acetate, and the like, and mixed solvents and aqueous solutions containing these.
カルボキシ基への活性化エステル残基導入割合は、用いる活性化剤の種類や、試薬の使用量に依存する。一般的に、溶液中での反応と比較し、重合性化合物から得られる重合体が結合されていることで、反応性が落ちる為、導入量を上げる為には反応試薬をかなり過剰量用いる必要があると考えられる。従って、中空糸に重合せしめた(メタ)アクリル酸のカルボキシ基に対する活性化剤と縮合剤反応試薬の量比は一概には規定できないが、カルボキシル基に活性エステル基を等量的に導入するためには、概ねモル比で、1から10程度用いることが望ましい。さらに、反応試薬の過剰量を調整することで、活性エステル基の導入割合を0.01から100%の範囲で、任意に調整することが可能である。 The proportion of the activated ester residue introduced into the carboxy group depends on the type of activator used and the amount of reagent used. In general, compared to the reaction in solution, the polymer obtained from the polymerizable compound is bonded, and the reactivity is lowered. Therefore, in order to increase the introduction amount, it is necessary to use a considerably excessive amount of the reaction reagent. It is thought that there is. Therefore, the ratio of the activator to the condensing agent reaction reagent relative to the carboxy group of (meth) acrylic acid polymerized on the hollow fiber cannot be defined unconditionally, but the active ester group is introduced into the carboxyl group in an equal amount. Is preferably about 1 to 10 in molar ratio. Furthermore, by adjusting the excess amount of the reaction reagent, it is possible to arbitrarily adjust the introduction ratio of the active ester group in the range of 0.01 to 100%.
ラジカル重合性基とアミノ基と反応し得る基とを有する化合物(I)として、グリシジル(メタ)アクリレートを用いた場合には、アミノ基を有する化合物(II)の水酸基或いはアミノ基と、グリシジル基と反応させることにより結合することができる。
反応条件は、通常の水酸基若しくはアミノ基とグリシジル基の反応で使用される溶媒、反応温度、反応時間を挙げることができる。好ましい条件の一例として、水酸基若しくはアミノ基を有する化合物が溶液の場合には、直接使用しても良く、溶媒を使用する場合には、中空糸を溶解又は膨潤させない溶媒で、より好ましくは、中空糸を溶解及び膨潤せずにラジカル重合性基を有する化合物の重合物を溶解できる溶媒が使用でき、水酸基若しくはアミノ基を有する化合物の濃度は任意に選択することができ、好ましくは、重量濃度0.1~50%の濃度に調製して使用できる。
When glycidyl (meth) acrylate is used as the compound (I) having a radical polymerizable group and a group capable of reacting with an amino group, the hydroxyl group or amino group of the compound (II) having an amino group, and a glycidyl group Can be bound by reacting with.
Examples of the reaction conditions include a solvent used in the reaction of a normal hydroxyl group or amino group and a glycidyl group, a reaction temperature, and a reaction time. As an example of preferable conditions, when the compound having a hydroxyl group or an amino group is a solution, it may be used directly. When a solvent is used, a solvent that does not dissolve or swell the hollow fiber, more preferably a hollow A solvent capable of dissolving a polymer of a compound having a radical polymerizable group without dissolving and swelling the yarn can be used, and the concentration of the compound having a hydroxyl group or an amino group can be arbitrarily selected. Can be used by adjusting to a concentration of 1 to 50%.
反応温度は、アミノ基を有する化合物(II)や溶媒が気化しない温度から選択でき、好ましくは0~70℃、より好ましくは、20~60℃である。反応時間は、アミノ基を有する化合物(II)の種類、濃度、及び反応温度により異なるが、反応溶液中のアミノ基を有する化合物(II)の含有量をガスクロマトグラフ、液体クロマトグラフ、滴定などでモニターしながら、アミノ基を有する化合物(II)が消費されなくなるまで行うことが好ましい。一般的には、30分から12時間で完結することができるが、これらに限定されず、適宜反応条件を選択・設定することができる。 The reaction temperature can be selected from the temperature at which the compound (II) having an amino group and the solvent do not vaporize, and is preferably 0 to 70 ° C., more preferably 20 to 60 ° C. Although the reaction time varies depending on the type, concentration, and reaction temperature of the compound (II) having an amino group, the content of the compound (II) having an amino group in the reaction solution can be determined by gas chromatography, liquid chromatography, titration, etc. Monitoring is preferably performed until the compound (II) having an amino group is not consumed. Generally, the reaction can be completed in 30 minutes to 12 hours, but is not limited thereto, and reaction conditions can be appropriately selected and set.
ラジカル重合性基とアミノ基と反応し得る基とを有する化合物(I)として、(メタ)アクリロイルオキシアルキルイソシアネートを用いた場合には、アミノ基を有する化合物(II)の水酸基若しくはアミノ基と、ラジカル重合性基を有する化合物の有するイソシアネート基と反応させることにより結合することができる。
反応条件は、通常の水酸基若しくはアミノ基とイソシアネート基の反応で使用される溶媒、反応温度、反応時間を挙げることができる。好ましい条件の一例として、溶媒として、酢酸エチルやアセトニトリルなど、中空糸を溶解及び膨潤せず、イソシアネートと反応しない溶媒から適宜選択することができる。反応濃度は任意に選択することが可能であり、具体的には重量濃度で0.5~15%から選択することができる。反応温度はイソシアネートとの反応が発熱反応であることから、0~50℃が好ましい。反応時間は、2~24時間を挙げることができるが、これらに限定されず、適宜選択して反応条件を設定することができる。
When (meth) acryloyloxyalkyl isocyanate is used as the compound (I) having a radical polymerizable group and a group capable of reacting with an amino group, the hydroxyl group or amino group of the compound (II) having an amino group; It can couple | bond by making it react with the isocyanate group which the compound which has a radically polymerizable group has.
Examples of the reaction conditions include a solvent used in a reaction between a normal hydroxyl group or amino group and an isocyanate group, a reaction temperature, and a reaction time. As an example of preferable conditions, the solvent can be appropriately selected from solvents such as ethyl acetate and acetonitrile that do not dissolve and swell the hollow fiber and do not react with isocyanate. The reaction concentration can be arbitrarily selected. Specifically, the reaction concentration can be selected from 0.5 to 15% by weight. The reaction temperature is preferably 0 to 50 ° C. because the reaction with isocyanate is an exothermic reaction. The reaction time can be 2 to 24 hours, but is not limited thereto, and reaction conditions can be set by appropriately selecting.
また、上記の方法により導入されたアミノ基は、公知慣用の方法でアンモニウム塩とすることができる。
好ましいアンモニウム塩としては、ウイルスを捕捉する機能があれば特に制限はないが、塩酸塩、硫酸塩、リン酸塩等の無機塩類、ギ酸塩、酢酸塩、シュウ酸塩、コハク酸塩、安息香酸塩等の有機塩類を挙げることができる。
The amino group introduced by the above method can be converted to an ammonium salt by a known and conventional method.
A preferable ammonium salt is not particularly limited as long as it has a function of capturing a virus, but inorganic salts such as hydrochloride, sulfate, phosphate, formate, acetate, oxalate, succinate, benzoic acid Organic salts such as salts can be mentioned.
 水酸基を有する高分子材で中空糸を表面処理した後に、水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物を介してアミノ基を有する化合物、又はアンモニウム基を有する化合物を固定化する方法は、以下が挙げられる。 After surface treatment of the hollow fiber with a polymer material having a hydroxyl group, a compound having an amino group or a compound having an ammonium group is immobilized via a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group. The method includes the following.
 本発明で使用が可能な水酸基を有する高分子材としては、例えば、エチレン-ビニルアルコール共重合体、エチレン-ビニルアルコール-酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体の部分けん化物、ビニルアルコール-酢酸ビニル共重合体などのビニルアルコール共重合体を含んだもの、ヒドロキシメタクリレート共重合体を含んだもの、酢酸セルロースの部分けん化物又はグリセリン誘導体を例示することができる。ただし、例示したもの以外にも、水酸基を有する樹脂であれば特に制限はない。 Examples of the polymer material having a hydroxyl group that can be used in the present invention include an ethylene-vinyl alcohol copolymer, an ethylene-vinyl alcohol-vinyl acetate copolymer, a partially saponified product of ethylene-vinyl acetate copolymer, vinyl, and the like. Examples include those containing a vinyl alcohol copolymer such as an alcohol-vinyl acetate copolymer, those containing a hydroxymethacrylate copolymer, partially saponified cellulose acetate, or glycerin derivatives. However, in addition to those exemplified, there is no particular limitation as long as the resin has a hydroxyl group.
水酸基を有する高分子材での表面処理は、公知慣用の方法で行うことができ、例えば多孔化されたポリオレフィンを、水酸基を有する高分子材を溶解させた溶液中に浸漬し、引き上げた後乾燥する等を好ましい方法として挙げることができる。中でもエチレン-ビニルアルコール共重合体は、特開昭61-271003などにもあるように、ポリオレフィン多孔中空糸を簡便に親水化することができる点で好ましい。もしくは、予めポリオレフィン等と水酸基を有する高分子材を混合させたものを多孔化する手法を用いることも可能である。 The surface treatment with the polymer material having a hydroxyl group can be carried out by a known and usual method. For example, the porous polyolefin is dipped in a solution in which the polymer material having a hydroxyl group is dissolved, pulled up and then dried. Can be mentioned as a preferred method. Among these, an ethylene-vinyl alcohol copolymer is preferable in that the polyolefin porous hollow fiber can be easily hydrophilized as disclosed in JP-A-61-271003. Alternatively, it is also possible to use a method of making a porous mixture of polyolefin or the like and a polymer material having a hydroxyl group in advance.
 本発明で使用される水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物は、表面処理された中空糸の表面に存在する水酸基と反応しえる基を有し、固定化後にアミノ基又はアンモニウム基と容易に反応する官能基などを有していれば特に制限はない。例えば、エピクロロヒドリン、カルボン酸無水物、ジカルボン酸、ジカルボン酸塩化物、ジイソシアネート、ジエポキシ化合物等の化合物が挙げられる。基材にグラフト重合できる化合物として、(メタ)アクリル酸、グリシジル(メタ)アクリレート、(メタ)アクリロイルオキシアルキルイソシアネート、無水マレイン酸等が挙げられる。 The compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group used in the present invention has a group capable of reacting with a hydroxyl group present on the surface of the surface-treated hollow fiber, and the amino group after immobilization. Alternatively, there is no particular limitation as long as it has a functional group that easily reacts with an ammonium group. For example, compounds such as epichlorohydrin, carboxylic anhydride, dicarboxylic acid, dicarboxylic acid chloride, diisocyanate, diepoxy compound and the like can be mentioned. Examples of the compound that can be graft-polymerized on the substrate include (meth) acrylic acid, glycidyl (meth) acrylate, (meth) acryloyloxyalkyl isocyanate, and maleic anhydride.
中空糸の表面に存在する水酸基に、水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物を反応させて固定化する場合は、例えば公知慣用の水酸基とエポキシ基との反応、水酸基とカルボキシ基との反応、水酸基とカルボン酸無水物との反応、水酸基とイソシアネートとの反応に用いる条件等で行うことができる。
また、エチレン性不飽和基を有する化合物をグラフト重合させる場合には、水酸基を有する高分子材にラジカルを生成させることによるグラフト重合反応により、(メタ)アクリル酸、グリシジル(メタ)アクリレート、(メタ)アクリロイルオキシアルキルイソシアネート、又は無水マレイン酸等を固定化することが可能である。
ラジカルを生成させる方法としては、セルロースやポリビニルアルコール等の水酸基を有する高分子材のラジカル重合開始剤に広く用いられている硝酸二アンモニウムセリウム等の試薬を用いる方法を挙げることが出来る。
When the hydroxyl group present on the surface of the hollow fiber is reacted with a hydroxyl group and a compound having a group capable of reacting with an amino group or an ammonium group and immobilized, for example, a reaction between a known and commonly used hydroxyl group and an epoxy group, The reaction can be carried out under conditions such as a reaction with a carboxy group, a reaction between a hydroxyl group and a carboxylic acid anhydride, a reaction between a hydroxyl group and an isocyanate.
When a compound having an ethylenically unsaturated group is graft polymerized, (meth) acrylic acid, glycidyl (meth) acrylate, (meta ) It is possible to immobilize acryloyloxyalkyl isocyanate or maleic anhydride.
Examples of the method for generating radicals include a method using a reagent such as diammonium cerium nitrate which is widely used as a radical polymerization initiator for a polymer material having a hydroxyl group such as cellulose or polyvinyl alcohol.
なお、水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物を固定化する場合には、実施形態に応じて糸の内面、外面のどちらか又は両方に固定化することができる。例えば中空糸内表面に血液を灌流させる時は、中空糸内表面に水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物を接触させて固定化すれば良く、逆に、外部灌流させる時には、中空糸外表面に水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物を接触させれば良い。糸の細孔内も含めて内外表面に固定化したい場合は、糸を束ねて反応溶液に浸漬してもよいし、モジュールとして組み立ててから反応溶液を循環させる方法などが挙げられる。 In addition, when fixing the compound which has a group which can react with a hydroxyl group and an amino group or an ammonium group, it can fix to either the inner surface of a thread | yarn, an outer surface, or both according to embodiment. For example, when blood is perfused on the inner surface of the hollow fiber, a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group may be contacted and immobilized on the inner surface of the hollow fiber. Sometimes, a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group may be brought into contact with the outer surface of the hollow fiber. When it is desired to immobilize on the inner and outer surfaces including inside the pores of the yarn, the yarn may be bundled and immersed in the reaction solution, or the reaction solution may be circulated after assembling as a module.
本発明で使用されるアミノ基又はアンモニウム基を有する化合物は、水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物と反応し得るものであれば特に制限はない。このような化合物としては、例えば、ポリアリルアミン、アンモニア、2-アミノエタノール、エチレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、1,2-ビス(2-アミノエトキシ)エタン、3,3’-ジアミノジプロピルアミン、ジエチレントリアミン、フェニレンジアミン又はポリエチレンイミン等のアミン類又はそのアンモニウム塩を挙げることができる。 The compound having an amino group or an ammonium group used in the present invention is not particularly limited as long as it can react with a compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group. Examples of such compounds include polyallylamine, ammonia, 2-aminoethanol, ethylenediamine, butylenediamine, hexamethylenediamine, 1,2-bis (2-aminoethoxy) ethane, 3,3′-diaminodipropylamine. And amines such as diethylenetriamine, phenylenediamine or polyethyleneimine, or ammonium salts thereof.
アミノ基又はアンモニウム基を有する化合物と水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物との反応は、公知慣用のアミノ基又はアンモニウム基とエポキシ基との反応、アミノ基又はアンモニウム基とカルボキシ基との反応、アミノ基又はアンモニウム基とカルボン酸無水物との反応、アミノ基又はアンモニウム基とイソシアネートとの反応に用いる条件で適宜行うことができる。 The reaction of a compound having an amino group or an ammonium group with a hydroxyl group and a compound having a group capable of reacting with an amino group or an ammonium group is a reaction of a known and commonly used amino group or ammonium group with an epoxy group, an amino group or an ammonium group. It can be suitably carried out under the conditions used for the reaction between the carboxy group and the carboxyl group, the reaction between the amino group or ammonium group and the carboxylic acid anhydride, and the reaction between the amino group or ammonium group and the isocyanate.
・・硫酸化糖の導入
本発明のスルホニウム基を有する化合物、又はスルホ基を有する化合物として、硫酸化糖を用いることができる。このような本発明に用いられる硫酸化糖として、ヘパリン、ヘパリンの1級又は2級水酸基を硫酸エステル化したヘパリン誘導体、ヘパリンのN-アセチル基のアセチル基脱離体をN-硫酸エステル化したヘパリン誘導体、デキストラン硫酸、又はフコイダン等のスルホニウム基、又はスルホ基を有する硫酸化糖等を挙げることができる。
本発明で使用されるヘパリンは通常公知のものを制限なく使用することができる。ヘパリンは、小腸、筋肉、肺、脾や肥満細胞など体内で幅広く存在し、化学的にはグリコサミノグリカンであるヘパラン硫酸の一種であり、β-D-グルクロン酸、或いはα-L-イズロン酸とD-グルコサミンが1,4-結合により重合した高分子であって、ヘパラン硫酸と比べて硫酸化の度合いが特に高いという特徴を有する。ヘパリンの平均分子量についても特に制限はないが、平均分子量が大きい場合には水酸基若しくはアミノ基を有する化合物との反応性が低くなる為、ヘパリンの固定化の効率が悪いと考えられる。従って、ヘパリンの分子量は、概ね、500から500,000ダルトン、より好ましくは1,200から50,000ダルトン、更に好ましくは5,000~20,000ダルトンであることが好ましい。
.. Introduction of Sulfated Sugar Sulfated sugar can be used as the compound having a sulfonium group or the compound having a sulfo group of the present invention. As the sulfated saccharide used in the present invention, heparin, a heparin derivative in which primary or secondary hydroxyl groups of heparin are sulfated, and an acetyl group-eliminated product of N-acetyl group of heparin are converted to N-sulfate. Examples include heparin derivatives, dextran sulfate, sulfonium groups such as fucoidan, and sulfated sugars having a sulfo group.
As the heparin used in the present invention, generally known heparins can be used without limitation. Heparin is a kind of heparan sulfate that is widely present in the body such as small intestine, muscles, lungs, spleen and mast cells, and is chemically a glycosaminoglycan, β-D-glucuronic acid or α-L-iduron. It is a polymer in which an acid and D-glucosamine are polymerized by 1,4-bonds, and has a feature that the degree of sulfation is particularly high compared to heparan sulfate. The average molecular weight of heparin is not particularly limited, but when the average molecular weight is large, the reactivity with a compound having a hydroxyl group or an amino group is lowered, so that the efficiency of immobilizing heparin is considered to be poor. Accordingly, the molecular weight of heparin is preferably about 500 to 500,000 daltons, more preferably 1,200 to 50,000 daltons, and even more preferably 5,000 to 20,000 daltons.
ヘパリンの他に使用できる硫酸化糖としては、上記ヘパリンの1級又は2級水酸基を硫酸エステル化したヘパリン誘導体又は該ヘパリンのN-アセチル基のアセチル基脱離体をN-硫酸エステル化したヘパリン誘導体が例示される。硫酸エステル化は通常公知の方法で行うことができる。 Examples of sulfated sugars that can be used in addition to heparin include heparin derivatives in which the primary or secondary hydroxyl group of heparin is sulfated or heparin in which an acetyl group-elimination product of the N-acetyl group of the heparin is N-sulfated. Derivatives are exemplified. The sulfuric esterification can be usually performed by a known method.
ヘパリンの1級又は2級水酸基を硫酸エステル化したヘパリン誘導体を合成する場合には、例えば、ヘパリンのアルカリ塩類をイオン交換樹脂(H)等に通じ、アミン類と処理することによりヘパリンアミン塩を調整する。その後に、硫酸化剤で処理して目的とするヘパリン誘導体とすることができる。硫酸化剤としては、公知慣用のSO・ピリジン等が好ましい。 When synthesizing a heparin derivative in which a primary or secondary hydroxyl group of heparin is sulfated, for example, heparin amine salt is obtained by treating an alkali salt of heparin with an ion exchange resin (H + ) or the like and treating with an amine. Adjust. Thereafter, it can be treated with a sulfating agent to obtain the desired heparin derivative. As the sulfating agent, known and commonly used SO 3 • pyridine is preferable.
また、ヘパリンのN-アセチル基のアセチル基脱離体をN-硫酸エステル化したヘパリン誘導体を合成する場合には、例えば、ヘパリンN-アセチル基をヒドラジン等で脱アセチル化した後に、硫酸化剤で処理して目的とするヘパリン誘導体とすることができる。硫酸化剤としては、公知慣用のSO・NMe等が好ましい。
また、デキストラン硫酸又はフコイダンは、公知慣用のものを用いることができる。
In the case of synthesizing a heparin derivative obtained by N-sulfate esterification of an acetyl group-eliminated heparin N-acetyl group, for example, after deacetylating the heparin N-acetyl group with hydrazine or the like, To obtain the desired heparin derivative. As the sulfating agent, known and commonly used SO 3 .NMe 3 and the like are preferable.
Moreover, a well-known and usual thing can be used for dextran sulfate or fucoidan.
ここで、ラジカル重合性基とアミノ基と反応し得る基を有する化合物(I)をグラフト重合反応に供してから、アミノ基を有する化合物(II)又はアンモニアと反応させた後に硫酸化糖を固定化させても良いし、ラジカル重合性基とアミノ基と反応し得る基を有する化合物(I)とアミノ基を有する化合物(II)又はアンモニアを反応させた後に、グラフト重合反応を行い、硫酸化糖を固定化させてもよい。本発明の硫酸化糖とアミノ基を有する化合物(II)との結合は、例えば上記アミド化反応により行うことができる。 Here, the compound (I) having a radical polymerizable group and a group capable of reacting with an amino group is subjected to a graft polymerization reaction, and then reacted with a compound (II) having an amino group or ammonia to fix sulfated sugar. Alternatively, the compound (I) having a group capable of reacting with a radical polymerizable group and an amino group and the compound (II) having an amino group or ammonia are reacted, and then a graft polymerization reaction is carried out, followed by sulfation. Sugar may be immobilized. The coupling | bonding of the sulfated sugar of this invention and the compound (II) which has an amino group can be performed by the said amidation reaction, for example.
本発明で用いられる中空糸の平均孔径は、ウイルスを効率的に除去させうる孔径のものであれば、特に制限はない。ウイルスの捕捉効率を考慮して、捕捉するウイルスの種類により異なり、適宜選択して使用することができるが、例えば、平均流量孔径として50~500nmの範囲であることが好ましい。
 用いられる多孔性中空糸の内径は、ウイルスを効率的に除去させうる内径のものであれば、特に制限はない。内径が大きい場合は、モジュールに入れられる糸の本数が少なくなるため、接触面積が減少してしまうことや線速が劣って被験物質(環境水等)が滞留してしまう恐れがある。一方、内径が小さくなりすぎる場合は、血球成分が詰まりやすくなることが考えられる。それらの点を考慮した場合、内径は150~500μmが好ましく、さらに好ましく160~400μm、さらに好ましくは170~350μmとなる。
The average pore size of the hollow fiber used in the present invention is not particularly limited as long as it has a pore size capable of efficiently removing viruses. Considering the efficiency of capturing the virus, it varies depending on the type of virus to be captured and can be appropriately selected and used. For example, the average flow pore size is preferably in the range of 50 to 500 nm.
The inner diameter of the porous hollow fiber used is not particularly limited as long as it has an inner diameter capable of efficiently removing viruses. When the inner diameter is large, the number of yarns that can be put into the module is reduced, so that the contact area may be reduced, and the test substance (environmental water or the like) may be retained due to inferior linear velocity. On the other hand, if the inner diameter becomes too small, the blood cell component is likely to be clogged. Considering these points, the inner diameter is preferably 150 to 500 μm, more preferably 160 to 400 μm, and further preferably 170 to 350 μm.
 用いられる多孔性中空糸の膜厚は、上記のウイルスを効率的に除去させうる膜厚のものであれば、特に制限はない。好ましい膜厚としては、30~100μm、さらに好ましくは35~80μm、さらに好ましくは40~60μmを挙げることができる。
 また、本発明の中空糸の表面処理に用いられる化合物の固定化量は、ウイルスを効率的に除去させうる量であれば、特に制限はない。ウイルスの捕捉効率を考慮して、捕捉するウイルスの種類により異なり、適宜選択して使用することができるが、好ましい固定化量としては、例えば、ポリオレフィンを基材とする中空糸の場合、1×10-6~1×10-2mol/gである場合を挙げることができる。
The thickness of the porous hollow fiber used is not particularly limited as long as it has a thickness that can efficiently remove the virus. Preferable film thickness is 30 to 100 μm, more preferably 35 to 80 μm, and further preferably 40 to 60 μm.
The amount of the compound used for the surface treatment of the hollow fiber of the present invention is not particularly limited as long as it is an amount capable of efficiently removing viruses. Considering the efficiency of capturing the virus, it varies depending on the type of virus to be captured and can be appropriately selected and used. For example, in the case of a hollow fiber based on polyolefin, 1 × The case of 10 −6 to 1 × 10 −2 mol / g can be mentioned.
 また、本発明の中空糸の表面処理に用いられる化合物の水蒸気吸着量は、ウイルスを効率的に除去させうる量であれば、特に制限はない。ウイルスの捕捉効率を考慮して、捕捉するウイルスの種類により異なり、適宜選択して使用することができるが、好ましい水蒸気吸着量は、1~100mL/gの場合を挙げることができる。ここで、水蒸気吸着量は、公知慣用の方法で測定することができる。 The water vapor adsorption amount of the compound used for the surface treatment of the hollow fiber of the present invention is not particularly limited as long as it is an amount capable of efficiently removing viruses. Considering the efficiency of capturing the virus, it varies depending on the type of virus to be captured and can be appropriately selected and used, but a preferable water vapor adsorption amount is 1 to 100 mL / g. Here, the water vapor adsorption amount can be measured by a publicly known and commonly used method.
 以下にその一例を示す。
粉砕した中空糸試料50mgを精秤し、試験管内に入れ室温で5時間減圧乾燥させた。その後ガス吸着量測定装置(BELSORP-max、日本ベル(株)製)を用いて、水蒸気分子をプローブとした吸着等温線を測定を行い、相対圧0.5における水蒸気吸着量を比較することで試料の親水性を評価した。
An example is shown below.
50 mg of the pulverized hollow fiber sample was precisely weighed and placed in a test tube and dried under reduced pressure at room temperature for 5 hours. Then, using a gas adsorption amount measuring device (BELSORP-max, manufactured by Nippon Bell Co., Ltd.), the adsorption isotherm using a water vapor molecule as a probe is measured, and the water vapor adsorption amount at a relative pressure of 0.5 is compared. The hydrophilicity of the sample was evaluated.
・捕捉されたウイルスの回収
 本発明では、中空糸に捕捉されたウイルスを回収し、その量を算定して、もとのウイルスを含む液中に含まれるウイルスの量を評価することに特徴を有する。
-Recovery of trapped virus The present invention is characterized in that the virus trapped in the hollow fiber is recovered, the amount is calculated, and the amount of virus contained in the liquid containing the original virus is evaluated. Have.
 ウイルスを回収する方法は、効率よくウイルスを回収することのできる方法であれば、特に制限はないが、フェノール水溶液、アルカリ性水溶液、無機塩水溶液(無機塩の水溶液)で、中空糸を洗浄する方法が、特に好ましい。 The method for recovering the virus is not particularly limited as long as it can recover the virus efficiently, but the hollow fiber is washed with a phenol aqueous solution, an alkaline aqueous solution, or an inorganic salt aqueous solution (inorganic salt aqueous solution). Is particularly preferred.
 フェノール水溶液は、フェノールと水の混合溶液であり、該溶液中に含まれるフェノールの含有量は適宜調整して使用することができるが、フェノール/水=4/1~2/3(質量換算)を好ましい質量比として挙げることができる。 The aqueous phenol solution is a mixed solution of phenol and water, and the content of phenol contained in the solution can be appropriately adjusted and used, but phenol / water = 4/1 to 2/3 (mass conversion) Can be mentioned as a preferred mass ratio.
 また、アルカリ性水溶液は、アルカリ性を呈する水溶液であれば、制限なく使用することが可能であるが、ウイルスの回収率が良好であることから、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の水溶液、炭酸ナトリウム、炭酸水素ナトリウム等の炭酸塩類等を挙げることができる。無機塩水溶液は、塩化ナトリウム水溶液を挙げることができる。 In addition, the alkaline aqueous solution can be used without limitation as long as it is an alkaline aqueous solution. However, since the virus recovery rate is good, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used. And carbonates such as sodium carbonate and sodium hydrogen carbonate. Examples of the inorganic salt aqueous solution include a sodium chloride aqueous solution.
 ウイルスを回収する方法は、前記フェノール水溶液、アルカリ性水溶液、ビーフエキス等有機高分子水溶液、又は無機塩水溶液を単独で、或いは併用して、ウイルスが捕捉された中空糸を洗浄することにより行うことができる。洗浄方法は、中空糸からウイルスを溶出できる方法であれば特に制限されるものではないが、好ましくは、中空糸の浸漬や中空糸モジュール中であれば通液により行うことができる。 The method for recovering the virus can be carried out by washing the hollow fiber in which the virus is trapped, either alone or in combination with an aqueous organic polymer solution such as phenol aqueous solution, alkaline aqueous solution, beef extract, or inorganic salt aqueous solution. . The washing method is not particularly limited as long as the virus can be eluted from the hollow fiber. Preferably, the washing method can be carried out by immersion of the hollow fiber or by passing the solution in a hollow fiber module.
以下、本発明のキット及び評価方法について説明する。
・キットの形態
本発明の中空糸を備えてなる評価キットの形態としては、前記用途に適用可能な形状であれば特に限定されるものではないが、例えば中空糸モジュールが挙げられる。中空糸モジュールにおいて、容器の形状及び材質は特に限定されず、使用するウイルスを含む液の量や性状にあわせて都合のよい大きさ、形状、材質とすればよい。
Hereinafter, the kit and the evaluation method of the present invention will be described.
-Kit form The form of the evaluation kit comprising the hollow fiber of the present invention is not particularly limited as long as it is a shape applicable to the above-mentioned use, and examples thereof include a hollow fiber module. In the hollow fiber module, the shape and material of the container are not particularly limited, and may be any convenient size, shape, and material according to the amount and properties of the liquid containing the virus to be used.
・評価対象ウイルス
本発明で対象とするウイルスは、本発明の中空糸で捕捉が可能なウイルスである。このようなウイルスとしては、例えばA型肝炎ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、E型肝炎ウイルス、アデノウイルス、エンテロウイルス、ノロウイルス、インフルエンザウイルス、ヒト免疫不全ウイルス、ロタウイルス、又はポリオウイルス等を挙げることができる。
-Virus to be evaluated The virus targeted by the present invention is a virus that can be captured by the hollow fiber of the present invention. Examples of such viruses include hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis E virus, adenovirus, enterovirus, norovirus, influenza virus, human immunodeficiency virus, rotavirus, and poliovirus. Can be mentioned.
・評価対象液
本発明で対象とするウイルスを含む液は、例えば、ウイルスを含み得る環境水、ヒトの体内液体成分である体液、ウイルスを含んだ培養液、生活用水等を挙げることができる。体液のより具体的な例としては、血液、唾液、汗、尿、鼻水、精液、血漿、リンパ液、組織液等を挙げることができる。環境水の具体的な例としては、河川水、湖沼水、地下水、海水等が挙げられる。生活用水としては、水道水、井戸水、温泉、プール水等が挙げられる。
-Evaluation target liquid Examples of the liquid containing virus targeted in the present invention include environmental water that can contain virus, body fluid that is a human body fluid component, culture liquid containing virus, and water for daily use. More specific examples of body fluids include blood, saliva, sweat, urine, runny nose, semen, plasma, lymph, tissue fluid and the like. Specific examples of environmental water include river water, lake water, groundwater, seawater, and the like. Examples of water for daily use include tap water, well water, hot springs, and pool water.
・評価方法
 本発明のウイルス濃度の評価は、「ウイルスを含む液の採取」→「ウイルスの捕捉」→(「ウイルスの遊離」→「不要物の除去」→)「ウイルス量の算出」の各工程を経て行う。
ウイルスの捕捉は、表面処理した中空糸にウイルスを含む液を通じることにより、又は接触させることにより行うことができる。該工程において、中空糸として非濾過型中空糸用いたり、通液又は接触させる際の圧力を低く抑えることにより目詰まりを軽減することができる。
ウイルスを捕捉した後、ウイルス量を算出するに先立ち、ウイルスを中空糸から遊離させる工程を加えてもよい。遊離工程の手法としては、例えば塩、酸、アルカリ、あるいは界面活性剤等で処理する方法が挙げられる。更にその後、遊離工程で加えた物質を除去する工程を追加してもよい。
Evaluation method The concentration of the virus of the present invention is evaluated by each of the following: “collecting a solution containing virus” → “capturing virus” → (“freeing virus” → “removing unwanted substances” →) “calculating the amount of virus” It goes through the process.
The virus can be captured by passing a solution containing the virus through the surface-treated hollow fiber or by bringing it into contact. In this step, clogging can be reduced by using a non-filtration-type hollow fiber as the hollow fiber, or by suppressing the pressure at the time of liquid passing or contacting.
After capturing the virus, a step of releasing the virus from the hollow fiber may be added prior to calculating the amount of virus. Examples of the releasing step include a method of treating with a salt, acid, alkali, surfactant or the like. Further, a step of removing the substance added in the release step may be added thereafter.
ウイルス量を算出する方法は、上記ウイルスの検出が可能な方法であれば特に制限はないが、好ましい方法として、ポリメラーゼ連鎖反応(PCR)法、抗原抗体反応法(エンベロープタンパク質検出法、コアタンパク質検出法)、培養法等を挙げることができる。これらのうち、PCR法は核酸を増幅するための原理またはそれを用いた手法で、次の様な優れた特徴を有する。
1)非常に長大な核酸分子の中から、自分の望んだ特定の核酸断片(数十から数千塩基対)だけを選択的に増幅させることができ、且つ微量な核酸溶液で目的を達成できる。
2)増幅に要する時間が2時間程度と短い。
3)プロセスが単純で、全自動の卓上用装置で増幅できる。
The method for calculating the amount of virus is not particularly limited as long as it is a method capable of detecting the above virus. Preferred methods include polymerase chain reaction (PCR) method, antigen-antibody reaction method (envelope protein detection method, core protein detection). Method), culture methods and the like. Among these, the PCR method is a principle for amplifying a nucleic acid or a technique using the same, and has the following excellent features.
1) It is possible to selectively amplify only a specific nucleic acid fragment (several tens to thousands of base pairs) desired from a very long nucleic acid molecule and achieve the object with a very small amount of nucleic acid solution. .
2) The time required for amplification is as short as about 2 hours.
3) The process is simple and can be amplified by a fully automatic desktop device.
より具体的には、ウイルスを含む液(A液)から、一定量の液(B液)を採取し、下記実施例に示す方法にて、B液中のウイルスを捕捉し、捕捉率(X%)を算出する。その後、捕捉したウイルスを下記実施例で示す方法で、回収を行い、回収率(Y%)を算出する。
さらに、A液中のウイルスの濃度(例えば、ウイルスコピー数/L)を算出するには、例えば以下の式を用いて計算を行えばよい。
ここで、希釈倍率は、A液からB液を作製する場合の、希釈倍率を示す。

A液中のウイルスの濃度(個/L)=算出したB液中のウイルスコピー数(個/L)/{回収率(%)×捕捉率(%)}×希釈倍率

ここで、ウイルスコピー数とはPCR法にて測定・算出される検体中のウイルス量を表す。
More specifically, a certain amount of liquid (liquid B) is collected from the virus-containing liquid (liquid A), and the virus in the liquid B is captured by the method shown in the examples below, and the capture rate (X %). Thereafter, the captured virus is collected by the method shown in the following examples, and the recovery rate (Y%) is calculated.
Furthermore, in order to calculate the concentration of virus in the solution A (for example, virus copy number / L), for example, calculation may be performed using the following equation.
Here, the dilution rate indicates the dilution rate when the B solution is prepared from the A solution.

Virus concentration in solution A (number / L) = calculated number of virus copies in solution B (number / L) / {recovery rate (%) × capture rate (%)} × dilution rate

Here, the virus copy number represents the amount of virus in the specimen measured and calculated by the PCR method.
以下の実施例により本発明を更に詳細に説明する。 The following examples illustrate the invention in more detail.
(調製例1)<ヘパリン表面処理中空糸モジュールの作製>
 試験管にアセトン20mL、エピクロロヒドリン16mL、40%NaOH水溶液4mLを入れ、そこへエチレン・ビニルアルコール共重合体(以下、EVOHとする)によって親水化処理された濾過型中空糸(約13cm、約150本、351mg)を浸漬した。超音波をかけながら、30~40℃で5時間反応させた。反応終了後、アセトンと水で洗浄し、真空乾燥してエポキシ基が導入された中空糸を得た(354mg)。
(Preparation Example 1) <Production of heparin surface-treated hollow fiber module>
A test tube containing 20 mL of acetone, 16 mL of epichlorohydrin, and 4 mL of 40% NaOH aqueous solution, and a filtration-type hollow fiber (about 13 cm, hydrophilized with ethylene / vinyl alcohol copolymer (hereinafter referred to as EVOH) therein. About 150 pieces (351 mg) were immersed. The reaction was carried out at 30 to 40 ° C. for 5 hours while applying ultrasonic waves. After completion of the reaction, the reaction product was washed with acetone and water and vacuum dried to obtain a hollow fiber having an epoxy group introduced (354 mg).
 28%アンモニア水にエポキシ基を導入した中空糸を浸漬し、40℃で2時間反応させた。反応終了後は水で洗浄し、1級アミノ基が導入された中空糸を得た。 A hollow fiber having an epoxy group introduced into 28% ammonia water was immersed and reacted at 40 ° C. for 2 hours. After completion of the reaction, it was washed with water to obtain a hollow fiber having a primary amino group introduced.
 試験管にヘパリン150mgとシアノ水素化ホウ素ナトリウム20mgを入れ、PBS30mLに溶解し、前記中空糸を浸漬して、40℃で3日間反応させた。反応終了後、水で洗浄した。該中空糸に0.2M AcONa水溶液26mLを加え、氷冷しながら無水酢酸13mLをゆっくり滴下した。続いて氷冷下、超音波で30分反応させた。更に、室温に戻しながら30分間反応させた。反応終了後、20%NaCl、0.1M NaHCO水溶液、水、PBSで洗浄し、ヘパリン表面処理中空糸を得た。 Heparin 150 mg and sodium cyanoborohydride 20 mg were put into a test tube, dissolved in 30 mL of PBS, the hollow fiber was immersed and reacted at 40 ° C. for 3 days. After completion of the reaction, it was washed with water. 26 mL of 0.2 M AcONa aqueous solution was added to the hollow fiber, and 13 mL of acetic anhydride was slowly added dropwise while cooling with ice. Then, it was made to react with an ultrasonic wave for 30 minutes under ice cooling. Furthermore, it was made to react for 30 minutes, returning to room temperature. After completion of the reaction, the mixture was washed with 20% NaCl, 0.1 M NaHCO 3 aqueous solution, water, and PBS to obtain a heparin surface-treated hollow fiber.
 該ヘパリン表面処理中空糸(13cm×3本)を用いて、少量サンプル用モジュール(内径3mm、外径5mm、長さ7.4mm)を作製した。 Using this heparin surface-treated hollow fiber (13 cm × 3), a small sample module (inner diameter 3 mm, outer diameter 5 mm, length 7.4 mm) was produced.
(実施例1)<B型肝炎ウイルス様粒子の捕捉>
 B型肝炎ウイルス様粒子(B型肝炎ウイルス表面抗原HBsAg-XT、株式会社ビークル製)を0.1ng/mLの濃度で含む0.002%BSA-PBS 80mLを調製例2で作製した少量サンプル用モジュールに通液し、濾液画分42mLと素通り画分38mLを回収した。各画分のB型肝炎ウイルス様粒子濃度をマイクロウェルELISA HBsAg B型肝炎表面抗原用(HOPE研究所製)を使用し測定した。その結果、モジュール内の中空糸に57%のB型肝炎ウイルス様粒子が捕捉されていることが確認された。
(Example 1) <Capture of hepatitis B virus-like particles>
For a small sample prepared in Preparation Example 2 with 80 mL of 0.002% BSA-PBS containing hepatitis B virus-like particles (hepatitis B virus surface antigen HBsAg-XT, manufactured by Vehicle Co., Ltd.) at a concentration of 0.1 ng / mL The solution was passed through the module, and a filtrate fraction of 42 mL and a flow-through fraction of 38 mL were collected. The hepatitis B virus-like particle concentration of each fraction was measured using a microwell ELISA HBsAg for hepatitis B surface antigen (manufactured by HOPE Laboratory). As a result, it was confirmed that 57% of hepatitis B virus-like particles were trapped in the hollow fiber in the module.
(調製例2)<ポリアクリル酸表面処理中空糸モジュールの作製>
 アクリル酸モノマー1gを水100gに溶解して1質量%水溶液とし、撹拌しながら減圧することで水溶液中の溶存酸素を除去した。
(Preparation Example 2) <Production of polyacrylic acid surface-treated hollow fiber module>
1 g of acrylic acid monomer was dissolved in 100 g of water to make a 1% by mass aqueous solution, and the dissolved oxygen in the aqueous solution was removed by reducing the pressure while stirring.
 一方、ポリ-4-メチルペンテン(以下PMPとする)製の非濾過型中空糸束(中空糸表面積:200cm、DIC(株)製)をガラス製試験管に入れ、ゴム栓にて密閉し、試験管内部を窒素置換した。その後、RDI社製の電子線照射装置「ダイナミトロン5MeV―150kW」にて4.8MeVの加速エネルギーで90kGyの電子線を照射した。 On the other hand, an unfiltered hollow fiber bundle (hollow fiber surface area: 200 cm 2 , manufactured by DIC Corporation) made of poly-4-methylpentene (hereinafter referred to as PMP) is placed in a glass test tube and sealed with a rubber stopper. The inside of the test tube was replaced with nitrogen. Thereafter, an electron beam of 90 kGy was irradiated at an acceleration energy of 4.8 MeV with an electron beam irradiation apparatus “DYNAMITRON 5 MeV-150 kW” manufactured by RDI.
 次に、電子線を照射した中空糸束入り試験管内を真空にし、23℃条件下、脱酸素したアクリル酸モノマー水溶液を加えてグラフト重合を開始した。4時間静置後、中空糸束を取り出し、未反応のモノマー等がGPC測定で検出限界(1μg/mL)以下になるまで水洗を繰り返した後、真空乾燥した。得られたポリアクリル酸表面処理中空糸におけるポリアクリル酸の結合量は25mg、結合密度(モノマー換算)は1.7×10-6mol/cm(1.0×10-3mol/g)であった。 Next, the inside of the test tube containing the hollow fiber bundle irradiated with the electron beam was evacuated, and the deoxygenated acrylic acid monomer aqueous solution was added under 23 ° C. to start graft polymerization. After standing for 4 hours, the hollow fiber bundle was taken out, washed repeatedly with water until unreacted monomers and the like were below the detection limit (1 μg / mL) by GPC measurement, and then dried in vacuo. In the obtained polyacrylic acid surface-treated hollow fiber, the amount of polyacrylic acid bonded is 25 mg, and the bond density (in terms of monomer) is 1.7 × 10 −6 mol / cm 2 (1.0 × 10 −3 mol / g). Met.
(調製例3)<ポリエチレンイミン表面処理中空糸モジュールの作製>
PMP製の中空糸束(中空糸表面積:200cm、DIC(株)製)をガラス製試験管に入れ、ゴム栓にて密閉し、試験管内部を窒素置換してから、RDI社製の電子線照射装置「ダイナミトロン5MeV―150kW」にて4.8MeVの加速エネルギーで90kGyの電子線を照射した。
(Preparation Example 3) <Preparation of polyethyleneimine surface-treated hollow fiber module>
Hollow fiber bundle made of PMP (hollow fiber surface area: 200 cm 2, DIC (Ltd.)) was placed in a glass test tube, sealed with a rubber stopper, the interior tube after nitrogen substitution, RDI Co. Electronic The electron beam of 90 kGy was irradiated with the acceleration energy of 4.8 MeV with the line irradiation apparatus "Dynamitron 5MeV-150kW".
次に、脱酸素した50mg/mLのグリシジルメタクリレート(以下、GMAとする)メタノール溶液を前記試験管に注入し、23℃で所定時間静置して反応させた。中空糸束を取り出し、メタノールで洗浄、真空乾燥してポリGMA表面処理中空糸を得た。中空糸の重量増加から算出したポリGMAの導入量は中空糸1cmあたり0.190mgであった。
該ポリGMA表面処理中空糸を、30質量%のポリエチレンイミン(分子量600、和光純薬製)アセトニトリル溶液に浸漬し、60℃で3時間加熱後、メタノールで洗浄、真空乾燥し、表面処理中空糸を得た。ポリエチレンイミンの導入量は、中空糸1cmあたり8.58μg(8.5×10-6mol/g)であった。
Next, a deoxygenated 50 mg / mL glycidyl methacrylate (hereinafter referred to as GMA) methanol solution was poured into the test tube, and allowed to react at 23 ° C. for a predetermined time. The hollow fiber bundle was taken out, washed with methanol, and vacuum dried to obtain a polyGMA surface-treated hollow fiber. The amount of polyGMA introduced calculated from the weight increase of the hollow fiber was 0.190 mg per 1 cm 2 of the hollow fiber.
The poly-GMA surface-treated hollow fiber is immersed in a 30% by mass polyethyleneimine (molecular weight 600, manufactured by Wako Pure Chemical Industries) acetonitrile solution, heated at 60 ° C. for 3 hours, washed with methanol, and vacuum-dried, and the surface-treated hollow fiber Got. The amount of polyethyleneimine introduced was 8.58 μg (8.5 × 10 −6 mol / g) per 1 cm 2 of hollow fiber.
(調製例4)<ポリエチレンイミン(分子量600)表面処理中空糸の作製>
 一方、PMP製の中空糸束(中空糸表面積:200cm、DIC(株)製)をガラス製試験管に入れ、ゴム栓にて密閉し、試験管内部を窒素置換した。その後、ドライアイスにて冷却しながら4.8MeVの加速エネルギーで90kGyの電子線を照射した。
(Preparation Example 4) <Production of polyethyleneimine (molecular weight 600) surface-treated hollow fiber>
On the other hand, a hollow fiber bundle made of PMP (hollow fiber surface area: 200 cm 2 , manufactured by DIC Corporation) was placed in a glass test tube, sealed with a rubber stopper, and the inside of the test tube was purged with nitrogen. Thereafter, an electron beam of 90 kGy was irradiated with an acceleration energy of 4.8 MeV while cooling with dry ice.
 次に、電子線を照射した中空糸束入り試験管内を真空にし、23℃条件下、脱酸素した50mg/mLのGMA/メタノール溶液を前記試験管に加えてグラフト重合を開始した。3時間静置後、中空糸束を取り出し、酢酸エチル及びメタノールにて洗浄、真空乾燥してポリGMA表面処理中空糸を得た。中空糸の重量増加から算出したポリGMAの導入量は中空糸1cmあたり約4.0mg(1.7×10-2mol/g)であった。 Next, the inside of the hollow fiber bundle test tube irradiated with the electron beam was evacuated, and deoxygenated 50 mg / mL GMA / methanol solution was added to the test tube at 23 ° C. to start graft polymerization. After standing for 3 hours, the hollow fiber bundle was taken out, washed with ethyl acetate and methanol, and vacuum dried to obtain a polyGMA surface-treated hollow fiber. The amount of polyGMA introduced from the increase in the weight of the hollow fiber was about 4.0 mg (1.7 × 10 −2 mol / g) per 1 cm 2 of the hollow fiber.
該ポリGMA表面処理中空糸を、30質量%のポリエチレンイミン(分子量600、和光純薬製)アセトニトリル溶液に浸漬し、60℃で3時間加熱後、メタノール及びアセトニトリルにて洗浄、真空乾燥し、ポリエチレンイミン表面処理中空糸を得た。ポリエチレンイミンの導入量は、中空糸1cmあたり約1.0mg(1.0×10-3mol/g)であった。 The polyGMA surface-treated hollow fiber was immersed in a 30% by mass polyethyleneimine (molecular weight 600, manufactured by Wako Pure Chemical Industries) acetonitrile solution, heated at 60 ° C. for 3 hours, washed with methanol and acetonitrile, and vacuum-dried. An imine surface-treated hollow fiber was obtained. The amount of polyethyleneimine introduced was about 1.0 mg (1.0 × 10 −3 mol / g) per 1 cm 2 of hollow fiber.
(実施例2)<ポリエチレンイミン(分子量600)表面処理中空糸のHEV捕捉>
 ブタ肝臓由来E型肝炎ウイルス(以下HEVとする)を、DMEM(和光純薬製)と199培地(ライフテクノロジーズ製)を1:1に混合しウシ胎児血清2%を添加した培地にて、PLC/PRF/5(ヒト肝癌由来細胞)細胞に感染、増殖させたHEV培養液を調製した。リアルタイム逆転写PCR(以下、リアルタイムRT-PCRとする)測定した結果、培養液中のHEVは2×10コピー数/μLであった。
(Example 2) <Polyethyleneimine (molecular weight 600) HEV capture of surface-treated hollow fiber>
Porcine liver-derived hepatitis E virus (hereinafter referred to as HEV) was mixed with DMEM (manufactured by Wako Pure Chemical Industries, Ltd.) and 199 medium (manufactured by Life Technologies) in 1: 1, and the medium was supplemented with 2% fetal calf serum. / PRF / 5 (human hepatoma-derived cells) HEV culture solution infected with cells and proliferated was prepared. As a result of measuring real-time reverse transcription PCR (hereinafter referred to as real-time RT-PCR), HEV in the culture solution was 2 × 10 5 copies / μL.
調製例4にて作製した中空糸5cmを切り出し、PBS(-)1mLに16時間浸漬後、更にPBS(-)にて2回洗浄して試験に供した。これを1.5mL容量マイクロチューブに移し、希釈した前記ウイルス液1mLを加えて室温にて1時間往復振盪した。その後上清を回収し、上清中のHEV-RNAをISOGEN(株式会社ニッポンジーン製、40%フェノール水溶液)で抽出し、クロロホルム及びイソプロパノールにて単離した。単離したHEV-RNAをリアルタイムRT-PCRにて測定した。その結果、中空糸に74%のHEVが捕捉されていることが確認された。 The hollow fiber 5 cm 2 produced in Preparation Example 4 was cut out, immersed in 1 mL of PBS (−) for 16 hours, further washed twice with PBS (−), and used for the test. This was transferred to a 1.5 mL capacity microtube, 1 mL of the diluted virus solution was added, and the mixture was shaken back and forth at room temperature for 1 hour. Thereafter, the supernatant was recovered, and HEV-RNA in the supernatant was extracted with ISOGEN (manufactured by Nippon Gene Co., Ltd., 40% phenol aqueous solution) and isolated with chloroform and isopropanol. Isolated HEV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 74% HEV was trapped in the hollow fiber.
更に、該中空糸を回収しPBS(-)にて3回洗浄した後、中空糸から直接HEV-RNAをISOGEN、クロロホルム及びイソプロパノールにて単離した。単離したHEV-RNAをリアルタイムRT-PCRにて測定した。その結果、捕捉されたHEVの42%が回収された事を確認した。 Further, the hollow fiber was recovered and washed three times with PBS (−), and then HEV-RNA was isolated directly from the hollow fiber with ISOGEN, chloroform and isopropanol. Isolated HEV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 42% of the captured HEV was recovered.
(実施例3)<ポリエチレンイミン(分子量1,800)表面処理中空糸の作製>
調製例4と同様の操作により、ポリGMA表面処理中空糸を得た。その後ポリエチレンイミン(分子量1,800、和光純薬製)を用いて調製例4と同様の操作にてポリエチレンイミン表面処理中空糸を得た。ポリエチレンイミンの導入量は、中空糸1cmあたり約0.9mg(2.9×10-4mol/g)であった。該中空糸を実施例2と同様にHEV捕捉試験に供した。その結果、中空糸に76%のHEVが捕捉されていることが確認された。実施例2と同様に捕捉されたウイルスを回収・単離した。(回収率:22%)
(Example 3) <Production of polyethyleneimine (molecular weight 1,800) surface-treated hollow fiber>
In the same manner as in Preparation Example 4, a polyGMA surface-treated hollow fiber was obtained. Thereafter, a polyethyleneimine surface-treated hollow fiber was obtained in the same manner as in Preparation Example 4 using polyethyleneimine (molecular weight 1,800, manufactured by Wako Pure Chemical Industries, Ltd.). Introduction amount of polyethyleneimine was hollow fiber 1 cm 2 per about 0.9mg (2.9 × 10 -4 mol / g). The hollow fiber was subjected to the HEV capture test in the same manner as in Example 2. As a result, it was confirmed that 76% HEV was trapped in the hollow fiber. The trapped virus was recovered and isolated in the same manner as in Example 2. (Recovery rate: 22%)
(実施例4)<アクリル酸表面処理中空糸のHEV捕捉>
調製例2で作製したアクリル酸表面中空糸を実施例2と同様にHEV捕捉試験に供した。その結果、中空糸に30%のHEVが捕捉されていることが確認された。
(Example 4) <HEV capture of acrylic acid surface-treated hollow fiber>
The acrylic acid surface hollow fiber produced in Preparation Example 2 was subjected to the HEV capture test in the same manner as in Example 2. As a result, it was confirmed that 30% HEV was trapped in the hollow fiber.
(調製例5)<ポリエチレンイミン(分子量 1,800)固定化中空糸の作製>
特開平2-029260に従い、試験管にアセトン26mL、エピクロロヒドリン21mL、40%NaOH水溶液5mLを入れ、そこへ内径287μm、膜厚52μm、平均孔径102nmのEVOH親水化処理ポリエチレン製多孔性中空糸を浸漬した。超音波をかけながら、30~40℃で5時間反応させた。反応終了後、アセトンと水で洗浄し、エポキシ基が導入された中空糸を得た。導入されたエポキシ基量は、Na溶液を用い、NaOHで滴定を行った結果、約0.01μmol/cm(4.8×10-6mol/g)導入されている事が確認された。
(Preparation Example 5) <Production of polyethyleneimine (molecular weight 1,800) immobilized hollow fiber>
According to JP-A-2-0259260, 26 mL of acetone, 21 mL of epichlorohydrin, and 5 mL of 40% NaOH aqueous solution are put into a test tube, and into this, an EVOH hydrophilized polyethylene porous hollow fiber having an inner diameter of 287 μm, a film thickness of 52 μm, and an average pore diameter of 102 nm Soaked. The reaction was carried out at 30 to 40 ° C. for 5 hours while applying ultrasonic waves. After completion of the reaction, the reaction product was washed with acetone and water to obtain a hollow fiber having an epoxy group introduced therein. The amount of epoxy groups introduced was about 0.01 μmol / cm 2 (4.8 × 10 −6 mol / g) as a result of titration with NaOH using a Na 2 S 2 O 3 solution. Was confirmed.
 次に、3.2質量%ポリエチレンイミン(分子量 1,800 和光純薬製)水溶液にエポキシ基を導入した中空糸を浸漬し、40℃で3日間反応させた。反応終了後は水で洗浄し、ポリエチレンイミンが導入された中空糸を得た。固定化量を測定したところ、約27μg/cm(7.1×10-6mol/g)導入されていることが確認された。 Next, the hollow fiber which introduce | transduced the epoxy group was immersed in the 3.2 mass% polyethyleneimine (molecular weight 1,800 Wako Purechemical make) aqueous solution, and it was made to react at 40 degreeC for 3 days. After completion of the reaction, it was washed with water to obtain a hollow fiber introduced with polyethyleneimine. When the amount immobilized was measured, it was confirmed that about 27 μg / cm 2 (7.1 × 10 −6 mol / g) was introduced.
(実施例5)<ポリエチレンイミン(分子量 1,800)のHEV捕捉・回収試験>
上記で作製した中空糸を実施例1と同様にHEV捕捉試験に供した。その結果、中空糸に95%のHEVが捕捉されていることが確認された。
(Example 5) <HEV capture and recovery test of polyethyleneimine (molecular weight 1,800)>
The hollow fiber produced above was subjected to the HEV capture test in the same manner as in Example 1. As a result, it was confirmed that 95% HEV was trapped in the hollow fiber.
次に、中空糸を回収し、PBS(-)にて3回洗浄し、10mM NaOH水溶液に浸漬して上清を回収、100mM HCl水溶液を1/10量加えて中和し、HEV-RNAを単離・リアルタイムRT-PCRにて測定した。その結果、捕捉された中空糸よりHEVを100%回収できることが分かった。
次に、一定量の液(B液)に相当する本実施例で用いた液中に含まれるウイルスの濃度は、6.84×10コピー数/mL×100/95=7.2×10コピー数/mLと算出された。更にウイルス液(A液)からB液採取時の希釈倍率は2.8倍であったことから、本実施例で用いたウイルス液(A液)中に含まれるウイルス濃度は7.2×10コピー数/mL×2.8=2.0×10コピー数/mLであると算出された。
Next, the hollow fiber is recovered, washed three times with PBS (−), immersed in a 10 mM NaOH aqueous solution to recover the supernatant, neutralized by adding 1/10 volume of 100 mM HCl aqueous solution, and HEV-RNA is recovered. It was measured by isolation and real-time RT-PCR. As a result, it was found that HEV could be recovered 100% from the captured hollow fiber.
Next, the concentration of virus contained in the liquid used in this embodiment, which corresponds to a certain amount of liquid (B liquid), 6.84 × 10 7 copies number /mL×100/95=7.2×10 Calculated as 7 copies / mL. Furthermore, since the dilution rate at the time of collecting B liquid from the virus liquid (A liquid) was 2.8 times, the virus concentration contained in the virus liquid (A liquid) used in this example was 7.2 × 10. It was calculated that 7 copies / mL × 2.8 = 2.0 × 10 8 copies / mL.
(実施例6)
<ポリエチレンイミン(分子量 10,000)固定化中空糸のHEV捕捉・回収試験>
 ポリエチレンイミン(分子量 10,000 和光純薬製)を用いた以外は、実施例4と同様の操作を行い、ポリエチレンイミン(分子量10,000)が導入された中空糸を得た。固定化量を測定したところ、約67μg/cm(3.2×10-6mol/g)導入されていることが分かった。
(Example 6)
<HEV capture / recovery test of polyethyleneimine (molecular weight 10,000) immobilized hollow fiber>
Except for using polyethyleneimine (molecular weight 10,000, manufactured by Wako Pure Chemical Industries, Ltd.), the same operation as in Example 4 was performed to obtain a hollow fiber into which polyethyleneimine (molecular weight 10,000) was introduced. When the immobilized amount was measured, it was found that about 67 μg / cm 2 (3.2 × 10 −6 mol / g) was introduced.
上記で作製した中空糸を調製例3と同様にHEV捕捉試験に供した。その結果、中空糸に96%のHEVが捕捉されていることが確認された。 The hollow fiber produced above was subjected to the HEV capture test in the same manner as in Preparation Example 3. As a result, it was confirmed that 96% HEV was trapped in the hollow fiber.
次に、中空糸を回収し、PBS(-)にて3回洗浄し、10mM NaOH水溶液に浸漬して上清を回収、100mM HCl水溶液を1/10量加えて中和し、ISOGENを用いてHEV-RNAを単離・リアルタイムRT-PCRにて測定した。その結果、捕捉された中空糸よりHEVを12%回収できることが分かった。 Next, the hollow fiber is recovered, washed three times with PBS (−), immersed in a 10 mM NaOH aqueous solution to recover the supernatant, neutralized by adding 1/10 volume of 100 mM HCl aqueous solution, and using ISOGEN. HEV-RNA was isolated and measured by real-time RT-PCR. As a result, it was found that 12% of HEV could be recovered from the captured hollow fiber.
次に、一定量の液(B液)に相当する本実施例で用いた液中に含まれるウイルスの濃度は、8.23×10コピー数/mL/(0.96×0.12)=7.2×10コピー数/mLと算出された。更にウイルス液(A液)からB液採取時の希釈倍率は2.8倍であったことから、本実施例で用いたウイルス液(A液)中に含まれるウイルス濃度は7.2×10コピー数/mL×2.8=2.0×10コピー数/mLであると算出された。 Next, a certain amount of liquid concentrations of virus contained in the liquid used in this embodiment corresponding to (B solution), 8.23 × 10 7 copies number /ML/(0.96×0.12) = 7.2 × 10 7 copies / mL. Furthermore, since the dilution rate at the time of collecting B liquid from the virus liquid (A liquid) was 2.8 times, the virus concentration contained in the virus liquid (A liquid) used in this example was 7.2 × 10. It was calculated that 7 copies / mL × 2.8 = 2.0 × 10 8 copies / mL.
更に、上記中空糸をPBS(-)にて3回洗浄し、中空糸から直接HEV-RNAをISOGEN、クロロホルム及びイソプロパノールにて単離した。単離したHEV-RNAをリアルタイムRT-PCRにて測定した。その結果、捕捉されたHEVの88%が回収された事を確認した。
次に、一定量の液(B液)に相当する本実施例で用いた液中に含まれるウイルスの濃度は、6.08×10コピー数/mL/(0.96×0.88)=7.2×10コピー数/mLと算出された。更にウイルス液(A液)からB液採取時の希釈倍率は2.8倍であったことから、本実施例で用いたウイルス液(A液)中に含まれるウイルス濃度は7.2×10コピー数/mL×2.8=2.0×10コピー数/mLであると算出された。
Further, the hollow fiber was washed three times with PBS (−), and HEV-RNA was isolated directly from the hollow fiber with ISOGEN, chloroform and isopropanol. Isolated HEV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 88% of the captured HEV was recovered.
Next, the concentration of the virus contained in the liquid used in this example corresponding to a certain amount of liquid (B liquid) was 6.08 × 10 7 copies / mL / (0.96 × 0.88). = 7.2 × 10 7 copies / mL. Furthermore, since the dilution rate at the time of collecting B liquid from the virus liquid (A liquid) was 2.8 times, the virus concentration contained in the virus liquid (A liquid) used in this example was 7.2 × 10. 7 was calculated to be copy number /ML×2.8=2.0×10 8 copy number / mL.
(実施例7)
<フェニルアラニン固定化中空糸のHEV捕捉・溶出・回収試験>
ポリエチレンイミンの代わりに3.0質量%フェニルアラニン/0.1M炭酸ナトリウム水溶液を用いた以外は、調製例5と同様の操作を行い、フェニルアラニンが導入された中空糸を得た。固定化量を測定したところ、約7μg/cm(1.1×10-5mol/g)導入されていることが分かった。該中空糸を実施例2と同様にHEV捕捉試験に供した。その結果、中空糸に41%のHEVが捕捉されていることが確認された。実施例2と同様に捕捉されたウイルスを回収・単離した。(回収率:13%)
(Example 7)
<HEV capture, elution, and recovery test of phenylalanine-immobilized hollow fiber>
A hollow fiber into which phenylalanine was introduced was obtained in the same manner as in Preparation Example 5 except that 3.0 mass% phenylalanine / 0.1 M sodium carbonate aqueous solution was used instead of polyethyleneimine. When the amount of immobilization was measured, it was found that about 7 μg / cm 2 (1.1 × 10 −5 mol / g) was introduced. The hollow fiber was subjected to the HEV capture test in the same manner as in Example 2. As a result, it was confirmed that 41% of HEV was captured by the hollow fiber. The trapped virus was recovered and isolated in the same manner as in Example 2. (Recovery rate: 13%)
(実施例8)
<セチルアミン固定化中空糸のHEV捕捉・溶出・回収試験>
ポリエチレンイミンの代わりに10質量%セチルアミン(C16-NH 東京化成製)/エタノール溶液を用いた以外は、調製例3と同様の操作を行い、フェニルアラニンが導入された中空糸を得た。固定化量を測定したところ、約16μg/cm(3.3×10-5mol/g)導入されていることが確認された。該中空糸を実施例2と同様にHEV捕捉試験に供した。その結果、中空糸に58%のHEVが捕捉されていることが確認された。
(Example 8)
<HEV capture / elution / recovery test of cetylamine-immobilized hollow fiber>
A hollow fiber into which phenylalanine was introduced was obtained in the same manner as in Preparation Example 3, except that a 10% by mass cetylamine (C 16 —NH 2 manufactured by Tokyo Chemical Industry) / ethanol solution was used instead of polyethyleneimine. Measurement of the amount of immobilization, it was confirmed to be introduced about 16μg / cm 2 (3.3 × 10 -5 mol / g). The hollow fiber was subjected to the HEV capture test in the same manner as in Example 2. As a result, it was confirmed that 58% of HEV was trapped in the hollow fiber.
次に中空糸を回収し、PBS(-)にて3回洗浄した後、中空糸から直接HEV-RNAをISOGEN、クロロホルム及びイソプロパノールにて単離した。単離したHEV-RNAをリアルタイムRT-PCRにて測定した。その結果、捕捉されたHEVの80%が回収された事を確認した。 Next, the hollow fiber was recovered, washed 3 times with PBS (−), and HEV-RNA was isolated directly from the hollow fiber with ISOGEN, chloroform, and isopropanol. Isolated HEV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 80% of the captured HEV was recovered.
(実施例9)<ポリエチレンイミン(分子量 1,800)のHAV捕捉・回収試験>
 A型肝炎ウイルス(以下HAVとする)を、終濃度0.15%となるよう重曹を添加したEagle‘s MEM(和光純薬製)にウシ胎児血清2%(終濃度)を添加した培地にて、GL37(アフリカミドリザル腎臓由来培養細胞)細胞に感染、増殖させウイルス培養液を調製した。更に細胞を破砕してショ糖密度勾配遠心分離により精製したHAV液を調製した。RT-PCR測定した結果、培養液中のHAV量は2.0×10コピー数/μLであった。
(Example 9) <HAV capture / recovery test of polyethyleneimine (molecular weight 1,800)>
Hepatitis A virus (hereinafter referred to as HAV) was added to Eagle's MEM (manufactured by Wako Pure Chemical Industries, Ltd.) with sodium bicarbonate added to a final concentration of 0.15% in a medium containing fetal bovine serum 2% (final concentration). Then, GL37 (African green monkey kidney-derived cultured cells) cells were infected and propagated to prepare a virus culture solution. Further, the cells were disrupted and HAV solution purified by sucrose density gradient centrifugation was prepared. As a result of RT-PCR measurement, the amount of HAV in the culture broth was 2.0 × 10 6 copies / μL.
調製例5にて作製した中空糸5cmを切り出し、PBS(-)1mLに16時間浸漬後、更にPBS(-)にて2回洗浄して試験に供した。これを1.5mL容量マイクロチューブに移し、希釈した前記ウイルス液1mLを加えて室温にて1時間往復振盪した。その後上清を回収し、上清中のHAV-RNAをISOGENで抽出し、クロロホルム及びイソプロパノールにて単離した。単離したHAV-RNAをリアルタイムRT-PCRにて測定した。その結果、中空糸に88%のHEVが捕捉されていることが確認された。 The hollow fiber 5 cm 2 produced in Preparation Example 5 was cut out, immersed in 1 mL of PBS (−) for 16 hours, further washed twice with PBS (−) and used for the test. This was transferred to a 1.5 mL capacity microtube, 1 mL of the diluted virus solution was added, and the mixture was shaken back and forth at room temperature for 1 hour. Thereafter, the supernatant was recovered, and HAV-RNA in the supernatant was extracted with ISOGEN and isolated with chloroform and isopropanol. Isolated HAV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 88% of HEV was trapped in the hollow fiber.
次に、中空糸を回収し、PBS(-)にて3回洗浄し、10mM NaOH水溶液に浸漬して上清を回収、100mM HCl水溶液を1/10量加えて中和し、ISOGENを用いてHAV-RNAを単離・リアルタイムRT-PCRにて測定した。その結果、捕捉された中空糸よりHEVを66%回収できることが分かった。 Next, the hollow fiber is recovered, washed three times with PBS (−), immersed in a 10 mM NaOH aqueous solution to recover the supernatant, neutralized by adding 1/10 volume of 100 mM HCl aqueous solution, and using ISOGEN. HAV-RNA was isolated and measured by real-time RT-PCR. As a result, it was found that 66% of HEV could be recovered from the captured hollow fiber.
一定量の液(B液)に相当する本実施例で用いた液中に含まれるウイルスの濃度は、1.14×10コピー数/mL/(0.88×0.66)=1.9×10コピー数/mLと算出された。更にウイルス液(A液)からB液採取時の希釈倍率は10倍であったことから、本実施例で用いたウイルス液(A液)中に含まれるウイルス濃度は1.9×10コピー数/mL×10=2.0×10コピー数/mLであると算出された。 The concentration of the virus contained in the liquid used in this example corresponding to a certain amount of liquid (liquid B) was 1.14 × 10 8 copies / mL / (0.88 × 0.66) = 1. It was calculated to be 9 × 10 8 copy number / mL. Furthermore, since the dilution ratio at the time of collecting B solution from virus solution (A solution) was 10 times, the virus concentration contained in virus solution (A solution) used in this Example was 1.9 × 10 8 copies. Calculated to be number / mL × 10 = 2.0 × 10 9 copies / mL.
更に、上記中空糸をPBS(-)にて3回洗浄し、中空糸から直接HAV-RNAをISOGEN、クロロホルム及びイソプロパノールにて単離した。単離したHAV-RNAをリアルタイムRT-PCRにて測定した。その結果、捕捉されたHAVの34%が回収された事を確認した。 Further, the hollow fiber was washed three times with PBS (−), and HAV-RNA was isolated directly from the hollow fiber with ISOGEN, chloroform and isopropanol. Isolated HAV-RNA was measured by real-time RT-PCR. As a result, it was confirmed that 34% of the captured HAV was recovered.
一定量の液(B液)に相当する本実施例で用いた液中に含まれるウイルスの濃度は、5.9×10コピー数/mL/(0.88×0.34)=1.9×10コピー数/mLと算出された。更にウイルス液(A液)からB液採取時の希釈倍率は10倍であったことから、本実施例で用いたウイルス液(A液)中に含まれるウイルス濃度は1.9×10コピー数/mL×10=1.9×10コピー数/mLであると算出された。 The concentration of the virus contained in the liquid used in this example corresponding to a certain amount of liquid (liquid B) was 5.9 × 10 7 copies / mL / (0.88 × 0.34) = 1. Calculated as 9 × 10 8 copies / mL. Furthermore, since the dilution rate at the time of collecting B liquid from virus liquid (A liquid) was 10 times, the virus concentration contained in the virus liquid (A liquid) used in this example was 1.9 × 10 7 copies. It was calculated to be the number /ML×10=1.9×10 9 copy number / mL.
(比較例1)<ポリ-4-メチルペンテン製中空糸のHEV捕捉・溶出・回収試験>
ポリGMA導入済みポリ-4-メチルペンテン製中空糸を実施例1と同様にHEV捕捉試験に供した。その結果、中空糸にはHEVが全く捕捉されていなかった。
(Comparative Example 1) <HEV capture / elution / recovery test of poly-4-methylpentene hollow fiber>
The poly-4-methylpentene hollow fiber into which poly GMA had been introduced was subjected to the HEV capture test in the same manner as in Example 1. As a result, HEV was not captured at all in the hollow fiber.
(比較例2)<ポリエチレン製中空糸のHEV捕捉・回収試験>
エポキシ基導入EVOH親水化処理ポリエチレン製多孔性中空糸を実施例1と同様にHEV捕捉試験に供した。その結果、中空糸にはHEVが全く捕捉されていなかった。
(Comparative Example 2) <HEV capture and recovery test of polyethylene hollow fiber>
The epoxy group-introduced EVOH hydrophilized polyethylene porous hollow fiber was subjected to the HEV capture test in the same manner as in Example 1. As a result, HEV was not captured at all in the hollow fiber.
各種基材とリガンド、及びウイルス捕捉能、回収性能を表1に示した。
実施例6において、水酸化ナトリウム水溶液を用いた回収結果(NaOH水溶液回収)、及びフェノール水溶液を用いた回収結果(フェノール水溶液回収)を示した。
Table 1 shows various substrates and ligands, virus capture ability, and recovery performance.
In Example 6, a recovery result using a sodium hydroxide aqueous solution (NaOH aqueous solution recovery) and a recovery result using a phenol aqueous solution (phenol aqueous solution recovery) are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の評価方法及びキットは、環境水、体液、生活用水等におけるウイルス汚染の評価に利用可能である。 The evaluation method and kit of the present invention can be used for evaluation of virus contamination in environmental water, body fluid, domestic water and the like.

Claims (24)

  1. 電荷を有する化合物、或いは電荷を有しない化合物で表面処理された中空糸にウイルスを含む液を通じて、或いは接触させてウイルスを捕捉し、捕捉したウイルスの量を算出することにより前記ウイルスを含む液中に含まれるウイルスの濃度を評価する方法。 In the liquid containing the virus by capturing the virus through the liquid containing the virus through or in contact with the hollow fiber surface-treated with a compound having a charge or a compound having no charge, and calculating the amount of the captured virus Of assessing the concentration of viruses contained in the.
  2. 請求項1に記載のウイルスの濃度を評価する方法において、
    1)ウイルスを含む液(A液)から一定量の液(B液)を採取する第一工程
    2)B液を、前記中空糸に通じて、或いは接触させてウイルスを中空糸に捕捉させる第二工程
    3)前記中空糸に捕捉されたB液中のウイルスの量を算出する第三工程
    の各工程を含むことを特徴とするウイルスの濃度を評価する方法。
    A method for evaluating the virus concentration according to claim 1,
    1) First step of collecting a certain amount of liquid (liquid B) from the liquid containing liquid (liquid A) 2) The liquid B is passed through or brought into contact with the hollow fiber to capture the virus in the hollow fiber. Two steps 3) A method for evaluating the virus concentration, comprising each step of the third step of calculating the amount of virus in the B liquid trapped in the hollow fiber.
  3. 中空糸が、ポリオレフィン、ポリエーテルスルホン、又はセルロース混合エステルから構成されるものである請求項1又は2に記載のウイルスの濃度を評価する方法。 The method for evaluating the virus concentration according to claim 1 or 2, wherein the hollow fiber is composed of polyolefin, polyethersulfone, or cellulose mixed ester.
  4. 中空糸が多孔性中空糸である、請求項1~3の何れかに記載のウイルスの濃度を評価する方法。 The method for evaluating the virus concentration according to any one of claims 1 to 3, wherein the hollow fiber is a porous hollow fiber.
  5. ポリオレフィンが、ポリエチレン、ポリプロピレン又はポリ-4-メチルペンテンである請求項3又は4に記載のウイルスの濃度を評価する方法。 The method for evaluating the virus concentration according to claim 3 or 4, wherein the polyolefin is polyethylene, polypropylene or poly-4-methylpentene.
  6. 電荷を有する化合物が、(メタ)アクリル酸塩、スルホン酸塩、アンモニウム基を有する化合物、スルホニウム基を有する化合物、カルボキシレート基を有する化合物、又はホスフェート基を有する化合物である請求項1~5の何れかに記載のウイルスの濃度を評価する方法。 The compound having a charge is a (meth) acrylate, a sulfonate, a compound having an ammonium group, a compound having a sulfonium group, a compound having a carboxylate group, or a compound having a phosphate group. The method to evaluate the density | concentration of the virus in any one.
  7. 電荷を有しない化合物が、(メタ)アクリル酸、スルホン酸、アミノ基を有する化合物、スルホ基を有する化合物、カルボキシ基を有する化合物、又はホスホ基を有する化合物である請求項1~5の何れかに記載のウイルスの濃度を評価する方法。 6. The compound having no charge is (meth) acrylic acid, sulfonic acid, a compound having an amino group, a compound having a sulfo group, a compound having a carboxy group, or a compound having a phospho group. A method for evaluating the concentration of the virus described in 1.
  8. スルホニウム基又はスルホ基を有する化合物が硫酸化糖である請求項6又は7に記載のウイルスの濃度を評価する方法。 The method for evaluating the virus concentration according to claim 6 or 7, wherein the sulfonium group or the compound having a sulfo group is a sulfated sugar.
  9. 硫酸化糖が、ヘパリン、ヘパリンの1級又は2級水酸基を硫酸エステル化したヘパリン誘導体、ヘパリンのN-アセチル基のアセチル基脱離体をN-硫酸エステル化したヘパリン誘導体、デキストラン硫酸、又はフコイダンである請求項8に記載のウイルスの濃度を評価する方法。 Sulfated sugar is heparin, a heparin derivative in which the primary or secondary hydroxyl group of heparin is sulfate esterified, a heparin derivative in which an N-acetyl group-elimination product of heparin is N-sulfate ester, dextran sulfate, or fucoidan The method for evaluating the virus concentration according to claim 8.
  10. ウイルスの量を算出する方法が、ポリメラーゼ連鎖反応によるもの、抗原抗体反応によるもの、又は培養法によるものである請求項1~9の何れかに記載のウイルスの濃度を評価する方法。 The method for evaluating the virus concentration according to any one of claims 1 to 9, wherein the method for calculating the amount of virus is by polymerase chain reaction, antigen-antibody reaction, or culture method.
  11. ウイルスが、A型肝炎ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、E型肝炎ウイルス、アデノウイルス、エンテロウイルス、ノロウイルス、インフルエンザウイルス、ヒト免疫不全ウイルス、ロタウイルス、又はポリオウイルスである請求項1~10の何れかに記載のウイルスの濃度を評価する方法。 The virus is hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis E virus, adenovirus, enterovirus, norovirus, influenza virus, human immunodeficiency virus, rotavirus, or poliovirus. A method for evaluating the concentration of the virus according to any one of 10.
  12. 前記3)前記中空糸に捕捉されたB液中のウイルスの量を算出する第三工程において、
    ウイルスを捕捉させた中空糸から、フェノール水溶液、アルカリ性水溶液、又は無機塩水溶液によりウイルスを回収する工程を有する、請求項2~11に記載のウイルスの濃度を評価する方法。
    3) In the third step of calculating the amount of virus in the B liquid trapped in the hollow fiber,
    The method for evaluating the virus concentration according to any one of claims 2 to 11, further comprising a step of recovering the virus from a hollow fiber in which the virus is trapped, with an aqueous phenol solution, an alkaline aqueous solution, or an inorganic salt aqueous solution.
  13. 請求項1~12の何れかに記載の方法によりウイルスの濃度を評価する機能を備えたウイルス濃度評価キット。 A virus concentration evaluation kit having a function of evaluating the virus concentration by the method according to any one of claims 1 to 12.
  14. 請求項1~12の何れかに記載のウイルスの濃度を評価する方法に用いられる、アミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸。 A virus-capturing hollow fiber to which a compound having an amino group or a compound having an ammonium group is used, which is used in the method for evaluating the virus concentration according to any one of claims 1 to 12.
  15. アミノ基を有する化合物、又はアンモニウム基を有する化合物が、ポリエチレンイミン、ポリアリルアミン、アミノ酸、及びそれらの塩から選ばれる化合物である、請求項14に記載のウイルス捕捉用中空糸。 The virus-capturing hollow fiber according to claim 14, wherein the compound having an amino group or the compound having an ammonium group is a compound selected from polyethyleneimine, polyallylamine, amino acids, and salts thereof.
  16. 請求項14又は15に記載のアミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸において、
    水酸基を有する高分子材で表面処理された中空糸に、水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物を介して前記アミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたことを特徴とするウイルス捕捉用中空糸。
    In the hollow fiber for capturing a virus, wherein the compound having an amino group according to claim 14 or 15 or the compound having an ammonium group is immobilized,
    A compound having an amino group or a compound having an ammonium group is immobilized on a hollow fiber surface-treated with a polymer material having a hydroxyl group via a compound having a group capable of reacting with a hydroxyl group and an amino group or an ammonium group. A hollow fiber for capturing a virus, characterized by
  17. 水酸基を有する高分子材で表面処理された中空糸が、エチレン-ビニルアルコール共重合体、エチレン-ビニルアルコール-酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体の部分けん化物、ビニルアルコール-酢酸ビニル共重合体、ヒドロキシメタクリレート共重合体、酢酸セルロースの部分けん化物、又はグリセリン誘導体で表面処理された中空糸である請求項14~16の何れかに記載のウイルス捕捉用中空糸。 A hollow fiber surface-treated with a polymer material having a hydroxyl group is an ethylene-vinyl alcohol copolymer, an ethylene-vinyl alcohol-vinyl acetate copolymer, a partially saponified product of an ethylene-vinyl acetate copolymer, or a vinyl alcohol-acetic acid. The virus-capturing hollow fiber according to any one of claims 14 to 16, which is a hollow fiber surface-treated with a vinyl copolymer, a hydroxymethacrylate copolymer, a partially saponified cellulose acetate, or a glycerin derivative.
  18. 水酸基、及びアミノ基又はアンモニウム基と反応し得る基を有する化合物が、エピクロロヒドリン、又はジエポキシ化合物である請求項16又は17に記載のウイルス捕捉用中空糸。 The virus-capturing hollow fiber according to claim 16 or 17, wherein the compound having a hydroxyl group and a group capable of reacting with an amino group or an ammonium group is epichlorohydrin or a diepoxy compound.
  19. 請求項14又は15に記載のアミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸において、
    グラフト重合反応により前記アミノ基を有する化合物、又はアンモニウム基を有する化合物が中空糸に固定化されたウイルス捕捉用中空糸。
    In the hollow fiber for capturing a virus, wherein the compound having an amino group according to claim 14 or 15 or the compound having an ammonium group is immobilized,
    A virus-capturing hollow fiber in which a compound having an amino group or a compound having an ammonium group is immobilized on a hollow fiber by a graft polymerization reaction.
  20. 請求項14又は15に記載のアミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸において、
    前記アミノ基を有する化合物、又はアンモニウム基を有する化合物で中空糸を表面処理することによりアミノ基を有する化合物、又はアンモニウム基を有する化合物が固定化されたウイルス捕捉用中空糸。
    In the hollow fiber for capturing a virus, wherein the compound having an amino group according to claim 14 or 15 or the compound having an ammonium group is immobilized,
    A virus-capturing hollow fiber in which a compound having an amino group or a compound having an ammonium group is immobilized by surface-treating the hollow fiber with a compound having an amino group or a compound having an ammonium group.
  21. 中空糸が、多孔性中空糸である請求項14~20の何れかに記載のウイルス捕捉用中空糸。 The virus-capturing hollow fiber according to any one of claims 14 to 20, wherein the hollow fiber is a porous hollow fiber.
  22. 中空糸が、ポリエチレン、ポリプロピレン又はポリ-4-メチルペンテンを基質とするものである請求項14~21の何れかに記載のウイルス捕捉用中空糸。 The virus-capturing hollow fiber according to any one of claims 14 to 21, wherein the hollow fiber comprises polyethylene, polypropylene, or poly-4-methylpentene as a substrate.
  23. アミノ基を有する化合物、又はアンモニウム基を有する化合物の固定化量が1~100μg/cmの範囲である請求項14~22の何れかに記載のウイルス捕捉用中空糸。 Compounds having an amino group, or a virus retention hollow fiber according to any one of claims 14-22 immobilization amount of a compound having an ammonium group is in the range of 1 ~ 100μg / cm 2.
  24. ウイルスが、A型肝炎ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、E型肝炎ウイルス、アデノウイルス、エンテロウイルス、ノロウイルス、インフルエンザウイルス、ヒト免疫不全ウイルス、ロタウイルス、又はポリオウイルスである請求項14~23の何れかに記載のウイルス捕捉用中空糸。 The virus is hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis E virus, adenovirus, enterovirus, norovirus, influenza virus, human immunodeficiency virus, rotavirus, or poliovirus. The hollow fiber for capturing a virus according to any one of 23.
PCT/JP2012/060562 2011-04-20 2012-04-19 Method and kit for assessing virus concentration WO2012144554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013511032A JPWO2012144554A1 (en) 2011-04-20 2012-04-19 Method and kit for evaluating virus concentration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011093974 2011-04-20
JP2011-093974 2011-04-20

Publications (1)

Publication Number Publication Date
WO2012144554A1 true WO2012144554A1 (en) 2012-10-26

Family

ID=47041660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060562 WO2012144554A1 (en) 2011-04-20 2012-04-19 Method and kit for assessing virus concentration

Country Status (2)

Country Link
JP (1) JPWO2012144554A1 (en)
WO (1) WO2012144554A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146487A1 (en) * 2014-03-24 2015-10-01 日東紡績株式会社 Method for separating and concentrating target substance using novel cationic graft polymer
US12005447B2 (en) 2022-03-23 2024-06-11 Samsung Electronics Co., Ltd. Apparatus and method for bio-particle detection

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135665A (en) * 2002-09-25 2004-05-13 Nihon Pharmaceutical Co Ltd Method for separating virus
JP2005218332A (en) * 2004-02-04 2005-08-18 Nix Inc Method for detecting virus gene
JP2008255348A (en) * 2007-03-14 2008-10-23 Dic Corp Sugar chain-immobilized polymeric substrate and process for producing the same
JP2010530288A (en) * 2007-06-18 2010-09-09 エクステラ・メディカル・エルエルシー Device and method for recovering blood condition
JP2011062289A (en) * 2009-09-16 2011-03-31 National Institute Of Infectious Diseases Polymer base material, method for producing the same, and medical device
JP2011201031A (en) * 2010-03-24 2011-10-13 Dic Corp Polymer substrate having laminated structure and medical appliance using the same
JP2011224350A (en) * 2010-03-30 2011-11-10 Dic Corp Sugar-immobilized polymer substrate and medical apparatus using the same
JP2011245267A (en) * 2010-04-27 2011-12-08 Dic Corp Sulfated polysaccharide immobilized porous polymeric base material and medical instrument

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135665A (en) * 2002-09-25 2004-05-13 Nihon Pharmaceutical Co Ltd Method for separating virus
JP2005218332A (en) * 2004-02-04 2005-08-18 Nix Inc Method for detecting virus gene
JP2008255348A (en) * 2007-03-14 2008-10-23 Dic Corp Sugar chain-immobilized polymeric substrate and process for producing the same
JP2010530288A (en) * 2007-06-18 2010-09-09 エクステラ・メディカル・エルエルシー Device and method for recovering blood condition
JP2011062289A (en) * 2009-09-16 2011-03-31 National Institute Of Infectious Diseases Polymer base material, method for producing the same, and medical device
JP2011201031A (en) * 2010-03-24 2011-10-13 Dic Corp Polymer substrate having laminated structure and medical appliance using the same
JP2011224350A (en) * 2010-03-30 2011-11-10 Dic Corp Sugar-immobilized polymer substrate and medical apparatus using the same
JP2011245267A (en) * 2010-04-27 2011-12-08 Dic Corp Sulfated polysaccharide immobilized porous polymeric base material and medical instrument

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BOLISAY L. D. ET AL.: "Imprinted Polymer Hydrogels for the Separation of Viruses", MACROMOL. SYMP., vol. 291, no. 292, 2010, pages 302 - 306 *
ERIKO UCHIDA ET AL., VIRAL SAFETY OF BIOLOGICALS: EVALUATION OF HEPATITIS C VIRUS (HCV) NUCLEIC ACID AMPLIFICATION TEST (NAT) ASSAY AND DEVELOPMENT OF CONCENTRATION METHOD OF HCV FOR SENSITIVE DETECTION BY NAT, vol. 130, no. 2, 2010, pages 163 - 169 *
HIROYUKI KATAYAMA: "Aratana Virus Noshuku Hoho no Kaihatsu to Suidosui Oyobi Suido Suigen Chosa eno Tekiyo", MODERN MEDIA, vol. 52, no. 6, 2006, pages 185 - 190 *
SHIN'YA HAYASHI ET AL.: "RNA virus detection used Metal coated hollow fiber membrane and Reverse Transcription Loop-mediated Isothermal Amplification from simulated serum sample", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN KENKYUKAI SHIRYO, 27 January 2011 (2011-01-27), pages 77 - 82 *
YOSHITAKA KOSAKA ET AL.: "Gengai Roka Noshuku- ho ni yoru Jakudoku Zucchini Ohan Mosaic Virus no Ko Rikika Seizai no Sakusei", HEISEI 18 NENDO KINKI CHUGOKU SHIKOKU NOGYO KENKYU SEIKA JOHO, 14 June 2007 (2007-06-14), pages 37 - 38 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146487A1 (en) * 2014-03-24 2015-10-01 日東紡績株式会社 Method for separating and concentrating target substance using novel cationic graft polymer
KR20160135733A (en) * 2014-03-24 2016-11-28 니토 보세키 가부시기가이샤 Method for separating and concentrating target substance using novel cationic graft polymer
CN106460027A (en) * 2014-03-24 2017-02-22 日东纺绩株式会社 Method for separating and concentrating target substance using novel cationic graft polymer
JPWO2015146487A1 (en) * 2014-03-24 2017-04-13 日東紡績株式会社 Method for separating and concentrating targets using a novel cationic graft polymer
EP3124618A4 (en) * 2014-03-24 2017-11-01 Nitto Boseki Co., Ltd Method for separating and concentrating target substance using novel cationic graft polymer
US10252258B2 (en) 2014-03-24 2019-04-09 Nitto Boseki Co., Ltd. Method for separating and concentrating target substance using novel cationic graft polymer
TWI665226B (en) * 2014-03-24 2019-07-11 日商日東紡績股份有限公司 Method for separating and concentrating target substance by using novel cationic graft polymer
CN106460027B (en) * 2014-03-24 2020-07-31 日东纺绩株式会社 Method for separating and concentrating target substance using cationic graft polymer
KR102354533B1 (en) 2014-03-24 2022-01-21 니토 보세키 가부시기가이샤 Method for separating and concentrating target substance using novel cationic graft polymer
US12005447B2 (en) 2022-03-23 2024-06-11 Samsung Electronics Co., Ltd. Apparatus and method for bio-particle detection

Also Published As

Publication number Publication date
JPWO2012144554A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5420424B2 (en) Cross-linked cellulose membrane
TWI516294B (en) Cancer cell adhesiveness improver
JP5744737B2 (en) Ligand graft functionalized substrate
CN102711978B (en) Porous polymer material all in one piece, Its Preparation Method And Use
JP5143732B2 (en) Method for crosslinking cellulose ester membrane
WO2012121073A1 (en) Sugar-immobilized polymer substrate for removing viruses, and method for removing viruses
JP2019163462A (en) Method for applying coating to polymeric substrate
JP2011245267A (en) Sulfated polysaccharide immobilized porous polymeric base material and medical instrument
TW200936238A (en) Protein adsorbent and method for producing the same
JP3890556B2 (en) Nucleic acid separation and purification method and nucleic acid separation and purification unit
WO2012144554A1 (en) Method and kit for assessing virus concentration
JP2012170773A (en) Saccharide-immobilizing polymer base material obtained by using controlled radical polymerization, and medical instrument
JP4838594B2 (en) Cell array sorter, manufacturing method thereof, and cell sorting method using the same
WO2014034787A1 (en) Dialyzer capable of removing viruses
JP5282933B2 (en) Sugar chain-immobilized polymer substrate and production method thereof
JP2011224350A (en) Sugar-immobilized polymer substrate and medical apparatus using the same
JP5673894B2 (en) Sugar chain-immobilized hydrophilic resin compound, polymer substrate for virus removal, and biocompatible material
JP2017025177A (en) Composition, manufacturing method of composition, preparation method of carbohydrate chain sample and analytic method of carbohydrate chain
JP2010207180A (en) Reaction vessel for purifying norovirus rna and purification method
JP5262708B2 (en) mRNA capture carrier and mRNA purification method
WO2014014089A1 (en) Hydrophilic resin compound containing amino group, polymer substrate for virus removal, and gas barrier material
JP2015029926A (en) Method of immobilizing resin compound in hollow fiber membrane
WO2012124619A1 (en) Polyanion-immobilized polymer substrate for removing viruses, and method for removing viruses
AU2011204743B2 (en) Porous polymer monoliths, processes for preparation and use thereof
JP2014062798A (en) Analyzing carrier, and method for manufacturing and using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773492

Country of ref document: EP

Kind code of ref document: A1