[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012144431A1 - Solar cell module and solar power generation apparatus - Google Patents

Solar cell module and solar power generation apparatus Download PDF

Info

Publication number
WO2012144431A1
WO2012144431A1 PCT/JP2012/060102 JP2012060102W WO2012144431A1 WO 2012144431 A1 WO2012144431 A1 WO 2012144431A1 JP 2012060102 W JP2012060102 W JP 2012060102W WO 2012144431 A1 WO2012144431 A1 WO 2012144431A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solar cell
light guide
cell module
light source
Prior art date
Application number
PCT/JP2012/060102
Other languages
French (fr)
Japanese (ja)
Inventor
内田 秀樹
前田 強
時由 梅田
英臣 由井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012144431A1 publication Critical patent/WO2012144431A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module and a solar power generation device.
  • This application claims priority based on Japanese Patent Application No. 2011-094424 filed in Japan on April 20, 2011, the contents of which are incorporated herein by reference.
  • a solar cell module including a light guide for guiding incident sunlight to a solar cell element has been proposed (see Patent Document 1 below).
  • the solar cell module described in Patent Document 1 includes a light guide body having a substantially right triangular shape in which a plurality of V-shaped grooves are formed, and a solar cell element is attached to an end surface of the light guide body. .
  • the solar cell module of Patent Document 1 is not configured to detect a defect even when a defect such as contamination or deterioration of the light guide occurs due to a manufacturing process or long-term use. Therefore, a solar cell module may be used in the state where a malfunction has occurred. If the solar cell module is used in a state where a defect has occurred, the light incident efficiency to the solar cell element is lowered, and the power generation efficiency is lowered.
  • An aspect of the present invention has been made to solve the above-described problem, and an object thereof is to provide a solar cell module capable of suppressing a decrease in power generation efficiency and a solar power generation device using the solar cell module.
  • a solar cell module includes a light guide that propagates first light incident from a first main surface to a first end surface, and the first of the light guides.
  • a solar cell element that receives a first light emitted from one end face and generates a current; and a light source that emits a second light propagating through the light guide toward the first end face.
  • the light guide reflects and propagates the first light incident from the first main surface by an inclined surface provided on the second main surface.
  • the light guide includes a fluorescent light guide including a phosphor, and the fluorescent light guide is part of the first light incident from the first main surface. May be absorbed by the phosphor, and the fluorescence emitted from the phosphor may be propagated and emitted from the first end face.
  • the fluorescent light guide may include a plurality of fluorescent materials having different peak wavelengths of absorption spectra as the fluorescent material.
  • the light source may emit light having a wavelength that does not excite the phosphor.
  • the light source may emit light having a wavelength that excites the phosphor.
  • the light source may be disposed on a second end surface facing the first end surface of the light guide.
  • the light source is a laser light source that emits laser light as the second light, and the laser light may be arranged to directly enter the first end surface. Good.
  • the light source is a laser light source that emits laser light as the second light
  • the laser light is arranged to be incident on the second main surface
  • the light guide may emit the laser beam emitted from the laser light source by being totally reflected by the second main surface and propagating from the first end surface.
  • the light source may emit light having a predetermined diffusion angle as the second light.
  • the solar cell module according to an aspect of the present invention may further include an image sensor that images the first main surface of the light guide.
  • the imaging element may be detachable from the light guide.
  • the light guide includes a plurality of light guides, and the plurality of light guides are stacked with the first main surface and the second main surface facing each other.
  • the first end faces are arranged in the same direction, and the first light incident from the first main surface is different from the first main surface to the plurality of light guides.
  • a shape light guide that is reflected and propagated by an inclined surface provided on the main surface and is emitted from the first end surface, and a phosphor, and a part of the first light incident from the first main surface is And a fluorescent light guide that is absorbed by the fluorescent material and propagates the fluorescent light emitted from the fluorescent material and exits from the first end face.
  • the light guide disposed at a position farthest from the side on which the first light enters from the outside among the plurality of light guides is the fluorescent light guide. Also good.
  • the second main surface of the fluorescent light guide and the end surface other than the first end surface of the fluorescent light guide reflect the fluorescence emitted from the fluorescent material.
  • a layer may be provided.
  • the light source may emit the second light by a current generated by the solar cell element.
  • the solar cell module in one aspect of the present invention further includes a storage battery that stores a current generated by the solar cell element, and the light source emits the second light by the current stored in the storage battery. Good.
  • the light source may be detachable from the light guide.
  • a plurality of the light sources may be arranged on an end surface other than the first end surface of the light guide.
  • the light guide may be provided with a light receiving element that receives the second light emitted from the light source.
  • the light source may be rotatably provided so that an incident angle of the second light emitted from the light source to the light guide body is changed.
  • a solar power generation device includes the solar cell module of the present invention.
  • FIG. 1st Embodiment It is a schematic perspective view of the solar cell module of 1st Embodiment. It is sectional drawing of a solar cell module. It is sectional drawing of a solar cell module. It is a figure which shows the absorption characteristic of fluorescent substance. It is a figure which shows the absorption characteristic of fluorescent substance. It is a figure which shows the light emission characteristic of fluorescent substance. It is a figure which shows the light emission characteristic of fluorescent substance. It is a figure which shows a mode that the 2nd light from a light source propagates a shape light guide. It is a figure which shows a mode that the 2nd light from a light source propagates a shape light guide. It is a figure which shows a mode that the 2nd light from a light source propagates a fluorescence light guide.
  • FIG. 1 It is a schematic block diagram of the solar power generation device of 3rd Embodiment. It is sectional drawing of the solar cell module of 4th Embodiment. It is a schematic plan view of the solar cell module of 5th Embodiment. It is sectional drawing of the solar cell module of 6th Embodiment. It is a figure which shows the permeation
  • FIG. 1 is a schematic perspective view of the solar cell module 1 of the first embodiment.
  • the solar cell module 1 includes a light guide unit 2, a solar cell element 5, a solar cell element 6, a light source 11, a light source 12, an imaging element 13, and a frame body 10.
  • the light guide unit 2 is formed by laminating a shape light guide 3 and a fluorescent light guide 4.
  • the solar cell element 5 receives light emitted from the first end surface 3 c of the shape light guide 3.
  • the solar cell element 6 receives light emitted from the first end face 4 c of the fluorescent light guide 4.
  • the light source 11 emits light toward the first end surface 3 c while propagating through the shape light guide 3.
  • the light source 12 emits light toward the first end face 4 c while propagating through the fluorescent light guide 4.
  • the imaging element 13 images the first main surface 4 a of the fluorescent light guide 4.
  • the frame 10 integrally holds the light guide unit 2, the solar cell element 5, the solar cell element 6, the light source 11, the light source 12, and the imaging element 13.
  • the shape light guide 3 includes a first main surface 3a that is a light incident surface, a second main surface 3b that faces the first main surface 3a, and a first end surface 3c that is a light emission surface.
  • the fluorescent light guide 4 includes a first main surface 4a that is a light incident surface, a second main surface 4b that faces the first main surface 4a, and a first end surface 4c that is a light emission surface.
  • the shape light guide 3 and the fluorescence light guide 4 are formed such that the first main surface 3a of the shape light guide 3 and the second main surface 4b of the fluorescence light guide 4 face each other. It is laminated in the Z direction via an air layer K (low refractive index layer) having a refractive index smaller than that of the fluorescent light guide 4.
  • the first main surface 3a of the shape light guide 3 and the first main surface 4a of the fluorescent light guide 4 face each other in the same direction (light incident side: -Z direction).
  • the first end surface 3c of the shape light guide 3 and the first end surface 4c of the fluorescent light guide 4 are oriented in the same direction.
  • the first end face 3c of the shape light guide 3 and the first end face 4c of the fluorescent light guide 4 are arranged on the same plane parallel to the XZ plane. For this reason, the solar cell element 5 that receives the light emitted from the first end surface 3c of the shape light guide 3 and the solar cell element 6 that receives the light emitted from the first end surface 4c of the fluorescent light guide 4 are provided. It can be placed in one place.
  • the shape light guide 3 is a substantially rectangular plate-like member having a first main surface 3a and a second main surface 3b perpendicular to the Z axis (parallel to the XY plane).
  • a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used.
  • the shape of the shape light guide 3 is 100 mm ⁇ 100 mm in the vertical and horizontal dimensions (the x-axis direction and the y-axis direction in FIG. 1) and becomes the thickness (z-axis in FIG. 1).
  • Direction dimension) is 10 mm.
  • the vertical and horizontal dimensions and thickness are not limited to this.
  • a plurality of grooves T extending in the X direction are provided on the second main surface 3 b of the shape light guide 3.
  • the groove T is a V-shaped groove having an inclined surface T1 that is inclined with respect to a plane parallel to the XY plane and a surface T2 that intersects the inclined surface T1.
  • FIG. 1 only a few grooves T are shown in order to simplify the drawing, but in practice, a large number of fine grooves T having a width of about 100 ⁇ m are formed.
  • the groove T is formed integrally with the main body of the light guide, for example, by injection molding a resin (for example, polymethyl methacrylate resin: PMMA) using a mold.
  • a resin for example, polymethyl methacrylate resin: PMMA
  • the inclined surface T1 is a reflecting surface that totally reflects the light L (for example, sunlight) incident from the first main surface 3a and changes the traveling direction of the light to the direction toward the first end surface 3c.
  • the light L incident at an angle close to perpendicular to the first main surface 3a is reflected by the inclined surface T1 and propagates in the Y direction in the shape light guide 3 generally.
  • a plurality of such grooves T are provided in the Y direction so that the inclined surfaces T1 and T2 are in contact with each other.
  • the shape and size of the plurality of grooves T provided on the second main surface 3b are all the same.
  • the fluorescent light guide 4 is a substantially rectangular plate-like member having a first main surface 4a and a second main surface 4b perpendicular to the Z axis (parallel to the XY plane).
  • the fluorescent light guide 4 has dimensions of 100 mm ⁇ 100 mm in the length and breadth (the x-axis direction and the y-axis direction in FIG. 1) of the rectangle serving as the first main surface 4a, and the thickness (z-axis in FIG. 1).
  • Direction dimension is 5 mm.
  • the vertical and horizontal dimensions and thickness are not limited to this.
  • the fluorescent light guide 4 is obtained by dispersing a fluorescent material inside a base material made of a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass.
  • the phosphor include a plurality of types of phosphors that absorb ultraviolet light or visible light and emit visible light or infrared light. The light emitted from the fluorescent material propagates through the fluorescent light guide 4 and is emitted from the first end face 4 c, and is used for power generation by the solar cell element 6.
  • visible light is light in a wavelength region of 380 nm to 750 nm
  • ultraviolet light is light in a wavelength region less than 380 nm
  • infrared light is light in a wavelength region larger than 750 nm.
  • the material of the light guide constituting the light guide unit has transparency to wavelengths of 400 nm or less so that external light can be taken in effectively.
  • a material having a transmittance of 90% or more, more preferably 93% or more with respect to light in a wavelength region of 360 nm to 800 nm is suitable.
  • “Acrylite” (registered trademark) manufactured by Mitsubishi Rayon is suitable because it has high transparency to light in a wide wavelength region. .
  • the first main surface 4a and the second main surface 4b of the fluorescent light guide 4 are flat surfaces substantially parallel to the XY plane.
  • a reflective layer 9 for reflecting light (fluorescence) emitted from the fluorescent substance is provided on the end face other than the first end face 4c of the fluorescent light guide 4, a reflective layer 9 for reflecting light (fluorescence) emitted from the fluorescent substance is provided.
  • a reflective film such as a silver film, an ESR (Enhanced Spectral Reflector) film, or an aluminum film can be used.
  • a layer having a reflectance of 92% or more is suitable.
  • a reflection layer 7 that reflects the light transmitted through the second main surface 3 b of the shape light guide 3 to the inside of the shape light guide 3 is provided.
  • illustration is omitted, light is transmitted to the inside of the shape light guide 3 so that light does not leak from the end surfaces to the outside of the shape light guide 3 on the end surfaces other than the first end surface 3 c of the shape light guide 3.
  • a reflective layer for reflection may be provided.
  • the solar cell element 5 is disposed with the light receiving surface facing the first end surface 3 c of the shape light guide 3.
  • the solar cell element 6 is disposed with the light receiving surface facing the first end surface 4 c of the fluorescent light guide 4.
  • the solar cell element 5 and the solar cell element 6 known solar cells such as silicon solar cells, compound solar cells, and organic solar cells can be used.
  • the compound type solar cell using a compound semiconductor is suitable as the solar cell element 5 and the solar cell element 6 since high-efficiency electric power generation is possible.
  • a GaAs three-layer junction type compound solar cell (conversion efficiency: about 40%) is used as the solar cell element 5.
  • a GaAs compound single-layer solar cell conversion efficiency: about 50%
  • the light source 11 is disposed on the second end surface 3 d facing the first end surface 3 c of the shape light guide 3.
  • the light source 11 emits laser light (emission intensity peak: about 633 nm) as first light and first light that emits light having a predetermined diffusion angle (expansion angle) as second light. 2 light sources 11b.
  • the first light source 11a is arranged so that the laser light emitted from the first light source 11a is directly incident on the first end surface 3c (see FIG. 7A). Note that a laser light source that emits laser light having a wavelength other than 633 nm may be used as the first light source 11a.
  • the second light source 11b is arranged so that light emitted from the light source enters the second main surface 3b (see FIG. 7B).
  • the shape light guide 3 causes the light emitted from the second light source 11b to be totally reflected and propagated by the second main surface 3b and is emitted from the first end surface 3c.
  • the second light source 11b can be arranged so that the light emitted from the second light source 11b propagates with an inclination of 20 degrees from the horizontal direction (Y-axis direction) to the lower direction (+ Z-axis direction).
  • a directional red LED having a diffusion angle within a predetermined diffusion angle range (for example, within 20 degrees) can be used.
  • the light source 12 is disposed on the second end surface 4 d facing the first end surface 4 c of the fluorescent light guide 4.
  • the light source 12 emits light having a wavelength that does not excite the phosphor (light having a wavelength other than the wavelength range that excites the phosphor), and light having a wavelength that excites the phosphor (excites the phosphor).
  • 2nd light source 12b which inject
  • the first light source 12a is a laser light source that emits laser light (emission intensity peak: about 633 nm) as third light.
  • the first light source 12a is arranged so that the laser light emitted from the first light source 12a is directly incident on the first end face 4c (see FIG. 8A). Note that a laser light source that emits laser light having a wavelength other than 633 nm may be used as the first light source 12a.
  • the second light source 12b is a light source that emits light having a predetermined diffusion angle (expansion angle) as the fourth light.
  • the second light source 12b is arranged so that the laser light emitted from the second light source 12b is directly incident on the first end face 4c (see FIG. 8B).
  • a directional ultraviolet LED having a diffusion angle within a predetermined diffusion angle range (for example, within 20 degrees) can be used.
  • the image sensor 13 is disposed above the light source 12 (on the ⁇ Z axis direction side).
  • the imaging element 13 images the first main surface 4 a of the fluorescent light guide 4.
  • the imaging element 13 may be fixed so as to image a part of the first main surface 4a of the fluorescent light guide 4 or may image the entire first main surface 4a of the fluorescent light guide 4. It may be provided to be movable.
  • the frame 10 includes a transmission surface 10a that transmits the light L on a surface facing the first main surface 4a of the fluorescent light guide 4 disposed on the most front side.
  • the transmission surface 10a may be an opening of the frame 10, or may be a transparent member such as glass fitted in the opening of the frame 10.
  • the first main surface 4 a of the fluorescent light guide 4 that overlaps the transmission surface 10 a of the frame 10 when viewed from the Z direction is the light incident surface of the light guide unit 2.
  • the first end surface 3 c of the shape light guide 3 and the first end surface 4 c of the fluorescent light guide 4 are the first light exit surfaces of the light guide unit 2.
  • FIG. 2A is a cross-sectional view of the solar cell module 1.
  • FIG. 2B is a cross-sectional view of the groove T provided in the second main surface 3 b of the shape light guide 3.
  • the second main surface 3b of the shape light guide 3 reflects light incident from the first main surface 3a so that the light travels in the direction toward the first end surface 3c.
  • a plurality of grooves T to be changed are provided.
  • the groove T is a V-shaped groove in which an inclined surface T1 that forms an angle ⁇ with respect to the Y axis and a surface T2 that is perpendicular to the Y axis intersect at a ridgeline T3.
  • a surface T2 is disposed on the first end surface 3c side with the ridge line T3 interposed therebetween, and an inclined surface T1 is disposed on the opposite side to the first end surface 3c.
  • the angle ⁇ is 42 °
  • the width of one groove T in the Y direction is 100 ⁇ m
  • the depth of the groove T in the Z direction is 90 ⁇ m
  • the refractive index of the shape light guide 3 is 1.5. It is.
  • the angle ⁇ , the width of the groove T in the Y direction, the depth of the groove T in the Z direction, and the refractive index of the shape light guide 3 are not limited thereto.
  • a plurality of types of phosphors having different absorption wavelength ranges are dispersed in the fluorescent light guide 4. .
  • the first phosphor 8a absorbs ultraviolet light and emits blue fluorescence
  • the second phosphor 8b absorbs blue light and emits green fluorescence
  • the third phosphor 8c emits green light. Absorbs and emits red fluorescence.
  • the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are mixed when, for example, a PMMA resin is molded.
  • the mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is as follows.
  • the mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is shown as a volume ratio with respect to the PMMA resin.
  • First phosphor 8a BASF Lumogen F Blue (trade name) 0.02%
  • Second phosphor 8b BASF Lumogen F Green (trade name) 0.02%
  • Third phosphor 8c BASF Lumogen F Red (trade name) 0.02%
  • 3 to 6 are diagrams showing the emission characteristics and absorption characteristics of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • the white squares indicate the spectrum of sunlight after the ultraviolet light is absorbed by the first phosphor 8a
  • the triangles indicate the sunlight after the blue light is absorbed by the second phosphor 8b.
  • the cross indicates the spectrum of sunlight after green light is absorbed by the third phosphor 8c.
  • a black square shows the spectrum of sunlight.
  • circles indicate the spectrum of sunlight after ultraviolet light, blue light, and green light are absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c.
  • a black square shows the spectrum of sunlight.
  • the black square is the emission spectrum of the first phosphor 8a
  • the triangle is the emission spectrum of the second phosphor 8b
  • the white square is the emission spectrum of the third phosphor 8c.
  • a square is a spectrum of light emitted from the first end face 4c of the fluorescent light guide 4 including the first fluorescent body 8a, the second fluorescent body 8b, and the third fluorescent body 8c.
  • the first phosphor 8a absorbs light having a wavelength of approximately 420 nm or less.
  • the second phosphor 8b absorbs light having a wavelength of approximately 420 nm or more and 520 nm or less.
  • the third phosphor 8c absorbs light having a wavelength of approximately 520 nm or more and 620 nm or less.
  • the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c absorb almost all light having a wavelength of 620 nm or less in the sunlight incident on the second light guide. In the sunlight spectrum, the proportion of light having a wavelength of 620 nm or less is about 48%.
  • the fluorescence quantum yields of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are all 92%. Therefore, 92% of the light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is converted into fluorescence.
  • the fluorescence propagates through the fluorescent light guide 4 and is emitted from the first end face 4c.
  • the ratio of the light leaking outside the fluorescent light guide 4 without being totally reflected by the first main surface 4a and the second main surface 4b due to the difference in refractive index between the fluorescent light guide 4 and the surrounding air layer is
  • the loss of light when propagating through the fluorescent light guide 4 is 5%. Therefore, the ratio of the light emitted from the first end surface 4c is 30% of the light incident on the first main surface 4a.
  • the emission spectrum of the first phosphor 8a has a peak wavelength at 430 nm.
  • the emission spectrum of the second phosphor 8b has a peak wavelength at 520 nm.
  • the emission spectrum of the third phosphor 8c has a peak wavelength at 630 nm.
  • the spectrum of light emitted from the first end face of the second light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is the third phosphor.
  • the cause of the disappearance of the peak of the emission spectrum corresponding to the first phosphor 8a and the peak of the emission spectrum corresponding to the second phosphor 8b is the energy transfer between the phosphors due to photoluminescence (PL) and the Forster mechanism.
  • Examples thereof include energy transfer between phosphors by (fluorescence resonance energy transfer).
  • Energy transfer by photoluminescence occurs when fluorescence emitted from one phosphor is used as excitation energy for another phosphor.
  • excitation energy directly moves between two adjacent phosphors by electron resonance without going through such light emission and absorption processes.
  • Energy transfer between the phosphors by the Förster mechanism is performed without going through the process of light emission and absorption, so that energy loss is small. Therefore, it contributes to the improvement of the power generation efficiency of the solar cell module.
  • FIG. 7A and 7B are views showing a state in which the first light from the light source 11 propagates through the shape light guide 3.
  • FIG. 7A is a diagram illustrating a state in which the first light from the first light source 11 a constituting the light source 11 propagates through the shape light guide 3.
  • FIG. 7B is a diagram illustrating a state in which the second light from the second light source 11 b constituting the light source 11 propagates through the shape light guide 3.
  • the first light source 11a is arranged so that the laser light emitted from the first light source 11a is directly incident on the first end face 3c.
  • the laser light emitted from the first light source 11 a propagates inside the shape light guide 3 and directly enters the solar cell element 5.
  • the second light source 11b is arranged so that light having a predetermined diffusion angle emitted from the second light source 11b is incident on the second main surface 3b.
  • the light emitted from the second light source 11b propagates inside the shape light guide 3 while repeating total reflection on the second main surface 3b and total reflection on the first main surface 3a, and thus a solar cell element. 5 is incident.
  • the light guide state of the shape light guide 3 can be confirmed. That is, it is possible to detect whether the shape light guide 3 has a defect such as a defect or deterioration.
  • route which light propagates the inside of the shape light guide 3 can be changed by changing the magnitude
  • the angle (propagation angle) at which the second light source 11b propagates inside the shape light guide 3 mutually. ) Are emitted.
  • the total reflection angle at the second main surface 3b and the total reflection angle at the first main surface 3a of each light bundle are changed. For this reason, a plurality of light bundles propagate in the shape light guide 3 in a wide range.
  • FIG. 8A and 8B are views showing a state in which the third light from the light source 12 propagates through the fluorescent light guide 4.
  • FIG. 8A is a diagram illustrating a state in which the third light, which is light having a wavelength that does not excite the phosphor emitted from the first light source 12 a constituting the light source 12, propagates through the fluorescence light guide 4.
  • FIG. 8B is a diagram illustrating a state in which the fourth light, which is light having a wavelength for exciting the phosphor emitted from the second light source 12 b constituting the light source 12, propagates through the fluorescence light guide 4.
  • the first light source 12a is arranged so that light emitted from the first light source 12a is directly incident on the first end face 4c.
  • the first light source 12a emits light having a wavelength that does not excite the phosphor (light having a wavelength other than the wavelength region that excites the phosphor).
  • the first light source 12a is a laser light source that emits laser light (emission intensity peak: about 633 nm) as third light.
  • the fluorescent substance inside the fluorescent light guide 4 is not excited by laser light having an emission intensity peak of about 633 nm. For this reason, the laser light emitted from the first light source 12 a propagates inside the fluorescent light guide 4 and directly enters the solar cell element 6.
  • the laser light emitted from the first light source 12 a propagates inside the fluorescent light guide 4 and directly enters the solar cell element 6.
  • the second light source 12b is arranged so that the light emitted from the second light source 12b is directly incident on the first end face 4c.
  • the second light source 12b emits light having a wavelength for exciting the phosphor (light having a wavelength within a wavelength range for exciting the phosphor, for example, light having a wavelength of 620 nm or less).
  • the second light source 12b is a directional ultraviolet LED whose diffusion angle is within a predetermined diffusion angle range (for example, within 20 degrees).
  • a part of the light emitted from the second light source 12b is absorbed by the phosphor in the process of propagating through the fluorescent light guide 4.
  • the fluorescence emitted from the phosphor propagates inside the fluorescence light guide 4 and enters the solar cell element 6.
  • the amount of power generated by the solar cell elements 5 and 6 is monitored using light emitted from the light sources 11 and 12 and propagating through the light guides 3 and 4 as reference light.
  • the shape light guide 3 since the shape light guide 3 is included, by using the light emitted from the light source 11 and propagating through the shape light guide 3 as reference light, the power generation amount generated by the solar cell element 5 is monitored. The state of the light guide of the shape light guide 3 (whether a defect such as a defect or deterioration has occurred in the shape light guide 3) can be confirmed. Therefore, the site
  • a defect such as a defect or deterioration has occurred in the shape light guide 3 can be confirmed. Therefore, the site
  • the fluorescent light guide 4 since the fluorescent light guide 4 is included, by using the light emitted from the light source 12 and propagating through the fluorescent light guide 4 as reference light, the power generation amount generated by the solar cell element 6 is monitored. It is possible to confirm the light guide state of the fluorescent light guide 4 (whether a defect such as a defect or deterioration has occurred in the phosphor dispersed inside). Therefore, the part where the defect of the fluorescent light guide 4 occurs can be repaired or replaced with a new fluorescent light guide 4 as necessary.
  • a plurality of phosphors having different absorption spectrum peak wavelengths are dispersed inside the fluorescent light guide 4, so that the external Can be efficiently absorbed. For this reason, most of the light incident on the fluorescent light guide 4 can be contributed to the light emission of the fluorescent material.
  • the light source 12 (first light source 12a) emits light having a wavelength that does not excite the phosphor, the light emitted from the light source 12a propagates inside the fluorescent light guide 4 without exciting the phosphor. Then, the light enters the solar cell element 6. That is, in the process in which the light emitted from the light source 12a propagates inside the fluorescent light guide 4, no fluorescent light is emitted from the fluorescent material. For this reason, by using the light emitted from the light source 12a as the reference light and monitoring the amount of power generated by the solar cell element 6, it is possible to detect a malfunction of only the solar cell element 6. Therefore, the site
  • the light source 12 (second light source 12b) emits light having a wavelength that excites the phosphor, a part of the light emitted from the light source 12b is fluorescent in the process of propagating inside the fluorescent light guide 4. Absorbed by the body. The fluorescence emitted from the phosphor propagates inside the fluorescence light guide 4 and enters the solar cell element 6. For this reason, the light emitted from the light source 12b is used as reference light, and the amount of power generated by the solar cell element 6 is monitored, so that the fluorescence light guide 4 (phosphor dispersed inside) is defective or deteriorated. It is possible to detect whether or not a malfunction such as the above has occurred. Therefore, the part where the defect of the fluorescent light guide 4 occurs can be repaired or replaced with a new fluorescent light guide 4 as necessary.
  • the light source 11 is disposed on the second end surface 3d of the shape light guide 3 (the light source 12 is disposed on the second end surface 4d of the fluorescent light guide 4). 3 is disposed at a portion farthest from the first end face 3c. For this reason, the light emitted from the light source 11 can be propagated in a wide range inside the shape light guide 3. Therefore, the state of the light guide of the shape light guide 3 (whether the shape light guide 3 has defects such as defects or deterioration) can be confirmed over a wide range. On the other hand, when the light source 11 is arranged near the first end surface 3 c of the shape light guide 3, there is a range in which light emitted from the light source 11 propagates inside the shape light guide 3. The range in which the light guide state of the shape light guide 3 can be confirmed becomes narrow.
  • the first light source 11a constituting the light source 11 is a laser light source and the laser light is directly incident on the first end face 3c, the laser light is directly incident on the solar cell element 5. Therefore, it is possible to confirm whether or not a problem has occurred in the solar cell element 5 by monitoring the power generation amount of the solar cell element 5 by the irradiation of the laser light.
  • the second light source 11b constituting the light source 11 is arranged so that light emitted from the second light source 11b is incident on the second main surface 3b, and the shape light guide 3 is formed by the second light source 11b.
  • the light emitted from the first main surface 3b is totally reflected by the second main surface 3b, propagates, and is emitted from the first end surface 3c. Therefore, it is possible to confirm whether or not a defect has occurred in the shape light guide 3 by monitoring the power generation amount of the solar cell element 5 by this light irradiation.
  • the second light source 11b constituting the light source 11 emits light having a predetermined diffusion angle, it is possible to propagate the light emitted from the second light source 11b to the inside of the shape light guide 3 over a wide range. it can. Therefore, the state of the light guide of the shape light guide 3 (whether the shape light guide 3 has defects such as defects or deterioration) can be confirmed over a wide range.
  • the imaging element 13 that images the first main surface 4a of the fluorescent light guide 4 since the imaging element 13 that images the first main surface 4a of the fluorescent light guide 4 is included, the degree of contamination of the first main surface 4a of the fluorescent light guide 4 can be monitored. Therefore, it can be confirmed whether or not the degree of contamination of the first main surface 4a of the fluorescent light guide 4 is a cause of the malfunction of the fluorescent light guide 4.
  • the present invention is not limited thereto.
  • the shape light guide 3 and the fluorescent light guide 4 may be laminated in this order from the light incident side.
  • the fluorescent light guide 4 By arranging the fluorescent light guide 4 at a position farthest from the side on which the first light is incident from the outside among the plurality of light guides, strong external light is prevented from directly entering the fluorescent light guide 4. Can do. Therefore, the phosphor contained in the fluorescent light guide 4 is suppressed from being deteriorated by strong external light, and a stable power generation amount can be obtained over a long period of time.
  • the fluorescent light guide 4 it is desirable to provide a reflective layer for reflecting the fluorescence emitted from the phosphor on the end face other than the second end face 4d of the fluorescent light guide 4 and the first end face 4c of the fluorescent light guide 4.
  • the solar cell module has been described with an example of a so-called tandem structure including both a fluorescent light guide and a shape light guide.
  • the present invention is not limited to this.
  • the solar cell module may include only the fluorescent light guide or only the shape light guide. That is, the tandem structure is not necessarily required.
  • FIG. 9A to 11 are diagrams showing simulation results of light extraction efficiency in the shape light guide 3 and the fluorescent light guide 4.
  • FIG. 9A to 11 are diagrams showing simulation results of light extraction efficiency in the shape light guide 3 and the fluorescent light guide 4.
  • FIG. 9A is a diagram showing the light extraction efficiency of the fluorescent light guide 4.
  • the proportion of light having a wavelength of 620 nm or less in the spectrum of sunlight is 48%. Therefore, the proportion of light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is 48% of the light incident on the first main surface 4a. 52% of the light that has not been absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c passes through the second main surface 4b and is emitted to the outside of the fluorescence light guide 4.
  • the fluorescence quantum yields of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are all 92%. Therefore, 92% of the light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is converted into fluorescence. The fluorescence propagates through the fluorescent light guide 4 and is emitted from the first end face 4c.
  • the ratio of the light leaking outside the fluorescent light guide 4 without being totally reflected by the first main surface 4a and the second main surface 4b due to the difference in refractive index between the fluorescent light guide 4 and the surrounding air layer is Since the loss of light when propagating inside the fluorescent light guide 4 is 25%, the ratio of the light emitted from the first end face 4c is 30% of the light incident on the first main surface 4a. Become.
  • FIG. 9B is a diagram showing the light extraction efficiency of the shape light guide 3.
  • a part of the light incident perpendicularly to the first main surface 3a of the shape light guide 3 is reflected by the inclined surface of the groove T provided on the second main surface 3b, and the first inside the shape light guide 3 It propagates toward the end face 3c.
  • the ratio of the light reflected by the inclined surface of the groove T is 40% of the light incident on the first main surface 3a.
  • the remaining 60% of light passes through the second main surface 3b and is emitted to the outside of the shape light guide 3.
  • a part of the light propagating in the shape light guide 3 is refracted on the inclined surface of the groove T on the way, and leaks out of the shape light guide 3 outside the total reflection condition. Therefore, the ratio of the light emitted from the first end surface 3c is 12% of the light incident on the first main surface 3a.
  • FIG. 10 is a diagram showing the light extraction efficiency when the fluorescent light guide 4 and the shape light guide 3 are stacked in this order from the light incident side.
  • the fluorescent light guide 4 converts 30% of the light incident on the first main surface 4a into fluorescence and emits it from the first end surface 4c, and 52% of the light incident on the first main surface 4a generates the second main surface. Inject from 4b.
  • the shape light guide 3 emits 12% of the light incident perpendicularly to the first main surface 3a from the first end surface 3c. Therefore, the ratio of the light emitted from the first end surface 4 c of the fluorescent light guide 4 is 30% of the light incident on the first main surface 4 a of the fluorescent light guide 4.
  • the ratio of the light emitted from the first end surface 3 c of the shape light guide 3 is 6% of the light incident on the first main surface 4 a of the fluorescent light guide 4.
  • the power generation efficiency is 15%.
  • 6% of the light incident on the first main surface 4a of the fluorescent light guide 4 reaches the first end surface 3c of the shape light guide 3, and power is generated by the solar cell element 5 having a conversion efficiency of 40%. Therefore, the power generation efficiency is 2.4%.
  • the total power generation efficiency so far is 17.4%.
  • the light reflected by the reflective layers 7 and 9 can be reused, which improves the power generation efficiency by 1 to 2%, resulting in a power generation efficiency of about 19%.
  • FIG. 11 is a diagram showing the light extraction efficiency when the shape light guide 3 and the fluorescent light guide 4 are laminated in this order from the light incident side.
  • the shape light guide 3 emits 12% of the light incident perpendicularly to the first main surface 3a from the first end surface 3c, and 60% of the light incident perpendicularly to the first main surface 3a. It injects from the 2nd main surface 3b.
  • the fluorescent light guide 4 converts 30% of the light incident on the first main surface 4a into fluorescence and emits the light from the first end surface 4c. Therefore, the ratio of the light emitted from the first end surface 3 c of the shape light guide 3 is 12% of the light incident on the first main surface 3 a of the shape light guide 3, and the first end surface of the fluorescence light guide 4.
  • the ratio of the light emitted from 4c is 18% of the light incident on the first main surface 3a of the shape light guide 3. Then, 12% of the light incident on the first main surface 3a of the shape light guide 3 reaches the first end surface 3c of the shape light guide 3, and power is generated by the solar cell element 5 having a conversion efficiency of 40%. Therefore, the power generation efficiency is 4.8%. Further, 18% of the light incident on the first main surface 3a of the shape light guide 3 reaches the first end surface 4c of the fluorescent light guide 4 and is generated by the solar cell element 6 having a conversion efficiency of 50%. Therefore, the power generation efficiency is 9%. The total power generation efficiency so far is 13.8%. Furthermore, since the light reflected by the reflective layers 7 and 9 can be reused, the power generation efficiency is improved by 1 to 2%, and as a result, the power generation efficiency of about 15% is obtained.
  • FIG. 12 is a schematic configuration diagram of the solar power generation device 120 of the second embodiment.
  • the fluorescent light guide 4, the solar cell element 6, the light source 12, the image sensor 13, and the frame body 10 are omitted for convenience.
  • the solar power generation device 120 includes a solar cell module 20, a power control device 21 (power conditioner), and a power distributor 22.
  • the power distributor 22 is electrically connected to an external electronic device (used device) 23 and the light source 11.
  • the basic configuration of the solar cell module 20 of this embodiment is the same as that of the solar cell module 1 of the first embodiment, and the first point is that the light source 11 emits the second light by the current generated by the solar cell element 5. Different from the solar cell module 1 of the embodiment.
  • FIG. 12 the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the power control device 21 is electrically connected to the solar cell element 5.
  • the power control device 21 has a function of converting direct current generated by the solar cell element 5 into alternating current and further adjusting voltage, current, frequency, and the like.
  • the power control device 21 adjusts the current generated by the solar cell element 5 so that it can be used by the external electronic device 23.
  • the power distributor 22 is electrically connected to the power control device 21, the light source 11, and the electronic device 23.
  • the power distributor 22 has a function of distributing the current adjusted by the power control device 21.
  • the power distributor 22 sends a part of the current adjusted by the power control device 21 to the electronic device 23 and sends the remaining part to the light source 11.
  • the current used for the light source 11 is very small compared to the current generated by the solar cell element 5. For this reason, it is possible to monitor the solar cell module 20 by emitting the reference light as the second light from the light source 11 by distributing a small portion of the power generation amount of the solar cell element 5 to the light source 11. .
  • the light source 11 emits the second light by the current generated by the solar cell element 5
  • the power supply device is separately and independently provided. There is no need to provide it. Therefore, the use cost and the manufacturing cost can be reduced.
  • the solar power generation device 120 includes the above-described solar cell module according to the present invention, it is a solar power generation device with high power generation efficiency.
  • FIG. 13 is a schematic configuration diagram of the solar power generation device 130 of the third embodiment.
  • the fluorescent light guide 4, the solar cell element 6, the light source 12, the image sensor 13, and the frame body 10 are omitted for convenience.
  • the solar power generation device 130 includes a solar cell module 30, a power control device 21 (power conditioner), and a power distributor 22.
  • the basic configuration of the solar cell module 30 of the present embodiment is the same as that of the solar cell module 20 of the second embodiment, and the solar cell of the second embodiment is that it includes a storage battery 31 that stores the current generated by the solar cell element 5. Different from module 20.
  • the same reference numerals are given to the same components as those in FIG. 12 used in the second embodiment, and description thereof is omitted.
  • the power distributor 22 is electrically connected to the power control device 21, the light source 11, the storage battery 31, and the electronic device 23.
  • the power distributor 22 sends a part of the current adjusted by the power control device 21 to the electronic device 23 and sends the remaining part to the light source 11 and the storage battery 31.
  • the storage battery 31 is electrically connected to the power distributor 22 and the light source 11.
  • the storage battery 31 has a function of storing a current generated by the solar cell element 5.
  • the light source 11 emits the second light by the current stored in the storage battery 31.
  • the solar cell module 30 of this embodiment includes the storage battery 31, the second light can always be emitted from the light source 11. For example, when the amount of light incident on the shape light guide 3 is extremely small, such as at night or in fine weather, the current generated by the solar cell element 5 may be very small, and a sufficient amount of current may not be distributed to the light source 11. There is. However, since the storage battery 31 is provided in the present embodiment, the second light is emitted from the light source 11 by the current stored in the storage battery 31 even when the light incident on the shape light guide 3 is extremely small. Can be injected. Therefore, the solar cell module 30 can be monitored when necessary regardless of the weather.
  • FIG. 14 is a cross-sectional view of the solar cell module 40 of the fourth embodiment.
  • the basic configuration of the solar cell module 40 of the present embodiment is the same as that of the solar cell module 1 of the first embodiment, and the light sources 41 and 42 and the image sensor 43 are detachable from the light guide unit 2. Is different from the solar cell module 1 of the first embodiment.
  • FIG. 14 the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the solar cell module 40 includes a light guide unit 2 formed by laminating a shape light guide 3 and a fluorescent light guide 4, a solar cell element 5, a solar cell element 6, and a light source. And a unit 45.
  • the light source unit 45 includes a light source 41, a light source 42, and an image sensor 43.
  • the light source unit 45 is detachable from the light guide unit 2. That is, by attaching the light source unit 45 to the light guide unit 2, the light source 41 is disposed so as to emit the second light toward the first end surface 3c while propagating through the inside of the shape light guide 3. 42 is disposed so as to emit the second light toward the first end face 4 c while propagating through the inside of the fluorescent light guide 4, and the imaging element 43 images the first main surface 3 a of the shape light guide 3.
  • the imaging element 43 images the first main surface 3 a of the shape light guide 3.
  • the light source unit 45 (the light sources 41 and 42 and the image sensor 43) can be attached to and detached from the light guide unit 2. Therefore, the solar cell module 40 can be monitored as necessary. It can be performed. Moreover, since it is not necessary to install the light source unit 45 in each light guide unit 2, manufacturing cost can be reduced.
  • FIG. 15 is a schematic plan view of the solar cell module 50 of the fifth embodiment.
  • illustration of the shape light guide 3, the solar cell element 5, the light source 11, the image pick-up element 13, and the frame 10 is abbreviate
  • the basic configuration of the solar cell module 50 of the present embodiment is the same as that of the solar cell module 1 of the first embodiment, and is different from the solar cell module 1 of the first embodiment in that a plurality of light sources 52 are arranged.
  • FIG. 15 the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the solar cell module 50 includes a fluorescent light guide 4, a plurality of light sources 52, and a solar cell element 6.
  • the plurality of light sources 52 are arranged on the end face other than the first end face 4 c of the fluorescent light guide 4.
  • three light sources 52 are provided on the second end face 4d facing the first end face 4c, three on the third end face 4e adjacent to the second end face 4d, and a fourth end face 4f facing the third end face 4e.
  • the number of light sources 52 arranged is not limited to nine, but may be 2 to 8, or 10 or more.
  • the light source 52 emits light having a wavelength that excites the phosphor (light having a wavelength within a wavelength range that excites the phosphor, for example, light having a wavelength of 620 nm or less).
  • the light source 52 is a directional ultraviolet LED whose diffusion angle is within a predetermined diffusion angle range (for example, within 20 degrees).
  • a part of the light emitted from the light source 52 is absorbed by the phosphor in the process of propagating through the fluorescent light guide 4.
  • the fluorescence emitted from the phosphor propagates inside the fluorescence light guide 4 and enters the solar cell element 6.
  • the light guide state of the fluorescent light guide 4 (whether the fluorescent material has defects such as defects or deterioration) is extensive. Can be confirmed. Therefore, the accuracy of monitoring the fluorescent light guide 4 can be increased.
  • ultraviolet light is absorbed by the phosphor in the process of propagating through the inside of the fluorescent light guide 4, and the intensity of the ultraviolet light is attenuated. It becomes difficult to confirm the state of the light guide in a wide range.
  • this embodiment gave and demonstrated the example in which the some light source 52 was arrange
  • a plurality of light sources may be arranged on an end surface other than the first end surface 3 c of the shape light guide 3. Thereby, the state of the light guide of the shape light guide 3 can be confirmed in a wide range.
  • FIG. 16 is a cross-sectional view of the solar cell module 60 of the sixth embodiment.
  • illustration of the shape light guide 3, the solar cell element 5, the light source 11, the image pick-up element 13, and the frame 10 is abbreviate
  • the basic configuration of the solar cell module 60 of the present embodiment is the same as that of the solar cell module 1 of the first embodiment, and a light receiving element 61 that receives light emitted from the light source 12 is provided on the fluorescent light guide 4. The point is different from the solar cell module 1 of the first embodiment.
  • FIG. 16 the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the solar cell module 60 includes a fluorescent light guide 4, a light source 12, and a light receiving element 61.
  • a light receiving element 61 is provided as a mechanism for monitoring the light guide state of the fluorescent light guide 4 separately from the solar cell element 6.
  • FIGS. 17A and 17B are diagrams showing the transmission characteristics of the fluorescent light guide 4.
  • FIGS. 17A and 17B show changes in the spectrum of light emitted from the first end face of the fluorescent light guide 4 in which a plurality of fluorescent materials are dispersed (hereinafter sometimes simply referred to as emission spectrum).
  • the arrows indicate the degree of progress of phosphor degradation (a state in which phosphor degradation progresses as it approaches the tip of the arrow).
  • FIG. 17A is a diagram when the shape of the emission spectrum hardly changes.
  • FIG. 17B is a diagram when the shape of the emission spectrum changes greatly. In this embodiment, that the shape of the emission spectrum does not change means that the position of the peak of the emission spectrum does not change.
  • the fluorescence light guide 4 has a reduced degree of absorption of phosphor light (wavelength of light that excites the phosphor) as the phosphor dispersed therein progresses.
  • Light transmittance increases.
  • FIG. 17A although the shape of the emission spectrum hardly changes even when the phosphor deteriorates, the light transmittance increases in each wavelength region.
  • FIG. 17B the shape of the emission spectrum may change greatly as the phosphor deteriorates, but the light transmittance increases in the peak wavelength region. In both cases where the shape of the emission spectrum hardly changes and when the shape of the emission spectrum changes greatly, the degree of light absorption of the phosphor decreases as the phosphor deteriorates. That is, it is common that the light transmittance of the fluorescent light guide 4 is increased in both cases where the shape of the emission spectrum hardly changes and when the shape of the emission spectrum changes greatly. .
  • the light receiving element 61 is disposed in a portion adjacent to the second end face 4 d of the second main surface 4 b of the fluorescent light guide 4.
  • the light receiving element 61 is, for example, a photosensor, and is disposed with the light receiving surface facing the second main surface 4b.
  • the light source 12 is an LED that emits light having a high absorption rate of each of the RGB phosphors (typical absorption wavelengths of the RGB phosphors: about 580 nm, 450 nm, and 380 nm).
  • the light source 12 is arranged so that light emitted from the light source 12 is directly incident on the light receiving element 61.
  • the light receiving surface of the light receiving element 61 is provided with a filter (not shown) that transmits only the light emitted from the light source 12. As a result, the light receiving element 61 senses only the light emitted from the light source 12. The light receiving element 61 monitors the degree of light absorption of the phosphor, not the light emission of the phosphor. By monitoring the change in the light transmittance of the fluorescent light guide 4 by the light receiving element 61, it is possible to confirm the deterioration of the fluorescent material.
  • the solar cell module 60 of the present embodiment includes the light receiving element 61, even if the characteristics of the solar cell element 6 are not normal, the light guide state of the fluorescent light guide 4 (the phosphor is defective or It is possible to reliably confirm whether or not a malfunction such as deterioration has occurred. Therefore, the monitoring reliability of the fluorescent light guide 4 can be improved.
  • FIG. 18 is a cross-sectional view of a solar cell module 60A according to a first modification of the sixth embodiment.
  • illustration of the shape light guide 3, the solar cell element 5, the light source 11, the image pick-up element 13, and the frame 10 is abbreviate
  • the basic configuration of the solar cell module 60A of the present embodiment is the same as that of the solar cell module 60 of the sixth embodiment, and only the arrangement position of the light receiving element 61A is different from that of the solar cell module 60 of the sixth embodiment.
  • symbol is attached
  • the solar cell module 60A includes a fluorescent light guide 4, a light source 12, and a light receiving element 61A.
  • the light receiving element 61A is disposed on a part of the installation part of the solar cell element 6 (a part adjacent to the second main surface 4b in the first end surface 4c of the fluorescent light guide 4).
  • the light receiving element 61A is, for example, a photosensor, and is disposed with the light receiving surface facing the first end surface 4c.
  • the light source 12 is an LED that emits light having a high absorption rate of each of the RGB phosphors (typical absorption wavelengths of the RGB phosphors: about 580 nm, 450 nm, and 380 nm).
  • the light source 12 is disposed so that light emitted from the light source 12 enters the second main surface 4b.
  • the light emitted from the light source 12 propagates through the fluorescent light guide 4 while repeating total reflection at the second main surface 4b and total reflection at the first main surface 4a, and enters the light receiving element 61A.
  • a filter (not shown) that transmits only the light emitted from the light source 12 is provided on the light receiving surface of the light receiving element 61A. Accordingly, the light receiving element 61A senses only the light emitted from the light source 12. The light receiving element 61A monitors the degree of light absorption of the phosphor, not the light emission of the phosphor. By monitoring the change in the light transmittance of the fluorescent light guide 4 by the light receiving element 61A, it is possible to confirm the deterioration of the fluorescent material.
  • the solar cell module 60A of the present modification also includes the light receiving element 61A, even if the characteristics of the solar cell element 6 are not normal, the light guide state of the fluorescent light guide 4 (defective phosphor) Whether or not there is a problem such as deterioration or deterioration). Therefore, the monitoring reliability of the fluorescent light guide 4 can be improved.
  • FIG. 19 is a cross-sectional view of the solar cell module 70 of the seventh embodiment.
  • the fluorescent light guide 4, the solar cell element 6, the light source 12, the image sensor 13, and the frame body 10 are omitted for convenience.
  • the basic configuration of the solar cell module 70 of the present embodiment is the same as that of the solar cell module 1 of the first embodiment, and is different from the solar cell module 1 of the first embodiment in that a light source 71 is rotatably provided.
  • a light source 71 is rotatably provided in FIG. 19, the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the solar cell module 70 includes a shape light guide 3, a light source 71, and a solar cell element 5.
  • the light source 11 is a laser light source that emits laser light (emission intensity peak: about 633 nm) as the second light.
  • the light source 11 is rotatably provided so that the incident angle ⁇ of the laser light emitted from the light source 11 to the shape light guide 3 changes.
  • the incident angle ⁇ is set small (for example, approximately 0 degrees)
  • the laser light emitted from the light source 11 is directly incident on the first end face 3c.
  • the incident angle ⁇ is set large (for example, approximately 20 degrees)
  • the laser light emitted from the light source 11 enters the second main surface 3b.
  • Light emitted from the light source 11 propagates through the shape light guide 3 while repeating total reflection on the second main surface 3 b and total reflection on the first main surface 3 a, and enters the solar cell element 5. .
  • the incident angle ⁇ can be finely changed when monitoring the light guide state of the shape light guide 3. Therefore, it is possible to accurately analyze a defective part in the shape light guide 3.
  • the aspect of the present invention can be used for a solar cell module and a solar power generation device.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Planar Illumination Modules (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This solar cell module includes: a light guide body, which propagates first light inputted from a first main surface to a first end surface; a solar cell element, which receives the first light outputted from the first end surface of the light guide body, and generates a current; and a light source, which outputs second light that propagates toward the first end surface in the light guide body.

Description

太陽電池モジュール、太陽光発電装置Solar cell module, solar power generator
 本発明は、太陽電池モジュール、太陽光発電装置に関するものである。
 本願は、2011年4月20日に、日本に出願された特願2011-094424号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solar cell module and a solar power generation device.
This application claims priority based on Japanese Patent Application No. 2011-094424 filed in Japan on April 20, 2011, the contents of which are incorporated herein by reference.
 入射した太陽光を太陽電池素子に導くための導光体を備えた太陽電池モジュールが提案されている(下記の特許文献1参照)。特許文献1に記載の太陽電池モジュールは、複数のV字状溝が形成された、側面形状が略直角三角形の導光体を備え、当該導光体の端面に太陽電池素子が取り付けられている。 A solar cell module including a light guide for guiding incident sunlight to a solar cell element has been proposed (see Patent Document 1 below). The solar cell module described in Patent Document 1 includes a light guide body having a substantially right triangular shape in which a plurality of V-shaped grooves are formed, and a solar cell element is attached to an end surface of the light guide body. .
特開2004-47752号公報JP 2004-47752 A
 特許文献1の太陽電池モジュールにおいては、製造過程や長期間の使用により導光体の汚染や劣化などの不具合が生じた場合であっても、不具合を検知できる構成とはなっていない。そのため、不具合が生じた状態で太陽電池モジュールを使用することがある。不具合が生じた状態で太陽電池モジュールを使用すると、太陽電池素子への入光効率が低下し、発電効率が低下してしまう。 The solar cell module of Patent Document 1 is not configured to detect a defect even when a defect such as contamination or deterioration of the light guide occurs due to a manufacturing process or long-term use. Therefore, a solar cell module may be used in the state where a malfunction has occurred. If the solar cell module is used in a state where a defect has occurred, the light incident efficiency to the solar cell element is lowered, and the power generation efficiency is lowered.
 本発明の態様は、上記の課題を解決するためになされたものであって、発電効率の低下を抑えることが可能な太陽電池モジュールおよびこれを用いた太陽光発電装置の提供を目的とする。 An aspect of the present invention has been made to solve the above-described problem, and an object thereof is to provide a solar cell module capable of suppressing a decrease in power generation efficiency and a solar power generation device using the solar cell module.
 上記の目的を達成するために、本発明の一態様における太陽電池モジュールは、第1主面から入射した第1の光を第1端面に伝播させる導光体と、前記導光体の前記第1端面から射出された第1の光を受光して電流を生成する太陽電池素子と、前記導光体の内部を前記第1端面に向けて伝播する第2の光を射出する光源と、を含む。 In order to achieve the above object, a solar cell module according to one aspect of the present invention includes a light guide that propagates first light incident from a first main surface to a first end surface, and the first of the light guides. A solar cell element that receives a first light emitted from one end face and generates a current; and a light source that emits a second light propagating through the light guide toward the first end face. Including.
 本発明の一態様における太陽電池モジュールにおいて、前記導光体は、前記第1主面から入射した第1の光を第2主面に設けられた傾斜面で反射して伝播させて前記第1端面から射出する形状導光体を含んでいてもよい。 In the solar cell module according to one aspect of the present invention, the light guide reflects and propagates the first light incident from the first main surface by an inclined surface provided on the second main surface. You may include the shape light guide inject | emitted from an end surface.
 本発明の一態様における太陽電池モジュールにおいて、前記導光体は、蛍光体を含む蛍光導光体を含み、前記蛍光導光体は、前記第1主面から入射した第1の光の一部を前記蛍光体によって吸収し、前記蛍光体から放射された蛍光を伝播させて前記第1端面から射出してもよい。 In the solar cell module according to one aspect of the present invention, the light guide includes a fluorescent light guide including a phosphor, and the fluorescent light guide is part of the first light incident from the first main surface. May be absorbed by the phosphor, and the fluorescence emitted from the phosphor may be propagated and emitted from the first end face.
 本発明の一態様における太陽電池モジュールにおいて、前記蛍光導光体は、前記蛍光体として、吸収スペクトルのピーク波長が異なる複数の蛍光体を含んでいてもよい。 In the solar cell module according to one aspect of the present invention, the fluorescent light guide may include a plurality of fluorescent materials having different peak wavelengths of absorption spectra as the fluorescent material.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、前記蛍光体を励起させない波長の光を射出してもよい。 In the solar cell module according to an aspect of the present invention, the light source may emit light having a wavelength that does not excite the phosphor.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、前記蛍光体を励起させる波長の光を射出してもよい。 In the solar cell module according to an aspect of the present invention, the light source may emit light having a wavelength that excites the phosphor.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、前記導光体の前記第1端面と対向する第2端面に配置されていてもよい。 In the solar cell module according to one aspect of the present invention, the light source may be disposed on a second end surface facing the first end surface of the light guide.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、前記第2の光としてレーザー光を射出するレーザー光源であり、前記レーザー光が前記第1端面に直接入射するように配置されていてもよい。 In the solar cell module according to one aspect of the present invention, the light source is a laser light source that emits laser light as the second light, and the laser light may be arranged to directly enter the first end surface. Good.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、前記第2の光としてレーザー光を射出するレーザー光源であり、前記レーザー光が前記第2主面に入射するように配置されており、前記導光体は、前記レーザー光源から射出されたレーザー光を前記第2主面で全反射させて伝播させて前記第1端面から射出してもよい。 In the solar cell module according to an aspect of the present invention, the light source is a laser light source that emits laser light as the second light, and the laser light is arranged to be incident on the second main surface, The light guide may emit the laser beam emitted from the laser light source by being totally reflected by the second main surface and propagating from the first end surface.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、前記第2の光として所定の拡散角を有する光を射出してもよい。 In the solar cell module according to an aspect of the present invention, the light source may emit light having a predetermined diffusion angle as the second light.
 本発明の一態様における太陽電池モジュールは、さらに、前記導光体の第1主面を撮像する撮像素子を含んでいてもよい。 The solar cell module according to an aspect of the present invention may further include an image sensor that images the first main surface of the light guide.
 本発明の一態様における太陽電池モジュールにおいて、前記撮像素子は、前記導光体に対して着脱可能になっていてもよい。 In the solar cell module according to one aspect of the present invention, the imaging element may be detachable from the light guide.
 本発明の一態様における太陽電池モジュールにおいて、前記導光体は複数の導光体を含み、前記複数の導光体は、互いの第1主面と第2主面とを対向させて積層されるとともに第1端面同士が同じ方向を向くように配置されており、前記複数の導光体には、前記第1主面から入射した第1の光を前記第1主面とは異なる第2主面に設けられた傾斜面で反射して伝播させて前記第1端面から射出する形状導光体と、蛍光体を含み、前記第1主面から入射した第1の光の一部を前記蛍光体によって吸収し、前記蛍光体から放射された蛍光を伝播させて前記第1端面から射出する蛍光導光体と、が含まれていてもよい。 In the solar cell module according to one aspect of the present invention, the light guide includes a plurality of light guides, and the plurality of light guides are stacked with the first main surface and the second main surface facing each other. The first end faces are arranged in the same direction, and the first light incident from the first main surface is different from the first main surface to the plurality of light guides. A shape light guide that is reflected and propagated by an inclined surface provided on the main surface and is emitted from the first end surface, and a phosphor, and a part of the first light incident from the first main surface is And a fluorescent light guide that is absorbed by the fluorescent material and propagates the fluorescent light emitted from the fluorescent material and exits from the first end face.
 本発明の一態様における太陽電池モジュールにおいて、前記複数の導光体のうち外部から第1の光が入射する側から最も遠い位置に配置された導光体は、前記蛍光導光体であってもよい。 In the solar cell module according to an aspect of the present invention, the light guide disposed at a position farthest from the side on which the first light enters from the outside among the plurality of light guides is the fluorescent light guide. Also good.
 本発明の一態様における太陽電池モジュールにおいて、前記蛍光導光体の第2主面並びに前記蛍光導光体の前記第1端面以外の端面には、前記蛍光体から放射された蛍光を反射する反射層が設けられていてもよい。 In the solar cell module according to the aspect of the present invention, the second main surface of the fluorescent light guide and the end surface other than the first end surface of the fluorescent light guide reflect the fluorescence emitted from the fluorescent material. A layer may be provided.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、前記太陽電池素子によって発電された電流によって前記第2の光を射出してもよい。 In the solar cell module according to an aspect of the present invention, the light source may emit the second light by a current generated by the solar cell element.
 本発明の一態様における太陽電池モジュールは、さらに、前記太陽電池素子によって発電された電流を蓄える蓄電池を含み、前記光源は、前記蓄電池に蓄えられた電流によって前記第2の光を射出してもよい。 The solar cell module in one aspect of the present invention further includes a storage battery that stores a current generated by the solar cell element, and the light source emits the second light by the current stored in the storage battery. Good.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、前記導光体に対して着脱可能になっていてもよい。 In the solar cell module according to one aspect of the present invention, the light source may be detachable from the light guide.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、前記導光体の第1端面以外の端面に複数配置されていてもよい。 In the solar cell module according to an aspect of the present invention, a plurality of the light sources may be arranged on an end surface other than the first end surface of the light guide.
 本発明の一態様における太陽電池モジュールにおいて、前記導光体には、前記光源から射出された第2の光を受光する受光素子が設けられていてもよい。 In the solar cell module according to one aspect of the present invention, the light guide may be provided with a light receiving element that receives the second light emitted from the light source.
 本発明の一態様における太陽電池モジュールにおいて、前記光源は、当該光源から射出される第2の光の前記導光体への入射角が変化するよう回転自在に設けられていてもよい。 In the solar cell module according to one aspect of the present invention, the light source may be rotatably provided so that an incident angle of the second light emitted from the light source to the light guide body is changed.
 本発明の他の態様における太陽光発電装置は、上記本発明の太陽電池モジュールを備えている。 A solar power generation device according to another aspect of the present invention includes the solar cell module of the present invention.
 本発明の態様によれば、発電効率の低下を抑えることが可能な太陽電池モジュールおよび太陽光発電装置を提供することができる。 According to the aspect of the present invention, it is possible to provide a solar cell module and a solar power generation device that can suppress a decrease in power generation efficiency.
第1実施形態の太陽電池モジュールの概略斜視図である。It is a schematic perspective view of the solar cell module of 1st Embodiment. 太陽電池モジュールの断面図である。It is sectional drawing of a solar cell module. 太陽電池モジュールの断面図である。It is sectional drawing of a solar cell module. 蛍光体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of fluorescent substance. 蛍光体の吸収特性を示す図である。It is a figure which shows the absorption characteristic of fluorescent substance. 蛍光体の発光特性を示す図である。It is a figure which shows the light emission characteristic of fluorescent substance. 蛍光体の発光特性を示す図である。It is a figure which shows the light emission characteristic of fluorescent substance. 光源からの第2の光が形状導光体を伝播する様子を示す図である。It is a figure which shows a mode that the 2nd light from a light source propagates a shape light guide. 光源からの第2の光が形状導光体を伝播する様子を示す図である。It is a figure which shows a mode that the 2nd light from a light source propagates a shape light guide. 光源からの第2の光が蛍光導光体を伝播する様子を示す図である。It is a figure which shows a mode that the 2nd light from a light source propagates a fluorescence light guide. 光源からの第2の光が蛍光導光体を伝播する様子を示す図である。It is a figure which shows a mode that the 2nd light from a light source propagates a fluorescence light guide. 蛍光導光体の光の取り出し効率を示す図である。It is a figure which shows the extraction efficiency of the light of a fluorescence light guide. 形状導光体の光の取り出し効率を示す図である。It is a figure which shows the extraction efficiency of the light of a shape light guide. 光の入射側から蛍光導光体と形状導光体をこの順に積層した場合の光の取り出し効率を示す図である。It is a figure which shows the light extraction efficiency at the time of laminating | stacking a fluorescence light guide and a shape light guide in this order from the incident side of light. 光の入射側から形状導光体と蛍光導光体をこの順に積層した場合の光の取り出し効率を示す図である。It is a figure which shows the light extraction efficiency at the time of laminating | stacking a shape light guide and a fluorescence light guide in this order from the incident side of light. 第2実施形態の太陽光発電装置の概略構成図である。It is a schematic block diagram of the solar power generation device of 2nd Embodiment. 第3実施形態の太陽光発電装置の概略構成図である。It is a schematic block diagram of the solar power generation device of 3rd Embodiment. 第4実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 4th Embodiment. 第5実施形態の太陽電池モジュールの概略平面図である。It is a schematic plan view of the solar cell module of 5th Embodiment. 第6実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 6th Embodiment. 蛍光導光体の透過特性を示す図である。It is a figure which shows the permeation | transmission characteristic of a fluorescence light guide. 蛍光導光体の透過特性を示す図である。It is a figure which shows the permeation | transmission characteristic of a fluorescence light guide. 第6実施形態の第1変形例に係る太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module which concerns on the 1st modification of 6th Embodiment. 第7実施形態の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module of 7th Embodiment.
[第1実施形態]
 図1は、第1実施形態の太陽電池モジュール1の概略斜視図である。
[First embodiment]
FIG. 1 is a schematic perspective view of the solar cell module 1 of the first embodiment.
 太陽電池モジュール1は、導光体ユニット2と、太陽電池素子5と、太陽電池素子6と、光源11と、光源12と、撮像素子13と、枠体10と、を備えている。導光体ユニット2は、形状導光体3と蛍光導光体4とを積層してなる。太陽電池素子5は、形状導光体3の第1端面3cから射出された光を受光する。太陽電池素子6は、蛍光導光体4の第1端面4cから射出された光を受光する。光源11は、形状導光体3の内部を伝播させつつ第1端面3cに向けて光を射出する。光源12は、蛍光導光体4の内部を伝播させつつ第1端面4cに向けて光を射出する。撮像素子13は、蛍光導光体4の第1主面4aを撮像する。枠体10は、導光体ユニット2と太陽電池素子5と太陽電池素子6と光源11と光源12と撮像素子13とを一体に保持する。 The solar cell module 1 includes a light guide unit 2, a solar cell element 5, a solar cell element 6, a light source 11, a light source 12, an imaging element 13, and a frame body 10. The light guide unit 2 is formed by laminating a shape light guide 3 and a fluorescent light guide 4. The solar cell element 5 receives light emitted from the first end surface 3 c of the shape light guide 3. The solar cell element 6 receives light emitted from the first end face 4 c of the fluorescent light guide 4. The light source 11 emits light toward the first end surface 3 c while propagating through the shape light guide 3. The light source 12 emits light toward the first end face 4 c while propagating through the fluorescent light guide 4. The imaging element 13 images the first main surface 4 a of the fluorescent light guide 4. The frame 10 integrally holds the light guide unit 2, the solar cell element 5, the solar cell element 6, the light source 11, the light source 12, and the imaging element 13.
 形状導光体3は、光入射面である第1主面3aと、第1主面3aと対向する第2主面3bと、光射出面である第1端面3cと、を備えている。蛍光導光体4は、光入射面である第1主面4aと、第1主面4aと対向する第2主面4bと、光射出面である第1端面4cと、を備えている。形状導光体3と蛍光導光体4とは、形状導光体3の第1主面3aと蛍光導光体4の第2主面4bとが対向するように、形状導光体3及び蛍光導光体4よりも屈折率の小さい空気層K(低屈折率層)を介してZ方向に積層されている。 The shape light guide 3 includes a first main surface 3a that is a light incident surface, a second main surface 3b that faces the first main surface 3a, and a first end surface 3c that is a light emission surface. The fluorescent light guide 4 includes a first main surface 4a that is a light incident surface, a second main surface 4b that faces the first main surface 4a, and a first end surface 4c that is a light emission surface. The shape light guide 3 and the fluorescence light guide 4 are formed such that the first main surface 3a of the shape light guide 3 and the second main surface 4b of the fluorescence light guide 4 face each other. It is laminated in the Z direction via an air layer K (low refractive index layer) having a refractive index smaller than that of the fluorescent light guide 4.
 形状導光体3の第1主面3aと蛍光導光体4の第1主面4aは、互いに同じ方向(光入射側:-Z方向)を向いている。形状導光体3と蛍光導光体4とを光Lの入射方向に沿って積層することで、前段側(光Lが入射する側に近い側)の蛍光導光体4で取り込めなかった光を後段側(光Lが入射する側から遠い側)の形状導光体3で取り込むことが可能となる。 The first main surface 3a of the shape light guide 3 and the first main surface 4a of the fluorescent light guide 4 face each other in the same direction (light incident side: -Z direction). By stacking the shape light guide 3 and the fluorescence light guide 4 along the incident direction of the light L, the light that could not be captured by the fluorescence light guide 4 on the previous stage side (side closer to the light L incident side). Can be captured by the shape light guide 3 on the rear stage side (the side far from the light incident side).
 形状導光体3の第1端面3cと蛍光導光体4の第1端面4cは、互いに同じ向きを向いている。形状導光体3の第1端面3cと蛍光導光体4の第1端面4cは、XZ平面と平行な同一平面上に配置されている。このため、形状導光体3の第1端面3cから射出された光を受光する太陽電池素子5と蛍光導光体4の第1端面4cから射出された光を受光する太陽電池素子6とを一箇所に配置することができるようになっている。 The first end surface 3c of the shape light guide 3 and the first end surface 4c of the fluorescent light guide 4 are oriented in the same direction. The first end face 3c of the shape light guide 3 and the first end face 4c of the fluorescent light guide 4 are arranged on the same plane parallel to the XZ plane. For this reason, the solar cell element 5 that receives the light emitted from the first end surface 3c of the shape light guide 3 and the solar cell element 6 that receives the light emitted from the first end surface 4c of the fluorescent light guide 4 are provided. It can be placed in one place.
 形状導光体3は、Z軸に垂直な(XY平面と平行な)第1主面3a及び第2主面3bを有する略矩形の板状部材である。形状導光体3としては、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料が用いられる。形状導光体3の寸法は、一例として、第1主面3aとなる矩形の縦横(図1のx軸方向およびy軸方向)の寸法が100mm×100mmであり、厚み(図1のz軸方向の寸法)が10mmである。なお、縦横の寸法、厚みはこれに限定されない。 The shape light guide 3 is a substantially rectangular plate-like member having a first main surface 3a and a second main surface 3b perpendicular to the Z axis (parallel to the XY plane). As the shape light guide 3, a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass is used. As an example, the shape of the shape light guide 3 is 100 mm × 100 mm in the vertical and horizontal dimensions (the x-axis direction and the y-axis direction in FIG. 1) and becomes the thickness (z-axis in FIG. 1). Direction dimension) is 10 mm. The vertical and horizontal dimensions and thickness are not limited to this.
 形状導光体3の第2主面3bには、X方向に延びる複数の溝Tが設けられている。溝Tは、XY平面と平行な面に対して斜めに傾斜した傾斜面T1と、傾斜面T1と交差する面T2と、を有するV字状の溝である。図1では、図面を簡略化するために、溝Tを数本しか記載していないが、実際には、幅100μm程度の細かい溝Tが多数本形成されている。溝Tは、例えば、金型を用いて樹脂(例えばポリメタクリル酸メチル樹脂:PMMA)を射出成形することにより導光体の本体と一体に形成されている。 A plurality of grooves T extending in the X direction are provided on the second main surface 3 b of the shape light guide 3. The groove T is a V-shaped groove having an inclined surface T1 that is inclined with respect to a plane parallel to the XY plane and a surface T2 that intersects the inclined surface T1. In FIG. 1, only a few grooves T are shown in order to simplify the drawing, but in practice, a large number of fine grooves T having a width of about 100 μm are formed. The groove T is formed integrally with the main body of the light guide, for example, by injection molding a resin (for example, polymethyl methacrylate resin: PMMA) using a mold.
 傾斜面T1は、第1主面3aから入射した光L(例えば太陽光)を全反射して光の進行方向を第1端面3cに向かう方向に変更する反射面である。第1主面3aに対して垂直に近い角度で入射した光Lは、傾斜面T1で反射して形状導光体3の内部を概ねY方向に伝播する。 The inclined surface T1 is a reflecting surface that totally reflects the light L (for example, sunlight) incident from the first main surface 3a and changes the traveling direction of the light to the direction toward the first end surface 3c. The light L incident at an angle close to perpendicular to the first main surface 3a is reflected by the inclined surface T1 and propagates in the Y direction in the shape light guide 3 generally.
 形状導光体3の第2主面3bには、このような溝Tが、傾斜面T1と面T2とが互いに接するようにY方向に複数設けられている。第2主面3bに設けられた複数の溝Tの形状及び大きさは、全て同じである。 On the second main surface 3b of the shape light guide 3, a plurality of such grooves T are provided in the Y direction so that the inclined surfaces T1 and T2 are in contact with each other. The shape and size of the plurality of grooves T provided on the second main surface 3b are all the same.
 蛍光導光体4は、Z軸に垂直な(XY平面と平行な)第1主面4a及び第2主面4bを有する略矩形の板状部材である。蛍光導光体4の寸法は、一例として、第1主面4aとなる矩形の縦横(図1のx軸方向およびy軸方向)の寸法が100mm×100mmであり、厚み(図1のz軸方向の寸法)が5mmである。なお、縦横の寸法、厚みはこれに限定されない。 The fluorescent light guide 4 is a substantially rectangular plate-like member having a first main surface 4a and a second main surface 4b perpendicular to the Z axis (parallel to the XY plane). As an example, the fluorescent light guide 4 has dimensions of 100 mm × 100 mm in the length and breadth (the x-axis direction and the y-axis direction in FIG. 1) of the rectangle serving as the first main surface 4a, and the thickness (z-axis in FIG. 1). Direction dimension) is 5 mm. The vertical and horizontal dimensions and thickness are not limited to this.
 蛍光導光体4は、アクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料もしくは無機材料からなる基材の内部に、蛍光体を分散させたものである。蛍光体としては、例えば、紫外光又は可視光を吸収して可視光又は赤外光を放射する複数種類の蛍光体が含まれている。蛍光体から放射された光は、蛍光導光体4の内部を伝播して第1端面4cから射出され、太陽電池素子6で発電に利用される。 The fluorescent light guide 4 is obtained by dispersing a fluorescent material inside a base material made of a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass. Examples of the phosphor include a plurality of types of phosphors that absorb ultraviolet light or visible light and emit visible light or infrared light. The light emitted from the fluorescent material propagates through the fluorescent light guide 4 and is emitted from the first end face 4 c, and is used for power generation by the solar cell element 6.
 なお、可視光は380nm以上750nm以下の波長領域の光であり、紫外光は380nm未満の波長領域の光であり、赤外光は750nmよりも大きい波長領域の光である。 Note that visible light is light in a wavelength region of 380 nm to 750 nm, ultraviolet light is light in a wavelength region less than 380 nm, and infrared light is light in a wavelength region larger than 750 nm.
 外光を有効に取り込めるように、導光体ユニットを構成する導光体の材料は400nm以下の波長に対して透過性を有することが望ましい。例えば、360nm以上800nm以下の波長領域の光に対して90%以上、より好ましくは93%以上の透過率を有するものが好適である。例えば、シリコン樹脂基板や石英基板、或いは、PMMA樹脂基板においては三菱レイヨン社製の「アクリライト」(登録商標)は、広い波長領域に光に対して高い透明性を有することから、好適である。 It is desirable that the material of the light guide constituting the light guide unit has transparency to wavelengths of 400 nm or less so that external light can be taken in effectively. For example, a material having a transmittance of 90% or more, more preferably 93% or more with respect to light in a wavelength region of 360 nm to 800 nm is suitable. For example, in the case of a silicon resin substrate, a quartz substrate, or a PMMA resin substrate, “Acrylite” (registered trademark) manufactured by Mitsubishi Rayon is suitable because it has high transparency to light in a wide wavelength region. .
 蛍光導光体4の第1主面4a及び第2主面4bは概ねXY平面と平行な平坦な面である。蛍光導光体4の第1端面4c以外の端面には、蛍光体から放射された光(蛍光)を反射する反射層9が設けられている。反射層9としては、銀フィルム、ESR(Enhanced Specular Reflector)フィルム、アルミニウムフィルムなどの反射フィルムを使用することができる。反射層9としては、例えば92%以上の反射率を有するものが好適である。 The first main surface 4a and the second main surface 4b of the fluorescent light guide 4 are flat surfaces substantially parallel to the XY plane. On the end face other than the first end face 4c of the fluorescent light guide 4, a reflective layer 9 for reflecting light (fluorescence) emitted from the fluorescent substance is provided. As the reflective layer 9, a reflective film such as a silver film, an ESR (Enhanced Spectral Reflector) film, or an aluminum film can be used. As the reflective layer 9, for example, a layer having a reflectance of 92% or more is suitable.
 形状導光体3の第2主面3bには、形状導光体3の第2主面3bを透過した光を形状導光体3の内部に反射する反射層7が設けられている。図示は省略するが、形状導光体3の第1端面3c以外の端面には、これら端面から形状導光体3の外部に光が漏れ出さないよう、形状導光体3の内部に光を反射する反射層が設けられていてもよい。 On the second main surface 3 b of the shape light guide 3, a reflection layer 7 that reflects the light transmitted through the second main surface 3 b of the shape light guide 3 to the inside of the shape light guide 3 is provided. Although illustration is omitted, light is transmitted to the inside of the shape light guide 3 so that light does not leak from the end surfaces to the outside of the shape light guide 3 on the end surfaces other than the first end surface 3 c of the shape light guide 3. A reflective layer for reflection may be provided.
 太陽電池素子5は、受光面を形状導光体3の第1端面3cと対向させて配置されている。太陽電池素子6は、受光面を蛍光導光体4の第1端面4cと対向させて配置されている。 The solar cell element 5 is disposed with the light receiving surface facing the first end surface 3 c of the shape light guide 3. The solar cell element 6 is disposed with the light receiving surface facing the first end surface 4 c of the fluorescent light guide 4.
 太陽電池素子5及び太陽電池素子6としては、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などの公知の太陽電池を使用することができる。中でも、化合物半導体を用いた化合物系太陽電池は、高効率な発電が可能であることから、太陽電池素子5及び太陽電池素子6として好適である。本実施形態においては、太陽電池素子5としてGaAs3層接合型化合物太陽電池(変換効率:約40%)を用いる。また、太陽電池素子6としてGaAs化合物の単層型太陽電池(変換効率:約50%)を用いる。 As the solar cell element 5 and the solar cell element 6, known solar cells such as silicon solar cells, compound solar cells, and organic solar cells can be used. Especially, the compound type solar cell using a compound semiconductor is suitable as the solar cell element 5 and the solar cell element 6 since high-efficiency electric power generation is possible. In the present embodiment, a GaAs three-layer junction type compound solar cell (conversion efficiency: about 40%) is used as the solar cell element 5. As the solar cell element 6, a GaAs compound single-layer solar cell (conversion efficiency: about 50%) is used.
 光源11は、形状導光体3の第1端面3cと対向する第2端面3dに配置されている。
 光源11は、第1の光としてレーザー光(発光強度のピーク:約633nm)を射出する第1の光源11aと、第2の光として所定の拡散角(広がり角)を有する光を射出する第2の光源11bと、を含んで構成されている。
The light source 11 is disposed on the second end surface 3 d facing the first end surface 3 c of the shape light guide 3.
The light source 11 emits laser light (emission intensity peak: about 633 nm) as first light and first light that emits light having a predetermined diffusion angle (expansion angle) as second light. 2 light sources 11b.
 第1の光源11aは、第1の光源11aから射出されるレーザー光が第1端面3cに直接入射するように配置されている(図7A参照)。なお、第1の光源11aとして、633nm以外の波長のレーザー光を射出するレーザー光源を用いることもできる。 The first light source 11a is arranged so that the laser light emitted from the first light source 11a is directly incident on the first end surface 3c (see FIG. 7A). Note that a laser light source that emits laser light having a wavelength other than 633 nm may be used as the first light source 11a.
 一方、第2の光源11bは、光源から射出される光が第2主面3bに入射するように配置されている(図7B参照)。形状導光体3は、第2の光源11bから射出された光を第2主面3bで全反射させて伝播させて、第1端面3cから射出する。例えば、第2の光源11bは、第2の光源11bから射出される光が水平方向(Y軸方向)から下方向(+Z軸方向)に20度だけ傾いて伝播するように配置することができる。なお、第2の光源11bとしては、拡散角が所定の拡散角の範囲内の角度(例えば20度以内)の指向性赤色LEDを用いることができる。 On the other hand, the second light source 11b is arranged so that light emitted from the light source enters the second main surface 3b (see FIG. 7B). The shape light guide 3 causes the light emitted from the second light source 11b to be totally reflected and propagated by the second main surface 3b and is emitted from the first end surface 3c. For example, the second light source 11b can be arranged so that the light emitted from the second light source 11b propagates with an inclination of 20 degrees from the horizontal direction (Y-axis direction) to the lower direction (+ Z-axis direction). . As the second light source 11b, a directional red LED having a diffusion angle within a predetermined diffusion angle range (for example, within 20 degrees) can be used.
 光源12は、蛍光導光体4の第1端面4cと対向する第2端面4dに配置されている。
 光源12は、蛍光体を励起させない波長の光(蛍光体を励起させる波長域以外の波長の光)を射出する第1の光源12aと、蛍光体を励起させる波長の光(蛍光体を励起させる波長域以内の波長の光)を射出する第2の光源12bと、を含んで構成されている。
The light source 12 is disposed on the second end surface 4 d facing the first end surface 4 c of the fluorescent light guide 4.
The light source 12 emits light having a wavelength that does not excite the phosphor (light having a wavelength other than the wavelength range that excites the phosphor), and light having a wavelength that excites the phosphor (excites the phosphor). 2nd light source 12b which inject | emits the light of the wavelength within a wavelength range).
 第1の光源12aは、第3の光としてレーザー光(発光強度のピーク:約633nm)を射出するレーザー光源である。第1の光源12aは、第1の光源12aから射出されるレーザー光が第1端面4cに直接入射するように配置されている(図8A参照)。なお、第1の光源12aとして、633nm以外の波長のレーザー光を射出するレーザー光源を用いることもできる。 The first light source 12a is a laser light source that emits laser light (emission intensity peak: about 633 nm) as third light. The first light source 12a is arranged so that the laser light emitted from the first light source 12a is directly incident on the first end face 4c (see FIG. 8A). Note that a laser light source that emits laser light having a wavelength other than 633 nm may be used as the first light source 12a.
 一方、第2の光源12bは、第4の光として所定の拡散角(広がり角)を有する光を射出する光源である。第2の光源12bは、第2の光源12bから射出されるレーザー光が第1端面4cに直接入射するように配置されている(図8B参照)。なお、第2の光源12bとしては、拡散角が所定の拡散角の範囲内の角度(例えば20度以内)の指向性紫外線LEDを用いることができる。 On the other hand, the second light source 12b is a light source that emits light having a predetermined diffusion angle (expansion angle) as the fourth light. The second light source 12b is arranged so that the laser light emitted from the second light source 12b is directly incident on the first end face 4c (see FIG. 8B). As the second light source 12b, a directional ultraviolet LED having a diffusion angle within a predetermined diffusion angle range (for example, within 20 degrees) can be used.
 撮像素子13は、光源12の上側(-Z軸方向側)に配置されている。撮像素子13は、蛍光導光体4の第1主面4aを撮像する。なお、撮像素子13は、蛍光導光体4の第1主面4aの一部を撮像するように固定されていてもよいし、蛍光導光体4の第1主面4a全体を撮像するように移動可能に設けられていてもよい。 The image sensor 13 is disposed above the light source 12 (on the −Z axis direction side). The imaging element 13 images the first main surface 4 a of the fluorescent light guide 4. The imaging element 13 may be fixed so as to image a part of the first main surface 4a of the fluorescent light guide 4 or may image the entire first main surface 4a of the fluorescent light guide 4. It may be provided to be movable.
 枠体10は、最も前段側に配置された蛍光導光体4の第1主面4aと対向する面に光Lを透過する透過面10aを備えている。透過面10aは枠体10の開口部であってもよく、枠体10の開口部に嵌め込まれたガラス等の透明部材であってもよい。枠体10の透過面10aとZ方向から見て重なる部分の蛍光導光体4の第1主面4aが、導光体ユニット2の光入射面である。また、形状導光体3の第1端面3cと蛍光導光体4の第1端面4cが導光体ユニット2の第1光射出面である。 The frame 10 includes a transmission surface 10a that transmits the light L on a surface facing the first main surface 4a of the fluorescent light guide 4 disposed on the most front side. The transmission surface 10a may be an opening of the frame 10, or may be a transparent member such as glass fitted in the opening of the frame 10. The first main surface 4 a of the fluorescent light guide 4 that overlaps the transmission surface 10 a of the frame 10 when viewed from the Z direction is the light incident surface of the light guide unit 2. In addition, the first end surface 3 c of the shape light guide 3 and the first end surface 4 c of the fluorescent light guide 4 are the first light exit surfaces of the light guide unit 2.
 図2Aは、太陽電池モジュール1の断面図である。図2Bは、形状導光体3の第2主面3bに設けられる溝Tの断面図である。 FIG. 2A is a cross-sectional view of the solar cell module 1. FIG. 2B is a cross-sectional view of the groove T provided in the second main surface 3 b of the shape light guide 3.
 図2A及び図2Bに示すように、形状導光体3の第2主面3bには、第1主面3aから入射した光を反射させて光の進行方向を第1端面3cに向かう方向に変更する複数の溝Tが設けられている。溝Tは、Y軸に対して角度θをなす傾斜面T1と、Y軸に対して垂直な面T2と、が稜線T3において交差するV字状の溝である。稜線T3を挟んで第1端面3c側に面T2が配置され、第1端面3cとは反対側に傾斜面T1が配置されている。 As shown in FIGS. 2A and 2B, the second main surface 3b of the shape light guide 3 reflects light incident from the first main surface 3a so that the light travels in the direction toward the first end surface 3c. A plurality of grooves T to be changed are provided. The groove T is a V-shaped groove in which an inclined surface T1 that forms an angle θ with respect to the Y axis and a surface T2 that is perpendicular to the Y axis intersect at a ridgeline T3. A surface T2 is disposed on the first end surface 3c side with the ridge line T3 interposed therebetween, and an inclined surface T1 is disposed on the opposite side to the first end surface 3c.
 例えば、角度θは42°であり、1本の溝TのY方向の幅は100μmであり、溝TのZ方向の深さは90μmであり、形状導光体3の屈折率は1.5である。しかし、角度θ、溝TのY方向の幅、溝TのZ方向の深さ、及び形状導光体3の屈折率はこれに限定されない。 For example, the angle θ is 42 °, the width of one groove T in the Y direction is 100 μm, the depth of the groove T in the Z direction is 90 μm, and the refractive index of the shape light guide 3 is 1.5. It is. However, the angle θ, the width of the groove T in the Y direction, the depth of the groove T in the Z direction, and the refractive index of the shape light guide 3 are not limited thereto.
 蛍光導光体4の内部には、互いに吸収波長域の異なる複数種類の蛍光体(図2Aでは、例えば第1蛍光体8a、第2蛍光体8b及び第3蛍光体8c)が分散されている。第1蛍光体8aは、紫外光を吸収して青色の蛍光を放射し、第2蛍光体8bは、青色光を吸収して緑色の蛍光を放射し、第3蛍光体8cは、緑色光を吸収して赤色の蛍光を放射する。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cは、例えば、PMMA樹脂を成型する際に混入される。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの混合比率は以下の通りである。なお、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの混合比率はPMMA樹脂に対する体積比率で示している。 A plurality of types of phosphors having different absorption wavelength ranges (for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c in FIG. 2A) are dispersed in the fluorescent light guide 4. . The first phosphor 8a absorbs ultraviolet light and emits blue fluorescence, the second phosphor 8b absorbs blue light and emits green fluorescence, and the third phosphor 8c emits green light. Absorbs and emits red fluorescence. The first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are mixed when, for example, a PMMA resin is molded. The mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is as follows. The mixing ratio of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is shown as a volume ratio with respect to the PMMA resin.
 第1蛍光体8a:BASF社製Lumogen F Blue(商品名) 0.02%
 第2蛍光体8b:BASF社製Lumogen F Green(商品名) 0.02%
 第3蛍光体8c:BASF社製Lumogen F Red(商品名) 0.02%
First phosphor 8a: BASF Lumogen F Blue (trade name) 0.02%
Second phosphor 8b: BASF Lumogen F Green (trade name) 0.02%
Third phosphor 8c: BASF Lumogen F Red (trade name) 0.02%
 図3ないし図6は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの発光特性及び吸収特性を示す図である。図3において、白抜きの四角は、第1蛍光体8aによって紫外光が吸収された後の太陽光のスペクトルを示し、三角は、第2蛍光体8bによって青色光が吸収された後の太陽光のスペクトルを示し、バツ印は、第3蛍光体8cによって緑色光が吸収された後の太陽光のスペクトルを示す。黒四角は、太陽光のスペクトルを示す。図4において、丸は、第1蛍光体8a、第2蛍光体及8b及び第3蛍光体8cによって紫外光、青色光及び緑色光が吸収された後の太陽光のスペクトルを示す。黒四角は、太陽光のスペクトルを示す。図5において、黒四角は、第1蛍光体8aの発光スペクトルであり、三角は、第2蛍光体8bの発光スペクトルであり、白抜きの四角は、第3蛍光体8cの発光スペクトルである。図6において、四角は、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cを含む蛍光導光体4の第1端面4cから射出される光のスペクトルである。 3 to 6 are diagrams showing the emission characteristics and absorption characteristics of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. In FIG. 3, the white squares indicate the spectrum of sunlight after the ultraviolet light is absorbed by the first phosphor 8a, and the triangles indicate the sunlight after the blue light is absorbed by the second phosphor 8b. The cross indicates the spectrum of sunlight after green light is absorbed by the third phosphor 8c. A black square shows the spectrum of sunlight. In FIG. 4, circles indicate the spectrum of sunlight after ultraviolet light, blue light, and green light are absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. A black square shows the spectrum of sunlight. In FIG. 5, the black square is the emission spectrum of the first phosphor 8a, the triangle is the emission spectrum of the second phosphor 8b, and the white square is the emission spectrum of the third phosphor 8c. In FIG. 6, a square is a spectrum of light emitted from the first end face 4c of the fluorescent light guide 4 including the first fluorescent body 8a, the second fluorescent body 8b, and the third fluorescent body 8c.
 図3及び図4に示すように、第1蛍光体8aは、概ね420nm以下の波長の光を吸収する。第2蛍光体8bは、概ね420nm以上520nm以下の波長の光を吸収する。第3蛍光体8cは、概ね520nm以上620nm以下の波長の光を吸収する。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cによって、第2導光体に入射した太陽光のうち620nm以下の波長の光が概ね全て吸収される。太陽光のスペクトルにおいて波長が620nm以下の光の割合は、48%程度である。よって、導光体ユニット2の光入射面(蛍光導光体4の第1主面4a)に入射した光のうち48%は蛍光導光体4に含まれる第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収され、残りの52%は蛍光導光体4を透過して形状導光体3に入射する。 As shown in FIGS. 3 and 4, the first phosphor 8a absorbs light having a wavelength of approximately 420 nm or less. The second phosphor 8b absorbs light having a wavelength of approximately 420 nm or more and 520 nm or less. The third phosphor 8c absorbs light having a wavelength of approximately 520 nm or more and 620 nm or less. The first phosphor 8a, the second phosphor 8b, and the third phosphor 8c absorb almost all light having a wavelength of 620 nm or less in the sunlight incident on the second light guide. In the sunlight spectrum, the proportion of light having a wavelength of 620 nm or less is about 48%. Therefore, 48% of the light incident on the light incident surface of the light guide unit 2 (the first main surface 4a of the fluorescent light guide 4) is the first fluorescent material 8a and the second fluorescent light included in the fluorescent light guide 4. The remaining 52% is absorbed by the body 8b and the third phosphor 8c and passes through the fluorescence light guide 4 and enters the shape light guide 3.
 第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの蛍光量子収率はいずれも92%である。よって、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収された光のうち92%は蛍光に変換される。蛍光は、蛍光導光体4の内部を伝播し、第1端面4cから射出される。このとき、蛍光導光体4と周囲の空気層との屈折率差により第1主面4a及び第2主面4bで全反射せずに蛍光導光体4の外部に漏れ出す光の割合は25%であり、蛍光導光体4の内部を伝播する際の光のロスは5%である。したがって、第1端面4cから射出される光の割合は第1主面4aに入射した光の30%となる。 The fluorescence quantum yields of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are all 92%. Therefore, 92% of the light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is converted into fluorescence. The fluorescence propagates through the fluorescent light guide 4 and is emitted from the first end face 4c. At this time, the ratio of the light leaking outside the fluorescent light guide 4 without being totally reflected by the first main surface 4a and the second main surface 4b due to the difference in refractive index between the fluorescent light guide 4 and the surrounding air layer is The loss of light when propagating through the fluorescent light guide 4 is 5%. Therefore, the ratio of the light emitted from the first end surface 4c is 30% of the light incident on the first main surface 4a.
 図5に示すように、第1蛍光体8aの発光スペクトルは、430nmにピーク波長を有する。第2蛍光体8bの発光スペクトルは、520nmにピーク波長を有する。第3蛍光体8cの発光スペクトルは、630nmにピーク波長を有する。しかしながら、図6に示すように、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cを含む第2導光体の第1端面から射出される光のスペクトルは、第3蛍光体8cの発光スペクトルのピーク波長(630nm)に対応する波長にのみピーク波長を有し、第1蛍光体8aの発光スペクトルのピーク波長(430nm)及び第2蛍光体8bの発光スペクトルのピーク波長(520nm)に対応する波長にはピーク波長を有しない。 As shown in FIG. 5, the emission spectrum of the first phosphor 8a has a peak wavelength at 430 nm. The emission spectrum of the second phosphor 8b has a peak wavelength at 520 nm. The emission spectrum of the third phosphor 8c has a peak wavelength at 630 nm. However, as shown in FIG. 6, the spectrum of light emitted from the first end face of the second light guide including the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is the third phosphor. It has a peak wavelength only at a wavelength corresponding to the peak wavelength (630 nm) of the emission spectrum of 8c, the peak wavelength (430 nm) of the emission spectrum of the first phosphor 8a and the peak wavelength (520 nm of the emission spectrum of the second phosphor 8b). ) Does not have a peak wavelength.
 第1蛍光体8aに対応する発光スペクトルのピーク及び第2蛍光体8bに対応する発光スペクトルのピークが消失した原因は、フォトルミネッセンス(Photoluminescence;PL)による蛍光体間のエネルギー移動や、フェルスター機構(蛍光共鳴エネルギー移動)による蛍光体間のエネルギー移動などが挙げられる。フォトルミネッセンスによるエネルギー移動は、一の蛍光体から放射された蛍光が他の蛍光体の励起エネルギーとして利用されることにより生じるものである。フェルスター機構は、このような光の発光及び吸収のプロセスを経ずに、近接した2つの蛍光体の間で励起エネルギーが電子の共鳴により直接移動するものである。フェルスター機構による蛍光体間のエネルギー移動は、光の発光及び吸収のプロセスを介さずに行われるため、エネルギーのロスが小さい。よって、太陽電池モジュールの発電効率の向上に寄与する。 The cause of the disappearance of the peak of the emission spectrum corresponding to the first phosphor 8a and the peak of the emission spectrum corresponding to the second phosphor 8b is the energy transfer between the phosphors due to photoluminescence (PL) and the Forster mechanism. Examples thereof include energy transfer between phosphors by (fluorescence resonance energy transfer). Energy transfer by photoluminescence occurs when fluorescence emitted from one phosphor is used as excitation energy for another phosphor. In the Förster mechanism, excitation energy directly moves between two adjacent phosphors by electron resonance without going through such light emission and absorption processes. Energy transfer between the phosphors by the Förster mechanism is performed without going through the process of light emission and absorption, so that energy loss is small. Therefore, it contributes to the improvement of the power generation efficiency of the solar cell module.
 図7A及び7Bは、光源11からの第1の光が形状導光体3を伝播する様子を示す図である。図7Aは、光源11を構成する第1の光源11aからの第1の光が形状導光体3を伝播する様子を示す図である。図7Bは、光源11を構成する第2の光源11bからの第2の光が形状導光体3を伝播する様子を示す図である。 7A and 7B are views showing a state in which the first light from the light source 11 propagates through the shape light guide 3. FIG. 7A is a diagram illustrating a state in which the first light from the first light source 11 a constituting the light source 11 propagates through the shape light guide 3. FIG. 7B is a diagram illustrating a state in which the second light from the second light source 11 b constituting the light source 11 propagates through the shape light guide 3.
 図7Aに示すように、第1の光源11aは、第1の光源11aから射出されるレーザー光が第1端面3cに直接入射するように配置されている。第1の光源11aから射出されたレーザー光は、形状導光体3の内部を伝播し、太陽電池素子5に直接入射する。レーザー光の照射による太陽電池素子5の発電量を測定し、発電量の測定結果をモニタリングすることで、太陽電池素子5の不良や劣化などの不具合が生じているか否かを検知することができる。 As shown in FIG. 7A, the first light source 11a is arranged so that the laser light emitted from the first light source 11a is directly incident on the first end face 3c. The laser light emitted from the first light source 11 a propagates inside the shape light guide 3 and directly enters the solar cell element 5. By measuring the power generation amount of the solar cell element 5 by the irradiation of the laser light and monitoring the measurement result of the power generation amount, it is possible to detect whether or not the solar cell element 5 is defective or deteriorated. .
 図7Bに示すように、第2の光源11bは、第2の光源11bから射出される所定の拡散角を有する光が第2主面3bに入射するように配置されている。第2の光源11bから射出された光は、第2主面3bでの全反射と、第1主面3aでの全反射とを繰り返しながら形状導光体3の内部を伝播し、太陽電池素子5に入射する。第2の光源11bによる光の照射による太陽電池素子5の発電量を測定し、発電量の測定結果をモニタリングすることで、形状導光体3の導光の状態を確認することができる。つまり、形状導光体3に不良や劣化などの不具合が生じているか否かを検知することができる。 As shown in FIG. 7B, the second light source 11b is arranged so that light having a predetermined diffusion angle emitted from the second light source 11b is incident on the second main surface 3b. The light emitted from the second light source 11b propagates inside the shape light guide 3 while repeating total reflection on the second main surface 3b and total reflection on the first main surface 3a, and thus a solar cell element. 5 is incident. By measuring the power generation amount of the solar cell element 5 by light irradiation by the second light source 11b and monitoring the measurement result of the power generation amount, the light guide state of the shape light guide 3 can be confirmed. That is, it is possible to detect whether the shape light guide 3 has a defect such as a defect or deterioration.
 なお、第2の光源11bから射出される光の拡散角の大きさ(光の広がり度合い)を変更することによって、光が形状導光体3の内部を伝播する経路を変更することができる。 In addition, the path | route which light propagates the inside of the shape light guide 3 can be changed by changing the magnitude | size (light spreading degree) of the light emitted from the 2nd light source 11b.
 例えば、第2の光源11bから射出される光の拡散角を大きくすると(光の拡がり度合いを大きくすると)、第2の光源11bからは互いに形状導光体3の内部を伝播する角度(伝播角度)が異なる複数の光線束が射出されることとなる。この場合、各光線束の第2主面3bにおける全反射角や第1主面3aにおける全反射角が変わる。このため、複数の光線束が形状導光体3の内部を広範囲で伝播することとなる。 For example, when the diffusion angle of light emitted from the second light source 11b is increased (when the degree of spread of light is increased), the angle (propagation angle) at which the second light source 11b propagates inside the shape light guide 3 mutually. ) Are emitted. In this case, the total reflection angle at the second main surface 3b and the total reflection angle at the first main surface 3a of each light bundle are changed. For this reason, a plurality of light bundles propagate in the shape light guide 3 in a wide range.
 これに対し、第2の光源11bから射出される光の拡散角を小さくすると(光の拡がり度合いを小さくすると)、第2の光源11bからはレーザー光のような指向性の高い光が射出されることとなる。この場合、指向性の高い光の第2主面3bにおける全反射角や第1主面3aにおける全反射角が略一定の角度となる。このため、指向性の高い光が形状導光体3の内部に所定の軌跡を形成することとなる。 On the other hand, when the diffusion angle of light emitted from the second light source 11b is reduced (when the degree of spread of light is reduced), light having high directivity such as laser light is emitted from the second light source 11b. The Rukoto. In this case, the total reflection angle on the second main surface 3b of light having high directivity and the total reflection angle on the first main surface 3a are substantially constant. For this reason, light having high directivity forms a predetermined locus inside the shape light guide 3.
 図8A及び8Bは、光源12からの第3の光が蛍光導光体4を伝播する様子を示す図である。図8Aは、光源12を構成する第1の光源12aから射出される蛍光体を励起させない波長の光である第3の光が、蛍光導光体4を伝播する様子を示す図である。図8Bは、光源12を構成する第2の光源12bから射出される蛍光体を励起させる波長の光である第4の光が、蛍光導光体4を伝播する様子を示す図である。 8A and 8B are views showing a state in which the third light from the light source 12 propagates through the fluorescent light guide 4. FIG. 8A is a diagram illustrating a state in which the third light, which is light having a wavelength that does not excite the phosphor emitted from the first light source 12 a constituting the light source 12, propagates through the fluorescence light guide 4. FIG. 8B is a diagram illustrating a state in which the fourth light, which is light having a wavelength for exciting the phosphor emitted from the second light source 12 b constituting the light source 12, propagates through the fluorescence light guide 4.
 図8Aに示すように、第1の光源12aは、第1の光源12aから射出される光が第1端面4cに直接入射するように配置されている。第1の光源12aは、蛍光体を励起させない波長の光(蛍光体を励起させる波長域以外の波長の光)を射出する。第1の光源12aは、第3の光としてレーザー光(発光強度のピーク:約633nm)を射出するレーザー光源である。 As shown in FIG. 8A, the first light source 12a is arranged so that light emitted from the first light source 12a is directly incident on the first end face 4c. The first light source 12a emits light having a wavelength that does not excite the phosphor (light having a wavelength other than the wavelength region that excites the phosphor). The first light source 12a is a laser light source that emits laser light (emission intensity peak: about 633 nm) as third light.
 蛍光導光体4の内部の蛍光体は、発光強度のピークが約633nmのレーザー光では励起されない。このため、第1の光源12aから射出されたレーザー光は、蛍光導光体4の内部を伝播し、太陽電池素子6に直接入射する。レーザー光の照射による太陽電池素子6の発電量を測定し、発電量の測定結果をモニタリングすることで、太陽電池素子6の不良や劣化などの不具合が生じているか否かを検知することができる。 The fluorescent substance inside the fluorescent light guide 4 is not excited by laser light having an emission intensity peak of about 633 nm. For this reason, the laser light emitted from the first light source 12 a propagates inside the fluorescent light guide 4 and directly enters the solar cell element 6. By measuring the power generation amount of the solar cell element 6 by the laser light irradiation and monitoring the measurement result of the power generation amount, it is possible to detect whether or not the solar cell element 6 is defective or deteriorated. .
 図8Bに示すように、第2の光源12bは、第2の光源12bから射出される光が第1端面4cに直接入射するように配置されている。第2の光源12bは、蛍光体を励起させる波長の光(蛍光体を励起させる波長域以内の波長の光、例えば620nm以下の波長の光)を射出する。第2の光源12bは、拡散角が所定の拡散角の範囲内の角度(例えば20度以内)の指向性紫外線LEDである。 As shown in FIG. 8B, the second light source 12b is arranged so that the light emitted from the second light source 12b is directly incident on the first end face 4c. The second light source 12b emits light having a wavelength for exciting the phosphor (light having a wavelength within a wavelength range for exciting the phosphor, for example, light having a wavelength of 620 nm or less). The second light source 12b is a directional ultraviolet LED whose diffusion angle is within a predetermined diffusion angle range (for example, within 20 degrees).
 第2の光源12bから射出された光は、蛍光導光体4の内部を伝播する過程で一部が蛍光体によって吸収される。蛍光体から放射された蛍光は蛍光導光体4の内部を伝播し、太陽電池素子6に入射する。この蛍光の照射による太陽電池素子6の発電量を測定し、発電量の測定結果をモニタリングすることで、蛍光導光体4(内部に分散された蛍光体)の不良や劣化などの不具合が生じているか否かを検知することができる。 A part of the light emitted from the second light source 12b is absorbed by the phosphor in the process of propagating through the fluorescent light guide 4. The fluorescence emitted from the phosphor propagates inside the fluorescence light guide 4 and enters the solar cell element 6. By measuring the power generation amount of the solar cell element 6 due to the irradiation of the fluorescence and monitoring the measurement result of the power generation amount, defects such as defects and deterioration of the fluorescent light guide 4 (phosphor dispersed inside) occur. It can be detected whether or not.
 本実施形態の太陽電池モジュール1では、光源11,12から射出されて導光体3,4を伝播する光をリファレンス光として用い、太陽電池素子5,6で生成される発電量をモニタリングすることで、太陽電池モジュール1の製造過程や長期間の使用による導光体3,4の汚染や劣化などの不具合を検知することができる。例えば、導光体3,4などの構成部品のどの部位に不良や劣化が生じているかを検知することができる。これにより、不具合が生じている部位を修理したり新たな部材に交換したりすることが可能となり、不具合が生じた状態で太陽電池モジュール1を使用することがなくなる。このため、太陽電池素子5,6への入光効率の低下が抑えられる。よって、発電効率の低下を抑制することが可能な太陽電池モジュール1を提供することができる。 In the solar cell module 1 of the present embodiment, the amount of power generated by the solar cell elements 5 and 6 is monitored using light emitted from the light sources 11 and 12 and propagating through the light guides 3 and 4 as reference light. Thus, it is possible to detect problems such as contamination and deterioration of the light guides 3 and 4 due to the manufacturing process of the solar cell module 1 and long-term use. For example, it is possible to detect which part of the component parts such as the light guides 3 and 4 is defective or deteriorated. Thereby, it becomes possible to repair the site | part in which the malfunction has arisen, or to replace | exchange with a new member, and it will not use the solar cell module 1 in the state which the malfunction has arisen. For this reason, the fall of the light-incidence efficiency to the solar cell elements 5 and 6 is suppressed. Therefore, the solar cell module 1 which can suppress the fall of power generation efficiency can be provided.
 また、形状導光体3が含まれているので、光源11から射出されて形状導光体3を伝播する光をリファレンス光として用い、太陽電池素子5で生成される発電量をモニタリングすることで、形状導光体3の導光の状態(形状導光体3に不良や劣化などの不具合が生じているか否か)を確認することができる。よって、必要に応じて形状導光体3の不具合が生じている部位を修理したり新たな形状導光体3に交換したりすることができる。 In addition, since the shape light guide 3 is included, by using the light emitted from the light source 11 and propagating through the shape light guide 3 as reference light, the power generation amount generated by the solar cell element 5 is monitored. The state of the light guide of the shape light guide 3 (whether a defect such as a defect or deterioration has occurred in the shape light guide 3) can be confirmed. Therefore, the site | part in which the malfunction of the shape light guide 3 has arisen as needed can be repaired, or it can replace | exchange for the new shape light guide 3. FIG.
 また、蛍光導光体4が含まれているので、光源12から射出されて蛍光導光体4を伝播する光をリファレンス光として用い、太陽電池素子6で生成される発電量をモニタリングすることで、蛍光導光体4の導光の状態(内部に分散された蛍光体に不良や劣化などの不具合が生じているか否か)を確認することができる。よって、必要に応じて蛍光導光体4の不具合が生じている部位を修理したり新たな蛍光導光体4に交換したりすることができる。 In addition, since the fluorescent light guide 4 is included, by using the light emitted from the light source 12 and propagating through the fluorescent light guide 4 as reference light, the power generation amount generated by the solar cell element 6 is monitored. It is possible to confirm the light guide state of the fluorescent light guide 4 (whether a defect such as a defect or deterioration has occurred in the phosphor dispersed inside). Therefore, the part where the defect of the fluorescent light guide 4 occurs can be repaired or replaced with a new fluorescent light guide 4 as necessary.
 また、蛍光導光体4の内部には吸収スペクトルのピーク波長が異なる複数の蛍光体(例えば第1蛍光体8a、第2蛍光体8b及び第3蛍光体8c)が分散されているので、外部からの光を効率よく吸収することができる。このため、蛍光導光体4に入射した光の大部分を蛍光体の発光に寄与させることができる。 In addition, a plurality of phosphors having different absorption spectrum peak wavelengths (for example, the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c) are dispersed inside the fluorescent light guide 4, so that the external Can be efficiently absorbed. For this reason, most of the light incident on the fluorescent light guide 4 can be contributed to the light emission of the fluorescent material.
 また、光源12(第1の光源12a)が蛍光体を励起させない波長の光を射出するので、光源12aから射出された光は、蛍光体を励起させずに蛍光導光体4の内部を伝播し、太陽電池素子6に入射する。つまり、光源12aから射出された光が蛍光導光体4の内部を伝播する過程で、蛍光体からは蛍光が放射されない。このため、光源12aから射出された光をリファレンス光として用い、太陽電池素子6で生成される発電量をモニタリングすることで、太陽電池素子6のみの不具合を検知することができる。よって、必要に応じて太陽電池素子6の不具合が生じている部位を修理したり新たな太陽電池素子6に交換したりすることができる。 In addition, since the light source 12 (first light source 12a) emits light having a wavelength that does not excite the phosphor, the light emitted from the light source 12a propagates inside the fluorescent light guide 4 without exciting the phosphor. Then, the light enters the solar cell element 6. That is, in the process in which the light emitted from the light source 12a propagates inside the fluorescent light guide 4, no fluorescent light is emitted from the fluorescent material. For this reason, by using the light emitted from the light source 12a as the reference light and monitoring the amount of power generated by the solar cell element 6, it is possible to detect a malfunction of only the solar cell element 6. Therefore, the site | part in which the malfunction of the solar cell element 6 has arisen as needed can be repaired, or it can replace | exchange for the new solar cell element 6. FIG.
 また、光源12(第2の光源12b)が蛍光体を励起させる波長の光を射出するので、光源12bから射出された光は、蛍光導光体4の内部を伝播する過程で一部が蛍光体によって吸収される。蛍光体から放射された蛍光は蛍光導光体4の内部を伝播し、太陽電池素子6に入射する。このため、光源12bから射出された光をリファレンス光として用い、太陽電池素子6で生成される発電量をモニタリングすることで、蛍光導光体4(内部に分散された蛍光体)の不良や劣化などの不具合が生じているか否かを検知することができる。よって、必要に応じて蛍光導光体4の不具合が生じている部位を修理したり新たな蛍光導光体4に交換したりすることができる。 In addition, since the light source 12 (second light source 12b) emits light having a wavelength that excites the phosphor, a part of the light emitted from the light source 12b is fluorescent in the process of propagating inside the fluorescent light guide 4. Absorbed by the body. The fluorescence emitted from the phosphor propagates inside the fluorescence light guide 4 and enters the solar cell element 6. For this reason, the light emitted from the light source 12b is used as reference light, and the amount of power generated by the solar cell element 6 is monitored, so that the fluorescence light guide 4 (phosphor dispersed inside) is defective or deteriorated. It is possible to detect whether or not a malfunction such as the above has occurred. Therefore, the part where the defect of the fluorescent light guide 4 occurs can be repaired or replaced with a new fluorescent light guide 4 as necessary.
 また、光源11が形状導光体3の第2端面3dに配置されている(光源12が蛍光導光体4の第2端面4dに配置されている。)つまり、光源11が形状導光体3の第1端面3cから最も遠い部分に配置されている。このため、光源11から射出される光を形状導光体3の内部に広範囲で伝播させることができる。よって、形状導光体3の導光の状態(形状導光体3に不良や劣化などの不具合が生じているか否か)を広範囲で確認することができる。これに対して、光源11が形状導光体3の第1端面3cに近い部分に配置された構成であると、光源11から射出される光が形状導光体3の内部を伝播する範囲が狭くなり、形状導光体3の導光の状態を確認できる範囲も狭くなる。 The light source 11 is disposed on the second end surface 3d of the shape light guide 3 (the light source 12 is disposed on the second end surface 4d of the fluorescent light guide 4). 3 is disposed at a portion farthest from the first end face 3c. For this reason, the light emitted from the light source 11 can be propagated in a wide range inside the shape light guide 3. Therefore, the state of the light guide of the shape light guide 3 (whether the shape light guide 3 has defects such as defects or deterioration) can be confirmed over a wide range. On the other hand, when the light source 11 is arranged near the first end surface 3 c of the shape light guide 3, there is a range in which light emitted from the light source 11 propagates inside the shape light guide 3. The range in which the light guide state of the shape light guide 3 can be confirmed becomes narrow.
 また、光源11を構成する第1の光源11aがレーザー光源であり、レーザー光が第1端面3cに直接入射する構成であるので、このレーザー光は太陽電池素子5に直接入射することとなる。よって、このレーザー光の照射による太陽電池素子5の発電量をモニタリングすることで、太陽電池素子5に不具合が生じているか否かを確認することができる。 Further, since the first light source 11a constituting the light source 11 is a laser light source and the laser light is directly incident on the first end face 3c, the laser light is directly incident on the solar cell element 5. Therefore, it is possible to confirm whether or not a problem has occurred in the solar cell element 5 by monitoring the power generation amount of the solar cell element 5 by the irradiation of the laser light.
 また、光源11を構成する第2の光源11bは、第2の光源11bから射出される光が第2主面3bに入射するように配置され、形状導光体3は、第2の光源11bから射出された光を第2主面3bで全反射させて伝播させて第1端面3cから射出する。よって、この光の照射による太陽電池素子5の発電量をモニタリングすることで、形状導光体3に不具合が生じているか否かを確認することができる。 Further, the second light source 11b constituting the light source 11 is arranged so that light emitted from the second light source 11b is incident on the second main surface 3b, and the shape light guide 3 is formed by the second light source 11b. The light emitted from the first main surface 3b is totally reflected by the second main surface 3b, propagates, and is emitted from the first end surface 3c. Therefore, it is possible to confirm whether or not a defect has occurred in the shape light guide 3 by monitoring the power generation amount of the solar cell element 5 by this light irradiation.
 また、光源11を構成する第2の光源11bは所定の拡散角を有する光を射出するので、第2の光源11bから射出される光を形状導光体3の内部に広範囲で伝播させることができる。よって、形状導光体3の導光の状態(形状導光体3に不良や劣化などの不具合が生じているか否か)を広範囲で確認することができる。 Further, since the second light source 11b constituting the light source 11 emits light having a predetermined diffusion angle, it is possible to propagate the light emitted from the second light source 11b to the inside of the shape light guide 3 over a wide range. it can. Therefore, the state of the light guide of the shape light guide 3 (whether the shape light guide 3 has defects such as defects or deterioration) can be confirmed over a wide range.
 また、蛍光導光体4の第1主面4aを撮像する撮像素子13を含むので、蛍光導光体4の第1主面4aの汚れ具合をモニタリングすることができる。よって、蛍光導光体4の第1主面4aの汚れ具合が蛍光導光体4の不具合の要因になっているか否かを確認することができる。 In addition, since the imaging element 13 that images the first main surface 4a of the fluorescent light guide 4 is included, the degree of contamination of the first main surface 4a of the fluorescent light guide 4 can be monitored. Therefore, it can be confirmed whether or not the degree of contamination of the first main surface 4a of the fluorescent light guide 4 is a cause of the malfunction of the fluorescent light guide 4.
 また、形状導光体3および蛍光導光体4を含む複数の導光体が積層配置されているので、一方の導光体で取り込めなかった光を他方の導光体で取り込むことが可能となる。よって、導光体に入射した光の大部分を太陽電池素子の発電に寄与させることができる。 Further, since a plurality of light guides including the shape light guide 3 and the fluorescent light guide 4 are arranged in a stacked manner, it is possible to take in light that could not be taken in by one light guide by the other light guide. Become. Therefore, most of the light incident on the light guide can be contributed to the power generation of the solar cell element.
 なお、本実施形態では、光の入射側から蛍光導光体4と形状導光体3をこの順に積層した例を挙げて説明したが、これに限らない。例えば、光の入射側から形状導光体3と蛍光導光体4をこの順に積層してもよい。 In this embodiment, the example in which the fluorescent light guide 4 and the shape light guide 3 are stacked in this order from the light incident side has been described. However, the present invention is not limited thereto. For example, the shape light guide 3 and the fluorescent light guide 4 may be laminated in this order from the light incident side.
 複数の導光体のうち外部から第1の光が入射する側から最も遠い位置に蛍光導光体4を配置することにより、蛍光導光体4に強い外光が直接入射することを抑えることができる。よって、蛍光導光体4に含まれる蛍光体が強い外光によって劣化することが抑えられ、長期にわたって安定した発電量を得ることができる。 By arranging the fluorescent light guide 4 at a position farthest from the side on which the first light is incident from the outside among the plurality of light guides, strong external light is prevented from directly entering the fluorescent light guide 4. Can do. Therefore, the phosphor contained in the fluorescent light guide 4 is suppressed from being deteriorated by strong external light, and a stable power generation amount can be obtained over a long period of time.
 また、この場合、蛍光導光体4の第2端面4d並びに蛍光導光体4の第1端面4c以外の端面に蛍光体から放射された蛍光を反射する反射層を設けることが望ましい。これにより、蛍光導光体4に入射した光を、蛍光導光体4で漏れなく取り込むことができる。よって、蛍光導光体4に入射した光の大部分を蛍光体の発光に寄与させることができる。 In this case, it is desirable to provide a reflective layer for reflecting the fluorescence emitted from the phosphor on the end face other than the second end face 4d of the fluorescent light guide 4 and the first end face 4c of the fluorescent light guide 4. Thereby, the light incident on the fluorescent light guide 4 can be captured by the fluorescent light guide 4 without leakage. Therefore, most of the light incident on the fluorescent light guide 4 can be contributed to the light emission of the fluorescent material.
 また、本実施形態では、太陽電池モジュールが蛍光導光体と形状導光体の双方を含む、いわゆるタンデム構造の例を挙げて説明したが、これに限らない。例えば、太陽電池モジュールが蛍光導光体のみを含んでいてもよいし形状導光体のみを含んでいてもよい。すなわち、必ずしもタンデム構造にしなくてもよい。 In the present embodiment, the solar cell module has been described with an example of a so-called tandem structure including both a fluorescent light guide and a shape light guide. However, the present invention is not limited to this. For example, the solar cell module may include only the fluorescent light guide or only the shape light guide. That is, the tandem structure is not necessarily required.
 図9Aないし図11は、形状導光体3及び蛍光導光体4における光の取り出し効率のシミュレーション結果を示す図である。 9A to 11 are diagrams showing simulation results of light extraction efficiency in the shape light guide 3 and the fluorescent light guide 4. FIG.
 図9Aは、蛍光導光体4の光の取り出し効率を示す図である。 FIG. 9A is a diagram showing the light extraction efficiency of the fluorescent light guide 4.
 蛍光導光体4の第1主面4aに入射する光の光量を100%とすると、第1主面4aに入射した光のうち620nm以下の波長の光は、蛍光導光体4に含まれる第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cによって概ね全て吸収される。太陽光のスペクトルにおいて波長が620nm以下の光の割合は48%である。よって、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収される光の割合は、第1主面4aに入射した光の48%である。第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収されなかった52%の光は第2主面4bを透過して蛍光導光体4の外部に射出される。 Assuming that the amount of light incident on the first main surface 4a of the fluorescent light guide 4 is 100%, light having a wavelength of 620 nm or less is included in the fluorescent light guide 4 among the light incident on the first main surface 4a. Almost all of the light is absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c. The proportion of light having a wavelength of 620 nm or less in the spectrum of sunlight is 48%. Therefore, the proportion of light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is 48% of the light incident on the first main surface 4a. 52% of the light that has not been absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c passes through the second main surface 4b and is emitted to the outside of the fluorescence light guide 4.
 第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cの蛍光量子収率はいずれも92%である。よって、第1蛍光体8a、第2蛍光体8b及び第3蛍光体8cに吸収された光のうち92%は蛍光に変換される。蛍光は、蛍光導光体4の内部を伝播し、第1端面4cから射出される。このとき、蛍光導光体4と周囲の空気層との屈折率差により第1主面4a及び第2主面4bで全反射せずに蛍光導光体4の外部に漏れ出す光の割合は25%、蛍光導光体4の内部を伝播する際の光のロスは5%であるので、第1端面4cから射出される光の割合は第1主面4aに入射した光の30%となる。 The fluorescence quantum yields of the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c are all 92%. Therefore, 92% of the light absorbed by the first phosphor 8a, the second phosphor 8b, and the third phosphor 8c is converted into fluorescence. The fluorescence propagates through the fluorescent light guide 4 and is emitted from the first end face 4c. At this time, the ratio of the light leaking outside the fluorescent light guide 4 without being totally reflected by the first main surface 4a and the second main surface 4b due to the difference in refractive index between the fluorescent light guide 4 and the surrounding air layer is Since the loss of light when propagating inside the fluorescent light guide 4 is 25%, the ratio of the light emitted from the first end face 4c is 30% of the light incident on the first main surface 4a. Become.
 図9Bは、形状導光体3の光の取り出し効率を示す図である。 FIG. 9B is a diagram showing the light extraction efficiency of the shape light guide 3.
 形状導光体3の第1主面3aに垂直に入射した光の一部は、第2主面3bに設けられた溝Tの傾斜面によって反射され、形状導光体3の内部を第1端面3cに向けて伝播する。
 溝Tの傾斜面で反射される光の割合は、第1主面3aに入射した光の40%である。残りの60%の光は第2主面3bを透過して形状導光体3の外部に射出される。形状導光体3の内部を伝播する光の一部は、途中で溝Tの傾斜面で屈折し、全反射条件から外れて形状導光体3の外部に漏れ出す。そのため、第1端面3cから射出される光の割合は、第1主面3aに入射した光の12%となる。
A part of the light incident perpendicularly to the first main surface 3a of the shape light guide 3 is reflected by the inclined surface of the groove T provided on the second main surface 3b, and the first inside the shape light guide 3 It propagates toward the end face 3c.
The ratio of the light reflected by the inclined surface of the groove T is 40% of the light incident on the first main surface 3a. The remaining 60% of light passes through the second main surface 3b and is emitted to the outside of the shape light guide 3. A part of the light propagating in the shape light guide 3 is refracted on the inclined surface of the groove T on the way, and leaks out of the shape light guide 3 outside the total reflection condition. Therefore, the ratio of the light emitted from the first end surface 3c is 12% of the light incident on the first main surface 3a.
 図10は、光の入射側から蛍光導光体4と形状導光体3をこの順に積層した場合の光の取り出し効率を示す図である。 FIG. 10 is a diagram showing the light extraction efficiency when the fluorescent light guide 4 and the shape light guide 3 are stacked in this order from the light incident side.
 蛍光導光体4は、第1主面4aに入射した光の30%を蛍光に変換して第1端面4cから射出し、第1主面4aに入射した光の52%を第2主面4bから射出する。形状導光体3は、第1主面3aに垂直に入射した光の12%を第1端面3cから射出する。よって、蛍光導光体4の第1端面4cから射出される光の割合は、蛍光導光体4の第1主面4aに入射した光の30%となる。形状導光体3の第1端面3cから射出される光の割合は、蛍光導光体4の第1主面4aに入射した光の6%となる。そして、蛍光導光体4の第1主面4aに入射した光のうち30%が蛍光導光体4の第1端面4cに到達し、変換効率が50%の太陽電池素子6で発電されるので、その発電効率は15%となる。また、蛍光導光体4の第1主面4aに入射した光のうち6%が形状導光体3の第1端面3cに到達し、変換効率が40%の太陽電池素子5で発電されるので、その発電効率は2.4%となる。ここまでの発電効率を足し合わせると17.4%である。さらに、反射層7,9によって反射された光を再利用でき、これによって1~2%の発電効率が向上するので、結果的に約19%の発電効率が得られる。 The fluorescent light guide 4 converts 30% of the light incident on the first main surface 4a into fluorescence and emits it from the first end surface 4c, and 52% of the light incident on the first main surface 4a generates the second main surface. Inject from 4b. The shape light guide 3 emits 12% of the light incident perpendicularly to the first main surface 3a from the first end surface 3c. Therefore, the ratio of the light emitted from the first end surface 4 c of the fluorescent light guide 4 is 30% of the light incident on the first main surface 4 a of the fluorescent light guide 4. The ratio of the light emitted from the first end surface 3 c of the shape light guide 3 is 6% of the light incident on the first main surface 4 a of the fluorescent light guide 4. Then, 30% of the light incident on the first main surface 4a of the fluorescent light guide 4 reaches the first end surface 4c of the fluorescent light guide 4 and is generated by the solar cell element 6 having a conversion efficiency of 50%. Therefore, the power generation efficiency is 15%. Further, 6% of the light incident on the first main surface 4a of the fluorescent light guide 4 reaches the first end surface 3c of the shape light guide 3, and power is generated by the solar cell element 5 having a conversion efficiency of 40%. Therefore, the power generation efficiency is 2.4%. The total power generation efficiency so far is 17.4%. In addition, the light reflected by the reflective layers 7 and 9 can be reused, which improves the power generation efficiency by 1 to 2%, resulting in a power generation efficiency of about 19%.
 図11は、光の入射側から形状導光体3と蛍光導光体4をこの順に積層した場合の光の取り出し効率を示す図である。 FIG. 11 is a diagram showing the light extraction efficiency when the shape light guide 3 and the fluorescent light guide 4 are laminated in this order from the light incident side.
 上述のように、形状導光体3は、第1主面3aに垂直に入射した光の12%を第1端面3cから射出し、第1主面3aに垂直に入射した光の60%を第2主面3bから射出する。蛍光導光体4は、第1主面4aに入射した光の30%を蛍光に変換し、第1端面4cから射出する。よって、形状導光体3の第1端面3cから射出される光の割合は、形状導光体3の第1主面3aに入射した光の12%となり、蛍光導光体4の第1端面4cから射出される光の割合は、形状導光体3の第1主面3aに入射した光の18%となる。そして、形状導光体3の第1主面3aに入射した光のうち12%が形状導光体3の第1端面3cに到達し、変換効率が40%の太陽電池素子5で発電されるので、その発電効率は4.8%となる。また、形状導光体3の第1主面3aに入射した光のうち18%が蛍光導光体4の第1端面4cに到達し、変換効率が50%の太陽電池素子6で発電されるので、その発電効率は9%となる。ここまでの発電効率を足し合わせると13.8%である。さらに、反射層7,9によって反射された光を再利用でき、これによって1~2%の発電効率が向上するので、結果的に約15%の発電効率が得られる。 As described above, the shape light guide 3 emits 12% of the light incident perpendicularly to the first main surface 3a from the first end surface 3c, and 60% of the light incident perpendicularly to the first main surface 3a. It injects from the 2nd main surface 3b. The fluorescent light guide 4 converts 30% of the light incident on the first main surface 4a into fluorescence and emits the light from the first end surface 4c. Therefore, the ratio of the light emitted from the first end surface 3 c of the shape light guide 3 is 12% of the light incident on the first main surface 3 a of the shape light guide 3, and the first end surface of the fluorescence light guide 4. The ratio of the light emitted from 4c is 18% of the light incident on the first main surface 3a of the shape light guide 3. Then, 12% of the light incident on the first main surface 3a of the shape light guide 3 reaches the first end surface 3c of the shape light guide 3, and power is generated by the solar cell element 5 having a conversion efficiency of 40%. Therefore, the power generation efficiency is 4.8%. Further, 18% of the light incident on the first main surface 3a of the shape light guide 3 reaches the first end surface 4c of the fluorescent light guide 4 and is generated by the solar cell element 6 having a conversion efficiency of 50%. Therefore, the power generation efficiency is 9%. The total power generation efficiency so far is 13.8%. Furthermore, since the light reflected by the reflective layers 7 and 9 can be reused, the power generation efficiency is improved by 1 to 2%, and as a result, the power generation efficiency of about 15% is obtained.
 このシミュレーション結果から、本実施形態に係る太陽電池モジュール1について形状導光体3と蛍光導光体4の配置位置をいずれの順序で積層した場合でも、現行の結晶シリコン太陽電池の発電効率(10~12%)に比べて、高い発電効率が得られることが判った。 From this simulation result, even when the arrangement positions of the shape light guide 3 and the fluorescent light guide 4 are stacked in any order in the solar cell module 1 according to this embodiment, the power generation efficiency (10 It was found that high power generation efficiency can be obtained compared to ~ 12%).
[第2実施形態]
 図12は、第2実施形態の太陽光発電装置120の概略構成図である。なお、図12においては、便宜上、蛍光導光体4、太陽電池素子6、光源12、撮像素子13、及び枠体10の図示を省略している。
[Second Embodiment]
FIG. 12 is a schematic configuration diagram of the solar power generation device 120 of the second embodiment. In FIG. 12, the fluorescent light guide 4, the solar cell element 6, the light source 12, the image sensor 13, and the frame body 10 are omitted for convenience.
 図12に示すように、太陽光発電装置120は、太陽電池モジュール20と、電力制御装置21(パワーコンディショナー)と、電力分配器22と、を含んで構成されている。
 電力分配器22は、外部の電子機器(使用機器)23および光源11に電気的に接続されている。
As shown in FIG. 12, the solar power generation device 120 includes a solar cell module 20, a power control device 21 (power conditioner), and a power distributor 22.
The power distributor 22 is electrically connected to an external electronic device (used device) 23 and the light source 11.
 本実施形態の太陽電池モジュール20の基本構成は第1実施形態の太陽電池モジュール1と同様であり、光源11が太陽電池素子5によって発電された電流によって第2の光を射出する点が第1実施形態の太陽電池モジュール1と異なる。図12において、第1実施形態で用いた図1~11と共通の構成要素には同一の符号を付し、その説明は省略する。 The basic configuration of the solar cell module 20 of this embodiment is the same as that of the solar cell module 1 of the first embodiment, and the first point is that the light source 11 emits the second light by the current generated by the solar cell element 5. Different from the solar cell module 1 of the embodiment. In FIG. 12, the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 電力制御装置21は、太陽電池素子5に電気的に接続されている。電力制御装置21は、太陽電池素子5によって発電された直流を交流に変換し、さらに電圧、電流、周波数などを調整する機能を有する。電力制御装置21は、太陽電池素子5によって発電された電流を外部の電子機器23で使用可能な状態に調整する。 The power control device 21 is electrically connected to the solar cell element 5. The power control device 21 has a function of converting direct current generated by the solar cell element 5 into alternating current and further adjusting voltage, current, frequency, and the like. The power control device 21 adjusts the current generated by the solar cell element 5 so that it can be used by the external electronic device 23.
 電力分配器22は、電力制御装置21と光源11と電子機器23とに電気的に接続されている。電力分配器22は、電力制御装置21によって調整された電流を分配する機能を有する。電力分配器22は、電力制御装置21によって調整された電流の一部を電子機器23に送るとともに、残りの一部を光源11に送る。光源11に使用される電流は太陽電池素子5で生成される電流に比べて非常に小さい。このため、太陽電池素子5の発電量のわずかな部分を光源11に分配することで光源11から第2の光としてのリファレンス光を射出させて太陽電池モジュール20のモニタリングを行うことが可能となる。 The power distributor 22 is electrically connected to the power control device 21, the light source 11, and the electronic device 23. The power distributor 22 has a function of distributing the current adjusted by the power control device 21. The power distributor 22 sends a part of the current adjusted by the power control device 21 to the electronic device 23 and sends the remaining part to the light source 11. The current used for the light source 11 is very small compared to the current generated by the solar cell element 5. For this reason, it is possible to monitor the solar cell module 20 by emitting the reference light as the second light from the light source 11 by distributing a small portion of the power generation amount of the solar cell element 5 to the light source 11. .
 本実施形態の太陽電池モジュール20では、光源11が太陽電池素子5によって発電された電流によって第2の光を射出するので、外部から電源を供給する必要がなく、別個に独立して電源装置を設ける必要がない。そのため、使用コストおよび製造コストを低減することができる。 In the solar cell module 20 of the present embodiment, since the light source 11 emits the second light by the current generated by the solar cell element 5, there is no need to supply power from the outside, and the power supply device is separately and independently provided. There is no need to provide it. Therefore, the use cost and the manufacturing cost can be reduced.
 太陽光発電装置120は、上述した本発明に係る太陽電池モジュールを備えているため、発電効率の高い太陽光発電装置となる。 Since the solar power generation device 120 includes the above-described solar cell module according to the present invention, it is a solar power generation device with high power generation efficiency.
[第3実施形態]
 図13は、第3実施形態の太陽光発電装置130の概略構成図である。なお、図13においては、便宜上、蛍光導光体4、太陽電池素子6、光源12、撮像素子13、及び枠体10の図示を省略している。
[Third embodiment]
FIG. 13 is a schematic configuration diagram of the solar power generation device 130 of the third embodiment. In FIG. 13, the fluorescent light guide 4, the solar cell element 6, the light source 12, the image sensor 13, and the frame body 10 are omitted for convenience.
 図13に示すように、太陽光発電装置130は、太陽電池モジュール30と、電力制御装置21(パワーコンディショナー)と、電力分配器22と、を含んで構成されている。 As shown in FIG. 13, the solar power generation device 130 includes a solar cell module 30, a power control device 21 (power conditioner), and a power distributor 22.
 本実施形態の太陽電池モジュール30の基本構成は第2実施形態の太陽電池モジュール20と同様であり、太陽電池素子5によって発電された電流を蓄える蓄電池31を含む点が第2実施形態の太陽電池モジュール20と異なる。図13において、第2実施形態で用いた図12と共通の構成要素には同一の符号を付し、その説明は省略する。 The basic configuration of the solar cell module 30 of the present embodiment is the same as that of the solar cell module 20 of the second embodiment, and the solar cell of the second embodiment is that it includes a storage battery 31 that stores the current generated by the solar cell element 5. Different from module 20. In FIG. 13, the same reference numerals are given to the same components as those in FIG. 12 used in the second embodiment, and description thereof is omitted.
 電力分配器22は、電力制御装置21と光源11と蓄電池31と電子機器23とに電気的に接続されている。電力分配器22は、電力制御装置21によって調整された電流の一部を電子機器23に送るとともに、残りの一部を光源11および蓄電池31に送る。 The power distributor 22 is electrically connected to the power control device 21, the light source 11, the storage battery 31, and the electronic device 23. The power distributor 22 sends a part of the current adjusted by the power control device 21 to the electronic device 23 and sends the remaining part to the light source 11 and the storage battery 31.
 蓄電池31は、電力分配器22および光源11に電気的に接続されている。蓄電池31は、太陽電池素子5によって発電された電流を蓄える機能を有する。光源11は、蓄電池31に蓄えられた電流によって第2の光を射出する。 The storage battery 31 is electrically connected to the power distributor 22 and the light source 11. The storage battery 31 has a function of storing a current generated by the solar cell element 5. The light source 11 emits the second light by the current stored in the storage battery 31.
 本実施形態の太陽電池モジュール30では、蓄電池31を備えているので、常に光源11から第2の光を射出させることができる。例えば、夜間および晴天以外等、形状導光体3に入射する光が極端に少ない場合、太陽電池素子5で生成される電流が微小なものとなり、光源11に十分な量の電流を分配できないおそれがある。しかしながら、本実施形態においては、蓄電池31を備えているので、形状導光体3に入射する光が極端に少ない場合であっても、蓄電池31に蓄えられた電流によって光源11から第2の光を射出させることができる。よって、必要なときに天候に関係なく太陽電池モジュール30のモニタリングを行うことが可能となる。 Since the solar cell module 30 of this embodiment includes the storage battery 31, the second light can always be emitted from the light source 11. For example, when the amount of light incident on the shape light guide 3 is extremely small, such as at night or in fine weather, the current generated by the solar cell element 5 may be very small, and a sufficient amount of current may not be distributed to the light source 11. There is. However, since the storage battery 31 is provided in the present embodiment, the second light is emitted from the light source 11 by the current stored in the storage battery 31 even when the light incident on the shape light guide 3 is extremely small. Can be injected. Therefore, the solar cell module 30 can be monitored when necessary regardless of the weather.
[第4実施形態]
 図14は、第4実施形態の太陽電池モジュール40の断面図である。
[Fourth embodiment]
FIG. 14 is a cross-sectional view of the solar cell module 40 of the fourth embodiment.
 本実施形態の太陽電池モジュール40の基本構成は第1実施形態の太陽電池モジュール1と同様であり、光源41,42および撮像素子43が導光体ユニット2に対して着脱可能になっている点が第1実施形態の太陽電池モジュール1と異なる。図14において、第1実施形態で用いた図1~11と共通の構成要素には同一の符号を付し、その説明は省略する。 The basic configuration of the solar cell module 40 of the present embodiment is the same as that of the solar cell module 1 of the first embodiment, and the light sources 41 and 42 and the image sensor 43 are detachable from the light guide unit 2. Is different from the solar cell module 1 of the first embodiment. In FIG. 14, the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図14に示すように、太陽電池モジュール40は、形状導光体3と蛍光導光体4とを積層してなる導光体ユニット2と、太陽電池素子5と、太陽電池素子6と、光源ユニット45と、を含んで構成されている。 As shown in FIG. 14, the solar cell module 40 includes a light guide unit 2 formed by laminating a shape light guide 3 and a fluorescent light guide 4, a solar cell element 5, a solar cell element 6, and a light source. And a unit 45.
 光源ユニット45は、光源41と光源42と撮像素子43とを含んで構成されている。
 光源ユニット45は、導光体ユニット2に対して着脱可能になっている。つまり、光源ユニット45を導光体ユニット2に取り付けることで、光源41が形状導光体3の内部を伝播させつつ第1端面3cに向けて第2の光を射出するように配置され、光源42が蛍光導光体4の内部を伝播させつつ第1端面4cに向けて第2の光を射出するように配置され、撮像素子43が形状導光体3の第1主面3aを撮像するように配置される。
The light source unit 45 includes a light source 41, a light source 42, and an image sensor 43.
The light source unit 45 is detachable from the light guide unit 2. That is, by attaching the light source unit 45 to the light guide unit 2, the light source 41 is disposed so as to emit the second light toward the first end surface 3c while propagating through the inside of the shape light guide 3. 42 is disposed so as to emit the second light toward the first end face 4 c while propagating through the inside of the fluorescent light guide 4, and the imaging element 43 images the first main surface 3 a of the shape light guide 3. Are arranged as follows.
 本実施形態の太陽電池モジュール40では、光源ユニット45(光源41,42および撮像素子43)が導光体ユニット2に対して着脱可能になっているので、必要に応じて太陽電池モジュール40のモニタリングを行うことができる。また、各導光体ユニット2に光源ユニット45を設置する必要がないので、製造コストを低減することができる。 In the solar cell module 40 of the present embodiment, the light source unit 45 (the light sources 41 and 42 and the image sensor 43) can be attached to and detached from the light guide unit 2. Therefore, the solar cell module 40 can be monitored as necessary. It can be performed. Moreover, since it is not necessary to install the light source unit 45 in each light guide unit 2, manufacturing cost can be reduced.
[第5実施形態]
 図15は、第5実施形態の太陽電池モジュール50の概略平面図である。なお、図15においては、便宜上、形状導光体3、太陽電池素子5、光源11、撮像素子13、及び枠体10の図示を省略している。
[Fifth Embodiment]
FIG. 15 is a schematic plan view of the solar cell module 50 of the fifth embodiment. In addition, in FIG. 15, illustration of the shape light guide 3, the solar cell element 5, the light source 11, the image pick-up element 13, and the frame 10 is abbreviate | omitted for convenience.
 本実施形態の太陽電池モジュール50の基本構成は第1実施形態の太陽電池モジュール1と同様であり、光源52が複数配置されている点が第1実施形態の太陽電池モジュール1と異なる。図15において、第1実施形態で用いた図1~11と共通の構成要素には同一の符号を付し、その説明は省略する。 The basic configuration of the solar cell module 50 of the present embodiment is the same as that of the solar cell module 1 of the first embodiment, and is different from the solar cell module 1 of the first embodiment in that a plurality of light sources 52 are arranged. In FIG. 15, the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図15に示すように、太陽電池モジュール50は、蛍光導光体4と、複数の光源52と、太陽電池素子6と、を含んで構成されている。 As shown in FIG. 15, the solar cell module 50 includes a fluorescent light guide 4, a plurality of light sources 52, and a solar cell element 6.
 複数の光源52は、蛍光導光体4の第1端面4c以外の端面に配置されている。本実施形態において、光源52は、第1端面4cと対向する第2端面4dに3個、第2端面4dと隣接する第3端面4eに3個、第3端面4eと対向する第4端面4fに3個、の計9個配置されている。なお、光源52の配置数は9個に限らず、2~8個であってもよいし、10個以上であってもよい。 The plurality of light sources 52 are arranged on the end face other than the first end face 4 c of the fluorescent light guide 4. In the present embodiment, three light sources 52 are provided on the second end face 4d facing the first end face 4c, three on the third end face 4e adjacent to the second end face 4d, and a fourth end face 4f facing the third end face 4e. Nine, a total of nine. The number of light sources 52 arranged is not limited to nine, but may be 2 to 8, or 10 or more.
 光源52は、蛍光体を励起させる波長の光(蛍光体を励起させる波長域以内の波長の光、例えば620nm以下の波長の光)を射出する。光源52は、拡散角が所定の拡散角の範囲内の角度(例えば20度以内)の指向性紫外線LEDである。 The light source 52 emits light having a wavelength that excites the phosphor (light having a wavelength within a wavelength range that excites the phosphor, for example, light having a wavelength of 620 nm or less). The light source 52 is a directional ultraviolet LED whose diffusion angle is within a predetermined diffusion angle range (for example, within 20 degrees).
 光源52から射出された光は、蛍光導光体4の内部を伝播する過程で一部が蛍光体によって吸収される。蛍光体から放射された蛍光は蛍光導光体4の内部を伝播し、太陽電池素子6に入射する。 A part of the light emitted from the light source 52 is absorbed by the phosphor in the process of propagating through the fluorescent light guide 4. The fluorescence emitted from the phosphor propagates inside the fluorescence light guide 4 and enters the solar cell element 6.
 本実施形態の太陽電池モジュール50では、複数の光源52を備えているので、蛍光導光体4の導光の状態(蛍光体に不良や劣化などの不具合が生じているか否か)を広範囲で確認することができる。よって、蛍光導光体4のモニタリングの精度を高めることができる。これに対して、光源52を1個だけ用いた場合は、紫外光が蛍光導光体4の内部を伝播する過程で蛍光体によって吸収され、紫外光の強度が減衰し、蛍光導光体4の導光の状態を広範囲で確認することが困難となる。 In the solar cell module 50 of the present embodiment, since the plurality of light sources 52 are provided, the light guide state of the fluorescent light guide 4 (whether the fluorescent material has defects such as defects or deterioration) is extensive. Can be confirmed. Therefore, the accuracy of monitoring the fluorescent light guide 4 can be increased. On the other hand, when only one light source 52 is used, ultraviolet light is absorbed by the phosphor in the process of propagating through the inside of the fluorescent light guide 4, and the intensity of the ultraviolet light is attenuated. It becomes difficult to confirm the state of the light guide in a wide range.
 なお、本実施形態では、複数の光源52が蛍光導光体4の第1端面4c以外の端面に配置された例を挙げて説明したが、これに限らない。例えば、複数の光源が形状導光体3の第1端面3c以外の端面に配置してもよい。これにより、形状導光体3の導光の状態を広範囲で確認することができる。 In addition, although this embodiment gave and demonstrated the example in which the some light source 52 was arrange | positioned at end surfaces other than the 1st end surface 4c of the fluorescence light guide 4, it is not restricted to this. For example, a plurality of light sources may be arranged on an end surface other than the first end surface 3 c of the shape light guide 3. Thereby, the state of the light guide of the shape light guide 3 can be confirmed in a wide range.
[第6実施形態]
 図16は、第6実施形態の太陽電池モジュール60の断面図である。なお、図16においては、便宜上、形状導光体3、太陽電池素子5、光源11、撮像素子13、及び枠体10の図示を省略している。
[Sixth Embodiment]
FIG. 16 is a cross-sectional view of the solar cell module 60 of the sixth embodiment. In addition, in FIG. 16, illustration of the shape light guide 3, the solar cell element 5, the light source 11, the image pick-up element 13, and the frame 10 is abbreviate | omitted for convenience.
 本実施形態の太陽電池モジュール60の基本構成は第1実施形態の太陽電池モジュール1と同様であり、蛍光導光体4に光源12から射出された光を受光する受光素子61が設けられている点が第1実施形態の太陽電池モジュール1と異なる。図16において、第1実施形態で用いた図1~11と共通の構成要素には同一の符号を付し、その説明は省略する。 The basic configuration of the solar cell module 60 of the present embodiment is the same as that of the solar cell module 1 of the first embodiment, and a light receiving element 61 that receives light emitted from the light source 12 is provided on the fluorescent light guide 4. The point is different from the solar cell module 1 of the first embodiment. In FIG. 16, the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図16に示すように、太陽電池モジュール60は、蛍光導光体4と、光源12と、受光素子61と、を含んで構成されている。 As shown in FIG. 16, the solar cell module 60 includes a fluorescent light guide 4, a light source 12, and a light receiving element 61.
 蛍光導光体4の導光の状態(蛍光体に不良や劣化などの不具合が生じているか否か)をモニタリングするためには太陽電池素子6の特性が正常であることが好ましい。
 本実施形態では、太陽電池素子6とは別個に蛍光導光体4の導光の状態をモニタリングするための機構として受光素子61を備えている。
In order to monitor the light guide state of the fluorescent light guide 4 (whether or not the phosphor is defective or deteriorated), the characteristics of the solar cell element 6 are preferably normal.
In the present embodiment, a light receiving element 61 is provided as a mechanism for monitoring the light guide state of the fluorescent light guide 4 separately from the solar cell element 6.
 図17A及び17Bは、蛍光導光体4の透過特性を示す図である。図17A及び17Bは、複数の蛍光体が分散された蛍光導光体4の第1端面から射出される光のスペクトル(以下、単に発光スペクトルということがある)の変化の様子を示している。図17A及び17Bにおいて、矢印は蛍光体の劣化の進み具合(矢印の先端に近づくにつれて蛍光体の劣化が進んでいる状態)を示している。
 図17Aは発光スペクトルの形状がほとんど変化しない場合の図である。図17Bは発光スペクトルの形状が大きく変化する場合の図である。本実施形態において、発光スペクトルの形状が変化しない、とは、発光スペクトルのピークの位置が変化しないということを表す。
17A and 17B are diagrams showing the transmission characteristics of the fluorescent light guide 4. FIGS. 17A and 17B show changes in the spectrum of light emitted from the first end face of the fluorescent light guide 4 in which a plurality of fluorescent materials are dispersed (hereinafter sometimes simply referred to as emission spectrum). In FIGS. 17A and 17B, the arrows indicate the degree of progress of phosphor degradation (a state in which phosphor degradation progresses as it approaches the tip of the arrow).
FIG. 17A is a diagram when the shape of the emission spectrum hardly changes. FIG. 17B is a diagram when the shape of the emission spectrum changes greatly. In this embodiment, that the shape of the emission spectrum does not change means that the position of the peak of the emission spectrum does not change.
 図17A及び17Bに示すように、蛍光導光体4は、内部に分散された蛍光体の劣化が進むにつれて蛍光体の光(蛍光体を励起させる波長の光)の吸収度合いが小さくなるため、光の透過率が増加する。図17Aに示すように、蛍光体の劣化が進んでも発光スペクトルの形状はほとんど変化しないものの、各波長域で光の透過率は増加している。図17Bに示すように、蛍光体の劣化が進むと発光スペクトルの形状が大きく変化する場合があるが、ピーク波長域では光の透過率は増加している。発光スペクトルの形状がほとんど変化しない場合と発光スペクトルの形状が大きく変化する場合とのいずれの場合であっても、蛍光体の劣化が進むにつれて蛍光体の光の吸収度合いが小さくなる。すなわち、発光スペクトルの形状がほとんど変化しない場合と発光スペクトルの形状が大きく変化する場合とのいずれの場合であっても、蛍光導光体4において光の透過率が増加することは共通している。 As shown in FIGS. 17A and 17B, the fluorescence light guide 4 has a reduced degree of absorption of phosphor light (wavelength of light that excites the phosphor) as the phosphor dispersed therein progresses. Light transmittance increases. As shown in FIG. 17A, although the shape of the emission spectrum hardly changes even when the phosphor deteriorates, the light transmittance increases in each wavelength region. As shown in FIG. 17B, the shape of the emission spectrum may change greatly as the phosphor deteriorates, but the light transmittance increases in the peak wavelength region. In both cases where the shape of the emission spectrum hardly changes and when the shape of the emission spectrum changes greatly, the degree of light absorption of the phosphor decreases as the phosphor deteriorates. That is, it is common that the light transmittance of the fluorescent light guide 4 is increased in both cases where the shape of the emission spectrum hardly changes and when the shape of the emission spectrum changes greatly. .
 図16に戻り、受光素子61は、蛍光導光体4の第2主面4bにおける第2端面4dと隣接する部分に配置されている。受光素子61は、例えばフォトセンサーであり、受光面を第2主面4bに対向させて配置されている。 Returning to FIG. 16, the light receiving element 61 is disposed in a portion adjacent to the second end face 4 d of the second main surface 4 b of the fluorescent light guide 4. The light receiving element 61 is, for example, a photosensor, and is disposed with the light receiving surface facing the second main surface 4b.
 光源12は、RGB各蛍光体の吸収率の高い波長の光(RGB各蛍光体の代表的な吸収波長:約580nm、450nm、380nm)を射出するLEDである。光源12は、光源12から射出される光が受光素子61に直接入射するように配置されている。 The light source 12 is an LED that emits light having a high absorption rate of each of the RGB phosphors (typical absorption wavelengths of the RGB phosphors: about 580 nm, 450 nm, and 380 nm). The light source 12 is arranged so that light emitted from the light source 12 is directly incident on the light receiving element 61.
 受光素子61の受光面には、光源12から射出された光のみを透過するフィルター(図示略)が設けられている。これにより、受光素子61は光源12から射出された光のみを感知する。受光素子61は、蛍光体の発光ではなく、蛍光体の光の吸収度合いをモニタリングする。受光素子61により、蛍光導光体4における光の透過率の変化をモニタリングすることで蛍光体の劣化の様子を確認することができる。 The light receiving surface of the light receiving element 61 is provided with a filter (not shown) that transmits only the light emitted from the light source 12. As a result, the light receiving element 61 senses only the light emitted from the light source 12. The light receiving element 61 monitors the degree of light absorption of the phosphor, not the light emission of the phosphor. By monitoring the change in the light transmittance of the fluorescent light guide 4 by the light receiving element 61, it is possible to confirm the deterioration of the fluorescent material.
 本実施形態の太陽電池モジュール60では、受光素子61を備えているので、太陽電池素子6の特性が正常でない場合であっても、蛍光導光体4の導光の状態(蛍光体に不良や劣化などの不具合が生じているか否か)を確実に確認することができる。よって、蛍光導光体4のモニタリングの信頼性を向上させることができる。 Since the solar cell module 60 of the present embodiment includes the light receiving element 61, even if the characteristics of the solar cell element 6 are not normal, the light guide state of the fluorescent light guide 4 (the phosphor is defective or It is possible to reliably confirm whether or not a malfunction such as deterioration has occurred. Therefore, the monitoring reliability of the fluorescent light guide 4 can be improved.
[第6実施形態の第1変形例]
 図18は、第6実施形態の第1変形例に係る太陽電池モジュール60Aの断面図である。なお、図18においては、便宜上、形状導光体3、太陽電池素子5、光源11、撮像素子13、及び枠体10の図示を省略している。
[First Modification of Sixth Embodiment]
FIG. 18 is a cross-sectional view of a solar cell module 60A according to a first modification of the sixth embodiment. In addition, in FIG. 18, illustration of the shape light guide 3, the solar cell element 5, the light source 11, the image pick-up element 13, and the frame 10 is abbreviate | omitted for convenience.
 本実施形態の太陽電池モジュール60Aの基本構成は第6実施形態の太陽電池モジュール60と同様であり、受光素子61Aの配置位置が第6実施形態の太陽電池モジュール60と異なるのみである。図18において、第6実施形態で用いた図16と共通の構成要素には同一の符号を付し、その説明は省略する。 The basic configuration of the solar cell module 60A of the present embodiment is the same as that of the solar cell module 60 of the sixth embodiment, and only the arrangement position of the light receiving element 61A is different from that of the solar cell module 60 of the sixth embodiment. 18, the same code | symbol is attached | subjected to the same component as FIG. 16 used in 6th Embodiment, and the description is abbreviate | omitted.
 図18に示すように、太陽電池モジュール60Aは、蛍光導光体4と、光源12と、受光素子61Aと、を含んで構成されている。 As shown in FIG. 18, the solar cell module 60A includes a fluorescent light guide 4, a light source 12, and a light receiving element 61A.
 受光素子61Aは、太陽電池素子6の設置部の一部(蛍光導光体4の第1端面4cにおける第2主面4bと隣接する部分)に配置されている。受光素子61Aは、例えばフォトセンサーであり、受光面を第1端面4cに対向させて配置されている。 The light receiving element 61A is disposed on a part of the installation part of the solar cell element 6 (a part adjacent to the second main surface 4b in the first end surface 4c of the fluorescent light guide 4). The light receiving element 61A is, for example, a photosensor, and is disposed with the light receiving surface facing the first end surface 4c.
 光源12は、RGB各蛍光体の吸収率の高い波長の光(RGB各蛍光体の代表的な吸収波長:約580nm、450nm、380nm)を射出するLEDである。光源12は、光源12から射出される光が第2主面4bに入射するように配置されている。光源12から射出された光は、第2主面4bでの全反射と第1主面4aでの全反射とを繰り返しながら蛍光導光体4の内部を伝播し、受光素子61Aに入射する。 The light source 12 is an LED that emits light having a high absorption rate of each of the RGB phosphors (typical absorption wavelengths of the RGB phosphors: about 580 nm, 450 nm, and 380 nm). The light source 12 is disposed so that light emitted from the light source 12 enters the second main surface 4b. The light emitted from the light source 12 propagates through the fluorescent light guide 4 while repeating total reflection at the second main surface 4b and total reflection at the first main surface 4a, and enters the light receiving element 61A.
 受光素子61Aの受光面には、光源12から射出された光のみを透過するフィルター(図示略)が設けられている。これにより、受光素子61Aは光源12から射出された光のみを感知する。受光素子61Aは、蛍光体の発光ではなく、蛍光体の光の吸収度合いをモニタリングする。受光素子61Aにより、蛍光導光体4における光の透過率の変化をモニタリングすることで蛍光体の劣化の様子を確認することができる。 A filter (not shown) that transmits only the light emitted from the light source 12 is provided on the light receiving surface of the light receiving element 61A. Accordingly, the light receiving element 61A senses only the light emitted from the light source 12. The light receiving element 61A monitors the degree of light absorption of the phosphor, not the light emission of the phosphor. By monitoring the change in the light transmittance of the fluorescent light guide 4 by the light receiving element 61A, it is possible to confirm the deterioration of the fluorescent material.
 本変形例の太陽電池モジュール60Aにおいても、受光素子61Aを備えているので、太陽電池素子6の特性が正常でない場合であっても、蛍光導光体4の導光の状態(蛍光体に不良や劣化などの不具合が生じているか否か)を確実に確認することができる。よって、蛍光導光体4のモニタリングの信頼性を向上させることができる。 Since the solar cell module 60A of the present modification also includes the light receiving element 61A, even if the characteristics of the solar cell element 6 are not normal, the light guide state of the fluorescent light guide 4 (defective phosphor) Whether or not there is a problem such as deterioration or deterioration). Therefore, the monitoring reliability of the fluorescent light guide 4 can be improved.
[第7実施形態]
 図19は、第7実施形態の太陽電池モジュール70の断面図である。なお、図19においては、便宜上、蛍光導光体4、太陽電池素子6、光源12、撮像素子13、及び枠体10の図示を省略している。
[Seventh embodiment]
FIG. 19 is a cross-sectional view of the solar cell module 70 of the seventh embodiment. In FIG. 19, the fluorescent light guide 4, the solar cell element 6, the light source 12, the image sensor 13, and the frame body 10 are omitted for convenience.
 本実施形態の太陽電池モジュール70の基本構成は第1実施形態の太陽電池モジュール1と同様であり、光源71が回転自在に設けられている点が第1実施形態の太陽電池モジュール1と異なる。図19において、第1実施形態で用いた図1~11と共通の構成要素には同一の符号を付し、その説明は省略する。 The basic configuration of the solar cell module 70 of the present embodiment is the same as that of the solar cell module 1 of the first embodiment, and is different from the solar cell module 1 of the first embodiment in that a light source 71 is rotatably provided. In FIG. 19, the same components as those in FIGS. 1 to 11 used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図19に示すように、太陽電池モジュール70は、形状導光体3と、光源71と、太陽電池素子5と、を含んで構成されている。 As shown in FIG. 19, the solar cell module 70 includes a shape light guide 3, a light source 71, and a solar cell element 5.
 光源11は、第2の光としてレーザー光(発光強度のピーク:約633nm)を射出するレーザー光源である。光源11は、光源11から射出されるレーザー光の形状導光体3への入射角θが変化するように回転自在に設けられている。 The light source 11 is a laser light source that emits laser light (emission intensity peak: about 633 nm) as the second light. The light source 11 is rotatably provided so that the incident angle θ of the laser light emitted from the light source 11 to the shape light guide 3 changes.
 例えば、入射角θが小さく設定されると(例えば概ね0度)、光源11から射出されるレーザー光が第1端面3cに直接入射するようになる。 For example, when the incident angle θ is set small (for example, approximately 0 degrees), the laser light emitted from the light source 11 is directly incident on the first end face 3c.
 一方、入射角θが大きく設定されると(例えば概ね20度)、光源11から射出されるレーザー光が第2主面3bに入射するようになる。光源11から射出された光は、第2主面3bでの全反射と第1主面3aでの全反射とを繰り返しながら形状導光体3の内部を伝播し、太陽電池素子5に入射する。 On the other hand, when the incident angle θ is set large (for example, approximately 20 degrees), the laser light emitted from the light source 11 enters the second main surface 3b. Light emitted from the light source 11 propagates through the shape light guide 3 while repeating total reflection on the second main surface 3 b and total reflection on the first main surface 3 a, and enters the solar cell element 5. .
 本実施形態の太陽電池モジュール70では、光源71が回転自在に設けられているので、形状導光体3の導光の状態をモニタリングする際に入射角θを細かく変化させて行うことができる。よって、形状導光体3において不具合のある部位を精度よく分析することが可能となる。 In the solar cell module 70 of this embodiment, since the light source 71 is rotatably provided, the incident angle θ can be finely changed when monitoring the light guide state of the shape light guide 3. Therefore, it is possible to accurately analyze a defective part in the shape light guide 3.
 本発明の態様は、太陽電池モジュールおよび太陽光発電装置に利用することができる。 The aspect of the present invention can be used for a solar cell module and a solar power generation device.
1,20,30,40,50,60,60A,70…太陽電池モジュール、3…形状導光体、3a…第1主面、3b…第2主面、3c…第1端面、3d…第2端面、4…蛍光導光体、4a…第1主面、4b…第2主面、4c…第1端面、4b…第2端面、5,6…太陽電池素子、7,9…反射層、8a,8b,8c…蛍光体、11,12,41,42,52,71…光源、13,43…撮像素子、31…蓄電池、61,61A…受光素子,120,130…太陽光発電装置,T1…傾斜面 1, 20, 30, 40, 50, 60, 60A, 70 ... solar cell module, 3 ... shape light guide, 3a ... first main surface, 3b ... second main surface, 3c ... first end surface, 3d ... first 2 end surfaces, 4 ... fluorescent light guide, 4a ... first main surface, 4b ... second main surface, 4c ... first end surface, 4b ... second end surface, 5, 6 ... solar cell element, 7, 9 ... reflective layer 8a, 8b, 8c ... phosphor, 11, 12, 41, 42, 52, 71 ... light source, 13, 43 ... imaging device, 31 ... storage battery, 61, 61A ... light receiving device, 120, 130 ... solar power generation device , T1 ... inclined surface

Claims (22)

  1.  第1主面から入射した第1の光を第1端面に伝播させる導光体と、
     前記導光体の前記第1端面から射出された第1の光を受光して電流を生成する太陽電池素子と、
     前記導光体の内部を前記第1端面に向けて伝播する第2の光を射出する光源と、
     を含む太陽電池モジュール。
    A light guide that propagates the first light incident from the first main surface to the first end surface;
    A solar cell element that receives the first light emitted from the first end face of the light guide and generates a current;
    A light source that emits second light propagating in the light guide toward the first end surface;
    Including solar cell module.
  2.  前記導光体は、前記第1主面から入射した第1の光を第2主面に設けられた傾斜面で反射して伝播させて前記第1端面から射出する形状導光体を含む請求項1に記載の太陽電池モジュール。 The light guide includes a shape light guide that reflects and propagates the first light incident from the first main surface by an inclined surface provided on the second main surface and emits the light from the first end surface. Item 2. The solar cell module according to Item 1.
  3.  前記導光体は、内部に蛍光体を含む蛍光導光体を含み、
     前記蛍光導光体は、前記第1主面から入射した第1の光の一部を前記蛍光体によって吸収し、前記蛍光体から放射された蛍光を伝播させて前記第1端面から射出する請求項1に記載の太陽電池モジュール。
    The light guide includes a fluorescent light guide including a phosphor therein,
    The fluorescent light guide has a part of the first light incident from the first main surface absorbed by the fluorescent material, propagates the fluorescence emitted from the fluorescent material, and exits from the first end surface. Item 2. The solar cell module according to Item 1.
  4.  前記蛍光導光体は、前記蛍光体として、吸収スペクトルのピーク波長が異なる複数の蛍光体を含む請求項3に記載の太陽電池モジュール。 The solar cell module according to claim 3, wherein the fluorescent light guide includes a plurality of fluorescent materials having different absorption spectrum peak wavelengths as the fluorescent material.
  5.  前記光源は、前記蛍光体を励起させない波長の光を射出する請求項3に記載の太陽電池モジュール。 The solar cell module according to claim 3, wherein the light source emits light having a wavelength that does not excite the phosphor.
  6.  前記光源は、前記蛍光体を励起させる波長の光を射出する請求項3に記載の太陽電池モジュール。 The solar cell module according to claim 3, wherein the light source emits light having a wavelength that excites the phosphor.
  7.  前記光源は、前記導光体の前記第1端面と対向する第2端面に配置されている請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein the light source is disposed on a second end surface facing the first end surface of the light guide.
  8.  前記光源は、前記第2の光としてレーザー光を射出するレーザー光源であり、前記レーザー光が前記第1端面に直接入射するように配置されている請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein the light source is a laser light source that emits laser light as the second light, and is arranged so that the laser light is directly incident on the first end face.
  9.  前記光源は、前記第2の光としてレーザー光を射出するレーザー光源であり、前記レーザー光が前記第2主面に入射するように配置されており、
     前記導光体は、前記レーザー光源から射出されたレーザー光を前記第2主面で全反射させて伝播させて前記第1端面から射出する請求項1に記載の太陽電池モジュール。
    The light source is a laser light source that emits laser light as the second light, and is disposed so that the laser light is incident on the second main surface,
    2. The solar cell module according to claim 1, wherein the light guide body causes the laser light emitted from the laser light source to be totally reflected by the second main surface and propagates to be emitted from the first end surface.
  10.  前記光源は、前記第2の光として所定の拡散角を有する光を射出する請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the light source emits light having a predetermined diffusion angle as the second light.
  11.  さらに、前記導光体の第1主面を撮像する撮像素子を含む請求項1に記載の太陽電池モジュール。 Furthermore, the solar cell module of Claim 1 containing the image pick-up element which images the 1st main surface of the said light guide.
  12.  前記撮像素子は、前記導光体に対して着脱可能になっている請求項11に記載の太陽電池モジュール。 The solar cell module according to claim 11, wherein the imaging element is detachable from the light guide.
  13.  前記導光体は、複数の導光体を含み、
     前記複数の導光体は、互いの第1主面と第2主面とを対向させて積層されるとともに第1端面同士が同じ方向を向くように配置されており、
     前記複数の導光体には、前記第1主面から入射した第1の光を前記第1主面とは異なる第2主面に設けられた傾斜面で反射して伝播させて前記第1端面から射出する形状導光体と、蛍光体を含み、前記第1主面から入射した第1の光の一部を前記蛍光体によって吸収し、前記蛍光体から放射された蛍光を伝播させて前記第1端面から射出する蛍光導光体と、が含まれている請求項1に記載の太陽電池モジュール。
    The light guide includes a plurality of light guides,
    The plurality of light guides are stacked so that the first main surface and the second main surface face each other and are arranged so that the first end surfaces face the same direction.
    In the plurality of light guides, the first light incident from the first main surface is reflected and propagated by an inclined surface provided on a second main surface different from the first main surface, and the first light is transmitted. A shape light guide that exits from the end face and a phosphor, a part of the first light incident from the first main surface is absorbed by the phosphor, and the fluorescence emitted from the phosphor is propagated The solar cell module according to claim 1, further comprising a fluorescent light guide emitted from the first end face.
  14.  前記複数の導光体のうち外部から第1の光が入射する側から最も遠い位置に配置された導光体は、前記蛍光導光体である請求項13に記載の太陽電池モジュール。 The solar cell module according to claim 13, wherein the light guide disposed at a position farthest from the side on which the first light is incident from the outside among the plurality of light guides is the fluorescent light guide.
  15.  前記蛍光導光体の第2主面並びに前記蛍光導光体の前記第1端面以外の端面には、前記蛍光体から放射された蛍光を反射する反射層が設けられている請求項14に記載の太陽電池モジュール。 The reflective layer which reflects the fluorescence radiated | emitted from the said fluorescent substance is provided in end surfaces other than the said 1st end surface of the said 2nd main surface of the said fluorescent light guide, and the said fluorescent light guide. Solar cell module.
  16.  前記光源は、前記太陽電池素子によって発電された電流によって前記第2の光を射出する請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the light source emits the second light by a current generated by the solar cell element.
  17.  さらに、前記太陽電池素子によって発電された電流を蓄える蓄電池を含み、
     前記光源は、前記蓄電池に蓄えられた電流によって前記第2の光を射出する請求項1に記載の太陽電池モジュール。
    Further, the battery includes a storage battery that stores current generated by the solar cell element,
    The solar cell module according to claim 1, wherein the light source emits the second light by a current stored in the storage battery.
  18.  前記光源は、前記導光体に対して着脱可能になっている請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the light source is detachable from the light guide.
  19.  前記光源は、前記導光体の第1端面以外の端面に複数配置されている請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein a plurality of the light sources are arranged on an end face other than the first end face of the light guide.
  20.  前記導光体には、前記光源から射出された第2の光を受光する受光素子が設けられている請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the light guide is provided with a light receiving element that receives the second light emitted from the light source.
  21.  前記光源は、前記光源から射出される第2の光の前記導光体への入射角が変化するよう回転自在に設けられている請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the light source is rotatably provided so that an incident angle of the second light emitted from the light source to the light guide body is changed.
  22.  請求項1に記載の太陽電池モジュールを備えている太陽光発電装置。 A solar power generation apparatus comprising the solar cell module according to claim 1.
PCT/JP2012/060102 2011-04-20 2012-04-13 Solar cell module and solar power generation apparatus WO2012144431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-094424 2011-04-20
JP2011094424A JP2014132601A (en) 2011-04-20 2011-04-20 Solar cell module and photovoltaic generation device

Publications (1)

Publication Number Publication Date
WO2012144431A1 true WO2012144431A1 (en) 2012-10-26

Family

ID=47041539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060102 WO2012144431A1 (en) 2011-04-20 2012-04-13 Solar cell module and solar power generation apparatus

Country Status (2)

Country Link
JP (1) JP2014132601A (en)
WO (1) WO2012144431A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089231A1 (en) * 2012-12-07 2014-06-12 Qualcomm Mems Technologies, Inc. Tri-functional light and energy generating panel system
WO2014088776A1 (en) * 2012-12-07 2014-06-12 Qualcomm Mems Technologies, Inc. Solar energy harvesting skylights and windows with integrated illumination
WO2017034457A1 (en) * 2015-08-25 2017-03-02 Solibro Research Ab Solar panel with integrated illumination arrangement, and system for a solar panel with such an arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024852A1 (en) * 2020-07-28 2022-02-03 日東電工株式会社 Lighting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131051A (en) * 1993-09-07 1995-05-19 Mitsubishi Motors Corp Solar cell panel
JP2000147262A (en) * 1998-11-11 2000-05-26 Nobuyuki Higuchi Converging device and photovoltaic power generation system utilizing the device
WO2004114418A1 (en) * 2003-06-23 2004-12-29 Hitachi Chemical Co., Ltd. Concentrating photovoltaic power generation system
JP2006066754A (en) * 2004-08-30 2006-03-09 Univ Of Electro-Communications Solar battery module, and portable telephone set
WO2010085598A2 (en) * 2009-01-22 2010-07-29 OmniPV, Inc. Solar modules including spectral concentrators and related manufacturing methods
JP3162268U (en) * 2010-06-14 2010-08-26 梅 崗 Glass unit made of transparent and translucent material capable of energy conversion
TW201039448A (en) * 2009-04-27 2010-11-01 Gang Mei Solar photovoltaic panel glass system with transparence, light-transmissive characteristic and energy transfer function
JP2011075296A (en) * 2009-09-29 2011-04-14 Canon Inc Thin display device, and method for detecting damage of front glass

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131051A (en) * 1993-09-07 1995-05-19 Mitsubishi Motors Corp Solar cell panel
JP2000147262A (en) * 1998-11-11 2000-05-26 Nobuyuki Higuchi Converging device and photovoltaic power generation system utilizing the device
WO2004114418A1 (en) * 2003-06-23 2004-12-29 Hitachi Chemical Co., Ltd. Concentrating photovoltaic power generation system
JP2006066754A (en) * 2004-08-30 2006-03-09 Univ Of Electro-Communications Solar battery module, and portable telephone set
WO2010085598A2 (en) * 2009-01-22 2010-07-29 OmniPV, Inc. Solar modules including spectral concentrators and related manufacturing methods
TW201039448A (en) * 2009-04-27 2010-11-01 Gang Mei Solar photovoltaic panel glass system with transparence, light-transmissive characteristic and energy transfer function
JP2011075296A (en) * 2009-09-29 2011-04-14 Canon Inc Thin display device, and method for detecting damage of front glass
JP3162268U (en) * 2010-06-14 2010-08-26 梅 崗 Glass unit made of transparent and translucent material capable of energy conversion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089231A1 (en) * 2012-12-07 2014-06-12 Qualcomm Mems Technologies, Inc. Tri-functional light and energy generating panel system
WO2014088776A1 (en) * 2012-12-07 2014-06-12 Qualcomm Mems Technologies, Inc. Solar energy harvesting skylights and windows with integrated illumination
WO2017034457A1 (en) * 2015-08-25 2017-03-02 Solibro Research Ab Solar panel with integrated illumination arrangement, and system for a solar panel with such an arrangement

Also Published As

Publication number Publication date
JP2014132601A (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP6554593B2 (en) Lighting device, display device, and television receiver
JP6532179B2 (en) Lighting device, display device, and television receiver
US9897286B2 (en) Phosphor optical element and light-emitting device using the same
JP6554595B2 (en) Lighting device, display device, and television receiver
US10222543B2 (en) Lighting device, display device, and television device
JP6603723B2 (en) Lighting device, display device, and television receiver
WO2012147430A1 (en) Method for evaluating solar cell module, and method for manufacturing solar cell module
WO2014132726A1 (en) Liquid crystal display device
US20090196046A1 (en) Fluorescent volume light source with active chromphore
US9306089B2 (en) Solar cell module and solar generator
CN114144711B (en) Light emitting device and optical fiber
CN102679204A (en) Light-emitting assembly
JP2009231368A (en) Light emitting device
WO2012144431A1 (en) Solar cell module and solar power generation apparatus
US10775543B2 (en) Lighting device, display device, television device, and method for manufacturing wavelength converter
TW201219691A (en) Solar simulator and solar cell examination apparatus
CN102844893A (en) Light-emitting element
US20230152666A1 (en) Light-emitting system
CN110242939A (en) A kind of backlight module and display device
JP2014139957A (en) Management device, management method, and management program
KR20120075144A (en) Led package array, back light unit using the same and liquid crystal display device having thereof
WO2012115248A1 (en) Solar cell module and solar generator device
JP2013258119A (en) Light-emitting device and display device
JP2014139958A (en) Solar cell module and solar power generating apparatus
JP2013258121A (en) Light-emitting device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP