[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012039125A1 - Method for controlling atomizing device, method for controlling discharging device, and refrigerator - Google Patents

Method for controlling atomizing device, method for controlling discharging device, and refrigerator Download PDF

Info

Publication number
WO2012039125A1
WO2012039125A1 PCT/JP2011/005276 JP2011005276W WO2012039125A1 WO 2012039125 A1 WO2012039125 A1 WO 2012039125A1 JP 2011005276 W JP2011005276 W JP 2011005276W WO 2012039125 A1 WO2012039125 A1 WO 2012039125A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization
discharge
electrode
refrigerator
temperature
Prior art date
Application number
PCT/JP2011/005276
Other languages
French (fr)
Japanese (ja)
Inventor
久美子 鈴木
橋田 卓
山田 宗登
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180045252.0A priority Critical patent/CN103119384B/en
Priority to EP11826573.5A priority patent/EP2620728B1/en
Publication of WO2012039125A1 publication Critical patent/WO2012039125A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/005Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means the high voltage supplied to an electrostatic spraying apparatus being adjustable during spraying operation, e.g. for modifying spray width, droplet size
    • B05B5/006Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means the high voltage supplied to an electrostatic spraying apparatus being adjustable during spraying operation, e.g. for modifying spray width, droplet size the adjustement of high voltage is responsive to a condition, e.g. a condition of material discharged, of ambient medium or of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/057Arrangements for discharging liquids or other fluent material without using a gun or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments

Definitions

  • the present invention relates to a method for controlling an atomization device or a discharge device installed in a storage room space for storing vegetables and the like, and a refrigerator equipped with at least one of these devices.
  • ⁇ Factors affecting the freshness of vegetables include temperature, humidity, environmental gas, microorganisms, and light. Vegetables are living things, and breathing and transpiration are performed on the vegetable surface. In order to maintain the freshness of vegetables, it is necessary to suppress the respiration of vegetables and the transpiration of moisture from the vegetables. Except for some vegetables that cause chilling injury, respiration is suppressed at low temperatures, and transpiration can be reduced by high humidity.
  • FIG. 15 is a vertical cross-sectional view of a main part showing a vertical cross section obtained by cutting a vegetable container of a conventional refrigerator disclosed in Patent Document 1 into left and right.
  • FIG. 16 is an enlarged perspective view showing a main part of the ultrasonic atomizer provided in the vegetable container of the conventional refrigerator.
  • the vegetable compartment 21 is provided in the lower part of the main body case 26 of the refrigerator main body 20, and the front opening is closed by the drawer door 22 with which it can be opened and closed freely. Moreover, the vegetable compartment 21 is partitioned off from the upper refrigerator compartment (not shown) by the partition plate 2.
  • the fixed hanger 23 is fixed to the inner surface of the drawer door 22, and the vegetable container 1 for storing food such as vegetables is mounted on the fixed hanger 23.
  • the top opening of the vegetable container 1 is sealed with a lid 3.
  • a thawing chamber 4 is provided inside the vegetable container 1, and an ultrasonic atomizer 5 is provided in the thawing chamber 4.
  • the ultrasonic atomizer 5 is provided with a mist outlet 6, a water storage container 7, a humidity sensor 8, and a hose receiver 9.
  • the water storage container 7 is connected to a defrost water hose 10 by a hose receiver 9.
  • the defrost water hose 10 is provided with a purification filter 11 for purifying the defrost water at a part thereof.
  • Cooling air cooled by a heat exchange cooler (not shown) circulates on the outer surfaces of the vegetable container 1 and the lid 3, thereby cooling the vegetable container 1 and cooling the food stored inside. Further, the defrost water generated from the cooler during the refrigerator operation is purified by the purification filter 11 when passing through the defrost water hose 10 and supplied to the water storage container 7 of the ultrasonic atomizer 5.
  • the ultrasonic atomizer 5 starts humidification, so that the vegetables in the vegetable container 1 are kept fresh.
  • the humidity can be adjusted to a certain level.
  • the ultrasonic atomizer 5 stops excessive humidification.
  • the inside of the vegetable container 1 can be quickly humidified by the ultrasonic atomizing device 5, the inside of the vegetable container 1 is always at a high humidity, the transpiration action of the vegetables etc. is suppressed, and the freshness of the vegetables etc. is maintained. Can do.
  • Patent Document 2 discloses a refrigerator provided with an ozone water mist device.
  • the refrigerator disclosed in Patent Document 2 has an ozone generator, an exhaust port, a water supply path directly connected to a water supply, and an ozone water supply path in the vicinity of the vegetable room.
  • the ozone water supply route is led to the vegetable room.
  • the ozone generator is connected to a water supply unit directly connected to the water supply.
  • the exhaust port is configured to be connected to the ozone water supply path.
  • an ultrasonic element is provided in the vegetable compartment.
  • ozone generated by the ozone generator is brought into contact with water to form ozone water as treated water.
  • the generated ozone water is guided to the vegetable compartment of the refrigerator, atomized by an ultrasonic vibrator, and sprayed to the vegetable compartment.
  • the operation and stop of the atomizer are generally controlled by the humidity inside the cabinet detected by the humidity sensor.
  • the atomization state in the actual atomizer cannot be determined, and therefore there is a part in which the performance of accuracy and responsiveness is somewhat lacking.
  • a substantially sealed and low-temperature space such as a refrigerator storage room
  • the spray amount is small, there is a problem that sufficient humidification cannot be performed in the storage chamber, and the freshness of vegetables and the like cannot be maintained.
  • This invention aims at providing the refrigerator which can be atomized efficiently with a more suitable spray amount in the refrigerator which improves the freshness retention power by spraying mist by providing an atomization part. Moreover, it aims at providing the refrigerator provided with the discharge device which generate
  • an atomization electrode, a voltage application unit that applies a voltage to the atomization electrode, a control unit that controls the voltage application unit, and an atomization state of the atomization electrode are detected.
  • a discharge of a refrigerator having a discharge electrode, a voltage application unit that applies a voltage to the discharge electrode, a control unit that controls the voltage application unit, and a discharge state detection unit that detects a discharge state of the discharge electrode
  • the control means controls discharge at the discharge electrode in a next predetermined period based on a discharge state determination of the discharge state detection means in a predetermined period.
  • the atomization device or the discharge device of the present invention can realize appropriate atomization or discharge, thereby further improving the quality of the refrigerator equipped with the atomization device or the discharge device.
  • FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing the relationship between the dew point and the atomization electrode temperature in the electrostatic atomizer for a refrigerator according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an outline of a control method of the electrostatic atomizer in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 5 is a control flowchart of the electrostatic atomizer in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 6 is a control time chart of the electrostatic atomizer in the refrigerator according to the first embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view of the refrigerator in the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional perspective view of a main part of the refrigerator in the second embodiment of the present invention.
  • FIG. 9 is a configuration diagram of the refrigerator discharge device according to Embodiment 2 of the present invention.
  • FIG. 10 is a graph showing the temperature dependence of the discharge current of the refrigerator discharge device according to Embodiment 2 of the present invention.
  • FIG. 11 is a graph showing the humidity dependence of the discharge current of the refrigerator discharge device according to Embodiment 2 of the present invention.
  • FIG. 10 is a graph showing the temperature dependence of the discharge current of the refrigerator discharge device according to Embodiment 2 of the present invention.
  • FIG. 11 is a graph showing the humidity dependence of the discharge current of the refrigerator discharge device according to Embodiment 2 of the present invention.
  • FIG. 12 is a graph showing the relationship between the discharge current of the refrigerator discharge device and the ozone concentration in Embodiment 2 of the present invention.
  • FIG. 13 is a control flowchart of the refrigerator discharge device according to Embodiment 2 of the present invention.
  • FIG. 14 is a control time chart of the refrigerator discharge device according to Embodiment 2 of the present invention.
  • FIG. 15 is principal part sectional drawing of the atomization apparatus in the conventional refrigerator.
  • FIG. 16 is an enlarged perspective view showing a main part of an ultrasonic atomizer provided in a vegetable room of a conventional refrigerator.
  • 1st invention is an atomization state which detects the atomization state of the atomization electrode, the voltage application part which applies a voltage to the said atomization electrode, the control means which controls the said voltage application part, and the said atomization electrode
  • a control method for an atomizing device of a refrigerator having a detecting means wherein the control means is based on the atomization state determination of the atomization state detecting means in a predetermined cycle, with the atomizing electrode in the next predetermined cycle. It controls the atomization.
  • the supplied mist is a nano-level fine mist, and when this fine mist is sprayed, it adheres uniformly to the surface of fruits and vegetables, such as vegetables, and can improve the freshness of food.
  • the generated fine mist contains ozone, OH radicals, etc., and these oxidizing powers can be used to deodorize and sterilize the vegetable surface, as well as pesticides and wax that adhere to the vegetable surface. It is possible to oxidatively decompose and remove harmful substances.
  • the atomization state detection means is a current value in the voltage application unit. Therefore, the atomization state of the atomization electrode can be detected appropriately with simple means.
  • a third invention further includes a cooling unit that cools the atomizing electrode and a heating unit that heats the atomizing electrode in the first or second invention, and the control unit includes the fog in a predetermined cycle.
  • the control unit includes the fog in a predetermined cycle.
  • the control means increases the heating amount of the heating means in the next predetermined cycle. As a result, the accuracy of freezing determination is not high, and even if it is frozen, it can be restored to a normal atomized state in a short time.
  • the fifth invention is the fourth invention, wherein the heating amount of the heating means in the next predetermined cycle is set to a predetermined specific heating amount.
  • the sixth invention is such that, in the fourth invention, the heating amount of the heating means in the next predetermined period after the release of freezing is substantially equal to the heating amount before freezing.
  • the seventh invention includes a discharge electrode, a voltage application unit that applies a voltage to the discharge electrode, a control unit that controls the voltage application unit, and a discharge state detection unit that detects a discharge state of the discharge electrode.
  • a control method for the discharge device of the refrigerator wherein the control means controls the discharge at the discharge electrode in the next predetermined period based on the discharge state determination of the discharge state detection means in the predetermined period.
  • the discharge state detection means is a discharge current flowing from the discharge electrode to the counter electrode. Thereby, the discharge state of the discharge electrode can be detected appropriately with simple means.
  • the discharge control at the discharge electrode is an application time to the voltage application unit. Therefore, the discharge amount (ozone generation amount) can be appropriately controlled by simple means.
  • 10th invention is a refrigerator provided with the control means which performs the control method of the atomization apparatus as described in any one of 1st-9 or the control method of a discharge device.
  • the freshness in a storage chamber can be improved.
  • the disinfection and deodorizing performance in the storage chamber can be enhanced.
  • FIG. 1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the atomizing device in the refrigerator according to Embodiment 1 of the present invention.
  • a heat insulating box body 101 that is a refrigerator main body of a refrigerator 100 includes an outer box 102 mainly using a steel plate, an inner box 103 molded of a resin such as ABS, an outer box 102, and an inner box 103. It is comprised with foam insulation materials, such as hard foaming urethane, which is foam-filled in the space between.
  • the heat insulation box 101 is insulated from the surroundings, and is thermally insulated into a plurality of storage rooms by partition walls.
  • the inner side of the heat insulating box 101 is a refrigeration room 104 as a first storage room at the top, a switching room 105 as a fourth storage room and an ice making room as a fifth storage room at the lower part of the refrigeration room 104.
  • 106 are provided side by side, a freezing room 107 as a second storage room is provided below the switching room 105 and the ice making room 106, and a vegetable room 108 as a third storage room is provided at the bottom.
  • the refrigerated room 104 is set in a refrigerated temperature zone that is a temperature that does not freeze for refrigerated storage, and is usually set in the range of 1 ° C to 5 ° C.
  • the vegetable compartment 108 is set to a refrigeration temperature range equivalent to the refrigeration room 104 or a slightly higher temperature range, and is set in a range of 2 ° C. to 7 ° C., which is a normal vegetable temperature range.
  • the freezer compartment 107 is set in a freezing temperature zone, and is usually set at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage. In order to improve the frozen storage state, it may be set at a low temperature such as ⁇ 30 ° C. or ⁇ 25 ° C.
  • the switching chamber 105 can be switched to a preset temperature zone between the refrigeration temperature zone and the freezing temperature zone in addition to the refrigeration temperature zone, vegetable temperature zone, and freezing temperature zone.
  • the switching chamber 105 is a storage chamber provided with an independent door arranged in parallel with the ice making chamber 106, and is often provided with a drawer-type door.
  • the switching chamber 105 is a storage room including the temperature range of refrigeration and freezing.
  • the refrigeration is performed by the refrigeration room 104 and the vegetable room 108
  • the freezing is performed by the freezing room 107.
  • a storage room specialized for switching only the temperature zone in the middle of freezing may be used.
  • the storage room fixed to the specific temperature range may be sufficient.
  • the ice making chamber 106 creates ice with an automatic ice maker (not shown) provided in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerated room 104, and an ice storage container ( (Not shown).
  • the top surface portion of the heat insulating box 101 has a stepped recess shape toward the back of the refrigerator, and a machine room 101a is formed in the stepped recess.
  • the machine room 101a accommodates high-pressure components of the refrigeration cycle such as the compressor 109 and a dryer (not shown) for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
  • the compressor 109 is disposed in the conventional refrigerator.
  • the space in the machine room at the bottom of the easy-to-use heat insulation box 101 can be effectively converted as the storage room capacity, and the storage performance and usability can be greatly improved.
  • the refrigeration cycle is formed of a series of refrigerant flow paths sequentially including a compressor 109, a condenser, a capillary as a decompressor, and a cooler 112, and a hydrocarbon-based refrigerant such as isobutane is enclosed as a refrigerant. Yes.
  • Compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder.
  • those functional parts may be disposed in the machine room 101a.
  • the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
  • the matter relating to the main part of the invention described below is a type in which a compressor room is provided by providing a machine room in the rear region of the lowermost storage room of the heat insulating box 101, which has been generally used conventionally. It may be applied to other refrigerators.
  • a cooling chamber 110 for generating cold air is provided on the back of the freezing chamber 107.
  • a rear partition wall 111 having a heat insulating property is provided between the air passage and each storage chamber so as to thermally insulate the cold air conveying air passage (not shown) to each chamber and each storage chamber. It has been.
  • a partition plate (not shown) for separating the freezing chamber discharge air passage (not shown) and the cooling chamber 110 is provided.
  • a cooler 112 is disposed in the cooling chamber 110.
  • a cooling fan 113 is disposed in the upper space of the cooler 112 to blow the cold air cooled by the cooler 112 by a forced convection method to the refrigerating room 104, the switching room 105, the ice making room 106, the vegetable room 108, and the freezing room 107.
  • a radiant heater 114 made of a glass tube is provided in the lower space of the cooler 112 for defrosting the frost and ice adhering to the cooler 112 and its surroundings during cooling. Further, a drain pan 115 for receiving defrost water generated at the time of defrosting is provided below the radiant heater 114.
  • a drain tube 116 penetrating outside the warehouse is connected to the deepest portion of the drain pan 115.
  • An evaporating dish 117 is disposed on the downstream side of the drain tube 116. The evaporating dish 117 is arranged outside the warehouse.
  • the second partition wall 125 is a member that separates the freezer compartment 107 and the vegetable compartment 108, and is made of a heat insulating material such as polystyrene foam in order to ensure the heat insulation of each storage room.
  • the electrostatic atomizer 131 is installed in a recess 125 a that is an attachment portion provided on a part of the wall surface of the second partition wall 125 on the storage chamber side.
  • the recess 125a is a portion provided in a part of the wall surface in the form of a recess or a through-hole so as to be cooler than other portions.
  • the electrostatic atomizer 131 is mainly composed of an atomization unit 139, a voltage application unit 133, and an outer case 137.
  • a spray port 132 and a humidity supply port 138 are provided in a part of the outer case 137.
  • An atomization electrode 135 that is an atomization tip is installed in the atomization unit 139.
  • the atomizing electrode 135 is disposed adjacent to a cooling pin 134 which is a heat transfer cooling unit made of a good heat conducting member such as aluminum or stainless steel and a dew condensation preventing member 140 which will be described later.
  • the atomization unit 139 is provided with an atomization electrode 135.
  • the atomizing electrode 135 is an electrode connecting member made of a good heat conducting member such as aluminum, stainless steel, or brass.
  • the atomizing electrode 135 is fixed to substantially the center of one end of the cooling pin 134.
  • the material of the cooling pin 134 is preferably a high heat conductive member such as aluminum or copper.
  • the periphery of the cooling pin 134 is covered with a heat insulating material 152.
  • a dew condensation preventing member 140 is disposed on the surface of the portion exposed to the atomizing electrode 135 side of the cooling pin 134.
  • the dew condensation preventing member 140 is made of a material having a lower thermal conductivity than that of the cooling pin 134 made of metal, for example, resin, ceramic, or the like.
  • a resin having a low thermal conductivity, and more preferably a heat insulating material made of a porous material such as a foamed resin as long as the strength allows is suitably used.
  • complex which affixed the resin sheet or board which is not foamed on the surface of the heat insulating material consisting of a porous body is also used suitably.
  • the cooling pin 134 Since the cooling pin 134 is in the space in the heat insulating material 152, the diffusion of cold heat from the cooling pin 134 to the periphery is avoided, and the atomizing electrode 135 can be efficiently cooled. Further, the cooling pin 134 is covered by the condensation preventing member 140 having a lower thermal conductivity so as to cover the exposed portion on the atomizing electrode 135 side, so that the temperature drop of the corresponding surface is suppressed, and condensation on the portion is prevented. Avoided. For this reason, the dew point around the atomizing electrode 135 is prevented from lowering, and condensation efficiently proceeds to the cooled atomizing electrode 135, and fine mist is stably stored even in a low humidity atmosphere of about 0 ° C. and 50%.
  • the chamber can be supplied.
  • the dew condensation preventing member 140 has a larger surface exposed portion area than the area in contact with the cooling pin (heat transfer cooling portion) 134.
  • the cold heat from the cooling pins 134 is diffused to a wider area of the dew condensation preventing member 140, and the local decrease in surface temperature just above the dew condensation preventing member 140 is suppressed.
  • the local decrease in surface temperature just above the dew condensation preventing member 140 is suppressed.
  • the dew condensation preventing member 140 can have a flange function. That is, by bringing the outer case 137 and the dew condensation preventing member 140 into surface contact, it is possible to efficiently seal cold air leakage from the freezer compartment 107 side. Thereby, unnecessary dew condensation is avoided more completely.
  • an adhesive, a screw, or the like can be used as a method for fixing the dew condensation prevention member 140 in surface contact with the outer case 137.
  • the counter electrode 136 is fixed to the dew condensation preventing member 140, and the cooling pin 134 and the atomizing electrode 135 are also fixed to the dew condensation preventing member 140. For this reason, it is also preferable that these are collectively assembled and fixed to the outer case with screws or the like. In this case, replacement of members at the time of maintenance becomes very easy.
  • the distance between the tip of the atomizing electrode 135 and the counter electrode 136 is the distance between the electrodes due to the thermal expansion of the refrigerator casing or the outer case 137. It becomes difficult to be affected by fluctuations in the frequency and control can be performed with higher accuracy.
  • the cooling pin 134 which is a heat transfer cooling unit is formed in a cylindrical shape having a diameter of about 10 mm and a length of about 20 mm, for example, and is 50 times as large as the atomizing electrode 135 having a diameter of about 1 mm and a length of about 5 mm. It has a large heat capacity of not less than 1000 times, preferably not less than 100 times and not more than 500 times. As described above, the heat capacity of the cooling pin 134 has a heat capacity of 50 times or more, preferably 100 times or more that of the atomization electrode 135, so that the temperature change of the cooling means directly affects the atomization electrode. It is possible to further ease the application and to realize a stable mist spray with a smaller variable load.
  • the heat capacity of the cooling pin 134 is 500 times or less, preferably 1000 times or less that of the atomizing electrode 135. If the heat capacity is too large, a large amount of energy is required to cool the cooling pin 134, and it is difficult to cool the cooling pin with energy saving.
  • the atomization electrode can be stably and energy-saving after alleviating the large effect on the atomization electrode when the heat fluctuation load from the cooling means changes. It becomes possible to perform cooling.
  • the time lag required for cooling the atomization electrode via the cooling pin 134 can be kept within an appropriate range by suppressing the pressure within the above range. Accordingly, it is possible to prevent the rising of the atomizing electrode from being delayed, that is, to delay the rise when supplying water to the atomizing device, and to perform stable and appropriate cooling of the atomizing electrode.
  • the cooling pin 134 that is the heat transfer cooling portion is a cylinder
  • the electrostatic atomizer is used even when the fitting size is slightly tight when fitting into the recess 125a of the heat insulating material 152. Since it can be press-fitted and attached while rotating 131, the cooling pin 134 can be attached without any gap.
  • the shape of the cooling pin 134 may be a rectangular parallelepiped or a regular polygon, and in the case of these polygons, positioning is easier than a cylinder, and the electrostatic atomizer 131 can be provided at an accurate position.
  • a cooling pin 134 as a heat transfer cooling unit is fixed to the outer case 137, and the cooling pin 134 itself has a convex portion 134a protruding from the outer shell.
  • the cooling pin 134 has a shape having a convex portion 134 a on the opposite side of the atomizing electrode 135, and the convex portion 134 a is fitted in the deepest concave portion 125 b deeper than the concave portion 125 a of the second partition wall 125.
  • the deepest concave portion 125b deeper than the concave portion 125a is provided on the back side of the cooling pin 134 which is a heat transfer cooling portion.
  • the heat insulating material 152 is thinner than the other portions of the second partition wall 125 on the top surface side of the vegetable chamber 108.
  • the thin heat insulating material 152 is used as a heat relaxation member, and the cooling air from the freezer compartment 107 is cooled from the back through the thin portion of the heat insulating material 152 as the heat relaxation member.
  • the cooling pin 134 that is the heat transfer cooling portion of the present embodiment has a shape having a convex portion 134a on the opposite side to the atomizing electrode 135 that is the atomizing tip portion, and is convex in the atomizing portion 139.
  • the cooling pin (heat transfer cooling unit) end 134b on the side of the part 134a is closest to the cooling means, so that the cooling pin 134 is cooled by the cooling air that is the cooling means from the cooling pin end 134b side farthest from the atomizing electrode 135. Will be.
  • a cooling pin heat shielding region 153 is provided between the cooling pin 134 and the outer case 137.
  • the cooling pin heat shield region 153 has an action of insulating between a heating unit 154 and a cooling pin 134, which will be described later, and is formed of a cavity or a heat insulating material.
  • the heating unit 154 is disposed in the vicinity of the dew condensation preventing member 140. Specifically, it is disposed in contact with the dew condensation preventing member 140 or in contact with the adjacent outer case.
  • the dew condensation prevention member 140 is heated by heat conduction from the heating unit 154, and it becomes easy to keep the surface temperature above the dew point. Furthermore, the heat conduction from the dew condensation preventing member 140 can efficiently increase the temperature of the atomizing electrode 135.
  • the heat conduction from the heating unit 154 is suppressed to the cooling pin 134 through the outer case 137 by the action of the cooling pin heat shielding region 153. Since wasteful heat conduction is suppressed in this way, the heating of the atomizing electrode 135 indirectly by the heating unit 154 via the dew condensation preventing member 140 proceeds more efficiently. For this reason, temperature adjustment of the atomization electrode 135 becomes easy.
  • a donut disc-shaped counter electrode 136 is attached to the storage chamber (vegetable chamber 108) side at a position facing the atomizing electrode 135 so as to maintain a certain distance from the tip of the atomizing electrode 135.
  • a spray port 132 is formed.
  • a voltage application unit 133 is configured in the vicinity of the atomization unit 139, and the negative potential side of the voltage application unit 133 that generates a high voltage is electrically connected to the atomization electrode 135 and the positive potential side is electrically connected to the counter electrode 136, respectively. Yes.
  • the surface of the atomizing electrode 135 needs to have a tough surface treatment.
  • the counter electrode 136 is made of stainless steel, for example. Further, in order to ensure long-term reliability of the counter electrode 136, it is desirable to perform surface treatment such as platinum plating, in particular, in order to prevent foreign matter adhesion and contamination.
  • the voltage application unit 133 communicates with the control means 146 of the refrigerator main body, is controlled by the control means 146, and turns on / off the application of a high voltage based on an input signal from the refrigerator 100 or the electrostatic atomizer 131.
  • the voltage application unit 133 is installed in the electrostatic atomizer 131. Since the inside of the storage room (vegetable room 108) is in a low temperature and high humidity atmosphere, a bold material or a coating material for moisture prevention is applied on the substrate surface of the voltage application unit 133.
  • the coating may not be performed.
  • the refrigeration cycle is operated by a signal from a control board (not shown) according to the set temperature in the cabinet, and the cooling operation is performed.
  • the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface and the rear surface of the heat insulating box body 101 which is the refrigerator body, and the front surface of the heat insulating box body 101. It is condensed and liquefied while preventing condensation of the heat insulating box 101 via a refrigerant pipe (not shown) disposed at the frontage, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
  • the low-temperature and low-pressure liquid refrigerant is heat-exchanged with air in each storage chamber such as a freezing chamber discharge air passage (not shown) conveyed by the operation of the cooling fan 113, and the refrigerant in the cooler 112 is evaporated. .
  • cool air for cooling each storage chamber in the cooling chamber 110 is generated.
  • the low-temperature cold air is sent from the cooling fan 113 to the refrigerator compartment 104, the switching chamber 105, the ice making chamber 106, the vegetable compartment 108, and the freezer compartment 107.
  • Each storage room is cooled to a target temperature zone by diverting cold air using an air passage or a damper.
  • the vegetable compartment 108 is adjusted to 2 ° C. to 7 ° C. by distributing cold air by opening / closing dampers (not shown) in the air passage for supplying cold air or by ON / OFF operation of heaters (not shown). Is done.
  • the vegetable compartment 108 generally does not have the internal temperature detection means.
  • the heat insulating material 152 is thinner than the other part, and in particular, the cooling pin 134 has a deepest recess.
  • the thickness of the heat insulating material is, for example, about 0 mm to 10 mm at the thin portion. In the refrigerator 100 according to the present embodiment, such a thickness is appropriate as a heat relaxation member positioned between the cooling pin 134 and the cooling means.
  • the second partition wall 125 has a concave portion 125a, and the electrostatic atomizer 131 having a shape in which the convex portion 134a of the cooling pin 134 protrudes into the deepest concave portion 125b on the rearmost surface of the concave portion 125a. Is attached.
  • the cooling of the cooling pin 134 may be insufficient.
  • the deepest recess 125b has a shape protruding toward the freezer compartment 107 having a lower temperature.
  • the thickness of the heat insulating material 152 becomes 0, and the cooling pin (heat transfer cooling portion) end portion 134b is the rear partition wall surface 151 which is the second partition wall surface.
  • the rear partition wall surface 151 that is in direct contact with the second partition wall surface has a shape that protrudes toward the freezer compartment.
  • the length protruding toward the freezer compartment is preferably equal to or longer than the length corresponding to about 20% of the entire cooling pin 134 volume. For example, if the total length of the cooling pin 134 is 20 mm, it is about 4 mm or more.
  • the cooling pin 134 When the cooling pin 134 is in direct contact with the rear partition wall surface 151 as the second partition wall surface as described above, for example, when the cooling pin 134 is inserted slightly inclined, or the cooling pin 134 When the surface flatness of the tip of 134 is poor, the contact area between the two becomes small, the conduction of cold heat becomes poor, and the cooling pin 134 may not be sufficiently cooled.
  • the freezing room cold air that is a cooling means on the back surface of the cooling pin 134 is, for example, ⁇ 17 to ⁇ 20 ° C.
  • the cooling pin 134 that is the heat transfer cooling section is, for example, about ⁇ 5 to ⁇ 10 ° C. through the heat insulating material 152. To be cooled.
  • the cooling pin 134 is a good heat conduction member, it is very easy to transmit cold heat, and the atomization electrode 135 which is the atomization tip via the cooling pin 134 is also about ⁇ 3 ° C. to ⁇ 8 ° C. Indirectly cooled.
  • the dew condensation prevention member 140 Since the heat conductivity of the condensation prevention member 140 is lower than that of the cooling pin, the conduction of cold heat from the cooling pin 134 to the condensation prevention member 140 is suppressed, and the surface temperature of the condensation prevention member 140 is higher than the temperature of the cooling pin 134. Become. For example, it is about 3 ° C. to ⁇ 2 ° C.
  • the dew condensation preventing member 140 since the dew condensation preventing member 140 is spread over a region wider than the contact portion with the cooling pin 134, the cold heat is also conducted through the dew condensation preventing member 140 and diffused to the periphery. For this reason, the minimum temperature on the surface of the dew condensation prevention member 140 increases by, for example, 1 to 2 ° C. Further, the dew condensation preventing member 140 extends over a region wider than a region in contact with the cooling pin 134, and is in surface contact with the outer case in the expanded region. Further, the dew condensation preventing member 140 completely seals the cool air from the freezer compartment 107 side by surface contact with the outer case 137.
  • the temperature of the vegetable compartment 108 is 2 ° C. to 7 ° C. and is in a relatively high humidity state due to transpiration from vegetables or the like, if the atomization electrode 135 that is the atomization tip is below the dew point temperature, Water is generated on the atomizing electrode 135 including the tip, and water droplets adhere to it.
  • a high voltage (for example, 4 to 10 kV) is applied to the atomizing electrode 135, which is the atomizing tip portion to which water droplets have adhered, by the voltage applying unit 133.
  • corona discharge occurs, and the water droplets at the tip of the atomization electrode 135, which is the atomization tip, are refined by electrostatic energy.
  • the droplet since the droplet is charged, it becomes a nano-level fine mist having an invisible charge of several nm level due to Rayleigh splitting. Ozone and OH radicals are generated along with the generation of fine mist.
  • the voltage applied between the electrodes is a very high voltage of 4 to 10 kV, but the discharge current value at that time is several ⁇ A level, and the input is a very low input of 0.5 to 1.5 W. .
  • the atomizing electrode 135 when the atomizing electrode 135 is set to the reference potential side (0 V) and the counter electrode 136 is set to the high voltage side (+7 kV), the condensed water adhering to the tip of the atomizing electrode 135 becomes the atomizing electrode 135 and the counter electrode 136. The air insulation layer in between is destroyed and discharge occurs by electrostatic force. At this time, the dew condensation water is charged and becomes fine particles. Further, since the counter electrode 136 is on the positive side, the charged fine mist is attracted, the droplets are further atomized, and the nano-level fine mist containing radicals and invisible charges of several nm level is attracted to the counter electrode 136. Due to the inertial force, fine mist is sprayed toward the storage room (vegetable room 108).
  • the amount of condensed water increases, and the atomization of condensed water proceeds by applying a high voltage. At this time, the amount of condensed water is moderate, and the corresponding discharge current is also at a medium level.
  • the discharge current varies depending on the state of atomization, but a change corresponding to the voltage during discharge (discharge voltage) also occurs.
  • the dew point-atomizing electrode temperature can be controlled based on the current value or the corresponding voltage.
  • this temperature difference ⁇ T is about 2 to 3 ° C., which is a fairly narrow temperature range.
  • the change in the dew point of 2 to 3 ° C. corresponds to about 10% relative humidity.
  • the amount of the vegetable It is a change that occurs easily due to a change in.
  • a humidity increase of about 10% due to an increase in the amount of vegetables can occur from a small amount of vegetables. A control method to maintain is required.
  • control means determines the atomization state by looking at the state of the atomization electrode, and controls the voltage application unit and the heating unit based on this to determine “dew point ⁇
  • the “atomization electrode temperature” is controlled to a value suitable for atomization.
  • FIG. 5 is a flowchart of the above operation, and the procedure will be described using this flowchart.
  • the atomization state control cycle is a cycle corresponding to a time region for determining the atomization state.
  • the period from opening of the damper to opening of the next damper can be set as the atomization state control cycle.
  • a cycle such as “the first cycle: the period from the first damper opening to the first damper opening”, “the second cycle: the period from the first damper opening to the third damper opening” It is also possible to change the length.
  • atomization rate (atomization time) / (time of atomization state control cycle)
  • atomization rate (atomization time) / (atomization state control cycle) It is defined as a value proportional to the atomization time and the time during which a high voltage is applied to the atomization electrode.
  • any parameter having a strong correlation with these parameters can be replaced with this.
  • the latter is more sensitive to the atomization rate with respect to the change in the atomization time because the time when the high voltage is not applied to the atomization electrode is excluded in the denominator of the calculation formula. It is preferable because it improves.
  • the above atomization time is a time during which a constant discharge current or discharge voltage flowing between the atomization electrode and the counter electrode is observed.
  • an atomization time is defined for a discharge current and a discharge voltage that exceed a certain threshold value.
  • the procedure of the control method will be described.
  • the atomization state determination by the control means is made (STEP 1).
  • the heating amount of the heating unit is increased by the control means in the next atomization state control cycle (atomization body control cycle N + 1) (STEP 2). .
  • the atomization rate decreases and the atomization rate approaches the target value.
  • the heating amount of the heating unit is maintained in the next atomization state control cycle. (STEP2). Thereby, the temperature of the atomization electrode does not change, and the atomization rate is also maintained.
  • the atomization state determination is “atomization rate ⁇ atomization target” (STEP 1)
  • the heating amount of the heating unit is reduced by the control means in the next atomization state control cycle. (STEP3).
  • the temperature of the atomization electrode is lowered.
  • the atomization rate increases and the atomization rate approaches the target value.
  • the above atomization target may be a value having no width.
  • it may be a value having a width such as 40% or more and 70% or less.
  • the specific atomization rate or the specific atomization rate range is set.
  • an atomization target regarding the representative value of the appropriate discharge current and discharge voltage within the atomization state control cycle For example, the atomization target can be set such that the average discharge current value within the atomization state control cycle is 2 to 3 ⁇ A, and the average discharge voltage is 1.5 to 2.8 kV.
  • the atomization target is set based on a lower limit concentration determined from keeping, sanitizing, deodorizing performance, and the like, and an upper limit concentration determined from ozone odor.
  • the atomization rate is set to the target value by repeating “Atomization state judgment (STEP 1)” and “Changing heating amount of heating part (increase, no change, reduction)” (STEPs 2 to 4) as described above. It becomes possible to approach.
  • FIG. 6 is a time chart
  • a temporal operation and a temperature change realized as a result will be described with reference to FIG. 2, FIG. 4, and FIG.
  • the vertical axis indicates the dew point (dew point near the electrode), the temperature of the atomizing electrode, the temperature of the atomizing electrode, the temperature of the cooling means (freezer room), and the wind for supplying cold air to the vegetable room in order from the top.
  • the horizontal axis represents time
  • the vertical axis represents the time change of the variable.
  • the time axis is roughly divided into two atomization state control cycles, which are an atomization state control cycle N and an atomization state control cycle N + 1 in this order.
  • One atomization state control cycle is divided into two regions.
  • the atomization state control cycle N it is divided into two regions tN, close to tN, open, tN, open to tN + 1, and close. .
  • the damper In the region of tN, close to tN, open, the damper is closed, so air with a low temperature and low dew point does not flow in, so the dew point rises.
  • tN close to tN + 1, close, the damper is Since it opens, air with a low temperature and a low dew point flows in, so the dew point decreases.
  • the temperature of the cooling means decreases when the damper is closed, because cold air is not supplied to the other storage compartments, and the temperature is lowered. Since it is supplied, there is not enough cold air in the freezer compartment, and the temperature rises.
  • the temperature of the atomizing electrode 135 that is indirectly cooled by the cooling pin 134 in addition to the cooling pin 134 that is cooled by the cooling means also exhibits the same temperature change as the cooling means.
  • the “dew point ⁇ atomization electrode temperature” is located above the atomization temperature range in which atomization is possible (high temperature region).
  • the atomization rate defined by (atomization time / atomization state control cycle time) ⁇ 100 is calculated by the control means 146, and the value is 100%. Met. Assuming that the atomization target set here is an atomization rate of 20%, based on this, in step 1 of FIG. 5, the control means makes an atomization state determination that atomization rate> atomization target.
  • the heating amount of the heating unit 154 is increased.
  • the heating unit input of FIG. 6 increases and becomes a constant value after tN + 1, close.
  • the temperature of the dew condensation preventing member 140 adjacent to the heating unit 154 increases, and the temperature of the atomization electrode 135 adjacent to the dew condensation preventing member 140 also increases.
  • the cooling pin heat shielding region 153 since there is the cooling pin heat shielding region 153, the movement of heat from the heating unit 154 to the cooling pin 134 is suppressed, and the temperature increase of the dew condensation preventing member 140 and the atomizing electrode 135 is efficiently realized. Is possible.
  • the temperature change can be confirmed by an increase in atomization electrode temperature after tN + 1, close in FIG.
  • the “dew point ⁇ atomization electrode temperature” decreases and enters the atomization temperature range.
  • the atomization rate in the atomization state control cycle N + 1 is 15%, which is closer to the atomization target 20% than the atomization rate in the previous cycle.
  • the atomization target is realized by raising the temperature of the atomization electrode from the state of excessive dew condensation having a high “dew point-atomization electrode temperature” has been described. In the case of a low value, conversely, it is possible to approach the atomization target by reducing the heating unit input.
  • the atomization target can be achieved in a short time, but conversely, the atomization target may be passed. Adjustment is possible, but it takes time to adjust.
  • the amount of change in the heating unit is determined in consideration of the adjustment accuracy and time, but if the distance from the atomization target is large, the change width is increased and the difference from the atomization target is In the case of being small, it is preferable to set the change width to be small from the viewpoint of adjustment accuracy and time required for adjustment.
  • the atomization electrode is frozen when the atomization rate suddenly decreases and the atomization rate becomes almost zero from one atomization state control cycle to the next atomization state control cycle.
  • the heating amount by the heating unit is increased and the temperature of the atomizing electrode 135 is increased in the next atomization state control cycle.
  • Freezing occurs suddenly and the atomization rate decreases rapidly, so that it is possible to determine the occurrence of freezing with a high probability. Further, as described above, the atomization electrode 135 can be efficiently heated by the action of the cooling pin 134 and the cooling pin heat shield region 153. In this way, freezing can be released in a short time without using wasted energy.
  • the temperature of the atomization electrode is high, so it may be difficult to atomize even if the dew point is high. Even in such a case, it is preferable to accelerate the temperature drop of the atomization electrode by setting the input of the heating unit after the release of freeze to be weak regardless of the determination of the atomization state. By doing so, re-atomization is realized at an early stage. In addition, an energy saving effect can be obtained by reducing unnecessary heater heating.
  • the heating amount of the heating unit is also effective to set the heating amount of the heating unit to be approximately the same as the heating amount before freezing in a constant atomization state control cycle after the release of freezing.
  • the heating amount of the heating unit at the time of stable atomization before freezing is used to quickly return to the stable atomization state and avoid unnecessary heater heating. be able to.
  • the heating timing of the heating section is lowered.
  • the temperature of the heat transfer cooling unit is cooled by the cooling means (freezer compartment), and thus changes in temperature similar to that of the cooling means (freezer compartment). Therefore, in the atomization state control cycle N, a minimum value is obtained at tN and open.
  • the dew point ⁇ the atomizing electrode temperature becomes a large value, resulting in excessive dew condensation.
  • the heating amount of the heating section from tN, open to tN + 1, close is reduced.
  • the temperature of the atomizing electrode rises at tN, close to tN, open and decreases at tN, open to tN + 1, close, which is the same as the temperature change of the dew point.
  • the difference between the dew point and the atomization electrode temperature is reduced, and the dew point-atomization electrode temperature is also reduced, so that the atomization temperature range is entered.
  • excessive dew condensation is avoided.
  • the heating amount of the heating unit is increased, so that the minimum temperature of the atomizing electrode is increased and freezing can be avoided.
  • the amount of heating of the heating unit is not dependent on the result of the atomization state determination in a certain atomization state control cycle (specifically, after one or two cycles) after the freeze release, as after the freeze release. It is effective to keep it at a low level.
  • the amount of heating of the heating unit at the time of stable atomization before freezing is restored to the stable atomization state at an early stage. Unnecessary heater heating can also be avoided.
  • the cooling pin 134 is moved to a low temperature necessary for condensation in a low humidity atmosphere. Cooling can be easily performed, and a stable fine mist can be supplied. At this time, by inserting grease, rubber, or elastomer between the surface of the rear partition wall surface 151 and the cooling pin (heat transfer cooling portion) end portion 134b, a contact area is ensured and cooling of the cooling pin 134 is efficient. The effect which advances automatically is acquired. In addition, by combining a conductive material with grease, rubber, or elastomer, the above effect can be further improved.
  • the electrostatic atomizer 131 in this Embodiment applies a high voltage between the atomization electrode 135 which is an atomization front-end
  • the ozone concentration in the storage room (vegetable room 108) can be adjusted.
  • the ozone concentration appropriately, deterioration such as yellowing of vegetables due to excessive ozone can be prevented, and the sterilization and antibacterial action of the vegetable surface can be enhanced.
  • the atomization electrode 135 is set to the reference potential side (0 V), and a positive potential (+7 kV) is applied to the counter electrode 136 to generate a high-voltage potential difference between the two electrodes. May be set to the reference potential side (0 V), and a negative potential ( ⁇ 7 kV) may be applied to the atomizing electrode 135 to generate a high voltage potential difference between the two electrodes.
  • a negative potential ⁇ 7 kV
  • a conductive storage container is provided in an insulated storage room (vegetable room 108), and the conductive storage container is electrically connected to a holding member (conductive) of the storage container.
  • the holding member can be attached to and detached from the holding member, and the holding member is connected to the reference potential portion to be grounded (0 V).
  • the atomizing unit 139 and the storage container and the holding member always maintain a potential difference, so that a stable electric field is formed, so that the atomization unit 139 can stably spray, and the entire storage container is at the reference potential.
  • the sprayed mist can be diffused throughout the storage container. Further, charging to surrounding objects can be prevented.
  • a grounding holding member is provided on a part of the storage chamber (vegetable chamber 108) side, thereby generating a potential difference with the atomizing electrode 135 and performing mist spraying. It can be performed, and it can spray stably from an atomization part by comprising a stable electric field by simpler composition.
  • the cooling means for cooling the cooling pin 134 that is the heat transfer cooling unit is the cold air in the freezer compartment 107, but is cooled using the cooling source generated in the refrigeration cycle of the refrigerator 100.
  • Heat transfer from a cooling pipe using cold air, cold air from the cooling source of the refrigerator 100, or cold temperature may be used.
  • the cooling pin 134 which is a heat-transfer cooling part can be cooled to arbitrary temperature, and it becomes easy to perform temperature management at the time of cooling the atomization electrode 135.
  • cold air from a low temperature air passage such as a discharge air passage of the ice making chamber 106 or a freezing chamber return air passage may be used. Thereby, the installation place of the electrostatic atomizer 131 is expanded.
  • the storage room in which the mist is sprayed by the electrostatic atomizer 131 is the vegetable room 108, but other temperature zones such as the refrigerator room 104 and the switching room 105 are used. In this case, it can be deployed for various purposes.
  • FIG. 7 is a longitudinal sectional view of a refrigerator according to the second embodiment of the present invention
  • FIG. 8 is a perspective sectional view of a main part of the refrigerator according to the second embodiment of the present invention
  • FIG. 9 is a discharge of the refrigerator according to the second embodiment of the present invention.
  • FIG. 10 is a graph showing the temperature dependency of the discharge current of the refrigerator discharge device according to the second embodiment of the present invention
  • FIG. 11 is a graph showing the discharge current of the refrigerator discharge device according to the second embodiment of the present invention.
  • FIG. 12 is a graph showing the humidity dependence
  • FIG. 12 is a graph showing the relationship between the discharge current of the refrigerator discharge device and the ozone concentration in Embodiment 2 of the present invention
  • FIG. 13 is the graph of the refrigerator discharge device in Embodiment 2 of the present invention.
  • FIG. 14 is a control time chart of the refrigerator discharge device according to Embodiment 2 of the present invention.
  • a cooling room 110 for generating cold air is provided on the back of the vegetable room 108 and the freezing room 107.
  • the cooling chamber 110 and each storage chamber are provided with a discharge air passage 141 for conveying cold air and a suction air passage 142 for returning the cold air from each storage chamber to the cooling chamber.
  • the vegetable room discharge air passage 141 a discharges cold air to the vegetable room, and the vegetable room suction air passage 142 is provided in the vegetable room 108.
  • a cooler 112 is disposed, and in the upper space of the cooler 112, the cold air cooled by the cooler 112 by a forced convection method is stored in the refrigerator 104, the switching chamber 105, the ice making chamber 106, the vegetables.
  • a cooling fan 113 for blowing air to the chamber 108 and the freezing chamber 107 is disposed.
  • the cold air cooled by the cooler 112 in the cooling chamber 110 passes through the vegetable chamber discharge air passage 141a and is sent to the vegetable chamber 108 by the cooling fan 113, and a damper 130 is provided in the middle of the vegetable chamber discharge air passage 141a. Is provided.
  • a lower storage container 119 placed on a frame attached to a drawer door 118 of the vegetable compartment 108 and an upper storage container 120 placed on the lower storage container 119 are arranged.
  • the cold air cooled by the cooler 112 passes through the vegetable compartment discharge air passage 141 a and is discharged, and the discharged cold air is discharged to the cooling chamber 110.
  • a vegetable room suction port 142a for returning and a vegetable room suction port 144 are provided as the suction port.
  • a discharge device 200 is provided on the top of the vegetable compartment 108.
  • the vegetable compartment 108 has a structure in which ozone is directly emitted from the discharge device 200.
  • the discharge device 200 includes a discharge unit 201, a voltage application unit 202, a discharge state detection unit 203, and an outer case 204.
  • An ozone discharge port 205 is provided in a part of the outer case 204.
  • the discharge unit 201 includes a needle-like discharge electrode 206 to which a negative high voltage is applied, a donut disk-like counter electrode 207 at a position facing the discharge electrode 206, and the counter electrode 207 is constant with the tip of the discharge electrode 206.
  • the resin fixing member 208 is arranged so as to keep the distance.
  • the discharge unit 201 is disposed in the outer case 204.
  • a voltage application unit 202 is provided in the vicinity of the discharge unit 201.
  • a high voltage of about ⁇ 5 kV is applied to the discharge electrode 206, and a ground (0 V) that is a reference potential is applied to the counter electrode 207 by the voltage application unit 202.
  • the voltage application unit 202 communicates with the control unit 210, is controlled by the control unit 210, and performs ON / OFF according to the voltage application time (application rate) of the high voltage.
  • the discharge state detection unit 203 is connected to the voltage application unit 202, detects a current (discharge current) flowing between the discharge electrode 206 and the counter electrode 207, and outputs an analog signal or a digital signal to the control unit 210 as a monitor voltage. .
  • the vegetable room 108 stores the cold air cooled in the cooling room so that the ozone supplied from the discharge device 200 can be indirectly supplied to the refrigerating room 104, the switching room 105, the ice making room 106, and the freezing room 107.
  • a discharge air passage 141 for conveying to the chamber is provided.
  • the odor component is oxidized and decomposed by contact of the ozone containing the odor generated from the food stored in the refrigerator 100 with ozone, it has a function of obtaining a deodorizing effect by the odor decomposition.
  • the vegetable compartment 108 is cooled by the cold air cooled by the cooler 112, but the cold air that cools the vegetable compartment 108 is blown by the cooling fan 113, passes through the discharge air passage 141, and is separated from the middle of the discharge air passage 141. It passes through the vegetable room damper 130a through the retained vegetable room discharge air passage 141a and flows into the vegetable room 108 from the vegetable room discharge port 143.
  • the cold air flowing into the vegetable compartment 108 circulates around the outer periphery of the lower storage container 119, cools the lower storage container 119, is sucked in through the vegetable compartment suction port 144, passes through the vegetable compartment suction air passage 142a, and then enters the cooling chamber. Return to 110 again.
  • the vegetable compartment 108 is cooled by the circulation of cold air, when a temperature sensor (not shown) installed in the vegetable compartment 108 detects a temperature below the target temperature zone, the vegetable compartment 108a is closed to close the vegetable compartment 108a. It is controlled so that the inflow of cold air to 108 stops.
  • the discharge device 200 is controlled to spray ozone directly onto the vegetable compartment 108. Furthermore, the ozone generated from the discharge device 200 is sucked into the vegetable room suction air passage 142a, and indirectly sprayed from the mist discharge ports of the refrigerator compartment 104, the switching chamber 105, the ice making chamber 106, and the freezer compartment 107 to the respective storage chambers. . As a result, the refrigerator 100 is supplied to the refrigerator compartment 104, the switching room 105, the ice making room 106, the vegetable room 108, and the freezing room 107. In this way, ozone is supplied to all the storage rooms of the refrigerator.
  • ozone has a strong oxidizing power
  • the one with as high ozone concentration as possible has an advantageous effect on bactericidal action against microorganisms such as mold, bacteria and viruses, and the decomposing power of odorous components is increased.
  • the concentration should be as low as possible.
  • the ozone concentration had a sterilization rate of 99% at a concentration of 5 ppb or higher, and on the other hand, when the concentration reached 30 ppb, It turned out that it is the odor tolerance limit value of the refrigerator user. Furthermore, it was confirmed by a prior BOX test that ozone would damage the appearance of vegetables when the ozone concentration was 80 ppb or more. From the above confirmation results, the ozone farming degree supplied to each storage room is controlled by the discharge device to control the amount of ozone generated by the control means 210, and the ozone concentration in each storage room compartment of the refrigerator is 5 ppb or more and 30 ppb or less. It's in control. For this reason, the ozone which reached
  • FIG. 10 and FIG. 11 show the results of measuring the current flowing through the discharge electrode and the counter electrode, that is, the discharge current in a 100 liter box when a constant voltage is applied to the discharge electrode and the counter electrode.
  • FIG. 11 shows the results when the temperature is varied with the humidity being fixed at 99% Rh
  • FIG. 12 is the results when the humidity is varied with the temperature being fixed at 5 degrees. As can be seen from these results, the discharge current increases as the temperature and humidity decrease.
  • FIG. 11 shows the result of measuring the ozone concentration of ozone generated by the discharge current and the discharge by installing the discharge device in the same manner in a 100 liter box, applying a voltage to the discharge electrode and the counter electrode, and discharging.
  • the ozone concentration increases as the discharge current increases, because the amount of ozone generated per unit time increases.
  • the amount of ozone generated differs depending on the temperature and humidity conditions in the vicinity of the discharge device installed in the refrigerator. Further, as shown in FIGS. 10 and 11, the change in the discharge current becomes large even when the temperature is in the range of 1 to 5 ° C. and the humidity is 40 to 99% Rh. Also in the refrigerator, for example, the amount of change is simply caused by opening / closing the door or changing the amount of vegetables stored in the vegetable room.
  • a discharge device is installed in the vicinity of the suction inlet of the vegetable room and diffused to all rooms using the discharge air passage of the refrigerator as described above. Since it is effective to make it, it is installed at that position.
  • the control means in FIG. 9 determines the amount of ozone generated from the discharge device by looking at the discharge current and the voltage application time by the discharge state detection means, and controls the voltage application unit based on this to determine the discharge device.
  • the amount of ozone generated from the ozone is controlled to the ozone target concentration (5 ppb or more and 30 ppb or less).
  • FIG. 13 is a flowchart of the above operation
  • FIG. 14 is a control time chart of the above operation.
  • the terms used in FIGS. 13 and 14 are as follows.
  • the discharge state control cycle is a cycle corresponding to a time region for determining the discharge state.
  • the next damper is opened from the opening of the damper 130a in synchronization with the opening / closing of the damper 130a that introduces cool air into a storage room such as a vegetable room.
  • a period until 130a is opened can be a discharge state control cycle.
  • the length of the cycle is changed, such as “the period from the first cycle to the first damper opening” and “the second cycle: the period from the first damper opening to the third damper opening”. It is also possible.
  • the discharge charge (discharge current) ⁇ (time during which voltage is applied).
  • the discharge charge As can be seen from the relationship between the discharge charge, it is the integrated value of the discharge current (amount of ozone generated per unit time) and the time during which the voltage is applied (the time during which ozone is generated). The amount of ozone generated from the discharge device during this time.
  • the one-cycle discharge charge is the total amount of discharge electrification generated by actually applying a voltage to the discharge device during one cycle of the discharge current state control cycle. Since this one-cycle discharge electrification can be converted into the total amount of ozone generated during the one-cycle discharge state control cycle, it can be further converted as the ozone concentration in the storage chamber.
  • one cycle discharge charge is made to correspond to the ozone target concentration (5 ppb or more and 30 ppb or less) in the refrigerator, the lowest ozone target concentration is shown as the lowest discharge charge (Qmin), and the highest ozone target concentration is shown as the highest discharge charge (Qmax).
  • the discharge state is determined by the control means (STEP 1).
  • the voltage application time (voltage application rate) is increased by the control means in the next discharge state control cycle (discharge state control cycle N + 1) (STEP 2 ).
  • the discharge amount (discharge charge) increases in the discharge state control cycle N + 1, and the discharge amount (discharge charge) approaches the discharge target.
  • the voltage application time (voltage application rate) is maintained by the control means in the next discharge control cycle (STEP 3).
  • discharge state judgment is “discharge amount (discharge charge)> discharge target”
  • the voltage application time is reduced by the control means in the next discharge state control cycle (discharge state control cycle N + 1).
  • discharge state control cycle N + 1 the discharge amount (discharge charge) decreases, and the discharge amount (discharge charge) approaches the discharge target.
  • discharge state determination (STEP 1)” and “voltage application time change (STEP 2 to 4)” are repeated, so that the voltage application time (application rate) is optimized and approaches the discharge target. Can do.
  • FIG. 14 is a time chart.
  • the horizontal axis is the time axis.
  • the vertical axis indicates the discharge target (discharge charge target values: Qmin, Qmax), one period discharge charge, discharge current, temperature and humidity in the vicinity of the discharge device, and a damper provided to keep the vegetable room at a constant temperature. Open / closed state.
  • the time axis is roughly divided into two discharge state control cycles, which are a discharge state control cycle N and a discharge state control cycle N + 1 in this order.
  • One discharge state control cycle is further divided into two regions.
  • the discharge state control cycle N it is divided into two regions: a region from tN, close to tN, open, and a region from tN, open to tN + 1, close. ing.
  • the discharge charge (discharge current ⁇ voltage application time (application rate)) gradually increases with the passage of time, while the discharge current varies, and tN + 1, The value of the one-cycle discharge charge can be seen by the control means during the close.
  • a means for reading the discharge current by the discharge state detecting means and making the discharge current constant (for example, 10 microamperes) is conceivable.
  • the same amount of ozone is generated whether the damper is open or closed. Therefore, considering the case of diffusing ozone into all the rooms, it is desirable to increase the amount of ozone generated when the damper is closed, but there is a problem that a method for making the discharge current constant cannot be achieved. Further, the control by the time of the discharge state control cycle is an effective means because it can take advantage of the increase in the discharge current with the damper opened.
  • the counter electrode 207 is set to the reference potential side (0 V) and the discharge electrode 206 is negatively applied ( ⁇ 7 kV) to generate a high-voltage potential difference between the two electrodes.
  • a high potential difference may be generated between both electrodes by applying a negative potential ( ⁇ 7 kV) to the counter electrode 207 on the reference potential side (0 V).
  • the discharge electrode 206 is set to a negative potential of ⁇ 7 kV
  • the counter electrode 207 may not be particularly provided if the storage chamber (vegetable chamber 108) side is set to the reference potential side.
  • a conductive storage container is provided in an insulated storage room (vegetable room 108), and the conductive storage container is electrically connected to a holding member (conductive) of the storage container,
  • the holding member can be attached to and detached from the holding member, and the holding member is connected to the reference potential portion to be grounded (0 V).
  • a stable electric field is formed in order to maintain a potential difference between the discharge unit 201 and the storage container and the holding member, so that ozone can be stably released from the discharge unit 201, and the entire storage container is at the reference potential. Therefore, the released ozone can be diffused throughout the storage container. Further, charging to surrounding objects can be prevented.
  • a grounded holding member is provided on a part of the storage chamber (vegetable chamber 108) side, thereby generating a potential difference from the discharge electrode 206 and performing ozone diffusion. It is possible to stably spray from the atomizing section by forming a stable electric field with a simpler configuration.
  • the refrigerator according to the present invention can realize appropriate atomization in the storage room by applying the control method using the electrostatic atomizer of the present invention. It can be applied not only to the vegetable storage, but also to applications such as low-temperature distribution of foods such as vegetables and warehouses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

A control means (146) determines the atomized state at an atomizing electrode (135) and, based on the determination result, controls a voltage applying unit (202) and a heating unit (154), thereby controlling the difference between a dew point and an atomizing electrode temperature to have a value suitable for atomization.

Description

霧化装置の制御方法、放電装置の制御方法および冷蔵庫Atomization device control method, discharge device control method and refrigerator
 本発明は、野菜などを収納する貯蔵室空間に設置された、霧化装置あるいは放電装置の制御方法、および、それら装置の少なくとも一方を搭載した冷蔵庫に関するものである。 The present invention relates to a method for controlling an atomization device or a discharge device installed in a storage room space for storing vegetables and the like, and a refrigerator equipped with at least one of these devices.
 野菜の鮮度低下に対する影響因子としては、温度、湿度、環境ガス、微生物、光などが挙げられる。野菜は生き物であり、野菜表面では呼吸と蒸散作用が行われる。野菜の鮮度を維持するには野菜の呼吸と野菜から水分などが蒸散する蒸散作用の抑制が必要となる。低温障害をおこす一部の野菜を除き、多くの野菜は低温で呼吸が抑制され、高湿により蒸散作用を低下できる。 ∙ Factors affecting the freshness of vegetables include temperature, humidity, environmental gas, microorganisms, and light. Vegetables are living things, and breathing and transpiration are performed on the vegetable surface. In order to maintain the freshness of vegetables, it is necessary to suppress the respiration of vegetables and the transpiration of moisture from the vegetables. Except for some vegetables that cause chilling injury, respiration is suppressed at low temperatures, and transpiration can be reduced by high humidity.
 近年、家庭用冷蔵庫では野菜の保存を目的とし、密閉された野菜容器が設けられている。野菜容器内では野菜を適正な温度に冷却するとともに、庫内を高湿化することにより、野菜の呼吸と蒸散作用を抑制するよう制御している。ここで、庫内の高湿化手段として、ミストを噴霧するものがある。 Recently, in order to preserve vegetables in home refrigerators, sealed vegetable containers are provided. In the vegetable container, the vegetable is cooled to an appropriate temperature, and the inside of the cabinet is humidified to control the respiration and transpiration of the vegetable. Here, there exists what sprays mist as a humidification means in a store | warehouse | chamber.
 従来の、この種のミスト噴霧機能を備えた冷蔵庫としては、野菜容器内が低湿時に超音波霧化装置にてミストを生成して噴霧し、野菜容器内を加湿して、野菜からの蒸散作用を抑制しているものである(例えば、特許文献1参照)。 As a conventional refrigerator having this kind of mist spraying function, when the inside of the vegetable container is low in humidity, the mist is generated and sprayed by an ultrasonic atomizer, and the inside of the vegetable container is humidified to evaporate from the vegetable. (For example, refer to Patent Document 1).
 図15は、特許文献1に開示された従来の冷蔵庫の野菜容器を左右に切断した縦断面を示す要部縦断面図である。また、図16は、同従来の冷蔵庫の野菜容器に設けた超音波霧化装置の要部を示す拡大斜視図である。 FIG. 15 is a vertical cross-sectional view of a main part showing a vertical cross section obtained by cutting a vegetable container of a conventional refrigerator disclosed in Patent Document 1 into left and right. FIG. 16 is an enlarged perspective view showing a main part of the ultrasonic atomizer provided in the vegetable container of the conventional refrigerator.
 図15に示すように、野菜室21は冷蔵庫本体20の本体ケース26の下部に設けられ、その前面開口は開閉自在に引き出される引出し扉22により閉止されるようになっている。また、野菜室21は仕切板2によりその上方の冷蔵室(図示せず)と仕切られている。 As shown in FIG. 15, the vegetable compartment 21 is provided in the lower part of the main body case 26 of the refrigerator main body 20, and the front opening is closed by the drawer door 22 with which it can be opened and closed freely. Moreover, the vegetable compartment 21 is partitioned off from the upper refrigerator compartment (not shown) by the partition plate 2.
 引出し扉22の内面に固定ハンガ23が固定され、この固定ハンガ23に野菜等の食品を収納する野菜容器1が搭載されている。野菜容器1の上面開口は蓋体3により封止されている。野菜容器1の内部には解凍室4が設けられ、解凍室4には超音波霧化装置5が備えられている。 The fixed hanger 23 is fixed to the inner surface of the drawer door 22, and the vegetable container 1 for storing food such as vegetables is mounted on the fixed hanger 23. The top opening of the vegetable container 1 is sealed with a lid 3. A thawing chamber 4 is provided inside the vegetable container 1, and an ultrasonic atomizer 5 is provided in the thawing chamber 4.
 また、図16に示すように、超音波霧化装置5には霧吹出し口6と貯水容器7と湿度センサ8とホース受け9が備えられている。貯水容器7は、ホース受け9により除霜水ホース10に接続されている。除霜水ホース10には、その一部に除霜水を清浄するための浄化フィルター11が備えられている。 Also, as shown in FIG. 16, the ultrasonic atomizer 5 is provided with a mist outlet 6, a water storage container 7, a humidity sensor 8, and a hose receiver 9. The water storage container 7 is connected to a defrost water hose 10 by a hose receiver 9. The defrost water hose 10 is provided with a purification filter 11 for purifying the defrost water at a part thereof.
 以上のように構成された冷蔵庫において、以下その動作について説明する。 The operation of the refrigerator configured as described above will be described below.
 熱交換冷却器(図示せず)より冷却された冷却空気は、野菜容器1及び蓋体3の外面を流通することで、野菜容器1を冷却し、内部に収納された食品が冷やされる。また、冷蔵庫運転時に冷却器から発生する除霜水は除霜水ホース10を通過する時に浄化フィルター11によって浄化されて、超音波霧化装置5の貯水容器7に供給される。 Cooling air cooled by a heat exchange cooler (not shown) circulates on the outer surfaces of the vegetable container 1 and the lid 3, thereby cooling the vegetable container 1 and cooling the food stored inside. Further, the defrost water generated from the cooler during the refrigerator operation is purified by the purification filter 11 when passing through the defrost water hose 10 and supplied to the water storage container 7 of the ultrasonic atomizer 5.
 次に湿度センサ8によって、野菜容器1内の湿度が90%以下と検出されると、超音波霧化装置5が加湿を開始し、野菜容器1内の野菜等を新鮮に保持するための適度な湿度に調湿することができる。 Next, when the humidity in the vegetable container 1 is detected by the humidity sensor 8 to be 90% or less, the ultrasonic atomizer 5 starts humidification, so that the vegetables in the vegetable container 1 are kept fresh. The humidity can be adjusted to a certain level.
 一方、湿度センサ8によって庫内湿度が90%以上であると検出された場合、超音波霧化装置5は過度な加湿を停止する。その結果、超音波霧化装置5により、野菜容器1内をすばやく加湿することができ、野菜容器1内は常に高湿度となり、野菜等の蒸散作用が抑制され、野菜等の鮮度を保持することができる。 On the other hand, when the humidity sensor 8 detects that the internal humidity is 90% or more, the ultrasonic atomizer 5 stops excessive humidification. As a result, the inside of the vegetable container 1 can be quickly humidified by the ultrasonic atomizing device 5, the inside of the vegetable container 1 is always at a high humidity, the transpiration action of the vegetables etc. is suppressed, and the freshness of the vegetables etc. is maintained. Can do.
 また、特許文献2にはオゾン水ミスト装置を設けた冷蔵庫が開示されている。 Patent Document 2 discloses a refrigerator provided with an ozone water mist device.
 特許文献2に開示された冷蔵庫は、野菜室の近傍にオゾン発生体、排気口、水道直結の水供給経路、およびオゾン水供給経路を有している。オゾン水供給経路は野菜室に導かれている。オゾン発生体は水道直結の水供給部に連結している。また、排気口はオゾン水供給経路に連結するよう構成されている。また、野菜室内には超音波素子が備えられている。 The refrigerator disclosed in Patent Document 2 has an ozone generator, an exhaust port, a water supply path directly connected to a water supply, and an ozone water supply path in the vicinity of the vegetable room. The ozone water supply route is led to the vegetable room. The ozone generator is connected to a water supply unit directly connected to the water supply. Further, the exhaust port is configured to be connected to the ozone water supply path. In addition, an ultrasonic element is provided in the vegetable compartment.
 上記の構成において、オゾン発生体で発生したオゾンは水と接触させて処理水としてのオゾン水にする。生成したオゾン水は冷蔵庫の野菜室に導かれ、超音波振動子により霧化され、野菜室に噴霧される。 In the above configuration, ozone generated by the ozone generator is brought into contact with water to form ozone water as treated water. The generated ozone water is guided to the vegetable compartment of the refrigerator, atomized by an ultrasonic vibrator, and sprayed to the vegetable compartment.
特開平6-257933号公報JP-A-6-257933 特開2000-220949号公報JP 2000-220949 A
 しかしながら、上記従来の構成では、一般に湿度センサで検知した庫内湿度によって霧化装置の運転と停止の制御を行っている。この制御では、実際の霧化装置での霧化状態を判定することはできず、そのため、精度や応答性の性能がやや欠ける部分がある。特に冷蔵庫の貯蔵室内といった略密閉かつ低温空間において、噴霧量が過剰となると野菜等が水腐れを起こし庫内が結露するという課題がある。また、噴霧量が少ないと、貯蔵室内への十分な加湿を行うことができず、野菜等の鮮度保持を行うことができないという課題を有していた。 However, in the above-described conventional configuration, the operation and stop of the atomizer are generally controlled by the humidity inside the cabinet detected by the humidity sensor. In this control, the atomization state in the actual atomizer cannot be determined, and therefore there is a part in which the performance of accuracy and responsiveness is somewhat lacking. In particular, in a substantially sealed and low-temperature space such as a refrigerator storage room, if the amount of spray becomes excessive, there is a problem that vegetables and the like cause water rot and the inside of the cabinet is condensed. Further, when the spray amount is small, there is a problem that sufficient humidification cannot be performed in the storage chamber, and the freshness of vegetables and the like cannot be maintained.
 また、食品等から発生した臭い成分を適切に脱臭したり、食品等に付着した微生物の増加を抑制することが食品の安全性確保という観点から求められている。 In addition, it is required from the viewpoint of ensuring food safety to appropriately deodorize odorous components generated from foods and to suppress the increase of microorganisms adhering to foods and the like.
 本発明は、霧化部を備えてミストを噴霧することで鮮度保持力を向上させる冷蔵庫において、より適切な噴霧量で効率よく霧化が行える冷蔵庫を提供することを目的とする。また、オゾンでの殺菌、脱臭機能を備えた冷蔵庫において、より適切なオゾンを効率よく発生する放電装置を備えた冷蔵庫を提供することを目的とする。 This invention aims at providing the refrigerator which can be atomized efficiently with a more suitable spray amount in the refrigerator which improves the freshness retention power by spraying mist by providing an atomization part. Moreover, it aims at providing the refrigerator provided with the discharge device which generate | occur | produces more suitable ozone efficiently in the refrigerator provided with the disinfection and deodorizing function with ozone.
 上記従来の課題を解決するために、霧化電極と、前記霧化電極に電圧を印加する電圧印加部と、前記電圧印加部を制御する制御手段と、前記霧化電極の霧化状態を検知する霧化状態検知手段とを有した冷蔵庫の霧化装置の制御方法であって、前記制御手段が、所定周期における前記霧化状態検知手段の霧化状態判断に基づき、次期所定周期での前記霧化電極での霧化を制御するものである。 In order to solve the above conventional problems, an atomization electrode, a voltage application unit that applies a voltage to the atomization electrode, a control unit that controls the voltage application unit, and an atomization state of the atomization electrode are detected. A method for controlling an atomizing device for a refrigerator having an atomizing state detecting means for performing the above-mentioned control in the next predetermined cycle based on the atomization state determination of the atomizing state detecting means in a predetermined cycle. The atomization at the atomization electrode is controlled.
 これによって、霧化部の霧化状態を的確に把握した上で、霧化部の動作を制御することによって、適切な霧化を実現することができる。 This makes it possible to realize appropriate atomization by controlling the operation of the atomization unit after accurately grasping the atomization state of the atomization unit.
 また、放電電極と、前記放電電極に電圧を印加する電圧印加部と、前記電圧印加部を制御する制御手段と、前記放電電極の放電状態を検知する放電状態検知手段とを有した冷蔵庫の放電装置の制御方法であって、前記制御手段が、所定周期における前記放電状態検知手段の放電状態判断に基づき、次期所定周期での前記放電電極での放電を制御するものである。 Also, a discharge of a refrigerator having a discharge electrode, a voltage application unit that applies a voltage to the discharge electrode, a control unit that controls the voltage application unit, and a discharge state detection unit that detects a discharge state of the discharge electrode In the apparatus control method, the control means controls discharge at the discharge electrode in a next predetermined period based on a discharge state determination of the discharge state detection means in a predetermined period.
 これによって、オゾンの放出状態を的確に把握した上で、放電部の動作を制御することによって、適切な放電を実現することができる。 This makes it possible to realize appropriate discharge by controlling the operation of the discharge section after accurately grasping the ozone release state.
 本発明の霧化装置、あるいは放電装置は、適切な霧化、あるいは放電を実現することができることにより、霧化装置、あるいは放電装置を備えた冷蔵庫の品質をより向上させることができる。 The atomization device or the discharge device of the present invention can realize appropriate atomization or discharge, thereby further improving the quality of the refrigerator equipped with the atomization device or the discharge device.
図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1の冷蔵庫における静電霧化装置の要部断面図である。FIG. 2 is a cross-sectional view of a main part of the electrostatic atomizer in the refrigerator according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1の冷蔵庫の静電霧化装置における、露点-霧化電極温度の関係を示した図である。FIG. 3 is a diagram showing the relationship between the dew point and the atomization electrode temperature in the electrostatic atomizer for a refrigerator according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1の冷蔵庫における静電霧化装置の制御方法の概要を示した図である。FIG. 4 is a diagram showing an outline of a control method of the electrostatic atomizer in the refrigerator according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1の冷蔵庫における静電霧化装置の制御フローチャートである。FIG. 5 is a control flowchart of the electrostatic atomizer in the refrigerator according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態1の冷蔵庫における静電霧化装置の制御タイムチャートである。FIG. 6 is a control time chart of the electrostatic atomizer in the refrigerator according to the first embodiment of the present invention. 図7は、本発明の実施の形態2における冷蔵庫の縦断面図である。FIG. 7 is a longitudinal sectional view of the refrigerator in the second embodiment of the present invention. 図8は、本発明の実施の形態2における冷蔵庫の要部断面斜視図である。FIG. 8 is a cross-sectional perspective view of a main part of the refrigerator in the second embodiment of the present invention. 図9は、本発明の実施の形態2における冷蔵庫の放電装置の構成図である。FIG. 9 is a configuration diagram of the refrigerator discharge device according to Embodiment 2 of the present invention. 図10は、本発明の実施の形態2における冷蔵庫の放電装置の放電電流の温度依存性を示すグラフである。FIG. 10 is a graph showing the temperature dependence of the discharge current of the refrigerator discharge device according to Embodiment 2 of the present invention. 図11は、本発明の実施の形態2における冷蔵庫の放電装置の放電電流の湿度依存性を示すグラフである。FIG. 11 is a graph showing the humidity dependence of the discharge current of the refrigerator discharge device according to Embodiment 2 of the present invention. 図12は、本発明の実施の形態2における冷蔵庫の放電装置の放電電流とオゾン濃度の関係を示すグラフである。FIG. 12 is a graph showing the relationship between the discharge current of the refrigerator discharge device and the ozone concentration in Embodiment 2 of the present invention. 図13は、本発明の実施の形態2における冷蔵庫の放電装置の制御フローチャートである。FIG. 13 is a control flowchart of the refrigerator discharge device according to Embodiment 2 of the present invention. 図14は、本発明の実施の形態2における冷蔵庫の放電装置の制御タイムチャートである。FIG. 14 is a control time chart of the refrigerator discharge device according to Embodiment 2 of the present invention. 図15は、従来の冷蔵庫における霧化装置の要部断面図である。FIG. 15: is principal part sectional drawing of the atomization apparatus in the conventional refrigerator. 図16は、従来の冷蔵庫の野菜室に設けた超音波霧化装置の要部を示す拡大斜視図である。FIG. 16 is an enlarged perspective view showing a main part of an ultrasonic atomizer provided in a vegetable room of a conventional refrigerator.
 第1の発明は、霧化電極と、前記霧化電極に電圧を印加する電圧印加部と、前記電圧印加部を制御する制御手段と、前記霧化電極の霧化状態を検知する霧化状態検知手段とを有した冷蔵庫の霧化装置の制御方法であって、前記制御手段が、所定周期における前記霧化状態検知手段の霧化状態判断に基づき、次期所定周期での前記霧化電極での霧化を制御するものである。 1st invention is an atomization state which detects the atomization state of the atomization electrode, the voltage application part which applies a voltage to the said atomization electrode, the control means which controls the said voltage application part, and the said atomization electrode A control method for an atomizing device of a refrigerator having a detecting means, wherein the control means is based on the atomization state determination of the atomization state detecting means in a predetermined cycle, with the atomizing electrode in the next predetermined cycle. It controls the atomization.
 これにより、霧化状態を適切にフィードバックすることができ霧化電極に効率的に適切な量の結露が進行し、安定して微細ミストを貯蔵室に供給することが可能となる。 This makes it possible to appropriately feed back the atomization state, efficiently form an appropriate amount of dew condensation on the atomization electrode, and stably supply fine mist to the storage chamber.
 また、フィードバック制御がかかることにより、無駄なエネルギーも抑えることができ、省エネ効果も得られる。 Also, by applying feedback control, it is possible to suppress useless energy and to obtain an energy saving effect.
 また、貯蔵室内の余剰な水蒸気を、容易且つ確実に、霧化先端部に結露させることができる。また、供給されるミストがナノレベルの微細ミストであり、この微細ミストが噴霧されることで野菜等の青果物の表面に均一に付着し、食品の保鮮性を向上させることができる。 In addition, excess water vapor in the storage chamber can be easily and reliably condensed on the tip of the atomization. Moreover, the supplied mist is a nano-level fine mist, and when this fine mist is sprayed, it adheres uniformly to the surface of fruits and vegetables, such as vegetables, and can improve the freshness of food.
 さらに、発生した微細ミストに、オゾンやOHラジカルなどが含まれ、これらの酸化力により、野菜室内の脱臭や野菜表面を抗菌、殺菌することができると同時に、野菜表面に付着する農薬やワックスなどの有害物質を酸化分解・除去することが可能となる。 In addition, the generated fine mist contains ozone, OH radicals, etc., and these oxidizing powers can be used to deodorize and sterilize the vegetable surface, as well as pesticides and wax that adhere to the vegetable surface. It is possible to oxidatively decompose and remove harmful substances.
 第2の発明は、第1の発明において、前記霧化状態検知手段は、前記電圧印加部での電流値としたものである。これにより、簡素な手段で適切に霧化電極の霧化状態を検知することができる。 According to a second invention, in the first invention, the atomization state detection means is a current value in the voltage application unit. Thereby, the atomization state of the atomization electrode can be detected appropriately with simple means.
 第3の発明は、第1または2の発明において、前記霧化電極を冷却する冷却手段と、前記霧化電極を加熱する加熱手段とをさらに有し、前記制御手段が、所定周期における前記霧化状態検知手段の霧化状態判断に基づき、前記加熱手段による加熱量を制御し、次期所定周期での前記霧化電極での霧化を制御するものである。これにより、空気中の水分を有効利用して、霧化電極での霧化を効率的に発生させることができる。 A third invention further includes a cooling unit that cools the atomizing electrode and a heating unit that heats the atomizing electrode in the first or second invention, and the control unit includes the fog in a predetermined cycle. On the basis of the atomization state determination of the atomization state detection means, the amount of heating by the heating means is controlled, and the atomization at the atomization electrode in the next predetermined cycle is controlled. Thereby, the atomization in an atomization electrode can be efficiently generated using the water | moisture content in air effectively.
 第4の発明は、第3の発明において、前記霧化状態検知手段によって霧化率が減少し、ほぼ霧化が行われていないと判断した場合に、前記霧化電極に付着した水が凍結したと判断し、制御手段により次期所定周期での加熱手段の加熱量を増加させるものである。これにより、凍結判断の確度が高くなくなり、凍結したとしても、短時間で正常な霧化状態に回復させることができる。 According to a fourth aspect, in the third aspect, when the atomization state detecting means determines that the atomization rate is reduced and the atomization is not substantially performed, the water attached to the atomization electrode is frozen. The control means increases the heating amount of the heating means in the next predetermined cycle. As a result, the accuracy of freezing determination is not high, and even if it is frozen, it can be restored to a normal atomized state in a short time.
 第5の発明は、第4の発明において、次期所定周期での加熱手段の加熱量を予め定めた特定の加熱量に設定するものである。これにより、凍結解除後は、霧化電極の温度が高いため、霧化し難い場合があるが、このような場合でも、霧化状態判断にかかわらず、凍結解除後のヒータ出力を弱く設定することで、霧化電極の温度低下を早め、再霧化が早期に実現する。また、無駄なヒータ加熱が低減されることで、省エネ効果も得られる。 The fifth invention is the fourth invention, wherein the heating amount of the heating means in the next predetermined cycle is set to a predetermined specific heating amount. As a result, the temperature of the atomizing electrode is high after the freeze release, and it may be difficult to atomize. Even in such a case, the heater output after the freeze release should be set weakly regardless of the atomization state determination. Thus, the temperature reduction of the atomization electrode is accelerated, and re-atomization is realized early. In addition, an energy saving effect can be obtained by reducing unnecessary heater heating.
 第6の発明は、第4の発明において、凍結解除後の次期所定周期での加熱手段の加熱量が、凍結前の加熱量とほぼ同等となるように設定するものである。これにより、凍結解除後で、ヒータ出力が、最終的に安定噴霧するヒータ出力と大きく離れている場合でも、凍結解除後霧化電極の温度がある程度低下したところで、凍結前の安定噴霧時のヒータ出力にすることで、早期に安定霧化状態に復帰し、無駄なヒータ加熱も回避することができる。 The sixth invention is such that, in the fourth invention, the heating amount of the heating means in the next predetermined period after the release of freezing is substantially equal to the heating amount before freezing. As a result, even when the heater output is far away from the heater output that finally performs stable spraying after freezing, when the temperature of the atomizing electrode after freezing decreases to some extent, the heater during stable spraying before freezing By using the output, it is possible to quickly return to the stable atomization state and avoid unnecessary heating of the heater.
 第7の発明は、放電電極と、前記放電電極に電圧を印加する電圧印加部と、前記電圧印加部を制御する制御手段と、前記放電電極の放電状態を検知する放電状態検知手段とを有した冷蔵庫の放電装置の制御方法であって、前記制御手段が、所定周期における前記放電状態検知手段の放電状態判断に基づき、次期所定周期での前記放電電極での放電を制御するものである。これにより、放電状態を適切にフィードバックすることができ放電電極に効率的に安定して所定のオゾンを発生でき、貯蔵室に供給することが可能となる。 The seventh invention includes a discharge electrode, a voltage application unit that applies a voltage to the discharge electrode, a control unit that controls the voltage application unit, and a discharge state detection unit that detects a discharge state of the discharge electrode. A control method for the discharge device of the refrigerator, wherein the control means controls the discharge at the discharge electrode in the next predetermined period based on the discharge state determination of the discharge state detection means in the predetermined period. As a result, the discharge state can be appropriately fed back, predetermined ozone can be generated efficiently and stably on the discharge electrode, and the ozone can be supplied to the storage chamber.
 第8の発明は、第7の発明において、前記放電状態検知手段は、放電電極から対向電極に流れる放電電流としたものである。これにより、簡素な手段で適切に放電電極の放電状態を検知することができる。 In an eighth aspect based on the seventh aspect, the discharge state detection means is a discharge current flowing from the discharge electrode to the counter electrode. Thereby, the discharge state of the discharge electrode can be detected appropriately with simple means.
 第9の発明は、第7または8の発明において、前記放電電極での放電の制御は、電圧印加部への印加時間としたものである。これにより、簡素な手段で適切に放電量(オゾン発生量)を制御することができる。 According to a ninth invention, in the seventh or eighth invention, the discharge control at the discharge electrode is an application time to the voltage application unit. Thereby, the discharge amount (ozone generation amount) can be appropriately controlled by simple means.
 第10の発明は、第1から9のいずれか一項に記載の霧化装置の制御方法または放電装置の制御方法を実行する制御手段を備えた冷蔵庫である。これにより、貯蔵室内の保鮮性を高めることができる。また、貯蔵室内の殺菌、脱臭性能を高めることができる。 10th invention is a refrigerator provided with the control means which performs the control method of the atomization apparatus as described in any one of 1st-9 or the control method of a discharge device. Thereby, the freshness in a storage chamber can be improved. Moreover, the disinfection and deodorizing performance in the storage chamber can be enhanced.
 以下、本発明の実施の形態について、図面を参照しながら説明する。従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same components as those in the conventional example or the embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. The present invention is not limited to the embodiments.
 (実施の形態1)
 図1は本発明の実施の形態1における冷蔵庫の縦断面図である。図2は本発明の実施の形態1の冷蔵庫における霧化装置の要部断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of a main part of the atomizing device in the refrigerator according to Embodiment 1 of the present invention.
 図1において、冷蔵庫100の冷蔵庫本体である断熱箱体101は、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、外箱102と内箱103との間の空間に発泡充填される硬質発泡ウレタンなどの発泡断熱材とで構成される。断熱箱体101は、周囲と断熱され、仕切り壁によって複数の貯蔵室に断熱区画されている。断熱箱体101の内方は、最上部に第一の貯蔵室としての冷蔵室104、その冷蔵室104の下部に第四の貯蔵室としての切換室105と第五の貯蔵室としての製氷室106が横並びに設けられ、その切換室105と製氷室106の下部に第二の貯蔵室としての冷凍室107、そして最下部に第三の貯蔵室としての野菜室108が設けられている。 In FIG. 1, a heat insulating box body 101 that is a refrigerator main body of a refrigerator 100 includes an outer box 102 mainly using a steel plate, an inner box 103 molded of a resin such as ABS, an outer box 102, and an inner box 103. It is comprised with foam insulation materials, such as hard foaming urethane, which is foam-filled in the space between. The heat insulation box 101 is insulated from the surroundings, and is thermally insulated into a plurality of storage rooms by partition walls. The inner side of the heat insulating box 101 is a refrigeration room 104 as a first storage room at the top, a switching room 105 as a fourth storage room and an ice making room as a fifth storage room at the lower part of the refrigeration room 104. 106 are provided side by side, a freezing room 107 as a second storage room is provided below the switching room 105 and the ice making room 106, and a vegetable room 108 as a third storage room is provided at the bottom.
 冷蔵室104は冷蔵保存のために凍らない温度である冷蔵温度帯に設定されており、通常1℃~5℃の範囲で設定される。野菜室108は、冷蔵室104と同等の冷蔵温度帯もしくは若干高い温度帯に設定されており、通常の野菜温度帯である2℃~7℃の範囲で設定される。冷凍室107は、冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃で設定されている。なお、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。 The refrigerated room 104 is set in a refrigerated temperature zone that is a temperature that does not freeze for refrigerated storage, and is usually set in the range of 1 ° C to 5 ° C. The vegetable compartment 108 is set to a refrigeration temperature range equivalent to the refrigeration room 104 or a slightly higher temperature range, and is set in a range of 2 ° C. to 7 ° C., which is a normal vegetable temperature range. The freezer compartment 107 is set in a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage. In order to improve the frozen storage state, it may be set at a low temperature such as −30 ° C. or −25 ° C.
 切換室105は、冷蔵温度帯、野菜温度帯、冷凍温度帯以外に、冷蔵温度帯から冷凍温度帯の間で予め設定された温度帯に切り換えることができる。切換室105は製氷室106に並設された独立扉を備えた貯蔵室であり、引き出し式の扉を備えることが多い。 The switching chamber 105 can be switched to a preset temperature zone between the refrigeration temperature zone and the freezing temperature zone in addition to the refrigeration temperature zone, vegetable temperature zone, and freezing temperature zone. The switching chamber 105 is a storage chamber provided with an independent door arranged in parallel with the ice making chamber 106, and is often provided with a drawer-type door.
 なお、本実施の形態では、切換室105を、冷蔵と冷凍の温度帯までを含めた貯蔵室としているが、冷蔵は冷蔵室104と野菜室108、冷凍は冷凍室107に委ねて、冷蔵と冷凍の中間の上記温度帯のみの切り換えに特化した貯蔵室としても構わない。また、特定の温度帯に固定された貯蔵室でも構わない。 In the present embodiment, the switching chamber 105 is a storage room including the temperature range of refrigeration and freezing. However, the refrigeration is performed by the refrigeration room 104 and the vegetable room 108, and the freezing is performed by the freezing room 107. A storage room specialized for switching only the temperature zone in the middle of freezing may be used. Moreover, the storage room fixed to the specific temperature range may be sufficient.
 製氷室106は、冷蔵室104内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、室内下部に配置した貯氷容器(図示せず)に貯蔵する。 The ice making chamber 106 creates ice with an automatic ice maker (not shown) provided in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerated room 104, and an ice storage container ( (Not shown).
 断熱箱体101の天面部は冷蔵庫の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室101aが形成されている。機械室101aには、圧縮機109、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109が配設される機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。 The top surface portion of the heat insulating box 101 has a stepped recess shape toward the back of the refrigerator, and a machine room 101a is formed in the stepped recess. The machine room 101a accommodates high-pressure components of the refrigeration cycle such as the compressor 109 and a dryer (not shown) for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
 このように、手が届きにくくデッドスペースとなっていた断熱箱体101の最上部の貯蔵室後方領域に機械室101aを設けて圧縮機109を配置することにより、従来の冷蔵庫で、使用者が使いやすい断熱箱体101の最下部にあった機械室のスペースを貯蔵室容量として有効に転化することができ、収納性や使い勝手を大きく改善することができる。 Thus, by providing the machine room 101a in the rear region of the uppermost storage room of the heat insulation box 101 that has become a dead space that is difficult to reach, the compressor 109 is disposed in the conventional refrigerator. The space in the machine room at the bottom of the easy-to-use heat insulation box 101 can be effectively converted as the storage room capacity, and the storage performance and usability can be greatly improved.
 冷凍サイクルは、圧縮機109と凝縮器と減圧器であるキャピラリーと冷却器112とを順に備えた一連の冷媒流路から形成されており、冷媒として炭化水素系冷媒である例えばイソブタンが封入されている。 The refrigeration cycle is formed of a series of refrigerant flow paths sequentially including a compressor 109, a condenser, a capillary as a decompressor, and a cooler 112, and a hydrocarbon-based refrigerant such as isobutane is enclosed as a refrigerant. Yes.
 圧縮機109はピストンがシリンダ内を往復運動することで冷媒の圧縮を行う往復動型圧縮機である。断熱箱体101に、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品が機械室101a内に配設されている場合もある。 Compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder. In the case of a refrigeration cycle using a three-way valve or a switching valve for the heat insulation box 101, those functional parts may be disposed in the machine room 101a.
 また、本実施の形態では冷凍サイクルを構成する減圧器をキャピラリーとしたが、パルスモーターで駆動する冷媒の流量を自由に制御できる電子膨張弁を用いてもよい。 In the present embodiment, the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
 なお、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった断熱箱体101の最下部の貯蔵室後方領域に機械室を設けて圧縮機109を配置するタイプの冷蔵庫に適用しても構わない。 In the present embodiment, the matter relating to the main part of the invention described below is a type in which a compressor room is provided by providing a machine room in the rear region of the lowermost storage room of the heat insulating box 101, which has been generally used conventionally. It may be applied to other refrigerators.
 冷凍室107の背面には冷気を生成する冷却室110が設けられている。各室への冷気の搬送風路(図示せず)と、各貯蔵室とを断熱区画するために構成された断熱性を有する奥面仕切り壁111が風路と各貯蔵室との間に設けられている。また、冷凍室吐出風路(図示せず)と冷却室110とを隔離するための仕切り板(図示せず)が設けられている。冷却室110内には、冷却器112が配設されている。冷却器112の上部空間には強制対流方式により冷却器112で冷却した冷気を冷蔵室104、切換室105、製氷室106、野菜室108、冷凍室107に送風する冷却ファン113が配置される。 A cooling chamber 110 for generating cold air is provided on the back of the freezing chamber 107. A rear partition wall 111 having a heat insulating property is provided between the air passage and each storage chamber so as to thermally insulate the cold air conveying air passage (not shown) to each chamber and each storage chamber. It has been. In addition, a partition plate (not shown) for separating the freezing chamber discharge air passage (not shown) and the cooling chamber 110 is provided. A cooler 112 is disposed in the cooling chamber 110. A cooling fan 113 is disposed in the upper space of the cooler 112 to blow the cold air cooled by the cooler 112 by a forced convection method to the refrigerating room 104, the switching room 105, the ice making room 106, the vegetable room 108, and the freezing room 107.
 また、冷却器112の下部空間には冷却時に冷却器112やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ114が設けられている。さらにラジアントヒータ114の下部には除霜時に生じる除霜水を受けるためのドレンパン115が設けられている。ドレンパン115の最深部には、庫外に貫通したドレンチューブ116が接続されている。ドレンチューブ116の下流側には蒸発皿117が配置されている。蒸発皿117は庫外に配置されている。 Further, a radiant heater 114 made of a glass tube is provided in the lower space of the cooler 112 for defrosting the frost and ice adhering to the cooler 112 and its surroundings during cooling. Further, a drain pan 115 for receiving defrost water generated at the time of defrosting is provided below the radiant heater 114. A drain tube 116 penetrating outside the warehouse is connected to the deepest portion of the drain pan 115. An evaporating dish 117 is disposed on the downstream side of the drain tube 116. The evaporating dish 117 is arranged outside the warehouse.
 第二の仕切壁125は、冷凍室107と野菜室108とを隔離する部材であり、各貯蔵室の断熱性を確保するため、発泡スチロールなどの断熱材で構成されている。 The second partition wall 125 is a member that separates the freezer compartment 107 and the vegetable compartment 108, and is made of a heat insulating material such as polystyrene foam in order to ensure the heat insulation of each storage room.
 次に図2を用いて、静電霧化装置について説明する。静電霧化装置131は、第二の仕切壁125の貯蔵室内側の壁面の一部に設けられる取付部である凹部125aに設置されている。凹部125aは、他の箇所より低温になるように壁面の一部に凹陥や貫通孔状に設けられた部分である。 Next, the electrostatic atomizer will be described with reference to FIG. The electrostatic atomizer 131 is installed in a recess 125 a that is an attachment portion provided on a part of the wall surface of the second partition wall 125 on the storage chamber side. The recess 125a is a portion provided in a part of the wall surface in the form of a recess or a through-hole so as to be cooler than other portions.
 静電霧化装置131は、主に霧化部139、電圧印加部133、外郭ケース137で構成されている。外郭ケース137の一部には、噴霧口132と湿度供給口138が設けられている。霧化部139には、霧化先端部である霧化電極135が設置されている。霧化電極135はアルミニウムやステンレスなどの良熱伝導部材からなる伝熱冷却部である冷却ピン134と後で述べる結露防止部材140とに隣接して配置されている。 The electrostatic atomizer 131 is mainly composed of an atomization unit 139, a voltage application unit 133, and an outer case 137. A spray port 132 and a humidity supply port 138 are provided in a part of the outer case 137. An atomization electrode 135 that is an atomization tip is installed in the atomization unit 139. The atomizing electrode 135 is disposed adjacent to a cooling pin 134 which is a heat transfer cooling unit made of a good heat conducting member such as aluminum or stainless steel and a dew condensation preventing member 140 which will be described later.
 霧化部139は、霧化電極135が設置されている。霧化電極135は、アルミニウムやステンレス、真鍮などの良熱伝導部材からなる電極接続部材である。霧化電極135は、冷却ピン134の一端のほぼ中心部に固定されている。 The atomization unit 139 is provided with an atomization electrode 135. The atomizing electrode 135 is an electrode connecting member made of a good heat conducting member such as aluminum, stainless steel, or brass. The atomizing electrode 135 is fixed to substantially the center of one end of the cooling pin 134.
 冷却ピン134の素材はアルミや銅などの高熱伝導部材が好ましい。冷却ピン134の一端からもう一端に冷熱を熱伝導で効率よく伝導させるため、冷却ピン134の周囲は断熱材152で覆われている。冷却ピン134の霧化電極135側に露出した部分の表面には結露防止部材140が配置されている。 The material of the cooling pin 134 is preferably a high heat conductive member such as aluminum or copper. In order to efficiently conduct cold heat from one end of the cooling pin 134 to the other end by heat conduction, the periphery of the cooling pin 134 is covered with a heat insulating material 152. A dew condensation preventing member 140 is disposed on the surface of the portion exposed to the atomizing electrode 135 side of the cooling pin 134.
 上記の結露防止部材140は、金属で構成される冷却ピン134よりも熱伝導率が低い材料、例えば樹脂、セラミック等により構成される。この中でも熱伝導率の低い樹脂、さらに好ましくは、強度が許す範囲で発泡樹脂等の多孔体からなる断熱材が好適に用いられる。また、多孔体からなる断熱材の表面に発泡していない樹脂シートあるいは板を貼り付けた複合体も好適に用いられる。 The dew condensation preventing member 140 is made of a material having a lower thermal conductivity than that of the cooling pin 134 made of metal, for example, resin, ceramic, or the like. Among them, a resin having a low thermal conductivity, and more preferably a heat insulating material made of a porous material such as a foamed resin as long as the strength allows is suitably used. Moreover, the composite_body | complex which affixed the resin sheet or board which is not foamed on the surface of the heat insulating material consisting of a porous body is also used suitably.
 冷却ピン134が、断熱材152中の空間にあることで、冷却ピン134から周辺への冷熱の放散が回避され、霧化電極135を効率的に冷却することが可能となる。また、冷却ピン134が、より熱伝導率の低い結露防止部材140により、霧化電極135側に露出した部分を覆われることにより、対応する表面の温度低下が抑制され、その部分への結露が回避される。このため、霧化電極135周辺の露点の低下が回避され、冷却された霧化電極135に効率良く結露が進行し、0℃、50%程度の低湿度雰囲気でも、安定して微細ミストを貯蔵室に供給することが可能となる。 Since the cooling pin 134 is in the space in the heat insulating material 152, the diffusion of cold heat from the cooling pin 134 to the periphery is avoided, and the atomizing electrode 135 can be efficiently cooled. Further, the cooling pin 134 is covered by the condensation preventing member 140 having a lower thermal conductivity so as to cover the exposed portion on the atomizing electrode 135 side, so that the temperature drop of the corresponding surface is suppressed, and condensation on the portion is prevented. Avoided. For this reason, the dew point around the atomizing electrode 135 is prevented from lowering, and condensation efficiently proceeds to the cooled atomizing electrode 135, and fine mist is stably stored even in a low humidity atmosphere of about 0 ° C. and 50%. The chamber can be supplied.
 また、図2にからわかるように、結露防止部材140は、冷却ピン(伝熱冷却部)134と接している面積と比較して、広い表面露出部の面積を有している。 Further, as can be seen from FIG. 2, the dew condensation preventing member 140 has a larger surface exposed portion area than the area in contact with the cooling pin (heat transfer cooling portion) 134.
 このことにより、冷却ピン134からの冷熱は、結露防止部材140のより広い領域に拡散し、結露防止部材140直上の局所的な表面温度の低下は抑制される。この結果、対応する表面が露点以下になることを、より確実に回避することが可能となる。このように不要な結露が回避されるため、霧化電極近傍での露点低下も回避され、冷却された霧化電極135に効率的に結露が進行する。この結果、低い湿度環境でも安定した微細ミストを貯蔵室に供給することが可能となる。 Thus, the cold heat from the cooling pins 134 is diffused to a wider area of the dew condensation preventing member 140, and the local decrease in surface temperature just above the dew condensation preventing member 140 is suppressed. As a result, it is possible to more reliably avoid that the corresponding surface is below the dew point. Since unnecessary dew condensation is avoided in this way, a decrease in dew point in the vicinity of the atomizing electrode is also avoided, and dew condensation proceeds efficiently to the cooled atomizing electrode 135. As a result, it is possible to supply a stable fine mist to the storage room even in a low humidity environment.
 また、結露防止部材140の面積が広くなることで、結露防止部材140にフランジの機能を持たせることが可能となる。つまり、外郭ケース137と結露防止部材140を面接触させることで、冷凍室107側からの冷気漏れを効率よくシールすることができる。これにより、不要な結露が、より完全に回避される。 In addition, since the area of the dew condensation preventing member 140 is increased, the dew condensation preventing member 140 can have a flange function. That is, by bringing the outer case 137 and the dew condensation preventing member 140 into surface contact, it is possible to efficiently seal cold air leakage from the freezer compartment 107 side. Thereby, unnecessary dew condensation is avoided more completely.
 結露防止部材140を外郭ケース137と面接触させて固定する方法としては、具体的には、接着剤や、ねじ等を用いることができる。 As a method for fixing the dew condensation prevention member 140 in surface contact with the outer case 137, specifically, an adhesive, a screw, or the like can be used.
 また、対向電極136は、結露防止部材140に固定され、さらに冷却ピン134、霧化電極135も結露防止部材140に固定されている。このため、これらを一まとめにして、ねじ等により外郭ケースに固定することも好適に行われる。この場合、メンテナンス時の部材の交換が非常に容易となる。また、前記結露防止部材に前記対向電極が固定されていることで、霧化電極135の先端部と対向電極136との距離は、冷蔵庫筐体や、外郭ケース137の熱膨張による、電極間距離の変動の影響を受け難くなり、より高い精度で制御することが可能となる。この結果、微細ミストの量の他オゾン、OHラジカルをより安定に供給することが可能となる効果が得られる。また、静電霧化装置がよりコンパクトに形成されるため、貯蔵室の空間がより有効に使用できる効果も得られる。 Further, the counter electrode 136 is fixed to the dew condensation preventing member 140, and the cooling pin 134 and the atomizing electrode 135 are also fixed to the dew condensation preventing member 140. For this reason, it is also preferable that these are collectively assembled and fixed to the outer case with screws or the like. In this case, replacement of members at the time of maintenance becomes very easy. In addition, since the counter electrode is fixed to the dew condensation prevention member, the distance between the tip of the atomizing electrode 135 and the counter electrode 136 is the distance between the electrodes due to the thermal expansion of the refrigerator casing or the outer case 137. It becomes difficult to be affected by fluctuations in the frequency and control can be performed with higher accuracy. As a result, the effect of being able to more stably supply ozone and OH radicals in addition to the amount of fine mist is obtained. Moreover, since an electrostatic atomizer is formed more compactly, the effect that the space of a storage room can be used more effectively is also acquired.
 伝熱冷却部である冷却ピン134は、例えば、直径10mm程度、長さが20mm程度の円柱形状で構成されており、直径1mm程度、長さが5mm程度の霧化電極135に比べて50倍以上1000倍以下、好ましくは100倍以上500倍以下の大きな熱容量を有するものである。このように、冷却ピン134の熱容量は霧化電極135の熱容量に対して50倍以上好ましくは100倍以上の熱容量を有することで、冷却手段の温度変化が霧化電極に直接的に大きな影響を与えることをさらに緩和し、より変動負荷が小さく、安定したミスト噴霧を実現できる。 The cooling pin 134 which is a heat transfer cooling unit is formed in a cylindrical shape having a diameter of about 10 mm and a length of about 20 mm, for example, and is 50 times as large as the atomizing electrode 135 having a diameter of about 1 mm and a length of about 5 mm. It has a large heat capacity of not less than 1000 times, preferably not less than 100 times and not more than 500 times. As described above, the heat capacity of the cooling pin 134 has a heat capacity of 50 times or more, preferably 100 times or more that of the atomization electrode 135, so that the temperature change of the cooling means directly affects the atomization electrode. It is possible to further ease the application and to realize a stable mist spray with a smaller variable load.
 また、この熱容量の上限値として、冷却ピン134の熱容量は霧化電極135の熱容量に対して500倍以下、好ましくは1000倍以下の熱容量を有する。熱容量が大きすぎると冷却ピン134を冷やすために大きなエネルギを要することとなり、省エネルギで冷却ピンの冷却を行うことが困難となる。しかし、この条件を満たす上記の値の範囲に抑えることで、冷却手段からの熱変動負荷が変わった場合に霧化電極にかかる大きな影響を緩和した上で、省エネルギで安定して霧化電極の冷却を行うことが可能となる。さらに、上記のような範囲内に抑えることで、冷却ピン134を介して霧化電極が冷却されるのに要するタイムラグを適正な範囲内に収めることができる。従って、霧化電極の冷却すなわち霧化装置への水分供給を行う際の立ち上がりが遅くなることを防止し、安定で適性な霧化電極の冷却を行うことが可能となる。 Further, as an upper limit value of the heat capacity, the heat capacity of the cooling pin 134 is 500 times or less, preferably 1000 times or less that of the atomizing electrode 135. If the heat capacity is too large, a large amount of energy is required to cool the cooling pin 134, and it is difficult to cool the cooling pin with energy saving. However, by suppressing to the above range of values that satisfy this condition, the atomization electrode can be stably and energy-saving after alleviating the large effect on the atomization electrode when the heat fluctuation load from the cooling means changes. It becomes possible to perform cooling. Furthermore, the time lag required for cooling the atomization electrode via the cooling pin 134 can be kept within an appropriate range by suppressing the pressure within the above range. Accordingly, it is possible to prevent the rising of the atomizing electrode from being delayed, that is, to delay the rise when supplying water to the atomizing device, and to perform stable and appropriate cooling of the atomizing electrode.
 また、本実施の形態では、伝熱冷却部である冷却ピン134の形状を円柱としたので、断熱材152の凹部125aに嵌め込む際に、少し嵌め合い寸法がきつくても静電霧化装置131を回転させながら圧入し取り付けることができるので、より隙間無く冷却ピン134を取り付けることができる。また、冷却ピン134の形状は直方体や正多角形体でもよく、これらの多角形の場合は、円柱と比較して位置決めがしやすく、正確な位置に静電霧化装置131を備えることができる。 In the present embodiment, since the shape of the cooling pin 134 that is the heat transfer cooling portion is a cylinder, the electrostatic atomizer is used even when the fitting size is slightly tight when fitting into the recess 125a of the heat insulating material 152. Since it can be press-fitted and attached while rotating 131, the cooling pin 134 can be attached without any gap. The shape of the cooling pin 134 may be a rectangular parallelepiped or a regular polygon, and in the case of these polygons, positioning is easier than a cylinder, and the electrostatic atomizer 131 can be provided at an accurate position.
 伝熱冷却部である冷却ピン134が外郭ケース137に固定され、冷却ピン134自体は外郭から突起した凸部134aを有して構成されている。この冷却ピン134は霧化電極135と逆側に凸部134aを有する形状で、凸部134aが第二の仕切壁125の凹部125aよりもさらに深い最深凹部125bに嵌めあわされている。 A cooling pin 134 as a heat transfer cooling unit is fixed to the outer case 137, and the cooling pin 134 itself has a convex portion 134a protruding from the outer shell. The cooling pin 134 has a shape having a convex portion 134 a on the opposite side of the atomizing electrode 135, and the convex portion 134 a is fitted in the deepest concave portion 125 b deeper than the concave portion 125 a of the second partition wall 125.
 よって、伝熱冷却部である冷却ピン134の背面側には凹部125aよりもさらに深い最深凹部125bが備えられている。断熱材152の冷凍室107側は、断熱材152が野菜室108の天面側の第二の仕切壁125における他の部分よりも薄くなっている。この薄い断熱材152を熱緩和部材として、背面から冷凍室107の冷気が熱緩和部材である断熱材152の薄い部分を介して冷却ピン134を冷却するようになっている。 Therefore, the deepest concave portion 125b deeper than the concave portion 125a is provided on the back side of the cooling pin 134 which is a heat transfer cooling portion. On the freezing chamber 107 side of the heat insulating material 152, the heat insulating material 152 is thinner than the other portions of the second partition wall 125 on the top surface side of the vegetable chamber 108. The thin heat insulating material 152 is used as a heat relaxation member, and the cooling air from the freezer compartment 107 is cooled from the back through the thin portion of the heat insulating material 152 as the heat relaxation member.
 また、本実施の形態の伝熱冷却部である冷却ピン134は霧化先端部である霧化電極135と逆側に凸部134aを有する形状をしており、霧化部139の中で凸部134a側の冷却ピン(伝熱冷却部)端部134bが冷却手段に最も近接するため、冷却ピン134の中でも霧化電極135から最も遠い冷却ピン端部134b側から冷却手段である冷気によって冷却されることとなる。 In addition, the cooling pin 134 that is the heat transfer cooling portion of the present embodiment has a shape having a convex portion 134a on the opposite side to the atomizing electrode 135 that is the atomizing tip portion, and is convex in the atomizing portion 139. The cooling pin (heat transfer cooling unit) end 134b on the side of the part 134a is closest to the cooling means, so that the cooling pin 134 is cooled by the cooling air that is the cooling means from the cooling pin end 134b side farthest from the atomizing electrode 135. Will be.
 また、冷却ピン134と外郭ケース137との間に、冷却ピン遮熱領域153が設けられている。冷却ピン遮熱領域153は、後述の加熱部154と冷却ピン134との間を断熱する作用を有し、空洞か、断熱材により構成される。さらに、加熱部154が、前記結露防止部材140近傍に配置されている。具体的には、結露防止部材140に接するか、隣接する外郭ケースに接して配置されている。 Further, a cooling pin heat shielding region 153 is provided between the cooling pin 134 and the outer case 137. The cooling pin heat shield region 153 has an action of insulating between a heating unit 154 and a cooling pin 134, which will be described later, and is formed of a cavity or a heat insulating material. Further, the heating unit 154 is disposed in the vicinity of the dew condensation preventing member 140. Specifically, it is disposed in contact with the dew condensation preventing member 140 or in contact with the adjacent outer case.
 これらの構成のため、加熱部154からの熱伝導により、結露防止部材140が加熱され、その表面温度を露点以上に保つことが容易となる。さらに、結露防止部材140からの熱伝導により、霧化電極135の温度を効率的に上昇させることが可能となる。 Because of these configurations, the dew condensation prevention member 140 is heated by heat conduction from the heating unit 154, and it becomes easy to keep the surface temperature above the dew point. Furthermore, the heat conduction from the dew condensation preventing member 140 can efficiently increase the temperature of the atomizing electrode 135.
 一方、加熱部154からの熱伝導は、冷却ピン遮熱領域153の作用により、外郭ケース137を通して冷却ピン134への伝導が抑制される。このように無駄な熱伝導が抑制されるため、加熱部154による、結露防止部材140を経由した間接的な霧化電極135の加熱が、より効率良く進行する。このため、霧化電極135の温度調整が容易となる。 On the other hand, the heat conduction from the heating unit 154 is suppressed to the cooling pin 134 through the outer case 137 by the action of the cooling pin heat shielding region 153. Since wasteful heat conduction is suppressed in this way, the heating of the atomizing electrode 135 indirectly by the heating unit 154 via the dew condensation preventing member 140 proceeds more efficiently. For this reason, temperature adjustment of the atomization electrode 135 becomes easy.
 こうして、結露防止部材140の表面への不要な結露の防止と、霧化電極135近傍での露点の低下が回避されるとともに、霧化電極135の温度を効率的に調整することが可能となる。この結果、効率的に霧化電極135への結露を進行させ、貯蔵室(野菜室108)へ微細ミストを供給することが可能となる効果が得られる。 In this way, it is possible to prevent unnecessary condensation on the surface of the condensation prevention member 140 and avoid a decrease in the dew point in the vicinity of the atomization electrode 135, and to efficiently adjust the temperature of the atomization electrode 135. . As a result, it is possible to efficiently advance the condensation on the atomizing electrode 135 and to supply fine mist to the storage room (vegetable room 108).
 また、霧化電極135に対向している位置で貯蔵室(野菜室108)側にドーナツ円盤状の対向電極136が、霧化電極135の先端と一定距離を保つように取付けられ、その延長上に噴霧口132が構成されている。 In addition, a donut disc-shaped counter electrode 136 is attached to the storage chamber (vegetable chamber 108) side at a position facing the atomizing electrode 135 so as to maintain a certain distance from the tip of the atomizing electrode 135. A spray port 132 is formed.
 さらに、霧化部139の近傍に電圧印加部133が構成され、高電圧を発生する電圧印加部133の負電位側が霧化電極135と、正電位側が対向電極136とそれぞれ電気的に接続されている。 Further, a voltage application unit 133 is configured in the vicinity of the atomization unit 139, and the negative potential side of the voltage application unit 133 that generates a high voltage is electrically connected to the atomization electrode 135 and the positive potential side is electrically connected to the counter electrode 136, respectively. Yes.
 霧化電極135近傍では、ミスト噴霧のため、常に放電が起こる。この放電のため、霧化電極135先端では、磨耗を生じる可能性がある。冷蔵庫100は、一般に10年以上の長期間に渡って運転することになるので、霧化電極135の表面は、強靭な表面処理が必要である。霧化電極135の表面処理としては、例えば、ニッケルメッキ、および金メッキや白金メッキを用いることが望ましい。 In the vicinity of the atomizing electrode 135, discharge always occurs due to mist spraying. This discharge may cause wear at the tip of the atomizing electrode 135. Since the refrigerator 100 is generally operated for a long period of 10 years or longer, the surface of the atomizing electrode 135 needs to have a tough surface treatment. As the surface treatment of the atomizing electrode 135, for example, nickel plating, gold plating, or platinum plating is preferably used.
 対向電極136は、例えば、ステンレスで構成されている。また、対向電極136の長期信頼性を確保するため、特に異物付着防止、汚れ防止するため、例えば白金メッキなどの表面処理をすることが望ましい。 The counter electrode 136 is made of stainless steel, for example. Further, in order to ensure long-term reliability of the counter electrode 136, it is desirable to perform surface treatment such as platinum plating, in particular, in order to prevent foreign matter adhesion and contamination.
 電圧印加部133は、冷蔵庫本体の制御手段146と通信し、制御手段146により制御され、冷蔵庫100もしくは静電霧化装置131からの入力信号に基づき高圧電圧の印加のON/OFFを行う。 The voltage application unit 133 communicates with the control means 146 of the refrigerator main body, is controlled by the control means 146, and turns on / off the application of a high voltage based on an input signal from the refrigerator 100 or the electrostatic atomizer 131.
 本実施の形態では、電圧印加部133は、静電霧化装置131内に設置されている。貯蔵室(野菜室108)内が低温高湿雰囲気なるため、電圧印加部133の基板表面上には、防湿のためのボールド材やコーティング材が塗布されている。 In the present embodiment, the voltage application unit 133 is installed in the electrostatic atomizer 131. Since the inside of the storage room (vegetable room 108) is in a low temperature and high humidity atmosphere, a bold material or a coating material for moisture prevention is applied on the substrate surface of the voltage application unit 133.
 ただし、電圧印加部133を貯蔵室外の高温部に設置した場合には、コーティングを行わなくてもよい。 However, when the voltage application unit 133 is installed in a high temperature part outside the storage room, the coating may not be performed.
 以上のように構成された本実施の形態の冷蔵庫100と静電霧化装置131について、以下その動作とを説明する。 The operation of the refrigerator 100 and the electrostatic atomizer 131 of the present embodiment configured as described above will be described below.
 まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御基板(図示せず)からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)で、ある程度凝縮液化し、さらに冷蔵庫本体である断熱箱体101の側面や背面、また断熱箱体101の前面間口に配設された冷媒配管(図示せず)などを経由し断熱箱体101の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。 First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from a control board (not shown) according to the set temperature in the cabinet, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface and the rear surface of the heat insulating box body 101 which is the refrigerator body, and the front surface of the heat insulating box body 101. It is condensed and liquefied while preventing condensation of the heat insulating box 101 via a refrigerant pipe (not shown) disposed at the frontage, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
 ここで、低温低圧の液冷媒は、冷却ファン113の動作により搬送する冷凍室吐出風路(図示せず)などの各貯蔵室内の空気と熱交換され、冷却器112内の冷媒は蒸発気化する。この時、冷却室110内で各貯蔵室を冷却するための冷気を生成する。低温の冷気は冷却ファン113から冷蔵室104、切換室105、製氷室106、野菜室108、冷凍室107に送られる。冷気を風路やダンパを用いて分流させることで、各貯蔵室を目的温度帯に冷却する。特に、野菜室108は、冷気を供給する風路中のダンパ(図示せず)の開閉による冷気の配分やヒータ(図示せず)のON/OFF運転により2℃から7℃になるように調整される。なお、野菜室108は、一般的には庫内温度検知手段を持たないものが多い。 Here, the low-temperature and low-pressure liquid refrigerant is heat-exchanged with air in each storage chamber such as a freezing chamber discharge air passage (not shown) conveyed by the operation of the cooling fan 113, and the refrigerant in the cooler 112 is evaporated. . At this time, cool air for cooling each storage chamber in the cooling chamber 110 is generated. The low-temperature cold air is sent from the cooling fan 113 to the refrigerator compartment 104, the switching chamber 105, the ice making chamber 106, the vegetable compartment 108, and the freezer compartment 107. Each storage room is cooled to a target temperature zone by diverting cold air using an air passage or a damper. In particular, the vegetable compartment 108 is adjusted to 2 ° C. to 7 ° C. by distributing cold air by opening / closing dampers (not shown) in the air passage for supplying cold air or by ON / OFF operation of heaters (not shown). Is done. In many cases, the vegetable compartment 108 generally does not have the internal temperature detection means.
 第二の仕切壁125の比較的高湿度環境である箇所の一部において、断熱材152が、他の箇所より壁厚が薄く、特に、冷却ピン134の後方には最深凹部がある。断熱材の厚みは、前記の薄い部分で例えば0mm~10mm程度で構成されている。本実施の形態の冷蔵庫100においては、この程度の厚みが冷却ピン134と冷却手段との間に位置する熱緩和部材として適切なものとなる。これにより、第二の仕切壁125は凹部125aが構成され、この凹部125aの最背面の最深凹部125bに冷却ピン134の凸部134aが突出した形状の静電霧化装置131が嵌めこまれて、取り付けられている。 In the part of the second partition wall 125 where the humidity is relatively high, the heat insulating material 152 is thinner than the other part, and in particular, the cooling pin 134 has a deepest recess. The thickness of the heat insulating material is, for example, about 0 mm to 10 mm at the thin portion. In the refrigerator 100 according to the present embodiment, such a thickness is appropriate as a heat relaxation member positioned between the cooling pin 134 and the cooling means. Accordingly, the second partition wall 125 has a concave portion 125a, and the electrostatic atomizer 131 having a shape in which the convex portion 134a of the cooling pin 134 protrudes into the deepest concave portion 125b on the rearmost surface of the concave portion 125a. Is attached.
 また、第二の仕切壁125が厚い場合、あるいは冷却ピン134が細い場合等は、冷却ピン134の冷却が不十分となる場合もある。この場合、冷凍室107の冷気により、より効率的に冷却ピン134を冷やすために、最深凹部125bが、より温度の低い冷凍室107側に突き出た形状を有していることが好ましい。具体的には、断熱材152の最薄部において、断熱材152の厚みが0となり、冷却ピン(伝熱冷却部)端部134bが、第二の仕切り壁表面である奥面仕切壁表面151に直接接し、第二の仕切り壁表面である奥面仕切壁表面151が冷凍室側に凸となる形状を有している構成である。冷凍室側に凸となる長さは、冷却ピン134全体の体積の2割程度に相当する長さ以上であることが好ましい。例えば、冷却ピン134の全長が20mmであれば、4mm程度以上である。 Also, when the second partition wall 125 is thick or the cooling pin 134 is thin, the cooling of the cooling pin 134 may be insufficient. In this case, in order to cool the cooling pin 134 more efficiently by the cold air in the freezer compartment 107, it is preferable that the deepest recess 125b has a shape protruding toward the freezer compartment 107 having a lower temperature. Specifically, in the thinnest part of the heat insulating material 152, the thickness of the heat insulating material 152 becomes 0, and the cooling pin (heat transfer cooling portion) end portion 134b is the rear partition wall surface 151 which is the second partition wall surface. The rear partition wall surface 151 that is in direct contact with the second partition wall surface has a shape that protrudes toward the freezer compartment. The length protruding toward the freezer compartment is preferably equal to or longer than the length corresponding to about 20% of the entire cooling pin 134 volume. For example, if the total length of the cooling pin 134 is 20 mm, it is about 4 mm or more.
 なお、上記のように冷却ピン134が、直接第二の仕切り壁表面である奥面仕切壁表面151に接する際には、例えば冷却ピン134が僅かに傾いて挿入されている場合、あるいは冷却ピン134先端の表面平坦性が悪い場合に、両者間の接触面積が小さくなり、冷熱の伝導が悪くなり、冷却ピン134が十分に冷却されない場合がある。 When the cooling pin 134 is in direct contact with the rear partition wall surface 151 as the second partition wall surface as described above, for example, when the cooling pin 134 is inserted slightly inclined, or the cooling pin 134 When the surface flatness of the tip of 134 is poor, the contact area between the two becomes small, the conduction of cold heat becomes poor, and the cooling pin 134 may not be sufficiently cooled.
 このような場合、柔軟性を有する良熱伝導体を、前記両者の間に設置することが好ましい。このことにより、接触面積が大となり、冷熱の伝導が改善されるため、冷却ピン134が十分に冷却されようになる。具体的には、カーボン等の伝導体を分散させたゴム、エラストマ材料からなるシート等が好ましい。また、前記両者間にグリースあるいは、良熱伝導体を分散したグリース等を塗布することも有効である。また、ゴム、エラストマやグリースは、前記接触面積を増やして熱伝導を促進することに加え、間接的に熱伝導を進めることで、急激な温度変化が抑制されるため、安定噴霧に有効である。 In such a case, it is preferable to install a good heat conductor having flexibility between the two. As a result, the contact area becomes large and the conduction of cold heat is improved, so that the cooling pin 134 is sufficiently cooled. Specifically, a rubber in which a conductor such as carbon is dispersed, a sheet made of an elastomer material, and the like are preferable. It is also effective to apply grease or grease with a good thermal conductor dispersed between the two. In addition to increasing the contact area and promoting heat conduction, rubber, elastomer, and grease are effective for stable spraying because the rapid temperature change is suppressed by indirectly promoting heat conduction. .
 冷却ピン134の背面にある冷却手段である冷凍室冷気は、例えば-17~-20℃であり、断熱材152を通して、伝熱冷却部である冷却ピン134が例えば-5~-10℃程度に冷却される。 The freezing room cold air that is a cooling means on the back surface of the cooling pin 134 is, for example, −17 to −20 ° C., and the cooling pin 134 that is the heat transfer cooling section is, for example, about −5 to −10 ° C. through the heat insulating material 152. To be cooled.
 このとき、冷却ピン134は、良熱伝導部材であるため、冷熱を非常に伝えやすく、冷却ピン134を介して、霧化先端部である霧化電極135も、-3℃~-8℃程度に間接的に冷却される。 At this time, since the cooling pin 134 is a good heat conduction member, it is very easy to transmit cold heat, and the atomization electrode 135 which is the atomization tip via the cooling pin 134 is also about −3 ° C. to −8 ° C. Indirectly cooled.
 このとき、冷却ピン134の、霧化電極135側の空間に露出した部分は、結露防止部材140に覆われている。結露防止部材140の熱伝導率が冷却ピンよりも低いために、冷却ピン134から結露防止部材140への冷熱の伝導が抑制され、結露防止部材140の表面温度は、冷却ピン134の温度より高くなる。例えば、3℃~-2℃程度となる。 At this time, a portion of the cooling pin 134 exposed in the space on the atomizing electrode 135 side is covered with the dew condensation prevention member 140. Since the heat conductivity of the condensation prevention member 140 is lower than that of the cooling pin, the conduction of cold heat from the cooling pin 134 to the condensation prevention member 140 is suppressed, and the surface temperature of the condensation prevention member 140 is higher than the temperature of the cooling pin 134. Become. For example, it is about 3 ° C. to −2 ° C.
 また、結露防止部材140は、冷却ピン134との接触部分よりも広い領域に広がっているために、冷熱も、結露防止部材140を伝導して周辺に拡散する。このため、結露防止部材140の表面の最低温度は例えば1~2℃上昇する。また、結露防止部材140は、冷却ピン134と接する領域よりも広い領域に広がり、広がった領域で外郭ケースと面接触している。また、結露防止部材140は、外郭ケース137との面接触により、冷凍室107側からの冷気を完全にシールしている。 Further, since the dew condensation preventing member 140 is spread over a region wider than the contact portion with the cooling pin 134, the cold heat is also conducted through the dew condensation preventing member 140 and diffused to the periphery. For this reason, the minimum temperature on the surface of the dew condensation prevention member 140 increases by, for example, 1 to 2 ° C. Further, the dew condensation preventing member 140 extends over a region wider than a region in contact with the cooling pin 134, and is in surface contact with the outer case in the expanded region. Further, the dew condensation preventing member 140 completely seals the cool air from the freezer compartment 107 side by surface contact with the outer case 137.
 ここで、野菜室108の温度は2℃から7℃で、かつ野菜などからの蒸散により比較的高湿状態であるので、霧化先端部である霧化電極135が露点温度以下となれば、先端を含め、霧化電極135には水が生成し、水滴が付着する。 Here, since the temperature of the vegetable compartment 108 is 2 ° C. to 7 ° C. and is in a relatively high humidity state due to transpiration from vegetables or the like, if the atomization electrode 135 that is the atomization tip is below the dew point temperature, Water is generated on the atomizing electrode 135 including the tip, and water droplets adhere to it.
 水滴が付着した霧化先端部である霧化電極135に電圧印加部133により高電圧(例えば4~10kV)を印加させる。このときコロナ放電が起こり、霧化先端部である霧化電極135の先端の水滴が、静電エネルギにより微細化される。さらに液滴が帯電しているためレイリー分裂により数nmレベルの目視できない電荷をもったナノレベルの微細ミストとなる。微細ミストの発生に付随してオゾンやOHラジカルなどが発生する。電極間に印加する電圧は、4~10kVと非常に高電圧であるが、そのときの放電電流値は数μAレベルであり、入力としては0.5~1.5Wと非常に低入力である。 A high voltage (for example, 4 to 10 kV) is applied to the atomizing electrode 135, which is the atomizing tip portion to which water droplets have adhered, by the voltage applying unit 133. At this time, corona discharge occurs, and the water droplets at the tip of the atomization electrode 135, which is the atomization tip, are refined by electrostatic energy. Furthermore, since the droplet is charged, it becomes a nano-level fine mist having an invisible charge of several nm level due to Rayleigh splitting. Ozone and OH radicals are generated along with the generation of fine mist. The voltage applied between the electrodes is a very high voltage of 4 to 10 kV, but the discharge current value at that time is several μA level, and the input is a very low input of 0.5 to 1.5 W. .
 具体的には、霧化電極135を基準電位側(0V)、対向電極136を高電圧側(+7kV)とすると、霧化電極135先端に付着した結露水は、霧化電極135と対向電極136間の空気絶縁層が破壊され、静電気力で放電が起こる。このとき結露水は帯電し、微細な粒子となる。さらに対向電極136がプラス側のため帯電した微細ミストは引き寄せられ、液滴がさらに微粒化され、ラジカルを含んだ数nmレベルの目視できない電荷をもったナノレベルの微細ミストが対向電極136に引き寄せられ、その慣性力により、貯蔵室(野菜室108)に向けて、微細ミストが噴霧される。 Specifically, when the atomizing electrode 135 is set to the reference potential side (0 V) and the counter electrode 136 is set to the high voltage side (+7 kV), the condensed water adhering to the tip of the atomizing electrode 135 becomes the atomizing electrode 135 and the counter electrode 136. The air insulation layer in between is destroyed and discharge occurs by electrostatic force. At this time, the dew condensation water is charged and becomes fine particles. Further, since the counter electrode 136 is on the positive side, the charged fine mist is attracted, the droplets are further atomized, and the nano-level fine mist containing radicals and invisible charges of several nm level is attracted to the counter electrode 136. Due to the inertial force, fine mist is sprayed toward the storage room (vegetable room 108).
 なお、霧化電極135に水がないときは、放電距離が離れ、空気の絶縁層を破壊することができず、放電現象が起こらない。これにより霧化電極135と対向電極136間に電流が流れない。 When there is no water in the atomizing electrode 135, the discharge distance is increased, the air insulating layer cannot be destroyed, and the discharge phenomenon does not occur. As a result, no current flows between the atomizing electrode 135 and the counter electrode 136.
 上記で大まかな、静電霧化装置の動作、作用について述べてきたが、以下では、上記静電霧化装置を用いた本発明の制御方法に関して、詳しく構成、動作、及び作用効果について述べる。 Although the operation and action of the electrostatic atomizer are roughly described above, the configuration, operation, and effect of the control method of the present invention using the electrostatic atomizer will be described in detail below.
 まず、図3を用いて、ある特定の温度範囲でしか、霧化が進行しないことと、その温度域に制御する方法の必要性に関して述べる。 First, using FIG. 3, the atomization proceeds only in a specific temperature range and the necessity of a method for controlling the temperature range will be described.
 図3の縦軸は、霧化電極近傍の露点から霧化電極温度を差し引いた温度差である。この値が大きい(露点が高く、霧化電極温度が低い)程、霧化電極への結露が進みやすく、その結露量により霧化状態は変化する。これを、前記温度差毎に、前記温度差が小さい方から順に説明する。 3 is the temperature difference obtained by subtracting the atomization electrode temperature from the dew point near the atomization electrode. The larger this value (the higher the dew point and the lower the atomization electrode temperature), the easier the condensation on the atomization electrode proceeds, and the atomization state changes depending on the amount of condensation. This will be described in order from the smallest temperature difference for each temperature difference.
 前記温度差が小さい領域では(図3の下部)、結露水が少なく、高電圧が印加されても霧化は進行しない。結露水が少なく、霧化が進行しないため、対応する放電電流の値もほぼ0となる。 In the region where the temperature difference is small (lower part of FIG. 3), there is little condensed water and atomization does not proceed even when a high voltage is applied. Since the amount of condensed water is small and atomization does not proceed, the value of the corresponding discharge current is almost zero.
 温度差が大きくなる(図3中央部)と、結露水量が増加し、高電圧の印加により、結露水の霧化が進行するようになる。このとき、結露水量は適度で、対応する放電電流も中位の大きさとなる。 When the temperature difference becomes large (the central part in FIG. 3), the amount of condensed water increases, and the atomization of condensed water proceeds by applying a high voltage. At this time, the amount of condensed water is moderate, and the corresponding discharge current is also at a medium level.
 しかし、さらに前記温度差が大きくなる(図3上部)と、結露水量が増加し過ぎ、霧化電極に高電圧を印加しても、前記電圧により誘起される表面電荷による力では、結露水の分裂による霧化は進行しなくなる。この状態を過剰結露状態という。この場合、結露量は大で、対応する放電電流も大となる。霧化が進行しないにもかかわらず、放電電流が大となるのは、霧化以外のリーク電流が増加するためである。 However, when the temperature difference is further increased (upper part of FIG. 3), the amount of condensed water increases too much, and even when a high voltage is applied to the atomizing electrode, the force due to the surface charge induced by the voltage Atomization due to splitting does not progress. This state is referred to as excessive condensation. In this case, the amount of condensation is large and the corresponding discharge current is also large. The reason why the discharge current becomes large even though the atomization does not proceed is that the leak current other than the atomization increases.
 ここでは、霧化の状態により、放電電流が異なることを述べたが、放電時の電圧(放電電圧)にも対応する変化が生じる。後述するように、この電流値あるいは対応する電圧をもとに、露点-霧化電極温度を制御することができる。 Here, it has been described that the discharge current varies depending on the state of atomization, but a change corresponding to the voltage during discharge (discharge voltage) also occurs. As will be described later, the dew point-atomizing electrode temperature can be controlled based on the current value or the corresponding voltage.
 このように、「露点-霧化電極温度」は、大きくても、小さくても、霧化は進行せず、ある一定の温度範囲でのみ霧化が進行する。実際には、この温度差ΔTは2~3℃程度であり、かなり狭い温度範囲となる。 As described above, the atomization does not proceed regardless of whether the “dew point-atomization electrode temperature” is large or small, and the atomization proceeds only within a certain temperature range. Actually, this temperature difference ΔT is about 2 to 3 ° C., which is a fairly narrow temperature range.
 このことは、特に、霧化電極近傍の露点が変動した場合に、その露点変動が2~3℃のレベルでも、良好に進行していた霧化が、ほぼ完全に停止することを意味する。前記の露点2~3℃の変化は、相対湿度にして、10%程度に相当し、例えば、ドアの開閉や、静電霧化装置が野菜室に配置される場合には、その野菜の量の変化により簡単に起こる変化である。特に、野菜室に静電霧化装置が配置される場合、少ない野菜量から野菜の増量による10%程度の湿度上昇は起こり得るものであり、このような湿度変化が起こっても霧化状態を維持する制御方法が必要となる。 This means that, particularly when the dew point near the atomization electrode fluctuates, the atomization that has progressed well even when the dew point variation is at a level of 2 to 3 ° C. stops almost completely. The change in the dew point of 2 to 3 ° C. corresponds to about 10% relative humidity. For example, when the door is opened or closed or the electrostatic atomizer is installed in the vegetable compartment, the amount of the vegetable It is a change that occurs easily due to a change in. In particular, when an electrostatic atomizer is installed in a vegetable room, a humidity increase of about 10% due to an increase in the amount of vegetables can occur from a small amount of vegetables. A control method to maintain is required.
 次に上記の湿度変化(露点変化)に対して、安定噴霧を確保するための本発明の制御の構成について図4、図5、図6を用いて詳しく説明する。 Next, the control configuration of the present invention for ensuring stable spraying against the above-described humidity change (dew point change) will be described in detail with reference to FIG. 4, FIG. 5, and FIG.
 図4に示すように、本発明では、制御手段が、霧化電極の状態を見て霧化状態判断を下し、これを元に、電圧印加部、加熱部を制御して、「露点-霧化電極温度」を霧化に適した値に制御するものである。 As shown in FIG. 4, in the present invention, the control means determines the atomization state by looking at the state of the atomization electrode, and controls the voltage application unit and the heating unit based on this to determine “dew point− The “atomization electrode temperature” is controlled to a value suitable for atomization.
 図5は、上記の操作のフローチャートであり、これを用いて手順を説明する。 FIG. 5 is a flowchart of the above operation, and the procedure will be described using this flowchart.
 図5の説明に入る前に、図6で用いる言葉の説明を行う。 Before starting the explanation of FIG. 5, the words used in FIG. 6 will be explained.
 まず、霧化状態制御周期は、霧化状態を判断する時間領域に相当する周期である。例えば、野菜室等の貯蔵室に冷気を導入するダンパの開閉に同期させて、ダンパ開から次のダンパ開までの期間を、霧化状態制御周期とすることができる。周期毎に、「1周期目:1回目のダンパ開から1回目のダンパ開までの期間」、「2周期目:1回目のダンパ開~3回目のダンパ開までの期間」のように、周期の長さを変更することも可能である。 First, the atomization state control cycle is a cycle corresponding to a time region for determining the atomization state. For example, in synchronization with opening / closing of a damper that introduces cold air into a storage room such as a vegetable room, the period from opening of the damper to opening of the next damper can be set as the atomization state control cycle. For each cycle, a cycle such as “the first cycle: the period from the first damper opening to the first damper opening”, “the second cycle: the period from the first damper opening to the third damper opening” It is also possible to change the length.
 また、以下で述べる霧化率は、例えば、霧化率=(霧化時間)/(霧化状態制御周期の時間)、霧化率=(霧化時間)/(霧化状態制御周期のうち霧化電極に高電圧を印加している時間)等と霧化時間に比例する値として定義されるが、これらパラメータと強い相関を持つパラメータであれば、これで代えることができる。また、前記の二つの定義では、後者の方が、前記計算式の分母で高電圧が霧化電極に印加されていない時間が除かれている分、霧化時間変化に対する霧化率の感度が良くなるため好ましい。 The atomization rate described below is, for example, atomization rate = (atomization time) / (time of atomization state control cycle), atomization rate = (atomization time) / (atomization state control cycle) It is defined as a value proportional to the atomization time and the time during which a high voltage is applied to the atomization electrode. However, any parameter having a strong correlation with these parameters can be replaced with this. Further, in the above two definitions, the latter is more sensitive to the atomization rate with respect to the change in the atomization time because the time when the high voltage is not applied to the atomization electrode is excluded in the denominator of the calculation formula. It is preferable because it improves.
 また、上記の霧化時間は、霧化電極と対向電極との間に流れる、一定の放電電流あるいは放電電圧が観測される時間である。一定の敷居値を設定して、その値を超える放電電流、放電電圧に対して、霧化時間を定義することが一般に行われる。 Also, the above atomization time is a time during which a constant discharge current or discharge voltage flowing between the atomization electrode and the counter electrode is observed. In general, an atomization time is defined for a discharge current and a discharge voltage that exceed a certain threshold value.
 ここで、注意が必要なのは、図3の過剰結露時には、観測される放電電流が、実際には霧化しないにもかかわらす霧化時より大きくなることである。これは、リーク電流の増加のためである。 Here, it should be noted that the discharge current observed at the time of excessive dew condensation in FIG. 3 is larger than that at the time of atomization although it is not actually atomized. This is due to an increase in leakage current.
 ここで、図5に戻って制御方法の手順について説明を行う。まず、N番目の霧化状態制御周期Nで、制御手段による霧化状態判断が下される(STEP1)。その結果、「霧化率>霧化目標」であれば、次の霧化状態制御周期(霧化上体制御周期N+1)で、制御手段により、加熱部の加熱量が増加される(STEP2)。このことにより、霧化電極の温度が上昇する。この結果、霧化率が低下し、霧化率が目標値に近づくことになる。 Here, returning to FIG. 5, the procedure of the control method will be described. First, in the Nth atomization state control cycle N, the atomization state determination by the control means is made (STEP 1). As a result, if “atomization rate> atomization target”, the heating amount of the heating unit is increased by the control means in the next atomization state control cycle (atomization body control cycle N + 1) (STEP 2). . This raises the temperature of the atomizing electrode. As a result, the atomization rate decreases and the atomization rate approaches the target value.
 また、霧化状態判断が、「霧化率=霧化目標」(STEP1)であれば、次の霧化状態制御周期において、加熱部の加熱量は維持される。(STEP2)。このことにより、霧化電極の温度は変化せず、霧化率も維持される。 If the atomization state determination is “atomization rate = atomization target” (STEP 1), the heating amount of the heating unit is maintained in the next atomization state control cycle. (STEP2). Thereby, the temperature of the atomization electrode does not change, and the atomization rate is also maintained.
 さらに、霧化状態判断が、「霧化率<霧化目標」(STEP1)であれば、次の霧化状態制御周期において、制御手段により、加熱部の加熱量は低減される。(STEP3)。こうして、霧化電極の温度は低下する。この結果、霧化率が上昇し、霧化率が目標値に近づくことになる。 Furthermore, if the atomization state determination is “atomization rate <atomization target” (STEP 1), the heating amount of the heating unit is reduced by the control means in the next atomization state control cycle. (STEP3). Thus, the temperature of the atomization electrode is lowered. As a result, the atomization rate increases and the atomization rate approaches the target value.
 尚、上記の霧化目標は、幅のない値であっても良い。例えば40%以上70%以下のように幅を有する値であっても良い。具体的には、上記の特定の霧化率あるいは特定の霧化率範囲として設定される。あるいは、霧化状態制御周期内の適当な放電電流や放電電圧の代表値に関して霧化目標を設定することも可能である。例えば、霧化目標を、霧化状態制御周期内の平均放電電流値で、2~3μA、平均放電電圧で、1.5~2.8kVというように設定することができる。また、上記霧化目標は、保鮮、除菌、脱臭性能等から決まる下限濃度と、オゾン臭等から決まる上限濃度より設定される。 The above atomization target may be a value having no width. For example, it may be a value having a width such as 40% or more and 70% or less. Specifically, the specific atomization rate or the specific atomization rate range is set. Or it is also possible to set an atomization target regarding the representative value of the appropriate discharge current and discharge voltage within the atomization state control cycle. For example, the atomization target can be set such that the average discharge current value within the atomization state control cycle is 2 to 3 μA, and the average discharge voltage is 1.5 to 2.8 kV. The atomization target is set based on a lower limit concentration determined from keeping, sanitizing, deodorizing performance, and the like, and an upper limit concentration determined from ozone odor.
 上術のような、「霧化状態判断(STEP1)」と「加熱部の加熱量変更(増加、変更なし、低減)(STEP2~4)」が繰返されることで、霧化率を目標値に近づけることが可能となる。 The atomization rate is set to the target value by repeating “Atomization state judgment (STEP 1)” and “Changing heating amount of heating part (increase, no change, reduction)” (STEPs 2 to 4) as described above. It becomes possible to approach.
 次に、タイムチャートである図6を用いて、図2、図4、図5を参照しながら、時間的な操作と、その結果実現される温度変化について説明する。 Next, with reference to FIG. 6, which is a time chart, a temporal operation and a temperature change realized as a result will be described with reference to FIG. 2, FIG. 4, and FIG.
 図6では縦軸は、上から順に、露点(電極近傍の露点)、霧化電極の温度、露点-霧化電極の温度、冷却手段(冷凍室)の温度、野菜室に冷気を供給する風路(図示せず)に設けられたダンパの開閉、加熱部の入力に対応し、横軸が時間となり、縦軸の変数の時間変化を表している。 In FIG. 6, the vertical axis indicates the dew point (dew point near the electrode), the temperature of the atomizing electrode, the temperature of the atomizing electrode, the temperature of the cooling means (freezer room), and the wind for supplying cold air to the vegetable room in order from the top. Corresponding to the opening / closing of a damper provided in a path (not shown) and the input of the heating unit, the horizontal axis represents time, and the vertical axis represents the time change of the variable.
 時間軸は、図6上部に示したように、大きく二つの霧化状態制御周期に分かれ、順に霧化状態制御周期N、霧化状態制御周期N+1である。一つの霧化状態制御周期は、二つの領域に分かれており、例えば、霧化状態制御周期Nでは、tN,close~tN,open、tN,open~tN+1,closeの二つの領域に別れている。tN,close~tN,openの領域では、ダンパが閉じられているため、温度が低く露点の低い空気が流れ込まないため、露点は上昇し、逆に、tN,open~tN+1,closeでは、ダンパが開くため、温度が低く露点の低い空気が流れ込むため、露点は低下する。 As shown in the upper part of FIG. 6, the time axis is roughly divided into two atomization state control cycles, which are an atomization state control cycle N and an atomization state control cycle N + 1 in this order. One atomization state control cycle is divided into two regions. For example, in the atomization state control cycle N, it is divided into two regions tN, close to tN, open, tN, open to tN + 1, and close. . In the region of tN, close to tN, open, the damper is closed, so air with a low temperature and low dew point does not flow in, so the dew point rises. Conversely, in tN, open to tN + 1, close, the damper is Since it opens, air with a low temperature and a low dew point flows in, so the dew point decreases.
 また、冷却手段(冷凍室)の温度は、逆に、ダンパ閉時には、他の貯蔵室への冷気の供給が行われないために、温度が低下し、ダンパ開時には、野菜室等に冷気が供給されるため、冷凍室内の冷気が不足し、温度が上昇する。これに対応して、冷却手段により冷却される冷却ピン134に加え、冷却ピン134により間接的に冷却される霧化電極135の温度も、冷却手段と同様な温度変化を示す。 On the other hand, the temperature of the cooling means (freezer compartment) decreases when the damper is closed, because cold air is not supplied to the other storage compartments, and the temperature is lowered. Since it is supplied, there is not enough cold air in the freezer compartment, and the temperature rises. Correspondingly, the temperature of the atomizing electrode 135 that is indirectly cooled by the cooling pin 134 in addition to the cooling pin 134 that is cooled by the cooling means also exhibits the same temperature change as the cooling means.
 次に、「露点-霧化電極温度」に関して説明する。 Next, “dew point−atomization electrode temperature” will be described.
 霧化状態制御周期Nでは、「露点-霧化電極温度」は、霧化が可能な霧化温度範囲よりも、上部(高い温度の領域)に位置している。 In the atomization state control cycle N, the “dew point−atomization electrode temperature” is located above the atomization temperature range in which atomization is possible (high temperature region).
 また、ここで、図中には示していないが、(霧化時間/霧化状態制御周期の時間)×100で定義される霧化率が、制御手段146により算出され、その値は100%であった。ここで設定された霧化目標を霧化率20%とすると、これを基に、図5のSTEP1で、制御手段により、霧化率>霧化目標という霧化状態判断が下される。 Here, although not shown in the figure, the atomization rate defined by (atomization time / atomization state control cycle time) × 100 is calculated by the control means 146, and the value is 100%. Met. Assuming that the atomization target set here is an atomization rate of 20%, based on this, in step 1 of FIG. 5, the control means makes an atomization state determination that atomization rate> atomization target.
 これを受けて、霧化状態制御周期N+1では、加熱部154の加熱量が増加される。これに対応して、図6の加熱部入力は、tN+1,close以降、増加し一定の値となっている。この加熱部154への入力により、加熱部154に隣接する結露防止部材140の温度が上昇し、さらに結露防止部材140に隣接する霧化電極135の温度も上昇する。このとき、冷却ピン遮熱領域153があるために、加熱部154から冷却ピン134への熱の移動が抑制され、効率的に、結露防止部材140と霧化電極135の温度上昇を実現することが可能となる。 In response, in the atomization state control cycle N + 1, the heating amount of the heating unit 154 is increased. Correspondingly, the heating unit input of FIG. 6 increases and becomes a constant value after tN + 1, close. By the input to the heating unit 154, the temperature of the dew condensation preventing member 140 adjacent to the heating unit 154 increases, and the temperature of the atomization electrode 135 adjacent to the dew condensation preventing member 140 also increases. At this time, since there is the cooling pin heat shielding region 153, the movement of heat from the heating unit 154 to the cooling pin 134 is suppressed, and the temperature increase of the dew condensation preventing member 140 and the atomizing electrode 135 is efficiently realized. Is possible.
 また、上記温度変化は、図6のtN+1,close以降の、霧化電極温度の上昇で確認できる。この霧化電極温度の上昇の結果、「露点‐霧化電極温度」は低下し、霧化温度範囲に入ってくる。ここには示していないが、霧化状態制御周期N+1の霧化率は、15%であり、前周期の霧化率よりも霧化目標20%に近づいた。 Further, the temperature change can be confirmed by an increase in atomization electrode temperature after tN + 1, close in FIG. As a result of the increase in the atomization electrode temperature, the “dew point−atomization electrode temperature” decreases and enters the atomization temperature range. Although not shown here, the atomization rate in the atomization state control cycle N + 1 is 15%, which is closer to the atomization target 20% than the atomization rate in the previous cycle.
 以降、これを繰り返すことで、加熱部の加熱を効率的用いながら、短時間で霧化目標に近い霧化状態を維持することが可能となる。 Thereafter, by repeating this, it is possible to maintain the atomization state close to the atomization target in a short time while efficiently using the heating of the heating unit.
 なお、ここでは、「露点-霧化電極温度」が高い過剰結露の状態から、霧化電極の温度を上げて霧化目標を実現する場合について述べたが、「露点-霧化電極温度」が低い場合については、逆に、加熱部入力を低下させることで、霧化目標に近づけることが可能である。 In addition, here, the case where the atomization target is realized by raising the temperature of the atomization electrode from the state of excessive dew condensation having a high “dew point-atomization electrode temperature” has been described. In the case of a low value, conversely, it is possible to approach the atomization target by reducing the heating unit input.
 また、加熱部の入力の変更の大きさは、大きいと短時間で霧化目標が達成できるが、逆に霧化目標を通り越す可能性があり、逆に、小さいと、霧化目標に精度良く調整が可能であるが、調整までに時間がかかることになる。実際は、調整精度と時間を勘案して、加熱部の変更の大きさを決めることになるが、霧化目標との隔たりが大きい場合は、前記変更幅を大きくし、霧化目標との差が小さい場合には、前記変更幅を小さく設定することが、調整精度と調整に必要な時間との観点から好ましい。 In addition, if the magnitude of the change in the input of the heating unit is large, the atomization target can be achieved in a short time, but conversely, the atomization target may be passed. Adjustment is possible, but it takes time to adjust. Actually, the amount of change in the heating unit is determined in consideration of the adjustment accuracy and time, but if the distance from the atomization target is large, the change width is increased and the difference from the atomization target is In the case of being small, it is preferable to set the change width to be small from the viewpoint of adjustment accuracy and time required for adjustment.
 次に、本発明の凍結による霧化停止の解除方法に関して説明する。 Next, a method for canceling the atomization stop by freezing according to the present invention will be described.
 冷蔵庫内の霧化電極での結露は、多くの場合、過冷却状態で進行するため、時間経過に従い凍結が起こることが避けられない。 Condensation at the atomizing electrode in the refrigerator often proceeds in a supercooled state, and thus it is inevitable that freezing will occur over time.
 この課題を解決するために、ある霧化状態制御周期から次の霧化状態制御周期で、急激に霧化率が低下し、ほぼ霧化率が0となった場合に、霧化電極が凍結したと判断する。そして、この判断を基に、その次の霧化状態制御周期で、加熱部による加熱量を増加させて霧化電極135の温度を上昇させる。 In order to solve this problem, the atomization electrode is frozen when the atomization rate suddenly decreases and the atomization rate becomes almost zero from one atomization state control cycle to the next atomization state control cycle. Judge that Based on this determination, the heating amount by the heating unit is increased and the temperature of the atomizing electrode 135 is increased in the next atomization state control cycle.
 凍結は、突然起こり、霧化率が急激に低下するため、上記の判断により、高い確率で凍結発生を判断可能となる。さらに、既に述べたように、冷却ピン134と、冷却ピン遮熱領域153の作用により、効率的に霧化電極135を加熱することが可能となる。こうして、短時間で無駄なエネルギを使うことなく、凍結の解除が可能となる。 凍結 Freezing occurs suddenly and the atomization rate decreases rapidly, so that it is possible to determine the occurrence of freezing with a high probability. Further, as described above, the atomization electrode 135 can be efficiently heated by the action of the cooling pin 134 and the cooling pin heat shield region 153. In this way, freezing can be released in a short time without using wasted energy.
 また、凍結解除後は、霧化電極の温度が高くなっているため、露点が高い場合でも霧化し難い場合がある。このような場合でも、霧化状態判断にかかわらず、凍結解除後の加熱部の入力を弱く設定することで、霧化電極の温度低下を早めることが好ましい。こうすることで、再霧化が早期に実現する。また、無駄なヒータ加熱が低減されることで、省エネ効果も得られる。 Also, after freezing, the temperature of the atomization electrode is high, so it may be difficult to atomize even if the dew point is high. Even in such a case, it is preferable to accelerate the temperature drop of the atomization electrode by setting the input of the heating unit after the release of freeze to be weak regardless of the determination of the atomization state. By doing so, re-atomization is realized at an early stage. In addition, an energy saving effect can be obtained by reducing unnecessary heater heating.
 また、凍結解除後の一定の霧化状態制御周期において、加熱部の加熱量が、凍結前の加熱量と概同量となるように設定することも有効である。 It is also effective to set the heating amount of the heating unit to be approximately the same as the heating amount before freezing in a constant atomization state control cycle after the release of freezing.
 このことにより、凍結解除後で、加熱部の加熱量が、最終的に安定噴霧する加熱量と大きく離れている場合でも、凍結解除後霧化電極の温度がある程度低下した時点、例えば、凍結解除後、1~2周期後の霧化状態制御周期において、凍結前の安定霧化時の加熱部の加熱量とすることで、早期に安定霧化状態に復帰し、無駄なヒータ加熱も回避することができる。 As a result, even when the heating amount of the heating unit is far away from the final stable spraying amount after freezing, for example, when the temperature of the atomizing electrode after freezing decreases to some extent, for example, freezing is released. After that, in the atomization state control cycle after one or two cycles, the heating amount of the heating unit at the time of stable atomization before freezing is used to quickly return to the stable atomization state and avoid unnecessary heater heating. be able to.
 また、加熱部の加熱時期を、主として霧化電極、伝熱冷却部の温度が低下する時期に合わせることが好ましい。図6で説明したように、伝熱冷却部の温度は、冷却手段(冷凍室)により冷却されるため、冷却手段(冷凍室)と同様な温度変化をする。従って、霧化状態制御周期Nでは、tN,openにおいて極小値をとる。しかし、このような霧化電極温度となることで、露点との温度差が増大するため、露点-霧化電極温度が大きな値となり、過剰結露の状態となってしまう。 Moreover, it is preferable to match the heating timing of the heating section with the timing when the temperature of the atomizing electrode and the heat transfer cooling section is lowered. As described with reference to FIG. 6, the temperature of the heat transfer cooling unit is cooled by the cooling means (freezer compartment), and thus changes in temperature similar to that of the cooling means (freezer compartment). Therefore, in the atomization state control cycle N, a minimum value is obtained at tN and open. However, since the temperature difference from the dew point increases due to such an atomizing electrode temperature, the dew point−the atomizing electrode temperature becomes a large value, resulting in excessive dew condensation.
 ところが、霧化電極、伝熱冷却部の温度が低下するtN,close~tN,openにおいて、もし加熱部の入力を大きくし、tN,open~tN+1,closeまでの加熱部の加熱量を低減すれば、霧化電極の温度は、tN,close~tN,openで上昇し、tN,open~tN+1,closeで低下するものとなり、露点の温度変化と同様となる。この場合、露点と霧化電極温度差は小さくなり、露点-霧化電極温度も、小さくなるため霧化温度範囲に入ってくる。こうして、過剰結露状態が回避される。 However, in tN, close to tN, open where the temperature of the atomization electrode and the heat transfer cooling section decreases, if the input of the heating section is increased, the heating amount of the heating section from tN, open to tN + 1, close is reduced. For example, the temperature of the atomizing electrode rises at tN, close to tN, open and decreases at tN, open to tN + 1, close, which is the same as the temperature change of the dew point. In this case, the difference between the dew point and the atomization electrode temperature is reduced, and the dew point-atomization electrode temperature is also reduced, so that the atomization temperature range is entered. Thus, excessive dew condensation is avoided.
 また、霧化電極、伝熱冷却部の温度が低下する時期に、加熱部の加熱量を増大させることで、霧化電極の最低温度が上昇し、凍結が回避される効果も得られる。 Also, when the temperature of the atomizing electrode and the heat transfer cooling unit is decreased, the heating amount of the heating unit is increased, so that the minimum temperature of the atomizing electrode is increased and freezing can be avoided.
 また、冷蔵庫では、冷却器112に霜が付いた場合に、一時的に温度を上げ、霜取りを行うが、この際にも、冷却手段である冷凍室の温度が上昇するために、冷却ピン134および霧化電極135の温度が上昇する。このため、凍結解除後のように、凍結解除後の一定の霧化状態制御周期(具体的には1あるいは2周期後)において、霧化状態判断の結果に依らず、加熱部の加熱量を低いレベルに抑えることが有効である。また、同様に、凍結解除後、1~2周期後の霧化状態制御周期において、凍結前の安定霧化時の加熱部の加熱量とすることで、早期に安定霧化状態に復帰し、無駄なヒータ加熱も回避することができる。 Further, in the refrigerator, when frost is formed on the cooler 112, the temperature is temporarily raised and defrosting is performed, but also in this case, the temperature of the freezer compartment as a cooling means rises, so that the cooling pin 134 And the temperature of the atomization electrode 135 rises. For this reason, the amount of heating of the heating unit is not dependent on the result of the atomization state determination in a certain atomization state control cycle (specifically, after one or two cycles) after the freeze release, as after the freeze release. It is effective to keep it at a low level. Similarly, in the atomization state control cycle one or two cycles after the release of freezing, the amount of heating of the heating unit at the time of stable atomization before freezing is restored to the stable atomization state at an early stage. Unnecessary heater heating can also be avoided.
 また、冷却ピン134の最深凹部125bが、より温度の低い冷凍室107側に突き出た形状を有している構成をとれば、冷却ピン134を、低湿度雰囲気での結露に必要な低温まで、容易に冷却することが可能となり、安定した微細ミストの供給が可能となる。このとき、奥面仕切壁表面151の表面と冷却ピン(伝熱冷却部)端部134bとの間にグリースやゴム、エラストマを挿入することで、接触面積が確保され冷却ピン134の冷却が効率的に進む効果が得られる。また、グリースやゴム、エラストマに導電性材料を複合化させることにより、前記効果はより優れたものとなる。 Further, if the deepest concave portion 125b of the cooling pin 134 has a shape protruding toward the freezer compartment 107 having a lower temperature, the cooling pin 134 is moved to a low temperature necessary for condensation in a low humidity atmosphere. Cooling can be easily performed, and a stable fine mist can be supplied. At this time, by inserting grease, rubber, or elastomer between the surface of the rear partition wall surface 151 and the cooling pin (heat transfer cooling portion) end portion 134b, a contact area is ensured and cooling of the cooling pin 134 is efficient. The effect which advances automatically is acquired. In addition, by combining a conductive material with grease, rubber, or elastomer, the above effect can be further improved.
 なお、本実施の形態における静電霧化装置131は、霧化先端部である霧化電極135と対向電極136との間に高電圧を印加するため、微細ミスト発生時にオゾンも発生するが、静電霧化装置131のON・OFF運転により、貯蔵室(野菜室108)内のオゾン濃度を調整することが出来る。オゾン濃度を適度に調整することにより、オゾン過多による野菜の黄化などの劣化を防止し、かつ、野菜表面の殺菌、抗菌作用を高めることが出来る。 In addition, since the electrostatic atomizer 131 in this Embodiment applies a high voltage between the atomization electrode 135 which is an atomization front-end | tip part, and the counter electrode 136, although ozone is also generated at the time of fine mist generation, By the ON / OFF operation of the electrostatic atomizer 131, the ozone concentration in the storage room (vegetable room 108) can be adjusted. By adjusting the ozone concentration appropriately, deterioration such as yellowing of vegetables due to excessive ozone can be prevented, and the sterilization and antibacterial action of the vegetable surface can be enhanced.
 なお、本実施の形態では、霧化電極135を基準電位側(0V)とし、対向電極136に正電位(+7kV)を印加して、両電極間に高圧電位差を発生させたが、対向電極136を基準電位側(0V)とし、霧化電極135に負電位(-7kV)を印加して、両電極間に高圧電位差を発生させてもよい。この場合、貯蔵室(野菜室108)に近い対向電極136が基準電位側になるので、冷蔵庫の使用者の手が対向電極136に近づいても感電等を起こさない。また、霧化電極135を-7kVの負電位にした場合、貯蔵室(野菜室108)側を基準電位側とすれば、特に対向電極136を設けなくてもよい場合もある。 In this embodiment, the atomization electrode 135 is set to the reference potential side (0 V), and a positive potential (+7 kV) is applied to the counter electrode 136 to generate a high-voltage potential difference between the two electrodes. May be set to the reference potential side (0 V), and a negative potential (−7 kV) may be applied to the atomizing electrode 135 to generate a high voltage potential difference between the two electrodes. In this case, since the counter electrode 136 close to the storage room (vegetable room 108) is on the reference potential side, an electric shock or the like does not occur even if the hand of the refrigerator user approaches the counter electrode 136. When the atomizing electrode 135 is set to a negative potential of −7 kV, the counter electrode 136 may not be provided if the storage chamber (vegetable chamber 108) side is set to the reference potential side.
 この場合は、例えば、断熱された貯蔵室(野菜室108)の中に導電性の収納容器を備え、その導電性の収納容器が収納容器の保持部材(導電性)と電気的に接続され、且つ保持部材と脱着可能な構成とし、保持部材を基準電位部と接続しアース(0V)にするのである。 In this case, for example, a conductive storage container is provided in an insulated storage room (vegetable room 108), and the conductive storage container is electrically connected to a holding member (conductive) of the storage container. In addition, the holding member can be attached to and detached from the holding member, and the holding member is connected to the reference potential portion to be grounded (0 V).
 これにより、霧化部139と収納容器および保持部材が常に電位差を保つため安定的な電界が構成されることにより、安定的に霧化部139から噴霧でき、また、収納容器全体が基準電位になっているので、噴霧されるミストを収納容器全体に拡散することができる。さらに、周辺の物体への帯電も防止することができる。 As a result, the atomizing unit 139 and the storage container and the holding member always maintain a potential difference, so that a stable electric field is formed, so that the atomization unit 139 can stably spray, and the entire storage container is at the reference potential. Thus, the sprayed mist can be diffused throughout the storage container. Further, charging to surrounding objects can be prevented.
 このように、特に対向電極136を設けなくても、貯蔵室(野菜室108)側の一部にアースされた保持部材を備えることで、霧化電極135と電位差を発生させて、ミスト噴霧を行うことができ、より簡単な構成で安定的な電界が構成されることにより安定的に霧化部から噴霧できる。 In this way, even if the counter electrode 136 is not particularly provided, a grounding holding member is provided on a part of the storage chamber (vegetable chamber 108) side, thereby generating a potential difference with the atomizing electrode 135 and performing mist spraying. It can be performed, and it can spray stably from an atomization part by comprising a stable electric field by simpler composition.
 なお、本実施の形態では、伝熱冷却部である冷却ピン134を冷却する冷却手段は、冷凍室107の冷気であったが、冷蔵庫100の冷凍サイクルで生成された冷却源を用いて冷却された冷気、冷蔵庫100の冷却源からの冷気もしくは冷温を用いた冷却管からの熱伝達を用いるものであってもよい。これにより、この冷却管の温度を調節することで、伝熱冷却部である冷却ピン134を任意の温度に冷却することができ、霧化電極135を冷却する際の温度管理を行いやすくなる。また、冷却手段として、製氷室106の吐出風路や、冷凍室戻り風路などの低温風路の冷気を用いても構わない。これにより、静電霧化装置131の設置可能場所が拡大する。 In the present embodiment, the cooling means for cooling the cooling pin 134 that is the heat transfer cooling unit is the cold air in the freezer compartment 107, but is cooled using the cooling source generated in the refrigeration cycle of the refrigerator 100. Heat transfer from a cooling pipe using cold air, cold air from the cooling source of the refrigerator 100, or cold temperature may be used. Thereby, by adjusting the temperature of this cooling pipe, the cooling pin 134 which is a heat-transfer cooling part can be cooled to arbitrary temperature, and it becomes easy to perform temperature management at the time of cooling the atomization electrode 135. FIG. Further, as the cooling means, cold air from a low temperature air passage such as a discharge air passage of the ice making chamber 106 or a freezing chamber return air passage may be used. Thereby, the installation place of the electrostatic atomizer 131 is expanded.
 なお、本実施の形態において、静電霧化装置131(の霧化部139)でミストが噴霧される貯蔵室を野菜室108としたが、冷蔵室104や切換室105などの他の温度帯の貯蔵室でもよく、この場合、様々な用途に展開が可能となる。 In this embodiment, the storage room in which the mist is sprayed by the electrostatic atomizer 131 (the atomizing unit 139) is the vegetable room 108, but other temperature zones such as the refrigerator room 104 and the switching room 105 are used. In this case, it can be deployed for various purposes.
 (実施の形態2)
 図7は本発明の実施の形態2における冷蔵庫の縦断面図、図8は本発明の実施の形態2における冷蔵庫の要部断面斜視図、図9は本発明の実施の形態2における冷蔵庫の放電装置の構成図、図10は本発明の実施の形態2における冷蔵庫の放電装置の放電電流の温度依存性を示すグラフ、図11は本発明の実施の形態2における冷蔵庫の放電装置の放電電流の湿度依存性を示すグラフ、図12は本発明の実施の形態2における冷蔵庫の放電装置の放電電流とオゾン濃度の関係を示すグラフ、図13は本発明の実施の形態2における冷蔵庫の放電装置の制御フローチャート、図14は本発明の実施の形態2における冷蔵庫の放電装置の制御タイムチャートである。
(Embodiment 2)
FIG. 7 is a longitudinal sectional view of a refrigerator according to the second embodiment of the present invention, FIG. 8 is a perspective sectional view of a main part of the refrigerator according to the second embodiment of the present invention, and FIG. 9 is a discharge of the refrigerator according to the second embodiment of the present invention. FIG. 10 is a graph showing the temperature dependency of the discharge current of the refrigerator discharge device according to the second embodiment of the present invention, and FIG. 11 is a graph showing the discharge current of the refrigerator discharge device according to the second embodiment of the present invention. FIG. 12 is a graph showing the humidity dependence, FIG. 12 is a graph showing the relationship between the discharge current of the refrigerator discharge device and the ozone concentration in Embodiment 2 of the present invention, and FIG. 13 is the graph of the refrigerator discharge device in Embodiment 2 of the present invention. FIG. 14 is a control time chart of the refrigerator discharge device according to Embodiment 2 of the present invention.
 なお、実施の形態1と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、実施の形態1の構成に本実施の形態を組み合わせて実施することで不具合がない限り、組み合わせて適用することが可能である。 In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1, and the same technical idea, unless there is a malfunction by combining this Embodiment with the structure of Embodiment 1, and implementing it. , Can be applied in combination.
 図7、図8、図9を用いて、本実施の形態2における冷蔵庫の説明を行う。 The refrigerator in this Embodiment 2 is demonstrated using FIG.7, FIG.8, FIG.9.
 野菜室108と冷凍室107の背面には冷気を生成する冷却室110が設けられている。また、冷却室110と各貯蔵室へは、冷気を搬送するための吐出風路141と各貯蔵室から冷却室へ冷気がもどる吸込み風路142が設けられている。野菜室吐出風路141aは、野菜室へ冷気を吐出し、野菜室吸込み風路142は野菜室108に備えられている。 A cooling room 110 for generating cold air is provided on the back of the vegetable room 108 and the freezing room 107. The cooling chamber 110 and each storage chamber are provided with a discharge air passage 141 for conveying cold air and a suction air passage 142 for returning the cold air from each storage chamber to the cooling chamber. The vegetable room discharge air passage 141 a discharges cold air to the vegetable room, and the vegetable room suction air passage 142 is provided in the vegetable room 108.
 冷却室110内には、冷却器112が配設されており、冷却器112の上部空間には強制対流方式により冷却器112で冷却した冷気を冷蔵室104、切換室105、製氷室106、野菜室108、冷凍室107に送風する冷却ファン113が配置される。 In the cooling chamber 110, a cooler 112 is disposed, and in the upper space of the cooler 112, the cold air cooled by the cooler 112 by a forced convection method is stored in the refrigerator 104, the switching chamber 105, the ice making chamber 106, the vegetables. A cooling fan 113 for blowing air to the chamber 108 and the freezing chamber 107 is disposed.
 また、冷却室110内の冷却器112によって冷却された冷気は野菜室吐出風路141aを通過して野菜室108へ冷却ファン113によって送られるが、その野菜室吐出風路141aの途中にダンパ130が備えられている。 Further, the cold air cooled by the cooler 112 in the cooling chamber 110 passes through the vegetable chamber discharge air passage 141a and is sent to the vegetable chamber 108 by the cooling fan 113, and a damper 130 is provided in the middle of the vegetable chamber discharge air passage 141a. Is provided.
 野菜室108には、野菜室108の引き出し扉118に取り付けられたフレームに載置された下段収納容器119と、下段収納容器119に載置された上段収納容器120が配置されている。 In the vegetable compartment 108, a lower storage container 119 placed on a frame attached to a drawer door 118 of the vegetable compartment 108 and an upper storage container 120 placed on the lower storage container 119 are arranged.
 また、野菜室108の背面の下部には、冷却器112で冷却された冷気が野菜室吐出風路141aを通過して吐出するための野菜室吐出口143と、吐出した冷気が冷却室110へ戻るための野菜室吸込み風路142aとその吸込み口として野菜室吸込み口144が設けられている。 Further, in the lower part of the back of the vegetable compartment 108, the cold air cooled by the cooler 112 passes through the vegetable compartment discharge air passage 141 a and is discharged, and the discharged cold air is discharged to the cooling chamber 110. A vegetable room suction port 142a for returning and a vegetable room suction port 144 are provided as the suction port.
 なお、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった扉に取り付けられたフレームと内箱に設けられたレールにより開閉するタイプの冷蔵庫に適用しても構わない。 It should be noted that the matters relating to the main part of the invention described below in the present embodiment may be applied to a refrigerator that is opened and closed by a frame attached to a door and a rail provided in an inner box, which has been conventionally common. I do not care.
 また、野菜室108の天面には放電装置200が備えられている。野菜室108は放電装置200からオゾンが直接放出される構造になっている。 In addition, a discharge device 200 is provided on the top of the vegetable compartment 108. The vegetable compartment 108 has a structure in which ozone is directly emitted from the discharge device 200.
 この放電装置200は、放電部201、電圧印加部202、放電状態検知手段203、外郭ケース204で構成されている。外郭ケース204の一部には、オゾン放出口205が設けられている。放電部201は、負の高電圧が印加される針状の放電電極206と放電電極206に対向している位置でドーナツ円盤状の対向電極207と、対向電極207が放電電極206の先端と一定距離を保つように配置される樹脂の固定部材208とで形成されている。放電部201は、外郭ケース204に配設されている。 The discharge device 200 includes a discharge unit 201, a voltage application unit 202, a discharge state detection unit 203, and an outer case 204. An ozone discharge port 205 is provided in a part of the outer case 204. The discharge unit 201 includes a needle-like discharge electrode 206 to which a negative high voltage is applied, a donut disk-like counter electrode 207 at a position facing the discharge electrode 206, and the counter electrode 207 is constant with the tip of the discharge electrode 206. The resin fixing member 208 is arranged so as to keep the distance. The discharge unit 201 is disposed in the outer case 204.
 さらに、放電部201の近傍に電圧印加部202が設けられている。たとえば、放電電極206には約-5kVの高電圧、対向電極207には基準電位であるグランド(0V)が電圧印加部202により印加されている。 Furthermore, a voltage application unit 202 is provided in the vicinity of the discharge unit 201. For example, a high voltage of about −5 kV is applied to the discharge electrode 206, and a ground (0 V) that is a reference potential is applied to the counter electrode 207 by the voltage application unit 202.
 電圧印加部202は、制御手段210と通信し、制御手段210により制御され、高電圧の電圧印加時間(印加率)に従って、ON/OFFを行う。 The voltage application unit 202 communicates with the control unit 210, is controlled by the control unit 210, and performs ON / OFF according to the voltage application time (application rate) of the high voltage.
 放電状態検知手段203は、電圧印加部202に接続され、放電電極206と対向電極207間に流れる電流(放電電流)を検出して、モニタ電圧としてアナログ信号もしくはデジタル信号を制御手段210へ出力する。 The discharge state detection unit 203 is connected to the voltage application unit 202, detects a current (discharge current) flowing between the discharge electrode 206 and the counter electrode 207, and outputs an analog signal or a digital signal to the control unit 210 as a monitor voltage. .
 さらに、放電装置200から供給されたオゾンが冷蔵室104と切換室105と製氷室106と冷凍室107へと間接的に供給できるように、野菜室108には冷却室で冷却した冷気を各貯蔵室へ運搬する吐出風路141が設けられている。 Furthermore, the vegetable room 108 stores the cold air cooled in the cooling room so that the ozone supplied from the discharge device 200 can be indirectly supplied to the refrigerating room 104, the switching room 105, the ice making room 106, and the freezing room 107. A discharge air passage 141 for conveying to the chamber is provided.
 放電装置200から発生したオゾンの強い酸化力により、オゾンと接触した冷蔵庫100の構造材料や各貯蔵室に保存している食品や食品容器等の表面に付着したカビや酵母やウィルス等の微生物が増加することを抑制する働きを有している。 Due to the strong oxidizing power of ozone generated from the discharge device 200, the structural material of the refrigerator 100 that has come into contact with ozone and the microorganisms such as mold, yeast, and viruses attached to the surface of food and food containers stored in each storage room It has a function to suppress the increase.
 さらに、冷蔵庫100に保存している食品等から発生した臭いを含む空気とオゾンが接触することにより臭い成分を酸化分解することから、臭いの分解により脱臭効果が得られる働きを有している。 Furthermore, since the odor component is oxidized and decomposed by contact of the ozone containing the odor generated from the food stored in the refrigerator 100 with ozone, it has a function of obtaining a deodorizing effect by the odor decomposition.
 以上のように構成された本実施の形態の冷蔵庫100について、以下にその動作、作用を説明する。 About the refrigerator 100 of this Embodiment comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 野菜室108は冷却器112にて冷却された冷気により冷却されるが、野菜室108を冷却する冷気は冷却ファン113にて送風され吐出風路141を通過し、吐出風路141の途中から分留された野菜室吐出風路141aを経て野菜室ダンパ130aを通過し、野菜室吐出口143から野菜室108へ流入する。野菜室108へ流入した冷気は、下段収納容器119の外周を循環し、下段収納容器119を冷却して、野菜室吸込み口144から吸い込まれ、野菜室吸込み風路142aを通過して、冷却室110へ再び戻る。冷気の循環により野菜室108は冷却されるが、野菜室108に設置された温度センサ(図示せず)が目的温度帯以下の温度を検知した場合、野菜室ダンパ130aを閉じることにより、野菜室108へ冷気の流入が停止するよう制御されている。 The vegetable compartment 108 is cooled by the cold air cooled by the cooler 112, but the cold air that cools the vegetable compartment 108 is blown by the cooling fan 113, passes through the discharge air passage 141, and is separated from the middle of the discharge air passage 141. It passes through the vegetable room damper 130a through the retained vegetable room discharge air passage 141a and flows into the vegetable room 108 from the vegetable room discharge port 143. The cold air flowing into the vegetable compartment 108 circulates around the outer periphery of the lower storage container 119, cools the lower storage container 119, is sucked in through the vegetable compartment suction port 144, passes through the vegetable compartment suction air passage 142a, and then enters the cooling chamber. Return to 110 again. Although the vegetable compartment 108 is cooled by the circulation of cold air, when a temperature sensor (not shown) installed in the vegetable compartment 108 detects a temperature below the target temperature zone, the vegetable compartment 108a is closed to close the vegetable compartment 108a. It is controlled so that the inflow of cold air to 108 stops.
 このとき、放電装置200は、野菜室108へオゾンを直接噴霧させるように制御されている。さらに、野菜室吸い込み風路142aへと放電装置200から生成したオゾンを吸い込み、冷蔵室104と切換室105と製氷室106と冷凍室107のミスト吐出口からそれぞれの貯蔵室へと間接噴霧される。これにより、冷蔵庫100の各貯蔵室である、冷蔵室104、切換室105、製氷室106、野菜室108、冷凍室107へ供給されることになる。このようにして、オゾンが冷蔵庫の全貯蔵室へ供給されている。 At this time, the discharge device 200 is controlled to spray ozone directly onto the vegetable compartment 108. Furthermore, the ozone generated from the discharge device 200 is sucked into the vegetable room suction air passage 142a, and indirectly sprayed from the mist discharge ports of the refrigerator compartment 104, the switching chamber 105, the ice making chamber 106, and the freezer compartment 107 to the respective storage chambers. . As a result, the refrigerator 100 is supplied to the refrigerator compartment 104, the switching room 105, the ice making room 106, the vegetable room 108, and the freezing room 107. In this way, ozone is supplied to all the storage rooms of the refrigerator.
 また、オゾンは強い酸化力を有しているので、できるだけオゾン濃度が高い方がカビや細菌やウィルス等の微生物に対して制菌作用に有利に働き、臭い成分の分解力も大きくなることから脱臭効果にたいしても有利に働くが、一方で独特のオゾン臭により冷蔵庫ユーザーが嫌悪され、人体へ対しても有害になるため、冷蔵庫ユーザーの立場からすると、できるだけ低濃度である方がよい。 In addition, since ozone has a strong oxidizing power, the one with as high ozone concentration as possible has an advantageous effect on bactericidal action against microorganisms such as mold, bacteria and viruses, and the decomposing power of odorous components is increased. Although it works for the effect, on the other hand, since the refrigerator user is disgusted by the unique ozone odor and is harmful to the human body, from the viewpoint of the refrigerator user, the concentration should be as low as possible.
 そこで、オゾン濃度の制菌作用と、オゾン臭の関係を事前に確認したところ、オゾン濃度は5ppb以上の濃度で99%の除菌率を有しており、その一方で30ppbの濃度になると、冷蔵庫ユーザーの臭気許容限界値であることが分かった。さらに、80ppb以上のオゾン濃度になると、オゾンが野菜の外観に対してダメージを与えることが事前のBOX試験にて確認した。以上確認結果から、各貯蔵室へ供給されたオゾン農度は、放電装置を制御することによりオゾン発生量を制御手段210で、冷蔵庫の各貯蔵室区画内でオゾン濃度として5ppb以上30ppb以下になるよう、制御している。このため、各貯蔵室へ到達したオゾンは、除菌効果を発揮しながら、冷蔵庫ユーザーへ対してオゾン臭も気になることはない。 Therefore, when the relationship between the antibacterial effect of ozone concentration and the ozone odor was confirmed in advance, the ozone concentration had a sterilization rate of 99% at a concentration of 5 ppb or higher, and on the other hand, when the concentration reached 30 ppb, It turned out that it is the odor tolerance limit value of the refrigerator user. Furthermore, it was confirmed by a prior BOX test that ozone would damage the appearance of vegetables when the ozone concentration was 80 ppb or more. From the above confirmation results, the ozone farming degree supplied to each storage room is controlled by the discharge device to control the amount of ozone generated by the control means 210, and the ozone concentration in each storage room compartment of the refrigerator is 5 ppb or more and 30 ppb or less. It's in control. For this reason, the ozone which reached | attained each store room is not worried about an ozone smell with respect to a refrigerator user, exhibiting a microbe elimination effect.
 上記で、おおまかに放電装置の動作、作用について述べてきたが、以下では、上記放電装置を用いた本発明の制御方法に関して、詳しく構成、動作、及び作用効果について述べる。 In the above, the operation and action of the discharge device have been roughly described. In the following, the configuration, operation, and effect of the control method of the present invention using the discharge device will be described in detail.
 まず、図10を用いて、放電装置の放電電流の特性につい述べる。 First, the characteristics of the discharge current of the discharge device will be described with reference to FIG.
 図10および図11は、放電電極と対向電極へ一定の電圧を印加した際、放電電極と対向電極を流れる電流、つまり放電電流を100リットルボックスにて測定した結果である。図11は、湿度を99%Rh一定にして温度を変動させたときの結果であり、図12は温度を5度一定にして湿度を変動させた時の結果である。これらの結果から分かるように、放電電流は温度及び湿度が低くなるに従って、高くなることが分かる。 FIG. 10 and FIG. 11 show the results of measuring the current flowing through the discharge electrode and the counter electrode, that is, the discharge current in a 100 liter box when a constant voltage is applied to the discharge electrode and the counter electrode. FIG. 11 shows the results when the temperature is varied with the humidity being fixed at 99% Rh, and FIG. 12 is the results when the humidity is varied with the temperature being fixed at 5 degrees. As can be seen from these results, the discharge current increases as the temperature and humidity decrease.
 一方、図11は、放電装置を100リットルのボックスに同様に設置し、放電電極と対向電極へ電圧を印加し放電させ、放電電流と放電によって生成したオゾンのオゾン濃度を測定した結果である。この結果から分かるように、放電電流が大きくなるに従って単位時間あたりのオゾン発生量が多くなるために、オゾン濃度は高くなることが分かる。 On the other hand, FIG. 11 shows the result of measuring the ozone concentration of ozone generated by the discharge current and the discharge by installing the discharge device in the same manner in a 100 liter box, applying a voltage to the discharge electrode and the counter electrode, and discharging. As can be seen from this result, the ozone concentration increases as the discharge current increases, because the amount of ozone generated per unit time increases.
 以上の結果から、放電装置の放電電流は温度および湿度が低くなるに従って大きくなる、すなわちオゾン発生量が多くなることが分かる。 From the above results, it can be seen that the discharge current of the discharge device increases as the temperature and humidity decrease, that is, the amount of ozone generated increases.
 このことは、特に冷蔵庫に設置した放電装置近傍の温度および湿度の状態によって、オゾン発生量が異なることを意味している。また、図10および図11に示すように、温度が1から5℃、湿度40から99%Rhの範囲でも放電電流の変化が大きくなるが、この温度および湿度の変化量は、実使用上の冷蔵庫においても、例えばドア開閉や野菜室に保存する野菜の量の変化によって簡単に生じる変化量である。 This means that the amount of ozone generated differs depending on the temperature and humidity conditions in the vicinity of the discharge device installed in the refrigerator. Further, as shown in FIGS. 10 and 11, the change in the discharge current becomes large even when the temperature is in the range of 1 to 5 ° C. and the humidity is 40 to 99% Rh. Also in the refrigerator, for example, the amount of change is simply caused by opening / closing the door or changing the amount of vegetables stored in the vegetable room.
 そこで、上記のような温度および湿度変動が生じたとしても、冷蔵庫内を目標とするオゾン濃度(5ppb以上30ppb以下)に保つための制御が必要となる。 Therefore, even if the temperature and humidity fluctuations as described above occur, it is necessary to control the inside of the refrigerator to maintain the target ozone concentration (5 ppb or more and 30 ppb or less).
 一方で、放電装置から発生したオゾンを冷蔵庫の各貯蔵室へ拡散させるには、放電デバイスを野菜室吸い込み口付近に設置し、上述したように冷蔵庫の吐出風路を活用して全室へ拡散させることが有効であるため、その位置に設置している。 On the other hand, in order to diffuse ozone generated from the discharge device to each storage room of the refrigerator, a discharge device is installed in the vicinity of the suction inlet of the vegetable room and diffused to all rooms using the discharge air passage of the refrigerator as described above. Since it is effective to make it, it is installed at that position.
 しかしながら、その一方、放電装置近傍の温度および湿度の変動が貯蔵室の中央付近よりも大きくなる。そのため、図10から図12で説明したように、放電装置の放電電流が安定せず、それに伴ってオゾン発生量の安定しない課題を有している。 However, on the other hand, fluctuations in temperature and humidity near the discharge device are larger than those near the center of the storage room. Therefore, as described with reference to FIGS. 10 to 12, the discharge current of the discharge device is not stable, and accordingly, the amount of ozone generation is not stable.
 さらに、放電デバイスからは、オゾンの他にマイナスイオンも微量ながら放出することが事前に検討でわかっているため、放電装置近傍がマイナスイオンにより帯電することによって、放電電流が低下する課題も有している。 Furthermore, since it has been known in advance that a small amount of negative ions in addition to ozone are emitted from the discharge device, there is a problem that the discharge current is reduced by charging the vicinity of the discharge device with negative ions. ing.
 そこで、上記の課題を解決し、上記の温度および湿度変化に対して、冷蔵庫内を目標とするオゾン濃度に保つための制御について、図9、図13、図14を用いて詳しく説明する。 Therefore, the control for solving the above-described problems and maintaining the ozone concentration within the refrigerator as a target against the above-described temperature and humidity changes will be described in detail with reference to FIG. 9, FIG. 13, and FIG.
 図9の制御手段は、放電状態検知手段によって放電電流と、電圧印加時間を見て、放電装置から発生したオゾン発生量の判断を下し、これを元に電圧印加部を制御して放電装置から発生するオゾン発生量をオゾン目標濃度(5ppb以上30ppb以下)に制御するものである。 The control means in FIG. 9 determines the amount of ozone generated from the discharge device by looking at the discharge current and the voltage application time by the discharge state detection means, and controls the voltage application unit based on this to determine the discharge device. The amount of ozone generated from the ozone is controlled to the ozone target concentration (5 ppb or more and 30 ppb or less).
 また、図13は、上記操作のフローチャートであり、図14は、上記操作の制御タイムチャートである。ただし、図13、図14で用いられている言葉は、それぞれ以下の通りである。 FIG. 13 is a flowchart of the above operation, and FIG. 14 is a control time chart of the above operation. However, the terms used in FIGS. 13 and 14 are as follows.
 まず、放電状態制御周期は、放電状態を判断する時間領域に相当する周期であり、例えば、野菜室等の貯蔵室に冷気を導入するダンパ130aの開閉に同期させてダンパ130a開から次のダンパ130a開までの期間を、放電状態制御周期とすることができる。周期ごとに、「1周期目:1回目のダンパ開までの期間」、「2周期目:1回目のダンパ開から3回目のダンパ開までの期間」のように、周期の長さを変更することも可能である。 First, the discharge state control cycle is a cycle corresponding to a time region for determining the discharge state. For example, the next damper is opened from the opening of the damper 130a in synchronization with the opening / closing of the damper 130a that introduces cool air into a storage room such as a vegetable room. A period until 130a is opened can be a discharge state control cycle. For each cycle, the length of the cycle is changed, such as “the period from the first cycle to the first damper opening” and “the second cycle: the period from the first damper opening to the third damper opening”. It is also possible.
 また、電圧印加率は、電圧印加率=(電圧を印加している時間)/(放電状態制御周期の時間)である。放電電荷とは、放電電荷=(放電電流)×(電圧を印加している時間)である。 Also, the voltage application rate is voltage application rate = (time during which voltage is applied) / (time of discharge state control cycle). The discharge charge is discharge charge = (discharge current) × (time during which voltage is applied).
 この放電電荷の関係から分かるように、放電電流(単位時間あたりのオゾン発生量)と電圧を印加している時間(オゾンを発生している時間)の積分値であることから、電化を印加している時間に放電装置から発生したオゾンの発生量になる。一方で、1周期放電電荷とは、放電電流状態制御周期の1周期の間に、実際に放電装置に電圧を印加して生じた放電電化の総量の事である。この1周期放電電化は1周期放電状態制御周期の間に発生したオゾン総量に換算することができることから、貯蔵室内のオゾン濃度としてさらに換算することができる。そこで、1周期放電電荷を冷蔵庫内のオゾン目標濃度(5ppb以上30ppb以下)に対応させ、最低オゾン目標濃度を最低放電電荷(Qmin)、最高オゾン目標濃度を最高放電電荷(Qmax)として示す。 As can be seen from the relationship between the discharge charge, it is the integrated value of the discharge current (amount of ozone generated per unit time) and the time during which the voltage is applied (the time during which ozone is generated). The amount of ozone generated from the discharge device during this time. On the other hand, the one-cycle discharge charge is the total amount of discharge electrification generated by actually applying a voltage to the discharge device during one cycle of the discharge current state control cycle. Since this one-cycle discharge electrification can be converted into the total amount of ozone generated during the one-cycle discharge state control cycle, it can be further converted as the ozone concentration in the storage chamber. Therefore, one cycle discharge charge is made to correspond to the ozone target concentration (5 ppb or more and 30 ppb or less) in the refrigerator, the lowest ozone target concentration is shown as the lowest discharge charge (Qmin), and the highest ozone target concentration is shown as the highest discharge charge (Qmax).
 ここで、図13にもどって制御方法の手順について説明を行う。まず、N番目の放電状態制御周期Nで、制御手段によって放電状態を判断する(STEP1)。その結果、「放電量(放電電荷)<放電目標」であれば、次の放電状態制御周期(放電状態制御周期N+1)で、制御手段により電圧の印加時間(電圧印加率)を増加させる(STEP2)。このことにより、放電状態制御周期N+1では放電量(放電電荷)が大きくなり、放電量(放電電荷)が放電目標に近づくことになる。 Here, returning to FIG. 13, the procedure of the control method will be described. First, in the Nth discharge state control cycle N, the discharge state is determined by the control means (STEP 1). As a result, if “discharge amount (discharge charge) <discharge target”, the voltage application time (voltage application rate) is increased by the control means in the next discharge state control cycle (discharge state control cycle N + 1) (STEP 2 ). As a result, the discharge amount (discharge charge) increases in the discharge state control cycle N + 1, and the discharge amount (discharge charge) approaches the discharge target.
 また、放電状態判断が「放電量=放電目標」(STEP1)であれば、次の放電制御周期において、制御手段により、電圧の印加時間(電圧印加率)を維持させる(STEP3)。 If the discharge state determination is “discharge amount = discharge target” (STEP 1), the voltage application time (voltage application rate) is maintained by the control means in the next discharge control cycle (STEP 3).
 さらに、放電状態判断が「放電量(放電電荷)>放電目標」であれば、次の放電状態制御周期(放電状態制御周期N+1)で、制御手段により電圧の印加時間(電圧印加率)を減少させる(STEP2)。ことにより、放電状態制御周期N+1では放電量(放電電荷)が小さくなり、放電量(放電電荷)が放電目標に近づくことになる。 Further, if the discharge state judgment is “discharge amount (discharge charge)> discharge target”, the voltage application time (voltage application rate) is reduced by the control means in the next discharge state control cycle (discharge state control cycle N + 1). (STEP 2). As a result, in the discharge state control cycle N + 1, the discharge amount (discharge charge) decreases, and the discharge amount (discharge charge) approaches the discharge target.
 以上のような制御により、「放電状態判断(STEP1)」と「電圧の印加時間変更(STEP2から4)」が繰り返されることで、電圧印加時間(印加率)を適正化し、放電目標に近づけることができる。 By repeating the above-described control, “discharge state determination (STEP 1)” and “voltage application time change (STEP 2 to 4)” are repeated, so that the voltage application time (application rate) is optimized and approaches the discharge target. Can do.
 次に、タイムチャートである図14を用いて時間的な操作と、その結果実現される1周期放電電荷について説明する。 Next, a time operation and a one-cycle discharge charge realized as a result will be described with reference to FIG. 14 which is a time chart.
 図14では、横軸は時間軸である。縦軸は、上に放電目標(放電電荷目標値:Qmin、Qmax)、1周期放電電荷、放電電流、放電装置近傍の温度および湿度、野菜室を一定の温度に保つために設けられているダンパ開閉の状態である。 In FIG. 14, the horizontal axis is the time axis. The vertical axis indicates the discharge target (discharge charge target values: Qmin, Qmax), one period discharge charge, discharge current, temperature and humidity in the vicinity of the discharge device, and a damper provided to keep the vegetable room at a constant temperature. Open / closed state.
 ここで、時間軸は、図14の上部に示したように、大きく二つの放電状態制御周期に分かれ、順に放電状態制御周期N、放電状態制御周期N+1である。ひとつの放電状態制御周期はさらに二つの領域に分かれており、例えば、放電状態制御周期Nでは、tN、closeからtN、openの領域と、tN、openからtN+1、closeの領域の二つに分かれている。 Here, as shown in the upper part of FIG. 14, the time axis is roughly divided into two discharge state control cycles, which are a discharge state control cycle N and a discharge state control cycle N + 1 in this order. One discharge state control cycle is further divided into two regions. For example, in the discharge state control cycle N, it is divided into two regions: a region from tN, close to tN, open, and a region from tN, open to tN + 1, close. ing.
 tN、closeからtN、openの領域ではダンパが閉じられているために、風路を通じて冷気の流入が停止されるので温度が時間の経過と共に上昇する。さらに湿度は、ダンパが閉じた状態となるので、野菜室に保存された野菜等の水分の蒸散等により湿度も時間の経過と共に上昇する。逆に、tN、openからtN+1、closeの領域ではダンパが開くために、冷却器で冷却された温度と湿度が低い冷気が流れこむために、時間の経過と共に、放電装置近傍の温度および湿度は低下する。 In the region from tN, close to tN, open, since the damper is closed, the inflow of cold air through the air passage is stopped, so the temperature rises with time. Furthermore, since the damper is in a state in which the damper is closed, the humidity also rises with time due to the transpiration of moisture of vegetables and the like stored in the vegetable room. On the other hand, since the damper opens in the region from tN, open to tN + 1, close, cold air with low temperature and humidity flowing in the cooler flows in, so the temperature and humidity in the vicinity of the discharge device decrease with time. To do.
 従って、tN、closeからtN、openの領域では温度および湿度の上昇に従って、図10から図12にて説明したとおり、縦軸の放電電流に示すとおり除々に減少していく。一方、tN、openからtN+1、closeの領域では温度および湿度の低下に従って、放電電流は除々に上昇する。 Therefore, in the region from tN, close to tN, open, as the temperature and humidity increase, as shown in FIG. 10 to FIG. 12, it gradually decreases as shown by the discharge current on the vertical axis. On the other hand, in the region from tN, open to tN + 1, close, the discharge current gradually increases as the temperature and humidity decrease.
 以上の動作を経て、放電電流制御周期Nの領域では、時間の経過とともに、放電電流が変動しながらも、放電電荷(放電電流×電圧印加時間(印可率))が除々に増加し、tN+1、closeの時に1周期放電電荷の値が制御手段によって見ることができる。 Through the above operation, in the region of the discharge current control period N, the discharge charge (discharge current × voltage application time (application rate)) gradually increases with the passage of time, while the discharge current varies, and tN + 1, The value of the one-cycle discharge charge can be seen by the control means during the close.
 ここで、制御手段によって、放電状態制御周期Nでの放電状態のSTEP1の判断が下され、次のSTEP2から3へと進む。 Here, the determination of STEP 1 of the discharge state in the discharge state control cycle N is made by the control means, and the process proceeds from the next STEP 2 to 3.
 図14を例にすると、STEP1で放電量(放電電荷)<放電目標と判断が下され、これを受けてSTEP2へ進み、電圧印加時間(電圧印加率)を増加させ、放電状態制御周期N+1では放電装置の電圧印加時間(印加率)は増加する。 Taking FIG. 14 as an example, it is determined in STEP 1 that the discharge amount (discharge charge) <discharge target, and in response to this, the process proceeds to STEP 2 to increase the voltage application time (voltage application rate), and in the discharge state control cycle N + 1 The voltage application time (application rate) of the discharge device increases.
 以降、この動作を繰り返すことで、効果的に放電目標を維持することが可能となる。 Thereafter, by repeating this operation, the discharge target can be effectively maintained.
 また、その他放電デバイスからオゾンを安定的に放出させる手段として、放電電流を放電状態検知手段によって読み取り、放電電流を一定(たとえば10マイクロアンペア)にするような手段も考えられるが、その方法であると、ダンパが開いた状態でも閉じた状態でも同じ量のオゾン量が発生することになる。従って、全室へオゾンを拡散させる場合を考えた場合、ダンパが閉じた状態ではオゾン発生量を増加させた方が望ましいが、放電電流を一定にする手法はできないといった課題を有しているため、放電状態制御周期の時間で制御した方が、ダンパが開いた状態で放電電流が増加することを活用できることからも有効な手段である。 As another means for stably releasing ozone from the discharge device, a means for reading the discharge current by the discharge state detecting means and making the discharge current constant (for example, 10 microamperes) is conceivable. The same amount of ozone is generated whether the damper is open or closed. Therefore, considering the case of diffusing ozone into all the rooms, it is desirable to increase the amount of ozone generated when the damper is closed, but there is a problem that a method for making the discharge current constant cannot be achieved. Further, the control by the time of the discharge state control cycle is an effective means because it can take advantage of the increase in the discharge current with the damper opened.
 なお、本実施の形態では、対向電極207を基準電位側(0V)とし、放電電極206負電位(-7kV)を印加して、両電極間に高圧電位差を発生させたが、放電電極206を基準電位側(0V)とし、対向電極207に負電位(-7kV)を印加して、両電極間に高圧電位差を発生させてもよい。また、放電電極206を-7kVの負電位にした場合、貯蔵室(野菜室108)側を基準電位側とすれば、特に対向電極207を設けなくてもよい場合もある。 In this embodiment, the counter electrode 207 is set to the reference potential side (0 V) and the discharge electrode 206 is negatively applied (−7 kV) to generate a high-voltage potential difference between the two electrodes. A high potential difference may be generated between both electrodes by applying a negative potential (−7 kV) to the counter electrode 207 on the reference potential side (0 V). In addition, when the discharge electrode 206 is set to a negative potential of −7 kV, the counter electrode 207 may not be particularly provided if the storage chamber (vegetable chamber 108) side is set to the reference potential side.
 この場合は、例えば、断熱された貯蔵室(野菜室108)の中に導電性の収納容器を備え、その導電性の収納容器が収納容器の保持部材(導電性)と電気的に接続され、且つ保持部材と脱着可能な構成とし、保持部材を基準電位部と接続しアース(0V)にするのである。 In this case, for example, a conductive storage container is provided in an insulated storage room (vegetable room 108), and the conductive storage container is electrically connected to a holding member (conductive) of the storage container, In addition, the holding member can be attached to and detached from the holding member, and the holding member is connected to the reference potential portion to be grounded (0 V).
 これにより、放電部201と収納容器および保持部材が常に電位差を保つため安定的な電界が構成されることにより、安定的に放電部201からオゾンを放出でき、また、収納容器全体が基準電位になっているので、放出されるオゾンを収納容器全体に拡散することができる。さらに、周辺の物体への帯電も防止することができる。 As a result, a stable electric field is formed in order to maintain a potential difference between the discharge unit 201 and the storage container and the holding member, so that ozone can be stably released from the discharge unit 201, and the entire storage container is at the reference potential. Therefore, the released ozone can be diffused throughout the storage container. Further, charging to surrounding objects can be prevented.
 このように、特に対向電極207を設けなくても、貯蔵室(野菜室108)側の一部にアースされた保持部材を備えることで、放電電極206と電位差を発生させて、オゾン拡散を行うことができ、より簡単な構成で安定的な電界が構成されることにより安定的に霧化部から噴霧できる。 Thus, even if the counter electrode 207 is not particularly provided, a grounded holding member is provided on a part of the storage chamber (vegetable chamber 108) side, thereby generating a potential difference from the discharge electrode 206 and performing ozone diffusion. It is possible to stably spray from the atomizing section by forming a stable electric field with a simpler configuration.
 以上のように、本発明にかかる冷蔵庫は、本発明の静電霧化装置を用いた制御方法を適用することにより、貯蔵室内で適切な霧化を実現できるので、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対して実施することはもちろん、野菜等の食品低温流通、倉庫などの用途にも適用できる。 As described above, the refrigerator according to the present invention can realize appropriate atomization in the storage room by applying the control method using the electrostatic atomizer of the present invention. It can be applied not only to the vegetable storage, but also to applications such as low-temperature distribution of foods such as vegetables and warehouses.
 100 冷蔵庫
 101 断熱箱体
 102 外箱
 103 内箱
 104 冷蔵室
 105 切換室
 106 製氷室
 107 冷凍室
 108 野菜室
 109 圧縮機
 110 冷却室
 111 奥面仕切り壁
 112 冷却器
 113 冷却ファン
 114 ラジアントヒータ
 115 ドレンパン
 116 ドレンチューブ
 117 蒸発皿
 125 第二の仕切壁
 125a 凹部
 125b 最深凹部
 131 静電霧化装置
 132 噴霧口
 133 電圧印加部
 134 冷却ピン(伝熱冷却部)
 134a 凸部
 134b 冷却ピン(伝熱冷却部)端部
 135 霧化電極
 136 対向電極
 137 外郭ケース
 138 湿度供給口
 139 霧化部
 140 結露防止部材
 146 制御手段
 151 奥面仕切壁表面
 152 断熱材
 153 冷却ピン遮熱領域
 154 加熱部
 200 放電装置
 201 放電部
 202 電圧印加部
 203 放電状態検知手段
 204 外郭ケース
 205 オゾン放出口
 206 放電電極
 207 対向電極
 208 固定部材
 210 制御手段
DESCRIPTION OF SYMBOLS 100 Refrigerator 101 Heat insulation box 102 Outer box 103 Inner box 104 Refrigeration room 105 Switching room 106 Ice making room 107 Freezing room 108 Vegetable room 109 Compressor 110 Cooling room 111 Back surface partition wall 112 Cooler 113 Cooling fan 114 Radiant heater 115 Drain pan 116 Drain tube 117 Evaporating dish 125 Second partition wall 125a Recess 125b Deepest recess 131 Electrostatic atomizer 132 Spraying port 133 Voltage application unit 134 Cooling pin (heat transfer cooling unit)
134a Protruding part 134b Cooling pin (heat transfer cooling part) end part 135 Atomizing electrode 136 Counter electrode 137 Outer case 138 Humidity supply port 139 Atomizing part 140 Condensation preventing member 146 Control means 151 Back surface partition wall surface 152 Heat insulating material 153 Cooling Pin heat shield region 154 Heating unit 200 Discharge device 201 Discharge unit 202 Voltage application unit 203 Discharge state detection means 204 Outer case 205 Ozone outlet 206 Discharge electrode 207 Counter electrode 208 Fixing member 210 Control means

Claims (10)

  1.  霧化電極と、
     前記霧化電極に電圧を印加する電圧印加部と、
     前記電圧印加部を制御する制御手段と、
     前記霧化電極の霧化状態を検知する霧化状態検知手段と
    を有した冷蔵庫の霧化装置の制御方法であって、
     前記制御手段が、所定周期における前記霧化状態検知手段の霧化状態判断に基づき、次期所定周期での前記霧化電極での霧化を制御する
    霧化装置の制御方法。
    An atomizing electrode;
    A voltage application unit for applying a voltage to the atomizing electrode;
    Control means for controlling the voltage application unit;
    A control method for an atomizing device of a refrigerator having an atomizing state detecting means for detecting an atomizing state of the atomizing electrode,
    The control method of the atomizer which the said control means controls the atomization in the said atomization electrode in the next predetermined period based on the atomization state judgment of the said atomization state detection means in a predetermined period.
  2.  前記霧化状態検知手段は、前記電圧印加部での電流値とした
    請求項1に記載の霧化装置の制御方法。
    The control method of the atomization apparatus according to claim 1, wherein the atomization state detection means uses a current value at the voltage application unit.
  3.  前記霧化電極を冷却する冷却手段と、
     前記霧化電極を加熱する加熱手段とをさらに有し、
     前記制御手段が、所定周期における前記霧化状態検知手段の霧化状態判断に基づき、前記加熱手段による加熱量を制御し、次期所定周期での前記霧化電極での霧化を制御する
    請求項1または2に記載の霧化装置の制御方法。
    Cooling means for cooling the atomizing electrode;
    Heating means for heating the atomizing electrode;
    The said control means controls the amount of heating by the said heating means based on the atomization state judgment of the said atomization state detection means in a predetermined period, and controls the atomization in the said atomization electrode in the next predetermined period. The control method of the atomization apparatus of 1 or 2.
  4.  前記霧化状態検知手段によって霧化率が減少し、ほぼ霧化が行われていないと判断した場合に、前記霧化電極に付着した水が凍結したと判断し、制御手段により次期所定周期での加熱手段の加熱量を増加させる
    請求項3に記載の霧化装置の制御方法。
    When the atomization rate is reduced by the atomization state detection means and it is determined that the atomization is not substantially performed, it is determined that the water adhering to the atomization electrode is frozen, and the control means performs the next predetermined cycle. The method for controlling an atomizing device according to claim 3, wherein the heating amount of the heating means is increased.
  5.  次期所定周期での加熱手段の加熱量を予め定めた特定の加熱量に設定する
    請求項4に記載の霧化装置の制御方法。
    The control method of the atomization apparatus of Claim 4 which sets the heating amount of the heating means in the next predetermined period to the predetermined specific heating amount.
  6.  凍結解除後の次期所定周期での加熱手段の加熱量が、凍結前の加熱量とほぼ同等となるように設定する
    請求項4に記載の霧化装置の制御方法。
    The control method of the atomization apparatus of Claim 4 which sets so that the heating amount of the heating means in the next predetermined period after freezing cancellation may become substantially equivalent to the heating amount before freezing.
  7.  放電電極と、
     前記放電電極に電圧を印加する電圧印加部と、
     前記電圧印加部を制御する制御手段と、
     前記放電電極の放電状態を検知する放電状態検知手段と
    を有した冷蔵庫の放電装置の制御方法であって、
     前記制御手段が、所定周期における前記放電状態検知手段の放電状態判断に基づき、次期所定周期での前記放電電極での放電を制御する
    放電装置の制御方法。
    A discharge electrode;
    A voltage application unit for applying a voltage to the discharge electrode;
    Control means for controlling the voltage application unit;
    A control method for a discharge device of a refrigerator having a discharge state detection means for detecting a discharge state of the discharge electrode,
    A control method for a discharge device, wherein the control means controls discharge at the discharge electrode in a next predetermined period based on a discharge state determination of the discharge state detection means in a predetermined period.
  8.  前記放電状態検知手段は、放電電極から対向電極に流れる放電電流とした
    請求項7に記載の放電装置の制御方法。
    The discharge device control method according to claim 7, wherein the discharge state detection means uses a discharge current flowing from the discharge electrode to the counter electrode.
  9.  前記放電電極での放電の制御は、電圧印加部への印加時間とした
    請求項7または8に記載の放電装置の制御方法。
    The discharge device control method according to claim 7 or 8, wherein the discharge control at the discharge electrode is an application time to the voltage application unit.
  10.  請求項1から9のいずれか一項に記載の霧化装置の制御方法または放電装置の制御方法を実行する制御手段を備えた冷蔵庫。 A refrigerator comprising control means for executing the control method for an atomization device or the control method for a discharge device according to any one of claims 1 to 9.
PCT/JP2011/005276 2010-09-21 2011-09-20 Method for controlling atomizing device, method for controlling discharging device, and refrigerator WO2012039125A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180045252.0A CN103119384B (en) 2010-09-21 2011-09-20 The control method of atomising device, the control method of electric discharge device and freezer
EP11826573.5A EP2620728B1 (en) 2010-09-21 2011-09-20 Method of controlling atomizing device, method of controlling discharge device, and refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010210398 2010-09-21
JP2010-210398 2010-09-21

Publications (1)

Publication Number Publication Date
WO2012039125A1 true WO2012039125A1 (en) 2012-03-29

Family

ID=45873625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005276 WO2012039125A1 (en) 2010-09-21 2011-09-20 Method for controlling atomizing device, method for controlling discharging device, and refrigerator

Country Status (4)

Country Link
EP (1) EP2620728B1 (en)
JP (1) JP2012088032A (en)
CN (1) CN103119384B (en)
WO (1) WO2012039125A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006617A (en) * 2014-06-13 2014-08-27 合肥华凌股份有限公司 Refrigerator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015201046A1 (en) * 2015-01-22 2016-07-28 BSH Hausgeräte GmbH Method for operating a domestic refrigeration appliance, in which a misting rate is adjusted and household refrigeration appliance
CN206810524U (en) 2017-05-31 2017-12-29 北京小米移动软件有限公司 A kind of water particulate generating means
CN108970823B (en) * 2017-05-31 2021-08-06 北京小米移动软件有限公司 Water particle generating device
CL2018000341A1 (en) 2018-02-06 2018-07-06 Ingeagro Eirl Device and method of electrostatic application.
CN113883591B (en) * 2021-10-28 2023-03-07 宁波奥克斯电气股份有限公司 Air conditioner degerming atomization device, air conditioner and control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257933A (en) 1993-03-02 1994-09-16 Sharp Corp Refrigerator
JP2000220949A (en) 1999-01-29 2000-08-08 Sharp Corp Refrigerator
JP2007046888A (en) * 2005-07-13 2007-02-22 Matsushita Electric Ind Co Ltd Refrigerator
WO2008139704A1 (en) * 2007-04-26 2008-11-20 Panasonic Corporation Refrigerator, and electric device
WO2009047896A1 (en) * 2007-10-09 2009-04-16 Panasonic Corporation Refrigerator
WO2009060593A1 (en) * 2007-11-06 2009-05-14 Panasonic Corporation Refrigerator
JP2010038441A (en) * 2008-08-05 2010-02-18 Panasonic Corp Refrigerator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150683A (en) * 1988-12-01 1990-06-08 Sharp Corp Deodorizing device for refrigerator
JPH0812029B2 (en) * 1993-06-08 1996-02-07 中野冷機株式会社 Showcase internal temperature control device
JP2000346538A (en) * 1999-06-02 2000-12-15 Mitsubishi Electric Corp Air conditioning system
CN2793650Y (en) * 2000-12-27 2006-07-05 夏普公司 Refrigerator of storage tank
JP4458779B2 (en) * 2003-07-10 2010-04-28 株式会社東芝 refrigerator
JP4151729B2 (en) * 2004-07-22 2008-09-17 松下電器産業株式会社 Storage and refrigerator using it
JP2006046742A (en) * 2004-08-03 2006-02-16 Matsushita Electric Ind Co Ltd Door device for refrigerator
JP4610496B2 (en) * 2006-02-03 2011-01-12 シャープ株式会社 refrigerator
JP4665839B2 (en) * 2006-06-08 2011-04-06 パナソニック電工株式会社 Electrostatic atomizer
JP4706632B2 (en) * 2006-12-22 2011-06-22 パナソニック電工株式会社 Electrostatic atomizer
JP5251228B2 (en) * 2007-04-26 2013-07-31 パナソニック株式会社 refrigerator
JP5239456B2 (en) * 2008-03-31 2013-07-17 パナソニック株式会社 refrigerator
JP5298503B2 (en) * 2007-11-06 2013-09-25 パナソニック株式会社 refrigerator
JP5301141B2 (en) * 2007-11-06 2013-09-25 パナソニック株式会社 refrigerator
JP4151741B1 (en) * 2007-11-14 2008-09-17 松下電器産業株式会社 refrigerator
JP2009261554A (en) * 2008-04-24 2009-11-12 Panasonic Corp Bathroom heating drying ventilation device with sauna function

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257933A (en) 1993-03-02 1994-09-16 Sharp Corp Refrigerator
JP2000220949A (en) 1999-01-29 2000-08-08 Sharp Corp Refrigerator
JP2007046888A (en) * 2005-07-13 2007-02-22 Matsushita Electric Ind Co Ltd Refrigerator
WO2008139704A1 (en) * 2007-04-26 2008-11-20 Panasonic Corporation Refrigerator, and electric device
WO2009047896A1 (en) * 2007-10-09 2009-04-16 Panasonic Corporation Refrigerator
WO2009060593A1 (en) * 2007-11-06 2009-05-14 Panasonic Corporation Refrigerator
JP2010038441A (en) * 2008-08-05 2010-02-18 Panasonic Corp Refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2620728A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006617A (en) * 2014-06-13 2014-08-27 合肥华凌股份有限公司 Refrigerator
CN104006617B (en) * 2014-06-13 2017-01-04 合肥华凌股份有限公司 Refrigerator

Also Published As

Publication number Publication date
EP2620728A4 (en) 2013-07-31
CN103119384B (en) 2015-09-30
CN103119384A (en) 2013-05-22
EP2620728A1 (en) 2013-07-31
EP2620728B1 (en) 2015-07-01
JP2012088032A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
RU2473026C2 (en) Refrigerator
JP5891420B2 (en) refrigerator
US7966842B2 (en) Refrigerator, and electric device
AU2008325938B2 (en) Refrigerator
WO2012039125A1 (en) Method for controlling atomizing device, method for controlling discharging device, and refrigerator
WO2011121892A1 (en) Refrigerator and electrostatic atomization device
JP5301141B2 (en) refrigerator
JP5200562B2 (en) refrigerator
JP4151739B1 (en) refrigerator
JP2008292128A (en) Refrigerator
JP2009293895A (en) Refrigerator
JP5347260B2 (en) refrigerator
JP2011069604A (en) Refrigerator
RU2537196C2 (en) Refrigerator and electric device
JP4151741B1 (en) refrigerator
JP4151742B1 (en) refrigerator
JP4151740B1 (en) refrigerator
JP5239455B2 (en) refrigerator
JP5262133B2 (en) refrigerator
GB2460357A (en) Humidity Control Within a Refrigerator by Condensing and Atomizing Storage Compartment Moisture
JP2011047549A (en) Refrigerator
JP2010025429A (en) Refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045252.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011826573

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE