[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012144416A1 - Coated film - Google Patents

Coated film Download PDF

Info

Publication number
WO2012144416A1
WO2012144416A1 PCT/JP2012/060030 JP2012060030W WO2012144416A1 WO 2012144416 A1 WO2012144416 A1 WO 2012144416A1 JP 2012060030 W JP2012060030 W JP 2012060030W WO 2012144416 A1 WO2012144416 A1 WO 2012144416A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating
diisocyanate
coating layer
polyester
Prior art date
Application number
PCT/JP2012/060030
Other languages
French (fr)
Japanese (ja)
Inventor
児玉藍子
神田俊宏
藤田真人
川崎陽一
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011091628A external-priority patent/JP5599360B2/en
Priority claimed from JP2011091627A external-priority patent/JP5599359B2/en
Priority claimed from JP2011091625A external-priority patent/JP2012223926A/en
Priority claimed from JP2011091626A external-priority patent/JP2012223927A/en
Priority claimed from JP2011124970A external-priority patent/JP2012251077A/en
Priority claimed from JP2011124971A external-priority patent/JP2012250447A/en
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2012144416A1 publication Critical patent/WO2012144416A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3234Polyamines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8012Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with diols
    • C08G18/8016Masked aliphatic or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8048Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8077Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/06Polyurethanes from polyesters

Definitions

  • the present invention relates to a coating film having a coating layer that is excellent in durability against a solvent, in particular, adhesion after solvent treatment.
  • Biaxially stretched polyester film excels in transparency, dimensional stability, mechanical properties, heat resistance, electrical properties, gas barrier properties, chemical resistance, etc., packaging materials, plate making materials, display materials, transfer materials, window stickers In addition to materials, it is widely used for antireflection films used for membrane switches and flat displays, optical films such as diffusion sheets and prism sheets, and transparent touch panels. However, when other materials are applied and laminated on the polyester film in such applications, there is a drawback that the adhesiveness is poor depending on the materials used.
  • a method of applying various resins to the surface of the polyester film and providing a coating layer having easy adhesion performance is known.
  • a technique for improving the adhesiveness by providing is also known as one of them.
  • the polyurethane resin a water-soluble or water-dispersible urethane resin having an anionic group is recommended.
  • a method for producing such a urethane resin a compound having an anionic group together with a polyol compound, a polyisocyanate compound, a chain extender and the like. Although the method using this is disclosed, as the polyol compound and polyisocyanate compound, general-purpose compounds are exemplified (Patent Document 1).
  • VOC volatile organic substance concentration
  • the present invention has been made in view of the above circumstances, and a problem to be solved is to provide a coated film that is excellent in durability against a solvent and exhibits excellent adhesion even after solvent treatment.
  • the gist of the present invention is a coating film having a coating layer formed from a coating liquid containing polyurethane on the surface of a polyester film, wherein the polyurethane is a copolymer of two types of carbonate diols having different main chain structures.
  • the coated film is characterized in that it is a polyurethane having a polycarbonate polyol as a constituent component.
  • the present invention it is possible to provide a coated film having excellent durability against a solvent and exhibiting excellent adhesiveness even after solvent treatment, and the industrial value of the present invention is high.
  • the base film of the coated film of the present invention is made of polyester.
  • polyesters include dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, 4,4′-diphenyldicarboxylic acid, 1,4-cyclohexyldicarboxylic acid or esters thereof.
  • It is a polyester produced by melt polycondensation with glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, and 1,4-cyclohexanedimethanol.
  • Polyesters composed of these acid components and glycol components can be produced by arbitrarily using a commonly used method. For example, a transesterification reaction between a lower alkyl ester of an aromatic dicarboxylic acid and a glycol, or a direct esterification of an aromatic dicarboxylic acid and a glycol, to form a substantially bisglycol of an aromatic dicarboxylic acid A method is employed in which an ester or a low polymer thereof is formed and then polycondensed by heating under reduced pressure. Depending on the purpose, an aliphatic dicarboxylic acid may be copolymerized.
  • polyester examples include polyethylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, and the like.
  • polyester obtained by copolymerizing the above acid component and glycol component. And may contain other components and additives as necessary.
  • the polyester film can contain particles for the purpose of ensuring the film runnability and preventing scratches.
  • particles include inorganic particles such as silica, calcium carbonate, magnesium carbonate, calcium phosphate, kaolin, talc, aluminum oxide, titanium oxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide.
  • organic particles such as crosslinked polymer particles and calcium oxalate, and precipitated particles during the polyester production process can be used.
  • the particle size and content of the particles used are selected according to the application and purpose of the film, but the average particle size is usually in the range of 0.01 to 5.0 ⁇ m. If the average particle size exceeds 5.0 ⁇ m, the surface roughness of the film may become too rough, or the particles may easily fall off from the film surface. When the average particle size is less than 0.01 ⁇ m, the surface roughness is too small and sufficient slipperiness may not be obtained.
  • the particle content is usually in the range of 0.0003 to 1.0% by weight, preferably 0.0005 to 0.5% by weight, based on the polyester.
  • the particle content is less than 0.0003% by weight, the slipperiness of the film may be insufficient.
  • the content exceeds 1.0% by weight, the transparency of the film is poor. It may be enough.
  • it can also be configured so as not to substantially contain particles.
  • various stabilizers, lubricants, antistatic agents and the like can be appropriately added to the film.
  • a generally known film forming method can be adopted, and there is no particular limitation.
  • a sheet obtained by melt extrusion is first stretched 2 to 6 times at 70 to 145 ° C. by a roll stretching method to obtain a uniaxially stretched polyester film, and then perpendicular to the previous stretching direction in a tenter.
  • a film can be obtained by stretching 2 to 6 times in the direction at 80 to 160 ° C. and further performing heat treatment at 150 to 250 ° C. for 1 to 600 seconds. Further, at this time, a method of relaxing 0.1 to 20% in the longitudinal direction and / or the transverse direction in the heat treatment zone and / or the cooling zone at the heat treatment outlet is preferable.
  • the base polyester film has a single layer or multilayer structure.
  • the surface layer and the inner layer, or both the surface layer and each layer can be made of different polyesters depending on the purpose.
  • the coated film of the present invention has a coated layer on at least one side, but even if a similar or other coated layer or functional layer is provided on the opposite side of the film, it is naturally included in the concept of the present invention.
  • the coating layer in the present invention is obtained by coating a coating composition on a polyester film.
  • Various methods can be applied to the coating, but a so-called in-line coating in which a coating layer is provided during film formation, particularly a coating stretching method in which stretching is performed after coating is preferably used.
  • In-line coating is a method of coating within the process of manufacturing a polyester film. Specifically, it is a method of coating at any stage from melt extrusion of polyester to biaxial stretching and then heat setting and winding. is there. Normally, it is coated on either a substantially amorphous unstretched sheet obtained by melting and quenching, then a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction), or a biaxially stretched film before heat setting. To do.
  • a coating stretching method a method of stretching in the transverse direction after coating on a uniaxially stretched film is excellent. According to such a method, since film formation and coating layer coating can be performed simultaneously, there is an advantage in manufacturing cost, and since stretching is performed after coating, a uniform coating with a thin film is achieved, so that adhesion performance is stabilized. .
  • the polyester film before biaxial stretching is first coated with an easy-adhesive resin layer, and then the film and the coating layer are stretched simultaneously, whereby the base film and the coating layer are firmly adhered.
  • biaxial stretching of the polyester film is achieved by stretching the film in the lateral direction while holding the film edge with a tenter, so that the film is constrained in the longitudinal / lateral direction.
  • High temperature can be applied while maintaining Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the coating layer is improved, and the coating layer and the polyester film are firmly adhered.
  • the uniformity of the coating layer, the improvement of the film-forming property, and the adhesion between the coating layer and the film often produce favorable characteristics.
  • the coating solution to be used is preferably an aqueous solution or an aqueous dispersion from the viewpoint of handling, working environment, and safety, but may contain an organic solvent.
  • This coating layer is formed from a coating solution containing a specific polyurethane.
  • the polyurethane in the present invention is a polyurethane having as a constituent component a copolymerized polycarbonate polyol having a structure in which two types of carbonate diols having different main chain structures are copolymerized.
  • Polycarbonate polyol is obtained, for example, by a reaction from diphenyl carbonate and diol, a reaction from dialkyl carbonate and diol, or a reaction from alkylene carbonate and diol.
  • examples of the diol component used in the above reaction include the following. 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol 1,10-decanediol, neopentyl glycol, cyclohexanediol and the like.
  • the copolymerized polycarbonate polyol in the present invention is formed by, for example, adding carbonate to these diol components to form a monomer unit having carbonate at the terminal, and copolymerizing two or more of these monomer units, or two or more diols. It can be obtained by a method such as copolymerization while adding carbonate to the component.
  • These copolymer polycarbonate polyols are used as a polyol component of polyurethane.
  • the copolymerized polycarbonate polyol constituting the copolymerized polycarbonate polyurethane is usually 100 to 3000, preferably 200 to 2500, and more preferably 400 to 2000 in terms of polystyrene-reduced number average molecular weight (Mn) by gel permeation chromatography (GPC). It is. When it is larger than this range, the blocking resistance is deteriorated, and when it is smaller than this range, the adhesion may be inferior.
  • copolymers is not particularly limited, such as random copolymerization, graft copolymerization, and block copolymerization.
  • the polyurethane in the present invention may contain other polyol (for example, polyether diol, polyester diol, etc.) as long as it contains the above-described copolymer polycarbonate polyol.
  • polyol for example, polyether diol, polyester diol, etc.
  • the polyisocyanate component of the polyurethane in the present invention is not particularly limited, but mainly comprises aliphatic and alicyclic groups. Specifically, it is preferable that 50 mol% or more of all the polyisocyanate components is an aliphatic or alicyclic polyisocyanate.
  • polyisocyanate components include isophorone diisocyanate, 1,6 hexamethylene diisocyanate, triene diisocyanate, hydrogenated diphenylmethane diisocyanate, trans-1,4-cyclohexylene diisocyanate, 4,7-dimer acid diisocyanate, lysine diisocyanate, 1,6 -Diisocyanato-2,2,4-trimethylhexane, cyclohexane-1,3-diyl diisocyanate, cyclohexane-1,4-diyl diisocyanate, cyclohexane-1,3-diylbis (methyl isocyanate), 1-methylcyclohexane-2,4 -Diyl diisocyanate, methyl 2,6-diisocyanatohexanoate, tetramethylene diisocyanate and the like.
  • the adhesiveness, appearance, and transparency may be inferior.
  • the polyurethane containing the copolymerized polycarbonate as a constituent component may be one using a solvent as a medium, but preferably using water as a medium.
  • a forced emulsification type using an emulsifier there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into a polyurethane resin, and a water-soluble type.
  • the self-emulsification type in which a hydrophilic group is introduced into the skeleton of the polyurethane resin is preferable because of excellent storage stability of the liquid and water resistance and transparency of the resulting coating layer.
  • hydrophilic group to be introduced examples include various groups such as a carboxyl group, a sulfone group, phosphoric acid, phosphonic acid, quaternary ammonium, and polyethylene glycol.
  • the amount of hydrophilic groups in the polyurethane is preferably 0.05% by weight to 8% by weight.
  • the amount of the hydrophilic group is small, the water solubility or water dispersibility of the polyurethane is poor, and when the amount of the hydrophilic group is large, the water resistance of the coating layer after coating is poor, or the film tends to stick to each other due to moisture absorption. Because there are things.
  • the coating liquid in the present invention may contain components other than those described above as necessary.
  • surfactants other binders, crosslinking agents, antifoaming agents, coatability improvers, thickeners, antioxidants, ultraviolet absorbers, foaming agents, dyes, pigments and the like.
  • additives may be used alone or in combination of two or more as necessary.
  • the coating layer formed using a crosslinking agent as a component of the coating solution is excellent in terms of easy adhesion to the top coat in addition to excellent adhesion after solvent treatment.
  • Various crosslinking agents are used, and examples thereof include carbodiimide compounds, oxazoline compounds, melamine compounds, epoxy compounds, and isocyanate compounds.
  • the amount of the crosslinking agent is usually 5 to 60% by weight, preferably 10 to 60% by weight, and more preferably 20 to 50% by weight as a ratio in the nonvolatile component of the coating solution. When outside this range, the appearance and adhesion of the resulting coating layer may be inferior.
  • the carbodiimide compound is a compound having a carbodiimide group in the molecule and a reaction product thereof.
  • a polycarbodiimide compound having two or more carbodiimide groups in the molecule is particularly suitable.
  • an organic polyisocyanate particularly preferably an organic diisocyanate, is produced as the main synthetic raw material.
  • diisocyanates examples include 1,4-phenylene diisocyanate, 1,3-phenylene diisocyanate, 1-methylphenylene-2,4-diisocyanate, 1-methoxyphenylene-2,4-diisocyanate, and 2,4-tolylene diene.
  • organic diisocyanates In the production of polycarbodiimide, one or a mixture of two or more of these organic diisocyanates can be used. Moreover, organic polyisocyanate other than diisocyanate can also be used. Furthermore, monomers other than these may be included as a copolymerization component in the molecule.
  • An oxazoline compound is a compound having at least one oxazoline ring in the molecule. Also included are monomers having an oxazoline ring and polymers synthesized using an oxazoline compound as one of the raw material monomers.
  • the compound having at least one oxazoline ring in the molecule is particularly preferably a polymer containing an oxazoline group, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer.
  • Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • the other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer.
  • alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene
  • Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alky
  • a melamine compound is a compound having a melamine skeleton in the compound.
  • an alkylolated melamine derivative a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and a mixture thereof can be used.
  • alcohol used for etherification methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used.
  • a melamine compound either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used.
  • a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
  • An epoxy compound is a compound having an epoxy group in the molecule.
  • Examples include condensates of epichlorohydrin with hydroxyl groups and amino groups such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, and bisphenol A, and polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. is there.
  • polyepoxy compound examples include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane.
  • polyglycidyl ether and diepoxy compound examples include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether.
  • Polypropylene glycol diglycidyl ether polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N ′,-tetraglycidyl-m-. Examples include xylylenediamine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
  • An isocyanate compound is a compound having an isocyanate group in the molecule.
  • a polyfunctional isocyanate compound containing two or more isocyanate groups in one molecule.
  • the polyfunctional isocyanate compound include low or high molecular aromatic, aliphatic diisocyanate, and trivalent or higher polyisocyanate.
  • the polyisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, and diphenylmethane diisocyanate.
  • an excess amount of these isocyanate compounds and low molecular active hydrogen compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, or polyester polyols, poly Examples thereof include terminal isocyanate group-containing compounds obtained by reacting polymer active hydrogen compounds such as ether polyols and polyamides.
  • the blocked isocyanate can be prepared by subjecting the above isocyanate compound and blocking agent to an addition reaction by a conventionally known appropriate method.
  • the isocyanate blocking agent include phenols such as phenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol; thiophenols such as thiophenol and methylthiophenol; oximes such as acetoxime, methyl etiketooxime, and cyclohexanone oxime.
  • Alcohols such as methanol, ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol ; Lactams such as ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, ⁇ -propyllactam; aromatic amines; imides; acetylacetone, acetoacetate Active methylene compounds such as malonic acid ethyl ester; mercaptans; imines; ureas; diaryl compounds; sodium bisulfite, and the like.
  • halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol
  • tertiary alcohols such as t-butanol and t-pentanol
  • particles may be contained in the coating solution in order to give the film slidability or reduce blocking. If the particle content is too large, the transparency of the coating layer may decrease, the continuity of the coating layer may be impaired, and the coating strength may decrease, or the easy adhesion may decrease.
  • the non-volatile component of the liquid usually 15% by weight or less, further 10% by weight or less is suitable. Moreover, there is no limitation in particular about the minimum of particle content.
  • inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles can be used.
  • silica particles are suitable from the viewpoint of dispersibility in the coating solution and transparency of the resulting coating film.
  • the average particle size is preferably about 1/2 to 10 times the thickness of the coating layer. Furthermore, if the particle size is too large, the transparency of the coating layer may be inferior, so the average particle size is preferably 300 nm or less, and more preferably 150 nm or less.
  • the average particle diameter of the particles described here can be obtained by measuring the 50% average diameter of the number average of the particle dispersion with Microtrac UPA (Nikkiso Co., Ltd.).
  • a coating technique as shown in “Coating system” published by Yuji Harasaki, Tsuji Shoten, published in 1979 can be used. Specifically, air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roll coater, transfer roll coater, gravure coater, kiss roll coater, cast coater, spray coater, curtain coater, calendar coater And techniques such as an extrusion coater and a bar coater.
  • the film may be subjected to chemical treatment, corona discharge treatment, plasma treatment or the like before coating.
  • the coating amount of the coating layer provided on the polyester film is usually from 0.002 to 1.0 g / m 2 , preferably from 0.005 to 0.5 g / m as a final coating (as dry solid content). 2 and more preferably 0.01 to 0.2 g / m 2 . If the coating amount is less than 0.002 g / m 2, sufficient adhesion performance may not be obtained. If the coating layer exceeds 1.0 g / m 2 , the appearance / transparency deteriorates, film blocking, Cost may increase.
  • Average particle diameter (d50) of particles added to the polyester film The particle size was measured by a sedimentation method based on Stokes' resistance law using a Shimadzu centrifugal sedimentation type particle size distribution analyzer SA-CP3 type.
  • UV curable ink FD Carton X black M manufactured by Toyo Ink Manufacturing Co., Ltd. was applied with an RI tester manufactured by IHI Machine Systems Co., Ltd., and the coating thickness was 1 ⁇ m.
  • the ink was cured using a 160 W / cm metal halide lamp to prepare a laminated film.
  • the integrated light quantity of the active energy ray applied when curing was 90 mJ / cm 2 .
  • a crosscut was made in the ink layer of the laminated film prepared by the above method, and a peel test was performed using a cello tape (registered trademark), and the adhesion between the coating layer after rubbing with a solvent and the UV ink was evaluated.
  • the evaluation of adhesiveness was performed in the following five stages A to E. A indicates the highest class and E indicates the lowest class.
  • UV ink does not peel off and is good
  • topcoat Three types of top coats having different characteristics shown below were coated on a polyester film coating layer to prepare a laminated film. After making a laminated film, the adhesiveness evaluation with respect to various topcoats was performed.
  • the coated film was dried under heating conditions at 80 ° C. for 1 minute, and then cured using a 120 W / cm metal halide lamp to prepare a laminated film.
  • the integrated light quantity of the active energy ray applied when curing was 220 mJ / cm 2 .
  • UV curable ink FD Carton X Black M and FD Carton X Indigo M manufactured by Toyo Ink Manufacturing Co., Ltd. are coated with an RI tester, an offset printing tester manufactured by IHI Machinery Systems. Then, a coating thickness of 1 ⁇ m was provided, and the ink was cured using a 160 W / cm metal halide lamp to prepare a laminated film.
  • the integrated light quantity of the active energy ray applied when curing was 90 mJ / cm 2 .
  • -Adhesion III “Diabeam UR-6530” (manufactured by Mitsubishi Rayon Co., Ltd.), which is an active energy ray curable resin, is dropped on a flat SUS plate, and the evaluation surface of the polyester film is in contact with the active energy ray curable resin from above.
  • the laminated film was prepared by using a 160 W / cm high-pressure mercury lamp and curing the ink using a roller having a load of 4 kg and a width of 50 mm so that the thickness after curing was 15 ⁇ m.
  • the integrated light quantity of the active energy ray applied when curing was 160 mJ / cm 2 .
  • Transparency-1 The turbidity (haze) of the film was measured using a turbidimeter “NDH2000” (manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K 7136 (ISO14782). It can be said that the lower the haze, the better the transparency.
  • Transparency-2 In the transparency-1 evaluation method, the turbidity (haze) of a film provided with a coating layer was measured, and the increase in haze relative to a film without the coating layer measured in the same manner was determined. It can be said that the transparency of a coating layer is excellent, so that the raise of the haze by providing a coating layer with respect to the film which does not provide a coating layer is small.
  • the evaluation of transparency was performed in the following two stages A and B.
  • B Haze increase is 0.3% or more
  • Blocking resistance Two polyester films to be measured are prepared, and the surface of one film provided with the coating layer is overlapped with the surface of the other film not provided with the coating layer, and an area of 12 cm ⁇ 10 cm is pressed. The conditions are 40 ° C., 80% RH, 10 kg / cm 2 , 20 hours. Thereafter, the films are peeled off according to the method specified in ASTM-D-1893, and the peel load is measured. It can be said that the lighter the peeling load, the better the blocking. When the load exceeds 150 g / 10 cm, there may be a problem in practice. In addition, when the coating layer is provided on both surfaces, a film without another coating layer can also be used.
  • polyester raw materials used in Examples and Comparative Examples are as follows.
  • Polyethylene terephthalate having an intrinsic viscosity containing 0.6 parts by weight of amorphous silica having an average particle diameter (d50) of 2.5 ⁇ m
  • Polyethylene terephthalate (polyester 3): polyethylene terephthalate having an intrinsic viscosity of 0.65 containing 0.3% by weight of amorphous silica having an average particle diameter (d50) of 1.6 ⁇ m
  • part in the text represents the weight ratio of the active ingredient.
  • (U1) 400 parts of a polycarbonate polyol composed of 1,6-hexanediol and diethyl carbonate having a number average molecular weight of 2000, 10.4 parts of neopentyl glycol, 58.4 parts of isophorone diisocyanate, and 74. parts of dimethylolbutanoic acid.
  • Water dispersion of polyurethane resin obtained by neutralizing 3 parts of prepolymer with triethylamine and extending chain with isophoronediamine
  • (U2) Prepolymer comprising 320 parts of polycarbonate polyol composed of 1,6-hexanediol and diethyl carbonate having a number average molecular weight of 800, 505.7 parts of hydrogenated diphenylmethane diisocyanate, and 148.6 parts of dimethylolbutanoic acid.
  • C1 Carbodiimide group-containing crosslinking agent: Carbodilite V02 (Nisshinbo Co., Ltd.)
  • C2 Carbodiimide group-containing crosslinking agent: Carbodilite E02 (Nisshinbo Co., Ltd.)
  • C3 Melamine group-containing crosslinking agent: Becamine MAS (manufactured by Dainippon Ink & Chemicals, Inc.)
  • C5 “Epocross WS-700” (manufactured by Nippon Shokubai Co., Ltd.), which is a polymer type crosslinking agent having an oxazoline group branched to an acrylic resin
  • C6 “Epocross WS-500” which is a polymer type crosslinking agent having an oxazoline group branched to an acrylic
  • Comparative Example 1 Polyester 1 and polyester 2 are blended at a weight ratio of 95/5, dried thoroughly, melted by heating to 280-300 ° C, extruded into a sheet form from a T-shaped die, and the surface using an electrostatic adhesion method.
  • An unstretched polyethylene terephthalate film was prepared by cooling and solidifying while closely contacting a mirror surface cooling drum having a temperature of 40 to 50 ° C. This film was stretched 3.7 times in the longitudinal direction while passing through a heating roll group at 85 ° C. to obtain a uniaxially oriented film.
  • the coating composition as shown in Table 1 was applied to one side of this uniaxially oriented film.
  • this film was guided to a tenter stretching machine, and the coating composition was dried using the heat, and stretched 4.0 times in the width direction at 100 ° C., and further heat-treated at 230 ° C., and the film thickness was 38 ⁇ m.
  • a laminated polyester film having a 0.05 g / m 2 coating layer on a biaxially oriented polyethylene terephthalate film was obtained. Table 1 shows the coating solution composition and film characteristics of this film.
  • Comparative Examples 2 and 3 In the same process as Comparative Example 1, a coating film was obtained in which the coating layer shown in Table 1 was provided on a base film having a film thickness of 38 ⁇ m. The properties of this film are shown in Table 1.
  • Comparative Example 4 In the same process as Comparative Example 1, a film was obtained in which a coating layer was not provided on a base film having a film thickness of 38 ⁇ m. The solvent resistance was very poor.
  • Examples 1 to 4 In the same process as Comparative Example 1, a coating film was obtained in which the coating layer shown in Table 1 was provided on a base film having a film thickness of 38 ⁇ m. The properties of this film are shown in Table 1. By applying the copolymer-type polycarbonate polyurethane, the properties of the coating layer were not lost even after the solvent treatment, and a result of excellent adhesion was obtained.
  • Comparative Example 5 A blend of polyester 1 and polyester 3 at a weight ratio of 92/8 was used as the raw material for layer A, and polyester 1 alone was used as the raw material for layer B.
  • Reference example 1 The coating composition as shown in Table 2 was applied to one side of the uniaxially oriented film obtained in Comparative Example 5. Next, the film was guided to a tenter stretching machine, and the coating composition was dried using the heat. Thereafter, in the same process as Comparative Example 1, the film thickness was 100 ⁇ m on a biaxially oriented film as shown in Table 2. A laminated polyester film provided with the coating layer shown was obtained. The properties of this film are shown in Table 2.
  • Examples 5-11 In the same process as in Reference Example 1, a laminated polyester film was obtained in which the coating layer shown in Table 2 was provided on a base film having a film thickness of 100 ⁇ m. Adequate adhesion could be obtained by using in combination with a carbodiimide-based crosslinking agent.
  • Example 12 A blend of polyester 1 and polyester 3 at a weight ratio of 92/8 was used as the raw material for layer A, and polyester 1 alone was used as the raw material for layer B.
  • Examples 13 to 22 In the same process as Example 12, the coating solution was changed as shown in Table 3 to obtain a coated film in which the coating layer of the amount shown in Table 3 was provided on a base film having a film thickness of 100 ⁇ m. The properties of this film are shown in Table 3.
  • Examples 23-31 In the same process as Example 12, the coating solution was changed as shown in Table 4 to obtain a coated film in which the coating layer of the amount shown in Table 4 was provided on a base film having a film thickness of 100 ⁇ m. The properties of this film are shown in Table 4.
  • the coated film of the present invention includes packaging materials, plate making materials, display materials, transfer materials, window paste materials, antireflection films used for membrane switches and flat displays, optical films such as diffusion sheets and prism sheets, transparent It can be suitably used for applications such as a touch panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

Provided is a coated film which comprises a coating layer having excellent durability with respect to solvents and exhibits excellent adhesiveness even after being treated with a solvent. A coated film that comprises a coating layer, which is formed from a coating liquid that contains a polyurethane, on the surface of a polyester film. The polyurethane contains, as a constituent, a polycarbonate polyol that is obtained by copolymerizing two kinds of carbonate diols having different main chain structures.

Description

塗布フィルムCoating film
 本発明は、溶剤に対する耐久性、特に、溶剤処理後の接着性に優れる塗布層を有する塗布フィルムに関する。 The present invention relates to a coating film having a coating layer that is excellent in durability against a solvent, in particular, adhesion after solvent treatment.
 二軸延伸ポリエステルフィルムは、透明性、寸法安定性、機械的特性、耐熱性、電気的特性、ガスバリヤー性、耐薬品性などに優れ、包装材料、製版材料、表示材料、転写材料、窓貼り材料などを始め、メンブレンスイッチやフラットディスプレイ等に用いられる反射防止フィルム、拡散シート、プリズムシート等の光学フィルム、透明タッチパネルなど幅広く使用されている。しかし、かかる用途においてポリエステルフィルム上に他の材料を塗布積層する場合に、使用される材料によっては接着性が悪いという欠点がある。 Biaxially stretched polyester film excels in transparency, dimensional stability, mechanical properties, heat resistance, electrical properties, gas barrier properties, chemical resistance, etc., packaging materials, plate making materials, display materials, transfer materials, window stickers In addition to materials, it is widely used for antireflection films used for membrane switches and flat displays, optical films such as diffusion sheets and prism sheets, and transparent touch panels. However, when other materials are applied and laminated on the polyester film in such applications, there is a drawback that the adhesiveness is poor depending on the materials used.
 二軸延伸ポリエステルフィルムの接着性を改良する方法の一つとして、ポリエステルフィルムの表面に各種樹脂を塗布し、易接着性能を持つ塗布層を設ける方法が知られており、ポリウレタン樹脂からなる塗布層を設けることで接着性の向上を図る手法もそのうちの一つとして知られている。ポリウレタン樹脂としては、アニオン性基を有する水溶性あるいは水分散性のウレタン樹脂が推奨され、斯かるウレタン樹脂の製法としては、ポリオール化合物、ポリイソシアネート化合物、鎖延長剤などと共にアニオン性基を有する化合物を用いる方法が開示されているが、ポリオール化合物およびポリイソシアネート化合物としては、汎用的なものが例示されている(特許文献1)。 As one of the methods for improving the adhesiveness of the biaxially stretched polyester film, a method of applying various resins to the surface of the polyester film and providing a coating layer having easy adhesion performance is known. A technique for improving the adhesiveness by providing is also known as one of them. As the polyurethane resin, a water-soluble or water-dispersible urethane resin having an anionic group is recommended. As a method for producing such a urethane resin, a compound having an anionic group together with a polyol compound, a polyisocyanate compound, a chain extender and the like. Although the method using this is disclosed, as the polyol compound and polyisocyanate compound, general-purpose compounds are exemplified (Patent Document 1).
 塗布層に設けられる樹脂は、近年の環境問題の取り組みとして揮発性有機物濃度(VOC)の低減が目標とされている中、水性の材料が注目されているが、水性のポリウレタンは従来の溶剤系のポリウレタンと比較して塗膜性能が劣る傾向にあり、溶剤に対する塗布層の耐久性も劣る傾向にある。 As the resin provided in the coating layer, a water-based material is attracting attention while a reduction in volatile organic substance concentration (VOC) is targeted as an approach to environmental problems in recent years. The coating film performance tends to be inferior to that of polyurethane, and the durability of the coating layer with respect to the solvent also tends to be inferior.
特開平11-286092号公報Japanese Patent Laid-Open No. 11-286092
 本発明は、上記実情に鑑みなされたものであり、その解決課題は、溶剤に対する耐久性に優れ、溶剤処理後も優れた接着性を示す塗布フィルムを提供することにある。 The present invention has been made in view of the above circumstances, and a problem to be solved is to provide a coated film that is excellent in durability against a solvent and exhibits excellent adhesion even after solvent treatment.
 本発明者らは、上記問題点に鑑み、鋭意検討した結果、特定の構成を採用することによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。 As a result of intensive studies in view of the above problems, the present inventors have found that the above problems can be easily solved by adopting a specific configuration, and the present invention has been completed.
 すなわち、本発明の要旨は、ポリエステルフィルムの表面にポリウレタンを含有する塗布液から形成された塗布層を有する塗布フィルムであって、上記のポリウレタンが主鎖構造の異なる2種類のカーボネートジオールが共重合されたポリカーボネートポリオールを構成成分として有するポリウレタンであることを特徴とする塗布フィルムに存する。 That is, the gist of the present invention is a coating film having a coating layer formed from a coating liquid containing polyurethane on the surface of a polyester film, wherein the polyurethane is a copolymer of two types of carbonate diols having different main chain structures. The coated film is characterized in that it is a polyurethane having a polycarbonate polyol as a constituent component.
 本発明によれば、溶剤に対する耐久性に優れ、溶剤処理後も優れた接着性を示す塗布フィルムを提供することができ、本発明の工業的価値は高い。 According to the present invention, it is possible to provide a coated film having excellent durability against a solvent and exhibiting excellent adhesiveness even after solvent treatment, and the industrial value of the present invention is high.
 本発明の塗布フィルムの基材フィルムは、ポリエステルからなるものである。かかるポリエステルとは、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、4,4’-ジフェニルジカルボン酸、1,4-シクロヘキシルジカルボン酸のようなジカルボン酸またはそのエステルとエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールのようなグリコールとを溶融重縮合させて製造されるポリエステルである。これらの酸成分とグリコール成分とからなるポリエステルは、通常行われている方法を任意に使用して製造することができる。例えば、芳香族ジカルボン酸の低級アルキルエステルとグリコールとの間でエステル交換反応をさせるか、あるいは芳香族ジカルボン酸とグリコールとを直接エステル化させるかして、実質的に芳香族ジカルボン酸のビスグリコールエステル、またはその低重合体を形成させ、次いでこれを減圧下、加熱して重縮合させる方法が採用される。その目的に応じ、脂肪族ジカルボン酸を共重合しても構わない。 The base film of the coated film of the present invention is made of polyester. Such polyesters include dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, 4,4′-diphenyldicarboxylic acid, 1,4-cyclohexyldicarboxylic acid or esters thereof. It is a polyester produced by melt polycondensation with glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, and 1,4-cyclohexanedimethanol. Polyesters composed of these acid components and glycol components can be produced by arbitrarily using a commonly used method. For example, a transesterification reaction between a lower alkyl ester of an aromatic dicarboxylic acid and a glycol, or a direct esterification of an aromatic dicarboxylic acid and a glycol, to form a substantially bisglycol of an aromatic dicarboxylic acid A method is employed in which an ester or a low polymer thereof is formed and then polycondensed by heating under reduced pressure. Depending on the purpose, an aliphatic dicarboxylic acid may be copolymerized.
 ポリエステルとしては、代表的には、ポリエチレンテレフタレートやポリエチレン-2,6-ナフタレート、ポリ-1,4-シクロヘキサンジメチレンテレフタレート等が挙げられるが、その他に上記の酸成分やグリコール成分を共重合したポリエステルであってもよく、必要に応じて他の成分や添加剤を含有していてもよい。 Typical examples of the polyester include polyethylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, and the like. In addition, polyester obtained by copolymerizing the above acid component and glycol component. And may contain other components and additives as necessary.
 ポリエステルフィルムには、フィルムの走行性を確保したり、キズが入ることを防いだりする等の目的で粒子を含有させることができる。このような粒子としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、カオリン、タルク、酸化アルミニウム、酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子、架橋高分子粒子、シュウ酸カルシウム等の有機粒子、さらに、ポリエステル製造工程時の析出粒子等を用いることができる。 The polyester film can contain particles for the purpose of ensuring the film runnability and preventing scratches. Examples of such particles include inorganic particles such as silica, calcium carbonate, magnesium carbonate, calcium phosphate, kaolin, talc, aluminum oxide, titanium oxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide. Further, organic particles such as crosslinked polymer particles and calcium oxalate, and precipitated particles during the polyester production process can be used.
 用いる粒子の粒径や含有量はフィルムの用途や目的に応じて選択されるが、平均粒径に関しては、通常は0.01~5.0μmの範囲である。平均粒径が5.0μmを超えるとフィルムの表面粗度が粗くなりすぎたり、粒子がフィルム表面から脱落しやすくなったりすることがある。平均粒径が0.01μm未満では、表面粗度が小さすぎて、十分な易滑性が得られない場合がある。 The particle size and content of the particles used are selected according to the application and purpose of the film, but the average particle size is usually in the range of 0.01 to 5.0 μm. If the average particle size exceeds 5.0 μm, the surface roughness of the film may become too rough, or the particles may easily fall off from the film surface. When the average particle size is less than 0.01 μm, the surface roughness is too small and sufficient slipperiness may not be obtained.
 粒子含有量については、ポリエステルに対し、通常0.0003~1.0重量%、好ましくは0.0005~0.5重量%の範囲である。粒子含有量が0.0003重量%未満の場合には、フィルムの易滑性が不十分な場合があり、一方、1.0重量%を超えて添加する場合には、フィルムの透明性が不十分な場合がある。なおフィルムの透明性、平滑性などを特に確保したい場合には、実質的に粒子を含有しない構成とすることもできる。また、適宜、各種安定剤、潤滑剤、帯電防止剤等をフィルム中に加えることもできる。 The particle content is usually in the range of 0.0003 to 1.0% by weight, preferably 0.0005 to 0.5% by weight, based on the polyester. When the particle content is less than 0.0003% by weight, the slipperiness of the film may be insufficient. On the other hand, when the content exceeds 1.0% by weight, the transparency of the film is poor. It may be enough. In addition, when it is particularly desired to ensure transparency, smoothness, etc. of the film, it can also be configured so as not to substantially contain particles. In addition, various stabilizers, lubricants, antistatic agents and the like can be appropriately added to the film.
 フィルムの製膜方法としては、通常知られている製膜法を採用でき、特に制限はない。例えば、まず溶融押出によって得られたシートを、ロール延伸法により、70~145℃で2~6倍に延伸して、一軸延伸ポリエステルフィルムを得、次いで、テンター内で先の延伸方向とは直角方向に80~160℃で2~6倍に延伸し、さらに、150~250℃で1~600秒間熱処理を行うことでフィルムが得られる。さらにこの際、熱処理のゾーンおよび/または熱処理出口のクーリングゾーンにおいて、縦方向および/または横方向に0.1~20%弛緩する方法が好ましい。 As the film forming method, a generally known film forming method can be adopted, and there is no particular limitation. For example, a sheet obtained by melt extrusion is first stretched 2 to 6 times at 70 to 145 ° C. by a roll stretching method to obtain a uniaxially stretched polyester film, and then perpendicular to the previous stretching direction in a tenter. A film can be obtained by stretching 2 to 6 times in the direction at 80 to 160 ° C. and further performing heat treatment at 150 to 250 ° C. for 1 to 600 seconds. Further, at this time, a method of relaxing 0.1 to 20% in the longitudinal direction and / or the transverse direction in the heat treatment zone and / or the cooling zone at the heat treatment outlet is preferable.
 基材のポリエステルフィルムは、単層または多層構造である。多層構造の場合は、表層と内層、あるいは両表層や各層を目的に応じ異なるポリエステルとすることができる。 The base polyester film has a single layer or multilayer structure. In the case of a multilayer structure, the surface layer and the inner layer, or both the surface layer and each layer can be made of different polyesters depending on the purpose.
 本発明の塗布フィルムは少なくとも片面に塗布層を有するが、フィルムの反対面に同様のあるいは他の塗布層や機能層を設けていても、本発明の概念に当然含まれるものである。 The coated film of the present invention has a coated layer on at least one side, but even if a similar or other coated layer or functional layer is provided on the opposite side of the film, it is naturally included in the concept of the present invention.
 本発明における塗布層は、塗布組成物をポリエステルフィルム上に塗布して得られる。塗布に関しては種々の方法が適用できるが、フィルムの製膜中に塗布層を設ける、いわゆるインラインコーティング、特に塗布後に延伸を行う塗布延伸法が好適に用いられる。 The coating layer in the present invention is obtained by coating a coating composition on a polyester film. Various methods can be applied to the coating, but a so-called in-line coating in which a coating layer is provided during film formation, particularly a coating stretching method in which stretching is performed after coating is preferably used.
 インラインコーティングは、ポリエステルフィルム製造の工程内でコーティングを行う方法であり、具体的には、ポリエステルを溶融押出ししてから二軸延伸後熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融・急冷して得られる実質的に非晶状態の未延伸シート、その後に長手方向(縦方向)に延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルムの何れかにコーティングする。特に塗布延伸法としては、一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と塗布層塗設を同時に行うことができるため製造コスト上のメリットがあり、コーティング後に延伸を行うために、薄膜で均一なコーティングとなるために接着性能が安定する。 In-line coating is a method of coating within the process of manufacturing a polyester film. Specifically, it is a method of coating at any stage from melt extrusion of polyester to biaxial stretching and then heat setting and winding. is there. Normally, it is coated on either a substantially amorphous unstretched sheet obtained by melting and quenching, then a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction), or a biaxially stretched film before heat setting. To do. In particular, as a coating stretching method, a method of stretching in the transverse direction after coating on a uniaxially stretched film is excellent. According to such a method, since film formation and coating layer coating can be performed simultaneously, there is an advantage in manufacturing cost, and since stretching is performed after coating, a uniform coating with a thin film is achieved, so that adhesion performance is stabilized. .
 また、二軸延伸される前のポリエステルフィルム上を、まず易接着樹脂層で被覆し、その後フィルムと塗布層を同時に延伸することで、基材フィルムと塗布層が強固に密着することになる。また、ポリエステルフィルムの二軸延伸は、テンターによりフィルム端部を把持しつつ横方向に延伸することで、フィルムが長手/横手方向に拘束されており、熱固定において、しわ等が入らず平面性を維持したまま高温をかけることができる。それゆえ、コーティング後に施される熱処理が他の方法では達成されない高温とすることができるために、塗布層の造膜性が向上し、また塗布層とポリエステルフィルムが強固に密着する。例えば易接着性ポリエステルフィルムとして、塗布層の均一性、造膜性の向上および塗布層とフィルムの密着は好ましい特性を生む場合が多い。 Also, the polyester film before biaxial stretching is first coated with an easy-adhesive resin layer, and then the film and the coating layer are stretched simultaneously, whereby the base film and the coating layer are firmly adhered. In addition, biaxial stretching of the polyester film is achieved by stretching the film in the lateral direction while holding the film edge with a tenter, so that the film is constrained in the longitudinal / lateral direction. High temperature can be applied while maintaining Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the coating layer is improved, and the coating layer and the polyester film are firmly adhered. For example, as an easily-adhesive polyester film, the uniformity of the coating layer, the improvement of the film-forming property, and the adhesion between the coating layer and the film often produce favorable characteristics.
 この場合、用いる塗布液は、取扱い上、作業環境上、安全上の理由から水溶液または水分散液であることが好ましいが、有機溶剤を含有していてもよい。 In this case, the coating solution to be used is preferably an aqueous solution or an aqueous dispersion from the viewpoint of handling, working environment, and safety, but may contain an organic solvent.
 次に、本発明においてフィルムに設ける塗布層について述べる。この塗布層は、特定のポリウレタンを含有する塗布液から形成される。 Next, the coating layer provided on the film in the present invention will be described. This coating layer is formed from a coating solution containing a specific polyurethane.
 本発明におけるポリウレタンとは、主鎖構造の異なる2種類のカーボネートジオールが共重合された構造を有する共重合ポリカーボネートポリオールを構成成分として持つポリウレタンのことである。 The polyurethane in the present invention is a polyurethane having as a constituent component a copolymerized polycarbonate polyol having a structure in which two types of carbonate diols having different main chain structures are copolymerized.
 ポリカーボネートポリオールは、例えば、ジフェニルカーボネートとジオールからの反応や、ジアルキルカーボネートとジオールからの反応、アルキレンカーボネートとジオールからの反応で得られる。 Polycarbonate polyol is obtained, for example, by a reaction from diphenyl carbonate and diol, a reaction from dialkyl carbonate and diol, or a reaction from alkylene carbonate and diol.
 例えば、上記反応に用いられるジオール成分としては下記のようなものが挙げられる。すなわち、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9‐ノナンジオール、1,10‐デカンジオール、ネオペンチルグリコール、シクロヘキサンジオールなどが挙げられる。 For example, examples of the diol component used in the above reaction include the following. 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol 1,10-decanediol, neopentyl glycol, cyclohexanediol and the like.
 本発明における共重合ポリカーボネートポリオールは、例えばこれらのジオール成分にカーボネートを付加させ、末端にカーボネートを持つモノマーユニットを形成し、それらのモノマーユニットを2種類以上共重合させる、あるいは、2種以上のジオール成分にカーボネートを付加させつつ共重合する等の方法で得ることができる。これらの共重合ポリカーボネートポリオールをポリウレタンのポリオール成分として用いる。 The copolymerized polycarbonate polyol in the present invention is formed by, for example, adding carbonate to these diol components to form a monomer unit having carbonate at the terminal, and copolymerizing two or more of these monomer units, or two or more diols. It can be obtained by a method such as copolymerization while adding carbonate to the component. These copolymer polycarbonate polyols are used as a polyol component of polyurethane.
 共重合ポリカーボネートポリウレタンを構成する共重合ポリカーボネートポリオールは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の数平均分子量(Mn)として、通常100~3000、好ましくは200~2500、更に好ましくは400~2000である。この範囲より大きいと、耐ブロッキング性が悪化し、この範囲より小さいと、密着性に劣る場合がある。 The copolymerized polycarbonate polyol constituting the copolymerized polycarbonate polyurethane is usually 100 to 3000, preferably 200 to 2500, and more preferably 400 to 2000 in terms of polystyrene-reduced number average molecular weight (Mn) by gel permeation chromatography (GPC). It is. When it is larger than this range, the blocking resistance is deteriorated, and when it is smaller than this range, the adhesion may be inferior.
 また、これらの共重合体の構造としては、ランダム共重合、グラフト共重合、ブロック共重合など特に限定されるものではない。 Further, the structure of these copolymers is not particularly limited, such as random copolymerization, graft copolymerization, and block copolymerization.
 本発明におけるポリウレタンとしては、上記の共重合ポリカーボネートポリオールを含有していれば、その他のポリオール(例えばポリエーテルジオールやポリエステルジオールなど)が含まれていても構わない。 The polyurethane in the present invention may contain other polyol (for example, polyether diol, polyester diol, etc.) as long as it contains the above-described copolymer polycarbonate polyol.
 本発明におけるポリウレタンのポリイソシアネート成分は、特に限定されないが、主に脂肪族、脂環族からなる。具体的には、全ポリイソシアネート成分のうち50モル%以上が脂肪族または脂環族ポリイソシアネートであることが好ましい。 The polyisocyanate component of the polyurethane in the present invention is not particularly limited, but mainly comprises aliphatic and alicyclic groups. Specifically, it is preferable that 50 mol% or more of all the polyisocyanate components is an aliphatic or alicyclic polyisocyanate.
 ポリイソシアネート成分の例としては、イソホロンジイソシアネート、1,6ヘキサメチレンジイソシアネート、トリエンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、trans-1,4-シクロヘキシレンジイソシアネート、4,7-ダイマー酸ジイソシアネート、リジンジイソシアネート、1,6-ジイソシアナト-2,2,4-トリメチルヘキサン、シクロヘキサン-1,3-ジイルジイソシアネート、シクロヘキサン-1,4-ジイルジイソシアネート、シクロヘキサン-1,3-ジイルビス(メチルイソシアネート)、1-メチルシクロヘキサン-2,4-ジイルジイソシアネート、2,6-ジイソシアナトヘキサン酸メチル、テトラメチレンジイソシアネートなどが挙げられる。 Examples of polyisocyanate components include isophorone diisocyanate, 1,6 hexamethylene diisocyanate, triene diisocyanate, hydrogenated diphenylmethane diisocyanate, trans-1,4-cyclohexylene diisocyanate, 4,7-dimer acid diisocyanate, lysine diisocyanate, 1,6 -Diisocyanato-2,2,4-trimethylhexane, cyclohexane-1,3-diyl diisocyanate, cyclohexane-1,4-diyl diisocyanate, cyclohexane-1,3-diylbis (methyl isocyanate), 1-methylcyclohexane-2,4 -Diyl diisocyanate, methyl 2,6-diisocyanatohexanoate, tetramethylene diisocyanate and the like.
 全ポリイソシアネート成分のうち50モル%以上を芳香族ポリイソシアネートとした場合、接着性、外観、透明性に劣ることがある。 When 50 mol% or more of all the polyisocyanate components is an aromatic polyisocyanate, the adhesiveness, appearance, and transparency may be inferior.
 本発明における共重合ポリカーボネートを構成成分とするポリウレタンは、溶剤を媒体とするものであってもよいが、好ましくは水を媒体とするものである。ポリウレタンを水に分散、または溶解させるには、乳化剤を用いる強制乳化型、ポリウレタン樹脂中に親水性基を導入する自己乳化型あるいは水溶型等がある。特に、ポリウレタン樹脂の骨格中に親水性基を導入した自己乳化タイプが、液の貯蔵安定性や得られる塗布層の耐水性、透明性に優れており好ましい。 In the present invention, the polyurethane containing the copolymerized polycarbonate as a constituent component may be one using a solvent as a medium, but preferably using water as a medium. In order to disperse or dissolve polyurethane in water, there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into a polyurethane resin, and a water-soluble type. In particular, the self-emulsification type in which a hydrophilic group is introduced into the skeleton of the polyurethane resin is preferable because of excellent storage stability of the liquid and water resistance and transparency of the resulting coating layer.
 また、導入する親水性基としては、カルボキシル基、スルホン基、リン酸、ホスホン酸、4級アンモニウム、ポリエチレングリコール等、種々のものが挙げられる。 Further, examples of the hydrophilic group to be introduced include various groups such as a carboxyl group, a sulfone group, phosphoric acid, phosphonic acid, quaternary ammonium, and polyethylene glycol.
 ポリウレタン中の親水性基の量は、0.05重量%~8重量%が好ましい。少ない親水性基量では、ポリウレタンの水溶性あるいは水分散性が悪く、多い親水性基量では、塗布後の塗布層の耐水性が劣ったり、吸湿してフィルムが相互に固着しやすくなったりすることがあるからである。 The amount of hydrophilic groups in the polyurethane is preferably 0.05% by weight to 8% by weight. When the amount of the hydrophilic group is small, the water solubility or water dispersibility of the polyurethane is poor, and when the amount of the hydrophilic group is large, the water resistance of the coating layer after coating is poor, or the film tends to stick to each other due to moisture absorption. Because there are things.
 本発明における塗布液中には、必要に応じて上記述べた成分以外を含むことができる。例えば、界面活性剤、その他のバインダー、架橋剤、消泡剤、塗布性改良剤、増粘剤、酸化防止剤、紫外線吸収剤、発泡剤、染料、顔料等である。これらの添加剤は単独で用いてもよいが、必要に応じて二種以上を併用してもよい。 The coating liquid in the present invention may contain components other than those described above as necessary. For example, surfactants, other binders, crosslinking agents, antifoaming agents, coatability improvers, thickeners, antioxidants, ultraviolet absorbers, foaming agents, dyes, pigments and the like. These additives may be used alone or in combination of two or more as necessary.
 塗布液の成分に架橋剤を使用して形成された塗布層は、溶剤処理後の接着性に優れるのに加え、上塗り剤に対する易接着性の点でも優れる。架橋剤としては、種々のものが用いられるが、カルボジイミド化合物、オキサゾリン化合物、メラミン化合物、エポキシ化合物、イソシアネート化合物などが挙げられる。架橋剤の量は、塗布液の不揮発成分中の割合として、通常5~60重量%、好ましくは10~60重量%、さらに好ましくは、20~50重量%である。この範囲を外れる場合、得られる塗布層の外観や接着性に劣ることがある。 The coating layer formed using a crosslinking agent as a component of the coating solution is excellent in terms of easy adhesion to the top coat in addition to excellent adhesion after solvent treatment. Various crosslinking agents are used, and examples thereof include carbodiimide compounds, oxazoline compounds, melamine compounds, epoxy compounds, and isocyanate compounds. The amount of the crosslinking agent is usually 5 to 60% by weight, preferably 10 to 60% by weight, and more preferably 20 to 50% by weight as a ratio in the nonvolatile component of the coating solution. When outside this range, the appearance and adhesion of the resulting coating layer may be inferior.
 カルボジイミド化合物とは分子内にカルボジイミド基を有する化合物およびその反応物である。分子内にカルボジイミド基を有する化合物としては、特に、分子内に2個以上のカルボジイミド基を有するポリカルボジイミド化合物が好適であり、例えば、特開平10-316930号公報や特開平11-140164号公報に示されるように、有機ポリイソシアネート、特に好ましくは有機ジイソシアネートを主たる合成原料として製造される。 The carbodiimide compound is a compound having a carbodiimide group in the molecule and a reaction product thereof. As the compound having a carbodiimide group in the molecule, a polycarbodiimide compound having two or more carbodiimide groups in the molecule is particularly suitable. For example, in JP-A-10-316930 and JP-A-11-140164 As shown, an organic polyisocyanate, particularly preferably an organic diisocyanate, is produced as the main synthetic raw material.
 これらのジイソシアネートとしては、例えば、1,4-フェニレンジイソシアネート、1,3-フェニレンジイソシアネート、1-メチルフェニレン-2,4-ジイソシアネート、1-メトキシフェニレン-2,4-ジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、ビフェニレン-4,4’-ジイソシアネート、3,3’-ジメトキシビフェニレン-4,4’-ジイソシアネート、3,3’-ジメチルビフェニレン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメトキシジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、シクロブチレン-1,3-ジイソシアネート、シクロペンチレン-1,3-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、1-メチルシクロヘキシレン-2,4-ジイソシアネート、1-メチルシクロヘキシレン-2,6-ジイソシアネート、1-イソシアネート-3,3,5-トリメチル-5-イソシアネートメチルシクロヘキサン、シクロヘキサン-1,3-ビス(メチルイソシアネート)、シクロヘキサン-1,4-ビス(メチルイソシアネート)、イソホロンジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、エチレンジイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、テトラメチレン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレン-1,12-ジイソシアネート、リジンジイソシアネートメチルエステル、1,5-ナフタレンジイソシアネート等が挙げられる。 Examples of these diisocyanates include 1,4-phenylene diisocyanate, 1,3-phenylene diisocyanate, 1-methylphenylene-2,4-diisocyanate, 1-methoxyphenylene-2,4-diisocyanate, and 2,4-tolylene diene. Isocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, biphenylene-4,4′-diisocyanate, 3,3′-dimethoxybiphenylene-4,4′-diisocyanate, 3,3′-dimethylbiphenylene-4,4′-diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethoxydiphenylmethane-4,4′-diisocyanate 3,3′-dimethyldiphenylmethane-4,4′-diisocyanate, naphthylene-1,5-diisocyanate, cyclobutylene-1,3-diisocyanate, cyclopentylene-1,3-diisocyanate, cyclohexylene-1,3 -Diisocyanate, cyclohexylene-1,4-diisocyanate, 1-methylcyclohexylene-2,4-diisocyanate, 1-methylcyclohexylene-2,6-diisocyanate, 1-isocyanate-3,3,5-trimethyl-5- Isocyanate methylcyclohexane, cyclohexane-1,3-bis (methylisocyanate), cyclohexane-1,4-bis (methylisocyanate), isophorone diisocyanate, dicyclohexylmethane-2,4′-diisocyanate, Cyclohexylmethane-4,4′-diisocyanate, ethylene diisocyanate, 2,6-diisopropylphenyl isocyanate, tetramethylene-1,4-diisocyanate, hexamethylene diisocyanate, dodecamethylene-1,12-diisocyanate, lysine diisocyanate methyl ester, 1, And 5-naphthalene diisocyanate.
 ポリカルボジイミドの製造にあたっては、これらの有機ジイソシアネートの1種もしくは2種以上の混合物を用いることができる。また、ジイソシアネート以外の有機ポリイソシアネートを用いることもできる。さらに、分子中の共重合成分として、これら以外のモノマーを含んでいても構わない。 In the production of polycarbodiimide, one or a mixture of two or more of these organic diisocyanates can be used. Moreover, organic polyisocyanate other than diisocyanate can also be used. Furthermore, monomers other than these may be included as a copolymerization component in the molecule.
 オキサゾリン化合物とは分子中に少なくとも一つのオキサゾリン環を持つ化合物である。オキサゾリン環を有するモノマーや、オキザゾリン化合物を原料モノマーの一つとして合成されるポリマーも含まれる。分子中に少なくとも一つのオキサゾリン環を持つ化合物としては、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩類等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン、等のα,β-不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。 An oxazoline compound is a compound having at least one oxazoline ring in the molecule. Also included are monomers having an oxazoline ring and polymers synthesized using an oxazoline compound as one of the raw material monomers. The compound having at least one oxazoline ring in the molecule is particularly preferably a polymer containing an oxazoline group, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide (As the alkyl group, unsaturated amides such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); Vinyl esters such as vinyl and vinyl propionate; Vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; Halogen-containing α, β-unsaturated such as vinyl chloride, vinylidene chloride and vinyl fluoride Monomers: α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene can be used, and one or more of these monomers can be used.
 メラミン化合物とは化合物中にメラミン骨格を有する化合物である。例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、およびこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。 A melamine compound is a compound having a melamine skeleton in the compound. For example, an alkylolated melamine derivative, a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and a mixture thereof can be used. As alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used. Moreover, as a melamine compound, either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used. Further, a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
 エポキシ化合物とは分子内にエポキシ基を有する化合物である。例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’,-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサン等が挙げられる。 An epoxy compound is a compound having an epoxy group in the molecule. Examples include condensates of epichlorohydrin with hydroxyl groups and amino groups such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, and bisphenol A, and polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. is there. Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane. Examples of the polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. , Polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compounds include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compounds such as N, N, N ′, N ′,-tetraglycidyl-m-. Examples include xylylenediamine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
 イソシアネート化合物とは分子内にイソシアネート基を有する化合物である。特に、1分子中にイソシアネート基を2個以上含む多官能性イソシアネート化合物の使用が好ましい。多官能性イソシアネート化合物としては、低分子又は高分子の芳香族、脂肪族のジイソシアネート、3価以上のポリイソシアネートが挙げられ、ポリイソシアネートとしては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネートおよびこれらのイソシアネート化合物の3量体が挙げられる。さらに、これらのイソシアネート化合物の過剰量と、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどの低分子活性水素化合物、又はポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類などの高分子活性水素化合物とを反応させて得られる末端イソシアネート基含有化合物が挙げられる。なお、イソシアネート化合物を架橋剤として用いる場合に、ブロック型イソシアネート化合物を用いることも可能である。ブロック化イソシアネートは上記イソシアネート化合物とブロック化剤とを従来公知の適宜の方法より付加反応させて調製し得る。イソシアネートブロック化剤としては、例えば、フェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノールなどのフェノール類;チオフェノール、メチルチオフェノールなどのチオフェノール類;アセトキシム、メチルエチケトオキシム、シクロヘキサノンオキシムなどのオキシム類;メタノール、エタノール、プロパノール、ブタノールなどのアルコール類;エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノールなどのハロゲン置換アルコール類;t-ブタノール、t-ペンタノールなどの第3級アルコール類;ε-カプロラクタム、δ-バレロラクタム、ν-ブチロラクタム、β-プロピルラクタムなどのラクタム類;芳香族アミン類;イミド類;アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物;メルカプタン類;イミン類;尿素類;ジアリール化合物類;重亜硫酸ソーダ等が挙げられる。 An isocyanate compound is a compound having an isocyanate group in the molecule. In particular, it is preferable to use a polyfunctional isocyanate compound containing two or more isocyanate groups in one molecule. Examples of the polyfunctional isocyanate compound include low or high molecular aromatic, aliphatic diisocyanate, and trivalent or higher polyisocyanate. Examples of the polyisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, and diphenylmethane diisocyanate. , Hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate and trimers of these isocyanate compounds. Further, an excess amount of these isocyanate compounds and low molecular active hydrogen compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, or polyester polyols, poly Examples thereof include terminal isocyanate group-containing compounds obtained by reacting polymer active hydrogen compounds such as ether polyols and polyamides. In addition, when using an isocyanate compound as a crosslinking agent, it is also possible to use a block type isocyanate compound. The blocked isocyanate can be prepared by subjecting the above isocyanate compound and blocking agent to an addition reaction by a conventionally known appropriate method. Examples of the isocyanate blocking agent include phenols such as phenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol; thiophenols such as thiophenol and methylthiophenol; oximes such as acetoxime, methyl etiketooxime, and cyclohexanone oxime. Alcohols such as methanol, ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol ; Lactams such as ε-caprolactam, δ-valerolactam, ν-butyrolactam, β-propyllactam; aromatic amines; imides; acetylacetone, acetoacetate Active methylene compounds such as malonic acid ethyl ester; mercaptans; imines; ureas; diaryl compounds; sodium bisulfite, and the like.
 本発明では、フィルムに易滑性を与えたり、ブロッキングを軽減させたりするために塗布液中に粒子を含有してもよい。粒子の含有量があまりに多すぎると、塗布層の透明性が低下したり、塗布層の連続性が損なわれ塗膜強度が低下したりする、あるいは易接着性が低下することがあるため、塗布液の不揮発成分中、通常15重量%以下、さらには10重量%以下が好適である。また、粒子含有量の下限については特に限定はない。 In the present invention, particles may be contained in the coating solution in order to give the film slidability or reduce blocking. If the particle content is too large, the transparency of the coating layer may decrease, the continuity of the coating layer may be impaired, and the coating strength may decrease, or the easy adhesion may decrease. In the non-volatile component of the liquid, usually 15% by weight or less, further 10% by weight or less is suitable. Moreover, there is no limitation in particular about the minimum of particle content.
 用いる粒子としては、例えば、シリカやアルミナ、酸化金属等の無機粒子、あるいは架橋高分子粒子等の有機粒子等を用いることができる。特に、塗布液への分散性や得られる塗膜の透明性の観点からは、シリカ粒子が好適である。 As the particles to be used, for example, inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles can be used. In particular, silica particles are suitable from the viewpoint of dispersibility in the coating solution and transparency of the resulting coating film.
 粒子の粒径は、小さすぎるとブロッキング軽減の効果が得られにくく、大きすぎると塗膜からの脱落などが起きやすい。平均粒径として、塗布層の厚さの1/2~10倍程度が好ましい。さらに、粒径が大きすぎると、塗布層の透明性が劣ることがあるので、平均粒径として、300nm以下、さらには150nm以下であることが好ましい。ここで述べる粒子の平均粒径は、粒子の分散液をマイクロトラックUPA(日機装社製)にて、個数平均の50%平均径を測定することで得られる。 If the particle diameter is too small, the effect of reducing blocking is difficult to obtain, and if it is too large, the film tends to fall off. The average particle size is preferably about 1/2 to 10 times the thickness of the coating layer. Furthermore, if the particle size is too large, the transparency of the coating layer may be inferior, so the average particle size is preferably 300 nm or less, and more preferably 150 nm or less. The average particle diameter of the particles described here can be obtained by measuring the 50% average diameter of the number average of the particle dispersion with Microtrac UPA (Nikkiso Co., Ltd.).
 ポリエステルフィルムに塗布液を塗布する方法としては、例えば、原崎勇次著、槙書店、1979年発行、「コーティング方式」に示されるような塗布技術を用いることができる。具体的には、エアドクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースロールコーター、トランスファロールコーター、グラビアコーター、キスロールコーター、キャストコーター、スプレイコーター、カーテンコーター、カレンダコーター、押出コーター、バーコーター等のような技術が挙げられる。 As a method of applying the coating solution to the polyester film, for example, a coating technique as shown in “Coating system” published by Yuji Harasaki, Tsuji Shoten, published in 1979 can be used. Specifically, air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roll coater, transfer roll coater, gravure coater, kiss roll coater, cast coater, spray coater, curtain coater, calendar coater And techniques such as an extrusion coater and a bar coater.
 なお、塗布剤のフィルムへの塗布性を改良するため、塗布前にフィルムに化学処理やコロナ放電処理、プラズマ処理等を施してもよい。 In addition, in order to improve the applicability of the coating agent to the film, the film may be subjected to chemical treatment, corona discharge treatment, plasma treatment or the like before coating.
 ポリエステルフィルム上に設けられる塗布層の塗工量は、最終的な被膜として(乾燥固形分として)、通常は0.002~1.0g/m2、好ましくは0.005~0.5g/m2、さらに好ましくは0.01~0.2g/m2である。塗工量が0.002g/m2未満の場合は十分な接着性能が得られない恐れがあり、1.0g/m2を超える塗布層は、外観・透明性の悪化や、フィルムのブロッキング、コストアップを招くことがある。 The coating amount of the coating layer provided on the polyester film is usually from 0.002 to 1.0 g / m 2 , preferably from 0.005 to 0.5 g / m as a final coating (as dry solid content). 2 and more preferably 0.01 to 0.2 g / m 2 . If the coating amount is less than 0.002 g / m 2, sufficient adhesion performance may not be obtained. If the coating layer exceeds 1.0 g / m 2 , the appearance / transparency deteriorates, film blocking, Cost may increase.
 以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例および比較例における評価方法は下記のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In addition, the evaluation method in an Example and a comparative example is as follows.
(1)ポリエステルの極限粘度の測定:
 ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Measurement of intrinsic viscosity of polyester:
1 g of polyester from which other polymer components and pigments incompatible with polyester were removed was precisely weighed, 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) was added and dissolved, and measurement was performed at 30 ° C.
(2)ポリエステルフィルム中に添加する粒子の平均粒径(d50):
 島津製作所製遠心沈降式粒度分布測定装置SA-CP3型を用いてストークスの抵抗則に基づく沈降法によって粒子の大きさを測定した。
(2) Average particle diameter (d50) of particles added to the polyester film:
The particle size was measured by a sedimentation method based on Stokes' resistance law using a Shimadzu centrifugal sedimentation type particle size distribution analyzer SA-CP3 type.
(3)溶剤処理後の接着性:
 ポリエステルフィルムの塗布層を、MEK(メチルエチルケトン)を染み込ませたコットンで擦り、MEKで擦った後の塗布層とUVインキとの耐溶剤接着性を下記方法にて試験した。すなわち、ポリエステルフィルムの塗布層上に、MEKを十分に染み込ませたコットンを乗せ、その上に450g/cmの荷重をかけ、ラビングテストを行った。ラビング回数はそれぞれ1往復、3往復、5往復の3条件で行い、ラビングテストには大平理化工業社製のラビングテスターを使用した。
(3) Adhesiveness after solvent treatment:
The coating layer of the polyester film was rubbed with cotton soaked with MEK (methyl ethyl ketone), and the solvent resistance adhesion between the coating layer after rubbing with MEK and UV ink was tested by the following method. That is, a cotton film in which MEK was sufficiently impregnated was placed on the polyester film coating layer, and a load of 450 g / cm 2 was applied thereon to perform a rubbing test. The rubbing was performed under three conditions of 1 round trip, 3 round trips, and 5 round trips. A rubbing tester manufactured by Ohira Rika Kogyo Co., Ltd. was used for the rubbing test.
 次にMEKでラビングテストした塗布層上に、東洋インキ製造社製の紫外線硬化型インキ・FDカルトンX墨Mを、IHI機械システム社製のRIテスターにて塗工し、厚さ1μmの塗布厚みを設け、160W/cmのメタルハライドランプを使用してインキを硬化させ、積層フィルムを作成した。硬化させる際にかけた活性エネルギー線の積算光量は90mJ/cm2であった。 Next, on the coating layer subjected to the rubbing test with MEK, UV curable ink FD Carton X black M manufactured by Toyo Ink Manufacturing Co., Ltd. was applied with an RI tester manufactured by IHI Machine Systems Co., Ltd., and the coating thickness was 1 μm. And the ink was cured using a 160 W / cm metal halide lamp to prepare a laminated film. The integrated light quantity of the active energy ray applied when curing was 90 mJ / cm 2 .
 上記方法にて作成した積層フィルムのインキ層にクロスカットを入れてセロテープ(登録商標)による剥離試験を行い、溶剤で擦った後の塗布層とUVインキとの接着性を評価した。接着性の評価は以下に示すA~Eの5段階で行った。Aは最高クラス、Eは最低クラスを示す。 A crosscut was made in the ink layer of the laminated film prepared by the above method, and a peel test was performed using a cello tape (registered trademark), and the adhesion between the coating layer after rubbing with a solvent and the UV ink was evaluated. The evaluation of adhesiveness was performed in the following five stages A to E. A indicates the highest class and E indicates the lowest class.
 A:UVインキの剥がれはなく良好
 B:UVインキの一部が剥がれる
 C:UVインキの半分程度が剥がれる
 D:UVインキがほぼ剥がれる
 E:UVインキが全面剥がれる
A: UV ink does not peel off and is good B: UV ink partially peels off C: About half of UV ink peels off D: UV ink almost peels off E: UV ink peels off on the entire surface
(4)上塗り剤に対する接着性:
 下記に示す特性の違う、3種類の上塗り剤をポリエステルフィルムの塗布層上に塗工し積層フィルムを作成した。積層フィルムを作成後、各種上塗り剤に対する接着性評価を行った。
(4) Adhesiveness to topcoat:
Three types of top coats having different characteristics shown below were coated on a polyester film coating layer to prepare a laminated film. After making a laminated film, the adhesiveness evaluation with respect to various topcoats was performed.
・接着性I:
 ポリエステルフィルムの塗布層上に、アクリルHCの調整液を塗工し、接着性の評価を行った。アクリルHCの調整について、「カラヤッドDPHA」(日本化薬社製)/「カラヤッドR-128H」(日本化薬社製)/「Irgacure651」(チバスペシャルティケミカルズ社製)=80/20/5の重量比率で配合し、トルエンで30%溶液に調整する。この塗布液をテスター産業製の自動コーター(PI1210)を用いて、乾燥被膜が5μmの厚みになるように塗工した。80℃で1分間の加熱条件で塗膜を乾燥後、120W/cmのメタルハライドランプを使用し硬化させ、積層フィルムを作成した。硬化させる際にかけた活性エネルギー線の積算光量は220mJ/cmであった。
-Adhesion I:
On the polyester film coating layer, an acrylic HC adjustment liquid was applied to evaluate the adhesion. For adjustment of acrylic HC, “Karayad DPHA” (manufactured by Nippon Kayaku Co., Ltd.) / “Karayad R-128H” (manufactured by Nippon Kayaku Co., Ltd.) / “Irgacure 651” (manufactured by Ciba Specialty Chemicals) = 80/20/5 weight Mix in proportion and adjust to 30% solution with toluene. This coating solution was applied using an automatic coater (PI1210) manufactured by Tester Sangyo Co., Ltd. so that the dry film thickness was 5 μm. The coated film was dried under heating conditions at 80 ° C. for 1 minute, and then cured using a 120 W / cm metal halide lamp to prepare a laminated film. The integrated light quantity of the active energy ray applied when curing was 220 mJ / cm 2 .
・接着性II:
 ポリエステルフィルムの塗布層上に、東洋インキ製造社製の紫外線硬化型インキ・FDカルトンX墨Mおよび、FDカルトンX藍MをIHI機械システム社製のオフセット印刷試験機であるRIテスターにて塗工し、厚さ1μmの塗布厚みを設け、160W/cmのメタルハライドランプを使用しインキを硬化させ、積層フィルムを作成した。硬化させる際にかけた活性エネルギー線の積算光量は90mJ/cmであった。
-Adhesion II:
On the polyester film coating layer, UV curable ink FD Carton X Black M and FD Carton X Indigo M manufactured by Toyo Ink Manufacturing Co., Ltd. are coated with an RI tester, an offset printing tester manufactured by IHI Machinery Systems. Then, a coating thickness of 1 μm was provided, and the ink was cured using a 160 W / cm metal halide lamp to prepare a laminated film. The integrated light quantity of the active energy ray applied when curing was 90 mJ / cm 2 .
・接着性III:
 平坦なSUS板上に、活性エネルギー線硬化樹脂である「ダイヤビームUR-6530」(三菱レイヨン社製)を滴下し、その上から、ポリエステルフィルムの評価面が活性エネルギー線硬化樹脂が触れる向きに重ね、荷重4kg、幅50mmのローラーで硬化後の厚さが15μmになるように均して、160W/cmの高圧水銀灯を使用し、インキを硬化させ、積層フィルムを作成した。硬化させる際にかけた活性エネルギー線の積算光量は160mJ/cmであった。
-Adhesion III:
“Diabeam UR-6530” (manufactured by Mitsubishi Rayon Co., Ltd.), which is an active energy ray curable resin, is dropped on a flat SUS plate, and the evaluation surface of the polyester film is in contact with the active energy ray curable resin from above. The laminated film was prepared by using a 160 W / cm high-pressure mercury lamp and curing the ink using a roller having a load of 4 kg and a width of 50 mm so that the thickness after curing was 15 μm. The integrated light quantity of the active energy ray applied when curing was 160 mJ / cm 2 .
 上記の接着性I~IIIとも、得られた積層フィルムの上塗り層に、1インチ幅に碁盤目が100個になるようクロスカットを入れ、セロテープ(登録商標)による急速剥離試験を実施し、剥離面積によりその密着性を評価した。評価は以下に示すA~Eの5段階で行った。 For the above adhesives I to III, a cross-cut was made in the top coat layer of the resulting laminated film so that there were 100 grids in a 1-inch width, and a quick peel test with cello tape (registered trademark) was conducted to peel off The adhesion was evaluated by area. Evaluation was performed in five stages A to E shown below.
 A:碁盤目剥離個数=0
 B;1≦碁盤目剥離個数≦10
 C:11≦碁盤目剥離個数≦20
 D:21≦碁盤目剥離個数
 E:全面が剥離
A: Number of cross-cuts peeled = 0
B; 1 ≦ number of cross-cuts ≦ 10
C: 11 ≦ number of cross cuts ≦ 20
D: 21 ≦ Number of cross-cuts peeled E: Full peel
(5)透明性-1:
 JIS K 7136(ISO14782)にしたがって、濁度計「NDH2000」(日本電色工業社製)を用いてフィルムの濁度(ヘーズ)を測定した。ヘーズが低いほど、透明性に優れているといえる。
(5) Transparency-1:
The turbidity (haze) of the film was measured using a turbidimeter “NDH2000” (manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K 7136 (ISO14782). It can be said that the lower the haze, the better the transparency.
(6)透明性-2:
 透明性-1の評価方法において、塗布層を設けたフィルムの濁度(ヘーズ)を測定し、同様に測定した塗布層を設けていないフィルムに対するヘーズの上昇を求めた。塗布層を設けていないフィルムに対して、塗布層を設けることによるヘーズの上昇が小さいほど、塗布層の透明性が優れているといえる。透明性の評価は以下に示すA及びBの2段階で行った。
 A:ヘーズの上昇が0.3%未満
 B:ヘーズの上昇が0.3%以上
(6) Transparency-2:
In the transparency-1 evaluation method, the turbidity (haze) of a film provided with a coating layer was measured, and the increase in haze relative to a film without the coating layer measured in the same manner was determined. It can be said that the transparency of a coating layer is excellent, so that the raise of the haze by providing a coating layer with respect to the film which does not provide a coating layer is small. The evaluation of transparency was performed in the following two stages A and B.
A: Haze increase is less than 0.3% B: Haze increase is 0.3% or more
(7)耐ブロッキング性:
 測定するポリエステルフィルムを2枚用意し、一枚のフィルムの塗布層を設けた面ともう一枚のフィルムの塗布層を設けていない面を重ね合わせて、12cm×10cmの面積をプレスする。条件は、40℃、80%RH、10kg/cm、20時間。その後、フィルム同士をASTM-D-1893に規定された方法に準じて剥離し、その剥離荷重を測定する。剥離荷重が軽いものほどブロッキングしにくく良好と言える。荷重が150g/10cmを超えるものは実用上問題となる場合が出てくる。なお、両面に塗布層を設けた場合は、他の塗布層を設けていないフィルムを用いることもできる。
(7) Blocking resistance:
Two polyester films to be measured are prepared, and the surface of one film provided with the coating layer is overlapped with the surface of the other film not provided with the coating layer, and an area of 12 cm × 10 cm is pressed. The conditions are 40 ° C., 80% RH, 10 kg / cm 2 , 20 hours. Thereafter, the films are peeled off according to the method specified in ASTM-D-1893, and the peel load is measured. It can be said that the lighter the peeling load, the better the blocking. When the load exceeds 150 g / 10 cm, there may be a problem in practice. In addition, when the coating layer is provided on both surfaces, a film without another coating layer can also be used.
 実施例、比較例で使用したポリエステル原料は次のとおりである。
(ポリエステル1):実質的に粒子を含有しない極限粘度0.66のポリエチレンテレフタレート
(ポリエステル2):平均粒径(d50)2.5μmの非晶性シリカを0.6重量部含有する、極限粘度0.66のポリエチレンテレフタレート
(ポリエステル3):平均粒径(d50)が1.6μmの非晶質シリカを0.3重量%含有する、極限粘度0.65のポリエチレンテレフタレート
The polyester raw materials used in Examples and Comparative Examples are as follows.
(Polyester 1): Polyethylene terephthalate having an intrinsic viscosity of 0.66 substantially containing no particles (Polyester 2): Intrinsic viscosity containing 0.6 parts by weight of amorphous silica having an average particle diameter (d50) of 2.5 μm 0.66 polyethylene terephthalate (polyester 3): polyethylene terephthalate having an intrinsic viscosity of 0.65 containing 0.3% by weight of amorphous silica having an average particle diameter (d50) of 1.6 μm
 また、塗布組成物としては以下を用いた。ただし文中「部」とあるのは、有効成分での重量比を表す。 Moreover, the following was used as a coating composition. However, “part” in the text represents the weight ratio of the active ingredient.
(U1):1,6-ヘキサンジオールとジエチルカーボネートからなる数平均分子量が2000のポリカーボネートポリオールを400部、ネオペンチルグリコールを10.4部、イソホロンジイソシアネート58.4部、ジメチロールブタン酸が74.3部からなるプレポリマーをトリエチルアミンで中和し、イソホロンジアミンで鎖延長して得られるポリウレタン樹脂の水分散体 (U1): 400 parts of a polycarbonate polyol composed of 1,6-hexanediol and diethyl carbonate having a number average molecular weight of 2000, 10.4 parts of neopentyl glycol, 58.4 parts of isophorone diisocyanate, and 74. parts of dimethylolbutanoic acid. Water dispersion of polyurethane resin obtained by neutralizing 3 parts of prepolymer with triethylamine and extending chain with isophoronediamine
(U2):1,6-ヘキサンジオールとジエチルカーボネートからなる数平均分子量が800のポリカーボネートポリオールを320部、水素添加ジフェニルメタンジイソシアネート505.7部、ジメチロールブタン酸が148.6部からなるプレポリマーをトリエチルアミンで中和し、イソホロンジアミンで鎖延長して得られるポリウレタン樹脂の水分散体 (U2): Prepolymer comprising 320 parts of polycarbonate polyol composed of 1,6-hexanediol and diethyl carbonate having a number average molecular weight of 800, 505.7 parts of hydrogenated diphenylmethane diisocyanate, and 148.6 parts of dimethylolbutanoic acid. Water dispersion of polyurethane resin obtained by neutralization with triethylamine and chain extension with isophoronediamine
(U3)エーテル系ポリウレタンの商品「タケラックWS6021」(三井化学社製)
(U4)下記式(2)と(3)の構造単位を、50モル%/50モル%の比率で共重合してなる、数平均分子量が約800のポリカーボネートジオールを160部と、水添ジフェニルメタンジイソシアネートを78.6部と、ジメチロールプロピオン酸を6.7部とからなるプレポリマーを、トリエチルアミンで中和し、イソホロンジアミン8.4部で鎖延長して得られるウレタン樹脂の水分散体
(U3) Ether polyurethane product "Takelac WS6021" (Mitsui Chemicals)
(U4) 160 parts of polycarbonate diol having a number average molecular weight of about 800 obtained by copolymerizing structural units of the following formulas (2) and (3) at a ratio of 50 mol% / 50 mol%, hydrogenated diphenylmethane An aqueous dispersion of urethane resin obtained by neutralizing a prepolymer comprising 78.6 parts of diisocyanate and 6.7 parts of dimethylolpropionic acid with triethylamine and extending the chain with 8.4 parts of isophoronediamine.
(U5)共重合ポリカーボネートポリオールを構成成分として持ち、ポリイソシアネート成分として主に脂環族ポリイソシアネートからなるポリウレタンであるF2967D(第一工業製薬社製)
(U6)下記式(1)と(3)の構造単位を、70モル%/30モル%の比率で共重合してなる、数平均分子量が約1000のポリカーボネートジオールを202部と、水添ジフェニルメタンジイソシアネートを78.6部と、ジメチロールプロピオン酸を6.7部とからなるプレポリマーを、トリエチルアミンで中和し、ジプロピレントリアミン6.5部で鎖延長して得られるウレタン樹脂の水分散体
(U5) F2967D (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), which is a polyurethane mainly comprising an alicyclic polyisocyanate as a polyisocyanate component, having a copolymerized polycarbonate polyol as a constituent component
(U6) 202 parts of polycarbonate diol having a number average molecular weight of about 1000 obtained by copolymerizing structural units of the following formulas (1) and (3) at a ratio of 70 mol% / 30 mol%, and hydrogenated diphenylmethane An aqueous dispersion of urethane resin obtained by neutralizing a prepolymer comprising 78.6 parts of diisocyanate and 6.7 parts of dimethylolpropionic acid with triethylamine and extending the chain with 6.5 parts of dipropylenetriamine
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(S)平均粒径0.07μmのシリカゾル水分散体 (S) Silica sol aqueous dispersion having an average particle size of 0.07 μm
(C1):カルボジイミド基含有架橋剤:カルボジライトV02(日清紡社製)
(C2):カルボジイミド基含有架橋剤:カルボジライトE02(日清紡社製)
(C3):メラミン基含有架橋剤:ベッカミンMAS(大日本インキ化学工業社製)
(C4):イソシアネート基含有架橋剤:エラストロンMF25K(第一工業製薬社製)
(C5):オキサゾリン基がアクリル系樹脂にブランチされたポリマー型架橋剤である「エポクロス WS-700」(日本触媒社製)
(C6):オキサゾリン基がアクリル系樹脂にブランチされたポリマー型架橋剤である「エポクロス WS-500」(日本触媒社製、1-メトキシ-2-プロパノール溶剤約38重量%を含有するタイプ)
(C7):オキサゾリン基がアクリル系樹脂にブランチされたポリマー型架橋剤である「エポクロス WS-300」(日本触媒社製)
(C8):ポリグリセロールポリグリシジルエーテルである「デナコール EX-521」(ナガセケムテックス社製)
(C9):ヘキサメチレンジイソシアネート3量体312.5部、数平均分子量が700のメトキシポリエチレングリコール55.4部からなる、分子内にウレタン結合と末端イソシアネート基を含有する化合物において、末端イソシアネート基をMEKオキシムでブロックした、ブロックイソシアネート化合物
(C1): Carbodiimide group-containing crosslinking agent: Carbodilite V02 (Nisshinbo Co., Ltd.)
(C2): Carbodiimide group-containing crosslinking agent: Carbodilite E02 (Nisshinbo Co., Ltd.)
(C3): Melamine group-containing crosslinking agent: Becamine MAS (manufactured by Dainippon Ink & Chemicals, Inc.)
(C4): Isocyanate group-containing crosslinking agent: Elastolon MF25K (Daiichi Kogyo Seiyaku Co., Ltd.)
(C5): “Epocross WS-700” (manufactured by Nippon Shokubai Co., Ltd.), which is a polymer type crosslinking agent having an oxazoline group branched to an acrylic resin
(C6): “Epocross WS-500” which is a polymer type crosslinking agent having an oxazoline group branched to an acrylic resin (manufactured by Nippon Shokubai Co., Ltd., containing about 38% by weight of 1-methoxy-2-propanol solvent)
(C7): “Epocross WS-300” (manufactured by Nippon Shokubai Co., Ltd.), which is a polymer type crosslinking agent having an oxazoline group branched to an acrylic resin
(C8): “Denacol EX-521” (manufactured by Nagase ChemteX Corporation) which is polyglycerol polyglycidyl ether
(C9): A compound comprising 312.5 parts of hexamethylene diisocyanate trimer and 55.4 parts of methoxypolyethylene glycol having a number average molecular weight of 700, and containing a urethane bond and a terminal isocyanate group in the molecule, Blocked isocyanate compounds blocked with MEK oxime
 比較例1:
 ポリエステル1とポリエスエテル2とを重量比で95/5でブレンドし、十分に乾燥した後、280~300℃に加熱溶融し、T字型口金よりシート状に押出し、静電密着法を用いて表面温度40~50℃の鏡面冷却ドラムに密着させながら冷却固化させて、未延伸ポリエチレンテレフタレートフィルムを作成した。このフィルムを85℃の加熱ロール群を通過させながら長手方向に3.7倍延伸し、一軸配向フィルムとした。この一軸配向フィルムの片面に、表1に示すとおりの塗布組成物を塗布した。次いでこのフィルムをテンター延伸機に導き、その熱を利用して塗布組成物の乾燥を行いつつ、100℃で幅方向に4.0倍延伸し、さらに230℃で熱処理を施し、フィルム厚みが38μmの二軸配向ポリエチレンテレフタレートフィルム上に0.05g/mの塗布層を設けた積層ポリエステルフィルムを得た。このフィルムの塗布液組成及びフィルム特性を表1に示す。
Comparative Example 1:
Polyester 1 and polyester 2 are blended at a weight ratio of 95/5, dried thoroughly, melted by heating to 280-300 ° C, extruded into a sheet form from a T-shaped die, and the surface using an electrostatic adhesion method. An unstretched polyethylene terephthalate film was prepared by cooling and solidifying while closely contacting a mirror surface cooling drum having a temperature of 40 to 50 ° C. This film was stretched 3.7 times in the longitudinal direction while passing through a heating roll group at 85 ° C. to obtain a uniaxially oriented film. The coating composition as shown in Table 1 was applied to one side of this uniaxially oriented film. Next, this film was guided to a tenter stretching machine, and the coating composition was dried using the heat, and stretched 4.0 times in the width direction at 100 ° C., and further heat-treated at 230 ° C., and the film thickness was 38 μm. A laminated polyester film having a 0.05 g / m 2 coating layer on a biaxially oriented polyethylene terephthalate film was obtained. Table 1 shows the coating solution composition and film characteristics of this film.
 比較例2及び3:
 比較例1と同様の工程において、フィルム厚みが38μmの基材フィルム上に表1に示す塗布層を設けた塗布フィルムを得た。このフィルムの特性を、表1に示す。
Comparative Examples 2 and 3:
In the same process as Comparative Example 1, a coating film was obtained in which the coating layer shown in Table 1 was provided on a base film having a film thickness of 38 μm. The properties of this film are shown in Table 1.
 比較例4:
 比較例1と同様の工程においてフィルム厚みが38μmの基材フィルム上に塗布層を設けないフィルムを得た。耐溶剤接着性は非常に劣る結果であった。
Comparative Example 4:
In the same process as Comparative Example 1, a film was obtained in which a coating layer was not provided on a base film having a film thickness of 38 μm. The solvent resistance was very poor.
 実施例1~4:
 比較例1と同様の工程において、フィルム厚みが38μmの基材フィルム上に表1に示す塗布層を設けた塗布フィルムを得た。このフィルムの特性を表1に示す。共重合タイプのポリカーボネートポリウレタンを塗布することにより、溶剤処理後も塗布層の特性が失われることなく、接着性に優れる結果が得られた。
Examples 1 to 4:
In the same process as Comparative Example 1, a coating film was obtained in which the coating layer shown in Table 1 was provided on a base film having a film thickness of 38 μm. The properties of this film are shown in Table 1. By applying the copolymer-type polycarbonate polyurethane, the properties of the coating layer were not lost even after the solvent treatment, and a result of excellent adhesion was obtained.
 比較例5:
 ポリエステル1とポリエステル3とを重量比で92/8でブレンドしたものをA層、ポリエステル1のみのものをB層の原料として、二台のベント式二軸押出機にそれぞれを供給し、285℃に加熱溶融し、A層を二分配して再外層(表層)、B層を中間層とする二種三層(A/B/A)の層構成で共押出し、静電密着法を用いて表面温度40~50℃の鏡面冷却ドラムに密着させながら冷却固化させて、厚み構成比がA/B/A=3/94/3となる未延伸ポリエチレンテレフタレートフィルムを作成した。このフィルムを85℃の加熱ロール群を通過させながら長手方向に3.7倍延伸し、一軸配向フィルムとした。次いでこのフィルムをテンター延伸機に導き、100℃で幅方向に4.0倍延伸し、さらに230℃で熱処理を施した後、幅方向に2%の弛緩処理を行い、フィルム厚みが100μmの二軸配向ポリエチレンテレフタレートフィルムを得た。このフィルムの特性を表2に示す。
Comparative Example 5:
A blend of polyester 1 and polyester 3 at a weight ratio of 92/8 was used as the raw material for layer A, and polyester 1 alone was used as the raw material for layer B. To the outer layer (surface layer) and the B layer as an intermediate layer, and coextruded in a layer configuration of two types and three layers (A / B / A) using an electrostatic adhesion method. The film was cooled and solidified while being in close contact with a mirror-surface cooling drum having a surface temperature of 40 to 50 ° C. to prepare an unstretched polyethylene terephthalate film having a thickness composition ratio of A / B / A = 3/94/3. This film was stretched 3.7 times in the longitudinal direction while passing through a heating roll group at 85 ° C. to obtain a uniaxially oriented film. Next, this film was guided to a tenter stretching machine, stretched 4.0 times in the width direction at 100 ° C., further heat treated at 230 ° C., and then subjected to a relaxation treatment of 2% in the width direction. An axially oriented polyethylene terephthalate film was obtained. The properties of this film are shown in Table 2.
 参考例1:
 比較例5で得られた1軸配向フィルムの片面に表2に示すとおりの塗布組成物を塗布した。次いで、このフィルムをテンター延伸機に導き、その熱を利用して塗布組成物の乾燥を行いつつ、以降は比較例1と同様の工程においてフィルム厚みが100μmの二軸配向フィルム上に表2に示す塗布層が設けられた積層ポリエステルフィルムを得た。このフィルムの特性を表2に示す。
Reference example 1:
The coating composition as shown in Table 2 was applied to one side of the uniaxially oriented film obtained in Comparative Example 5. Next, the film was guided to a tenter stretching machine, and the coating composition was dried using the heat. Thereafter, in the same process as Comparative Example 1, the film thickness was 100 μm on a biaxially oriented film as shown in Table 2. A laminated polyester film provided with the coating layer shown was obtained. The properties of this film are shown in Table 2.
 実施例5~11:
 参考例1と同様の工程において、フィルム厚みが100μmの基材フィルム上に表2に示す塗布層を設けた積層ポリエステルフィルムを得た。カルボジイミド系の架橋剤と併用することで十分な接着性を得ることができた。
Examples 5-11:
In the same process as in Reference Example 1, a laminated polyester film was obtained in which the coating layer shown in Table 2 was provided on a base film having a film thickness of 100 μm. Adequate adhesion could be obtained by using in combination with a carbodiimide-based crosslinking agent.
 実施例12:
 ポリエステル1とポリエステル3とを重量比で92/8でブレンドしたものをA層、ポリエステル1のみのものをB層の原料として、二台のベント式二軸押出機にそれぞれを供給し、285℃に加熱溶融し、A層を二分配して再外層(表層)、B層を中間層とする二種三層(A/B/A)の層構成で共押出し、静電密着法を用いて表面温度40~50℃の鏡面冷却ドラムに密着させながら冷却固化させて、厚み構成比がA/B/A=3/94/3となる未延伸ポリエチレンテレフタレートフィルムを作成した。このフィルムを85℃の加熱ロール郡を通過させながら長手方向に3.7倍延伸し、一軸配向フィルムとした。この一軸配向フィルムの片面に、表3に示すとおりの塗布組成物を塗布した。次いでこのフィルムをテンター延伸機に導き、100℃で幅方向に4.0倍延伸し、さらに230℃で熱処理を施した後、幅方向に2%の弛緩処理を行い、フィルム厚みが100μmの二軸配向ポリエチレンテレフタレートフィルム上に、表3の塗布量を示す量の塗布層が設けられた積層ポリエステルフィルムを得た。このフィルムの特性を、表3に示す。
Example 12:
A blend of polyester 1 and polyester 3 at a weight ratio of 92/8 was used as the raw material for layer A, and polyester 1 alone was used as the raw material for layer B. To the outer layer (surface layer) and the B layer as an intermediate layer, and coextruded in a layer configuration of two types and three layers (A / B / A) using an electrostatic adhesion method. The film was cooled and solidified while being in close contact with a mirror-surface cooling drum having a surface temperature of 40 to 50 ° C. to prepare an unstretched polyethylene terephthalate film having a thickness composition ratio of A / B / A = 3/94/3. This film was stretched 3.7 times in the longitudinal direction while passing through a heated roll group at 85 ° C. to obtain a uniaxially oriented film. The coating composition as shown in Table 3 was applied to one side of this uniaxially oriented film. Next, this film was guided to a tenter stretching machine, stretched 4.0 times in the width direction at 100 ° C., further heat treated at 230 ° C., and then subjected to a relaxation treatment of 2% in the width direction. On the axially oriented polyethylene terephthalate film, a laminated polyester film was obtained in which a coating layer having the coating amount shown in Table 3 was provided. The properties of this film are shown in Table 3.
 実施例13~22:
 実施例12と同様の工程において、塗布液を表3に示すように変更し、フィルム厚みが100μmの基材フィルムの上に表3に示す量の塗布層を設けた塗布フィルムを得た。このフィルムの特性を、表3に示す。
Examples 13 to 22:
In the same process as Example 12, the coating solution was changed as shown in Table 3 to obtain a coated film in which the coating layer of the amount shown in Table 3 was provided on a base film having a film thickness of 100 μm. The properties of this film are shown in Table 3.
 実施例23~31:
 実施例12と同様の工程において、塗布液を表4に示すように変更し、フィルム厚みが100μmの基材フィルムの上に表4に示す量の塗布層を設けた塗布フィルムを得た。このフィルムの特性を、表4に示す。
Examples 23-31:
In the same process as Example 12, the coating solution was changed as shown in Table 4 to obtain a coated film in which the coating layer of the amount shown in Table 4 was provided on a base film having a film thickness of 100 μm. The properties of this film are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明の塗布フィルムは、包装材料、製版材料、表示材料、転写材料、窓貼り材料などを始め、メンブレンスイッチやフラットディスプレイ等に用いられる反射防止フィルム、拡散シート、プリズムシート等の光学フィルム、透明タッチパネルなどの用途に好適に利用することができる。 The coated film of the present invention includes packaging materials, plate making materials, display materials, transfer materials, window paste materials, antireflection films used for membrane switches and flat displays, optical films such as diffusion sheets and prism sheets, transparent It can be suitably used for applications such as a touch panel.

Claims (5)

  1.  ポリエステルフィルムの表面にポリウレタンを含有する塗布液から形成された塗布層を有する塗布フィルムであって、上記のポリウレタンが主鎖構造の異なる2種類のカーボネートジオールが共重合されたポリカーボネートポリオールを構成成分として有するポリウレタンであることを特徴とする塗布フィルム。 A coating film having a coating layer formed from a coating solution containing polyurethane on the surface of a polyester film, wherein the polyurethane is a polycarbonate polyol in which two types of carbonate diols having different main chain structures are copolymerized. A coated film, characterized by being a polyurethane having.
  2.  ポリウレタンの構成成分のポリイソシアネートが脂肪族または脂環族ポリイソシアネートであり、その割合が全ポリイソシアネート成分中50モル%以上である請求項1に記載の塗布フィルム。 The coated film according to claim 1, wherein the polyisocyanate constituting the polyurethane is an aliphatic or alicyclic polyisocyanate, and the proportion thereof is 50 mol% or more in the total polyisocyanate component.
  3.  塗布液が更に架橋剤を含有する請求項1又は2に記載の塗布フィルム。 The coating film according to claim 1 or 2, wherein the coating solution further contains a crosslinking agent.
  4.  架橋剤がカルボジイミド化合物及び/又はオキサゾリン化合物である請求項1~3の何れかに記載の塗布フィルム。 The coated film according to any one of claims 1 to 3, wherein the crosslinking agent is a carbodiimide compound and / or an oxazoline compound.
  5.  架橋剤の割合が塗布液の不揮発成分中の割合として5~60重量%である請求項4に記載の塗布フィルム。 The coated film according to claim 4, wherein the ratio of the crosslinking agent is 5 to 60% by weight as a ratio in the nonvolatile component of the coating liquid.
PCT/JP2012/060030 2011-04-18 2012-04-12 Coated film WO2012144416A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011-091628 2011-04-18
JP2011091628A JP5599360B2 (en) 2011-04-18 2011-04-18 Laminated polyester film
JP2011091627A JP5599359B2 (en) 2011-04-18 2011-04-18 Laminated polyester film
JP2011-091626 2011-04-18
JP2011-091627 2011-04-18
JP2011091625A JP2012223926A (en) 2011-04-18 2011-04-18 Laminated polyester film
JP2011-091625 2011-04-18
JP2011091626A JP2012223927A (en) 2011-04-18 2011-04-18 Laminated polyester film
JP2011-124971 2011-06-03
JP2011124970A JP2012251077A (en) 2011-06-03 2011-06-03 Layered polyester film
JP2011124971A JP2012250447A (en) 2011-06-03 2011-06-03 Laminated polyester film
JP2011-124970 2011-06-03

Publications (1)

Publication Number Publication Date
WO2012144416A1 true WO2012144416A1 (en) 2012-10-26

Family

ID=47041525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060030 WO2012144416A1 (en) 2011-04-18 2012-04-12 Coated film

Country Status (1)

Country Link
WO (1) WO2012144416A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353801A (en) * 2022-09-02 2022-11-18 山东胜通光学材料科技有限公司 Novel cross-linking agent and method for preparing high-adhesion thick high-brightness polyester base film by using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211584A (en) * 1994-01-17 1995-08-11 Diafoil Co Ltd Metal vapor-deposited polyester film capacitor
JPH0811273A (en) * 1994-07-04 1996-01-16 Diafoil Co Ltd Biaxially oriented laminated polyester film
JPH10166497A (en) * 1996-11-05 1998-06-23 Ppg Ind Inc Improved transparent material for aircraft
JP2011031561A (en) * 2009-08-05 2011-02-17 Toyobo Co Ltd Easily adhesive polyester film for optical use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211584A (en) * 1994-01-17 1995-08-11 Diafoil Co Ltd Metal vapor-deposited polyester film capacitor
JPH0811273A (en) * 1994-07-04 1996-01-16 Diafoil Co Ltd Biaxially oriented laminated polyester film
JPH10166497A (en) * 1996-11-05 1998-06-23 Ppg Ind Inc Improved transparent material for aircraft
JP2011031561A (en) * 2009-08-05 2011-02-17 Toyobo Co Ltd Easily adhesive polyester film for optical use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353801A (en) * 2022-09-02 2022-11-18 山东胜通光学材料科技有限公司 Novel cross-linking agent and method for preparing high-adhesion thick high-brightness polyester base film by using same

Similar Documents

Publication Publication Date Title
JP4798156B2 (en) Laminated film
US8771833B2 (en) Laminated polyester film
JP5645455B2 (en) Laminated polyester film
WO2009116231A1 (en) Readily bondable polyester film
EP2727954B1 (en) Coating film
EP2727726B1 (en) Coating film
JP5263320B2 (en) Laminated film
WO2012144419A1 (en) Coating film
JP5263319B2 (en) Laminated film
JP5566415B2 (en) Laminated polyester film
JP5793552B2 (en) Laminated polyester film
JP5783660B2 (en) Laminated polyester film
WO2012144416A1 (en) Coated film
JP5263241B2 (en) Laminated film
JP5778472B2 (en) Laminated polyester film
JP5599360B2 (en) Laminated polyester film
JP2012223926A (en) Laminated polyester film
JP7578033B2 (en) Laminated Polyester Film
JP5599359B2 (en) Laminated polyester film
JP2012250447A (en) Laminated polyester film
JP5830210B2 (en) Laminated polyester film
JP5764276B2 (en) Laminated polyester film
JP5778835B2 (en) Laminated polyester film
JP5579233B2 (en) Laminated polyester film
JP5822963B2 (en) Laminated polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774900

Country of ref document: EP

Kind code of ref document: A1